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ABSTRACT 

Complex dynamic effects influence the structural response of metallic core 

sandwich structures. Before these structures can be used in the field, it is necessary to 

understand the mechanical response and failure mechanisms of the sandwich structures 

under possible dynamic loading conditions which they may be subjected to. In this 

dissertation, a corrugated core sandwich structure under dynamic in-plane compression is 

the focus.  

The main objective of this dissertation is to investigate the structural response of 

the Al6061-T6 and SS304 corrugated core sandwich columns under dynamic loading, 

through theoretical and numerical analysis. There are two in-plane loading directions, 

perpendicular-to-corrugations and parallel-to-corrugations, to accommodate the 

anisotropic response. The investigation considers compression velocities ranging from 

quasi-static up to 100m/s, divided into low (up to the order of a few m/s) and high (the 

order of tens of m/s) velocity responses.  

For low velocity response, analytical models are proposed to predict individual 

failure modes. Each model is dedicated to the prediction of each of the individual failure 

modes: global buckling failure, face wrinkling failure for sandwich columns compressed 

perpendicular-to-corrugations, the local plate buckling for sandwich columns 

compressed parallel-to-corrugations. All of those models, based on the theory of stress 

wave propagation, calculate the out-of-plane displacements until failure criteria are 

satisfied. The validity of the proposed models is confirmed by comparison with FE 

simulations. The models successfully describe complex phenomena such as dynamic 
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strengthening by material strain-rate effects, inertia effects as well as imperfection 

sensitivity.  

Using those analytical models, the dynamic effects on the failure maps are 

investigated. Subsequently it is successfully proven that increased rate-of-loading leads 

to the inertial stabilization of global buckling motion and the change of failure modes 

from global to local buckling.  

The efficiency of the developed analytical models is highlighted in a dynamic 

optimization procedure. Due to the complex dynamic phenomena, the individual failure 

responses under low compression velocities of V=0.1 and 1m/s are approximated as a 

function of sandwich design parameters, which is referred to as response surface 

methodology. A number of numerical experiments for the response approximation are 

calculated using the developed analytical models, and the optimization problems are 

solved via a sequential quadratic programming algorithm. As a result, it is concluded that 

sandwich columns are superior to monolithic columns, and that beneficial sandwich 

concepts are more remarkable at the lower velocities due to the inertial stabilization of 

global buckling motion. Moreover, it is suggested that the minimum weight design of 

corrugated core sandwich columns with maximum impulse capacity must consider 

reinforcing local buckling strength under dynamic loading.   

Lastly, the high velocity sandwich column response is generalized in terms of 

sandwich geometric dimensions and loading intensity. In this high velocity response 

region where considered compression velocity is of the order of tens of m/s, the response 

time scale is of the order of less than one round trip of a plastic wave. Thus, the high 
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velocity column response can be accounted for by applying the theory of rate-

independent elastic-plastic wave propagation with an analogy between monolithic solid 

columns and sandwich columns. Simplified theoretical models for each in-plane loading 

orientation are suggested and validated by FEM.   
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CHAPTER 1 

INTRODUCTION 

 

1.1 MOTIVATION 

Sandwich structures, consisting of a lightweight core material separating two thin 

face sheets, have been widely used in various structural applications in which minimized 

weight is required. In addition, selection of a particular core material system makes it 

possible for them to perform multi-functional roles; a channel for fluid flow, an impact 

mitigator, a heat exchanger, etc. In particular, metallic core sandwich structures with 

periodicity have been given a great deal of attention because of their excellent 

mechanical properties and multifunctional capabilities, due to recent advances in 

manufacturing technology [1,2]. This dissertation focuses on one of metallic core 

sandwich structures, a corrugated core sandwich column.  

In order to fully exploit such benefits, the mechanical behavior under various 

loading conditions should be understood. One loading scenario receiving significant 

attention is dynamic compression of metallic core sandwich structures. There has been 

significant effort to predict and quantify the structural performance of metallic core 

sandwich structures in this situation. Motivated by blast mitigation applications, the 

dynamic out-of-plane response of impulsively loaded metallic core sandwich panel 

structures has been actively studied for the last decade [3-24]. These studies are 

characterized by high magnitude loads and short duration times. Compression velocity 

range in these studies is on the order of tens of m/s up to a few hundred m/s, which 
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corresponds to that of a front face in a typical sandwich panel subject to underwater blast 

loads [3, 25]. In air blast loading, the impulse is also characterized as impulsive with the 

same order of time scale (0.1ms duration) as in an underwater blast but with lower 

magnitude [20, 24]. However, the difference between two media is found in the amount 

of transferred impulse to the structures (fluid-solid interaction): the sandwich structures 

adopting a light top face sheet can benefit from reduction in transferred impulse to the 

structures in water, whereas the external pulse is fully absorbed by the structures in air 

[20,24]. 

However, limited attention has been paid to the dynamic in-plane behavior of 

sandwich columns to date. Recently, Ji [26] considered a dynamic impact problem in 

which the sandwich column made of carbon/epoxy face sheets and a polyurethane foam 

core was subject to impact velocities of an order of m/s. However, no study on the 

metallic core sandwich columns in dynamic in-plane compression can be found as far as 

the author knows.  

On the other hand, the quasi-static in-plane responses of pyramidal truss cores and 

corrugated prismatic cores sandwich columns were studied systematically by employing 

analytical, numerical, and experimental methods [27-29]. The influences of material 

properties, geometry, and fabrication methods, on the failure mechanisms exhibited in 

those columns were discussed. Consequently, minimized weight designs were achieved 

for the sandwich columns employing those metallic periodic cores.  

Nevertheless, fundamental questions still need to be answered regarding the 

dynamic response of the metallic core sandwich columns. As the loading rate increases, 

complex dynamic effects become involved, thereby changing the response.  This 
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deficiency is addressed in this thesis. 

 

1.2 OBJECTIVES 

The main objective of this dissertation is to investigate dynamic effects on the 

structural response of corrugated core sandwich columns through theoretical and 

numerical analysis. Considering the highly anisotropic character of the corrugated core, 

two in-plane loading directions, perpendicular-to-corrugations and parallel-to-

corrugations, are considered as shown in Fig. 1.1. In this dissertation, the investigation 

will concern compression velocities ranging from quasi-static loading up to 100m/s, 

divided into low (up to the order of a few m/s) and high (the order of tens of m/s) velocity 

regimes.  

In the low velocity response regime, dynamic effects on individual failure modes 

will be assessed. Depending on the overall column geometry, core design, and parent 

material properties, corrugated core sandwich columns fail in several ways: global 

buckling and local buckling. To this end, prediction methods are required for the 

individual failure modes for each in-plane loading orientation. Although finite element 

methods can be used to predict the dynamic response of these structures [3-8, 15-16, 18 

22-24], there are drawbacks. First, it is too time-consuming due to a repetitive core 

structure, which must be modeled with many elements. The other is that it cannot explain 

the competition of the individual failure modes even though it is a good predictor for a 

given column geometry and loading condition. Therefore, analytical models to predict the 

individual failure modes of sandwich columns under low velocity compression will be 

developed, and then validated by comparing with FE simulations. The effects of the rate-
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of-loading on failure mechanism maps and minimum weight designs will be assessed. 

Additionally, a comparative study of monolithic and sandwich columns having equal 

mass will be performed to discuss the structural benefit of sandwich structures for 

dynamic applications. 

With respect to the high velocity regime, the response time scale is expected to be 

different from that of the low velocity response. It is hypothesized that axial stress wave 

propagation during one-way or one round trip can explain the high velocity sandwich 

column response. The dynamic response of corrugated core sandwich columns in the 

high velocity regime is analytically characterized on the basis of FE observations.  

 

 

1.3 BACKGROUND 

1.3.1 Dynamic Response of Metallic Core Sandwich Structures 

The dynamic in-plane response of metallic core sandwich columns has not received 

much attention. However, the dynamic out-of-plane response of metallic core sandwich 

structures subject to impulsive loading has been actively investigated for the last decade 

[3-24]. The primary purpose of the recent dynamic out-of-plane metallic core sandwich 

 
                       (a)                                                         (b) 

Figure 1.1: In-plane loading orientations: (a) Perpendicular-to-corrugations; (b) Parallel-to-

corrugations. 
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studies is to enhance blast protection performance by employing the above mentioned 

sandwich designs. Accordingly, efforts are made to investigate the sandwich structure 

deformation mechanisms and momentum transfer under impulsive loading and to identify 

the effects of metallic cores, specifically, the selection of core topology and relative core 

density, on the dynamic performance. 

The dynamic response of the sandwich beams and rectangular sandwich plates with 

Y-frame and corrugated cores have been investigated using FEM and other experiments 

by several researchers [7-9]. In these studies, a metal foam projectile was projected 

transversely to the sandwich beams and plates with their ends clamped at initial velocities 

up to 500m/s (corresponding impulse of 7.0 kNs.m
-2

). In addition, analytical models have 

been developed to predict the out-of-plane response under impulsive loads [10,11].  

Mori et al. carried out several tests on circular sandwich plates having an I-core, a 

honeycomb core, and a pyramidal truss core [12,13]. They employed a novel testing 

method, in which an impulsive water pressure was applied to the entire surface of the 

front face sheet and then measured transverse displacement using shadow Moiré. Wadley 

et al. [14] used a dynocrusher tester to investigate the dynamic compressive response of 

square honeycomb structures. Wei et al. [15] performed dynamic compression tests on 

multi-layered sandwich panels, and simulated the dynamic response via FEM. In parallel 

with the experimental studies, analytical and numerical studies of the underwater blast 

performance for optimal sandwich panels design have been performed by many 

researchers [16-24].  

These and other studies continue to show that the out-of-plane dynamic 

performance is significantly impacted by the properties of metallic core. Therefore, 



6 

efforts have been made to characterize various core topologies such as I-core, honeycomb, 

pyramidal truss and corrugated core, via FEA and gas gun tests [3-6]. Those studies 

investigated the core buckling motion and provided the expressions for front and back 

end stresses with respect to the imposed velocity and relative core density under dynamic 

out-of-plane compression. Thus, the adequate selection of core has been realized by 

understanding the dynamic response and energy dissipation mechanism in core 

compression through these studies. 

However, research into the dynamic column response of metallic core sandwich 

structures is very limited.  

 

1.3.2 Dynamic Analysis of Monolithic Solid Columns 

In order to establish a theoretical basis for the dynamic sandwich column response, 

we must review previous studies on monolithic solid columns. Research regarding the 

dynamic buckling of monolithic solid columns has a long history where various boundary 

types, velocity ranges and geometries have been considered. According to Lindberg [30], 

Zhang [31] and Simitses [32], dynamic stability research can be classified by the 

characteristics of applied loading: vibration buckling by an oscillatory load and pulse 

buckling induced by a single pulse. More specifically, the pulse can be categorized as 1) 

an impulsive pulse with short duration and 2) a step pulse with long duration and constant 

magnitude. Again, the step-pulse dynamic problem has three subclasses depending on the 

type of loading condition: (2a) a constant load problem, (2b) a constant velocity problem 

and (2c) a constant mass problem.  

A constant load problem of simply supported elastic columns was investigated by 
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Jones [33]. An important finding was reported that the beam oscillates transversely if the 

applied load was less than the Euler buckling load PE; otherwise the amplitude in 

transverse deflection grows exponentially. The Jones’ unimodal approach was extended 

by Lindberg and Florence [30], in which higher buckling modes were included. In 

addition, Lindberg [34] proposed a predominant buckling mode depending on the 

magnitude of applied load for a constant load problem. Recently, a constant load problem 

considering the effect of wave propagation was solved semi-analytically by Lepik [35-

37].  

A constant velocity problem where one end of an elastic column was compressed at 

a slow constant rate was considered by Hoff [38]. Findings similar to Jones’ [33] were 

seen in this study. Without considering a nonlinear strain term in the equations of motion, 

modal amplitude in the transverse motion of column is given by a combination of Bessel 

functions (bounded) as long as the axial force is lower than the Euler buckling load, 

which changes into the modified Bessel functions (unbounded) if axial force exceeds the 

Euler buckling load. However, in cases where a large transverse deflection occurs (i.e. 

the response past a maximum peak load), a power series solution is appropriate—rather 

than the analytical solution—because the nonlinear strain term can be no longer ignored. 

Sevin [39] extended Hoff's study [38] by adding the axial inertia effect of a simply 

supported elastic column. Together with the analytical expressions for beam deflection 

and non-uniform axial stress distribution, an additional description of lateral motion was 

also given by the Finite Difference Method (FDM). Using the closed-form analytical 

solutions and the FDM results, he concluded that axial inertia effect caused by geometric 

nonlinearity could be negligible compared with the axial inertia effect caused by end 
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compression until the axial force reaches a maximum peak [39]. For the dynamic 

instability of inelastic columns in a constant velocity problem, Lee [40-42] also proposed 

a quasi-bifurcation criterion.  

Considering the constant mass impact problems of elastic columns, Ari-Gur et al. 

[43,44] carried out a combined numerical and experimental investigation. It was verified 

that high slenderness ratio, small imperfection magnitude, and short contact duration 

produced a high Dynamic Load Factor (DLF), which is defined as a ratio of dynamic 

peak load to the static Euler buckling load. Hayashi and Sano [45,46] also considered 

dynamic elastic buckling problems with impact boundary conditions. The FDM results 

showed the development of higher buckling modes, highlighting the influence of initial 

velocities on axial inertia, and the local deformation near the end of impact. The effects 

of shear and rotary inertia were also investigated even though these proved not to be 

significant. Recently, Ji and Wass [26,47] considered a constant mass impact problem of 

slender beams. Assuming a perfectly straight beam, the travelling elastic waves were 

included in the lateral equation of motion, and the time-to-buckle, and the mode shapes 

were derived by finding the dynamic bifurcation buckling state. Kenny et al. performed a 

numerical and experimental study on a constant mass problem taking the traveling waves 

into account [48, 49]. 

The dynamic plastic buckling problem in which high compression velocities are 

involved, have been investigated by several researchers. Abrahamson and Goodier [50] 

carried out pioneering experimental work on the dynamic plastic buckling problem where 

aluminum rods impacted a rigid target at high velocities producing plastic strain. In their 

consideration of dynamic plastic buckling, a theoretical half-wave length was suggested 
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by a predominant buckling mode. 

 2cr TL r E       (1.1) 

where r is the radius of gyration, ET is the tangent modulus, and σ is stress. Vaughn and 

Hutchinson [25,51] studied the interaction between axial waves and bucklewaves for a 

stocky column subject to a high rate of compression, and concluded that these were 

highly interactive if a dimensionless parameter,         ⁄    a function of applied 

velocity, V, elastic stress wave speed, cel, and yield strain, εY, was greater than five. For 

this intense loading situation, they set up a theoretical problem for the incident plastic 

stress wave region within the column and solved the governing equation with a time-

varying boundary condition using the Galerkin method. On the other hand, Bell [52] 

proposed a critical wavelength Lcr for an inelastic column based on the modified Euler-

Engesser theory and compared with his experimental data. 

max

T
cr

En r
L

k




     (1.2) 

where n is mode number, k is a constant associated with the end condition.  

Material rate effects on dynamic column buckling problem of slender beams have 

been assessed through FDM by Sugiura et al. [53]. They concluded that the rate 

dependence affects only post-dynamic instability within the considered velocity range of 

0.02-0.25m/s.  

At an intermediate-velocity axial impact load, which simulates fluid-solid axial 

slamming around several m/s (Impulse : 1900 kg, m/s, System mass: 453 kg), Cui and his 

coworkers [54-59] and Zhang [31] separately conducted dynamic column buckling 

experiments. They systematically investigated the effects of imperfections, slenderness 
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ratio, and pulse duration by the analytical and numerical methods. Several failure criteria 

such as dynamic critical buckling criterion, dynamic critical plasticity criterion, and 

dynamic collapse criterion, were proposed and evaluated through a series of test columns. 

 

 

1.4 DISSERTATION OUTLINE 

This dissertation consists of three parts: The first two parts focus on the 

compression velocity range from quasi-static loading to an order of a few m/s and the last 

part is associated with high velocity response under a compressive velocity of tens of m/s.   

In Part I (Chapters 2-4), analytical models are developed. There is a separate 

chapter dedicated to each of the individual modes in the low velocity region. In Chapter 2, 

an analytical model for global buckling response is developed. The global buckling 

analytical model is not only applicable to corrugated core sandwich columns in 

compression with constant rates in the two in-plane directions but also to monolithic solid 

columns. The analytical results are compared with FE calculations for the columns made 

of Al6061-T6 and SS304 under several compression velocities, V=0.1~5m/s. The details 

about the FE simulations contained in the remaining chapters are given there. In Chapter 

3, the analytical model for face wrinkling response of sandwich columns loaded 

perpendicular-to-corrugations is developed. One of the primary assumptions is verified 

by comparing the apparent elastic stress wave speeds of corrugated core sandwich 

columns loaded perpendicular-to-corrugations with FEM. The model is validated by 

comparing reaction forces, time-to-failure with FE calculations. The effects of 

compression velocity and imperfections are also investigated both analytically and 

numerically. In Chapter 4, a theoretical approach for local plate buckling of sandwich 
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columns compressed parallel-to-corrugations is discussed. First, local plate buckling 

failure of sandwich columns is observed by FE simulations. A theoretical model for long 

plates, corresponding to corrugated core plates or face plates, is developed. This model is 

also verified with FE simulations, and its limitations are discussed.  

Chapters 5 and 6 focus on the investigation of competing failure mechanisms and 

optimal solutions under dynamic loading in the low velocity region. Chapter 5 addresses 

the dynamic effects of failure mechanism maps. The movement of boundaries of an 

Al6061-T6 quasi-static failure mechanism map is shown using the analytical models. In 

other words, the influences of rate-of-loading and imperfections on each boundary are 

revealed. The transition of failure modes due to increased rate-of-loading, from global to 

local buckling failure, is explained by probing a geometric point on an SS304 failure 

mechanism map. Chapter 6 discusses dynamic optimal solutions. First, quasi-static 

optimal solutions for Al6061-T6 and SS304 corrugated core sandwich columns are given 

as references. To show how the minimum weight designs evolve as dynamic effects 

become more influential, maximum sustainable impulse capacities are calculated for the 

core-height-varied designs whose core heights are varied from the quasi-static optimal 

solutions. As an additional way of demonstrating the dynamic effects on the optimal 

solution, dynamic optimal solutions for Al6061-T6 corrugated core sandwich columns 

compressed perpendicular-to-corrugations at V=0.1m/s and 1m/s are obtained. The 

implicit relations between maximum sustainable impulse capacity and sandwich 

geometric parameters are given by employing a response surface methodology, and 

dynamic optimization problems are solved by an optimization algorithm, sequential 

quadratic programing (SQP). 
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In the last part, Chapter 7 presents the high velocity response characterization of 

corrugated core sandwich columns based on the FE results.  

A summary of this dissertation along with suggestions for future work is given in 

Chapter 8. 
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CHAPTER 2  

AN ANALYTICAL MODEL  

FOR THE PREDICTION OF GLOBAL BUCKLING 

 

2.1 INTRODUCTION 

This chapter is concerned with global buckling failure in corrugated core sandwich 

columns under dynamic in-plane compression.  

Little attention has been given to the dynamic in-plane response of sandwich 

columns, especially under suddenly applied loads that may be encountered in real-life 

structural applications [26]. Furthermore, there is a lack of dynamic studies on metallic 

core sandwich columns.  

In contrast, the dynamic problem of a monolithic column has a relatively long 

history and many theoretical and numerical studies have been conducted [30, 33-43, 45, 

46, 51, 56, 60-63]. An analytical model for the prediction of dynamic global buckling of 

corrugated core sandwich columns is developed from knowledge derived from studies on 

monolithic solid columns. 

Regarding the monolithic column studies, finding a closed-form solution is 

challenging due to the complexity of the governing equations.  Approximate solutions 

have been sought: simplified structural models [60-62], conversion to a spring-mass 

system [63], modal approach [30, 33, 36, 41, 47], and finite difference method (FDM) 

[39, 43, 45, 46]. The dynamic problem of monolithic columns can be divided into three 

classes depending on loading conditions: constant velocity problems, constant load 
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problems and constant mass problems [30-32]. Of particular interest is a study presented 

by Hoff [38], where he considered a simply supported column under a constant velocity 

load.  He presented both a power series solution and a solution in explicit form using a 

combination of Bessel functions and modified Bessel functions, disregarding the 

nonlinear strain term. It is noted that the buckling motion of a simply supported elastic 

column grows rapidly if axial force exceeds the Euler buckling load, PE. An extension of 

the Hoff’s study using FDM was published, in which the effect of axial inertia were taken 

into account by Sevin [39]. 

The objective in this chapter is to develop analytical models predicting dynamic 

global buckling failure in monolithic and corrugated core sandwich columns, which are 

able to assess the effects of sandwich geometric parameters, inertia, and initial curvature 

imperfections. The models will be validated by comparison with the Finite Element 

Method (FEM) through some examples. 

The chapter is organized as follows. In Section 2.2, the problem is mathematically 

formulated. In Section 2.3, a method to estimate non-uniform axial force distribution, 

included in the formulated governing equations, is introduced via stress wave propagation 

theory. In Section 2.4, the analytical models for monolithic and sandwich columns are 

elaborated. In Sections 2.5 and 2.6, FE simulations are carried out in order to validate the 

analytical models. 
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2.2 PROBELM STATEMENTS 

2.2.1 Problem Definition  

 Three column structures are studied: compression of a monolithic solid column 

and compression of a corrugated core sandwich columns in two in-plane loading 

directions, as illustrated in Fig. 2.1. For all of these problems, one end (front end) is 

axially displaced at a constant speed of V with the other degrees of freedom (DOFs) 

constrained while the other end (back end) is completely fixed. The column material is 

either Al6061-T6 or SS304, which can be modeled as a rate-independent elastic-plastic 

material and a rate-dependent one, respectively. All of the columns are assumed to have 

initial curvature imperfections in the form of the fundamental static buckling mode, 

 
Figure 2.1: Three types of dynamic problems: (a) monolithic solid column; (b) corrugated core sandwich 

column compressed perpendicular-to-corrugations; (c) corrugated core sandwich column compressed 

parallel-to-corrugations. 
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In this chapter, the considered range of applied velocity, V, is 
 

     
   such that 

the incident stress wave at the moment of imposing compression is purely elastic. In the 

dimensionless parameter characterizing the intensity of the compressive loading, 
 

     
,  

cel and    denote the elastic wave speed and the strain at yielding, respectively, both of 

which are material properties in the case of a simple column. Consequently, the imposed 

velocity applied to the monolithic solid column problem covers up to 5~20m/s for many 

steel and aluminum alloys [25]. On the other hand, the elastic stress wave speed of 

sandwich columns,    
    

, depends on sandwich geometries as well as materials, which 

will be discussed subsequently. Therefore, the compression velocity range for the 

sandwich problems differs from the one in the monolithic solid column problem (i.e., 

5~20m/s), but is approximately of the same order. 

The sandwich parameters of a corrugated core sandwich column are indicated in 

Fig. 2.1(b) and (c). A face sheet is characterized by face sheet thickness, h, and face 

ligament span length,        . The global sandwich column geometry is characterized 

by column length, L, core height, c, and core relative density,  ̅ . Due to employed 

manufacturing methods, the geometries of Al6061-T6 and SS304 corrugated cores differ 

slightly [28]; the former is made using an extrusion/friction stir weld technique, and the 

latter is manufactured using a bending/brazing method. Therefore, the core relative 

density,  ̅, which is the ratio of core density to the density of parent material of which the 

column is made, is dependent on the manufacturing methods [28] and can be calculated 

using Eqns. (2.1) and (2.2). 
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In Eqns. (2.1) and (2.2), ,
 
 , t denote the length of corrugation leg, corrugation 

angle, and core ligament thickness, respectively.  

For a comparative study against the corrugated core sandwich column, the problem 

for monolithic solid columns is established as described in Fig. 2.1(a). 

 

2.2.2 Formulation for Monolithic Solid Columns 

First, consider a monolithic solid column of thickness, A, column length, L, density, 

ρ, flexural rigidity, D
(m)

, with an initial curvature, w0(x), compressed at a constant 

compression rate, V, as depicted in Fig. 2.2.  

The equations of motion with boundary and initial conditions are given in Eqns. 

(2.3)-(2.5) [39].  
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In the above equations,           represents an axial displacement in the x-

direction,           is a transverse displacement from the initial undeformed curved 

shape,   
        , and P(x,t) denotes an axial force distribution in the column length 

domain [0,L], positive in compression. The flexural rigidity of the monolithic solid 

column, D
(m)

, is given in terms of material properties and thickness:  

 

3
( )

2

3
( )

            if elastic,
12 1

            if elastic-plastic,
12

m

el

m T
pl

EA
D

E A
D









    (2.6) 

In Eqn. (2.6),   
  is the tangent modulus of the plane strain true stress versus 

logarithmic strain curve of the parent material in the presence of lateral constraint due to 

a large dimension of the width of plates. The elastic-plastic flexural rigidity,    
   

, is 

obtained using the tangent modulus assumption of Shanley [64]. 

Eqn. (2.4), based on the Euler-Bernoulli assumption, is coupled with Eqn. (2.3) by 

P(x,t). As the loading gets more intense, axial stress wave propagation effects become 

pronounced, which means that P(x,t) cannot be assumed uniform over the column length, 

and thus, the equations get more complicated. 

 

 
Figure 2.2: Configuration of the monolithic solid column problem. 
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2.2.3 Formulation for Corrugated Core Sandwich Columns 

Consider a corrugated core sandwich column of column length L and thickness 

A=(c+2h). Details of the sandwich parameters are indicated in Figs. 2.1 (b) and (c). The 

column is assumed to have an initial curvature imperfection in a form of the lowest static 

buckling mode,       
 

 
(     (

   

 
)) . Including the effects of core shear 

deformation, the sandwich column can be simply taken as a structure with transverse 

inertia,       , flexural rigidity, D
(SW)

, and shear rigidity, S
(SW)

. The superscript (SW) is 

replaced by either (Para) or (Perp) to indicate the in-plane loading directions on sandwich 

columns; Parallel-to-corrugations and Perpendicular-to-corrugations. The equations of 

motion for axial, transverse and rotational directions are given by [46] 
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where u, w, φ are the axial, transverse displacement and rotation, respectively, and S
(SW)

 

 
Figure 2.3: Configuration of the corrugated core sandwich column problem. 
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and D
(SW)

 are the shear rigidity and flexural rigidity of sandwich columns. Taking core 

shear deformation into account, the transverse displacement, w
(SW)

, can be separated into 

deformations due to bending moments and transverse shear forces, φ
(SW)

 and ws
(SW)

 [65-

67].  

( )( )
( )
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x x

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    (2.10) 

Neglecting rotary inertia and eliminating ws
(SW)

 via Eqn. (2.10), the governing 

equations are reduced to Eqn. (2.11) in which the effect of core shear deformation, ws
(SW)

, 

is additionally included compared with Eqn. (2.4): Eqn. (2.11) can be reduced to Eqn. 

(2.4) if S
(SW)

 goes to infinity. 
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Since the corrugated cores show substantial anisotropy with respect to the in-plane 

loading directions, the flexural rigidity and shear rigidity are dependent on each in-plane 

loading direction.  

In the in-plane loading direction of perpendicular-to-corrugation, the flexural 

rigidity of the sandwich column results mostly from the contribution of in-plane stiffness 

of face sheets.  
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On the other hand, shear is carried by the stretch and axial compression of the core 

[68]. According to Côté [68], the homogenized shear modulus of the core section is given 

by Eqn. (2.13). The shear rigidity, S
(perp)

, of the sandwich column is assumed to be set by 

the shear rigidity of the corrugated core only, disregarding the shear stiffness of the faces 

as given by Eqn. (2.14) [28]. Moreover, the homogenized core shear modulus, even 

though the face sheets yield, is obtained by assuming that the core remains elastic since 

the major deformation mode of the corrugated core is folding at nodes between face 

sheets and corrugated cores.  
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The major difference between the two in-plane loading directions, parallel-to-

corrugations and perpendicular-to-corrugations, is that the corrugated core plates in the 

loading direction of parallel-to-corrugations participate in supporting a part of an axial 

compressive load. Therefore, the elastic flexural rigidity is given by  
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   (2.15) 

And in plastic region,  
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Elastic shear rigidity is given by [68] 
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    (2.18) 

Care should be taken in the calculation of elastic-plastic core shear stiffness. This is 

because core plates in the loading direction of parallel-to-corrugations can yield by axial 

compression. In other words, the plastic core shear stiffness should be obtained from the 

ratio of shear stress and shear strain increments in the presence of an axial pre-stress 

which is greater than the yield stress. This loading situation corresponds to the “neutral 

loading condition on the yield surface” according to the theory of plasticity [99]. 

Modifying Becque’s derivation for the relation between shear stress increment and shear 

strain increment in presence of axial load [69], the elastic-plastic shear stiffness of core 

plates for parallel-to-corrugations can be analytically attained by 

   
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  (2.20) 

where the parameter  is defined as the ratio of the plastic strain increment in the 

principal 2 direction (y-direction of the plate) to the plastic strain increment in the 

principal 1 direction (x-direction) under uniaxial compression in the x-direction. (If the 

von Mises yield criterion is adopted,    
 

 
) [69].  
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The inertia term, independent of material yielding and loading orientation, is given 

by  

   
( )

2
SW

A h c        (2.21) 

 

2.3 AXIAL STRESS WAVE PROPAGATION 

In this section, estimation of axial force distribution, which might be non-uniform 

in a column, is discussed. The force distribution, P(x,t), is a coupling term between the 

axial and transverse equations of motion for the problems of monolithic solid columns 

and sandwich columns: See Eqns. (2.3) and (2.4) as well as Eqns. (2.7) and (2.8). 

For convenience, consider the monolithic solid column problem first. The 

distribution in the sandwich columns can be obtained in a similar way. 

Axial force distribution P(x,t) is calculated from the change of axial deformation, 

     and the transverse deflection, w
(m)

(x,t), as seen in Eqn. (2.22).  
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                  

 (2.22) 

After substituting Eqn. (2.22) into Eqn. (2.3),      is given by the sum of the 

solutions,   
   

 and   
   

 from the following two sub-problems [39].  

( ) ( ) ( )

1 2

m m mu u u      (2.23) 

1) Axial sub-problem (Problem I): Homogeneous partial differential equation (PDE) 

with nonhomogeneous boundary conditions. 

2) Axial sub-problem (Problem II): Nonhomogeneous partial differential equation 

(PDE) with homogeneous boundary conditions (BCs). 
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Axial sub-problem (Problem I) for axial stress distribution 
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    (2.25c,d) 

Axial sub-problem (Problem II) for axial stress distribution 
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  (2.26) 

BC:  ( )
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2 ( , ) 0mu L t      (2.27a,b) 
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2 ( ,0) 0mu x  ,   
( )

2 ( , ) 0
mu

L t
t





    (2.27c,d) 

The two sub-problems have the following physical meaning: Problems I and II are 

related to the influences of axial inertia due to the end compression and to a change of 

transverse deflection, respectively. If the column deformation is entirely elastic,  

( ) ( )m m

elc E       (2.28) 

For cylindrical bending
1
 of a plate, the equations (2.28) is transformed into 

 ( ) ( ) 21m m

elc E        (2.29) 

                                                 

1
 One-dimensional plate problem where a plate width is large enough that all derivatives with 

respect to the width direction, z, are zero such as in a plane strain problem [100, 101]. In the sandwich plate 

buckling problem, it is possible to assume this condition if plate width is greater than core height. [65] 
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The homogeneous PDE (2.24) is a well-known one-dimensional wave equation. Its 

elastic solution,   
   

, is given in Eqn. (2.30), which can be also represented by a 

combination of step functions.  
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    (2.30) 

Thus, the axial force P1(x,t) associated with   
   

 in Problem I is built up by the 

propagation and reflection of axial stress waves, which will be detailed in Section 2.3.1. 

On the other hand, the elastic solution,   
   

, of Problem II is a correction term 

considering the axial inertia from the change of transverse deflection, w
(m)

(x,t).  
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 (2.31) 

The derivations of elastic solutions in Eqns. (2.30) and (2.31) are given in 

Appendix A.  

According to Sevin [39], the axial inertia effect due to the change of transverse 

deflection, w
(m)

(x,t), was observed not to be significant until the axial force reaches the 

maximum peak load. And thus, the axial inertia effect associated with w
(m)

(x,t) can be 

ignored for the calculation of P2(x,t). Accordingly, Eqn. (2.26) with Eqn. (2.22) is 

reduced to 

2 0
P

x





    (2.32) 

leading P2 to a function of time only.  
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By ignoring the axial inertia in Problem II, a great deal of computation effort can be 

saved compared with the application of a complex equation such as Eqn. (2.31).  

In summary, the estimation of axial force distribution is given by summing the 

axial forces, P1(x,t) and P2(t), resulting from an end compression and a change of 

transverse deflection, respectively. In particular, P1(x,t) can be estimated from the theory 

of elastic and elastic-plastic wave propagation which will be discussed in Section 2.3.1, 

and thus the elastic and elastic-plastic stress distribution from the theory will be adopted 

for the semi-analytical models of monolithic columns and sandwich columns. 

 

2.3.1 Theoretical Background for Stress Wave Propagation 

In this subsection, the stress wave propagation in the compression of monolithic 

columns will be explained graphically. The estimation method for axial force distribution, 

P1(x,t), will be employed for the analytical model rather than using a complex equation 

such as Eqn.(2.30) and Eqn. (2.31). 

Fig. 2.4(a)(b)(c) show the stress wave propagation in an elastic monolithic solid 

column compressed at one end at a constant compression velocity: (a) the stress 

distribution of the column with respect to time t=t1e, t2e, t3e, (b) the corresponding 

Lagrange x-t diagram, and (c) the material states are shown. When the column is 

compressed, an incident elastic stress wave of          
   

     
   

   travels toward 

the other end at a wave speed of        
   

 until it is reflected at the other end as shown 

in the diagram at t=t1e of Fig. 2.4(a). After reflection, the magnitude of the propagating 
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axial stress is increased by          
   

 and its direction is reversed as illustrated in the 

stress distribution diagram at t= t2e of Fig. 2.4(a). Wave reflections leading to increase in 

stress magnitude are repeated in the same manner as long as the column material remains 

elastic. A Lagrange x-t diagram indicating the location of the elastic wave front with 

respect to time is described in Fig. 2.4(b), and the material states in the stress-strain curve 

after each stress reflection are also indicated in Fig. 2.4(c). 

If stress exceeds the yield limit, either because of numerous wave reflections or a 

high-applied velocity, a plastic wave in addition to the elastic wave is generated and 

 

 
Figure 2.4: Stress distribution diagram (monolithic solid columns), Lagrange x-t diagram and the 

corresponding material state for (a)(b)(c) an elastic stress wave propagation, and (d)(e)(f) an elastic-plastic 

stress wave propagation. 
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propagates independently as shown in Fig. 2.4(d)(e)(f) [70-73]. Because of the condition 

 

     
   specified in this chapter, the elastic-plastic stress propagation occurs only by 

repeated wave reflections. At time t= t1p in Fig. 2.4(d), an elastic wave of       

    
   

     
   

  propagates toward the right end. If the deformation remains elastic, the 

amount of stress should be increased by Δσel when it reaches the end. However, if the 

increment in stress causes the stress to be greater than the elastic limit, two wave fronts of 

      
   

    and     √
  
 

       ⁄
           propagate independently with the 

respective wave speeds of        
   

 and        
   

 
as shown at the time t=t2p in Fig. 

2.4(d). Here, let    denote the axial stress just before the elastic-plastic wave reflection, 

and  

( ) ( )m m

Pl Tc E      (2.34) 

in which   
  is the tangent modulus of the plane strain true stress versus logarithmic 

strain curve of the parent material. For convenience,   
  of a linear strain-hardening 

material can be approximated as a function of plastic hardening modulus,          ⁄ , 

and elastic material properties, E and ν. 

 
( ) 1

1 2 3 4

m

T

p

E
E E E

 
 

    (2.35) 

As a result, the faster wave of     with cel arrives earlier at the other end. After the 

reflection of the wave, it changes its direction and travels with a plastic wave speed of cpl 

and an increased amount of stress from the wave reflection,    
 |        √

  
 

       ⁄
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    as shown in the diagram of Fig. 2.4(d) at the time between t2p and t3p. Fig. 2.4(e) 

shows the corresponding Lagrange x-t diagram in which the thin and thick lines represent 

elastic and plastic wave fronts, respectively.  

In short, the axial force distribution with respect to time,        , can be obtained 

from such distribution as either Figs. 2.4(a) or (d). 

 

2.3.2 Analogy between Monolithic Solid Columns and Sandwich Columns 

The axial force distribution P1(x,t) of sandwich columns can be approximated by an 

analogy between a monolithic solid column and a sandwich column. Specifically, elastic 

and elastic-plastic wave propagation properties in sandwich columns can be derived from 

the in-plane stiffness and inertia, and it is assumed that the wave propagation is one-

dimensional neglecting any variations in the y and z directions [70-73]. Compare Figures 

2.4 and 2.5. 

For a corrugated core sandwich column, laminate composite theory and stress wave 

propagation theory are used to describe the state of the stress wave. For loading 

perpendicular-to-corrugation, the apparent wave speeds 
2
of sandwich columns, 

( )perp

elc

and 
( )perp

plc , in the elastic and plastic region can be obtained by neglecting the contribution 

of a corrugated core to the in-plane stiffness. The expressions are based on the treatment 

of a corrugated core as a continuous core of negligible in-plane core stiffness. 

 

                                                 

2
 The word “apparent” is added after confirming FE simulations on the axial wave characteristics 

of sandwich columns. In a microscopic time scale during which an axial wave propagates one unit cell or 

so, the axial wave front in sandwich columns does not look planar in the y-z plane due to the effect of the 

core (rather, zig-zag in top and bottom faces). On the other hand, the reaction force increase at one end is 

achieved in stepwise pattern macroscopically. 
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Figure 2.5: Stress distribution diagram (sandwich columns), Lagrange x-t diagram and the corresponding 

material state for (a)(b)(c) an elastic stress wave propagation, and (d)(e)(f) an elastic-plastic stress wave 

propagation. 
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On the other hand, the elastic and elastic-plastic wave speeds where loading is 

parallel-to-corrugations loading are approximately the same as that of monolithic solid 

columns because the core plates carry a part of axial loads together with face sheets.  
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2.4 SEMI-ANALYTICAL MODELS 

2.4.1 Semi-analytical Model for Monolithic Solid Columns 

As shown in the previous section, the axial force distribution, P(x,t) is the sum of 

the axial forces due to the strains of end compression (P1(x,t)) and transverse deflection 

(P2(t)). By using the theory of elastic-plastic wave propagation, axial force due to the end 

compression, P1(x,t), can be obtained. Neglecting the influence of axial inertia due to the 

change of transverse displacement, we defined the axial force as a function of time only, 

P2(t). Accordingly, the axial force, P(x,t)= P1(x,t)+ P2(t), can be expressed in a different 

form: 
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0( , ) ( , ) ( )short longP x t P P x t P t      (2.44) 

where         is the increased amount of axial force resulting from one wave reflection, 

       is the axial force caused from transverse deflection, P0 is a reference value during 

the period for a wave to travel along a column length, and updated every wave reflection. 

The governing equation for a monolithic solid column is solved using the Galerkin 

method [100]. 
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m
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i

w T W x 


       (2.48) 

The transverse motion,          , initial curvature imperfection,   
   

   , and 

virtual displacement,      
, are given in the form of an eigenfunction expansion, up to 

W18(x), which are obtained from the static buckling analysis. Although Eqn. (2.45) 

includes the spatial discontinuity of P(x,t) and D
(m)

(x,t), it is assumed that the continuity 

and differentiability of           is preserved during the dynamic global buckling 

motion.  

The base functions, Wn(x), for          ,    
      ,       are divided into 

symmetric and anti-symmetric modes depending on their mode shapes: the symmetric 

modes are the (2k-1)-th modes whereas the (2k)-th modes are anti-symmetric modes. 

Constants up to ten decimal points are used in the implementation of the semi-analytical 
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model, and are listed in Table 2.1.  

Symmetric modes (odd n): 
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Substituting Eqns. (2.46) through (2.48) into the governing equation (2.45), the 

integral form of the governing equation is arranged into a system of ODEs with respect to 

Tn(t). Finally, a 4
th

 order Runge-Kutta method was employed using FORTRAN code for 

solving the system of ODEs (2.50). 
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Equation (2.50) is solved until a failure criterion is satisfied. The failure is defined 

as a load-drop of reaction forces, which is simultaneous with the time of the maximum 

Table 2.1. Constants for antisymmetric modes.  

Eigenmode 

constant 
N=2 N=4 N=6 N=8 N=10 N=12 N=14 N=16 N=18 

Kn L 8.987 15.451 21.808 28.1320 34.442 40.743 47.037 53.332 59.623 

An 6.283 12.566 18.849 25.133 31.416 37.699 43.982 50.265 56.549 
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reaction force. When this type of instability in a compressive member occurs, excessive 

deformation together with a high deformation rate leads to a sudden loss of load-carrying 

capacity. In this regard, a failure criterion is defined such that a significant load drop 

occurs if the extension rate of column mid-surface exceeds the compressive rate [74].  

compext
d ld l

dt dt




    
(2.51) 
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The model explained so far pertains to a rate-independent monolithic solid column. 

To include the material rate-dependence, especially for SS304, the semi-analytical model 

considers the rate-sensitive material as a rate-independent material with elevated yield 

strength and adjusted strain-hardening modulus [75]. 
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where R is the dynamic yield strength enhancement ratio,   
    ̇ 

  
 , (i.e., the ratio of the 

dynamic yield strength and the quasi-static one) in terms of equivalent plastic strain rate, 

 ̇  
 

√ 

 

 
. The semi-analytical model for the problem of monolithic solid columns is 

summarized in Fig. 2.6. 
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Figure 2.6: Flow chart of the semi-analytical model for monolithic solid columns. 

 

2.4.2 Semi-analytical Model for Corrugated Core Sandwich Columns 

Similar to the semi-analytic approach for the monolithic solid column problem, the 

governing equation of corrugated core sandwich columns, Eqn.(2.11), can be solved 

using the Galerkin method.  
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Substituting Eqns. (2.55) through (2.57) into Eqn. (2.54), the integral form of the 

governing equation is transformed into a system of ordinary differential equations, Eqn. 

(2.58), including spatially discontinuous functions such as P(x,t), D
(SW)

 and S
(SW)

. The 

system of ODEs is solved till the failure criterion, Eqn. (2.51) defined in Section 2.4.1, is 

satisfied. 
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Similar to the way of including the material rate-dependence in the monolithic solid 

column semi-analytical model, Perrone’s approximation [33,75,101] is employed for 

consideration of the material rate-dependence of corrugated core sandwich columns. 

 

2.5 FINITE ELEMENT METHOD 

Finite Element simulations are performed to validate the semi-analytical models for 

the global buckling response of monolithic solid columns and corrugated core sandwich 

columns under dynamic compression. A commercial FE package, ABAQUS/Explicit, is 

employed to calculate reaction forces and deformation shapes. Four categories of FE 

sandwich column models are constructed depending on parent materials and in-plane 

loading orientations: 1) Al6061-T6 sandwich columns compressed perpendicular-to-

corrugations, 2) Al6061-T6 sandwich columns compressed parallel-to-corrugations, 3) 

SS304 sandwich columns compressed perpendicular-to-corrugations, and 4) SS304 

sandwich columns compressed parallel-to-corrugations. In addition to those, FE models 

for monolithic solid columns are also constructed. Figures 2.7 and 2.8 show the FE 

models of Al6061-T6 sandwich columns with loading perpendicular-to-corrugation and 

parallel-to-corrugations, respectively. FE sandwich columns are based on the cross-

sections (unit-cells) as shown in Fig. 2.9. For example, FE sandwich models for parallel-

to-corrugations are created by extruding the cross sections in the direction normal to the 

cross sectional plane while the ones for perpendicular-to-corrugations are created by 
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duplicating the unit-cell to the desired length and extruding it by a unit length. Likewise, 

FE models of an SS304 column are constructed as shown in Fig. 2.10. 

 
Figure 2.7: FE model of Al6061-T6 sandwich columns compressed perpendicular-to-corrugations; (a) a 

front view; (b) a side view. 

 

 
Figure 2.8: FE model of Al6061-T6 sandwich columns compressed parallel-to-corrugations: (a) an iso 

view; (b) a side view. 

 

 
Figure 2.9: FE unitcell model for Al6061-T6 sandwich columns with face sheets  meshed by (a) 

continuum shell elements; (b) Continuum solid elements. 
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The FE model of Al6061-T6 corrugated core sandwich columns employed solid 

continuum elements (C3D8R) and continuum shell elements (SC8R) for the modeling of 

a core and face section. If the ratio,           ⁄ , between face sheet thickness and the 

span length of face sheet ligament is greater than 0.1, continuum solid elements are used 

for the elements of face sheets.  

 On the other hand, SS304 corrugated core sandwich columns are meshed using 

conventional shell elements (S4R). It is noted that the reference planes for face sheets to 

be meshed are the closest surfaces to core parts whereas the mid-thickness planes are 

selected to be meshed for core parts as shown in Fig. 2.10. The solid lines describe 

physical face sheet entities while colored surfaces are the reference planes on which shell 

elements are meshed for face sheets. One reason for this selection is to be consistent with 

the DOF between elements of two parts, that is, there is no need to use connecting 

elements. 

(a)

     

(b)

 

Figure 2.10: FE model of SS304 sandwich columns compressed (a) perpendicular-to-corrugations; (b) 

parallel-to-corrugations. 
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The lowest static buckling modes, used as geometric curvature imperfections in the 

dynamic analyses, are obtained by performing additional FE static buckling analysis. The 

mesh for the static buckling analysis should be the same as that used for the dynamic 

simulation. The lowest static buckling mode recorded in the by-product (.fil file) of the 

eigen buckling analysis is inserted into the dynamic simulation. Consequently, the nodal 

positions, which define perfect column geometry initially in the pre-processing step, are 

relocated for the description of the imperfect column geometry and transported into the 

dynamic simulation. In this chapter, the global curvature imperfections are assigned in a 

form of the fundamental static buckling mode,       
 

 
(     

   

 
)  with 

magnitudes ξ=0.01c, 0.05c (occasionally, ξ= 0.1c). 

The parent material properties of Al6061-T6 and SS304 are characterized for the 

FE simulations and the semi-analytical model. The aluminum alloy was modeled as a 

rate-independent elastic-plastic material [76,77] with linear strain-hardening employing 

the von Mises yield criterion while the material response of SS304 is described by a rate-

dependent [78] elastic-plastic model with the von Mises yield criterion and a bilinear 

strain-hardening.  

The quasi-static material parameters for Al6061-T6 and SS304 are determined from 

quasi-static experiments carried out by Biagi [28]. The quasi-static stress-strain curves of 

the two parent materials are shown in Figs. 2.11(a) and (b), respectively. Al6061-T6 is 

adequately represented by Young’s modulus E=75150(MPa), the yield stress, 

σY=293.9(MPa) and the plastic hardening modulus,    
    

  
           . And, 

Young’s modulus and the two hardening moduli for the two plastic regions of SS304 are 

E=230769.2(MPa),    
   

 
    

  
             and   

   
 

    

  
             , 
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respectively. The material models are superimposed with the test data in Figs. 2.11(a) and 

(b). A kinematic hardening model for Al6061-T6, and an isotropic hardening model for 

SS304 are used to describe the strain-hardening regions in the FE simulations. The two 

hardening models are not significantly different unless the Bauschinger effect due to 

loading reversal is substantial.  

The rate dependence of SS304 is taken into account by employing the Cowper-

Symonds model [79], in which the dynamic yield strength enhancement ratio,   
    ̇ 

  
 , 

(i.e. the ratio of the dynamic yield strength and the quasi-static one) is given by a function 

of equivalent plastic strain rate,  ̇ . The following material parameters D=4920 and 

m=0.154 are used for the rate dependence of the stainless steel alloy [3,51].  
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The densities of Al6061-T6 and SS304 are used as 2700 kg/m
3
and 7920kg/m

3
, 

respectively.  

  
   (a)     (b) 

Figure. 2.11: Quasi-static stress-strain material behavior compared with the constitutive models of (a) 

AL6061-T6 and (b) SS304. 
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The compression is imposed by a rigid plate, displaced at a constant velocity, V. To 

define the interaction between the rigid plate and the contacted end (front end) of 

sandwich columns, “TIED” contact option
3
 is used in the dynamic simulations as shown 

in Fig. 2.12. The other end (back end) is completely fixed. 

Moreover, a general contact algorithm is used for contact between members 

including core-to-core, face-to-face, and face-to-core. However, such contact events are 

not observed for the velocity range considered in this chapter. To realize lateral 

constraints due to the large width dimension of sandwich panel columns, symmetry 

conditions on the lateral sides are imposed.  

 With respect to the monolithic solid columns, the same material models and 

boundary and loading conditions with conventional shell elements (S4R) are used for the 

FEA.  

Finally, the dynamic FE simulations for monolithic solid columns and sandwich 

columns are conducted employing ABAQUS/Explicit on double-precision basis.  

                                                 

3
 As such structures employ end connectors with inserts in practice [66], the top and bottom faces at 

the front end do not slide individually on the rigid plate.  

 
Figure 2.12: A constant velocity imposed on the front end of a sandwich column by a rigid plate. 
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2.6 RESULTS AND DISCUSSION 

The semi-analytical models are validated by comparison with FE simulations of 

monolithic solid columns and corrugated core sandwich columns of various geometric 

dimensions with varied geometric imperfections under several applied velocities as 

shown in Table 2.2. In this section, some of the results will be presented by selecting one 

Table 2.2. The geometric dimensions of columns for the global buckling analytical model validation. 

Type of sandwich 

columns 

h 

(mm) 

t 

(mm) 

l 

(mm) 

w 

(°) 
  ̅ 

(%) 

L 

(mm) 

ξ   

(m/s) 

SS304 

(perpendicular-to-

corrugation) 

3.75 1.5 25 45 12 707 0.05c 

1 ,5 (Rate-

dependent) 

1 ,5 (Rate-

independent) 

SS304 

(parallel-to-

corrugations) 

2.5 1.5 25 45 12 
707, 

1404 
0.05c 

1 ,5 (Rate-

dependent) 

1 ,5 (Rate-

independent) 

3.75 1.5 25 45 12 
707, 

1404 
0.05c 

1 ,5 (Rate-

dependent) 

1 ,5 (Rate-

independent) 

3.75 0.675 25 45 5.33 
707, 

1404 
0.05c 

1 ,5 (Rate-

dependent) 

1 ,5 (Rate-

independent) 

Al6061-T6 

(perpendicular-to-

corrugation) 

4.4 3.175 22 60 25 1407 0.01c, 0.05c, 0.1c 0.5, 1, 5 

6.6 3.175 22 60 25 1407 0.01c, 0.05c 1, 5 

Al6061-T6 

(parallel-to-

corrugations) 

2.2 3.175 22 60 25 1407 0.01c, 0.05c, 0.1c 0.1, 0.5, 1, 5 

4.4 3.175 22 60 25 1407 0.01c, 0.05c 0.5, 1, 5 

Al6061-T6 

(monolithic) 

A=13.56 1407 0.01c, 0.05c, 0.1c 0.1, 0.5, 1, 5 

A=5.6762, 13.56 469 0.001mm 0.1, 0.5, 1, 5 

SS304 

(monolithic) 
A=9.62 707 0.05c 

1 ,5 (Rate-

dependent) 

1 ,5 (Rate-

independent) 
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column from each category so that three types of columns (monolithic, perpendicular-to-

corrugations, parallel-to-corrugations) have the same weight: For Al6061-T6 columns, 

monolithic and corrugated core sandwich columns have the same areal mass (the 

thickness of the monolithic column) of A=13.56mm. For SS304 columns, the areal mass 

of the columns to be presented is A=9.62mm. 

In order to better understand the results from the semi-analytical models and FE 

calculations shown in Figs 2.14 through 2.19, schematic curves for the front and back end 

reaction forces during elastic stress wave propagation are examined in Fig. 2.13(a). As 

explained in Section 2.3, reaction forces at both ends increase in a stepwise manner with 

every wave reflection: No increase in the back end reaction force has been observed until 

the incident stress wave reaches the back end (      ). At the point (       , back end 

reaction force jumps up due to a wave reflection at the back end. Similarly, when the 

elastic stress wave reaches one end (        ), the reaction force, where the wave 

reflection takes places, shows a stepwise increasing pattern. 

Fig. 2.13(b) shows the axial stress distributions of a column at times t=t1e, t2e, t3e, 

which are midway between every wave reflection. The wave reflection leads to an 

increase of the reaction force curve by                    . (Although the other 

component of the reaction force,       , also affects the magnitude of reaction force, it is 

assumed to change stepwise with every wave reflection in the semi-analytical calculation 

because the growing rate of        is small compared to that of        .)  

We note in passing that the reaction curves obtained from FEM show a high 

frequency oscillation after wave reflections rather than idealized step functions as 

described in Fig. 2.13 (c). (Look over the data in Fig. 2.14~2.19.) From the data analysis 
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not presented in this dissertation, approximately sine-shaped waveforms with high 

frequency are observed after wave reflections in the FE results of monolithic solid 

columns, whereas irregular oscillatory responses are found in those of sandwich columns. 

These high-frequency oscillations have approximately several microseconds of period 

(5~20 μs in cases of monolithic columns, 5~50 μs in cases of sandwich columns 

compressed parallel-to-corrugations) although the high frequency characteristics such as 

 

 
Figure 2.13: (a) Schematic curves for the front and back end reaction forces during elastic wave 

propagation; (b) axial stress distribution within a column at times of t1e, t2e, t3e; (c) idealized and FE-

observed reaction force curves at a wave reflection, t=n te. 
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the period and amplitude are affected by the specimen dimensions and the amount of 

compression. Physically, wave dispersion is thought to result in such an oscillatory 

response [104, 105]. It has been known that plates and rods with a finite thickness 

dimension show such behaviors even though they are elastic due to 1) the frequency-

dependent propagating wave speed of a harmonic wave, and 2) non-uniform axial stress 

distribution across the cross section as a result of the transverse inertia [104-106]. In the 

numerical analysis aspect, it has been reported that the high frequency response during 

wave propagation is highly dependent on spatial and temporal discretization, time 

integration method, element selection, mass matrix formulation (lumped vs. consistent 

mass matrices) and material damping [105,107]. 

This high frequency oscillation phenomenon is beyond the scope of this study, thus 

in-depth considerations have not been performed. Moreover, the possibility of signal 

aliasing or signal distortion, which might be caused by the writing frequency of the time-

history data in output files, cannot be ruled out. Therefore, it is hard to put physical 

significance on the high-frequency oscillatory response shown in the FE data in this 

section (Figs. 2.14~2.19). Nevertheless, particular responses from the FE simulations 

such as initial overshooting followed by decaying high-frequency oscillations accord with 

the reported phenomena qualitatively [104,105]. Above all, the constructed FE models 

are sufficient to capture the stepwise increase of reaction forces at a larger time scale than 

at the scale for high-frequency oscillation behavior. 

 

2.6.1 Monolithic Solid Columns 

Two columns are considered with several compressive velocities and imperfections: 
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one column is an Al6061-T6 column of thickness A=13.56mm and column length 

L=1407mm while the other is an SS304 column of thickness A=9.62mm and column 

length L=707mm. An important point to note is that the monolithic columns studied will 

have the same mass as the corrugated core sandwich columns.  This will be discussed in 

the following section. 

Fig. 2.14 shows the dynamic response of the Al6061-T6 monolithic solid column 

under two applied velocities V=0.5m/s and V=5m/s. Under a quasi-static load, the 

column is predicted to fail at a critical load of    
    

          ⁄   dictated by 

Euler’s buckling formula. The imperfections are assigned in a form of the fundamental 

static buckling mode,       
 

 
(     

   

 
) , and the magnitudes of the imposed 

imperfections, ξ, are 0.1905, 0.9525, and 1.905, which correspond to 1%, 5%, and 10% 

of the core height c of the corrugated core sandwich columns which will be presented in 

the next section 2.6.2. 

Figures 2.14(a) and (b) show reaction force versus time history curves of the 

Al6061-T6 monolithic column obtained from the FE simulations and the semi-analytical 

model at two applied velocities V=0.5m/s and V=5m/s. The dynamic column response 

for the lower applied velocity, V=0.5m/s, is sensitive to the magnitude of imperfections 

because the column fails below the elastic limit. The maximum peak loads are five to 

seven times greater than the quasi-static critical load,    
    

          ⁄  . For 

V=5m/s (Fig. 2.14(b))  it is revealed that elastic stress wave reflection occurred only four 

times prior to elastic-plastic wave propagation around t=1000μs, and that the column fails 

during elastic-plastic stress wave propagation.  
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Figures 2.14(c) and (d) show the growths of modal amplitudes for the column with 

one of the three considered imperfection magnitudes, ξ=0.9525, calculated from the semi-

analytical model under V=0.5 and 5m/s, respectively. For V=0.5m/s, there are only two 

growing modes, the first and third modes, while the other modes remain bounded as 

shown in Fig. 2.14(c). Fig. 2.14(d) shows the lowest ten modes among eighteen 

employed modes in the semi-analytical model. Before t=1500μs, the only growing modes 

are the first, third and fifth modes. However, after that, most of modes are simultaneously 

      
    (a) V=0.5m/s     (b) V=5.0m/s 

     
   (c) V=0.5m/s          (d) V=5.0m/s 

Figure 2.14: Dynamic response of an Al6061-T6 monolithic solid column of A=13.56mm, L=1407mm with 

ξ=0.1905, 0.9525, 1.905 under applied compressive velocities of 0.5 and 5m/s obtained from FEM and the 

semi-analytical model: (a)(b) Reaction force versus time history curves for V=0.5m/s and 5m/s; (c)(d) The 

growth of modal amplitudes of the column with an imperfection magnitude ξ=0.9525 for V=0.5m/s and 5m/s. 
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activated after inelastic deformation in the column begins. This is because the tangent 

modulus is significantly less than Young’s modulus.  

The dynamic response of the SS304 monolithic solid column for two applied 

velocities, V=1 and 5m/s are shown in Fig. 2.15. The column has the same mass as the 

SS304 corrugated core sandwich columns of h=3.75mm, t=1.5mm, l=25.0mm, w=45º, 

12%  , L=707mm which will be presented in the next Section 2.6.2. The lowest static 

buckling mode with ξ=0.884, is considered for geometric imperfections. The column has 

a critical load at    
    

           ⁄   dictated by Euler’s buckling formula [28]. 

The analysis also includes the rate-independent FE calculation and analytical results 

obtained by suppressing the material-rate dependence of SS304 in order to investigate the 

material strain-rate effect.  

As shown in Figures 2.15(a) and (b), the rate-dependent column resisted loads 

much higher than the static critical load (   
    

           ⁄  ) under the two applied 

velocities V=1, 5m/s. Consequently, the columns failed in the plastic region.  

In addition, the FE and semi-analytical calculations without considering material strain-

rate dependence are superimposed in the graphs. A stepwise increase in the hardening 

region is exhibited in the rate-independent FE simulations, which is clear evidence of 

elastic-plastic stress wave propagation. In contrast to the rate-independent simulations, 

the reaction force in the plastic region of the strain-rate dependent FE analysis increases 

smoothly.  

In the semi-analytical model, strain-rate dependence was taken into account by 

considering the rate-dependent column material as a rate-independent material with 

elevated yield strength and adjusted hardening moduli as stated in Section 2.4.1. It is 
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demonstrated that the semi-analytical model successfully approximates the strain-rate 

dependent dynamic response through Perrone’s approximation [75]. 
 

Figures 2.15(c) and (d) show the growths of modal amplitudes for the column 

under V=1 and 5m/s calculated from the semi-analytical model, respectively. For V=1m/s, 

there are only two growing modes during elastic column deformation as shown in Fig. 

2.15(c). However, after t=1000μs, the other eigenmodes are growing from lower to 

higher modes. Fig. 2.15(d) shows the lowest ten modes for the V=5m/s case. Similarly to 

   
    (a) V=1.0m/s       (b) V=5.0m/s 

     
    (c) V=1.0m/s       (d) V=5.0m/s 

Figure 2.15: Dynamic response of a SS304 monolithic solid column of A=9.62mm, L=707mm with 

ξ=0.884 under compression velocities of 1 and 5m/s obtained from FEM and the semi-analytic model: 

(a)(b) Reaction force versus time history curves for V=1.0m/s and 5m/s; (c)(d) The growths of modal 

amplitudes of the rate-dependent column with an imperfection magnitude ξ =0.884 for V=1.0m/s and 5m/s. 
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the Al6061-T6 monolithic solid column under V=5m/s, most of the modes are 

simultaneously activated after inelastic deformation in the column begins as the tangent 

modulus is significantly lower than Young’s modulus.  

 

2.6.2 Corrugated Core Sandwich Columns  

In this section, the dynamic response of corrugated core sandwich columns 

compressed perpendicular-to-corrugations and parallel-to-corrugations obtained from 

the semi-analytical model is compared against the FE results. The Al6061-T6 and SS304 

sandwich columns have the same weight as the monolithic columns in Section 2.6.1.  

Fig. 2.16 shows the dynamic response of an Al6061-T6 sandwich column 

compressed perpendicular-to-corrugations under two applied velocities V=0.5m/s and 

5m/s. The geometry of the column has face sheet thickness h=4.4mm, column length 

L=1407mm, corrugation angle w=60º, core ligament thickness t=3.175mm, and core 

ligament length l=22.0mm. The geometric dimensions of the corrugated core result in a 

core relative density,  ̅     . The column is assumed to have geometric curvature 

imperfections in a form of the first eigen-mode       
 

 
(     

   

 
). This column 

would collapse at Pcr=2082N/mm under static loading [28]. 

 Figures 2.16(a) and (b) show reaction force versus time history curves of the 

Al6061-T6 corrugated core sandwich column under the axial velocities of V=0.5m/s and 

5m/s. The response with respect to various imperfection magnitudes of 1%, 5%, and 10% 

of core height, c, are obtained. Under V=0.5m/s, the column of imperfection ξ=0.05c 

(ξ=0.9525) and ξ=0.1c (ξ=1.905) fail in the elastic region while the column having an 

imperfection magnitude of ξ=0.01c (ξ=0.1905) fails in the plastic region. Therefore, it 
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appears to be imperfection-sensitive because it failed in the elastic region (i.e., the 

difference of peak reaction forces between ξ=0.01c and ξ=0.1c is 20%). However, under 

V=5m/s all failures occur in the plastic region because the effects of transverse inertia 

delay the buckling motion. However, many buckling modes are simultaneously activated 

after inelastic deformation begins to appear due to significantly lowered tangent stiffness 

compared to the elastic stiffness. Compared to the monolithic solid columns, the 

sandwich columns in this in-plane loading orientation have a less effective area to 

support the axial compressive load even though they are of the same weight; the core 

does not contribute to the in-plane load support. Accordingly, the reaction force 

associated with yielding is lower (~3000N/mm) than the one in monolithic solid columns 

(~4600N/mm).  

Figures 2.16(c) and (d) show the growths of modal amplitudes of the sandwich 

column with one imperfection magnitude ξ=0.05c obtained from the semi-analytical 

model. For clarity, the first four modal amplitudes are included in Fig. 2.16(c). For 

V=0.5m/s, the first mode predominates and leads to column failure while the other modes 

are bounded. For V=5m/s, the first mode is the only growing mode below the elastic limit, 

however, then all the other modes become unbounded after the column starts to deform 

inelastically. In Figs. 2.16 (e)-(h), the deformed profiles from the FE simulations and the 

semi-analytical model near the time of failure are compared.  

Fig. 2.17 shows the dynamic response of the SS304 corrugated core sandwich 

column compressed perpendicular-to-corrugations under two applied velocities V=1m//s 

and 5m/s. The geometry of the column is characterized by face sheet thickness 

h=3.75mm, column length L=707mm, corrugation angle w=45º, core ligament thickness 
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t=1.5mm, and core ligament length l=25.0mm. The geometric dimensions of the core 

result in a core relative density, 12%  . Consequently, the column has an equivalent 

mass as the SS304 monolithic column in the previous section. This column would fail at 

Pcr=2718N/mm under quasi-static loading. 

Figs. 2.17(a) and (b) shows the reaction force versus time history curves of the 

SS304 corrugated core sandwich column under V=1m/s and 5m/s obtained from the FE 

simulations and the semi-analytical models. The magnitude of imperfection, assigned in a 

form of the lowest buckling mode, is 5% of the core height c. To evaluate the effect of 

strain-rate dependence, the FE simulations without the material rate dependence and the 

corresponding semi-analytical results are superposed in the same graphs.  

The semi-analytical model predicts the dynamic response at V=1m/s to reasonable 

accuracy as shown in Fig. 2.17(a). However, as shown in Fig. 2.17(b), there is a 

significant discrepancy between the FE and semi-analytical results for the response at 

V=5m/s. This can be accounted for by investigating the FE deformed profiles in Figures 

2.17(d) and (e). The deformed profiles obtained from the FE simulation demonstrated 

that the column fails by face wrinkling under the high velocity V=5m/s whereas it fails 

by global buckling motion under V=1.0m/s. Although this will be discussed in another 

chapter in detail, the rate of growth of buckling modes associated with face wrinkling is 

much faster than that associated with the global buckling motion because the wave length 

in face wrinkling failure mode is much shorter. 
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         (a) V=0.5m/s (ξ=0.01c, 0.05c, 0.1c)              (b) V=5.0m/s (ξ=0.01c, 0.05c, 0.1c) 

      
                (c) V=0.5m/s (ξ=0.05c)                          (d) V=5m/s (ξ=0.05c) 

 
              (e) V=0.5m/s (ξ =0.05c) at t=10500μs obtained from FEM (Mag 5) 

 
              (f) V=5m/s (ξ =0.05c) at t=2500μs obtained from FEM (Mag 5) 

 
              (g) V=0.5m/s (ξ=0.05c) at t=10600μs obtained from the semi-analytical model 

 
              (h) V=5.0m/s (ξ=0.05c) at t=2260μs obtained from the semi-analytical model 

Figure 2.16: Dynamic response of an Al6061-T6 corrugated core sandwich columns (perpendicular-to-

corrugations) under V=0.5 and 5m/s obtained from FEM and the semi-analytical model (h=4.4mm, 

t=3.175mm, l=22.0mm, w=60º, 25%  , L=1407mm): (a)(b) Reaction force versus time history curves 

for V=0.5m/s and 5m/s; (c)(d) The growth of the lowest four modal amplitudes of the column with an 

imperfection magnitude ξ=0.05c for V=0.5m/s and 5m/s; (e)(f) Deformed profiles of the column with an 

imperfection magnitude ξ=0.05c for V=0.5m/s and 5m/s near the time-of-failure (t=10500 and 2500μs) 

obtained from the FE simulations (Mag 5); (g)(h) Deformed profiles of the column with an imperfection 

magnitude ξ=0.05c for V=0.5m/s and 5m/s the time-of-failure (t=10600 and 2260μs) obtained from the 

semi-analytical model. 
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On the other hand, the semi-analytical model is validated for the dynamic response 

of the corrugated core sandwich columns compressed parallel-to-corrugations.  

Fig. 2.18 shows the dynamic response of an Al6061-T6 corrugated core sandwich 

column compressed parallel-to-corrugations under two applied compressive velocities 

V=0.5m/s and 5m/s. The Al6061-T6 sandwich column has the same geometric 

  
    (a) V=1m/s (ζ=0.05c)         (b) V=5m/s (ζ=0.05c) 

 
    (c) V=1m/s (ζ=0.05c) at t=4000 μs obtained from FEM (MAG 5) 

 
    (d) V=5m/s (ζ=0.05c) at t=1875 μs obtained from rate-dependent FEM (MAG 2) 

 
    (e) V=5m/s (ζ=0.05c) at t=1500 μs obtained from rate-independent FEM (MAG 2) 

Figure 2.17: Dynamic response of a SS304 corrugated core sandwich column (compressed perpendicular-

to-corrugations) under applied compression velocities of V=1 and 5m/s obtained from FEM and the semi-

analytical model(h=3.75mm, t=1.5mm, l=25.0mm, w=45º, 12%  , L=707mm): (a)(b) Reaction force 

versus time history curves for V=1m/s and 5m/s; (c)(d) Deformed profiles of the rate-dependent column 

with an imperfection magnitude ξ=0.05c for V=1m/s and 5m/s near the time-of-failure (t=4000 and 

1875μs) obtained from the FE simulations (Mag 2 respectively); (e) Deformed profile of the rate-

independent column with an imperfection magnitude ξ=0.05c for V=5m/s near the time-of-failure 

(t=1500μs). 
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dimensions as the Al6061-T6 corrugated core sandwich column for perpendicular-to-

corrugations: h=4.4mm, t=3.175mm, l=22.0mm, w=60º,  ̅      , L=1407mm. The 

column is predicted to fail by elastic global buckling at a static critical load of 

Pcr=2274(N/mm). Geometric imperfections with three different magnitudes ξ=0.01c, 

0.05c and 0.1c are imposed in the form of elastic static buckling mode. As shown in Fig. 

2.18(a), the column fails by elastic global buckling at V=0.5m/s showing the 

imperfection-sensitive response. On the other hand, the buckling deformation at V=5m/s 

has been resisted until material yielding occurs as shown in Fig. 2.18(b). In this loading 

orientation, the core plates of corrugated core sandwich columns support axial loads so 

that the load associated with yielding is similar to the monolithic solid column of 

equivalent mass, and greater than the sandwich column loaded perpendicular-to-

corrugations. 

Figures 2.18(c) and (d) show the growths of modal amplitudes of the sandwich 

column with imperfection magnitude ξ=0.05c for the two velocity cases V=0.5m/s and 

V=5m/s, respectively. For V=0.5m/s, the lowest buckling mode continuously grows and 

leads to failure while the other modes are dormant. However, higher modes are activated 

at the same time of yielding due to suddenly lowered material stiffness at V=5m/s. In Fig. 

2.18(e)-(h), the deformed profiles calculated from the FE simulations and the semi-

analytical model are illustrated near the time of load drop. The analytical model predicts 

the failure profile for V=0.5m/s. Moreover, the development of higher buckling mode 

under the high velocity of V=5m/s is predicted by the analytical model even though the 

actual deformation shape is not accurately captured. 
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               (a) V=0.5m/s        (b) V=5.0m/s 

            
                  (c) V=0.5m/s (ξ=0.05c)    (d) V=5m/s (ξ=0.05c) 

 
(e) V=0.5m/s (ξ=0.05c) at t=9000μs obtained from FEM (Mag 5) 

 
(f) V=5.0m/s (ξ=0.05c) at t=2667μs obtained from FEM (Mag 7) 

 
(g) V=0.5m/s (ξ=0.05c) at t=9060μs obtained from the semi-analytical model 

 
(h) V=5.0m/s (ξ=0.05c) at t=2673μs obtained from the semi-analytical model 

 

Figure 2.18: Dynamic response of an Al6061-T6 corrugated core sandwich column (parallel-to-

corrugations) under compression velocities of 0.5 and 5m/s (h=4.4mm, t=3.175mm, l=22.0mm, w=60º, 

25%  , L=1407mm): (a)(b) Reaction force versus time history curves for V=0.5m/s and 5m/s; (c)(d) The 

growth of modal amplitudes of the column (ξ=0.05c) for V=0.5m/s and 5m/s; (e)(f) Deformed profiles of 

the column (ξ=0.05c) for V=0.5m/s and 5m/s near the time-of-failure (t=9000 and 2667μs) obtained from 

the FE simulations (Mag 5,7); (g)(h) Deformed profiles of the column (ξ=0.05c) for V=0.5m/s and 5m/s the 

time-of-failure (t=9060 and 2673μs) obtained from the semi-analytical model. 
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In Fig. 2.19, the dynamic global buckling response of an SS304 corrugated core 

sandwich column compressed parallel-to-corrugations is presented for two compression 

velocities of V=1m/s and 5m/s. The column has the same geometric dimensions as the 

SS304 sandwich column compressed perpendicular-to-corrugations: h=3.75mm, 

t=1.5mm, l=25.0mm, w=45º,  ̅      , L=707mm. The static failure load is Pcr=3295 

N/mm dictated by macro plastic buckling failure [28]. The magnitude of geometric 

curvature imperfection ζ=0.05c is assigned in the form of the lowest static buckling mode. 

To examine the material strain-rate effect, the FE simulations suppressing the strain-rate 

dependence are also performed.  

Figs. 2.19(a) and (b) show the reaction force versus time history curves obtained 

from the semi-analytical model and FE simulations for V=1.0 and 5.0m/s. The rate-

dependent FE results show elevated yield strength with smooth elastic-plastic strain 

hardening while the strain-hardening in the rate-independent FE results takes a form of a 

stepwise increase, which is an evidence of elastic-plastic stress wave propagation.  

Figs. 2.19 (c) and (d) show the growths of modal amplitudes of the sandwich 

column with an imperfection magnitude ζ=0.05c calculated from the semi-analytical 

model. The lowest mode and the third one predominate for both velocities. In Fig. 

2.19(e)-(h), the deformed shapes from the FE simulations and the semi-analytical model 

are illustrated near the point of failure. For V=1m/s as shown in Fig. 2.19(e) and (g), the 

FE deformation shape indicates that the only dominant mode is the first eigenmode, W1 

while the semi-analytical model shows the growth in the amplitude of the third 

eigenmode, W3. For V=5m/s (Fig. 2.19 (f) and (g)) the third eigenmode, W3, appears to 

be activated in the FE simulation, which is in good agreement with the analytical model. 
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    (a) V=1.0m/s          (b) V=5.0m/s 

           
      (c) V=1.0m/s             (d) V=5m/s  

 
(e) V=1.0m/s (ξ=0.05c) at t=2667μs obtained from FEM (Mag 10) 

 
(f) V=5.0m/s (ξ=0.05c) at t=2100μs obtained from FEM (Mag 5) 

 
(g) V=1.0m/s (ξ=0.05c) at t=2600μs obtained from the semi-analytical model 

 
(h) V=5.0m/s (ξ=0.05c) at t=1860μs obtained from the semi-analytical model 

Figure 2.19: Dynamic response of an SS304 corrugated core sandwich column under compression 

velocities of V=1 and 5m/s obtained from FEM and the semi-analytical (h=3.75mm, t=1.5mm, l=25.0mm, 

w=45º, 12%  , L=707mm, ξ=0.05c): (a)(b) Reaction force versus time history curves for V=1m/s and 

5m/s; (c)(d) The growth of modal amplitudes of the column (ξ=0.05c) for V=1m/s and 5m/s; (e)(f) 

Deformed profiles of the column (ξ=0.05c) for V=1.0 and 5.0m/s near the time-of-failure (t=2667 and 

2100μs) obtained from the FE simulations (Mag 10); (g)(h) Deformed profiles of the column (ξ=0.05c) for 

V=1 and 5m/s the time-of-failure (t=2600 and 1860μs) obtained from the semi-analytical model. 
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2.6.3 Effect of Core Shear Deformation  

The effect of core shear deformation on the global buckling motion of sandwich 

columns is investigated. It is generally known that core shear deformation effects are 

pronounced for columns of short column length and large cross-sectional area with low 

shear stiffness (e.g., sandwich columns) [45,46].  

Accordingly, two SS304 corrugated core sandwich columns compressed parallel-

to-corrugations having different relative core densities (different core shear stiffness) are 

investigated: one is the SS304 corrugated core column compressed parallel-to-

corrugations (h=3.75mm, t=1.5mm, l=25.0mm, w=45º,  ̅      , L=707mm) presented 

previously, and the other column has all the same geometric dimensions but smaller core 

thickness (h=3.75mm, t=0.675mm, l=25.0mm, w=45º,  ̅        , L=707mm). Both 

columns are compressed at a velocity of 5m/s with an assigned imperfection magnitude 

of ξ=0.05c. 

 Fig. 2.20 shows the difference between the results calculated from the analytical 

models including and excluding core shear deformation. The analytical results without 

core shear deformation have been obtained by assuming that the shear rigidity, S, is 

infinity in the model. For the sandwich column of  ̅      , the core shear deformation 

effect is not substantial (4% difference in times-to-failure) as shown in Fig. 2.20(a).  

On the other hand, for the sandwich column having the more compliant core 

( ̅        ), the difference between the two results (i.e., with and without considering 

core shear deformation) is more appreciable (9% difference in times-to-failure) than that 

shown in the stiffer core sandwich column ( ̅      ), but, not significant (less than 10% 

difference in times-to-failure) as well as shown in Fig. 2.20(b). 
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         (a)      ((b)  

Figure 2.20: The effect of core shear deformation for SS304 corrugated core sandwich columns under 

V=5m/s of (a) h=3.75mm, t=1.5mm, l=25.0mm, w=45º,  ̅      , L=707mm; and (b) h=3.75mm, 

t=0.675mm, l=25.0mm, w=45º,  ̅        , L=707mm. 

 

Considering that core shear effect is more pronounced in the short-wave length 

deformation and weak-core sandwich columns, it did not change the time-to-failure 

dramatically for the considered range of relative density.  

 

2.7 CHAPTER SUMMARY 

In this chapter, semi-analytical models were developed to predict the dynamic 

global buckling failure of corrugated core sandwich columns until the time to maximum 

peak load, which is thought to be a point of loss of structural capability. The proposed 

semi-analytical models are in reasonable agreement with the FE results: the relative 

errors in peak reaction forces are within 10% except for the Al6061-T6 sandwich column 

compressed perpendicular-to-corrugations at V=0.5m/s. It was successful in showing the 

imperfection-sensitive, velocity dependent dynamic response and appearance of higher 

buckling modes. In addition, strain-rate dependent response is successfully approximated 

in the semi-analytical models by treating the rate-dependent material as a rate-
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independent material with the adjusted material properties. Furthermore, the FE and 

semi-analytical results revealed the following.  

1) As a loading rate increases, corrugated core sandwich columns compressed 

perpendicular-to-corrugations are more susceptible to face wrinkling.  

2) The column that failed in the elastic region is very sensitive to magnitude of 

imperfections.  

3) At a low loading rate, buckling modes are activated from the lowest buckling 

mode. However, at a higher loading rate at yielding, many buckling modes can be 

activated at the same time due to degraded plastic material properties.  

4) Since the core in the perpendicular-to-corrugations direction makes little 

contribution to carrying axial loads, the corrugated core sandwich column in this 

direction has a lower load at yielding compared with that compressed parallel-to-

corrugation.  

5) The addition of a core shear deformation effect expedites the growth of global 

buckling motion leading to early failure, however, in the considered range of core relative 

density (0.0533< ̅<0.12), the effect was not shown to be significant (less than 10% 

difference in times-to-failure). Accordingly, the analysis neglecting the core shear 

deformation effect, presented in Section 2.4.1, can be used in the preliminary design 

stage to probe the dynamic response of corrugated core sandwich columns without 

sacrificing too much accuracy. 

In conclusion, the semi-analytical model is worthwhile as a sandwich column 

design tool approximating the dynamic response for corrugated core sandwich columns 

of a variety of sandwich geometric dimensions under compression velocities if combined 
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with an analytical model predicting the other failure mode, local buckling failure. 
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CHAPTER 3  

AN ANALYTICAL MODEL  

FOR THE PREDICTION OF FACE WRINKLING 

 

3.1 INTRODUCTION 

In this chapter, an analytical model is proposed for the prediction of face wrinkling 

behavior of corrugated core sandwich columns under dynamic compressive loading 

perpendicular-to-corrugations. The developed model accounts for complex dynamic 

phenomena due to the effects of material rate-dependence, inertia, and stress wave 

propagation. 

The proposed analytical model is based on the calculation of transverse motion of 

face ligaments near the front and back ends of a sandwich column. The governing 

equation for the face ligaments is a dynamic version of Euler-Bernoulli beam-column 

equation [64], and the motions are obtained by employing the Galerkin method to solve 

the equation. The axial force-time history applied to a face ligament is estimated based on 

the theory of elastic and elastic-plastic wave propagation [70-73]. In addition, material-

rate dependence is considered by treating a rate-dependent material as a rate-independent 

one with elevated yield strength and adjusted tangent modulus [33,75,101].  

This chapter is organized as follows: In Section 3.2, the dynamic problem of 

corrugated core sandwich columns compressed perpendicular-to-corrugations is 

established mathematically. In Section 3.3, the analytical model for the established 
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problem is explained in detail. In Section 3.4, the model is validated through comparing 

several metrics such as reaction force and the deflection of face ligaments with FE 

simulations. The effects of rate-of-compression and imperfections are also investigated. 

Finally, the model’s limitation and efficiency are discussed. 

 

3.2 PROBLEM STATEMENTS 

3.2.1 Problem Definition 

In this chapter, the response of Al6061-T6 and SS304 corrugated core sandwich 

columns dynamically loaded perpendicular-to-corrugations is studied (Fig. 3.1). One end 

(front end) is axially displaced at a constant rate of V with all other degrees of freedom 

(DOFs) constrained while a fixed end condition is imposed at the other end (back end). 

The considered range of the compression rate is such that  (   
      

  )   ⁄  as in 

Chapter 2. Note that the apparent elastic stress wave speed,    
      

, is related to both 

material properties and sandwich geometric parameters, as given in Eqn. (2.36). The 

maximum applied velocity satisfying the above condition can be of the order of a few m/s 

for a typical design of corrugated core sandwich columns.  

 
Figure 3.1: Dynamic problem of face wrinkling failure. 
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3.2.2 Mathematical Formulation 

The proposed analytical model for the dynamic face wrinkling problem considers 

the behavior of a face sheet as shown in Fig. 3.2. When one end of a corrugated core 

sandwich column is compressed in this loading configuration (perpendicular-to-

corrugations) at a loading rate in the considered range, it is assumed that only the faces, 

not the corrugated core, resist the in-plane load because the deformation of the core is 

mainly due to folding at nodes. 

A face sheet ligament of thickness, h, and span length,        , is modeled as an 

Euler-Bernoulli beam-column subject to a time-varying axial force,      ⁄ . The 

governing equation of motion based on the classical Euler-Bernoulli beam theory for the 

face sheet ligament can be given by 

( )
4 ( ) ( ) 2 ( )

( ) 0

4 2

( ) ( )

2 2

f
f f f

f ww P t w w P t
D h

x x x t x x


       
                

  (3.1) 

The initial conditions and boundary conditions for the governing equation (3.1) are 

given as below: 

 
Figure 3.2: Euler beam-column modeling of a face ligament for the dynamic face wrinkling. 
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fw t

x





    (3.3d) 

The governing equation of motion (3.1) is given in terms of the flexural rigidity of 

a face sheet ligament, D
(f)

, initial imperfections,   
   

, axial force,      ⁄ , and density, ρ. 

The flexural rigidity, D
(f)

, is given by 

 

3
( )

212 1

f Eh
D




  
if the face material is elastic,  (3.4a) 

3
( )

12

f TE h
D


  if the face material is plastic.       (3.4b) 

If an elastic column is compressed at a rate small enough such that axial inertia can 

be ignored, the function,      ⁄ , can be simply assumed to be linear with time. However, 

if the axial inertia effect cannot be neglected, the linear function approximation of 

     ⁄  is not valid any more [39]. Instead, axial stress wave propagation effects should 

be taken into account in that regard.  
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3.3 ANALYTICAL MODEL 

The following assumptions are made in the development of the face wrinkling 

analytical model. 

(1) The contribution of a corrugated core to the in-plane stiffness of a sandwich 

column is negligible compared to that of face sheets when the sandwich 

column is compressed perpendicular-to-the-corrugations. 

(2) The stress wave propagation along sandwich column length, L, might be 

important. However, the axial stress distribution in a face sheet ligament is 

considered to be spatially uniform. This assumption is based on the fact that  

  
( ) ( )

2 cos
m Perp

el el

L

c c


     (3.5) 

Consequently, the axial force within a face sheet ligament is a function of 

time only, P(t)/2.  

(3) The axial force applied to a face ligament, P(t)/2, increases stepwise with 

respect to time, t, and can be estimated by adopting the theory of elastic and 

elastic-plastic wave propagation [70-73]. 

(4) The face wrinkling mode is assumed to be decoupled with another 

deformation mode, global buckling motion. That is, no interaction is assumed, 

especially when estimating P(t). 

(5) All of the face ligaments have the same dynamic buckling strength and 

imperfections. Based on this assumption, one of the face ligaments close to 

both the ends are the most susceptible to face wrinkling. (i.e., one of the face 

ligaments close to both the ends is subjected to compressive loading, either 



69 

with greater magnitude or for longer duration, than any other face ligaments 

in the sandwich column) 

The face wrinkling motion of the two face ligaments at the both ends (back and 

front ends) are obtained by solving the analytical model to be explained in the following 

subsections, 3.3.1 through 3.3.5. 

 

3.3.1 Estimation of Axial Force History 

Based on the basic idea explained in the previous section, Section 2.3, the axial 

forces,      ⁄ , that develop in the face ligaments closest to the both ends can be 

estimated individually. The estimation of the axial force history for corrugated core 

sandwich columns starts from the analogy between stress wave propagations in a 

monolithic solid column and a corrugated core sandwich column.  

Consider the face ligament at the front end indicated by the red dashed circle in Fig. 

3.3(a). When one end is suddenly set in motion at a constant rate of V, the face ligament 

is subject to an axial force, 
    

 
       

      
 during one round trip of the elastic stress 

wave front,       
      

 (i.e.,          
      ⁄ ).     

      
 and    

      
 are given in 

Section 2.3.2. 
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After the second elastic stress wave reflection (       
      ⁄ ), the face ligament 

at the front end is under 
    

 
   (     

      
) for another time period of      

      
 

     
      ⁄ . Therefore, the face ligament at the front end during elastic stress wave 

propagation can be summarized as follows. 

 

i) Axial force history of the front end face ligament during elastic stress wave 

propagation. 
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Figure 3.3: Estimation of axial force history of face ligaments during elastic stress wave propagation: (a) the 

target face ligament at the front end (red dash circle); (b) axial stress distribution at t=t1e, t2e, t3e; (c) Largange 

x-t diagram indicating the position of wave fronts. 
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Moreover, the axial force-time history in the back end face ligament during elastic 

stress wave propagaion can be deduced in a similar manner. Refer to column stress 

distribution and Lagrange x-t diagram indicating the propagating wave front location in 

Figs. 3.3(b) and (c), respectively. 

 

ii) Axial force history of the back end face ligament during elastic stress wave 

propagation 
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Suppose that elastic-plastic transition occurs at the back end at time t=t’ between t1P 

and t2P as shown in Fig. 3.4. At t=t’, an elastic wave front of    
      

   
      

 

  
      

 and a plastic wave front of    
      

 √
  

 

       ⁄
(    

      
    

      
) 

propagate with wave speeds of    
      

 and    
      

 toward the other end. Here,   
      

 

denotes the axial stress just before t=t’. The elastic stress wave front reaches the other end 

(red dash circle in the illustration of Fig. 3.4(a)). Reflection of the elastic wave front at 

the other end occurs at          
      

. Consequently, two plastic wave fronts with 

magnitudes of    
      

  and    
      

 travel independently. Here,    
       

 

√
  
 

       ⁄
    

      
, and    

      
,   

      
 are given in Chapter 2.  
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 Considering the stress distribution with respect to time and the Lagrange x-t 

diagram in Figs. 3.4(b) and (c), 
    

 
 at the end where elastic-plastic transition occurs can 

be estimated as follows. 

 

iii) Axial force history of a face ligament near the end where elastic-plastic transition 

occurs (it can be either the front end or the back end.) 
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 (3.8) 

 
Figure 3.4: Estimation of axial force history of face ligaments during elastic-plastic stress wave 

propagation: (a) Two face ligaments at front and back ends (elastic-plastic transition occurs at the end 

near the face ligament in blue dash circle); (b) axial stress distribution at t=t1p, t2p, t3p; (c) Largange x-t 

diagram indicating the positions of wave fronts. 
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iv) Axial force history of a face ligament near the end other than the one stated in iii). 
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In short, the axial-force history of selected face ligaments can be estimated by the 

procedure in this section. 

 

3.3.2 Galerkin Method for Face Ligaments with Initial Curvatures 

The transverse motions, w
(f)

(x,t), of the face sheet ligaments near the front and back 

ends are calculated by solving the governing equation of motion with the estimated axial 

force, 
    

 
, using the Galerkin method.  
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The transverse motion,          , initial curvature imperfection,   
   

   , and 

virtual displacement,      , are given in the form of an eigenfunction expansion, a 

combination of the first two eigenmodes,   
   

    and   
   

   , from a static buckling 

analysis. 
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The two eigenfunctions are: 
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where 8.987 2 cosk  , and A is a normalizing factor. 

The integral expression written in Eqn. (3.10) is transformed into ordinary 

differential equations (ODEs) with respect to   
   

    and   
   

   . Finally, the ODEs are 

solved using a 4
th

 order Runge-Kutta method until the failure criterion, described in the 

next subsection is satisfied. 

 

3.3.3 Failure Criterion 

Failure is defined as the time when a sudden load drop in the reaction force history 

curve occurs, which is equivalent to the time at peak reaction force. When this type of 

instability in a compressive member occurs, excessive deformation together with a high 

deformation rate results in a sudden loss of load-carrying capacity. To account for this 

phenomenon, a load drop criterion is defined such that a significant load drop is assumed 

if the extension rate of the mid-plane of face sheet ligament exceeds the compressive rate 

[74]. 
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3.3.4 Inclusion of Material Rate-Dependence  

The model explained so far pertains to a column composed of a rate-independent 

material. To include material rate-dependence, the analytical model considers the rate 

dependent material as a rate-independent material with elevated yield strength and 

adjusted strain-hardening modulus as done in Chapter 2. 
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For the dynamic response of rate-dependent sandwich columns, the face wrinkling 

analytical procedure is repeated for the rate-independent material with adjusted material 

properties. 

 

3.3.5 Consideration of Sandwich Columns having Perfect Geometry 

In order to make a transverse motion in compressive members, a moment initiator 

such as geometric curvature imperfections or load eccentricity is required for numerical 

implementation. It is usual practice to assign geometric curvature imperfections in FE 

simulations [3-5, 29, 48, 51]. Sometimes, a round-off error can be one source leading to 

such motion as an asymptotic value [3, 102] 



76 

With regard to moment initiating sources, the corrugated core in the direction of 

perpendicular-to-corrugations appears to have special structural characteristics: When a 

corrugated core sandwich column is compressed, the main deformation mechanism of the 

corrugated core is folding of corrugations at nodes rather than stretching or flexural 

deformations of corrugation legs. Thus, the vertical position change of a node between a 

face and a core can initiate a motion of a face ligament causing face wrinkling failure in 

the sandwich columns of perfect geometry as illustrated in Fig. 3.5. Therefore, the 

analysis considering this Poisson effect may result in an asymptotic dynamic strength of 

sandwich columns having no imperfection. 

In the analytical model, face wrinkling due to the Poisson effect is realized by 

assigning initial conditions (i.e., the amount of vertical position change of a node during 

the first round trip of an incident elastic stress wave is used as an approximating function 

of a(x) in Eqn. (3.2a)). 
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  (3.16) 

The inclusion of the term,      
      , is for convergence check in order to 

confirm that the second mode does not grow, leading to failure. The procedure for 

obtaining a1 in Eqn. (3.16) is given in Appendix B. 

Therefore, the dynamic face wrinkling problems for sandwich columns with perfect 

geometry are solved by the analytical model using Eqn. (3.10) through Eqn. (3.15) with 

a(x) written in Eqn. (3.16).  
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3.3.6 Validation with Finite Element Simulations 

FE simulations are performed to validate the proposed analytical model. 

Comparison metrics for the validation are peak reaction forces at front and back ends as a 

function of imperfection magnitude and applied velocities, and transverse deflection at 

the midpoint of a face ligament. In addition, the underlying assumption regarding the 

analogy between stress wave propagations of monolithic and sandwich columns is also 

verified through comparison of the apparent elastic stress wave propagation speed, 

   
      

, by FE measurements and Eqn. (2.36).  

The FE models are constructed as discussed in Chapter 2.5, and the details are as 

such. Most of the validations are done on sandwich columns of perfect geometry except 

for the investigation of imperfection-sensitivity response. 

 

  

 
Figure 3.5: Change of vertical position of a node due to in-plane loading. 
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3.4 RESULTS AND DISCUSSION 

The mathematical expression, Eqn. (2.36), for the apparent elastic stress wave 

speed,    
      

, for sandwich columns is verified through FE simulations. This is followed 

by validation of the face wrinkling analytical model. It is an important derivation to solve 

the governing equation (3.10) because the analytical model assumes the analogy between 

stress wave propagations in monolithic solid columns and corrugated core sandwich 

columns. Finally, the FE simulations are compared with the analytical model for 

corrugated core sandwich columns compressed perpendicular-to-corrugations of various 

geometric dimensions under several applied velocities. 

 

3.4.1 Verification of Apparent Elastic Stress Wave Speed 

The apparent elastic stress wave speed
1
,    

      
, is obtained from FE calculations 

by measuring the time period for several round-trips of an elastic stress wave along 

column length, L. The FE measurement is possible in that a stepwise increase in the 

reaction force curve is observed in axial compression of a straight column unless a 

significant transverse deflection of the sandwich column occurs.  

The FE study has been done on two types of corrugated core sandwich columns 

with various face sheet thicknesses, h: 1) Al6061-T6 corrugated core sandwich columns 

with L=1877mm and  ̅      (t=3.175mm, l=22mm, w=60º) and 2) SS304 sandwich 

                                                 

1
 The word “apparent” is added after confirming FE simulations on the axial wave characteristics 

of sandwich columns. In microscopic time scale during which an axial wave propagates one unit cell or so, 

the axial wave front in sandwich columns does not look planar in the y-z plane due to the effect of the core 

(rather, zig-zag in top and bottom faces). On the other hand, the reaction force increase at one end is 

achieved in stepwise pattern macroscopically. 
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columns with L=2828mm and  ̅     (t=1.5mm, l=25mm, w=45º. On those two types 

of columns specified above, an end compression with low constant velocities (V=0.1m/s 

for most cases except for V=0.01m/s for SS304 columns of h=0.25, 0.5mm) is applied so 

as to minimize the global column deflection.  

Fig. 3.6 shows the apparent elastic stress wave speed,    
      

, obtained from Eqn. 

(2.36) and the FE calculations for varying face sheet thickness h for the specified L and 

 . The analytic expression of    
      

, Eqn. (2.36), is in good agreement with the FE 

measurements. As a result, the underlying assumption is proved to be valid. It is 

noteworthy that the analytic expression of    
      

 in Eqn. (2.36) is also a function of 

sandwich design parameters, h and  ̅ as well as material properties while the wave speed 

of monolithic columns is solely dependent on their material properties.  

 

3.4.2 Validation of the Analytical Model 

Validation of the analytical model is done on a variety of Al6061-T6 and SS304 

    
   (a)      (b) 

Figure 3.6: Apparent elastic stress wave speed    
      

of (a) Al6061-T6 sandwich columns (L=1877mm, 

25%  ) and (b) SS304 sandwich columns (L=2828mm, 12%  ) of varied face sheet thickness, h. 
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corrugated core sandwich columns of geometries under varied applied velocities. The 

geometric dimensions are classified into EFW and PFW, which are selected such that 

each sandwich column failed in either elastic face wrinkling (EFW) or plastic face 

wrinkling (PFW) under quasi-static loading, respectively. The geometric dimensions of 

the representative sandwich columns are listed in Table 3.1. In addition to the 

representative column geometries, a longer column—achieved by increasing the number 

of unit cells of a representative column (SS304-EFW) — is also examined to investigate 

the effect of overall column geometry.  

Figures 3.7(a) and (b) show the reaction force versus time history curves of SS304 

sandwich columns of the EFW and PFW geometric dimensions under V=0.1m/s and 

V=1m/s, respectively. The curves from FE simulations and the analytical model are based 

on the perfect geometry solution presented in Section 3.3.5. Arrows in the figures 

indicate the quasi-static strength of the sandwich columns,    
    

, which is equivalent to 

the quasi-static strength of a face ligament using Euler buckling formula for the EFW 

column or using the tangent modulus theory of Shanley for the PFW one, respectively 

[64]. It is revealed from both the FE simulations and analytical models that dynamic 

strengths are enhanced compared to the quasi-static strengths. In Figures 3.7(c) and (d), 

Table 3.1. The geometric dimensions of the representative columns. 

Type of sandwich columns 
h 

(mm) 

t 

(mm) 

l 

(mm) 

w 

(°) 
  ̅ 

(%) 

L 

(mm) 
   

    
 

(N/mm) 

SS304 (EFW) 0.25 1.5 25 45 12 353 21.1 

SS304 (PFW) 3.75 1.5 25 45 12 353 2889.3 

Al6061-T6 (EFW) 0.457 3.175 22 60 25 234 103.9 

Al6061-T6 (PFW) 2.2 3.175 22 60 25 234 1471.7 
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the deformation shapes obtained from the FE calculations are exhibited before and after 

the maximum peak loads of the representative SS304 sandwich columns. Likewise, the 

analytical results for the Al6061-T6 representative sandwich columns of the EFW and the 

PFW geometric dimensions are compared to FE calculations in Fig. 3.8. 

 

  
                     (a) EFW      (b) PFW 

 

 
(c) EFW 

 

 
(d) PFW 

 

Figure 3.7: Comparison between the FE and analytical calculations of the reaction force curves of the 

SS304 representative sandwich columns of (a) the EFW geometric dimensions under V=0.1m/s; (b) the 

PFW geometric dimensions under V=1.0m/s; Deformation shapes of (c) the EFW obtained from the FE 

simulation at t=1400, 1700 μs, and of (d) the PFW obtained from the FE simulation at 2800, 3600 μs, 
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The analytical model is in good agreement with the FE simulations except for the 

Al6061-T6 sandwich column response of the EFW geometric dimensions. The 

discrepancy results from local yielding at nodes, which is not accounted for in the 

analytical model and will be discussed in Section 3.4.3.  

 
           (a) EFW         (b) PFW 

 

 
(c) EFW 

 

 
(d) PFW 

Figure 3.8: Comparison between FE and analytical calculations for the reaction force curves of the Al6061-

T6 representative sandwich columns of (a) the EFW geometric dimensions under V=0.5m/s; (b) the PFW 

geometric dimensions under V=5.0m/s; Deformation shapes of (c) the EFW obtained from the FE simulation 

at t=600, 800 μs, (d) the PFW obtained from the FE simulation at 240, 280 μs, 
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From the four columns shown in Figs. 3.7 and 3.8, it is shown that the maximum 

peak load in the reaction force curves,      
     

  is greater than the quasi-static strength, 

   
    

. It gives clear evidence that dynamic effects enhance column strength. To 

investigate the effect of rate of loading on dynamic strength, normalized peak load, 

     
     

   
    

⁄ , versus V, which is calculated from both the FEM and analytical model, is 

plotted in Fig. 3.9. The elevation is more pronounced in the Al6061-T6 and SS304 

columns of the EFW geometric dimensions. The elevation in the sandwich columns of 

the EFW is certainly explained by inertia effects because material strain-rate effects do 

not influence the response.  

On the other hand, the normalized peak load in the representative columns of the 

PFW geometric dimensions are approximately 1.3~1.5 for the SS304 column under 

V=0.5~5m/s, and 1.0 for the Al6061-T6 one under V=1~10m/s, respectively. Note that 

SS304 is modeled by a strain rate-dependent material while material strain rate-

dependence in Al6061-T6 is not considered. The range of      
     

   
    

⁄  of the SS304 

     
(a)        (b) 

Figure 3.9: Plots of normalized peak reaction force,      
     

   
    

⁄ vs. V calculated by the FEM and analytical 

model: (a) SS304 representative sandwich columns; (b) Al6061-T6 representative sandwich columns.. 
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representative column of the PFW geometric dimensions amounts to the dynamic 

strength enhancement ratio, R, 1.29~1.41 if approximating equivalent plastic strain rate 

as
2

3

V
p

L
 . R describes the strain rate-dependence of the parent material, SS304. 
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Thus, material strain-rate dependence predominates the dynamic strengthening in the 

representative SS304 column of the PFW geometric dimensions. Through the 

investigation in Fig. 3.7 through Fig. 3.9, the analytical model can predict the dynamic 

strengthening observed in the FE simulations to a good degree of accuracy.  

In Fig. 3.10, the transverse deflection of the failed face ligament calculated using 

the analytical model and FE are compared. Fig. 3.10(a) shows the FE calculation of the 

transverse deflection at the mid-point of the face ligament of the SS304 representative 

sandwich column of the EFW geometric dimensions under V=0.1m/s. The motion 

oscillates with a small amount of amplitude until the load drop point at t=1300μs. After 

that, significant increase in the transverse displacement leading to plastic dissipation is 

observed. Therefore, the plastic deformation results from the excessive growth of 

transverse deflection. The initiation time of plastic dissipation (t=1470μs) is obtained 

from an energy balance plot not presented here. The FE observation in Fig. 3.10(a) is 

consistent with Jones’ [33] and Hoff’s [38] findings on a simple column under dynamic 

compression in which an oscillating motion is found as long as the axial force is smaller 

than Euler buckling load, P<PE, and the motion is unbounded if P>PE.  
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 In Fig. 3.10(b), the transverse motion of the failed face sheet ligament is obtained 

from the analytical model. The deflection at a midpoint can be given in terms of the 

modal amplitude of the first mode, W1. Consistently with the FE result as shown in Fig. 

3.10(a), an appreciable increase in the modal amplitude is not found until t=1000μs in Fig. 

3.10(b). However, the W1 mode grows significantly after this point.  

In Fig. 3.11, the effect of column length, L, on the dynamic face wrinkling failure is 

investigated by comparing the responses of two sandwich columns having different 

column length L: One column is the SS304 sandwich column of the EFW geometric 

dimensions, whereas the counterpart is one having the same geometric dimensions except 

for column length which is twice as long (L=707mm). The two columns have the same 

quasi-static strength. Fig. 3.11(a) and (b) show the FE results of reaction force-time 

history curves of the two columns, which are plotted in the same range of the abscissa 

and ordinate. The shorter column fails at around t=1400μs with normalized peak reaction 

forces,      
     

   
    

⁄      while the longer one at around t=2300μs with 

     
     

   
    

⁄     . Likewise, the responses of the two columns obtained from the 

    
      (a)         (b) 

Figure 3.10: Transverse motion at the midpoint of a failed face ligament of the SS304 representative 

sandwich column of the EFW geometric dimensions under V=0.1m/s: (a) FEM; (b) analytic model. 
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analytical model are shown in Figs. 3.11(c) and (d), giving a good agreement with the FE 

results in Figs. 3.11(a) and (b). Both the analytical and FE calculations demonstrate that 

the two elastic columns in dynamic compression reveal neither linearly-scaled responses 

nor the same dynamic strength. In general, the dynamic strength of a compressive 

member is dependent on the shape of pulses as well as loading duration. That is because 

the dynamic strength of compressive members pertains to not only the intensity of 

loading but also the duration for which they are exposed to compression. In this regard, 

     
  (a) FEM (L=353)      (b) FEM (L=707) 

 

      
  (c) Analytical (L=353)       (d) Analytical (L=707) 

 
Figure 3.11: The effect of column length L on the dynamic response of SS304 corrugated core sandwich 

columns of the EFW geometric parameters having the same static strength,    
    

: (a) FE calculation for the 

short column of L=353mm (     
     

   
    

⁄ =2.5); (b) FE calculation for the longer column of L=707mm 

(     
     

   
    

⁄ =2.0); (c) Analytical prediction for the short column of L=353mm; (d) Analytical prediction for 

the longer column of L=707mm.. 
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face wrinkling response under dynamic compression was influenced by overall sandwich 

column geometries such as L and  ̅ even though they have the same face sheet thickness, 

h, and face ligament span length,        , as shown in Fig. 3.11.  

In Fig. 3.12, the effects of geometric imperfections in the Al6061-T6 and SS304 

columns designed with the EFW geometric dimensions are investigated by the FEM and 

analytical model. For the FE sandwich column models having geometrically imperfect 

face sheets, one eigenmode from additional static buckling analysis is superimposed on 

the perfect mesh with magnitudes of   
   

              . For example, the first few 

modes generated from an eigen-buckling analysis for the Al6061-T6 columns of the EFW 

geometric dimensions are face wrinkling modes as shown in Fig. 3.13(b) and (c) (In 

general, the number of the face wrinkling modes to be seen from the lowest mode is 

dependent on the number of unit-cells.). The mode to be inserted into dynamic FEA for 

imperfect columns is selected such that maximum displacement in the eigenmode occurs 

at the failed face ligament in the dynamic FEA of sandwich columns of perfect geometry 

(Fig. 3.13(a)). In the Al6061-T6 case of the EFW, Mode #7 in Fig. 3.13(c) rather than 

Mode #1 is selected to be inserted into the dynamic FE simulation for the imperfect 

columns. Eventually, dynamic FE simulations for imperfect sandwich columns are 

performed on the FE model in which nodal positions are relocated with the amount of ξ 

from the perfect sandwich column mesh.  

On the analytical side, the analytical model for the geometrically imperfect face 

sheet ligaments (  
   

            ) defines the imperfection magnitude  1 in Eqn. 

(3.12) whereas the analytical model for the perfect geometry (  
   

    ) employs the 

procedure for the asymptotic analysis in Section 3.3.5.  
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 In Figs. 3.12(a) and (b), the reaction force-time history curves obtained from the 

FE simulations are plotted for the SS304 and Al6061-T6 sandwich columns of the EFW 

geometric dimensions having different amount of imperfections subject to V=0.1m/s, 

respectively. With increasing   
   

, the SS304 sandwich columns show the reduction in 

peak reaction force and nominal strain. In contrast, the imperfection affects the duration 

of plateau in the Al6061-T6 sandwich column of the EFW geometric dimension. The 

       
      (a)        (b) 

 

         
       (c)        (d) 

Figure 3.12: Influence of geometric imperfections. Reaction force versus time history curves calculated from 

FEM of (a) SS304 representative sandwich column of the EFW geometric dimensions under V=0.1m/s, (b) 

Al6061-T6 representative sandwich column of the EFW geometric dimension under V=0.1m/s; And the 

analytical model are compared against the FEA on the imperfection sensitive dynamic peak load and nominal 

strain at load drop of (c) the SS304 column and (d) the Al6061-T6 column.  
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plateau found in the reaction curve of the Al6061-T6 sandwich column will be discussed 

in the next section. 

In Figs. 3.12(c) and (d), the analytical predictions for the imperfection-dependent 

peak reaction forces and nominal strains are compared against the FE simulations. 

Nominal strain,    ⁄ , is defined as the ratio of compressed distance ∆l at the time of 

load drop to column length L. The analytical model agrees well with the FEM for the 

imperfection-dependent response of the SS304 representative column as shown in Fig. 

3.12(c). However, the analytical model does not capture a tendency observed from the FE 

simulations for the Al6061-T6 column of the EFW geometry, in which the peak reaction 

force is invariant to imperfection magnitude,   
   

. Instead, a decreasing tendency of 

nominal strain with increasing magnitude of imperfections is found from both the FEM 

and analytical model.  

 

Figure 3.13: (a) Dynamic simulation of the representative Al6061-T6 sandwich column of the EFW 

geometric dimensions (perfect geometry); (b) The first eigenmode; (c) The 7
th

 eigenmode. 
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3.4.3 Limitation and Efficiency of the Analytical Model 

One limitation of the analytical model is found in the plateau response of the 

Al6061-T6 representative sandwich columns of the EFW geometric dimensions. In this 

section, a source causing such phenomenon is addressed. 

In Fig. 3.14(a)(b)(c), the reaction force curves of the Al6061-T6 column under 

V=0.1, 0.5, 1.0m/s are shown, respectively. The curves are replotted on a normalized 

time scale, Vt/L, in Fig. 3.14(d). As shown in the figures, the plateau response is more 

pronounced at lower velocities. To examine energy conversion during the plateau 

response, an energy balance plot for V=0.1m/s is shown in Fig. 3.15. External work (Wext) 

generated by axial compression of the Al6061-T6 sandwich column is stored in the 

column as a form of elastic strain energy (EE) until plastic dissipation (PD) starts to 

appear at t=3400μs. Then it is followed by a significant increase of kinetic energy (KE) 

and plastic dissipation (PD), which is coincident with the load drop. The sequence of PD, 

KE, load drop for the candidate SS304 sandwich column with EFW geometric 

dimensions is highlighted in Fig. 3.10. In the SS304 column, excessive deformation of an 

elastic face sheet ligament leads to the unstable load drop followed by plastic dissipation 

whereas local plastic deformation at nodes makes the plateau response of the Al6061-T6 

column followed by load drop. 

The local plastic deformation at nodes in the plateau region for the Al6061-T6 

geometries can be confirmed by a contour plot of equivalent plastic strain at t=3883μs in 

Fig. 3.16. The lower part of the figure explains local plastic deformation on the outer 

fiber of the face sheet near the nodes between a core and face sheets. Therefore, local 

plastic deformation at nodes causes a plateau response, which cannot be accounted for by 



91 

the analytical model because local plastic deformation violates the kinematic assumption 

of the analytical model.  

Through about forty FE simulations regarding Al6061-T6 EFW sandwich columns 

under relatively low velocities (V:0.1~1m/s) in addition to the results presented here, the 

plateau response is usually observed in elastically face wrinkled sandwich columns 

compressed at a comparatively low velocity (V~0.1m/s). Even though the valid range of 

the proposed analytic model is not quantified here, it can be postulated that local plastic 

deformation at nodes associated with the plateau response is susceptible to sandwich 

columns having stubby elastic faces with large oscillating amplitude, which might be 

related to the slenderness ratio of face ligaments, corrugation angles, imperfections, and 

core inertia etc. Comparing the slenderness ratios of the face ligaments of the Al6061-T6 

and SS304 sandwich columns of the EFW geometric dimensions, the slenderness ratio of 

a face ligament of the SS304 column is much greater than that of the Al6061-T6 columns. 

The elastic face ligaments with high slenderness ratio allow large elastic deflection before 

local plastic deformation. As an extreme case, an Al6061-T6 monolithic column in Fig. 

2.13 in Chapter 2, which has a high slenderness ratio, does not reveal such the response. 

This can be proved simply by the strength-of-materials approach. The axial stress at 

the outer fiber of a face sheet ligament subject to an axial load, P/2, is given by 

 
 
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Therefore, the axial stress at the position corresponding to a node is given as 
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Assuming one mode approximation for the transverse deflection of a face ligament 



92 

with a shape function of   
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After substituting Eqn. (3.20b) into Eqn. (3.19), a condition of local plastic 

deformation for a given load, P/2, can be determined by 
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   (3.21) 

In Eqn. (3.21), the local deformation at nodes is dependent on the second term of 

the left hand side. That is, for a given load P/2, a large amplitude in the transverse 

deflection, c1, coupled with a small slenderness ratio            ⁄ , results in the local 

plastic deformation.  

Nevertheless, the proposed model is quite attractive from an efficiency point of 

view. For example, it took approximately one hundred hours for a FE simulation of 

dynamic compression of an Al6061-T6 corrugated core sandwich columns consisting of 

64 unit-cells (L=1877mm) at a compression rate of V=0.1m/s. Accordingly, it is 

unreasonable to employ FEM for a preliminary periodic core sandwich design tool. 

However, the analytical model approximates the response within a few seconds. At an 

initial design stage, there is a necessity to probe the dynamic response for sandwich 

columns with various geometric dimensions. Under the circumstances where there is no 

simple prediction method considering dynamic effects, the analytical models presented in 

Chapters 2 and 3 can produce an approximate response quickly in a design space, which 

could be complementary to the FEM.  
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(a) V=0.1m/s                  (b) V=0.5m/s                   (c) V=1.0m/s 

 
(d) 

Figure 3.14: Reaction force-time history curves at both front and back of an Al6061-T6 representative 

corrugated core sandwich column of the EFW geometric dimensions under (a) V=0.1m/s; (b) V=0.5m/s; (c) 

V=1.0m/s; (d) The reaction force versus normalized time histories for the three compression rates. 

 

 

Figure 3.15: Energy balance plot of the Al6061-T6 representative sandwich column of the EFW geometric 

dimensions under V=0.1m/s. External work (Wext) is partitioned into 1) Elastic strain energy (EE), 2) 

Plastic dissipation (PD), and 3) Kinetic energy (KE).  
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Figure 3.16: Contour of equivalent plastic strain, p, of the Al6061-T6 representative sandwich column of 

the EFW geometric dimensions under V=0.1m/s at t=3883μs. The lower explains local plastic deformation 

on the outer fiber of the face sheet near a node between face sheets and a core. 

 

 

3.5 CHAPTER SUMMARY 

An analytical model for face wrinkling failure under dynamic compression of 

corrugated core sandwich columns is proposed. The model calculates a face ligament 

transverse deflection based on the consideration of a face ligament as an Euler-Bernoulli 

beam-column, continuum approximation of the discrete cores with wave propagation 

theory. 

The fundamental assumption for axial force history in a face ligament was verified 

by comparing the apparent elastic stress wave speeds with the FE measurements and 

analytic expression. It reveals that the wave speed in corrugated core sandwich columns 

is a function of not only material properties but also sandwich geometric parameters. 

As demonstrated in Section 3.4.2, the proposed analytical model for face wrinkling 

failure under dynamic compression of corrugated core sandwich columns successfully 

reproduced most of the observations in the FE simulations. However, there is a limitation 
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that the model is not capable of predicting the plateau response which has been seen in 

Al6061-T6 sandwich columns of the EFW geometric dimensions, especially compressed 

at a low velocity. It is demonstrated that the plateau response results from local plastic 

deformation at nodes. 

The efficiency and reasonable accuracy of the proposed model is noteworthy. 

When combined with the global buckling analytical model presented in Chapter 2, the 

face-wrinkling analytical model proposed in this chapter can be utilized for 

understanding competition of failure modes and optimal designs of corrugated core 

sandwich columns under dynamic compressive loading. 
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CHAPTER 4  

AN ANALYTICAL APPROACH  

FOR THE PREDICTION OF LOCAL PLATE BUCKLING 

 

4.1 INTRODUCTION 

An analytical model predicting the dynamic failure of plates with a large dimension 

in the longitudinal direction compressed at a constant rate of V is proposed. The 

compression rate is in the low velocity region such that  (   
      

  )   ⁄  as in 

Chapters 2 and 3. The work in this chapter begins with the hypothesis that an analytical 

approach can be an alternative methodology to approximate dynamic local plate buckling 

of either core plates or face plates of corrugated core sandwich columns compressed 

parallel-to-corrugations at a constant velocity.  

Plates compressed at a constant velocity cause several wrinkles with a regular 

pattern to form, and one of the wrinkles grows excessively to a failure from the FE 

observations presented subsequently. Accordingly, the proposed model considers an 

imaginary patch plate (predefined kinematic displacement field) on the long plate so as to 

encompass the wrinkle, and calculates the out-of-plane displacement in the patch plate till 

load-drop. Similar to the previous two chapters, the approach is based on the theory of 

stress wave propagation for estimating in-plane force components in the patch plate. 

Lastly, the approach will be verified by Finite Element calculations through some 

examples. 
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This chapter is organized as follows: First, dynamic response of several corrugated 

core sandwich columns compressed parallel-to-corrugations is observed via FEM in 

Section 4.2. Second, an analytical approach for local plate buckling is proposed based on 

the observed dynamic phenomena in Section 4.3. Last, the proposed approach is verified 

with FE simulations, and limitations are discussed in Section 4.4. 

 

4.2 FE OBSERVATIONS OF LOCAL PLATE BUCKLING OF SANDWICH 

COLUMNS  

4.2.1 FE Model  

Finite Element Analysis (FEA) for SS304 corrugated core sandwich columns in 

compression at constant velocities is performed to investigate the dynamic local plate 

buckling response. A commercial FE package, ABAQUS/Explicit, is employed for the 

numerical investigation of the four cases listed in Table 4.1. The FE SS304 sandwich 

columns are constructed as described in Chapter 2. One unit cell with symmetric 

boundary conditions imposed on their lateral sides, which is a unit cell in the 

perpendicular-to-corrugation direction, is extruded to the desired length, L (Fig. 2.10(b)). 

Conventional shell elements with reduced integration (S4R) are meshed on the face 

sheets and cores. The parent material SS304 is considered as an elastic-plastic material 

with bilinear strain hardening and strain-rate hardening as mentioned in the previous 

 Table 4.1. Geometric dimensions and velocity of FE sandwich column models for the investigation. 

FE Column 

No. 

h 

(mm) 

L 

(mm) 

t 

(mm) 

l 

(mm) 

w 

(deg) 


 

(%)
 

V 

(m/s) 

Column I 0.5 353 0.675 25.0 45 5.3 1.0 

Column II 0.25 353 0.675 25.0 45 5.3 0.5 

Column III 0.25 353 0.675 25.0 45 5.3 5.0 

Column IV 3.75 353 0.675 25.0 45 5.3 5.0 
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chapters (Fig. 2.11).  

 

4.2.2 FE Results 

Fig. 4.1 shows the reaction forces vs. time response measured at both ends of the 

column, and the deformed shapes predicted by FE for column I at three points in time, 

t1=533μs, t2=1067μs, t3=4000μs. The core and lower face are also displayed at those 

times. Contour plots indicate the displacement component in the y direction, which is 

normal to the plane of the face sheets. For the time period of 0<t<600 μs, the reaction 

force increases at a constant rate as shown in Fig. 4.1(a), and wrinkles begin to appear in 

the face sheet as shown in Fig. 4.1(b). At around t=700 μs, reaction forces drop suddenly 

which coincide with the face sheets displaying excessive growth of some wrinkles. 

Nevertheless, in-plane load of P~600N/mm has been supported for a period until the 

corrugated core fails at t=2200μs globally. Therefore, local plate buckling of the face 

sheets induces another failure mode resulting in complete loss of structural function. 

Figures 4.2 and 4.3 correspond to the analysis of columns II and III, respectively. 

They have the same geometric dimensions, but are subjected to different compression 

velocities, V=0.5m/s and 5m/s. Contour plots show the displacement component in the y 

direction. The FE analysis of column II is for the low loading rate of V=0.5m/s. Initially, 

the reaction force of column II increases for the time period of 0<t<1100 μs as shown in 

Fig. 4.2. A slight change of the slope at around the time t1=1000 μs is detected, which 

might be caused by the appearance of a buckling pattern on the upper and lower face 

sheets. However, there is no substantial deformation of the core so that the column 

integrity is maintained without a significant load drop until t=7000μs. After t=7000μs, the 
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column fails globally due to the collapse of the core. Conversely, column III in Fig. 4.3, 

undergoes vertical displacement due to Poisson’s effect initially. However, after t=200 μs, 

the reaction forces drop suddenly because of face sheet buckling as shown in the 

deformed shapes at t2=220μs. The core has been capable of supporting an in-plane load 

P~500N/mm until it fails in local core plate buckling around t=700μs. Observe the 

deformation profiles at t3=1067μs. From Figs. 4.2 and 4.3, local plate buckling induces 

another failure mode for complete loss of structural function, but the subsequent failure 

mode leading to the complete loss of structural integrity is different depending on the 

applied velocities. 

Column IV presents the case of initial local plate buckling at core plates as shown in 

Fig. 4.4. At 0<t<3000μs, a regular buckling pattern starts to appear on the core plate. 

Significant core plate buckling does not occur until t2=3333 μs as shown in Fig. 4.4. 

From the deformation shapes at the times, t2 and t3, one of the buckles grows excessively 

and then leads to the complete failure due to core shear. 

To summarize the FE observations in this section,  

(1) Local face plate buckling means a loss of capability to support some of the in-

plane loads. After that, it weakens the other load-carrying path, which is a core plate, 

even though the core plate supports in-plane loads for a period of time. 

(2) The subsequent failure mode to a local plate buckling can be different 

depending on compressive velocities. At higher velocities, there is more probability of 

local plate buckling in the other load-carrying path. 

(3) Initially, a regular pattern of buckles is created, and then one of the buckles 

grows excessively to local plate buckling. 
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(a) 

 
(b) 

Figure 4.1: FE column No 1: (a) Reaction forces per unit width at the front and back ends versus time curves; (b) Deformation shapes of sandwich columns at 

different times on which contours are shown for a vertical displacement component normal to the face sheet planes. Times t1, t2, t3 for  are 533, 1067, 

4000μs. 
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(a) 

 
(b) 

Figure 4.2: FE column No 2: (a) Reaction forces per unit width at the front and back ends versus time curves; (b) Deformation shapes of sandwich columns at 

different times on which contours are shown for a vertical displacement component normal to the face sheet planes. Times t1, t2, t3 for  are 1000, 3000, 

9000μs. 
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(a) 

 
(b) 

Figure 4.3: FE column No 3: (a) Reaction forces per unit width at the front and back ends versus time curves; (b) Deformation shapes of sandwich columns at 

different times on which contours are shown for a vertical displacement component normal to the face sheet planes. Times t1, t2, t3 for  are 133, 266, 

1067μs. 
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(a) 

 
(b) 

Figure 4.4: FE column No 4: (a) Reaction forces per unit width at the front and back ends versus time curves; (b) Deformation shapes of sandwich columns at 

different times on which contours are shown for a vertical displacement component normal to the face sheet planes. Times t1, t2, t3 for  are 1000, 3333, 

4000 μs. 
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4.3 DEVELOPMENT OF A THEORETICAL MODEL 

Based on the FE observations in the previous section, an analytical model 

approximating dynamic failure of plates with large dimensions in the longitudinal 

direction is developed. First, an imaginary patch plate on a long plate is defined. Second, 

governing equations are established for the predefined patch plate on the long plate, and 

in-plane stress resultants of the patch plate are estimated from the theory of elastic and 

elastic-plastic stress wave propagation. Third, the out-of-plane displacement of the patch 

plate is calculated by using the Galerkin method until the patch plate fails. The reaction 

forces at both of the ends of the long plate and the out-of-plane displacement of the parch 

plate can be obtained from the proposed model. 

 

4.3.1 Patch Plate 

Let a patch plate be an imaginary rectangle on a long plate which encompasses an 

excessively growing wrinkle as shown in Fig. 4.5(a) and (b). It is assumed that the long 

plate simulates either a core plate or a face plate of corrugated core sandwich columns in 

compression parallel-to-corrugations. Accordingly, the size of the patch plate on the 

long plate corresponds to the buckling wavelength. This idea starts from the observation 

that a repetitive buckling pattern appears on a long plate in compression and then one of 

wrinkles grows to excessive deformation. Simply-supported condition is assumed on the 

loaded side of the patch while lateral side expansion and rotation on the lateral sides is 

assumed to be restrained as shown in Fig. 4.5(c). 

The width of the patch plate, b, can be either b=   or         for core plates of 

sandwich columns or face plates, respectively. On the other hand, the longitudinal 
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dimension of the patch plate, ‘a’ is determined from Eigen-buckling analysis minimizing 

in-plane force resultant, Nx. For example, that is defined to be a/b=0.78 for elastic plates 

with Poisson’s ratio of 0.3, and a/b=0.29 for elastic-plastic plates having a plastic 

modulus of Ep=534.2MPa. The derivation is presented in Appendix C in conjunction with 

the governing equations in Section 4.3.2. It is assumed that the patch plates are placed 

near the ends. When the imaginary patch plates are placed near the ends, they are 

subjected to compressive loading, either with greater magnitude or for longer duration, 

than when they are placed in the other locations along the column length.  

 

4.3.2 Governing Equations 

The equation of motion for plates under in-plane forces Nx and Ny is [81,82] 
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 (4.1) 

 
Figure 4.5: (a) Patch plates on a core plate of a corrugated core sandwich column: (b) Patch plates on a face 

plate of a corrugated core sandwich column; (c) Boundary conditions of the parch plates. 
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where Mx, Mxy, My are the bending moments per unit length (stress couples), Nx, Ny are 

in-plane stress resultants, ρ is density, and A is plate thickness. The above equation (4.1) 

is independent of material properties [82]. 

Consider an elastic plate under bi-axial in-plane forces, and Nx and Ny, with an 

initial curvature w0(x,y) in the out-of-plane direction. The kinematic assumptions in the 

Kirchhoff-Love hypothesis and the von Karman theory are applied as follows [82,83], 

(i) Straight lines normal to the undeformed mid-plane of the plate remain straight 

and normal to the mid-plane after a deformation (Kirchhoff-Love). 

(ii) The thickness of plate does not change during a deformation (Kirchhoff-Love). 

(iii) Moderately large rotations in strain measure are allowed (von Karman). 

The governing equation of elastic isotropic plates in the absence of shearing stress 

is derived as below [81]: 
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   (4.2) 

In Eqn. (4.2), w is out-of-plane deflection, D is the flexural rigidity, Nx and Ny are 

the in-plane stress resultants on the loaded side and constrained side, respectively. 

The governing equations used in inelastic plates are based on the work done by 

Bleich [84] and Becque [69], in which they focused on the quasi-static buckling strength 

of inelastic plates. Since the inelastic plate analysis has been argued up to the present, 

both Bleich’s approach and Becque’s are adopted and modified into dynamic versions. 

Unlike elastic plates, governing equations for inelastic plates have not been 

established on a strict theoretical basis [69, 84-86]. The source of the argument is that the 

plates subject to axial loading above the yield limit are no longer isotropic according to 
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the theory of plasticity. Bleich’s approach [84], called ‘a semi-rational theory’, has been 

known to be superior to others’ [84-86] in that the experimental results are the best-

correlated. Becque [69] attempted to discuss this issue on a more theoretical basis in his 

paper. The original forms of Bleich’s and Becque’s equation are given as below: 

 

 Bleich’s (Eqn. 4.3) and Becque’s (Eqn. 4.4) equations 
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where  
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In the above equations, E, Et, ν denotes Young’s modulus, tangent modulus under 

uniaxial loading and Poisson’s ratio, respectively. The parameter κ is defined as the ratio 

of principal plastic strain increments in uniaxial stress states, and determined from the 

following relationship: 

,2 ,1P P      (4.5) 
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If the von Mises stress yield criterion, f, is employed, Eqn. (4.5) can be transformed 

into Eqn. (4.6) and κ becomes  
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The dynamic versions of their quasi-static governing equations are derived as 

follows: As the first terms in Eqns. (4.3) and (4.4) correspond to the term (
    

    

 
     

    
 

    

   
) in Eqn. (4.1), the dynamic versions of the inelastic governing equations 

are obtained by modifying Eqns. (4.3) and (4.4). 
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  (4.8) 

Therefore, Eqn. (4.2) for elastic plates and Eqns. (4.7) and (4.8) for elastic-plastic 

plates will be used as the governing equations of imaginary patch plates. 

 

4.3.3 Galerkin Method and Estimation of In-plane forces 

The governing equations in the previous section are solved by employing the 

Galerkin technique. Considering the boundary conditions on the sides, the out-of-plane 

displacement field, w(x,y,t), initial curvatures, w0(x,y) and virtual displacement, δw(x,y) 

are given by: 

1 2
( , , ) ( ) ( ) ( ) ( ) sin 1 cos

2

x y
w x y t T t X x Y y T t

a b
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  (4.9a) 
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In Eqn.(4.9), T(t) is a modal amplitude, which represents the out-of-plane 

displacement at the midpoint of a patch plate, and   
    

 is the magnitude of an initial 

curvature. Applying Galerkin method to the elastic governing equation (4.2), 
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 (4.10) 

In Eqn. (4.10), the in-plane resultant       for the patch plate is estimated from 

the in-plane stress distribution of the long plate compressed at a constant velocity by 

applying the theory of elastic stress wave propagation. (See Section 3.3.1. to estimate 

     , just the superscript (perp) needs to be replaced by (para)). On the other hand, 

      is obtained from the relationship of        considering the constraint of lateral 

expansion. Substituting Eqns. (4.9a),(4.9b),(4.9c) into Eqn. (4.10), a second order 

ordinary differential equation can be obtained. The equation is solved until the conditions 

that the extensional rate of the mid plane of patch plate is greater than the compression 

rate are satisfied. 

ex
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a b a b
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Likewise, the two governing equations for inelastic plates, Eqns. (4.7) and (4.8) are 

rewritten as an integral form as seen in Eqns. (4.12) and (4.13). 
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As a result, the governing equations, Eqns (4.12) and (4.13) for inelastic plates, can 

be reduced to second order ODEs with respect to time by substituting the assumed 

displacement field of Eqn. (4.9) and applying the Galerkin method. In a similar manner to 

the elastic plate analysis,       is estimated from the theory of elastic-plastic wave 

propagation. (See Section 3.3.1. To estimate       here, just the superscript (perp) 

needs to be replaced by (para)). Here,       is obtained from the relationship of 

        considering the restriction of lateral expansion. The ODEs are solved until 

the load drop criterion is satisfied as described in Eqn. (4.11). Note that at the transition 

from elastic to elastic-plastic material state, the size of the patch plate, ‘a’, is redefined 

according to Appendix C. In addition, the value of T(t) at the end of elastic plate analysis 

(i.e., as soon as the plate material yields) is assumed to be used for the initial value of T(t) 

in the elastic-plastic plate analysis. 
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4.4 RESULTS AND DISCUSSION 

4.4.1 FE Validation for Plate buckling 

In order to check the validity of the proposed theoretical approach, Finite Element 

Analysis (FEA) of plates with a long dimension is performed. The parent material of the 

plates is thought to be either Al6061-T6 or SS304 to apply the theoretical model to a 

general metallic material for corrugated core sandwich columns. In particular, three kinds 

of features are validated through the FEA: a) the size of patch, and b) comparison of 

reaction force from model and simulation and c) the mid-point displacements of patch 

plates (i.e., modal amplitude). For construction of the FE models, material properties of 

the parent materials, Al6061-T6 and SS304, are modeled as elaborated in Chapters 2, and 

conventional shell elements with reduced integration (S4R) are meshed on the plates. 

Boundary conditions applied in the FE models are described in Fig. 4.6: All degrees of 

freedom are fixed at the back end, while all DOFs except for the translational DOF in the 

x-direction are fixed on the axially loaded side. On the lateral sides of plates, lateral 

expansion and rotations are constrained considering the constraining effect of 

neighboring materials in sandwich columns. To include geometric curvature 

imperfections, the first eigen-mode with a magnitude ξ
(LP)

 is superimposed to the FE 

model of perfectly flat geometry. The eigenshape with ξ
(LP)

 =1 as shown in Fig. 4.7 

reveals a repetitive buckling pattern, however, the amplitude of each wrinkle is different, 

but of the same order.  

For validation, FE simulations are performed on two Al6061-T6 plates and two 

SS304 plates with different thicknesses, respectively: the thinner plate fails in the elastic 
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region while the thicker one does in the plastic region. The plates are subjected to 

V=1m/s. 

 

1) Elastic plates ; Two cases are presented for validation of the elastic plate analytical 

model. One is an Al6061-T6 plate of W=22.0mm, L=300mm, and thickness 

A=0.457mm with an imperfection magnitude ξ
(LP)

=0.001 under V=1m/s. The other 

one is an SS304 plate of W=35.35mm, L=353mm, and A=0.25mm with ξ
(LP)

 =0.001 

under V=1m/s. Figs. 4.8(a) and 4.9(a) show the reaction force histories and out-of-

plane displacements at the midpoint of the patch plates (or the displacements of the 

failed wrinkles in the FEM) for the two elastic cases, respectively. The times-to-

failure in the two cases are predicted by the analytical model accurately. The out-of-

plane displacements at the mid-point of the failed wrinkles (modal amplitude from 

the analytical model) are in good agreement with the FE simulations.  

From Figs. 4.8(b)(c) and 4.9(b)(c), the sizes of the wrinkles leading to failure are 

measured from the FE simulations. The excessively deformed wrinkles are located in 

the middle of plates unlike the basic assumption about the locations of the patch 

plates in the analytical approach. This is to be expected as the initial curvature 

 
Figure 4.6: Boundary conditions of FEA of plates. 
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imperfections assigned in the FE simulations have repetitive wrinkles with the 

different amplitudes as shown in Fig. 4.7.  

The contours plots for the out-of-plane displacement field, shown in Figs. 4.8(b)(c) 

and 4.9(b)(c) demonstrate that x=a/b~0.7, which agrees well with the kinematic 

assumption of the predetermined patch size (x~0.78 and 0.77 for the Al6061-T6 (Eqn. 

(C6a)) and SS304 elastic plates (Eqn. (C7a)), respectively) as given in the analysis in 

Appendix C.   

 

  

 
Figure 4.7: The assigned eigenmode shape superposed for initial curvature imperfections. A repetitive 

buckling pattern is shown, however, the amplitude of each wrinkle is different, but of the same order. In 

dynamic analysis of plates, the mode shape with a magnitude ξ is added to the flat plates. 
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(a) 

 

Figure 4.8 : FE validation of the analytical model for the Al6061-T6 elastic plate (h:0.457mm, W: 

22.0mm, L:300mm, ξ=0.001, V=1m/s): (a) Reaction force and out-of-plane displacement at the 

midpoint of the patch plate (or failed wrinkle); (b)&(c) out-of-plane displacement at t=600 and 800μs, 

respectively. 
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.  
(a) 

 

Figure 4.9 : FE validation of the analytical model for the SS304 elastic plate (h:0.25mm, W: 35.35mm, 

L:353mm, ξ=0.001, V=1m/s): (a) Reaction force and out-of-plane displacement at the midpoint of the patch 

plate (or failed wrinkle); (b)&(c) out-of-plane displacement at t=300 and 400μs, respectively. 
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2) Inelastic plates; Two cases are presented for validation of the inelastic plate 

analytical model. One is composed of Al6061-T6 with W=22.0mm, L=300mm, and 

A=0.88mm with ξ
(LP)

=0.001 where the front end is displaced at V=1m/s. The other 

one is a SS304 plate with W=35.35mm, L=353mm, and A=1.25mm with 

ξ
(LP)

=0.001 with V=1m/s. Figs. 4.10(a) and 4.11(a) show the reaction force versus 

time histories and out-of-plane displacements at the midpoint of the patch plates (or 

the failed wrinkles in the FEM) for the two inelastic cases, respectively. 

 In Fig. 4.10, the analytical results employing Bleich’s and Becque’s governing 

equations for the Al6061-T6 plate predict more conservative results compared with 

the FEM results. Specifically, the duration in plastic deformation (1100<t<1450μs) 

calculated by the FE simulation is much longer than that obtained from the 

analytical models. In Fig. 4.10(b)(c), the out-of-plane displacement fields obtained 

from the FE simulation are plotted during plastic deformation, especially at t=1267 

μs and 1467μs. At t=1267 μs, the buckling wave length is as large as that of an 

elastic plate (x=a/b~0.7). However, at t=1467 μs, the critical buckle leading to the 

failure of the long plate has a much shorter wave length (x=a/b~0.3) than the one 

observed at t=1267 μs. That is, the initial assumption that the critical buckling wave 

lengths in elastic-plastic plates (the size of elastic-plastic patch plate) are smaller 

than those in elastic plates (the size of elastic patch plate) is qualitatively confirmed. 

But, as shown in the FE result at t=1267 μs, the buckling wavelength does not 

change suddenly at the transition from elastic to plastic. Rather, the switch toward 

the shorter wave length seems to be gradual. It can be concluded that the 

discrepancy between the analytical models and the FEM can be accounted for by the 
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gradual change in the patch size at the transition from elastic to plastic. As a result, 

the growth of the modal amplitude in the analytical models is much faster than the 

growth of out-of-plane displacement at the midpoint of the critical buckle in FEM. 

Therefore, earlier time-to-failure is predicted compared with the FEM. 

Likewise, the SS304 plate show similar phenomena and conservative results are 

predicted compared with the FEM, which is presumably due to the gradual change 

toward the preferred buckling wave (x~0.3) in the plastic plate, which is shorter 

than that of an elastic plate (x~0.7), as shown in Fig. 4.11.  
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(a) 

 

Figure 4.10 : FE validation of the analytic model for the Al6061 elastic-plastic plate (h:0.88, W: 22.0, 

L:300, ζ=0.001, V=1m/s): (a) Reaction force and out-of-plane displacement at the midpoint of the patch 

plate (or failed wrinkle); (b)(c) out-of-plane displacement at t=1267 and 1467μs, respectively. 
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(a) 

 

 
Figure 4.11 : FE validation of the analytic model for the SS304 elastic-plastic plate (h:1.25, W: 35.35, 

L:353, ζ=0.001, V=1m/s): (a) Reaction force and out-of-plane displacement at the midpoint of the patch 

plate (or failed wrinkle); (b)(c) out-of-plane displacement at t=3200 and 5067μs, respectively. 
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4.4.2 Discussion and Limitations 

As presented in the previous section 4.4.1, the proposed analytical model predicts 

the dynamic response of elastic plates at V=1m/s with good accuracy while the time-to-

load drop prediction by the elastic-plastic plate analytical model is premature.  

This section discusses the sources of discrepancy observed in (a) the elastic-plastic 

plate model and (b) postcritical behavior in elastic plates compressed at a velocity of 

V=0.1m/s lower than V=1m/s (The plate response at the lower velocity of V=0.1m/s is 

included additionally in this section).  

 

 A source of inaccuracy in the elastic-plastic plate model. 

A source leading to the inaccurate analytical predictions, especially in the elastic-

plastic plate analysis, is found in the definition of the size of elastic-plastic patch plates 

(or equivalently, buckling wave length). In the development of the analytical model, the 

size of patch plate is predefined depending on its material properties and plate width. 

Unlike the buckling wavelength in face wrinkling failure mode (the distance between 

nodes), the plate buckling wavelength has a continuous distribution in nature. 

In elastic plates having initial curvature imperfections, the out-of-plane 

displacements oscillate, while retaining their modal structures and amplify the original 

imperfection magnitudes [30]. Thus, a reasonable approximation is expected for the 

dynamic response of elastic plates if geometric curvature imperfections are defined as 

accurately as in the FE analyses mathematically.  

Inelastic plates are assumed to have a much smaller preferred buckling wavelength 

in the analytical model. As observed in the FE simulations, the size of the patch plate 
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(buckling wavelength) changes gradually over time rather than suddenly at their material 

state transition from elastic to plastic region. The gradual change in the buckling 

wavelength during plastic deformation is a source of the conservative predictions. 

 

 A discrepancy due to the postcritical behavior of elastic plates at a lower velocity of 

V=0.1m/s than V=1m/s. 

According to the theory of plates, elastic plate elements under quasi-static in-plane 

loading are generally known to have a capacity to support additional loads without a load 

drop beyond their critical strength because of their postcritical reserve [64, 82]. The 

postcritical reserve of plates [64] is known to result from the redistribution of the in-

plane force resultants, and characterized by a reduced stiffness in a load-displacement 

curve.  

However, the dynamic response of the elastic plates at V=1m/s presented in the 

previous section 4.4.1 does not show such phenomena. Instead, such features are 

discovered in elastic plates under a lower applied velocity, in this case when V=0.1m/s. 

The FE simulations and analytical predictions for V=0.1m/s will be presented 

additionally in this section. 

Consider two Al6061-T6 plates at V=0.1m/s of length L=300mm, W=22.0mm, and 

the plate thicknesses A=0.1mm and 0.457mm, respectively. Additional FEA and analytic 

predictions are performed for the low velocity cases and the results are shown in Fig. 

4.12. The FE results show a change in stiffness over time unlike the sudden load drop 

shown previous in Figs. 4.8 and 4.9. Although the proposed analytical model successfully 

predicts the linearly-increasing region, the postcritical behavior characterized by stiffness 
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reduction (t>1000 μs for A=0.1mm and t:6000~10500μs for A=0.457mm, respectively) 

cannot be described.  

 
(a) 

 

 
(b) 

 

Figure 4.12: Post critical responses of the Al6061-T6 elastic plates of two different plate thicknesses under 

V=0.1m/s calculated from FEM and the analytical model: (a) h=0.1mm; (b) h=0.457mm. 
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To sum up, the proposed model has two limitations regarding this observation: First, 

it is not capable of predicting the response for the stiffness-reduction region. Second, it is 

not able to predict whether such response, which is depending on the applied velocities, 

appears or not. Whether the region of stiffness reduction is included for a design or not 

depends on designers’ choice. Sometimes, it may become too conservative if the region is 

ignored [64]. 

 

4.5 CHAPTER SUMMARY 

An attempt to approximate the local plate buckling response of sandwich columns 

dynamically compressed parallel-to-corrugations was made through developing an 

analytical model for long plates. The analytical model is based on the assumption that the 

structural integrity of the sandwich columns is determined by the occurrence and growth 

of a buckle in imaginary patch plates along the length of the column in the face and the 

core.  

The analytical prediction for the elastic plate response at V=1m/s was well-

correlated with the FE calculations as presented in Section 4.4.1. The elastic plates at 

V=1m/s show sudden load drops when they reach critical state. However, at a lower 

velocity of V=0.1m/s (additionally presented in Section 4.4.2), the post critical response 

characterized by a reduced stiffness could not be captured, which is usually seen in plate 

buckling under quasi-static loading [64]. 

In the case of elastic-plastic plate buckling, two governing equations were 

employed. However, the elastic-plastic plate buckling response was not successfully 
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predicted. The discrepancy is thought to result from the inaccurate definition of elastic-

plastic buckling wavelength (the size of imaginary patch plate).  

As a cautious suggestion, if an imaginary patch plate which encompasses either a 

continuous distribution of buckling wavelengths or many discrete buckling wavelengths 

is defined, the inelastic results could be improved in the future. However, it may be more 

practical to use the model combined with FE simulations of individual plates by 

establishing its applicable range by FEM. (Local plate buckling failure is easily seen in 

the corrugated core sandwich columns employing thin plates at a relatively high velocity, 

as observed in Section 4.2.) 

Despite these drawbacks, the work throughout this chapter will be meaningful on 

the conditions that 

1) Manufacturing imperfections are well-defined,  

2) Deformation is within elastic range,  

3) Applied velocity is over 1m/s. 

4) Membrane force is not significant (i.e., the plate width-to-thickness ratio, b/A, 

is not large). 
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CHAPTER 5 

DYNAMIC FAILURE MECHANISM MAPS 

 

5.1 INTRODUCTION 

In the design of sandwich structures, failure mechanism maps are useful tools for 

identifying the operative collapse mode by providing a visual representation [28, 87]. For 

example, Biagi [27, 28, 103] constructed failure mechanism maps of corrugated core 

sandwich columns based on a quasi-static analysis, in which the effects of sandwich non-

dimensional parameters such as   ⁄ ,  ,   ⁄ ,   ⁄  are investigated. The boundaries on 

the failure maps are expected to change if the rate-of-compression is increased and so is 

the focus for this current study. 

In this chapter, dynamic effects on failure maps for corrugated core sandwich 

columns compressed perpendicular-to-corrugations will be investigated. To this end, two 

quasi-static failure mechanism maps of Al6061-T6 and SS304 corrugated core sandwich 

columns will be chosen for the dynamic investigation. The influences of rate-of-loading 

and geometric curvature imperfection are then analyzed for the selected failure maps. 

Dynamic response for individual failure modes will be obtained from the semi-analytical 

approaches for face wrinkling and global buckling developed from the previous chapters 

2 and 3. 
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5.2 QUASI-STATIC FAILURE MECHANISM MAPS 

In this section, two quasi-static failure maps are used as the starting point for the 

analysis of dynamic effects on the failure boundaries. Figs. 5.1 and 5.2 describe the 

quasi-static failure maps of Al6061-T6 and SS304 corrugated core sandwich columns and 

the specifications of core dimensions.  

Quasi-static failure maps of corrugated core sandwich columns, with axes of   ⁄  

 
Figure 5.1: Target core geometry of Al6061-T6 corrugated core sandwich columns and corresponding 

quasi-static failure map. 

 

 

 
Figure 5.2: Target core geometry of SS304 corrugated core sandwich columns and corresponding quasi-

static failure map. 
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and   ⁄ , have been presented by Biagi [27, 28, 103]. Failure maps can be constructed for 

different core geometric parameters,   ⁄ ,  and w. However, the dynamic investigation 

will be limited to the two quasi-static failure maps regarding the cores, which have been 

used for the experimental validation carried out by Biagi et al. [27, 28]. Consequently, 

the target core dimensions for the dynamic investigation are as follows. One is an 

Al6061-T6 corrugated core of corrugation thickness, t=3.175mm, corrugation length 

 =22.0mm, corrugation angle, w=60° having a relative core density of 25%, and the 

other is a SS304 corrugated core of t=1.5mm,  =25mm, w=45° having a relative core 

density of 12%. Material properties of the parent materials are used as presented in 

Section 2.5: Al6061-T6 has E=75150(MPa), σY=293.9(MPa) and    
    

  
 

          . And, SS304 has E=230769.2(MPa),   
               and   

   
 

    

  
             . The other hardening region for larger plastic strain (p>0.016) is 

not considered here.  

Metallic corrugated core sandwich columns loaded quasi-statically perpendicular-

to-corrugations fail by one of these failure modes: elastic global buckling (EGB), plastic 

global buckling (PGB), elastic face wrinkling (EFW), plastic face wrinkling (PFW), 

elastic shear buckling [27, 28, 103]. This is the case for SS304 corrugated core sandwich 

columns.  As columns manufactured from Al6061-T6 does not undergo much post yield 

hardening deformation under quasi-static loading [28], the number of failure modes in the 

failure map can be reduced to three (Fig. 5.1): elastic global buckling (EGB), elastic face 

wrinkling (EFW), face yield (FY).  

To create failure maps, the analytical predictions of the collapse strength for the 

individual failure modes are employed [27, 28, 103]. By evaluating minimum strength 
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among the possible failure modes, the dominant failure mode can be determined for a 

given geometry. Thus, sandwich columns corresponding to geometric points on the 

boundary are expected to fail by simultaneous activation of the adjacent failure modes. 

Refer to Biagi’s study [27, 28, 103] for more details on the analytical expressions. The 

equations associated with quasi-static loading are also presented in Chapter 6 (Equations 

6.1b-d and 6.3b-e) and as below. Note that the expressions are functions of both material 

properties and sandwich column geometric parameters.  

 

 Elastic global buckling load under quasi-static loading (Eqns. 6.1b and 6.3b) 
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 Elastic face wrinkling load under quasi-static loading (Eqns. 6.1c and 6.3c) 
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 Face yield load under quasi-static loading (Eqns. 6.1d) 
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 Elastic global buckling load under quasi-static loading (Eqn. 6.3d) 
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 Plastic global buckling load under quasi-static loading (Eqn. 6.3e)  
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Here    
   

,    
      

,    
      

 are given in Eqns. (3.4a), (2.14), (2.12a), respectively. D0,el 

is the flexural rigidity of the sandwich column faces about the column centroids, given by
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, D0,pl,  E/(1-ν

2
) should be replaced by plane-

strain tangent modulus,   
  from    

   
,    

      
, D0,el.    

      
 and    

      
 are given in 

Eqn. (2.14).; k and k1 are a buckling coefficient for global buckling and a face wrinkling 

buckling coefficient. Here, k=2 and k1=2 are employed. 

 

5.3 DYNAMIC EFFECTS ON FAILURE MECHANISM MAPS 

5.3.1 Movement of Elastic-Plastic Boundaries (Al6061-T6) 

Two boundaries of the Al6061-T6 corrugated core sandwich columns failure map 

are analyzed with respect to applied compression velocity using the semi-analytical 

formulations derived earlier..  

The movement of the boundary between global elastic buckling and face yield in 

the failure mechanism map of Al6061-T6 corrugated core sandwich columns is shown to 

depend on compressive velocities (Fig. 5.3). The boundaries for V=0.1, 0.5 and 0.7m/s 

are created by finding geometric points with the global buckling analytical model on a 

trial-and-error basis. Global curvature imperfections are assigned in the form of the first 

eigenmode with a magnitude of ξ=0.05c. The region of face yield tends to expand, 

highlighting sensitivity to compression velocity. The boundary for V=0.1m/s lies even 

under the quasi-static boundary. That is because the quasi-static boundary is created from 
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bifurcation analysis ignoring the effect of imperfections while the effect of global 

curvature imperfection is included in the analysis of the boundary movement for the case 

of V=0.1m/s.  

The boundary between elastic face wrinkling (EFW) and face yield (FY) in the 

failure map of Al6061-T6 corrugated core sandwich columns is analyzed in Fig. 5.4. The 

face wrinkling analytical model is employed to create the boundaries for compressive 

velocities V=1, 2m/s by finding corresponding points on a trial-and-error basis. The first 

eigenmode with a magnitude of   
   

       is assigned to the geometric curvature 

imperfections of face sheet ligaments. 

The region of face yield tends to expand toward the region of EFW as the 

compressive velocity increases; however, it is insensitive compared with the boundary 

between EGB and FY. That is, the boundary between EGB and FY moves substantially 

 

Figure 5.3: Dynamic effects on the boundary between elastic global buckling and face yield of Al6061-T6 

corrugated core sandwich columns. 
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under compressive velocities less than V=1m/s. On the other hand, FY would not expand 

even in V=2m/s. This observation can be accounted for by a non-dimensional time 

parameter,  ̅  (
    

    
)
  ⁄

. The parameter determines the rate of the growth of the 

fundamental mode in an elastic monolithic solid column subject to a constant load P [33] 
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 The ratio in Eqn (5.6) is much greater than one because of (
 

      
)
 

, which means 

 
Figure 5.4: Dynamic effects on the boundary between elastic face wrinkling and face yield of Al6061-T6 

corrugated core sandwich columns. 
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the growth rate of buckling motion in face wrinkling is much greater than in global 

buckling. From the parameter comparison, it can be deduced that the face wrinkling 

motion grows rapidly as soon as reaction forces reach a critical value whereas global 

buckling motion grows more slowly so that it allows a certain grace period until the load 

drops precipitously. It is for this reason that global buckling failure is more affected by 

inertial stabilization than face wrinkling failure. 

Even though the parameter,  ̅, has been introduced from a constant load problem of 

an elastic monolithic solid column assuming unimodal transverse displacement, it is 

instructive to compare the rates of growth of two competing failure modes to explain the 

phenomena shown here. 

 

 

5.3.2 Change of Failure Modes Due To Velocity (SS304) 

The change of failure mode between plastic global buckling (PGB) and plastic face 

wrinkling (PFW) of SS304 corrugated core sandwich columns is studied due to dynamic 

effects. It is hypothesized that local buckling motion (PFW) predominates global 

buckling motion as compression velocity increases. Thus, one geometric point in the 

SS304 failure map is probed to identify failure modes depending on applied velocity 

rather than creating failure map boundaries as a function of the compression velocity. 

Consider Point #1 shown in Fig. 5.5(a), which represents a sandwich column 

design whose dominant failure mode is PGB under quasi-static loading. Using the 

developed analytical models for face wrinkling and global buckling, the time to failure 

(i.e. loss of load carrying capacity) for each individual failure mode is evaluated for the 
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SS304 corrugated core sandwich column of Point #1 under compression velocities of 1-

6m/s. Global curvature imperfections in the form of the first eigenmode with a magnitude 

of ξ=0.05c are assigned for the global buckling motion of sandwich columns whereas the 

asymptotic approach for geometrically perfect faces is used for face wrinkling explained 

in Chapter 3. 

In Fig. 5.5(b), calculation results for the failure time of the SS304 corrugated core 

sandwich column of Point #1 obtained from the two analytical models are shown. In 

velocities less than 3m/s, the global buckling prediction to time-to-load drop is earlier 

than with the face wrinkling prediction. It is assumed that the sandwich column will fail 

by a failure mode with a predicted time-to-failure that is earlier than the other failure 

mode. Accordingly, the sandwich column of geometry corresponding to Point #1 fails by 

global buckling under a velocity less than 3m/s. On the other hand, face wrinkling 

dominates the sandwich column of Point #1 at a velocity higher than 3m/s.   

To confirm the change of failure modes due to the rate-of-compression, finite 

element analysis of the sandwich column of Point #1 geometry is carried out for the 

velocities of 1m/s and 5m/s. The FE failure profiles are in agreement with the above 

analysis as shown in Fig. 5.5(c). The local buckling failure from global buckling failure is 

expected as compression velocity increases.  
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(a) 

 
(b) 

 
(c) 

Figure 5.5: Dynamic effects on the change of failure modes from global buckling to local buckling: (a) 

Quasi-static failure map of SS304 corrugated core sandwich columns with t=1.5, l=25.0, w=45° ( ̅       
and a geometric point of PT#1; (b) Calculation of time-to-failure by individual failure modes of face 

wrinkling and global buckling against applied velocity ranging from V=1m/s to V=6m/s.; (c) FE profiles of 

the sandwich columns corresponding to PT#1 under applied velocities V=1 and 5m/s. 
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5.3.3 Effects of Imperfections 

In this subsection, the relationship between imperfections and compression rate on 

the failure map of Al6061-T6 corrugated core sandwich columns is investigated. The 

investigation focuses on the boundary between elastic global buckling and face yield 

which is the most sensitive to compression velocity. The effect of imperfection 

magnitude for V=0.1m/s is shown in Fig. 5.6(a). At this compression velocity V=0.1m/s, 

face yield region occupies a slightly larger region with smaller magnitude of 

imperfections (ξ=0.02c) than with larger magnitude of imperfections (ξ=0.1c). However, 

the difference is not significant. 

On the other hand, the boundary for a compression velocity of V=0.5m/s is much 

more sensitive to imperfection magnitudes as shown in Fig. 5.7(b). This observation is 

quite similar to the Type II response of Calladine’s studies [62, 88]. See Fig 5.7 for the 

definition of Type I and Type II structures. A compression structure whose dominant 

deformation is axial deformation (Type II structure) rather than bending deformation 

(Type I structure), is known to be sensitive to imperfections and velocity.  

  
(a)      (b) 

Figure 5.6: Effect of imperfections on a failure map boundary of Al6061-T6 corrugated core sandwich 

columns under the velocities of (a) V=0.1m/s, and (b) V=0.5m/s. 
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5.4 CHAPTER SUMMARY 

Dynamic effects on the two quasi-static failure maps of corrugated core sandwich 

columns compressed perpendicular-to-corrugations are analyzed as rate-of-compression 

increases. To obtain the dynamic response of individual failure modes, analytical models 

developed in Part I of this dissertation are employed. The analysis in this chapter is 

summarized below. 

(1) For increasing loading rates, columns designed to fail by global buckling are more 

robust than those designed to fail by face wrinkling due to inertia stabilization: 

Global buckling motion is more resistible compared with face wrinkling as rate-of-

compression increases due to inertial stabilization of global buckling motion. The 

         

       (a)         (b) 

 
(c) 

Figure 5.7: (a) Type I; (b) Type II; (c) Quasi-static load-deflection curve of Type I and Type II structures 

according to Calladine and English’s notation[62,88]. 
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boundary between EGB and FY in the Al6061-T6 corrugated core sandwich 

columns is shown to be sensitive to compressive velocity. 

(2)  With increased rate-of-compression, face wrinkling failure mode becomes 

dominant. 

(3)  The effects of imperfections of sandwich columns are more significant with 

increased rate-of-loading as has been found in simple compressive structures [62,88]. 
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CHAPTER 6  

DYNAMIC OPTIMIZATION 

 

6.1 INTRODUCTION 

The dynamic effects on minimum weight designs of corrugated core sandwich 

columns are considered. The majority of previous optimal design studies for periodic 

core sandwich structures concern quasi-static loading under which dynamic effects are 

neglected [28, 89-91]. However, it is obvious that the optimal designs based on quasi-

static analysis would not work well under an increased rate-of-loading, up to a few m/s in 

the low velocity region as specified previously.  

Two specific objectives are established in this chapter. The first one is to 

understand the influence of dynamic loading on the competing failure mechanisms. The 

second is to provide a methodology for optimal design of corrugated core sandwich 

columns in both in-plane loading directions considering dynamic effects under the 

circumstances that there is no explicit expression for dynamic response, and to 

investigate how the optimal design variables evolve as the loading rate increases.  

The organization of this chapter is as follows:  

In Section 6.2, quasi-static optimization problems regarding corrugated core 

sandwich columns made of Al6061-T6 and SS304 will be established and solved for two 

in-plane loading orientations: perpendicular-to-corrugations and parallel-to-

corrugations. The solutions to the quasi-static optimization problems will be taken as 

references for the following two sections. 
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In Section 6.3, how the quasi-static optimal designs and their core-height-varied 

designs of equivalent mass respond to dynamic loads will be investigated employing 

FEM and the analytical approaches developed in the previous chapters 2 and 3. Thus, the 

competing failure mechanisms under dynamic circumstances will be understood. 

In Section 6.4, an optimization procedure for minimum weight designs of Al6061-

T6 corrugated core sandwich columns under dynamic in-plane loading will be conducted 

using the analytical approaches, response surface methodology [92], and a sequential 

quadratic programming (SQP) optimization algorithm [93,94]. The fundamental 

difference between optimization based on quasi-static and that based on dynamic loading 

is that dynamic response cannot be expressed by an explicit function of design variables. 

This is due to the complex phenomena that occur as the loading rate increases. It is 

therefore necessary to approximate the dynamic response. To do this, response surface 

methodology (RSM) [92] is introduced in order to approximate the dynamic response in 

terms of design variables, and an optimization problem based on the approximated 

dynamic responses of sandwich columns is solved using the SQP algorithm supported by 

commercial optimization software, Altair/Hyperstudy v10.0 [95].  

Throughout this chapter, the length of columns will be prescribed as L=1m rather 

than introducing dimensionless parameters. 

 

6.2 QUASI-STATIC OPTIMAL DESIGNS 

The quasi-static optimization study will consider loading the corrugated core 

sandwich column in both the perpendicular-to-corrugations and parallel-to-corrugations.  

Two materials will be considered—Al6061-T6 and SS304.  The main differences 
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between this study and those carried out by Biagi et al [28] are three points; (a) 

performing a standard optimization procedure, (b) considering more design variables (i.e., 

corrugation angle, w, is included as a design variable), (c) using a simpler description of 

plastic region (by linear strain-hardening). 

The quasi-static optimal design problem is to solve for the minimum mass of a 

structure and material choice under a given load, while the possible active failure modes 

are suppressed. Accordingly, the optimization problems for the four types are established 

in Equations (6.1)-(6.4). In all sets of equations, an objective function, f, represents total 

mass, and a design constraint, gi, stands for a load which should be sustained by the 

corresponding i-th failure mechanism. Material systems and in-plane loading orientations 

are written in the superscripts of f and g. 

The optimal design problem formulations for the four types of problems are given 

in the sets of equations (6.1)-(6.4) which are based on Biagi’s quasi-static analysis on 

corrugated core sandwich columns [28].  

Al6061-T6 is treated as an elastic-perfectly plastic material unlike the material 

modeling in Chapters 2,3, and 4. The material modeling stems from the fact that an 

Al6061-T6 corrugated core sandwich column does not allow much post-yield 

deformation, especially in quasi-static compression [27,28]. As a result, there was no 

significant difference when Al6061-T6 was considered as an elastic-perfectly plastic 

material or as an elastic-strain hardening material according to Biagi’s study [28].  

Regarding the material modeling of SS304, the quasi-static optimal design problem 

in this study considers one strain hardening modulus (  
   

 
    

  
             ) for 

a small plastic strain region (0<p<0.0164). Therefore, the plastic response of SS304 can 
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be expressed as shown in Eqns. (6.3d), (6.3e), (6.4e), (6.4f), (6.4g). More detail regarding 

the quasi-static analysis can be found in Biagi’s study [27, 28, 103] The four types of 

optimal design problems given in Eqn. (6.1) through Eqn. (6.4) are solved using the 

optimization algorithm, Sequential Quadratic Programming (SQP), supported by a 

commercial optimization software program, Altair/Hyperstudy v10. SQP, a gradient-

based optimization algorithm, has excellent convergence performance and an advantage 

in that an initial design point even positioned in an infeasible design domain eventually 

converges to an optimal solution [93, 94]. Not only design variables, h,  , t but also 

corrugation angle, w, is included and found in the optimal design problems unlike Biagi’s 

optimization [28].  
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 Optimization problem of Al6061-T6 corrugated core sandwich columns quasi-

statically loaded perpendicular-to-corrugations. 
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where    
   

,    
      

,    
      

 are given in Eqns. (3.4a), (2.14), (2.12a), respectively. D0,el 

is the flexural rigidity of the sandwich column faces about the column centroids, given by
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. k and k1 are a buckling coefficient for global buckling and a face 

wrinkling buckling coefficient. Here, k=2 and k1=2 are employed. 
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 Optimization problem of Al6061-T6 corrugated core sandwich columns quasi-

statically loaded parallel-to-corrugations. 

To minimize 
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Elastic global buckling [28]: 
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Elastic local face plate buckling [28]:  
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where    
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 are given in Eqns. (3.4a), (2.18), (2.15), respectively. 

D0,el is the flexural rigidity of the sandwich column faces about the column centroids, 
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 is the cross-sectional material area for 

Al6061-T6 corrugated core sandwich columns manufactured by extrusion given by
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 [28]. And, k and K are a buckling coefficient 

for global buckling and a local plate buckling coefficient, respectively. Here, k=2, 

K=7 are employed.  
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 Optimization problem of SS304 corrugated core sandwich columns quasi-statically 

loaded perpendicular-to-corrugations. 

To minimize 
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Elastic face wrinkling [28]:  
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Plastic global buckling [28]:
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Here    
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 are given in Eqns. (3.4a), (2.14), (2.12a), respectively. 

D0,el is the flexural rigidity of the sandwich column faces about the column centroids, 
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 Optimization problem of SS304 corrugated core sandwich columns quasi-statically 

loaded parallel-to-corrugations 

To minimize 
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  (6.4a) [28] 

Elastic global buckling [28]:  
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Elastic local face plate buckling [28] :  
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Elastic local core plate buckling [28] :  
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Plastic global buckling [28]:  
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Plastic local face plate buckling [28]:  
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Plastic local core plate buckling [28]:  
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       (a)                (b) 

Figure 6.1: Weight comparison of corrugated core sandwich columns of L=1m under quasi-static loading: (a) 

Al6061-T6 corrugated core sandwich columns, and (b) SS304 corrugated core sandwich columns. 

where    
   

,    
      

,    
      

 are given in Eqns. (3.4a), (2.18), (2.15), respectively. D0,el 

is the flexural rigidity of the sandwich column faces about the column centroids, given by 
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by plane strain tangent modulus, tE  from    
   

,    
      

, D0,el.     
      

 is given in Eqn. 

(2.18) according to Becque’s derivation[12]. D0,pl is obtained from D0,el by replacing 

 

      
 by   

   A
(bent)

 is the cross-sectional material area for SS304 corrugated core 

sandwich columns manufactured by bending/brazaing given by
( ) 2

cos( )

bent t
A h


   

[28]. 

Fig. 6.1 shows the comparison of minimum weight designs of Al6061-T6 and 

SS304 corrugated core sandwich columns of L=1m depending on a given load. The 

results agree with Biagi’s optimization results in the following aspects. Perpendicular-to-

corrugations is more beneficial than parallel-to-corrugations at a low magnitude of load, 

and vice versa at a high magnitude of load.  
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The agreement can be explained as follows. In the low load region where 

perpendicular-to-corrugation is superior, the yield constraint,   
         

, as well as the 

constraints associated with elastic behavior,   
         

and   
         

, are simultaneously 

active in the perpendicular-to-corrugations orientation while only elastic constraints, 

  
         

through   
         

 are active in the low magnitude load range in the 

optimization problem for the parallel-to-corrugations. Generally, the best minimum 

weight design can be obtained from the simultaneous occurrence of all possible failure 

modes together with yielding according to naïve optimization [89]. Likewise, this 

explanation applies to SS304 columns as shown in Fig. 6.1b.  

In the higher load region where the parallel-to-corrugation is superior, the 

superiority can be accounted for by the difference of effective cross-sectional area 

capable of carrying an in-plane load between the two loading orientations. In the high-

load region where parallel-to-corrugations is superior, the columns of both of the in-

plane loading orientations are at the onset of yielding. The weight difference between 

optimal columns of two loading orientations can be interpreted as the sandwich core 

cross-section not involved in carrying an in-plane load in the in-plane loading orientation 

of perpendicular-to-corrugations. 

The optimal design variables of the four types of corrugated core sandwich 

columns of L=1m depending on a given in-plane load are shown in Fig. 6.2. It is 

noteworthy that optimal corrugation thickness, t, of optimal sandwich columns 

compressed perpendicular-to-corrugations is much smaller (<0.1mm for L=1m) than the 

others as shown in Fig. 6.2 (a) and (c). The extremely small thickness dimension, t, can 

be also confirmed in Biagi’s study if substituting a physical value, L=1m, into the non-
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dimensional parameters in his study [28]. Thus, it may not be prudent to conclude that 

corrugated core sandwich columns compressed perpendicular-to-corrugations are better 

than those compressed parallel-to-corrugations for sustaining a low magnitude of load. 

Note that the quasi-static optimization results in this section will be reference data 

for the following sections. 

 

  

   
      (a)         (b) 

   
      (c)       (d) 

Figure 6.2: The optimal design variables for quasi-static in-plane loading: (a) Al6061-T6 (perpendicular-to-

corrugations); (b) Al6061-T6 (parallel-to-corrugations); (c) SS304 (perpendicular-to-corrugations); (d) 

SS304 (parallel-to-corrugations). 
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Table 6.1. Core-height-varied designs of Design I 

Design No. h t l w M/ (ρbL) 

Case_Aperp_Base (Design I) 1.502 0.045 40.63 57.77 3.09 

Case_APerp11 1.5 0.05513245 50 60 3.11 

Case_APerp12 1.5 0.055148054 45 60 3.11 

Case_APerp13
*
 1.5 0.055167571 40 60 3.11 

Case_APerp14 1.5 0.055192684 35 60 3.11 

Case_APerp15 1.5 0.05522620 30 60 3.11 

Case_APerp16 1.5 0.055273201 25 60 3.11 

Case_APerp17 1.5 0.055343847 20 60 3.11 

Case_APerp18 1.5 0.055461991 15 60 3.11 

* Case_Aperp13 is the closest to Design I 

6.3 DYNAMIC RESPONSE OF QUASI-STATIC OPTIMAL SOLUTIONS AND 

THEIR MASS-EQUIVALENT DESIGNS 

 The quasi-static optimal solutions and their mass-equivalent designs are subjected 

to dynamic in-plane loading. Let one of the quasi-static optimal designs from each 

category be denoted by Design I, II, III, and IV. Design I and Design II are minimum 

weight designs of Al6061-T6 corrugated core sandwich columns of L=1m carrying an in-

plane compressive load of P=1000N/mm in the direction of perpendicular-to-

corrugations and parallel-to-corrugations, respectively. Likewise, Design III and Design 

IV correspond to the optimal SS304 corrugated core sandwich columns of L=1m 

subjected to a quasi-static in-plane load of P=500N/mm. The quasi-static designs (Design 

I, II, III, and IV) are ones of the quasi-static optimal solutions to be tested under dynamic 

loading. They, though somewhat arbitrarily selected, fail by the simultaneous occurrence 

of global buckling and local buckling under the quasi-static loads. 

First, consider Al6061-T6 corrugated core sandwich columns compressed 
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perpendicular-to-corrugations. Using Design I as the base design, eight samples with the 

core height varied yet retaining the same face sheet thickness, corrugation angle and 

weight and are listed in Table 6.1. The core-height varied design whose   is greater than 

that of Design I has a greater global static buckling strength but smaller local static 

buckling strength than Design I. On the contrary, the core height varied design whose   

is smaller than that of Design I has a smaller global static buckling strength but greater 

local static buckling strength.  

Using the analytical approaches for face wrinkling and global buckling, impulses of 

the eight listed sandwich column designs are calculated for a compression velocity of 

V=1m/s. In all cases, global curvature imperfections and face ligament curvature 

imperfections are assigned in the form of the first eigenmodes,       
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))  with magnitudes of  

   
       , 

 
   

      , respectively. The impulse is obtained from integrating the front end 

reaction force with respect to time until time to load-drop. For each design, two impulse 

calculations are carried out employing the face wrinkling and the global buckling 

analytical models. However, the smaller one between the two calculated impulses is 

physically meaningful because each design is expected to fail by the failure mode whose 

calculated impulse is smaller (i.e., either face wrinkling or global buckling). 

Fig. 6.3 shows the impulse calculations of the eight mass-equivalent core-height 

varied designs of L=1m at V=1m/s. The blue dash line in the figure represents the 

maximum impulse capacity under V=1m/s sustained by each sandwich design having 

core height         . The design number, Case_APerp13, the design closest to 
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Figure 6.3: Competing failure modes of Al6061-T6 sandwich columns compressed perpendicular-to-

corrugations. 

Design I, is expected to fail by face wrinkling because the impulse calculated from the 

face wrinkling analytical model is smaller than the one from the global buckling one. The 

core height-varied designs whose core heights are greater than the one of Design I are 

expected to fail by elastic face wrinkling (EFW).   

On the other hand, plastic face wrinkling failure dominates in the designs whose 

corrugation length,  , ranges from 20 to 40mm at V=1m/s. However, under quasi-static 

loading, the core height-varied designs in this range (20< <40) would fail by global 

buckling because their global static buckling strengths are smaller than that of Design I 

while their local static buckling strengths are larger than Design I.  

In the smaller range of   ( <20), Case_APerp17 and Case_APerp 18 are expected 

to fail by elastic global buckling.  

Therefore, it is concluded that a smaller core-height design than the quasi-static 

optimal solution (Design I in this example) is allowable to maximize the impulse capacity 
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under dynamic loading. In other words, Figure 6.3 implicitly shows that the dynamic 

optimal solutions are placed from the quasi-static solution to the direction of increasing 

local-buckling-strength and decreasing global buckling strength. (Remember that as   

decreases, the direction is toward increasing local buckling strength, at the same time, 

decreasing global buckling strength.) 

Next, consider Al6061-T6 corrugated core sandwich columns compressed parallel-

to-corrugations at V=1m/s. Five core-height-varied designs from Design II are listed in 

Table 6.2. Likewise in Design I and its mass-equivalent and core-height varied designs, 

they have the same mass, corrugation angle, w, and face sheet thickness, h. As the core 

height-varied designs listed in Table 6.2 have smaller corrugation lengths,  , than that of 

Design II, the core height-varied designs have smaller global static buckling strengths but 

larger local static buckling strengths than Design II. As a result, all the listed designs 

would fail by global buckling under quasi-static loading. 

Table 6.2. Core-height-varied designs of Design II. 

Design No. h t l w M/ (ρbL) 

Case_Apara_Base (Design II) 0.8303 0.7954 30.97 58.54 3.10 

Case_APara21 0.83 0.864163 10 60 3.11 

Case_ APara22 0.83 0.810262 15 60 3.11 

Case_ APara23 0.83 0.785756 20 60 3.11 

Case_ APara24 0.83 0.771752 25 60 3.11 

Case_ APara25
*
 0.83 0.76269 30 60 3.11 

* Case_Apara25 is the closest to Design II. 
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Figure 6.4: FE impulse capacity calculation of a sandwich column failed by local plate buckling. 

The designs are tested at V=1m/s. The impulse of global buckling at V=1m/s is 

obtained from the global buckling analytical model developed in Chapter 2. Global 

curvature imperfections are assigned in the same way as in Design I cases;       

 
   

 
(     (

   

 
))  with  

   
       ⁄ . The impulse calculation for local plate 

buckling has been done via FE simulations since the accuracy of the analytical approach 

for the failure mode (in Chapter 4) cannot be guaranteed. Therefore, two FE calculations 

per each design are performed for the plates simulating a core plate or a face plate. 

Imperfections in the form of the first eigenmode with a magnitude of one hundredth of 

their thickness (i.e.,   
    

=0.01h for face plates, and   
    

 0.01t for core plates) was 

included in the analysis. The FE impulse calculation procedure for local plate buckling is 

described in Fig. 6.4, and is used to estimate the impulse capacity of the sandwich design. 
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The dominant failure mode (core plate or face plate) is the one with the lower impulse at 

time-to-load drop, as described in Fig. 6.4 and Eqn. (6.5). 

( ) ( )

0 0

2 2

2 cos( )

f ft t

core face

front frontF dt F dt

I
l w

  


 

     (6.5) 

Fig. 6.5 describes the competition of failure mechanisms for columns compressed 

parallel-to-corrugations made from Al6061-T6. As the core height increases, the impulse 

calculated from the global buckling analytical approach increases while the one obtained 

from local plate buckling FEA decreases. The blue dash line represents the maximum 

impulse capacity of each sandwich design at V=1m/s. In addition, the line indicates the 

failure mode of each sandwich column design, based on smaller predicted impulse. As 

seen in the Fig. 6.5, the sandwich design having the maximum impulse capacity at 

V=1m/s is positioned between Case_Apara22 and Case_Apara23, and the quasi-static 

optimal solution (Design II) fails by local plate buckling if employed under dynamic 

 

Figure 6.5: Competing failure modes of Al6061-T6 sandwich columns compressed parallel-to-

corrugations under V=1m/s. 
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loading. However, note that all the listed core-height varied designs in Table 6.2 would 

fail by global buckling under quasi-static loading. 

 Next, consider SS304 corrugated core sandwich columns compressed 

perpendicular-to-corrugations at two velocities, V=0.5m/s and 1m/s. In order to 

investigate how the competing failure mechanisms evolve, the analysis has been carried 

out for these two velocities.  

Table 6.3 shows eight different core height designs, varied around Design III. The 

core-height varied design whose   is greater than that of Design III has a greater global 

static buckling strength but smaller local static buckling strength than Design III. On the 

contrary, the core height varied design whose   is smaller than that of Design III has a 

smaller global static buckling strength but greater local static buckling strength.  

As in the analysis of Design I (Al6061-T6 sandwich columns in the perpendicular-

to-corrugations direction) and its mass-equivalent core-height-varied designs, the face 

wrinkling and global buckling analytical models are employed for impulse calculations 

Table 6.3. Core-height-varied designs of Design III. 

Design No, h t l w M/ (ρbL) 

Case_Sperp_Base (Design III) 0.7965 0.063 32.75 51.18 1.60 

Case_SPerp31 0.8 0.0063 40 52 1.61 

Case_SPerp32 0.8 0.0063 35 52 1.61 

Case_SPerp33
*
 0.8 0.0063 30 52 1.61 

Case_SPerp34 0.8 0.0063 25 52 1.61 

Case_SPerp35 0.8 0.0063 20 52 1.61 

Case_SPerp36 0.8 0.0063 15 52 1.61 

Case_SPerp37 0.8 0.0063 10 52 1.61 

Case_SPerp38 0.8 0.0063 5 52 1.61 

* Case_Sperp33 is the closest to Design III. 
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under dynamic loading. In addition, the assigned imperfections are       
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))  with magnitudes of  

   
       , 

 
   

      , for global curvature imperfections and face ligament curvature 

imperfections, respectively. 

The results of the impulse calculations at the two velocities, V=0.5m/s and 1m/s are 

shown in Fig 6.6. At V=0.5m/s, the global buckling line and the face wrinkling line 

intersects around  =8mm as shown in Fig. 6.6(a). However, face wrinkling failure 

dominates at V=1m/s over all the considered designs at V=1m/s. In effect, the global 

buckling line moves from the right of x-axis to the left as V increases due to the inertial 

stabilization of global buckling motion.  Face wrinkling dominates the failure of the 

columns as the applied velocity increases. 
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     (a) 

 
(b) 

 

Figure 6.6: Competing failure modes of SS304 sandwich columns compressed perpendicular-to-

corrugations under (a) V=0.5m/s and (b) V=1m/s. 
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Table 6.4. Core-height-varied designs of Design IV. 

Design No. h t l w M/ (ρbL) 

Case_Spara_Base (Design IV) 0.6 0.35 23.79 32.29 1.59 

Case_SPara41 0.6 0.35 10 30 1.61 

Case_SPara42 0.6 0.35 15 30 1.61 

Case_SPara43
*
 0.6 0.35 20 30 1.61 

Case_SPara44 0.6 0.35 25 30 1.61 

Case_SPara45 0.6 0.35 30 30 1.61 

* Case_Spara43 is the closest to Design IV. 

Similarly, the maximum dynamic performance is also achieved by decreasing the 

core height of Design IV, which is the quasi-static optimal solution of SS304 corrugated 

core sandwich columns compressed parallel-to-corrugations as seen in Fig. 6.7. As in the 

other analyses, the design closest to the quasi-static optimal design, Case_Spara43 

specified in Table 6.4, fails by local buckling at V=1m/s. By decreasing the core height 

(i.e., the enhancement of local plate buckling strength), sandwich columns in the 

direction of parallel-to-corrugations are caused to fail by simultaneous activation of the 

 
Figure 6.7: Competing failure modes of SS304 sandwich columns compressed parallel-to-corrugations 

under V=1m/s. 
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two failure modes. 

In summary, the quasi-static optimal designs were tested under dynamic conditions. 

The increase in loading rate can cause a transition in failure mechanism. The structural 

columns to support dynamic in-plane loading should be designed such that local buckling 

strength is reinforced in order to sustain maximum impulse with minimized weight. This 

suggestion will be confirmed by the other methodology described in Section 6.4. 

 

6.4 DYNAMIC OPTIMIZATION FOR AL6061-T6 SANDWICH COLUMNS 

In this section, the optimal designs for Al6061-T6 corrugated core sandwich 

columns of L=1m subject to dynamic compressive loads are studied. In particular, the 

investigation will focus on how minimum weight design change under increased rate-of-

compression from quasi-static loading to V=0.1 and 1.0m/s. 

As previously mentioned, the dynamic response of sandwich columns is difficult to 

express with an explicit function of sandwich design variables. In this regard, the 

response of interest must be limited and approximated with other alternative functions 

such as polynomials of independent variables. The approximation procedure is referred to 

as Response Surface Methodology (RSM) [92]. The basic concept of the RSM is that an 

approximated response,   ̃  ⃗ , called the response surface, is employed for an 

optimization procedure rather than using a complex and unknown response,     ⃗  as a 

function of design vector  ⃗⃗ (a set of design variables). The relationship between   ̃  ⃗  

and     ⃗  are described as 

   i i ig x g x        (6.6) 
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In Eqn. (6.6),  i is the residual error, which is difference between the exact 

response,     ⃗ , and the approximated response,  ̃   ⃗ , and typically analyzed by 

means of statistics.  

The success of this kind of optimization is determined by the accuracy of response 

approximation rather than the performance of optimization algorithms so that the 

interested impulse range
1

 is limited to 0.5<I<4.0(N/mm.s) for V=1m/s, and 

5<I<40(N/mm.s) for 0.1m/s. Moreover, geometric constraints of the design variables are 

also assigned as follows: 0.5<h<3.0mm, 0.5<t<2.0mm, 0<   <100mm, 30<w<60° for 

perpendicular-to-corrugations, and 0.5<h, t<2.0mm, 0<    <100mm, h=t, w=60° for 

parallel-to-corrugations. 

The analytical approaches developed in Chapters 2 and 3 are used for obtaining the 

dynamic response of individual failure modes except for the local plate buckling 

prediction of sandwich columns compressed parallel-to-corrugations. Instead, finite 

element analysis will be performed for this scenario as applied in Section 6.3. The first 

eigen-modes as geometric curvature imperfections for individual failure modes are 

assigned with a magnitude of          ⁄  for global buckling,  
   

        for face 

wrinkling, or  
    

                for local plate buckling, respectively. Commercial 

optimization software, Altair/Hyperstudy v10.0 [95], is employed for the optimization 

procedure in this section, which performs both the response surface methodology [92] 

and the optimization algorithm, SQP [93-94]. 

 

                                                 

1 It is impulse per unit plate width because reaction force is force per unit width. 
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6.4.1 Response Surface Methodology 

The complex dynamic response of Al6061-T6 corrugated core sandwich columns 

compressed perpendicular-to-corrugations and parallel-to-corrugations is given 

explicitly in terms of sandwich design variables through the RSM for compression 

velocities V=0.1 and 1.0 m/s. As a result, polynomial functions which will be only valid 

in a limited design domain, will be representatives of the dynamic response. To 

differentiate the approximation with explicit functions (polynomial representation) from 

obtaining approximated responses by analytical approaches, the former will be called as 

‘response approximation.’
1
 

Consider a global buckling response approximation of corrugated core sandwich 

columns compressed perpendicular-to-corrugations under V=1m/s. In Table D1 of 

Appendix D, a full factorial experimental design for the response approximation is given, 

in which specimens with four face sheet thicknesses (h=0.5, 1, 2, 3mm), three corrugation 

thicknesses (t=0.5, 1, 2), ten corrugation lengths,  , and three corrugation angles (w=30, 

45, 60) are tested, resulting in 360 numerical experiments. 

For each numerical experiment, front end reaction force histories are calculated 

using the global buckling analytical approach. Subsequently, impulse is calculated by 

integrating the obtained reaction force history till time-to-load drop. 

0

ft

fr frI F dt      (6.7) 

                                                 

1
 Response approximation (a meta model); some called this kind of approximation as a meta model 

(‘response approximation of approximated response’) if the test results are obtained from numerical 

simulations such as FEM, analytical models etc. 
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 It should be noted that since the accuracy of the response approximation is critical, 

experiments whose responses are beyond the impulse range of interest are discarded for 

the response approximation. In addition, the response approximation is divided into 

elastic and plastic because the functions show an obvious distinction between the two. 

The method of least squares is used for parameter estimation. 

The approximated polynomial functions of design variables for maximum impulse 

capacity are summarized in Equations (6.8), (6.9) for V=1m/s, and (6.12), (6.13) for 

 
                             (a)                                                (b) 

Figure 6.8: EGB (perpendicular-to-corrugations): (a) Residual plot and (b) Response surface for elastic global 

buckling response under V=1m/s (t=1.0mm). 

 

 
(a)                                                      (b) 

Figure 6.9: PGB (perpendicular-to-corrugations): (a) Residual plot and (b) Response surface for plastic global 

buckling response under V=1m/s (t=1.0mm). 



163 

V=0.1m/s. The resulting statistics are summarized in Table 6.5. A statistic, R
2
, is shown 

to be greater than 0.9, which indicates high correlation between the approximated 

polynomials and the numerical experimental data. The residual plot and resulting 

response surface for the elastic and plastic global buckling motions under V=1m/s are 

shown in Fig.6.8 and Fig. 6.9, respectively. In the residual plots of Fig 6.8(a) and 

Fig.6.9(a), the vertical axis means the predicted impulse from the curve-fitted 

polynomials while the horizontal axis stands for the tested results (i.e., impulse 

calculations by analytical models). If the data points are placed near the line in each plot, 

the response approximation by polynomial can be said to be satisfactory. 

A full factorial experimental design for impulse response approximation for face 

wrinkling failure mode of Al6061-T6 sandwich columns is given in Table D2 of 

Appendix D. The experimental design consists of a combination of four levels of h (0.5, 1, 

2, 3), three levels of t (0.5, 1, 2), seven levels of   and three levels of w (30, 45, 60). For 

the entire 252 experiments, impulse at the front end is calculated with the face-wrinkling 

analytical approach developed in Chapter 3. The resulting response approximations are 

given in Equations (6.10) and (6.11) for V=1m/s, and Equations (6.14) and (6.15) for 

V=0.1m/s. In addition, corresponding statistics are summarized in Table 6.5. Residual 

graphs and the face wrinkling response surfaces for V=1m/s are illustrated in Figures 

6.10 and 6.11. 

 

 Elastic global buckling under V=1.0m/s (Perpendicular-to-corrugations) 

 

 

( )

1

22 2

, , ,  0.1709586+ (-0.0675246)h+  ( 0.0309833)t + (-0.0399853)  sin w

                                 +(0.0841007)h (-0.0571254)t ( 0.0017178) sin

                                 +( 

Al perpg h t l w

w

 

 

   0.0563303) h t+ (0.1035862) h sin (0.0296650)t sinw w       (6.8) 
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 Plastic global buckling under V=1.0m/s (Perpendicular-to-corrugations) 

 

 

( )

2

22 2

, , , -0.4228689+ (1.5168608)h+  (0.1552485)t + (0.0286442)  sin w

                             +(-0.0062855)h (-0.0488618)t (-4.53e-04) sin

                             +( 0.0271148)

Al perpg h t l w

w

 

  

    h t+ (0.0136655) h sin ( 0.0038931)t sinw w         (6.9) 

 

 Elastic face wrinkling under V=1.0m/s (Perpendicular-to-corrugations) 

     
   (a)         (b) 

Figure 6.10: EFW (perpendicular-to-corrugations): (a) Residual plot, and (b) Response surface for elastic face 

wrinkling response under V=1m/s (t=1.0mm). 

 

      
(a)       (b) 

Figure 6.11: PFW(perpendicular-to-corrugations): (a) Residual plot and (b) Response surface for plastic face 

wrinkling response under V=1m/s (t=1.0mm). 
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   

 

( )

3

22 2

, , , -0.2046283+ (1.3154471)h+  (0.0515360)t + (-0.0119863) 2 cos

                             +(0.3173782)h (-0.0236445)t (1.20e-04 ) 2 cos

                             +(0.0408362) h

Al perpg h t l w w

w

 

 

   t (-0.0141695)h 2 cos (-6.66e-04)t 2 cosw w       (6.10) 

 

 Plastic face wrinkling under V=1.0m/s (Perpendicular-to-corrugations) 

   

 

( )

4

22 2

, , ,  0.1144946+ (1.3885025)h+  (-0.2282694)t + (-0.0077415) 2  cos w

                            (-0.0074789)h (0.0993416)t (-5.59e-05) 2  cos w

                             +(-0.010

Al perpg h t l w 

    

       7762)h t+(0.0046224) h 2  cos w +(3.60e-04) t 2  cos w     (6.11)

 

 Elastic global buckling under V=0.1m/s (Perpendicular-to-corrugations) 

 

 

( )

5

22 2

, , ,  15.657571+ (6.6978276)h+  (-8.4888258)t + (-3.2840058)  sin w

                            +(-4.1062569)h (2.9008331)t (0.2308017) sin +(3.1547413) h t

                           

Al perpg h t l w

w

 

  

     
33

2 2

 + (-1.1633736) h sin ( 0.2967039)t sin (0.4433579)h (-0.0055382) sin

                            + (-0.4729058)h t+ (-0.3660887)h t

w w w    

 

   (6.12) 

 Plastic global buckling under V=0.1m/s (Perpendicular-to-corrugations) 

 ( )

6 , , , -0.0521955+ (14.483407)hAl perpg h t l w 
   

 (6.13) 

 Elastic face wrinkling under V=0.1m/s (Perpendicular-to-corrugations) 

   

 

( )

7

22 2

, , , -4.3407479+ ( 37.705770)h+  (0.6911561)t + (-0.7046823) 2 cos

                             +(-6.6876168)h (0.2503075)t (-0.0015621) 2 cos

                             +(-6.1952847

Al perpg h t l w w

w

 

 

   ) h t ( 0.2157633)h 2 cos (0.1276817)t 2 cosw w        (6.14)

 

 Plastic face wrinkling under V=0.1m/s (Perpendicular-to-corrugations) 

 ( )

8 , , ,  -0.0150867+ (13.691845)hAl perpg h t l w 
  (6.15) 

 

Regarding Al6061-T6 corrugated core sandwich columns compressed parallel-to-

corrugations, two design variables, h,  , are considered with constraints to reduce the 

number of experiments: ω =60° , t=h. For global buckling motion, seven levels of h (0.5, 
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0.75, 1, 1.25, 1.5, 1.75, 2), and ten levels of   construct a full factorial design consisting 

of 70 experiments for V=0.1, and 1m/s as given in Table D3 of Appendix D. 

In the case of local plate buckling, a full factorial design of 21 numerical 

experiments for each velocity V=0.1 and 1m/s is constructed as shown in Appendix D4. 

The experimental design consists of seven levels of h and three levels of  . 

Impulses are obtained using the global buckling analytical approach, and FEM as 

detailed in Section 6.3. Similarly to the perpendicular-to-corrugations, the data which is 

impulse within the interested range, is collected and approximated with polynomials of 

design variables. The resulting approximated equations and statistics are summarized in 

Equations (6.16)-(6.21) and in Table 6.5. 

 

 Elastic global buckling under V=1.0m/s (Parallel-to-corrugations) 

 ( )

1

2 2

,   0.1956026+ (-0.0997822)h+  (-0.0314052)  

                          +( 0.0695462)h (0.0011726) + (0.1352505) h

Al parag h l 

 

       (6.16) 

 Plastic global buckling under V=1.0m/s (Parallel-to-corrugations) 

 ( )

2 ,  -0.5758818+ (3.3465553)h+( 0.0172231)Al parag h l 
   (6.17) 

 Local plate buckling under V=1.0m/s (Parallel-to-corrugations) 

 ( )

3

2 2 2

,  -14.390687+ (26.957723)h+(0.7920770)  

                       +(2.5501371)h (-0.0100981) + (-1.4786034) h (0.0189604)h

Al parag h l 

     (6.18)

 

 Elastic global buckling under V=0.1m/s (Parallel-to-corrugations) 

 ( )

4

2 2

, 1.9486206+ (-35.140836)h+ (0.1078835)

                         +( 7.0930762)h (  0.0041762) + ( 1.6196441) h

Al parag h l 

 

  (6.19) 

 Plastic global buckling under V=0.1m/s (Parallel-to-corrugations) 

 ( )

5 , -0.1579522+ (24.441435)h+( 0.0300818)Al parag h l     (6.20) 
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 Local core plate buckling under V=0.1m/s (Parallel-to-corrugations) 

 ( ) 2 2

6

2 2

, -109.28181+ (94.619872)h + ( 9.7964445)   +(195.60548)h (-0.1763206)

                        + (-14.434154) h (-4.5730210) h (0.3048533) h

Al parag h l  

    

(6.21) 

 

6.4.2 Optimization of Al6061-T6 Sandwich Columns under Dynamic In-

plane Loading 

Based on the approximated dynamic response, minimum weight designs of Al6061-

T6 corrugated core sandwich columns for sustaining a given impulse are obtained by 

employing the SQP. Impulse of interest is predefined as 0.5<I<4(N/mm.sec) for V=1m/s, 

and 5<I<40(N/mm.sec) for V=0.1m/s as mentioned previously. Geometric constraints are 

assigned additionally as follows: 0.5<h<3(mm), 0.5<t<2(mm),  <100(mm), and 

30°<w<60° for perpendicular-to-corrugations and 0.5<h<2(mm),  <100(mm), t=h, 

w=60° for parallel-to-corrugations. Consequently, the optimization problems can be 

Table 6.5. Summary of statistics for the response surfaces. 

In-plane 

loading 

orientation 

V 

(m/s) 

Failure 

mode 
Design Parameters 

Order of 

Polynomial 
R

2
 

# of 

experiments 

used for 

RSM 

Perpendicular-

to-

corrugations 

1.0 

EGB h, t,   sin(w) 2 0.9953199 135 

PGB h, t,   sin(w) 2 0.9970090 224 

EFW h, t,     cos(w) 2 0.8846610 113 

PFW h, t,    cos(w) 2 0.9817564 112 

0.1 

EGB h, t,   sin(w) 3 0.9689700 146 

PGB h, t,   sin(w) 1 0.9978398 113 

EFW h, t,    cos(w) 2 0.8673762 72 

PFW h, t,    cos(w) 1 0.9997984 99 

Parallel-to-

corrugations 

1.0 

EGB h,   2 0.9959884 32 

PGB h,   1 0.9947609 20 

LPB h,   3 0.9652911 12 

0.1 

EGB h,   2 0.9736527 20 

PGB h,   1 0.9994376 21 

LPB h,   3 0.9865088 12 
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formulated in Equations (6.22) and (6.23) for the in-plane loading orientations of 

perpendicular-to-corrugation and parallel-to-corrugations, respectively. 

 

 

 Optimization problem of Al6061-T6 corrugated core sandwich columns dynamically 

loaded perpendicular-to-corrugations 

To minimize 

 
 

( ) ( , , , ) 2
2

2cos
sin

Al perp t
f h l t w bL h

t
w

l w



 
 
  
 
 
 

   (6.22a) 

Subject to 

 ( ) , , ,Al perp

i giveng h t l I  ,    i=m,…n     (6.22b) 

0.5<h<3 (mm)        (6.22c) 

0.5<t<2 (mm)        (6.22d) 

0<l<100 (mm)        (6.22e) 

30<w<60 (°)        (6.22f) 

where (m, n)=(1, 4) for V=1m/s, (m, n)=(5, 8)  for V=0.1m/s 

 

 Optimization problem of Al6061-T6 corrugated core sandwich columns dynamically 

loaded parallel-to-corrugations 

To minimize 

 

    (6.23a) 

Subject to 

 
 

( ) ( , , , ) 2
2

2cos
sin

Al perp t
f h l t w bL h

t
w

l w



 
 
  
 
 
 
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 ( ) , ,Al para

i giveng h t l I   ,    i=m,…n     (6.23b) 

0.5<h<3 (mm)        (6.23c) 

t=h         (6.23d) 

0<l<100 (mm)        (6.23e) 

w=60 (°)        (6.23f) 

where (m, n)=(1, 3) for V=1m/s, (m, n)=(4, 6) for V=0.1m/s 

 

In these equations, f represents mass, and  ̃ means the approximated impulse 

capacity of a sandwich column as a design constraint in the optimization problem. The 

four types of the optimization problems (two in-plane loading orientations and two 

compressive velocities) are solved via a commercial optimization software program, 

Altair/Hyperstudy v10.0 [95] employing the SQP algorithm [92-94].  

The optimization results are plotted together with monolithic solid columns having 

the same global curvature definition in Fig. 6.12. Monolithic solid column response is 

also calculated using the analytical approach presented in Chapter 2.  

As shown in Fig. 6.12, Al6061-T6 corrugated core sandwich columns under both 

in-plane loading orientations are superior to monolithic solid columns in that they sustain 

a given impulse with less weight (     ⁄  than monolithic solid columns for the two 

velocities, V=0.1 and 1m/s. However, beneficial sandwich effects are more remarkable 

for the lower compressive velocity V=0.1m/s than for V=1m/s. That is because 

monolithic solid column structures are also influenced by inertial stabilization as 

compressive velocity increases (V=1m/s). 

The reason that sandwich columns loaded parallel-to-corrugations are always 
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Figure 6.13: Variation of optimal core height for face sheet thickness h of optimal design for Al6061T6 

sandwich columns compressed perpendicular-to-corrugations.  

superior to perpendicular-to-corrugations unlike the quasi-static optimization results in 

Section 6.2 is because of the additional constraint definition in this dynamic optimization 

problem, tmin=0.5. That is, the dimension of t may not be practical if there is no minimum 

constraint as in the quasi-static optimization problem in Section 6.2.  

 Fig. 6.13 shows the optimal cross-sectional shape of sandwich columns 

compressed perpendicular-to-corrugations depending on the compressive velocities. 

   
                       (a)                                                  (b) 

Figure 6.12: Comparisons of minimum weight designs of Al6061 corrugated core sandwich columns under 

(a) V=1m/s and (b) V=0.1m/s. 
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Optimal core height,         , for the same face sheet thickness tends to decrease as 

rate-of-loading increases. This result explains that the global buckling motion is 

influenced favorably by inertial stabilization more than the face wrinkling failure mode. 

This phenomenon is consistent with the observations in both Chapter 5 and Section 6.3. 

(Remember that maximized impulse capacity is found in sandwich columns whose core 

height is less than quasi-static optimal solution in the analysis of core-height varied 

design in Section 6.3) 

Fig. 6.14 shows the evolution of optimal design variables in Al6061-T6 corrugated 

core sandwich columns compressed parallel-to-corrugations depending on rate-of-

loading. As the rate-of-loading increases, the optimal ratios associated with local plate 

buckling strength,   ⁄  and   ⁄ , increase for the same effective cross sectional area
1
, 

 2eff

M
A h c

bL



   , to achieve a given structural performance (i.e. sustaining a given 

                                                 

1
 aerial mass if expressed differently 

     

      

Figure 6.14: Local buckling strength, h/l and t/l for the same aerial mass of Al6061T6 sandwich columns 

compressed parallel-to-corrugations under quasi-static loading, V=1m/s and V=0.1m/s.  
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impulse in this study): face sheet thickness-to-corrugation length ratio (   ⁄ ) and 

corrugation thickness to corrugation length ratio (   ⁄ ). This phenomenon is also 

consistent with the observations in Section 6.3. (Remember that maximized impulse 

capacity is found in sandwich columns whose core height is less than quasi-static optimal 

solution in the analysis of core-height varied design in Section 6.3) 

 

6.5 CHAPTER SUMMARY 

It is shown that optimal designs of corrugated core sandwich columns under quasi-

static loading and under dynamic loading are different. Although the optimization 

procedure in this chapter focuses on the specific range of impulse and assumed 

imperfections, the study in this chapter is informative in that: 

(1) Global buckling motion is influenced more by beneficial inertial stabilization 

than the face wrinkling motion. 

(2) As compression velocity is increased, minimum weight designs of corrugated 

core sandwich columns should reinforce local buckling strength in order to 

sustain a given impulse. 

(3) Sandwich columns are superior to monolithic solid columns under dynamic 

loading; however, sandwich effects are more remarkable at lower applied 

velocities. 

(4) A methodology for corrugated core sandwich columns is provided in the case 

where there is no explicit expression for dynamic response with design variables. 
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CHAPTER 7  

CHARACTERIZATION OF HIGH VELOCITY RESPONSE 

 

7.1 INTRODUCTION 

In this chapter, the dynamic response of corrugated core sandwich columns under 

high velocities is investigated through FEM, and characterized analytically.  

When one end of a column is compressed at a compression velocity in the high 

velocity range,      
      ⁄  (Here,    

  can be either    
      

,    
      

 or    
   

), the 

response is determined during the time period for a one-way trip of the plastic stress 

wave. This differs from the low velocity response discussed in previous chapters (Chap. 

2~6), where many (at least a few) wave reflections have occurred until the column fails. 

Therefore, the high velocity sandwich column response can be parameterized in terms of 

sandwich geometric dimensions and loading intensity by applying the theory of rate-

independent elastic-plastic wave propagation using an analogy between monolithic solid 

columns and sandwich columns. The range of applied compression velocity is considered 

up to 100m/s, which front faces of typical sandwich panels attain during an underwater 

blast [3,25].  

The chapter is organized as follows: In Section 7.2, details of the FE model are 

described. In Section 7.3, the high velocity response for corrugated core sandwich 

columns compressed perpendicular-to-corrugations is investigated. Specifically, the 

effects of applied velocity and sandwich column geometric dimensions on reaction force 

are noted. The investigation is mainly focused on the sandwich columns made of a rate-
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independent material, Al6061-T6, whose material strain-rate dependence can be 

neglected. However, the effect of material strain-rate dependence on the dynamic 

response is analyzed through FE simulations on SS304 corrugated core sandwich 

columns with and without consideration of the strain rate sensitivity of the parent 

material. In Section 7.4, the dynamic in-plane response in the parallel-to-corrugations 

direction is investigated. 

 

7.2 FEA 

Finite element simulations are performed based on material and loading direction: 

1a) Al6061-T6 sandwich columns manufactured by extrusion/friction weld, 1b) SS304 

sandwich columns manufactured by bending/brazing, 2a) perpendicular-to-corrugations, 

and 2b) parallel-to-corrugations.  

A commercial FE package, ABAQUS/Explicit, is employed for the FE simulations. 

In-plane compression velocities in the range of 20~100m/s are imposed at one end of 

sandwich columns such that  (   
    

  )   ⁄ . If the structural integrity of a column is 

damaged, or characteristic structural response is observed, calculations are interrupted 

and terminated. For example, when there is a loss of axial stability due to global buckling 

or progressive densification of unit cells observed in the perpendicular-to-corrugations 

models.   

The details on elements, materials, boundary conditions are described in Chapter 

2.5. 
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7.3 HIGH VELOCITY RESPONSE OF SANDWICH COLUMNS 

(PERPENDICUALR-TO-CORRUGATIONS) 

The high velocity response of sandwich columns compressed perpendicular-to-

corrugations is investigated. FE simulations are performed to obtain the response of the 

sandwich columns of varied geometric dimensions subject to compression velocities up 

to 100m/s. Initial studies are performed using properties for a rate-independent (Al6061-

T6) corrugated core sandwich columns. Simple analytic expressions incorporating 

general characteristics observed in the rate-independent FE analysis are suggested.  The 

influence of material strain-rate dependence is assessed numerically for column 

manufactured from SS304. 

 

7.3.1 General Observations 

Representative dynamic response of corrugated core sandwich column compression 

perpendicular-to-corrugations is shown in Fig. 7.1. The plot represents the reaction force 

curves measured at the front and back ends of an Al6061-T6 sandwich column of 

h=2.2mm, L=469mm,  ̅      (t=3.175mm, l=22mm, w=60°) at V=60m/s. The front 

end reaction force reveals an instantaneous rise after imposing the compressive velocity, 

followed by an immediate decay over 100 μs. While this observation at the front end is in 

progress, no response is detected at the back end. However, the back end reaction force 

rises to achieve a peak reaction force around t=150μs, remain at the peak for a period of 

time, and declines eventually. Also, additional increase in the front end reaction force is 

observed at t=400 μs. 
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A graphical illustration of corresponding deformation shapes is shown in a time 

sequential order in Fig. 7.2. The contour plot shows the von Mises stress. The decay in 

the front end reaction force within 100μs can be accounted for by the local buckling of 

the face ligament closest to the rigid plate as shown in the deformation at t=70 μs. On the 

other hand, the rise and decay of the back end reaction force are inferred from the arrival 

of an elastic stress wave followed by face wrinkling of the face ligament at the back end, 

which is confirmed by the contour at t=140 μs and the magnified view of the deformation 

near the back end at t=420μs. The increase in the front end reaction force around 

t=400~600 μs is explained by the densification of a cell, as shown in the zoom-in view of 

deformation shape near the front end at t=420 μs.  

The high-velocity dynamic loading plots happen during the propagation of one 

elastic wave propagation along the column length, and the dynamic response curves can 

be characterized through the following parametric analysis. 

 

 
Figure 7.1: Typical reaction curve of corrugated core sandwich columns compressed perpendicular-to-

corrugations. The curve shows an Al6061-T6 sandwich column of h=2.2mm, L=469mm,  ̅      

(t=3.175mm, l=22mm, w=60°) under V=60m/s. 
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7.3.2 Influence on the Reaction Force Characteristics 

As demonstrated in Section 7.3.1, the high velocity response of corrugated core 

sandwich columns loaded perpendicular-to-corrugations is dominated by highly 

localized buckling deformation. In this section, in-depth analysis on the effects of applied 

velocity, overall column geometry, and imperfections are conducted to gain insight on the 

absorbed and transmitted impulse to external loading through this structure.  

For applied compression velocities of 20, 60, 100m/s, the reaction forces at the 

back and front ends are examined in Fig. 7.3 and Fig. 7.4, respectively. As shown in Fig. 

7.3, all of the back end reaction forces rise after a time period of 100 μs and maintain 

 

Figure 7.2: Deformation of the Al6061-T6 corrugated core sandwich columns of h=2.2mm, L=469mm,  ̅  
    (t=3.175mm, l=22mm, w=60°) compressed perpendicular-to-corrugations under V=60m/s. 
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their peaks at               , invariable to the applied compression velocities. In 

other words, the transmitted pulse to the back end is independent of loading intensities. 

This can be interpreted as follows: an elastic stress wave front, whose magnitude and 

propagation speed are independent of applied velocities, arrives and is reflected at the 

 

Figure 7.3: Back end reaction forces depending on applied velocities of V=20, 60, 100m/s. 

 

 

Figure 7.4: Front end reaction forces depending on applied velocities of V=20, 60, 100m/s. 
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back end. Subsequently, a face ligament near the back end buckles by the plastic wave 

created from the reflection of the elastic wave. 

In contrast to the back end reaction forces, the front end reaction forces are 

dependent on the applied velocities as shown in Fig. 7.4. They drop quickly within 

approximately 100 microseconds. However, the increase in the front end reaction forces 

for V=60m/s and 100m/s are observed again at 420 and 220 μs, respectively, which result 

from cell densification that causes contact between face and core ligaments. 

The effect of column length on the dynamic response is investigated in Fig. 7.5. 

Through this investigation, the response (absorbed and trasmitted pulse through this 

structure) accouted for by wave propagation will be corroborated. The column lengths of 

sandwich columns are varied as L=469, 938, 1877mm while the same face sheet 

thickness and core dimensions retained. The column lengths are the same, twice and four 

times as long as that of that representative column as shown in subsection 7.3.1, 

respectively. The longer columns are expected to fail in global buckling under quasi-

   
   (a)        (b) 

Figure 7.5: Length dependence: (a) Front end reaction force; (b) Back end reaction force. 
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static loading. The front end reaction forces are invariable to the column lengths, thus 

confirming highly localized buckling.  

On the other hand, each back end reaction force curve is translated along the time 

axis by     
      

 such that the arrival time of elastic stress wave to the back end is set to 

zero. The pulse shape of the back end reaction curves until the load drops are insensitive 

to column length. Therefore, the high velocity responses are dominated by highly 

localized buckling deformation irrespective of column lengths. However, the longer 

columns (L=938, 1877mm) show slightly longer, but with negligible difference, duration 

at peak load than the shorter column (L=469mm) does.  

The effects of imperfections on the dynamic response, specifically the choice of 

imperfection modes and their magnitudes, are investigated in Figs. 7.6 and 7.7. First, the 

dynamic response of an Al6061-T6 sandwich column having a global curvature is 

 
(a) 

   
       (b)       (c) 

Figure 7.6: Global buckling mode (mode 7) imperfection sensitivity: (a) imposed eigenmode for the 

imperfection; (b) front end reaction force; (c) back end reaction force. 



181 

investigated. To perform the dynamic FEA, a globally deformed eigenmode from static 

buckling analysis, (here, mode #7 as shown in Fig. 7.6(a)) is superposed on the mesh for 

a perfect geometry. (Mode #7 is the lowest globally-buckled mode whereas mode #1 

through #20 except for the mode #7 correspond to face-wrinkled modes.) Figs. 7.6(b) 

and(c) show the reaction forces at the front and back ends by varying the imperfection 

magnitude between 0< ξg< 0.1c, respectively. However, it is demonstrated that no 

significant difference is found between them. 

Secondly, FEA is performed on a sandwich column having a geometrically 

imperfect face ligaments. To represent such a geometrically imperfect column, an eigen 

mode of Mode #6 from an additional static buckling analysis is incorporated into the 

dynamic FE simulations. (Mode #6 is one of face-wrinkled modes among the twenty 

static buckling modes obtained from the static buckling analysis. And, the maximum 

 
(a) 

 

   
      (b)       (c) 

Figure 7.7: Face wrinkling mode (mode 6) imperfection sensitivity: (a) front end reaction force; (b) back end 

reaction force. 
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wrinkled faces in the selected mode are located in both back and front ends.) Although 

this type of imperfection is identical to the deformation characteristics of sandwich 

columns under high velocity compression perpendicular-to-corrugations, there is no 

significant difference in the front end reaction forces at the imperfection range of 0< ξ
(f)

< 

0.1h as shown in Fig. 7.7(a). It is noted that the imperfection only affects a pulse duration 

of the back end reaction force at P=1500N/mm slightly as shown in Fig. 7.7(b).  

To summarize the observations in Figs. 7.6 and 7.7, the considered range of 

imperfections does not cause appreciable differences to the front end reaction force 

curves due to intense local buckling deformation accompanying substantial plastic 

deformation at the front end. However, the pulse duration in the back end reaction force 

is slightly affected by the imperfection in the considered imperfection range. Because a 

mild intensity of back end reaction force, corresponding to yield stress, is maintained 

until the face ligament buckles, the duration will be affected by the imperfections: Put in 

another way, the face wrinkling near the back end is analogous to the dynamic buckling 

problem of a plastic column under a constant load associated with σY.  

 

7.3.3. Analytic Simplification of Reaction Forces 

From the findings in the previous sections, reaction forces of corrugated core 

sandwich columns compressed perpendicular-to-corrugations can be modeled as shown 

in Fig. 7.8. The front end reaction force is characterized in an initial rise and drop 

followed by repeated pulses due to cell densifications causing contact between face and 

core members. The back end reaction force rises after the elastic stress wave arrives at the 

back end, maintains its peak for a period, and then drops due to excessive deformation of 
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a face ligament near the end. Thus, the peak duration is related to the slenderness ratio of 

a face ligament as long as there is no interfering pulse (e.g., contact forces near the front 

end).  

Correspondingly, the peak loads can be deduced from the theory of rate-

independent elastic-plastic wave propagation using an analogy between sandwich 

columns and monolithic columns. The peak of front end reaction force curve is given by 

[3-5,13] 
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where    
      

,   
 ,   

  denote the apparent elastic wave speed, tangent modulus in plane 

strain condition, yield strain in plane strain condition,   
   (

  

√       
 
) (

 

    )⁄  , and 

 
Figure 7.8: Simplified model of the front and back end reaction force curves for corrugated core sandwich 

columns under high-velocity compression perpendicular-to-corrugations. 
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PY is the in-plane load associated with yield stress,    
    

√       
 
.  

On the other hand, the upper and lower bounds of back end reaction force can be 

obtained assuming the buckling of a face ligament near the back end either by a 

propagating elastic wave or by its reflected wave. 
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In Fig. 7.9, the analytic expressions given in Eqns. (7.1) and (7.2) are compared 

with FE results of sandwich columns having several face sheet thicknesses of h=1.31, 2.2, 

and 4.4 mm subjected to various applied velocities. Eqn. (7.1) for  
       

 and Eqn. (7.2) 

for       
      

 and       
      

, are plotted using red dash lines and black straight lines, 

respectively. The peaks in back end reaction force computed from FEM are bounded by 

analytical expressions of Eqn. (7.2) while the analytical expression for the peaks in front 

end reaction force,  
       

, Eqn. (7.1), underpredicts the FE front end peaks.  

The under-prediction can be attributed to neglecting the core contribution to in-

plane stiffness in the analytic expression of Eqn. (7.1). As seen in Fig. 7.10(a), the major 

core deformation mechanism by a low-velocity compression is folding at nodes between 

face sheets and a core so that the contribution of a core to the in-plane stiffness of 

sandwich columns is minimal. This has been already confirmed through verification of 

apparent stress wave speeds,    
    

  in Chapter 3, where the analytic expression for the 

wave propagation speeds is based on neglecting core’s in-plane stiffness.  
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However, the deformation of a core strut positioned closest to the front end under 

high velocity compression differs from the deformation mechanism of the other core 

struts or the deformation mechanism observed under a low velocity compression. The 

deformation of the core strut closest to the front end is instantaneous so that considerable 

axial compression and flexural deformation is involved. An exaggerated illustration for 

the description of core deformation is sketched in Fig. 7.10(b). In this regard, Eqn. (7.1) 

is modified into Eqn. (7.3) by multiplying a correction factor to take the core contribution 

into account. The correction factor,            , is the ratio of the in-plane stiffness of a 

sandwich column with and without the core’s in-plane contribution. The derivation of 

     
  in Eqn. (7.3), an effective in-plane core stiffness explaining the core deformation 

mechanism, is included in Appendix E. 
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The modified equation, Eqn. (7.3), is also plotted in Fig. 7.9 and improves the 

 
       

 prediction. 

  



186 

YP P

25% 

Al6061-T6(Perpendicular)

h=1.31mm, L=469mm, 

FEM (Back End)

FEM (Front End)

Analytical bound, Eqn.(7.2)

 (Back end)

Analytic Eqn. (7.1)

(Front end)

Modified Analytic Eqn. (7.3)

 (Front end)

 
(a) 
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(b) 
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(c) 

Figure 7.9: Analytic prediction of peak reaction forces of corrugated core sandwich columns under high 

velocity compression perpendicular-to-corrugations: (a) h=1.31mm; (b) h=2.2mm; (c) h=4.4mm. 
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(a) low velocity 

(b)  

 
(b) high velocity 

 

Figure 7.10 : Core contribution to in-plane stiffness depending on the magnitude of compression velocity: 

(a) low velocity; (b) high velocity. 

 

 

7.3.4. Material Rate Dependence 

So far in this section, the FE observations and analytic characterization have been 

focused on corrugated core sandwich columns fabricated from rate independent materials 

(Al6061-T6). In this subsection, how the material strain rate dependence affects the high 

velocity dynamic response is discussed through FE analysis of SS304 corrugated core 

sandwich columns. 

FE simulations are carried out for SS304 corrugated core sandwich columns of 

h=2.5mm, L=707mm subject to V=40m/s with and without considering material strain-

rate dependence. The FE simulation without material strain-rate dependence is computed 

by suppressing the dynamic strengthening enhancement ratio,    ̇ , in the parent 

material description. The reaction forces from the two FE computations are compared in 

Fig. 7.11. It is evident that the higher magnitude in the rate-dependent simulation 
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attributes to the elevation in dynamic yield strength, i.e. the effects of material strain-rate 

dependence.  

To examine whether the rate-dependent result can be inferred from the rate-

independent computation, the rate-independent back and front end reaction curves are 

scaled with    ̇ , and then the scaled curves are compared to those of the rate-dependent 

simulation in Fig. 7.12. As a result, the reaction force curves from the rate-dependent FE 

simulation and the R-scaled curves from the rate-independent simulations, which are 

created by multiplying the curves by    ̇ , show similarity in magnitude and shape.  

In the high velocity region, most of deformation is plastic so that the rate-dependent 

reaction force curves of corrugated core sandwich columns compressed perpendicular-to-

corrugations can be approximated by multiplying    ̇ , a function of plastic strain rate, 

from the rate independent simulation. 

Accordingly, the peak forces considering the material strain-rate dependence of a 

parent material whose plastic part is modeled by two plastic hardening moduli such as 

SS304 can be obtained by simply multiplying the rate-independent expressions by    ̇ . 

 

   
      (a)           (b) 

Figure 7.11: The comparison of reaction forces between rate-dependent FEA and rate-independent FEA: (a) 

front end reaction force; (b) back end reaction force. 
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       (a)           (b) 

Figure 7.12 : Comparison between R-scaled rate-independent analysis and the rate-dependent analysis, (a) 

front end reaction force, (b) back end reaction force. 
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In the above equations, the third term in the RHS of Eqn. (7.5) and the second term 

in the RHS of Eqn. (7.6) result from the bilinear modeling of the plastic part in SS304. 

The superscripts (1) and (2) represent the respective plastic regions while (0) represents 

the elastic region, as denoted in the σ11-ε11 diagram of Fig. 7.13. Although the 

relationship between the axial stress versus and the axial strain in the presence of 

constraint in lateral expansion (i.e., the plane-strain condition) does not generally show a 

strict discontinuity point around the region of the elastic-plastic transition [97], the 

relationship between σ11 and ε11 is assumed as shown in Fig. 7.13, for convenience. 
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Hence,   
    

 and   
    

 are computed from Eqn. (2.35) and from the relation of   
    

 

     
    

    
  
   

√       
 
, respectively. 

In Fig. 7.14, the analytical equations (7.5) through (7.7) are plotted with the FE 

calculations for the high velocity response of SS304 corrugated core sandwich columns 

having h=1.25 and 2.5mm with the same L and  ̅ as the column presented in Figs. 7.11 

and 7.12. 

To sum up, the high velocity response of corrugated core sandwich columns 

compressed perpendicular-to-corrugations is sensitive to face wrinkling, in which a face 

ligament near the front end fails while an incident plastic wave passes one unit cell, and 

the cell near the back end buckles due to the plastic wave generated by the reflection of 

an incident elastic stress wave. This local-buckling dominant deformation can be also 

confirmed by the response comparison of sandwich columns with varied column lengths. 

The front and back reaction force curves can be analytically characterized by utilizing the 

theory of rate-independent stress wave propagation.  

 
Figure 7.13: Approximated σ11-ε11 diagram of an elastic-bilinear plastic material (SS304) in the presence 

of lateral expansion constraint.  
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From the comparative observations of SS304 corrugated core sandwich columns 

with and without consideration of the material strain-rate dependence, it is confirmed that 

the response of a rate-dependent corrugated core sandwich column is successfully 

approximated by the R-scaled response from the rate-independent analysis.  

 

 

 

7.4 HIGH VELOCITY RESPONSE OF SANDWICH COLUMNS (PARALLEL-TO-

CORRUGATIONS) 

The high velocity response of corrugated core sandwich columns compressed 

parallel-to-corrugations is investigated by utilizing FEA, followed by an analytical 

characterization. The initial investigation focuses on the response of the rate-independent 

(Al6061-T6) sandwich columns of varied geometric dimensions subject to compression 

velocities up to 100m/s with material rate effects excluded. Then, simple analytic 

expressions are suggested in order to incorporate general features in the observed 

      
   (a)         (b) 

 

Figure 7.14: Analytic prediction of peak reaction forces of rate-dependent (SS304) corrugated core sandwich 

columns under high velocity compression perpendicular-to-corrugations: (a) h=1.25mm; (b) h=2.5mm. 
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response characteristics of the rate-independent sandwich column responses into the 

model.  

To account for the influence of material rate-dependence, FE analysis on a rate-

dependent (SS304) sandwich column is performed. Through comparing the results with 

and without the rate-dependence of the parent material description, a method of 

incorporating the material effect into the analytic expressions is suggested. 

 

7.4.1 General Observation 

Representative reaction forces numerically measured at the front and back ends are 

plotted in Fig. 7.15. The demonstrated curves are on an Al6061-T6 corrugated core 

sandwich column compressed parallel-to-corrugations at V=60m/s, having the same 

geometric dimensions of h=2.2mm, L=469mm,  ̅       as that presented in Section 

7.3.1. 

Upon compression at the front end, the front end reaction force rises 

 
Figure 7.15: Representative reaction force curves of a corrugated core sandwich column compressed parallel-

to-corrugations. The curves are regarding an Al6061-T6 sandwich column of h=2.2mm, L=469mm,  ̅  
    (t=3.175mm, l=22mm, w=60°) under V=60m/s. 
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instantaneously to approximately 3500N/mm, and remains at this magnitude for several 

hundreds of microseconds, which differs from the front end reaction characteristics of the 

perpendicular-to-corrugations results in Section 7.3. On the other hand, the back end 

reaction force rises after a delay of 100μs, and then, a constant reaction force is 

maintained for several hundreds of microseconds. 

The dynamic event in the corrugated core sandwich column is described in a time 

sequential order in Fig. 7.16. Equivalent plastic strain is identified by the colored contour 

plot on the deformed column. Upon compression at the front end (left), two distinct wave 

fronts, plastic wave front (red) and elastic wave front (not indicated in the contour plot), 

appear simultaneously as shown at t=100μs. At this point, the elastic wave propagation is 

not shown in the contour because the contour represents equivalent plastic strain, 

however, the elastic wave front travelling at the higher wave speed must have arrived at 

the back end before t=100μs. The elastic wave front is reflected just before t=100μs and 

transformed into a plastic stress wave proceeding toward the front end as demonstrated in 

 
Figure 7.16: Wave propagation in the representative sandwich column presented in Fig.7.15. 
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the contours of t=200 and 300μs. The two plastic wave fronts, which are the incident and 

reflected plastic waves, meet at about mid-point of the column length as shown in the 

contours of t=400 and 500 μs. Subsequently, the superposition of the two plastic wave 

leads to local and global buckling growth, which is coincident with the drops of the 

reaction force curves.  

Therefore, a considerable amount of information in the reaction force 

characteristics can be explained by elastic-plastic wave propagation. 

 

7.4.2 Influences on the Reaction Force Characteristics 

A parametric analysis is carried out with emphasis on the effects of compression 

velocity, column length, and imperfections. 

The front and back end reaction forces of the sandwich column, as a function of 

applied compression velocities are investigated in Figs. 7.17(a) and (b), respectively. The 

column has the same geometric dimensions as the one presented in Figs. 7.15 and 7.16. 

The magnitude of the front end reaction forces increases in proportion to compression 

velocity from 20 to 100m/s while the back end reaction forces are invariant to the 

magnitude of compression velocity. 

The investigation of the dynamic response of sandwich columns having different 

column lengths is illustrated in Fig. 7.18. This column length investigation will identify 

the wave propgation phenomenon within this structure and provide an insight on the 

corresponding pulse characteristics. The sandwich columns have column lengths twice 

(L=938mm) and three times (L=1407mm) as long as that (L=469mm) presented in Fig. 
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7.15, with the same face sheet thickness (h=2.2mm) and core dimensions ( ̅      ) 

retained. 

As shown in Fig. 7.18(a), the durations of front end reaction forces are clearly 

dependent on the column lengths. With regard to back end reaction forces, each back end 

reaction force curve is translated along the time axis by     
      

 such that the arrival 

time of each elastic stress wave to the back end coincides. The transformed back end 

reaction curves are shown in Fig. 7.18(b) with the wave propagaion of a longer sandwich 

column of L=938mm in Fig. 7.19. From the illustrated contours in Figs. 7.14 and 7.19, 

     
       (a)         (b) 

Figure 7.17: Velocity-dependent reaction forces at (a) the front end; (b) the back end.  

 

    
   (a)     (b) 

Figure 7.18: Effects of column length at V=60m/s: (a) front end reaction force; (b) back end reaction force. 

 



196 

 
Figure 7.19. Sandwich column length dependence (L=938mm). 

  
       (a)          (b) 

Figure 7.20: Imperfection-sensitive reaction force curves: (a) Front end reaction force; (b) Back end 

reaction force curves. 

the excessive deformation initiated near the superposition of the two plastic waves leads 

to the termination of maintaining a constant level of reaction forces.  

To investigate the effects of imperfections, FE analysis on an Al6061-T6 

corrugated core sandwich column with a global initial curvature are performed by 

varying its magnitude up to       . The column has the same geometric dimensions as 

that presented in Section 7.4.1. The varied magnitudes of the assigned global curvature 
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influence the duration of each end reaction force with minimal impact on the constant 

level of reaction force curves as shown in Fig. 7.20.  

 

 7.4.3 Analytic Simplification  

From the previous investigations, the front end reaction force reveals an initial rise 

followed by a constant peak maintained for some period, and similarly, back end reaction 

force shows similar response to the front end reaction force after a delay, which is taken 

for the arrival of an elastic wave,     
      ⁄ . Accordingly, the reaction force curve 

characteristics can be simplfied as shown in Fig. 7.21.  

Much information about the reaction force characteristics can be explained by 

elastic-plastic wave propagation. For a rate independent material, peak reaction forces of 

the front and back end reaction characteristics, P
(front)

 and P
(back)

, can be given by  
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Figure 7.21: Simplification of analytical model. 
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where    
      

 √
           ̅  ⁄

     ̅   
,   

      
 

    

√       
 
  ̅   ,   

  
  
      

           ̅  ⁄
. 

The duration of front end reaction force curve at P
(front) 

is approximated as        
      

 

     
      ⁄ . 

In Fig. 7.22, the analytic expressions for P
(front)

 and P
(back)

 described in Eqns.(7.8) 

and (7.9) are compared with FE results on the sandwich columns of varied face sheet 

thickness, h, with retaining the same core dimensions ( ̅      ) and column length 

(L=469mm). The analytic expressions based on the theory of rate-independent wave 

propagaion agrees well with the FE results. 
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(a) 

 
(b) 

 

 
(c) 

Figure 7.22: Comparison between analytic expressions and FE simulations of compression-velocity 

dependent peak reaction forces, P
(front)

 and P
(back)

, of Al6061-T6 sandwich columns having various face 

sheet thicknesses: (a) h=0.457mm; (b) h=2.2mm; (c) h=4.4mm. 
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7.4.4 Material Rate Dependence 

To this point in this section, the FE observations and analytic characterization 

focused on the rate-independent (Al6061-T6) corrugated core sandwich column 

compressed parallel-to-corrugations. In this subsection, how the material rate 

dependence is incorporated into the high velocity dynamic response is discussed through 

the FE analysis of SS304 corrugated core sandwich columns. 

FE simulations are carried out for SS304 corrugated core sandwich columns of 

h=2.5mm, L=707mm subject to V=40m/s with and without considering material rate-

dependence. The FE simulation without material rate-dependence is also computed by 

suppressing the dynamic strengthening enhancement ratio,    ̇ , in the parent material 

description. The reaction forces from the two FE computations are compared in Fig. 7.23. 

It is evident that the higher magnitude in the rate-dependent result attributes to the 

elevation in dynamic yield strength, i.e., the effects of material rate dependence.  

It is important to note that the SS304 back end reaction force curves show 

significant hardening around t=700μs compared to the Al6061-T6 columns. That is 

    
        (a)                 (b) 

Figure 7.23: Material strain-rate dependence of SS304 corrugated core sandwich columns compressed 

parallel-to-corrugations: (a) Front end reaction force; (b) Back end reaction force. 



201 

because the plastic part of SS304 is modeled by two plastic hardening moduli in the FE 

simulations,   
   

 
    

  
              for small strain region (0<p<0.0164), and 

  
   

 
    

  
              for large strain region (p>0.0164) as described in Fig. 

7.13. In other words, the hardening response that emerged in the back end reaction force 

curves in Fig. 7.23(b) is explained by an arrival of the plastic wave associated with the 

first strain-hardening region whose corresponding stiffness and wave speed are   
   

 and 

     
    

 as depicted in Fig. 7.24. 

To examine if the rate-dependent result can be inferred from the rate-independent 

analysis, the rate-independent back and front end reaction curves scaled with R are 

compared to the rate-dependent results in Fig. 7.25. The two results, the rate-dependent 

FE reaction force curves and the R-scaled curves from the rate-independent FE curves, 

are similar. The only difference is that the hardening in the R-scaled curves appears 

stepwise while the rate-dependent FE results shows smooth increase in the hardening 

 
Figure 7.24: Three wave fronts propagated in a rate-independent elastic- plastic material with bilinear 

hardening moduli. 
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region. This phenomenon can be explained by the findings from the two independent 

studies, Ferri [3] and Garnet [72] work: The shape of wave fronts travelling along a rate-

dependent column is indistinct. As a result, associated plastic strain distribution is quite 

dispersed [3]. On the other hand, the distinct wave fronts are observed so that the stress-

strain distribution over a column is spatially stepwise, and thus, reaction force curve 

histories appear stepwise [3, 72] as in the primary assumption of this dissertation.  

Nevertheless, the rate-dependent response is reasonably approximated from scaling 

the rate-independent results. Therefore, it can be concluded that the response of a rate-

dependent material under high velocity compression is approximately predicted from a 

rate-independent analysis of treating the rate-dependent material as a rate-independent 

material having R-scaled yield stress and tangent modulus.  

As in Section 7.3.4, the peak forces considering the material strain-rate dependence 

of a parent material whose plastic part is modeled by two plastic hardening moduli can be 

obtained just by simply multiplying the rate-independent expressions by    ̇ .  

     
(a)         (b) 

 

Figure 7.25: Comparison between the rate-dependent analysis and the scaled curves from the rate-independent 

analysis: (a) Front end reaction forces; (b) Back end reaction forces. 
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In Fig. 7.26, the analytic expressions corrected for the inclusion of the material 

strain-rate effects are compared with FE calculations of SS304 corrugated core sandwich 

columns of h=1.25, 2.5mm, respectively. 

 

 

  

       
       (a)        (b) 

Figure 7.26: Analytic prediction of peak reaction forces of rate-dependent (SS304) corrugated core sandwich 

columns under high velocity compression parallel-to-corrugations: (a) h=1.25mm; (b) h=2.5mm. 
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7.5. CHAPTER SUMMARY 

This chapter investigates the dynamic response of corrugated core sandwich 

columns subject to a velocity in the high velocity region via FE simulations. The peak 

and duration in reaction forces are parameterized with respect to compression velocities, 

material properties, and sandwich geometric parameters utilizing the theory of rate-

independent elastic-plastic wave propagation. 

The responses in the high velocity range differs from the low-velocity response in 

that the response time scale is of the order of a one-way trip time of an plastic stress wave 

along the column length. 

In the perpendicular-to-corrugation loading orientation, face wrinkling dominates 

the structural response. The face sheet ligaments closest to the front end exhibit face 

wrinkling before an incident plastic wave passes one unit cell under the intense loading 

situation. Macroscopically, contact forces between face and core members from 

progressive densification of unit cells are repeatedly observed. The back end reaction 

forces are determined by the face wrinkling failure of the face ligament closest to the 

back end due to the incident elastic wave and its reflected plastic wave. The parameters 

for the front and back end reaction forces in the in-plane loading orientation are well 

predicted by the modified analytic expressions suggested in this chapter. 

In the parallel-to-corrugation loading orientation, the failure leading to load drop is 

the result of global buckling motion when the two plastic waves meet and superpose in 

the mid-section of the column. The high velocity response of corrugated core sandwich 

columns compressed parallel-to-corrugations is also well-characterized by the analytic 

expressions based on the theory of wave propagation.
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CHAPTER 8  

CONCLUDING REMARKS 

 

8.1 SUMMARY 

Theoretical models are developed to predict the dynamic response of corrugated 

core sandwich columns under a compression velocity in the low velocity region (from 

quasi-static to an order of a few m/s). Each model reproduces the dynamic explicit FE 

simulations of the individual failure modes such as global buckling, face wrinkling, and 

local plate buckling. Not only do the theoretical models combined with the FEM analyze 

the dominant dynamic effects but also the influences on the minimum weight designs and 

competing failure modes are identified. 

The global buckling analytical model considers a sandwich column as a beam-

column structural element with core shear deformations. The model successfully yields 

the imperfection-sensitive, velocity-dependent dynamic response and appearance of 

higher buckling modes. In addition to the transverse-inertia dominating dynamic 

strengthening (i.e., inertial stabilization), the material strain-rate dependent response is 

reasonably approximated for the SS304 corrugated core sandwich column response. It is 

also found that imperfections influence the global buckling motion of elastic columns, 

whereas their effect on the elastic-plastic global column response is not as significant as 

with the elastic column response.  

The face wrinkling analytical model calculates a face ligament transverse deflection 

of a face ligament modeled by an Euler-Bernoulli beam-column using continuum 



206 

approximation of the discrete cores with wave propagation theory. A fundamental 

assumption in the face wrinkling analytical model is verified by numerical experiments 

for measuring the apparent elastic wave propagation speeds. It is noteworthy that the 

apparent wave speeds depend not only on material properties but also on sandwich design 

parameters unlike monolithic solid columns. The numerical verification of the model 

successfully captures the dynamic phenomena observed in the FE simulations including 

dynamic strengthening, material strain-rate effects and imperfection sensitivity. However, 

there is a limitation that the model is not capable of predicting the plateau response which 

has been seen in the representative Al6061-T6 sandwich columns of the EFW geometric 

dimensions, especially compressed at a low velocity. It is demonstrated that the plateau 

response results from local plastic deformation at nodes. 

An attempt to approximate the local plate buckling response of sandwich columns 

compressed parallel-to-corrugations was made through developing an analytical model 

for long plates. The analytical model assumes that the structural integrity of the sandwich 

columns is determined from the occurrence and growth of a buckle in the imaginary 

patch plates. The analytical prediction for the elastic plate response at V=1m/s was well-

correlated with the FE calculations. However, the post critical response characterized by 

a reduced stiffness at a low velocity of V=0.1m/s and elastic-plastic plate buckling could 

not be reproduced. 

The developed theoretical models are quite attractive at the point of efficiency with 

a reasonable accuracy. A combination of global buckling and local buckling analytical 

models can be utilized in numerous potential applications such as preliminary sandwich 

column designs. For example, the competition of failure modes under dynamic 
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circumstances and minimum weight design considering dynamic effects are investigated 

with those developed analytical models in this dissertation.  

In the dynamic failure map analysis, dynamic effects on the two quasi-static failure 

maps of corrugated core sandwich columns compressed perpendicular-to-corrugations 

are analyzed as rate-of-compression increases. In the investigation, operative failure 

modes can be identified by comparing the times-to-failure computed from the global and 

face wrinkling analytical models. It is demonstrated that inertial stabilization of global 

buckling motion makes the global buckling motion more resistible than face wrinkling as 

rate-of-compression increases. Furthermore, the effect of imperfections on the failure 

map boundary between FY and EGB becomes more pronounced with increase in rate-of-

compression. The key contribution in the analysis is that how compression velocities and 

imperfections alter the failure boundaries is identified. 

The efficiency of the developed analytical models is highlighted in the dynamic 

optimization procedure. Because there is no explicit expression for the dynamic response 

in terms of design variables, a methodology for corrugated core sandwich columns is 

provided. Due to the complex dynamic phenomena, the individual failure responses are 

approximated through a number of numerical experiments for the response range of 

interest. Thus, a response surface methodology is employed for the response 

approximation of individual failure modes, and one of classical optimal solution 

algorithms (Sequential Quadratic Programming) for minimum weight designs 

considering the dynamic effects is also employed. The optimal solutions demonstrate that 

optimal designs of corrugated core sandwich columns under quasi-static loading and 

under dynamic loading differ in that global buckling motion is influenced more by 
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beneficial inertial stabilization than by the face wrinkling motion and that sandwich 

columns are superior to monolithic solid columns under dynamic loading; however, the 

benefit of sandwich design concept is even more remarkable at lower velocities. Those 

findings are consistent with the results of dynamic failure map analysis. 

The dynamic response subject to a velocity in the high velocity region, 

 (   
    

  )   ⁄ , is also investigated via FE simulations. The responses in the high 

velocity range differ from the low-velocity region response in that the response time scale 

is of the order of a one-way trip time of a plastic wave along the column length. Thus, the 

peak and duration in reaction forces are parameterized with respect to compression 

velocities, material properties, and sandwich geometric parameters utilizing the theory of 

rate-independent elastic-plastic wave propagation. 

 

8.2 ORIGINAL CONTRIBUTIONS 

1. The development of analytical models for the individual failure models in 

corrugated core sandwich columns. Since there have been no analytical tools predicting 

the dynamic response of individual failure modes to date, the models make possible the 

dynamic effect assessment of individual failure modes. Furthermore, emphasis is placed 

on the following two aspects: wide applicable compression velocity and the efficiency. 

Because the models consider non-uniform stress distribution due to wave propagation, 

they can be applied to a relatively large magnitude of compression velocities. And, the 

models can also reproduce the FE simulations requiring a large number of elements for 

periodic core structures with limited computing time. 
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2. Dynamic strengthening caused from transverse inertia, material strain-rate effects 

etc. are understood through the FE and theoretical investigations. In addition, the 

combined effect of imperfections with the dynamic loading is also investigated.  

3. A dynamic optimization methodology is introduced into the area of metallic core 

sandwich structures. In this dissertation, a dynamic optimization problem is established 

with response surface methodology, in which complex dynamic response is represented 

by easily manageable polynomial functions.  

The RSM is employed in many engineering fields, especially in cases where many 

design variables or complicated phenomena make it difficult to find an accurate function 

for the response. Instead, RSM seeks to find easy-to-handle polynomial functions to fit a 

set of numerical or experimental design points in a carefully planned design of 

experiments (e.g., full-factorial DOE, DOE using an orthogonal array table, etc.). For 

example, designing safety components for frontal crash in the crashworthiness area or 

determining optimal operating conditions in Direct Chill casting are good examples for 

application of the methodology. Because the dynamic response of corrugated core 

sandwich column cannot be explicit in terms of their geometric parameters, the 

optimization procedure for minimum weight designs considering dynamic effects is 

appropriate.  

4. High velocity response of corrugated core sandwich columns is generalized with 

respect to the intensity of compression velocity and sandwich design parameters in this 

dissertation. This will provide insight for a design guideline of a structural component 

with minimum weight exposed to intense loading such as blast loading. 
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8.3 FUTURE WORK 

Several points are noted for the extension of this study.  

First, it was assumed that the failure of corrugated core sandwich columns was 

caused only by buckling in this dissertation. However, there is a possibility that other 

failure mechanisms exist. For example, the sandwich columns may not function 

effectively due to a fracture at fixed ends, cracking or delamination at nodes between 

cores and face sheets. Those failures are presumably due to a lack of material ductility, 

stress concentration, and inadequate manufacturing, etc. In this regard, the theoretical 

model can be extended considering such failure mechanisms. 

Second, the fidelity of analytical models was justified by comparing to the FEM, 

which is generally known to be an accurate numerical tool. However, the gaps between 

theoretical/numerical results and experiments might be unexpectedly large. Thus, an 

experimental verification for each failure mode, together with the discussion of potential 

discrepancy, would reinforce the justification of the developed analytical models and 

observed dynamic phenomena.  

Third, minimum weight designs including dynamic effects are discussed as the rate-

of-compression is increased in this dissertation. It is instructive that the reinforcement of 

local buckling strength is suggested under dynamic circumstances. However, if 

multifunctional capability, the distinguished advantage of metallic core sandwich 

structures, is reflected in the optimal design of sandwich structures, the optimization 

results will be different. Multi objective optimization of metallic core sandwich structures 

under dynamic loading with the second function such as blast loading energy absorption, 

ballistic energy resistance, and a flow channel, can be the next step. 
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APPENDIX A  DERIVATION OF EQUATIONS (2.30) AND (2.31). 

2 ( )

2

( , ) muP x t
A

x t





 
    (2.3) 

   
 

2
2( ) ( ) ( )( )

* * 0 01
( , )

2

m m mm w w wu
P x t AE AE

x x x

                  

 (2.22) 

 

Substituting (2.22) into (2.3), we will have two sub-problems. 

1) Axial sub-problem (Problem I): Homogeneous partial differential equation (PDE) 

with nonhomogeneous boundary conditions,   
   

. 

2) Axial sub-problem (Problem II): Nonhomogeneous partial differential equation 

(PDE) with homogeneous boundary conditions,   
   

. 

( ) ( ) ( )

1 2

m m mu u u      (2.23) 

Axial sub-problem (Problem I) for axial stress distribution for   
   

 

 

2 ( ) 2 ( )

1 1

22 2( )

1
0

m m

m

el

u u

x tc

 
 

 
    (2.24) 

BC:  ( )

1 (0, )mu t Vt ,   ( )

1 ( , ) 0mu L t      (2.25a,b) 

IC:  ( )

1 ( ,0) 0mu x  ,    
( )

1 ( , ) 0
mu

L t
t





      (2.25c,d) 

Dividing u1 into a reference solution ( )

1

refu  and a perturbation solution 
1v [80]. 

   ( )

1 1 1, ,refu u x t v x t      (A1) 

 ( )

1 ,refu x t  can be obtained by neglecting the second term in LHS of (2.24). 



220 

( ) ( )ref

h

Vtx
u x

L
      (A2) 

From separation of variables, the perturbation solution  1 ,v x t  is given by 

     1 ,v x t X x T t      (A3) 

2

0

'' 1 ''X T

X c T
       (A4) 

1 2cos sinX c x c x       (A5) 

To apply the homogeneous boundary conditions in the perturbation problem of 

“Problem 1”, the eigenfunction is  

~ sin
n x

X
L


    (A6) 

0

1

( , ) sin sinh n

n

c n tn x
v x t A

L L





  
    

   
    (A7) 

Applying the initial conditions, Eqn. (2.25c,d) to Eqns. (A1), (A2), and (A7), 

 ( ) ( ) 2 2

0

2 2
sin 1

L
n

n m m

el el

Vx n x LV
A dx

c n L L c n



 

 
     

 
    (A8) 

  ( )

1 ( ) 2 2
1

12
sin sin

n m

el

m
nel

c n tVxt VL n x
u

L c n L L









   
    

   
    (A9) 

 

Axial sub-problem (Problem II) for axial stress distribution for   
   

 

 

 
2

2( ) ( ) ( )2 ( ) 2 ( )
0 02 2

22 2( )

1 1

2

m m mm m

m

el

w w wu u

x t x x xc

                      

  (2.26) 

BC:  ( )

2 (0, ) 0mu t  ,   ( )

2 ( , ) 0mu L t       (2.27a,b) 
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IC:  ( )

2 ( ,0) 0mu x  ,   
( )

2 ( , ) 0
mu

L t
t





     (2.27c,d) 

To solve “Problem 2”, the related eigen-problem can be written as below [34]. 

<Related Eigenproblem> 

    
   

=X(x) T(t)     (A10) 

1 2

'' 0

sin

X X

X C cos x C x



 

 

   
                  (A11) 

From the boundary conditions Eqns. (2.27a,b),  

  C1=0 ,and L n   for a nontrivial solution, and thus, 

   sin
n x

X
L


     (A12) 

Therefore, the solution,   
   

  can be approximated as below. 

   ( )

2 ( , ) ~ ( )sinm

n

n x
u x t a t

L


     (A13) 

Substituting (A13) into Eqn. (2.26) to get an(t), 

 

 

 
2 22

2
( )

1 1
sin sin

2

o o
n n

m

el

w w wn x n n x
a a

L L L x x xc

          
          

          

(A14) 

Multiplying (A.22) by ( )X x  and integrating over the range [0,L], Eqn. (A14) 

becomes 

 
 
 

 
2 2( ) 22

2
( )

0

1
sin  

2 2

m
Lel om o

n el n

c w w wn n x
a c a dx

L L x x x L

        
          

        


  

(A15) 

Integrating by parts, the RHS of Eqn. (A15) can be modified as below 
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 
   

2 2( ) 22
2

( )

2 0
cos  

m
Lel om o

n el n

c n w w wn n x
a c a dx

L L x x L

 
                               


   

(A16) 

To solve an(t) in the ODE (A16), the solution can be divided into homogeneous and 

particular solutions. 

 
( ) ( )

hom

3 4( ) cos sin
m m

ogeneous el el
n

c n c n
a t C t C t

L L

 
     (A17) 

To get ( )particular

na t , Variation of Parameters is applied. 

From the homogeneous solutions,   
              ,  the Wronskian, W, is 

 

( ) ( )

( )
1 2

( ) ( ) ( ) ( )
1, 2,

cos sin

sin cos

m m

el el
m

el

m m m m
t t el el el el

c n c n
t t

u u c nL L
W

u u Lc n c n c n c n
t t

L L L L

 



   
  
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  (A18) 

   
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Lel o o
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el
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c n w w w n x
dx

L x x L
c nf

V u t
W Lc n

L

 





               
           

 
 
 


    (A19a) 
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2 2( ) 2

2 0
( )

2, 1 ( )

cos  
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m
Lel o o

m

el
t m
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c n w w w n x
dx

L x x L
c nf

V u t
W Lc n

L

 





               
         

 
 
 


     (A19b) 

 
2 2( ) ( )

1 1,
0

0 0
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t tm m
L

oel o el
w wc w c nn x

V V d dx d
L x x L L




 

                
       

  
  

(A19c) 

 
2 2( ) ( )

2 2,
0

0 0

cos  cos

t tm m
L

oel o el
w wc w c nn x

V V d dx d
L x x L L




 

               
       

  
  

(A19d) 

Therefore,  
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 
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( ) ( )

3 4

2 2( ) ( ) ( )

0
0

( ) ( ) ( )

            = cos sin

                cos  sin cos

                +
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n n n

m m

el el

tm m m
L

oel o el el
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c n c n
C t C t

L L

w wc w c n c nn x
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L x x L L L

 

 


 

 

      
        

       
 

 
2 2( ) ( ) ( )

0
0

cos  cos sin

tm m m
L

oel o el el
w wc w c n c nn x

dx d t
L x x L L L

 


             
       

 

 (A20a) 

Note that w is a function of   and x in Eqn. (A20a).  

 

( ) ( )

3 4

2 2( ) ( )

0
0

( )  = cos sin

( )
                cos  sin

m m

el el
n

tm m
L

oel o el

c n c n
a t C t C t

L L

w wc w c n tn x
dx d

L x x L L

 

 


 

               
       

 

    (A20b) 

Substituting the ICs, Eqns (2.27c,d) into (A20b), the coefficient an(t) can be 

attained as follows. 

 
2 2( ) ( )

0
0

( )
( ) cos  sin

tm m
L

oel o el
n

w wc w c n tn x
a t dx d

L x x L L

 


                
       

       (A21) 

Rewriting (A13) with (A21), 

 
2 2( ) ( )

0
1 0

( , ) ~ ( )sin

( )
cos  sin sin

P n

tm m
L

oel o el

n

n x
u x t a t

L

w wc w c n tn x n x
dx d

L x x L L L



  






                   
         



  

  (2.31)
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APPENDIX B  APPROXIMATION OF a(X) IN SECTION 3.3.5 

 
Figure B1: Change of vertical position of a node due to in-plane loading: (a) Before in-plane compression; 

(b) After in-plane compression. 

 

As shown in Fig. B1, the change of core height assuming a corrugation leg as a 

rigid link, 

cos cos
2 2

c
     

     
   

    (B1) 

For small Δθ, Eqn. (B1) is reduced to 

 sin sin
2 2

c
      

      
    

    (B2) 

The width change of the unit-cell, Δu, is given as below. 

2 cos sin
2 2

u
      

      
    

    (B3) 

From Eqns. (B2) and (B3), the kinematic relation between Δc and Δu is  

 tan
2 2

u
c




   
     

   
    (B4) 

Since shortening of the face sheet is involved in the width change of the unit-cell, 

Δu, , 
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 
 

( )

2
2 cos

1

Perp

elu
E






 
      
 

   (B5) 

Substituting (B5) into (B4), 

 
 

( )

2

1
cos tan

2 2 21

Perp

elc

E

 
 



   
        

  (B6) 

Therefore,    ⁄  in Eqn. (B6) is employed as the value of a1 in Eqn. (3.13). 
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APPENDIX C  DETERMINATION OF THE PATCH SIZE 

Consider the size of patch on elastic plates, ab. One of dimensions, b, is 

determined by a geometric dimension: i.e. b=        for the analysis of face plates, 

and b=   for core plates, respectively. On the other hand, the other dimension ‘a’ is 

assumed to be such that Nx is minimized in the eigen problem.  

Eqn. (4.1) in the absence of w0 and the inertia term is given by: 

4 4 4 2 2

4 2 2 4 2 2
2 0x y

w w w w w
D N N

x x y y x y

     
     

      
    (C1) 

Applying Ritz method in Eqn. (C1) with the relationship of Ny=vNx and the 

assumed displacement in Eqn (4.4), Eqn. (C1) becomes Eqn. (C2). 

, , , , , , , , , , 2     0
yx

xx xx xy xy yy yy x x y y
A A A A A

NN
w w dA w w dA w w dA w w dA w w dA

D D
     
        (C2) 

Therefore, Nx is given in terms of a and b. 
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    

    
    

   
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   
    
     

     

   (C3) 

 

Let 
a

x
b

 , and Eqn. (C3) is rewritten as: 

2 4
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2
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3
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4
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D

N
b

x x





 

 
 
  
 

     (C4) 
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To find ‘x’ for minimizing Nx with the fixed b, the following equation (C5) should 

be solved. 

 3 4 2 2 4 3

2

22

4 2

3 3 3
4 16 2 4 4

4 4 2
0

3

4

x

x x x x x x x x
dN D

dx b
x x

 




     
          

       
  

  
  

   (C5) 

For v=0.33 in case of Al6061-T6,   

0.779319
a

x
b

 
  
 

,   (C6a) 

2

,min 2
5.9597x

D
N

b


    (C6b) 

For v=0.3 in case of SS304,   

0.766072
a

x
b

 
  
 

,   (C7a) 

2

2
6.0746x

D
N

b


     (C7b) 

If assuming no constraint on the lateral expansion v=0 (i.e., Ny =0) 

4 3
0.658037

2

a
x

b

 
   
 

   (C8a) 

2

,min 2
7.28547x

D
N

b


    (C8b) 

Compare Eqn(C8b) with the exact value of
2

(min )

2
6.97imized

x

D
N

b


 in uniaxial 

case[100]. 

The eigenproblem of inelastic plates from Becque’s equation is given by 
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  (C9) 

And then, Eqn. (C9) is transformed into (C10) likewise in the elastic analysis. 

, , , , 0 , , , , , , 0t xx xx xy xy yy yy x x x y y yE I w w dA FI w w dA E I w w dA N w w dA N w w dA            (C10) 

From Eqn. (C10), Nx is given using the relationship of Ny=vp Nx, and the assumed 

displacement described in Eqns. (4.4). 
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   (C11a) 

Let x=
a

b

 
 
 

, and then (C11a) is written as 
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To find ‘x’ for minimizing Nx with the fixed b, x should be determined such that 

0xdN

dx
 using (C11b).  

For the material properties of Al6061,  

x=
a

b

 
 

 
0.193916    (C12a) 
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For the material properties of the rate-independent SS304, 

x=
a

b

 
 

 
0.290168    (C12b) 

If assuming no restraint on the lateral expansion, 

4
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tEa
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b E
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    (C12c) 

Compare Eqns. (C12a), (C12b), (C12c) with Eqns. (C6a), (C7a), (C8a). The patch 

size in inelastic plates is less than one half the sizes in elastic plates. It is a reasonable 

derivation in that elastic-plastic plates buckle with shorter wave lengths than those of 

elastic plates. 
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APPENDIX D  FULL FACTORIAL EXPERIMENTAL DESIGN 

Table D-1. Full Factorial experimental design for global buckling response of sandwich columns 

(Perpendicular-to-corrugations) under V=0.1m/s and V=1m/s. 
Exp.

No.. 

h t l w Exp.

No. 

h t l w Exp.

No. 

h t l w 

1 0.5 0.5 4 30 39 0.5 1 50 30 77 0.5 2 30 45 

2 0.5 0.5 8 30 40 0.5 1 60 30 78 0.5 2 40 45 

3 0.5 0.5 12 30 41 0.5 1 4 45 79 0.5 2 50 45 

4 0.5 0.5 16 30 42 0.5 1 8 45 80 0.5 2 60 45 

5 0.5 0.5 20 30 43 0.5 1 12 45 81 0.5 2 4 60 

6 0.5 0.5 25 30 44 0.5 1 16 45 82 0.5 2 8 60 

7 0.5 0.5 30 30 45 0.5 1 20 45 83 0.5 2 12 60 

8 0.5 0.5 40 30 46 0.5 1 25 45 84 0.5 2 16 60 

9 0.5 0.5 50 30 47 0.5 1 30 45 85 0.5 2 20 60 

10 0.5 0.5 60 30 48 0.5 1 40 45 86 0.5 2 25 60 

11 0.5 0.5 4 45 49 0.5 1 50 45 87 0.5 2 30 60 

12 0.5 0.5 8 45 50 0.5 1 60 45 88 0.5 2 40 60 

13 0.5 0.5 12 45 51 0.5 1 4 60 89 0.5 2 50 60 

14 0.5 0.5 16 45 52 0.5 1 8 60 90 0.5 2 60 60 

15 0.5 0.5 20 45 53 0.5 1 12 60 91 1 0.5 4 30 

16 0.5 0.5 25 45 54 0.5 1 16 60 92 1 0.5 8 30 

17 0.5 0.5 30 45 55 0.5 1 20 60 93 1 0.5 12 30 

18 0.5 0.5 40 45 56 0.5 1 25 60 94 1 0.5 16 30 

19 0.5 0.5 50 45 57 0.5 1 30 60 95 1 0.5 20 30 

20 0.5 0.5 60 45 58 0.5 1 40 60 96 1 0.5 25 30 

21 0.5 0.5 4 60 59 0.5 1 50 60 97 1 0.5 30 30 

22 0.5 0.5 8 60 60 0.5 1 60 60 98 1 0.5 40 30 

23 0.5 0.5 12 60 61 0.5 2 4 30 99 1 0.5 50 30 

24 0.5 0.5 16 60 62 0.5 2 8 30 100 1 0.5 60 30 

25 0.5 0.5 20 60 63 0.5 2 12 30 101 1 0.5 4 45 

26 0.5 0.5 25 60 64 0.5 2 16 30 102 1 0.5 8 45 

27 0.5 0.5 30 60 65 0.5 2 20 30 103 1 0.5 12 45 

28 0.5 0.5 40 60 66 0.5 2 25 30 104 1 0.5 16 45 

29 0.5 0.5 50 60 67 0.5 2 30 30 105 1 0.5 20 45 

30 0.5 0.5 60 60 68 0.5 2 40 30 106 1 0.5 25 45 

31 0.5 1 4 30 69 0.5 2 50 30 107 1 0.5 30 45 

32 0.5 1 8 30 70 0.5 2 60 30 108 1 0.5 40 45 

33 0.5 1 12 30 71 0.5 2 4 45 109 1 0.5 50 45 

34 0.5 1 16 30 72 0.5 2 8 45 110 1 0.5 60 45 

35 0.5 1 20 30 73 0.5 2 12 45 111 1 0.5 4 60 

36 0.5 1 25 30 74 0.5 2 16 45 112 1 0.5 8 60 

37 0.5 1 30 30 75 0.5 2 20 45 113 1 0.5 12 60 

38 0.5 1 40 30 76 0.5 2 25 45 114 1 0.5 16 60 
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Table D-1. Full Factorial experimental design for global buckling response of sandwich columns 

(Perpendicular-to-corrugations) under V=0.1m/s and V=1m/s (Continued). 
Exp.

No. 

h t l w Exp.

No. 

h t l w Exp.

No.. 

h t l w 

115 1 0.5 20 60 156 1 2 25 30 197 2 0.5 30 45 

116 1 0.5 25 60 157 1 2 30 30 198 2 0.5 40 45 

117 1 0.5 30 60 158 1 2 40 30 199 2 0.5 50 45 

118 1 0.5 40 60 159 1 2 50 30 200 2 0.5 60 45 

119 1 0.5 50 60 160 1 2 60 30 201 2 0.5 4 60 

120 1 0.5 60 60 161 1 2 4 45 202 2 0.5 8 60 

121 1 1 4 30 162 1 2 8 45 203 2 0.5 12 60 

122 1 1 8 30 163 1 2 12 45 204 2 0.5 16 60 

123 1 1 12 30 164 1 2 16 45 205 2 0.5 20 60 

124 1 1 16 30 165 1 2 20 45 206 2 0.5 25 60 

125 1 1 20 30 166 1 2 25 45 207 2 0.5 30 60 

126 1 1 25 30 167 1 2 30 45 208 2 0.5 40 60 

127 1 1 30 30 168 1 2 40 45 209 2 0.5 50 60 

128 1 1 40 30 169 1 2 50 45 210 2 0.5 60 60 

129 1 1 50 30 170 1 2 60 45 211 2 1 4 30 

130 1 1 60 30 171 1 2 4 60 212 2 1 8 30 

131 1 1 4 45 172 1 2 8 60 213 2 1 12 30 

132 1 1 8 45 173 1 2 12 60 214 2 1 16 30 

133 1 1 12 45 174 1 2 16 60 215 2 1 20 30 

134 1 1 16 45 175 1 2 20 60 216 2 1 25 30 

135 1 1 20 45 176 1 2 25 60 217 2 1 30 30 

136 1 1 25 45 177 1 2 30 60 218 2 1 40 30 

137 1 1 30 45 178 1 2 40 60 219 2 1 50 30 

138 1 1 40 45 179 1 2 50 60 220 2 1 60 30 

137 1 1 50 45 180 1 2 60 60 221 2 1 4 45 

140 1 1 60 45 181 2 0.5 4 30 222 2 1 8 45 

141 1 1 4 60 182 2 0.5 8 30 223 2 1 12 45 

142 1 1 8 60 183 2 0.5 12 30 224 2 1 16 45 

143 1 1 12 60 184 2 0.5 16 30 225 2 1 20 45 

144 1 1 16 60 185 2 0.5 20 30 226 2 1 25 45 

145 1 1 20 60 186 2 0.5 25 30 227 2 1 30 45 

146 1 1 25 60 187 2 0.5 30 30 228 2 1 40 45 

147 1 1 30 60 188 2 0.5 40 30 229 2 1 50 45 

148 1 1 40 60 189 2 0.5 50 30 230 2 1 60 45 

149 1 1 50 60 190 2 0.5 60 30 231 2 1 4 60 

150 1 1 60 60 191 2 0.5 4 45 232 2 1 8 60 

151 1 2 4 30 192 2 0.5 8 45 233 2 1 12 60 

152 1 2 8 30 193 2 0.5 12 45 234 2 1 16 60 

153 1 2 12 30 194 2 0.5 16 45 235 2 1 20 60 

154 1 2 16 30 195 2 0.5 20 45 236 2 1 25 60 

155 1 2 20 30 196 2 0.5 25 45 237 2 1 30 60 
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Table D-1. Full Factorial experimental design for global buckling response of sandwich columns 

(Perpendicular-to-corrugations) under V=0.1m/s and V=1m/s (Continued). 
Exp.

No. 

h t l w Exp.

No. 

h t l w Exp.

No.. 

h t l w 

238 2 1 40 60 279 3 0.5 50 30 320 3 1 60 45 

239 2 1 50 60 280 3 0.5 60 30 321 3 1 4 60 

240 2 1 60 60 281 3 0.5 4 45 322 3 1 8 60 

241 2 2 4 30 282 3 0.5 8 45 323 3 1 12 60 

242 2 2 8 30 283 3 0.5 12 45 324 3 1 16 60 

243 2 2 12 30 284 3 0.5 16 45 325 3 1 20 60 

244 2 2 16 30 285 3 0.5 20 45 326 3 1 25 60 

245 2 2 20 30 286 3 0.5 25 45 327 3 1 30 60 

246 2 2 25 30 287 3 0.5 30 45 328 3 1 40 60 

247 2 2 30 30 288 3 0.5 40 45 329 3 1 50 60 

248 2 2 40 30 289 3 0.5 50 45 330 3 1 60 60 

249 2 2 50 30 290 3 0.5 60 45 331 3 2 4 30 

250 2 2 60 30 291 3 0.5 4 60 332 3 2 8 30 

251 2 2 4 45 292 3 0.5 8 60 333 3 2 12 30 

252 2 2 8 45 293 3 0.5 12 60 334 3 2 16 30 

253 2 2 12 45 294 3 0.5 16 60 335 3 2 20 30 

254 2 2 16 45 295 3 0.5 20 60 336 3 2 25 30 

255 2 2 20 45 296 3 0.5 25 60 337 3 2 30 30 

256 2 2 25 45 297 3 0.5 30 60 338 3 2 40 30 

257 2 2 30 45 298 3 0.5 40 60 339 3 2 50 30 

258 2 2 40 45 299 3 0.5 50 60 340 3 2 60 30 

259 2 2 50 45 300 3 0.5 60 60 341 3 2 4 45 

260 2 2 60 45 301 3 1 4 30 342 3 2 8 45 

261 2 2 4 60 302 3 1 8 30 343 3 2 12 45 

262 2 2 8 60 303 3 1 12 30 344 3 2 16 45 

263 2 2 12 60 304 3 1 16 30 345 3 2 20 45 

264 2 2 16 60 305 3 1 20 30 346 3 2 25 45 

265 2 2 20 60 306 3 1 25 30 347 3 2 30 45 

266 2 2 25 60 307 3 1 30 30 348 3 2 40 45 

267 2 2 30 60 308 3 1 40 30 349 3 2 50 45 

268 2 2 40 60 309 3 1 50 30 350 3 2 60 45 

267 2 2 50 60 310 3 1 60 30 351 3 2 4 60 

270 2 2 60 60 311 3 1 4 45 352 3 2 8 60 

271 3 0.5 4 30 312 3 1 8 45 353 3 2 12 60 

272 3 0.5 8 30 313 3 1 12 45 354 3 2 16 60 

273 3 0.5 12 30 314 3 1 16 45 355 3 2 20 60 

274 3 0.5 16 30 315 3 1 20 45 356 3 2 25 60 

275 3 0.5 20 30 316 3 1 25 45 357 3 2 30 60 

276 3 0.5 25 30 317 3 1 30 45 358 3 2 40 60 

277 3 0.5 30 30 318 3 1 40 45 359 3 2 50 60 

278 3 0.5 40 30 319 3 1 50 45 360 3 2 60 60 
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Table D-2. Full Factorial experimental design for face wrinkling response of sandwich columns compressed 

perpendicular-to-corrugations under V=0.1m/s and V=1m/s. 
Exp. 

No. 

h t l w Exp. 

No. 

h t l w Exp. 

No. 

h t l w 

1 0.5 0.5 5 30 41 0.5 1 80 60 81 0.5 0.5 40 60 

2 0.5 0.5 10 30 42 0.5 1 100 60 82 0.5 0.5 60 60 

3 0.5 0.5 20 30 43 0.5 2 5 30 83 0.5 0.5 80 60 

4 0.5 0.5 40 30 44 0.5 2 10 30 84 0.5 0.5 100 60 

5 0.5 0.5 60 30 45 0.5 2 20 30 85 0.5 0.5 5 30 

6 0.5 0.5 80 30 46 0.5 2 40 30 86 0.5 1 10 30 

7 0.5 0.5 100 30 47 0.5 2 60 30 87 0.5 1 20 30 

8 0.5 0.5 5 45 48 0.5 2 80 30 88 0.5 1 40 30 

9 0.5 0.5 10 45 49 0.5 2 100 30 89 0.5 1 60 30 

10 0.5 0.5 20 45 50 0.5 2 5 45 90 0.5 1 80 30 

11 0.5 0.5 40 45 51 0.5 2 10 45 91 1 1 100 30 

12 0.5 0.5 60 45 52 0.5 2 20 45 92 1 1 5 45 

13 0.5 0.5 80 45 53 0.5 2 40 45 93 1 1 10 45 

14 0.5 0.5 100 45 54 0.5 2 60 45 94 1 1 20 45 

15 0.5 0.5 5 60 55 0.5 2 80 45 95 1 1 40 45 

16 0.5 0.5 10 60 56 0.5 2 100 45 96 1 1 60 45 

17 0.5 0.5 20 60 57 0.5 2 5 60 97 1 1 80 45 

18 0.5 0.5 40 60 58 0.5 2 10 60 98 1 1 100 45 

19 0.5 0.5 60 60 59 0.5 2 20 60 99 1 1 5 60 

20 0.5 0.5 80 60 60 0.5 2 40 60 100 1 1 10 60 

21 0.5 0.5 100 60 61 0.5 2 60 60 101 1 1 20 60 

22 0.5 1 5 30 62 0.5 2 80 60 102 1 1 40 60 

23 0.5 1 10 30 63 0.5 2 100 60 103 1 1 60 60 

24 0.5 1 20 30 64 1 0.5 5 30 104 1 1 80 60 

25 0.5 1 40 30 65 1 0.5 10 30 105 1 1 100 60 

26 0.5 1 60 30 66 1 0.5 20 30 106 1 2 5 30 

27 0.5 1 80 30 67 1 0.5 40 30 107 1 2 10 30 

28 0.5 1 100 30 68 1 0.5 60 30 108 1 2 20 30 

29 0.5 1 5 45 69 1 0.5 80 30 109 1 2 40 30 

30 0.5 1 10 45 70 1 0.5 100 30 110 1 2 60 30 

31 0.5 1 20 45 71 1 0.5 5 45 111 1 2 80 30 

32 0.5 1 40 45 72 1 0.5 10 45 112 1 2 100 30 

33 0.5 1 60 45 73 1 0.5 20 45 113 1 2 5 45 

34 0.5 1 80 45 74 1 0.5 40 45 114 1 2 10 45 

35 0.5 1 100 45 75 1 0.5 60 45 115 1 2 20 45 

36 0.5 1 5 60 76 1 0.5 80 45 116 1 2 40 45 

37 0.5 1 10 60 77 1 0.5 100 45 117 1 2 60 45 

38 0.5 1 20 60 78 1 0.5 5 60 118 1 2 80 45 

39 0.5 1 40 60 79 1 0.5 10 60 119 1 2 100 45 

40 0.5 1 60 60 80 1 0.5 20 60 120 1 2 5 60 
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Table D-2. Full Factorial experimental design for face wrinkling response of sandwich columns compressed 

perpendicular-to-corrugations under V=0.1m/s and V=1m/s (continued). 

 
Exp. 

No. 

h t l w Exp. 

 No. 

h t l w Exp. 

No. 

h t l w 

121 1 2 10 60 161 2 1 100 45 201 3 0.5 60 45 

122 1 2 20 60 162 2 1 5 60 202 3 0.5 80 45 

123 1 2 40 60 163 2 1 10 60 203 3 0.5 100 45 

124 1 2 60 60 164 2 1 20 60 204 3 0.5 5 60 

125 1 2 80 60 165 2 1 40 60 205 3 0.5 10 60 

126 1 2 100 60 166 2 1 60 60 206 3 0.5 20 60 

127 2 0.5 5 30 167 2 1 80 60 207 3 0.5 40 60 

128 2 0.5 10 30 168 2 1 100 60 208 3 0.5 60 60 

129 2 0.5 20 30 169 2 2 5 30 209 3 0.5 80 60 

130 2 0.5 40 30 170 2 2 10 30 210 3 0.5 100 60 

131 2 0.5 60 30 171 2 2 20 30 211 3 1 5 30 

132 2 0.5 80 30 172 2 2 40 30 212 3 1 10 30 

133 2 0.5 100 30 173 2 2 60 30 213 3 1 20 30 

134 2 0.5 5 45 174 2 2 80 30 214 3 1 40 30 

135 2 0.5 10 45 175 2 2 100 30 215 3 1 60 30 

136 2 0.5 20 45 176 2 2 5 45 216 3 1 80 30 

137 2 0.5 40 45 177 2 2 10 45 217 3 1 100 30 

138 2 0.5 60 45 178 2 2 20 45 218 3 1 5 45 

137 2 0.5 80 45 179 2 2 40 45 219 3 1 10 45 

140 2 0.5 100 45 180 2 2 60 45 220 3 1 20 45 

141 2 0.5 5 60 181 2 2 80 45 221 3 1 40 45 

142 2 0.5 10 60 182 2 2 100 45 222 3 1 60 45 

143 2 0.5 20 60 183 2 2 5 60 223 3 1 80 45 

144 2 0.5 40 60 184 2 2 10 60 224 3 1 100 45 

145 2 0.5 60 60 185 2 2 20 60 225 3 1 5 60 

146 2 0.5 80 60 186 2 2 40 60 226 3 1 10 60 

147 2 0.5 100 60 187 2 2 60 60 227 3 1 20 60 

148 2 1 5 30 188 2 2 80 60 228 3 1 40 60 

149 2 1 10 30 189 2 2 100 60 229 3 1 60 60 

150 2 1 20 30 190 3 0.5 5 30 230 3 1 80 60 

151 2 1 40 30 191 3 0.5 10 30 231 3 1 100 60 

152 2 1 60 30 192 3 0.5 20 30 232 3 2 5 30 

153 2 1 80 30 193 3 0.5 40 30 233 3 2 10 30 

154 2 1 100 30 194 3 0.5 60 30 234 3 2 20 30 

155 2 1 5 45 195 3 0.5 80 30 235 3 2 40 30 

156 2 1 10 45 196 3 0.5 100 30 236 3 2 60 30 

157 2 1 20 45 197 3 0.5 5 45 237 3 2 80 30 

158 2 1 40 45 198 3 0.5 10 45 238 3 2 100 30 

159 2 1 60 45 199 3 0.5 20 45 239 3 2 5 45 

160 2 1 80 45 200 3 0.5 40 45 240 3 2 10 45 
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Table D-2. Full Factorial experimental design for face wrinkling response of sandwich columns compressed 

perpendicular-to-corrugations under V=0.1m/s and V=1m/s (continued). 
Exp. 

No. 

h t l w Exp. 

No. 

h t l w Exp. 

No. 

h t l w 

241 3 2 20 45 245 3 2 100 45 249 3 2 40 60 

242 3 2 40 45 246 3 2 5 60 250 3 2 60 60 

243 3 2 60 45 247 3 2 10 60 251 3 2 80 60 

244 3 2 80 45 248 3 2 20 60 252 3 2 100 60 
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Table D-3. Full factorial experimental design for global buckling response of sandwich columns 

compressed parallel-to-corrugations under V=0.1m/s and V=1m/s. 

 
Exp. 

No. 

h t l w Exp. 

 No. 

h t l w Exp. 

No. 

h t l w 

1 0.5 0.5 4 60 31 1.25 1.25 4 60 61 2 2 4 60 

2 0.5 0.5 8 60 32 1.25 1.25 8 60 62 2 2 8 60 

3 0.5 0.5 12 60 33 1.25 1.25 12 60 63 2 2 12 60 

4 0.5 0.5 16 60 34 1.25 1.25 16 60 64 2 2 16 60 

5 0.5 0.5 20 60 35 1.25 1.25 20 60 65 2 2 20 60 

6 0.5 0.5 25 60 36 1.25 1.25 25 60 66 2 2 25 60 

7 0.5 0.5 30 60 37 1.25 1.25 30 60 67 2 2 30 60 

8 0.5 0.5 35 60 38 1.25 1.25 35 60 68 2 2 35 60 

9 0.5 0.5 40 60 39 1.25 1.25 40 60 69 2 2 40 60 

10 0.75 0.75 50 60 40 1.25 1.25 50 60 70 2 2 50 60 

11 0.75 0.75 4 60 41 1.5 1.5 4 60      

12 0.75 0.75 8 60 42 1.5 1.5 8 60      

13 0.75 0.75 12 60 43 1.5 1.5 12 60      

14 0.75 0.75 16 60 44 1.5 1.5 16 60      

15 0.75 0.75 20 60 45 1.5 1.5 20 60      

16 0.75 0.75 25 60 46 1.5 1.5 25 60      

17 0.75 0.75 30 60 47 1.5 1.5 30 60      

18 0.75 0.75 35 60 48 1.5 1.5 35 60      

19 0.75 0.75 40 60 49 1.5 1.5 40 60      

20 0.75 0.75 50 60 50 1.5 1.5 50 60      

21 1 1 4 60 51 1.75 1.75 4 60      

22 1 1 8 60 52 1.75 1.75 8 60      

23 1 1 12 60 53 1.75 1.75 12 60      

24 1 1 16 60 54 1.75 1.75 16 60      

25 1 1 20 60 55 1.75 1.75 20 60      

26 1 1 25 60 56 1.75 1.75 25 60      

27 1 1 30 60 57 1.75 1.75 30 60      

28 1 1 35 60 58 1.75 1.75 35 60      

29 1 1 40 60 59 1.75 1.75 40 60      

30 1 1 50 60 60 1.75 1.75 50 60      

 
  



237 

 

Table D-4. Full factorial experimental design for local plate buckling response of sandwich columns 

compressed parallel-to-corrugations under V=0.1m/s and V=1m/s. 

 
Exp. 

No. 

h t l w Exp. 

No 

h t l w Exp. 

No 

h t l w 

1 0.5 0.5 20 60 8 0.5 0.5 30 60 15 0.5 0.5 40 60 

2 0.75 0.75 20 60 9 0.75 0.75 30 60 16 0.75 0.75 40 60 

3 1 1 20 60 10 1 1 30 60 17 1 1 40 60 

4 1.25 1.25 20 60 11 1.25 1.25 30 60 18 1.25 1.25 40 60 

5 1.5 1.5 20 60 12 1.5 1.5 30 60 19 1.5 1.5 40 60 

6 1.75 1.75 20 60 13 1.75 1.75 30 60 20 1.75 1.75 40 60 

7 2 2 20 60 14 2 2 30 60 21 2 2 40 60 
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APPENDIX E  THE EQUIVALENT CORE STIFFNESS OF THE CORE STRUT 

CLOSEST TO THE FRONT END 

The first core ligament can be modelled as below. 
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Figure E1: The equivalent in-plane core property for the high velocity. 

 

 From the force and moment equilibrium, 
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From the equivalent strain energy relation, 
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Substituting Eqn. (E2) into (E3), the equivalent core stiffness is: 
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The final equation (E4) is consistent with Balawi [96]’s Equivalent C11 for triangle 

honeycomb. For example, the equivalent corrugated core stiffness of Al6061-T6 

corrugated core having relative core density  ̅       is      
            . 
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APPENDIX F : ANALYTIC EXPRESSION FOR PEAK REACTION FORCES IN A 

RATE-INDEPENDENT ELASTIC-PLASTIC MATERIAL WITH TWO HARDENING 

MODULI 

 

According to the rate-independent theory of wave propagation [70-73] in an one-

dimensional rod,  

 
0

V c d



        (F1) 

Rewriting Eqn. (F1) for a rate-independent elastic-plastic material with two plastic 

hardening moduli with the assumption of axial stress-strain behavior as shown in Fig. 

7.14, 
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Substituting Eqns. (F3a),(F3b),(F3c) into Eqn. (F2), 
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Upper bound of back end reaction force can be obtained considering wave 

reflection of elastic stress wave and Eqn. (F1). 
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