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ABSTRACT
Graph machine learning faces the challenge 
of efficiently representing graphs, as most 
machine learning algorithms require vector-
encoded data. To address this, I propose a 
novel two-stage framework that combines 
Graph Isomorphism Networks (GINs) with 
Siamese autoencoders for the representation 
of chemical molecule graphs. The first stage 
involves constructing and training a GIN 
model using node and edge attributes of 
chemical graphs to generate high-dimensional 
Graph Embeddings that capture structural 
characteristics and predict molecular 
properties. In the second stage, these 
embeddings are optimized through a Siamese 
autoencoder, which reduces their 
dimensionality while preserving structural 
information, facilitating tasks such as 
approximate nearest neighbor search. This 
framework demonstrates effectiveness in 
accurately predicting molecular similarity and 
preserving graph structure in low-dimensional 
embeddings. Future work will focus on 
refining this framework to enhance its 
efficiency and accuracy in representing 
chemical molecule graphs, with potential 
applications in computational chemistry and 
drug discovery, including further testing and 
evaluation to address any identified 
limitations.

1. INTRODUCTION

Graphs have proven to be highly effective 
structures for representing and analyzing real-
world data in numerous domains, such as 
social networks and biological networks. The 
effectiveness of graphs in these domains can 
be attributed to their ability to encode both 
structural and semantic information. By 
representing entities as nodes and 
relationships as edges, graphs provide a 
powerful framework for capturing the 
underlying patterns, dependencies, and inter-
dependencies within complex systems. This 
flexibility and ability to capture and model 
arbitrary relationships between arbitrary 
entities allow graphs to go beyond the 
limitations of traditional data structures, 
providing a more comprehensive and holistic 
understanding of complex systems and real-
world data. 

2. RELATED WORKS
The integration of graph-based methodologies 
with machine learning techniques for graph 
representation learning has gained significant 
attention (Bengio, et al., 2013). There have 
been methods developed for graph 
isomorphism testing without mapping 
functions (Shervashidze, et al., 2011) and 
thus cannot be applied for general similarity 
learning. For similarity learning models to be 
useful for querying in downstream tasks, the 
graphs must be encoded into vector 
representations. Graph embeddings enable the 
transformation of graph data into vector 



representations, thereby bridging the gap 
between graph structures and traditional 
vector-based machine learning models (Wu, 
et al., 2020) (Cai, et al., 2018). Using graph 
embeddings, a wide array of established 
machine learning techniques can be employed 
to tackle diverse tasks, extending beyond the 
limited applications of graph data in its 
original form.

This enhanced flexibility allows for more 
comprehensive analysis, prediction, and 
decision-making in real-world scenarios. 
With the emergence of deep learning on 
graph data, Graph Neural Networks (GNNs) 
have become a powerful tool to encode 
graphs into embedding vectors (Hamilton, et 
al., 2017) (Velickovic, et al., 2017) (Xu, et 
al., 2018). Compared to traditional graph 
embedding methods, GNNs address tasks in 
an end-to-end manner (Ma, et al., 2021) and 
can better leverage graph feature for specific 
learning tasks. GNN models have been 
proposed to solve problems in multiple 
domains, such as brain networks (Ma, et al., 
2019) and computer security (Li, et al., 2019). 

In the field of biomedicine, due to the nature 
of the graph data as chemical molecules, there 
have been cheminformatics tools for mapping 
the chemical space long before machine 
learning, called molecular fingerprinting. 
Specifically, Morgan fingerprinting (Morgan, 
1965) is one of the most widely used 
featurization methods for chemical 
molecules. The algorithm iteratively encodes 
circular substructures of a molecule as 
identifiers, hashes them, and folds them to bit 
positions to generate a bit string. Since 
fingerprinting methods are optimized 
specifically for chemical molecules, 
fingerprinting has achieved good performance 
when used as input representations in deep 
neural networks (Unterthiner, et al., 2014), 
but in many cases fingerprinting methods are 

not able to offer ideal performance due to the 
length of the resulting embedding vectors.

3. PROJECT DESIGN
The overall pipeline in the proposed 
framework consists of two stages. In the first 
stage, the structural information of molecule 
graphs is utilized to train a Graph 
Isomorphism Network (GIN) model for 
predicting individual graph attributes. Then 
the embeddings of the molecules for each 
graph attribute are calculated. In the second 
stage, the output vectors from the first stage 
are used to train Siamese autoencoders, which 
preserves the information in the vectors and 
the relative similarity between vectors. Then 
the corresponding low-dimensional Graph 
Embedding vectors are obtained from the 
high-dimensional embedding vectors from the 
previous stage. 

Each chemical molecule can be represented 
as an undirected weighted graph denoted as G 
= (V, E). The set of nodes in the graph, V, 
corresponds to the atoms present in the 
molecule. The set of edges, E, represents the 
bonds between the atoms, capturing the 
connectivity information of the molecular 
structure. The graph includes intrinsic 
properties associated with the molecule itself 
in nodes, edges, and the overall graph, 
providing valuable data for analysis. 
Specifically, each node (atom) in the graph is 
associated with 11 attributes that characterize 
various atomic properties. Similarly, each 
edge (bond) carries 4 attributes that describe 
bond-specific properties. At the graph level, 
19 attributes are provided that represent 
different molecular properties. These 
descriptors encompass a diverse set of 
features and provide relevant information that 
captures global aspects of the chemical 
molecules.

The proposed GIN model has the following 
stages: (1) Node embedding, which encodes 



the features and structural properties of each 
node into a vector; (2) Graph embedding, 
during which graph level representations are 
obtained from each set of node embeddings 
using global pooling, then graph level 
embeddings from each level of abstraction is 
concatenated to form a single high-
dimensional embedding vector; and (3) the 
graph attribute computation stage, which 
reduces the high-dimensional vectors into one 
final attribute value, which is compared with 
the ground-truth value to update model 
parameters.

After obtaining the complete, high-
dimensional Graph Embedding vectors from 
the GIN model, optimizing them to be more 
suitable to use for downstream tasks is an 
important issue. Since superficially high-
dimensional and complex phenomena can be 
dominated by a small number of simple 
variables in most situations, this can be done 
using some learned projection method that 
maps the vectors in high-dimensional feature 
space to low-dimensional feature space. 
Siamese autoencoders were used as the 
dimensionality reduction technique, to 
maximize preservation of information in the 
original high-dimensional embedding vectors 
while reducing the dimensionality of the 
vectors, which optimizes them for tasks 
requiring vector input.

4. ANTICIPATED RESULTS
The baseline approach will be molecular 
fingerprinting, in which a kernel is applied 
that extracts feature from the molecule. The 
features are hashed and then used to calculate 
a bit vector. Specifically, one of the most 
widely used methods, the Morgan fingerprint, 
will be used. It is optimized to compare the 
similarity between molecules, by considering 
the neighborhood of each atom and perceives 
the presence of specific circular substructures 
around each atom in a molecule, which are 
predictive of the biological activities. It is one 

of the best performing molecular 
fingerprinting methods for target prediction 
tasks. By default, it produces vectors of 
length 2048. 

For both the baseline method and after each 
stage of the framework, three different 
benchmarks will be run to evaluate different 
aspects of the performance of the models. 
First, the Graph Embedding vectors will be 
used as input to a simple Forward Feeding 
Neural Network that is trained to predict the 
original graph attribute; this measures how 
well the structural information (which was 
used to obtain the embeddings) is preserved. 
Second, Uniform Manifold Approximation 
and Projection (UMAP) will be used to 
project the Graph Embedding vectors onto a 
2-dimensional space. This allows for 
examination of the degree to which the 
distribution and vector distances reflect the 
ground truth value for attribute similarities 
between the graphs. Finally, the Graph 
Embedding Vectors will be used as input to 
perform Approximate Nearest Neighbor 
Search. This measures the downstream task 
performance from multiple aspects for each 
set of Graph Embedding vectors.

5. CONCLUSION
This study contributes to existing knowledge 
about graph representation and provides 
valuable insights into the complex nature of 
chemical molecule data and proposes an 
efficient approach to obtain Graph 
Embeddings in vector format optimized for 
chemical molecule similarity tasks. 
Compared to traditional methods in the 
chemistry field, such as molecular 
fingerprinting, my approach can greatly 
reduce the dimensionality of the embeddings, 
making them more computationally efficient. 
This also helps to improve the interpretability 
and scalability of the embeddings for 
downstream tasks.



6. FUTURE WORK
The current study focuses on static molecule 
structure graphs. Future work can benefit 
from spatial-temporal chemical molecule data 
that better reflect how molecules transform 
over time. For more realistic molecule 
behavior, molecule isomerization can be 
modeled using dynamic graphs in the form of 
time series data. Moreover, this framework is 
limited to individual graph attributes, multi-
tasking models can be explored in the future. 
The proposed framework and techniques can 
also be explored in various other domains that 
require analysis and prediction of complex 
graph-structured data.
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