
Data Integration with Constraint-based
Genome-scale Models

A Thesis
Presented to

The faculty of the School of Engineering and Applied Science
University of Virginia

In Partial Fulfillment
of the requirements for the Degree

Doctor of Philosophy

by
Paul Anthony Jensen

December 2013

ii

iii

The thesis has been read and approved by the examining committee:

Jason Papin, Ph.D., Advisor
Kevin Janes, Ph.D.

Jeffrey Saucerman, Ph.D.
Daniel Burke, Ph.D.

Stephen Patek, Ph.D.

Accepted for the School of Engineering and Applied Science by

James H. Aylor, Dean
December 2013

iv

Contents

Abstract 1

Acknowledgements 3

1 Introduction 5
1.1 Metabolic modeling . 5
1.2 Formalism . 6

1.2.1 Stoichiometric mass balances . 6
1.2.2 The objective function and Flux Balance Analysis 7
1.2.3 Degeneracy and Flux Variability Analysis . 8
1.2.4 Gene associations . 9

1.3 Outline . 11

2 TIGER 13
2.1 Introduction . 13
2.2 Transcriptional regulatory networks . 14
2.3 Objectives . 15
2.4 Implementation . 15

2.4.1 Creating rules . 16
2.4.2 Rule simplification . 18
2.4.3 Reaction coupling . 18
2.4.4 Model structure . 19
2.4.5 Accessing the MILP solver . 20
2.4.6 Using TIGER . 20

2.5 Results and Discussion . 20
2.5.1 Refining integrated models for Saccharomyces cerevisiae 20

2.6 Conclusions . 22

3 MADE 23
3.1 Introduction . 23
3.2 Approach . 25
3.3 Methods . 25

3.3.1 MADE Representation . 25
3.3.2 Formulating the MILP problem . 26

3.4 Results . 27
3.4.1 Flexibility of Metabolic Subsystems . 30
3.4.2 Incorporating a Transcriptional Regulatory Network 30
3.4.3 Accuracy of MADE . 30

v

vi CONTENTS

3.5 Conclusions . 31

4 MetDraw 33
4.1 Introduction . 33
4.2 Features . 33

4.2.1 Input . 34
4.2.2 Layout Overview . 34
4.2.3 Reaction and subsystem classification . 35
4.2.4 Minor metabolite identification . 35
4.2.5 Metabolite cloning . 35
4.2.6 Reaction layout . 36
4.2.7 Transport and exchange reaction layout . 37
4.2.8 Output and Data Visualization . 38

4.3 Implementation . 38
4.4 Conclusions . 38

5 FALCON 39
5.1 Introduction . 39
5.2 FALCON formalism . 40
5.3 Computational complexity and efficiency . 42
5.4 Identifying correlated enzyme sets . 44
5.5 Conclusions . 45

6 Minireader 49
6.1 Introduction . 49
6.2 Growth profiling of a P. aeruginosa mutant array. 50
6.3 Developing a novel plate reader . 54
6.4 Future work: biofilm monitoring . 56
6.5 Conclusions . 57
6.6 Acknowledgements . 57

7 Summary 59

A Supplementary Computational Methods 61

B Experimental Methods 67

List of Figures

1.1 Sample network with degenerate flux distributions. 9
1.2 Gene-protein-reaction relationships are not one-to-one. 10

2.1 TIGER platform overview. 16
2.2 Structure of TIGER models. 19

3.1 Results of MADE on a prototypic system. 24
3.2 MADE results for 100 randomly selected genes from the S. cerevisiae model. 28
3.3 Average gene expression and flux variability by metabolic subsystem in S. cerevisiae

after a transition from glucose- to glycerol-based respiration. 29

4.1 Visualization of the E. coli metabolic model. 34
4.2 MetDraw rendering of a reaction with multiple major and minor reactants and prod-

ucts. 36
4.3 Nested compartments to position exchange reactions. 37

5.1 FALCON ALR equivalents for simple GPR/reaction pairs. 41
5.2 Size and complexity of FALCON models. 43
5.3 Comparisons between CORES and Coset-derived gene sets. 46

6.1 Workflow for manual phenotypic screening. 51
6.2 Normalized growth rates of PA14 mutants. 52
6.3 PseudoCAP distribution of fitness defective PA14 mutants. 53
6.4 Miniaturized plate reader for phenotypic screening. 55
6.5 A novel device for quantifying biofilm production rate. 56

vii

viii LIST OF FIGURES

List of Tables

2.1 Feasible states for explicit and implicit rules describing a transcriptional regulatory
network. 15

2.2 Gene states for erg11 regulation. 21

4.1 Connectivity rules for reactions based on the number of major reactants (Mr), minor
reactants (mr), major products (Mp), and minor products (mp). 37

ix

x LIST OF TABLES

Abstract

Genome-scale modeling is a powerful tool for quantifying relationships between genetic, metabolic,
and phenotypic factors. The mechanistic detail of these models presents unique opportunities in
metabolic engineering, drug discovery, and disease comprehension. Despite recent advances, several
challenges remain for the genome-scale modeling field. Existing models focus almost exclusively on
metabolism, and few studies integrate other biochemical systems. Models describe all functionality
encoded in an organism’s genome, and tailoring models to specific genetic states is a difficult,
highly specialized process. Large-scale models require equally large datasets for validation, yet few
comprehensive datasets exist (especially for lesser-studied organisms).

This thesis focuses on developing methods to overcome the limitations of current genome-scale
modeling techniques. Herein, I describe novel methods to

– assemble, visualize, and simulate large models

– design instrumentation to rapidly produce genome-scale datasets for model validation

– improve algorithms to leverage high-throughput expression data and refine models for a par-
ticular condition

Together, these advances provide a framework for contextualizing high-throughput data with
genome-scale modeling. Special attention is given to the interpretation of functional genomics
data through the enzymatic architecture underlying the metabolic network.

1

2 LIST OF TABLES

Acknowledgements

This work was possible thanks to the support of many mentors, colleagues, family, and friends. I
am deeply indebted to

- My advisor Jason Papin for his unwavering professional and personal support.

- The members of the Papin lab, especially Jennie Bartell, Kevin D’Auria, Matt Biggs, Anna
Blazier, and Bonnie Dougherty.

- My thesis committee – Kevin Janes, Jeff Saucerman, Steve Patek, and Dan Burke – for their
time, advice, and patience.

- Cheryl Borgman for knowing anything I don’t.

- Brian Helmke for his mentoring with teaching.

- Several undergraduate students for their help in the lab, especially Tom Moutinho and Kyla
Lutz.

- My family and friends for their support during my education.

- My wife Karin, for everything.

3

4 LIST OF TABLES

Chapter 1

Introduction

1.1 Metabolic modeling

Stanley Falkow famously quipped that “the goal of every bacterium is to become bacteria”. Metabolism
lies at the center of microbe’s struggle to produce biomass for the succeeding generation from the
chemicals available in the environment. Intense study over the past century has made metabolism
arguably the most well characterized cellular subsystem.

Metabolic researchers have historically been early adopters of quantitative techniques. The
development of the Michaelis-Menten model of enzyme kinetics in 1913 [1] was among a series
of seminal developments in mathematical enzymology. Biochemists applied mechanistic models
to examine metabolic reactions largely in isolation for the next fifty years [2]. A 1963 paper by
Higgins marks a transition from single enzyme to pathway models as focus shifted from reactions to
small reaction networks [3]. This transition was given a strong theoretical footing with the seminal
development of metabolic control analysis (MCA) by Kacser and Burns in 1973 [4] and Heinrich
and Rapoport in 1974 [5]. For the following two decades, the focus of metabolic modeling remained
largely unchanged – MCA models of individual pathways were built and analyzed using kinetic
data from in vitro enzyme assays [6].

Kinetic modeling’s dominance over metabolic research during much of the 20th century reflects
the technological limitations of era. Enzyme assays were well established and widely accepted,
while the fields of genomics and proteomics were in their infancy. For the last time in history, it
was easier for scientists to characterize the kinetics of a known enzyme than to discover a new one.

The genome sequencing revolution upset the biological information balance. Researchers sud-
denly had access to the complete “parts list” of the bacteria cell. The race to assemble a complete
model of metabolism was on, but a new mathematical framework was necessary. The genome of
the most well-studied bacteria, Escherichia coli, contained hundreds of enzymes with completely
uncharacterized kinetics. A stoichiometric model could be assembled from a list of reactions and
genome annotations, but the paucity of kinetic details prevented a genome-wide extension to MCA.
Instead, researchers turned to constraint-based framework designed by Fell and Small [7]. While
kinetic models use rate laws to drive the conversion of reactants to products, constraint-based mod-
els use reactions to define a space of feasible transformations across the entire network [8]. The
development of this framework along with the parallel assembly of in silico metabolic networks
became the field of constraint-based reconstruction and analysis, or COBRA, modeling. From only
reaction stoichiometry and basic thermodynamic constraints, COBRA models can predict growth
phenotypes in a range of environmental and genotypic states [9].

COBRA models are structural models, derived entirely from the list of genes encoded by an

5

6 CHAPTER 1. INTRODUCTION

organism’s genome [10]. The emergent phenomena of COBRA models are not derived from complex
dynamics or nonlinearities, but instead from the model’s scale. While MCA provides a detailed
model of a small system, COBRA methods rely on a simpler model of a large system. Both models
are mechanistic, albeit with different resolutions.

Despite the successful application of COBRA models to many fields [11], the current framework
is being surpassed by technological advances. Functional genomics provides insight on the dynam-
ics of gene and protein expression. The regulatory structure of enzymes, pathways, and metabolic
flux is encoded in a cell’s transcriptome and proteome; decoding this structure requires a system-
atic approach to reconciling data with our prior knowledge of the network. A genome-scale model
could provide the necessary scaffold for interpreting high-throughput data. However, the structure
of COBRA models ignores or oversimplifies many of the dynamic features of the enzymatic net-
work. Overcoming these limitations is necessary for COBRA modeling to meet the demands of the
functional genomics revolution.

In this thesis, I present several extensions to the COBRA framework with a focus on data inte-
gration. I also describe a suite of software tools to improve model construction, visualization, and
validation. The overall goal of my work is to improve the correspondence between the mathematical
representation of a metabolic network and biological system it describes.

1.2 Formalism

1.2.1 Stoichiometric mass balances

A stoichiometric model describes a set of r reactions that transform m metabolites. For COBRA
models, a metabolite is defined by both a chemical species and its localization. Extracellular
and intracellular glucose, for example, are represented by distinct metabolites in the model. The
independent variables in stoichiometric models are the fluxes vi through each reaction i.

The reaction-centered formalism for COBRA models differs from kinetic modeling frameworks.
Kinetic models consider the concentrations of metabolites as independent variables. The fluxes
in kinetic models are computed from the metabolite concentrations and a parameterized rate law
for each reaction. COBRA models compute fluxes directly without any kinetic parameters. The
results are not dependent on, and contain little information about, the metabolite concentrations.

At steady state, the pool of each metabolite remains at a constant level. The constraint implies
that the net production of a metabolite per unit time must be matched by the net consumption. If
a metabolite is consumed by (is a reactant of) a set C of reactions and produced by (is a product
of) a set P of other reactions, the steady-state assumption is written∑

p∈P
apvp =

∑
c∈C

acvp (1.1)

where ai is the stoichiometric coefficient of the metabolite in reaction i and vi is the steady state flux
through reaction i. Equation (1.1) describes a linear mass balance constraint on a single metabolite.
We can collect these constraints for all m metabolites and r reactions in a single matrix equation

Sv = 0 (1.2)

where v is a vector of reaction fluxes and S is an m × r stoichiometic matrix. The magnitude of
each element sij of S is the stoichiometric coefficient of metabolite i in reaction j. If metabolite i
is a product of reaction j, then sij > 0. If metabolite i is consumed by reaction j, then sij < 0. (If
metabolite i is does not participate in reaction j, then sij = 0.)

1.2. FORMALISM 7

Any flux distribution v satisfying (1.2) is mass balanced. However, not all flux distributions
are biologically feasible. Some reactions may be irreversible, requiring the corresponding elements
of v to be nonnegative. Other thermodynamic and biochemical constraints may limit the upper
and lower bounds of v to a physiologically reasonable range. We can represent the reversibility and
feasibility constraints by requiring that v be bounded by two constant vectors l and u with the
equation

l ≤ v ≤ u (1.3)

It is important to note that the addition of (1.3), or any other constraints, to (1.2) does not violate
the mass balance, since any v that satisfies (1.2) and (1.3) by definition satisfies (1.2), and is
therefore mass balanced.

The stoichiometric constraints in (1.2) prevent the accumulation or depletion of any metabolites
in the model. However, a microbe’s metabolism is continuously consuming extracellular nutrients
and producing biomass. We need a way to allow metabolites to enter and exit the model without
violating equation (1.2). The most common approach is to include exchange reactions in the model.1

An exchange reaction has a single reactant and no products. By convention, a positive flux through
an exchange reaction removes the metabolite from the model. A negative flux through an exchange
reaction adds the metabolite to the model.

1.2.2 The objective function and Flux Balance Analysis

In practice, the number of metabolites (equations) is less than the number of reactions (variables)
so the system of equations in (1.2) and (1.3) is underdetermined.2 Often there exist infinitely many
flux vectors that satisfy (1.2) and (1.3) [12]. We must have a procedure for selecting a physiologically
relevant flux distribution from the model’s solution space. COBRA models use a biological objective
function to select flux distributions [13]. The metabolic networks of many micro-organisms have
evolved to maximize of yield of biomass production given constraints on metabolite availability
[14].

COBRA models define an objective reaction that produces a unit of biomass by consuming a
weighted sum of biomass precursors (ATP, amino acids, lipids, carbohydrates, etc.). Choosing a
feasible flux distribution in the metabolic network is accomplished by optimizing the flux through
the objective reaction (vobj) subject to mass balance and feasibility constraints.3 The optimization
is expressed as the following linear program

max vobj

subject to Sv = 0

l ≤ v ≤ u
(1.4)

1An alternative approach to augmenting the mass balance is to convert equation (1.2) to an inhomogeneous
system Sv = b. If element bi < 0, then |bi| units of metabolite i must be removed from the system. Conversely, if
bi > 0, then bi units must be added. Fixing the metabolites in this manner requires that all exchanges match exactly
the prescribed values in b. Often only a subset of the exchange rates are known, and those that are known have
been measured with uncertainty. For these reasons, the exchange reaction approach is favorable, since the exchange
reactions can be confined to a range of values by equation (1.3).

2Sometimes the number of metabolites m in a model is greater than the number of reactions r. However, almost
always rank(S) < r, so the system is underdetermined. Adding the constraints in equation (1.3) does not fully
determine the system, since these are inequality constraints.

3The biomass reaction in many COBRA models will produce a biomass pseudo-metabolite. In these cases, the
exchange reaction removing the biomass is used as the objective function. This abstraction allows models to several
biomass reactions with varying composition. The biomass reaction for a particular simulation can be selected by
setting appropriate bounds l and u without changing the mathematical objective function.

8 CHAPTER 1. INTRODUCTION

Finding solutions to problem (1.4) is known as Flux Balance Analysis (FBA), the central tool of
COBRA modeling [15]. Any flux vector that solves (1.4) is known as a flux distribution. The flux
through the objective reaction, or the objective value (v∗obj), is the key result of an FBA analysis.
Strictly interpreted, the objective value is the yield of biomass relative to the input fluxes. However,
numerous studies have demonstrated that the objective value is also proportional to the growth rate
of during exponential phase for many microbes [16].4 Thus, it is common to refer to the objective
value as the growth rate, although this nomenclature should be reserved for exponentially-dividing
microbes.

Most algorithms for analyzing COBRA models (including the methods developed in this thesis)
are extensions to the FBA problem [18]. It is convenient to define the following set of constraints
that yield flux distributions that are nearly optimal for the FBA problem

nearFBA(ε) ≡

Sv = 0

l ≤ v ≤ u
vobj ≥ ε v∗obj

(1.5)

If a flux distribution satisfies the nearFBA set of constraints, then the flux through the objective
reaction in this distribution must be within ε of the objective value v∗obj of the FBA problem.
Algorithms that include the nearFBA constraints require that any feasible solution allows the
model to produce nearly optimal yields of biomass, where “nearly” is quantified by the parameter
ε.

1.2.3 Degeneracy and Flux Variability Analysis

A stoichiometric matrix and reaction bounds will produce a unique objective flux through the FBA
algorithm. By contrast, infinitely many flux distributions can produce the same objective flux for
the same FBA problem [12]. Said another way, the scalar objective value v∗obj is unique for an FBA
problem, but the flux vector v is not.

To understand why multiple flux distributions exist for a single FBA problem, consider the
small reaction network in Figure 1.1. After transport into the system, metabolite A is converted to
C, the sole component of biomass. Removal of C is therefore the cellular objective. Metabolite B is
produced by either of two independent pathways: 1.) direct conversion of A to B (reaction R1), or
2.) conversion of A to an intermediate, I, and subsequent conversion of I to B (reactions R2 and R3).
If we restrict the input of A to 10 flux units and solve the FBA problem, we find that the optimal
objective value is 10 flux units (every unit of A is converted to C and removed). This objective value
is unique, while the full flux distribution in the network is not. Without thermodynamic or kinetic
details, we cannot specify the ratio of fluxes in the two pathways that produce B. The software
used to solve the FBA problem will arbitrarily choose a flux distribution. This flux distribution is
based on the numerical, not biological, structure of the network. Erroneously assigning biological
significance to exact values in an FBA-derived flux distribution is the most common abuse of the
modeling framework.

The flux distribution from an FBA problem is degenerate as a whole. However, the model’s
constraints may entirely or partially specify the fluxes through individual reactions. In the example
network shown in Figure 1.1, the flux through reaction R4 is always 10 flux units in any FBA
solution. Any solution with less flux through R4 would have a lower flux through the objective
reaction and would not be an optimal solution. Unlike reactions R1, R2, and R3, the value of R4

4Notable exceptions to these data are fermenting yeast. However, the correspondence between yield and growth
rate appears to hold in models of yeast when oxygen uptake is constrained [17].

1.2. FORMALISM 9

Ainput B
R1

I

R2 CR4
R3

objective

Figure 1.1: Sample network with degenerate flux distributions.

in a flux distribution does offer direct biological insight. We have no certainty in the flux values
for the former reactions, and we know exactly the relative flux through R4.

To quantify the degeneracy of each reaction in a COBRA model, we can compute the minimum
and maximum allowable flux through each reaction in every flux distribution that satisfies FBA
optimality. Rather than examine the entire (potentially infinite) set of optimal flux distributions,
we can cast the range-finding problem as an optimization. For each reaction i, the minimum flux
vi in any optimal solution is found by minimizing vi while requiring the entire flux distribution
is optimal. The optimality requirement can be enforced with the nearFBA constraints (equation
(1.5)), allowing us to compute the flux range with the following algorithm:

range(vi) = [min vi,max vi] subject to nearFBA(1) (1.6)

The range of allowable fluxes for a set of network constraints is termed the reaction’s flux variability.
The algorithm in (1.6) is called Flux Variability Analysis (FVA) [19]. A reaction’s flux variability
may correlate with essentiality, network centrality, and druggability [20]. In our example network
(Figure 1.1), inhibiting the enzyme catalyzing reaction R4 may be an effective strategy to reduce
growth, since any deviation in R4’s flux would necessarily decrease the objective flux. By contrast,
singly targeting any of reactions R1, R2, or R3 may not have an effect on growth, since optimal
flux distributions may exist with low flux through these reactions.

1.2.4 Gene associations

Reactions and fluxes do not exist as physical entities in cells; they cannot be directly manipulated
through experimentation. Instead, only metabolites and the enzymes that transform them can be
perturbed to study or engineer biological systems. Our description of COBRA models has neglected
the important mapping between genes, the enzymes they encode, and the reactions they catalyze.
These relationships are essential for translating between a model’s flux predictions and a cell’s
genetic state.

Enzyme-catalyzed reactions require a set of gene products for any appreciable transformation.
The mapping between genes and reactions is not one-to-one (Figure 1.2). Isozymes can indepen-
dently catalyze reactions. Other enzymes require multiple protein subunits to form a functional
enzymatic complex.

Any reaction associated with more than one gene product is said to have a complex GPR
association. Complex associations are common for metabolic reactions. A COBRA reconstruction
for the yeast Saccharomyces cerevisiae [17] contains 810 enzyme-catalyzed metabolic reactions;
231 (28.5%) of these reactions have complex GPR associations. The most complex GPR in this

10 CHAPTER 1. INTRODUCTION

Figure 1.2: Gene-protein-reaction relationships are not one-to-one. Reaction 1 is catalyzed by
enzyme A. Enzyme B is “promiscuous”, catalyzing either reaction 2 or reaction 3. Both enzymes C
and D are required for catalysis of reaction 4. Reaction 5 can be catalyzed independently by either
enzyme E or enzyme F. The GPR associations for reactions 4 and 5 are complex by definition.

model involves the products of 18 open reading frames. The entire set of GPR rules contains 340
instances of isozyme-like behavior (two proteins both able to fully catalyze a reaction) and 279
different complexes of protein subunits. The nonlinear mapping between genes and reactions adds
complexity to the metabolic network. Incorporating GPR relationships into COBRA simulations
reveals the interplay between genetic states and cellular objectives.

To formalize the GPR associations, each reaction in COBRA model includes a logical GPR rule.
The rule is a Boolean expression stating the gene product(s) necessary to catalyze the reaction. In
COBRA models, each gene is modeled by a binary variable gk. If gk = 1, the gene is expressed
(“on”), and the gene product is available to catalyze the associated reactions. If gk = 0, the gene
is “off”, and no enzyme is available. For standard FBA analyses, genes can occupy only these two
states (on/off). There are no intermediate states denoting levels of transcription or translation. If
a gene is expressed, enough enzyme is available to catalyze any feasible flux satisfying the FBA
constraints.5

Each reaction’s GPR rule is a binary function Rj(g) that combines the genes g with logical
operators and and or. For example, the rule Rj(g) = ga and gb indicates that genes a and b encode
protein subunits. The rule Rj(g) = ga or gb identifies genes a and b as isozymes.

FBA simulations on COBRA models with gene associations follow a two-step procedure. The
process begins with a genetic state describing the subset of genes in the model that are expressed
for a particular set of model parameters (environment, mutations, etc.). In the first step, the rules
for each reaction are evaluated in the context of the genetic state. A reaction is removed from the
model if its rule is not satisfied.6 In the second phase, the “sub-model” containing all reactions
with satisfied rules is solved by FBA.

5Several methods have been proposed to use the continuous reaction bounds to simulate varying levels of gene
expression. The methods to date have not allowed the full complexity of the GPR associations to be included in a
model. I will present a formalism to overcome these limitations in Chapter 5.

6In practice, if Rj(g) = 0, the flux bounds are set as lj = uj = 0. This restriction has the same effect as
removing the reaction from the stoichiometric matrix. Most linear programming solvers will remove these zero-
bounded variables from the model during preprocessing.

1.3. OUTLINE 11

1.3 Outline

Separating GPR evaluation and flux optimization into two sequential stages prevents algorithms
from fully interrogating the relationship between the enzymatic network and the reaction net-
work. A framework exists to consolidate the GPR logic and reaction stoichiometry into a single
optimization problem [21]. In Chapter 2, I generalize this framework to support a wide class of reg-
ulatory interactions. I also present a software package to streamline the development of integrated
metabolic-regulatory models.

The accuracy of COBRA models has recently been improved through the integration of high-
throughput expression data. However, extensions of FBA require that such data be discretized a
priori into sets of genes or proteins that are either “on” or “off”. This procedure requires select-
ing relatively subjective expression thresholds, often requiring several iterations and refinements
to capture the expression dynamics and retain model functionality. In Chapter 3, I present a
method for mapping expression data from a set of environmental, genetic or temporal conditions
onto a metabolic network model without the need for arbitrary expression thresholds. Metabolic
Adjustment by Differential Expression (MADE) uses the statistical significance of changes in gene
or protein expression to create a functional metabolic model that most accurately recapitulates the
expression dynamics.

Metabolic reaction maps allow visualization of genome-scale models and high-throughput data
in a format familiar to many biologists. However, creating a map of a large metabolic model is a
difficult and time consuming process. In Chapter 4, I describe a software package, MetDraw, to
fully automate the map drawing process for metabolic models containing hundreds to thousands of
reactions. MetDraw also overlays high-throughput “omics” data directly on the generated maps.

Approximating genes as binary variables limits COBRA models to simulations of complete gene
knockouts. Examining the effects of more subtle changes in gene expression and enzyme activity re-
quires a new framework wherein continuous variations in the enzymatic networks are coupled to the
reaction network. Such a framework is developed in Chapter 5. The formalism I present preserves
the nonlinear mapping between genes and reactions while retaining the computation efficiency of
linear programming. I also demonstrate how this new framework improves correspondence between
COBRA model predictions and experimental data.

All models depend on experimental data for validation. Genome-scale models require high-
throughput, multi-dimensional datasets with thousands of independent observations. To comple-
ment my computational work, I present a novel device for phenotypic screening in Chapter 6. This
chapter is self-contained and may be read independently.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Tools for integrating genome-scale
models, expression data, and
regulatory networks

2.1 Introduction

Because of the complexity of the gene-protein-reaction (GPR) mappings, early extensions to FBA
were reaction, rather than gene, centric. For example, the OptKnock [22] algorithm removed re-
actions from a FBA model to design a strain of E. coli with optimal production of a metabolic
byproduct. Ideally, OptKnock would operate by removing genes, not reactions, since it is not
straightforward to independently remove reactions from a biological system without genetic manip-
ulations. An optimization using genes as decision variables would require a method for encoding
the GPR logic into a set of linear inequalities. This encoding was developed as SR-FBA [21] us-
ing a mixed integer optimization approach for GPR logic and other Boolean regulatory rules. An
SR-FBA-based approach was later used to develop OptORF, a method to design microbial strains
through gene knockouts and overexpression [23]. Other gene-centric, FBA-related algorithms have
been developed, each using a variation of the SR-FBA method [24, 25, 26]. However, a general soft-
ware platform for coupling GPR rules of arbitrary complexity with a COBRA model using mixed
integer programming is not available. Such a tool would speed the development of new algorithms
by removing the need for researchers to re-implement this complex process.

In this chapter, I will present a software toolbox to automate, simplify, and expand a mathemat-
ical framework for COBRA models with integrated genetic constraints. Rather than focusing only
on GPR integration, I will develop techniques for integrating general, multi-level Boolean equa-
tions with FBA problems. This larger class of equations can be used to describe many molecular
interactions, including a wide class of regulatory effects.

Parts of this chapter are adapted from: Jensen PA, Lutz KA, Papin JA. TIGER: Toolbox for integrating genome-
scale metabolic models, expression data, and transcriptional regulatory networks. BMC Systems Biology. 2001, 5:147.

13

14 CHAPTER 2. TIGER

2.2 Transcriptional regulatory networks

The accuracy of COBRA models has been improved through the addition of transcriptional reg-
ulatory networks (TRNs) [27, 28]. The TRN is a set of rules that relate the expression states
of metabolic genes to various genetic and environmental cues. Because of the paucity of kinetic
details available to describe these relationships, genome-scale models also represent regulatory and
environmental cues in a binary, “on” or “off” format. This approach allows TRNs to be described
with Boolean logic.

The first genome-scale TRNs were applied to models of Escherichia coli [27] and Saccharomyces
cerevisiae [28] metabolism. The rules were written in standard Boolean format, where each Boolean
variable is given by an explicit function of the other variables. This method creates two significant
problems. First, the TRN uses the absence or presence of metabolites in the extracellular envi-
ronment to calculate which genes (and, subsequently, reactions) will be active. However, certain
metabolic pathways secrete byproducts into the extracellular space, thereby changing the environ-
ment. Studies with the E. coli and S. cerevisiae TRNs used an iterative approach [29] – applying the
TRN to the metabolic network in a starting environment, determining which metabolites would be
secreted, and then repeating the process in the new environment until the environment no longer
changes between iterations. A more straightforward approach would be to solve the TRN and
metabolic networks simultaneously by formulating both problems in a single optimization.

A second obstacle with TRN integration is that the explicit rule formulation used by previous
studies [29] can over-constrain the metabolic model. (In explicit rules, each gene’s state can be
calculated unambiguously from the state of all other genes and metabolites.) Consider the following
subnetwork of the iMH805 TRN for S. cerevisiae [28]:

mig1 � mth1

��
rgt1 gln-L�

(2.1)

Transcription factor mth1 is repressed by mig1 and promotes expression of rgt1. Extracellular
L-glutamine (gln-L) represses rgt1 expression. The original iMH805 study required this set of
constraints be described with the following set of explicit rules [28]:

not MIG1⇔ mth1

MTH1 and (not gln-L)⇔ rgt1

An implicit representation of (2.1) is

MIG1⇒ not mth1

MTH1⇒ rgt1

gln-L⇒ not rgt1

The three transcription factors and one metabolite in these rules can be arranged in 24 = 16
possible states. As shown in Table 2.2, only four of the sixteen states are feasible for the explicit
rules. The implicit formulation of the same system allows four new states and makes one of the
explicit states infeasible. This example illustrates that two mathematical descriptions of the same
biological process can lead to distinct model predictions. The model developer should be free to
choose the rule formulation that best encompasses the underlying biology. However, implicit rules
require simultaneous solution with a metabolic model and are often more difficult to parse into a

2.3. OBJECTIVES 15

State Feasibility

mig1 mth1 rgt1 gln-L Explicit Implicit

0 0 0 0 •
0 0 0 1 •
0 0 1 0 •
0 0 1 1
0 1 0 0
0 1 0 1 •
0 1 1 0 • •
0 1 1 1
1 0 0 0 • •
1 0 0 1 • •
1 0 1 0 •
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Table 2.1: Feasible states for explicit and implicit rules describing the transcriptional regulatory
network (2.1). Rules are taken from the S. cerevisiae regulatory network model iMH805 [28].

mixed integer linear program. As a result, previous TRN integration studies have relied solely on
explicit rules to describe regulatory interactions [29]. A software platform that can correctly parse
both explicit and implicit rules would ease the development of large TRN models.

2.3 Objectives

Software suites have been developed to enable COBRA analyses. Packages such as CellNetAnalyzer
[30], the BioMet Toolbox [31], and the COBRA Toolbox [32] implement several useful algorithms
for studying COBRA models and TRNs. However, to date, no single software platform has been
developed to 1.) convert COBRA models and TRNs into integrated optimization problems, 2.)
analyze these integrated models with existing algorithms to incorporate high-throughput expression
data, and 3.) allow users to easily develop new algorithms for the integrated models.

To overcome these limitations, we present a Toolbox for Integrating Genome-scale metabolism,
Expression, and Regulation (TIGER). TIGER automatically converts a list of implicit or explicit
GPR and TRN rules into a set of linear inequalities; these equations are integrated with an existing
COBRA model. The software allows rules to be written in a generalized Boolean format, enabling
TRN logic to more accurately reflect the underlying biology. We demonstrate how this increased
expressivity can overcome inconsistencies in existing TRN models.

2.4 Implementation

The primary functions of TIGER are shown in Figure 2.1. TIGER converts a GPR and additional
regulatory rules into an equivalent mixed integer linear program (MILP). The MILP constraints

16 CHAPTER 2. TIGER

Figure 2.1: TIGER platform overview. TIGER converts Boolean rules to MILPs. Rules are
first simplified by substitution and converted into a system of linear inequalities. The rules are
optionally attached to a COBRA model by coupling indicators of reaction participation (Ri) to the
reaction flux vi. In addition to serving as a platform for developing new algorithms, TIGER models
can be integrated with high-throughput expression data to generate context-specific models using
variations on the GIMME, iMAT, and MADE algorithms.

are added to a COBRA metabolic model to create a TIGER model that combines metabolism,
GPR associations, and transcriptional regulation. This integrated model serves as a platform for
applying many gene-centric extensions to FBA, including algorithms that incorporate “omics” data
for model refinement. In this section, we describe how the rules parsed by TIGER are constructed,
and how they are converted to an MILP. Sample files depicting a COBRA model, GPR, and TRN
are provided in the “test/samples” directory of the TIGER distribution.

2.4.1 Creating rules

These GPR relationships can be described as a Boolean expression using the standard operators
and and or. For example, a reaction that is catalyzed by either of two isozymes, the second of
which is composed of two subunits, would have a GPR of the form “isozyme1 or (isozyme2a and
isozyme2b)”. Two expressions are joined with an implication operator (⇒ or ⇔, corresponding to
“if” and “if and only if”), to form a rule. For GPR associations, rules are formed as “GPR ⇔
reaction”, where reaction is an indicator variable that constrains the flux through a reaction to be
zero when the GPR expression is false.

TIGER expressions allow additional features to describe logical relationships that are more
complex than those typically found in GPRs. The not operator allows logical negation, which is of-
ten used to construct rules for transcriptional repression. Expressions can also contain conditionals
that compare the numerical values of individual variables. If a gene g was known to be expressed
when glucose uptake is greater than 10 flux units, this relationship could be represented by the
rule “glc ex > 10 ⇒ g”, where “glc ex” is the glucose exchange reaction in the metabolic model.
Any two expressions of arbitrary complexity can be combined as a rule and parsed by TIGER.

2.4. IMPLEMENTATION 17

The grammar used by TIGER for rules was designed to resemble logical operations in common
programming languages and to be compatible with the GPRs of widely-used COBRA models. A
complete description of the TIGER syntax appears in Appendix A.

Some transcriptional regulators, such as the response of crp to cAMP in E. coli, display multiple
levels of activity and cannot be easily described with Boolean logic [27]. Rather than require users
to create several variables describing each state of activation, TIGER allows multilevel variables.
If a transcription factor t activates target genes glow at low levels of expression and ghigh at high
levels of expression, then this relationship could be described with the rules

(t = 1)⇒ glow (2.2)

(t = 2)⇒ ghigh (2.3)

where t = 0, 1, and 2 corresponds to no, low, and high expression. Logical operators have a different
interpretation when applied to multilevel variables. If proteins x and y form a promoter complex
for expression of gene z, then the corresponding rule for z expression would be “x and y ⇒ z”,
since both x and y are required for z transcription. If x and y were multilevel, one would assume
that z expression would be proportional to the promoter subunit in lower abundance, since this
species would limit the amount of complete promoter complex that could be formed. Thus, the
and operation often corresponds to a minimization:

x and y ≡ min{x, y} (2.4)

The or operation would be used in situations where either factor can independently induce expres-
sion. In this situation, the species in higher abundance determines the target gene’s transcription
level. TIGER implements the multilevel or as a maximization:

x or y ≡ max{x, y} (2.5)

The not operator can have two interpretations when applied to multilevel variables:

not x ≡

{
x > 0 pseudo-binary

x̄− x inversion, x ∈ {0, . . . , x̄}
(2.6)

where x ∈ {0, ..., x̄}. The first case (pseudo-binary) regards any nonzero value as true, regardless
of the number of levels the variable may occupy. The second case (inversion) requires that the
value of x and the quantity not x always sum to the maximum value that x can occupy. In this
case, not x is a measure of how far x is from its upper bound. Users are able to select the pseudo-
binary or inversion representation depending on which interpretation is a better approximation of
the biological context. For example, consider a gene/repressor relationship R ⇒ not G, where the
repressor R can take on three biologically distinct levels – “off,” “low,” and “high”. If both “low”
and “high” levels of R prevent any expression of G, then the pseudo-binary not operator would be
appropriate as G is off whenever R is not “off”. However, if G also has the same three levels of
expression, then the inversion interpretation of the not operator is more appropriate. This choice
implies that

R = off → G = high (2.7)

R = low → G = low (2.8)

R = high → G = off (2.9)

Any variable in a TIGER model can be declared with multiple levels. Such declarations are
made when rules are added to a model using the add_rule function in two ways: 1.) setting the
default upper bound to all variables to any integer greater than one, or 2.) providing a list of
variable names and a set of upper and lower bounds.

18 CHAPTER 2. TIGER

2.4.2 Rule simplification

Simple Boolean rules can be represented by systems of linear inequalities of integer variables [33].
A general Boolean rule can be converted by the following procedure to a set of simple rules before
conversion to an MILP.

We define an “atomic” expression as either a variable (x) or a negated variable (not x). If a
not operator appears before an expression that is not atomic, TIGER applies DeMorgan’s laws to
move the negation onto atomic expressions (e.g., not (x and y) becomes the equivalent expression
(not x) or (not y)). A simple rule then conforms to one of the following patterns

x (⇒ | ⇔) z (2.10)

x and y (⇒ | ⇔) z (2.11)

x or y (⇒ | ⇔) z (2.12)

x 〈op〉 y (⇒ | ⇔) z (2.13)

where x, y, and z are atomic, and 〈op〉 is a conditional operator (≤, ≥, etc.). Non-simple rules are
converted to simple rules through a series of recursive substitutions. For example, the rule

(x or (not y)) and z ⇒ w (2.14)

is not simple, since the expression x or (not y) is not atomic. By defining an indicator variable I,
which is true if and only if the expression x or (not y) is true, equation (2.14) can be written as
two simple rules:

x or (not y)⇔ I (2.15)

I and z ⇒ w (2.16)

The bounds of I are determined by the bounds of x and y. If x ∈ {0, . . . , x̄} and y ∈ {0, . . . , ȳ},
then I ∈ {0, . . . , Ī}, where

Ī =

{
max{x̄, ȳ} for x or y

min{x̄, ȳ} for x and y
(2.17)

Thus, if x and y are binary, x̄ = ȳ = 1, so I is binary as well.
TIGER applies the above substitutions recursively, creating indicator variables as necessary

until all rules are simple. Each simple rule is converted to a set of linear inequalities that are added
as constraints to the model structure. If a variable name already appears in the model, TIGER
assumes that these variables represent the same quantity and thus allows new rules to be added to
an existing model without recompiling previous rules. At the same time, TIGER creates variables
to substitute for negated variables. For efficiency, TIGER ensures that only one negated variable is
created for each original variable, regardless of the number of times the negated expression appears
in the set of simple rules. Details of the conversion between simple rules and inequalities, along
with methods for handling conditionals, are provided in Appendix A.

2.4.3 Reaction coupling

If the GPR expression for a reaction is not satisfied, the reaction is not allowed to carry flux. To
enforce this relationship during an optimization, a set of discrete variables Ri are defined, where
Ri = 0 if the GPR for reaction i is not satisfied, and Ri > 0 otherwise. To enforce the GPR’s effect
on flux, TIGER adds the constraint

vmin
i Ri ≤ vi ≤ vmax

i Ri (2.18)

where vi is the flux through the ith reaction, with lower and upper bounds vmin
i and vmax

i .

2.4. IMPLEMENTATION 19

Figure 2.2: Structure of TIGER models. TIGER models are represented as Matlab structures.
Boxes indicate size and orientation of the fields. Black text denotes TIGER field names. Gray
areas contain data from the COBRA model, with white text indicating the relevant COBRA field
names. Border color indicates data type: black → double-precision matrix, blue → cell array of
strings, red → character array.

2.4.4 Model structure

TIGER models are represented as Matlab structures. The layout of this structure is shown in
Figure 2.2. The structure contains fields obj, A, b, lb, and ub that correspond to the values in the
following MILP problem:

min obj′x

subject to

Ax (≤ | = | ≥) b

lb ≤ x ≤ ub

The type of (in)equality for each constraint in A is determined by the character vector ctype. The
type of variable for each entry in x is specified by the field vartype, where ‘c’, ‘b’, and ‘i’ denote
continuous, binary, and general integer variables. Reaction fluxes are continuous variables, while
all other variables are either binary or integer depending on the corresponding upper bound. The
fields rownames and varnames contain descriptive names of the constraints and variables, stored
as cell arrays of strings. Functions in TIGER allow variables to be interchangeably referenced by
their name, column index, or through Matlab’s logical indexing features.

The format for TIGER models is designed for compatibility with the model structure for the
COBRA Toolbox [32]. TIGER can use a COBRA Toolbox model as a starting point for converting
a genome-scale reconstruction; therefore, any model in a file format supported by the COBRA
Toolbox (SBML, Simpheny, etc.) can be converted to a TIGER model.

20 CHAPTER 2. TIGER

2.4.5 Accessing the MILP solver

TIGER uses a custom Matlab class CMPI (for Common Mathematical Programming Interface) to
create and solve mathematical programming problems. CMPI defines a consistent structure for
MILP (and mixed-integer quadratic programming, MIQP) problems, providing independence from
the underlying MILP solver software. TIGER currently supports the CPLEX, Gurobi, and GLPK
(via GLPK Mex) software packages, all of which are freely available for academic use. Porting
TIGER to use a new solver requires modifying only the CMPI method solve_mip to specify the new
interface. CMPI also provides a standardized method for configuring common solver parameters
(maximum solution time, optimality and feasibility tolerances, etc.).

Previous work has indicated that the computation time of some FBA-related algorithms, such as
Flux Variability Analysis [19], can be reduced by saving information about the problem structure
between calls to the MILP solver [34]. CMPI provides a method, solve_multiple_milps, to
preserve the solver state between successive calls to the CPLEX optimizer and reduce runtime in
this manner. (Gurobi and GLPK currently do not support this feature in their Matlab interfaces.)
If the CPLEX optimizer is not installed, CMPI will automatically make successive calls to the
installed optimizer. While this removes the potential speed increase from using solver restarts, it
allows TIGER code to remain solver independent and portable.

2.4.6 Using TIGER

TIGER source code and installation instructions are available online at http://bme.virginia.

edu/csbl/downloads/ or http://csbl.bitbucket.org/tiger. All functions in the toolbox are
documented using Matlab’s “help” facilities. Complete documentation and a step-by-step tutorial
are also available on the TIGER website. The software includes a testing suite to verify the
installation. These tests contain examples that build a TIGER structure from a simple COBRA
model, add a set of TRN rules, call a MILP solver, and display the solution.

2.5 Results and Discussion

2.5.1 Refining integrated models for Saccharomyces cerevisiae

TIGER was used to couple the 1266 reactions in iND750 [17], a genome-scale model of Saccha-
romyces cerevisiae metabolism, with 750 metabolic genes. The resulting TIGER model contained
4498 constraints in 3214 variables. A model of S. cerevisiae transcriptional regulation, iMH805
[28], was added. The additional 805 rules contributed 1057 constraints and 562 variables to the
TIGER model. The conversion took 53.66 s for iND750 and 20.31 s to add the TRN using an Intel
3.2 GHz i7-quad core processor running Linux.

As mentioned above, previous methods for integrating TRNs involve an iterative process, alter-
nating between calculating gene states from a given environment and determining an environment
based on metabolic byproducts [29]. However, the multiple layers of trascriptional regulation may
require several iterations of this method to reach a stable gene state. The number of iterations
to reach a stable state varies by environment and cannot easily be determined a priori [35]. In
fact, some feedback mechanisms in TRNs may lead to a stable cycle of gene activation/inactivation
rather than a single gene state. TIGER solves the TRN and FBA problems simultaneously, so the
resulting gene state is always stable (or an optimal state inside a stable cycle).

Applying large-scale TRNs to COBRA models may result in infeasible models, i.e., models
unable to produce any biomass. This is often due to a small number of rules that turn off reactions
that are essential for biomass production. Previous work has developed techniques for finding which

2.5. RESULTS AND DISCUSSION 21

Iteration

Start 1 2 3 4 Rule

O2[e] 1 1 1 1 1
glucose[e] 1 1 1 1 1

hap1 0 1 1 1 1 O2[e] or not ROX1
rox1 0 0 1 1 1 O2[e] and HAP1
erg11 1 1 1 0 0 O2[e] and HAP1 and (not ROX1)

erg11 1 1 1 1 1 O2[e] and HAP1 and (high o2 or not ROX1)

Table 2.2: Gene states for erg11 regulation. To start, all transcription factors are assumed to
be “off”, and all metabolic genes are “on”. The extracellular environment contains only glucose
(glucose[e]), oxygen (O2[e]), and essential salts and minerals. Each iteration calculates the next
gene state based on the current state of metabolites in the environment and transcription factors.
After three iterations, expression of erg11 turns off, unless a modified rule is used that account
for high oxygen uptake. The modified rule (shown below the double line) is more consistent with
the results in Turi & Loper [36] Rules are taken from the S. cerevisiae regulatory network model
iMH805 [28].

rules create the model infeasibility [25]. TIGER includes the function find_infeasible_rules to
identify rules that prevent feasible solutions to the resulting MILP. Given a model and a set of
rules that prevent a feasible solution, find_infeasible_rules creates a MILP that preserves the
logic of the rules but allows each rule to be artificially satisfied. The objective of this MILP is to
minimize the number of rules that must be artificially satisfied while finding a feasible solution for
the model. (Details of this process are available in Appendix A.)

Analysis by TIGER reported that the combined iND750/iMH805 metabolic and TRN net-
work was unable to produce biomass under aerobic conditions in a glucose minimal media. Since
S. cerevisiae is well-known to grow in this environment, I used TIGER’s find_infeasible_rules
function to identify the following three rules that prevented growth:

O2[e] or (not ROX1)⇔ hap1 (2.19)

O2[e] and HAP1⇔ rox1 (2.20)

glucose[e] and HAP1 and (not ROX1)⇔ erg11 (2.21)

The product of gene erg11, lanosterol 14α-demethylase, is an essential enzyme for the production
of ergosterol, a main sterol in S. cerevisiae [36]. This gene is essential in the iND750 metabolic
model and must remain “on” during aerobic growth on glucose. However, the stable gene state for
erg11 in the above rules is always “off” after three iterations, as described in Table 2.2. Because
the iMH805 study used the results of the second iteration as the final gene state, this inaccuracy
was unnoticed.

Rule (2.21) was originally derived from Turi & Loper [36]. Re-examination of this manuscript
revealed that while ROX1 represses erg11, complete repression is only observed under low oxygen
conditions. To incorporate these findings, we create an indicator “high o2” that is true if and only
if the cell uptakes more than 10% of the maximum oxygen consumption rate. This relationship is
expressed as

high o2⇔ EX o2(e) < −0.244 (2.22)

where “EX o2(e)” is the iND750 name for the oxygen exchange reaction, and the maximum oxygen

22 CHAPTER 2. TIGER

uptake rate for growth on glucose is 2.44 mol/(g dry cell weight)/h (negative flux through exchange
reactions indicate uptake by the cell). Rule (2.21) for erg11 expression was re-written to only exhibit
ROX1 repression under low oxygen conditions:

glucose[e] and HAP1 and (high o2 or not ROX1)⇔ erg11 (2.23)

The set of refined rules (2.20,2.21,2.23) reproduces the correct growth phenotype in aerobic glucose
conditions. This example demonstrates a three-step procedure for refining existing TRN models
using TIGER: 1.) apply the existing TRN to a COBRA model, 2.) use the find_infeasible_rules
function to identify rules that cause the model to differ from a known phenotype, and 3.) re-examine
the evidence for these rules and make appropriate modifications. As shown in the previous example,
new biological information can often be incorporated into existing rules using TIGER’s support for
complex logical expressions.

2.6 Conclusions

I have presented TIGER, a software platform for converting generalized Boolean and multilevel rules
to mixed-integer linear programs, and coupling these rules to genome-scale models of metabolism.
The flexibility of TIGER’s generalized rule format allows for a more accurate description of biolog-
ical processes such as catalysis by isozymes and multi-meric proteins, metabolic flux control, and
transcriptional regulation. These features were used to identify and correct inconsistencies within
an existing TRN model of Saccharomyces cerevisiae. I have also demonstrated how TIGER can
be used as a starting point for implementing and improving existing algorithms for genome-scale
analysis.

In addition to adding implementations of other gene-centric algorithms to TIGER, I am ex-
ploring methods to improve the solution efficiency of the generated MILP. Possible strategies in-
clude exploiting indicator constraints, specially-ordered-sets (SOS), and other solver optimizations
through CMPI.

Chapter 3

Creating context-specific metabolic
models from gene expression data

3.1 Introduction

Genome-wide transcriptional regulatory networks (TRNs) can be used to predict the likely “on”
or “off” state of metabolic genes as a function of environmental factors. Unfortunately, complete
TRNs are only available for a limited number of organisms (including Escherichia coli [27] and
Saccharomyces cerevisiae [28]). Other reconstructions must instead rely on experimental measure-
ments (typically from gene expression microarrays) to determine the appropriate gene states, but
this approach suffers from two complications. First, classifying reactions as “on” or “off” requires
setting a threshold in the continuous expression levels of the associated genes; such thresholds
cannot be accurately determined from measured mRNA levels alone. Recent evidence indicates
that such a correlation between transcript levels and metabolic reaction activity does exist [37].
However, determining a specific threshold above which microarray measurements imply physio-
logically appreciable activity in the corresponding metabolic reaction is an unresolved problem.
Second, these thresholds are not independent, since functioning metabolic reconstructions require
a minimum set of reactions to be active in each condition, regardless of any apparent change in
the underlying gene expression data. Especially when considering decreases in expression levels,
the choice to fit these data by inactivating the corresponding reaction must be balanced with the
functional effects of removing a reaction from the metabolic network.

An early attempt at reconciling gene expression data with a FBA model was the GIMME
algorithm [38]. Using a set of user-supplied thresholds for the transition of each gene from “on” to
“off,” GIMME iteratively re-activated “off” reactions (by turning on genes below their threshold)
until a functioning model was obtained. While GIMME did produce functioning FBA models, the
method required the a priori determination of expression thresholds.

A more recent approach [39] used the expression thresholds in previously published databases
to classify reactions as either highly, moderately, or lowly active. After choosing a threshold for
the minimum flux through a highly active reaction, a mixed-integer linear program (MILP) was
formulated to calculate a steady-state flux distribution that maximized the number of highly (lowly)
expressed reactions that carried at least (not more than) the threshold flux. All such reactions were

Parts of this chapter are adapted from: Jensen PA, Papin JA. Functional integration of a metabolic network
model and expression data without arbitrary thresholding. Bioinformatics. 2011, 27(4):541-7.

23

24 CHAPTER 3. MADE

Figure 3.1: Results of MADE on a prototypic system. (A) After transport facilitated by the gene
product of input, metabolite A is converted to B by isozyme products of left or right before being
removed through the objective reaction. (B) Measured expression data for each gene in the system,
and the corresponding changes in expression (-1 and 1 indicate decreases and increases, respectively,
and 0 represents no significant change). (C) Challenges with functional integration. Although input
expression decreases, it must always remain “on” for a functioning model. It is not clear from the
expression data whether right should be first expressed at 2 or 4 hours. (D) MADE finds the best
functional model that reproduces the observed expression changes. The resulting model indicates
that A is transformed to B by the product of left at early times. After 2 hours the flux is re-directed
through the reaction catalyzed by right ’s product.

assumed to be active (inactive). Although this approach was successfully applied to a reconstruction
of the human metabolic network, the same technique would not necessarily guarantee that the set of
active reactions could produce the necessary objective flux in microorganisms with a more defined
objective function. Additionally, determining the state of each reaction does not uniquely determine
the expression state of each gene in the reconstruction. (An active reaction, for example, could be
activated if either of two genes, each encoding an isozyme, were expressed.)

In this chapter, I present a method for de novo determination of a functional, binary expression
state for all genes in a metabolic reconstruction using experimentally-derived expression data. My
algorithm, Metabolic Adjustment by Differential Expression (MADE), uses an optimization-based
approach to create a sequence of binary expression states that reflect the most statistically signifi-
cant changes in the series of gene expression measurements; it does not require the use of arbitrary
expression thresholds for each gene. The optimization is constrained to produce only functioning
models by simultaneously imposing a minimum value on the system’s metabolic objective. MADE
is formulated as a single MILP problem using the TIGER software described previously.

3.2. APPROACH 25

3.2 Approach

MADE relies on expression data from two or more conditions to determine the best-fitting gene
states. (Again, “conditions” can be any set of environmental, genomic, or temporal data.) To
illustrate, consider the simple metabolic system in Figure 3.1a. The product of the gene input
facilitates the transport of metabolite A into the system, after which it undergoes transformation
into B, catalyzed by either of two isozymes – the products of genes left and right. Production of
B is assumed to be the metabolic objective. This example system receives an external stimulus,
and the transcriptional response is measured for each gene at 0, 2, and 4 hours, as summarized in
Figure 3.1b.

As indicated by the expression data, the expression levels of genes input and left decrease
between 0 and 2 hours; they remain at this lower level of expression until the 4 hour timepoint.
Expression of the enzyme Right appears to increase between each set of timepoints. The challenges
of converting these data into a binary gene state are illusted in Figure 3.1c. As a first approximation,
having input and left “on” at 0 hours and “off” at 2 and 4 hours matches the overall expression
pattern. However, the gene product of input is always necessary for a functioning model, so neither
of the resulting 2 or 4 hour gene states is feasible. Finding a binary representation for the gene
right is also not straightforward. The continuous expression levels increase during each transition,
but a binary approximation can only transition from “off” to “on” once. It is unclear whether right
should be actively expressed beginning at 2 or 4 hours.

Figure 3.1d demonstrates the results of the MADE approach. Consistent with the measured
expression, left turns “off” between 0 and 2 hours, remaining in that state for the final timepoint.
Although input expression decreases significantly, MADE leaves the gene “on” for the entire time
course because of its essentiality. It is assumed that while mRNA expression of input has decreased
by 2 hours, the functional abilities of the gene product must be preserved to facilitate transport
of a necessary metabolite. Finally, MADE activates right transcription at 2 rather than 4 hours,
using the greater statistical significance of the increase between 0 and 2 hours as evidence for
this approximation. The resulting model is functional at all timepoints and suggests that the
metabolic system initially routes flux through the Left-catalyzed pathway and transitions to the
Right-catalyzed pathway after 2 hours.

3.3 Methods

3.3.1 MADE Representation

Given a sequence of measured mean expression levels {e1, e2, . . . , en} for a gene, a sequence of
differences {d1→2, d2→3, . . . , dn−1→n} can be defined as

di→i+1 =

+1 ei < ei+1

0 ei = ei+1

−1 ei > ei+1

(3.1)

For example, the value of d1→2 signifies that the mean expression of the gene significantly increases
(+1), decreases (-1), or remains constant (0) between conditions 1 and 2. Statistical significance
is determined by p1→2, the p-value corresponding to the confidence of assigning the gene to one of
the cases in Equation 3.1.

MADE finds a sequence of binary expression states {x1, x2, . . . , xn}, xi ∈ {0, 1} such that the
differences between successive states (xi+1 - xi) most closely match the corresponding differences in

26 CHAPTER 3. MADE

the mean expression levels di→i+1. Because the binary representation of gene expression assumed
by FBA models cannot account for all possible expression patterns, MADE uses the statistical
significance of the differences to create the most probable approximation. For example, consider
a gene with mean expression levels (over four timepoints) of {10, 11, 65, 109}. If the calculated
differences were {0, +1, +1} with p-values {0.02, 0.048, 0.0012}, an exact binary representation of
this sequence is not possible, since the gene must increase over two consecutive intervals. MADE
would choose the binary expression sequence {0, 0, 0, 1} over {0, 0, 1, 1}, since the increase between
timepoints 3 and 4 is more statistically significant than the increase between timepoints 2 and 3.

More formally, binary expression sequence returned by MADE is computed as the

arg min
x∈X

n−1∑
i=1

w(pi→i+1)|di→i+1 − (xi+1 − xi)| (3.2)

where n is the number of conditions, X ⊂ {0, 1}n is the set of all gene expression states that allow
functioning FBA models, and w(pi→i+1) is a weighting function that assigns larger weights to more
significant p-values (for example, w(p) = − log p). The absolute value in the summand measures the
discrepancy between the binary transitions and expression differences. Binary sequences that show
an increase or decrease when the measured expression indicates no change (or vice-versa) incur a
“penalty” of w; binary sequences that increase when expression data decrease (or vice-versa) are
penalized by 2w.

3.3.2 Formulating the MILP problem

For each transition between conditions, the binary variables x representing the expression state
of the metabolic genes are partitioned into three sets I , D , and C , corresponding to increasing,
decreasing, or constant expression between the two conditions. The optimization objective f for
this transition is the weighted sum

fi→i+1(x) =
∑
x∈I

w(pxi→i+1)(xi+1 − xi)

+
∑
x∈D

w(pxi→i+1)(xi − xi+1)

−
∑
x∈C

w(pxi→i+1)∆xi,xi+1

(3.3)

where ∆xi,xi+1 is a binary variable that takes the value 0 when xi = xi+1 and 1 otherwise; this
definition is enforced by adding the Boolean constraint ∆xi,xi+1 = (xi XOR xi+1).

The weights w(p) were calculated as (− log p), but using other functions that mapped smaller p-
values to a higher weight, e.g. w(p) = 1−p, did not significantly change the results. The logarithmic
transformation was chosen to minimize ill-conditioning for highly significant changes. Using a unit
weighting function w(p) = 1 for all p-values would cause MADE to match the greatest number of
transitions without regard for the significance of the changes. The p-values were determined by
t-test on the normalized array data in accordance with standard microarray analysis procedures
using the GeneSpring software package (Agilent Technologies, Palo Alto, CA, USA). The objective
function reaches its theoretical maximum when all calculated expression states match the observed
expression changes.

3.4. RESULTS 27

MADE maximizes the sum of the objective function values across all conditions subject to a
regulated FBA formalism:

max
n−1∑
i=1

fi→i+1(x)

subject to

Sv = 0 (a)

lb ≤ v ≤ ub (b)

vobj ≥ vmin (c)

N

(
v
x

)
= b (d)

Constraints (a) and (b) represent the mass balance, stoichiometric, and thermodynamic constraints
of FBA. The metabolic objective (e.g. biomass production) is required to be above a minimum
value in (c) to ensure a viable flux distribution. Minimum values of 0.1-0.3 of the optimal objective
flux have been used to ensure viability in FBA-based bacterial strain design [23]. The system of
equations (d) contains an integer programming formalism for the GPR rules and a set of constraints
that couple these rules to the metabolic fluxes v. These constraints were formulated using SR-FBA,
as described above. A separate set of constraints (a-d) appear for each experimental condition.

MADE was implemented in TIGER version 1.0.1 using the genome-scale S. cerevisiae metabolic
model iND750 [17]. The final MILP problem was solved with the Gurobi Optimizer (Gurobi
Optimization, Houston, TX, USA) on an Intel dual-core desktop computer running Linux. The
MILP gap for all problems converged to less than 0.5% in under 600 seconds.

3.4 Results

Expression data gathered from the glucose to glycerol shift in the yeast S. cerevisiae are ideal
candidates for MADE application. Yeast treats glucose as its preferred carbon source, as evidenced
by the repression of genes catabolizing all other carbon sources in glucose-rich media [40]. After
nearly all available glucose has been exhausted, yeast begin a drastic shift in metabolic activity
to initiate respiration of ethanol, the fermentation product of glucose. The effects of this “diauxic
shift” extend beyond central carbon metabolism, as the organism also slows production of amino
acids and ribosomal-related proteins. The demand for these metabolic byproducts is decreased by
the drastically slowed growth rate. Overall, nearly 1700 genes show differential expression in this
process, accounting for over 25% of the yeast genome [41]. (For review of the diauxic shift, see [42])

While the metabolic effects of the diauxic shift are well-studied, the transition from glucose-
to glycerol-based growth is less understood. Roberts and Hudson used a series of microarrays to
measure expression changes at 15, 30, and 60 minutes following a shift from glucose- to glycerol-rich
media [43]. The results indicated changes among expression levels in a number of gene ontologies
and several individual genes. Integrating these data with a metabolic model would enable the
analysis of pathway-level and functional shifts in the metabolic flux distribution.

I used MADE to integrate these data with iND750, a fully-compartmentalized, genome-scale
model of S. cerevisiae metabolism [17]. A total of four environmental conditions were considered:
growth to early log phase in YPD (glucose-rich media); and growth on YPG (glycerol-rich media)
for 15, 30, and 60 minutes after the switch from YPD. Expression states were calculated for 743
metabolic genes in the model (a sample of these results is shown in Figure 3.2; complete results are

28 CHAPTER 3. MADE

Figure 3.2: MADE results for 100 randomly selected genes from the S. cerevisiae model. The left
heatmap indicates the normalized expression level across the four timepoints; the right heatmap
displays the binary approximation calculated by MADE. Overall, 98.8% of the feasible transitions
were correctly matched.

3.4. RESULTS 29

Figure 3.3: Average gene expression and flux variability by metabolic subsystem in S. cerevisiae
after a transition from glucose- to glycerol-based respiration. Normalized expression levels were
averaged across all genes associated with the subsystem. For comparison, the same approach was
applied to the binary expression states calculated by MADE. The range of flux variability is the
difference between the maximum and minimum allowable fluxes through a reaction while preserving
an optimal objective value. These ranges were averaged for reactions in a subsystem and normalized
– “1” indicates the largest average range for reactions in the subsystem; “0” is the smallest range.

30 CHAPTER 3. MADE

shown in the Supplementary Data). Figure 3.3 shows the overall gene expression levels grouped by
functional pathways. The expression levels for genes associated with each reaction in the pathway
were averaged as a measure of overall subsystem-related transcriptional activity. The MADE-
derived binary approximations for several subsystems follow the continuous expression patterns,
although changes in measured expression often appear more subtle than switches between “on”
and “off” states. Specifically, expression levels in the fatty acid and glutamate subsystems increase
immediately after the glycerol transition, and membrane/ion transport activity decreases near the
end of the transition period. All of these findings are consistent with published conclusions [43].

3.4.1 Flexibility of Metabolic Subsystems

The models returned by MADE also recapitulate several of the expected functional behaviors of
the glucose/glycerol shift. I used Flux Variability Analysis to characterize the metabolic flexibility
in each subsystem. The heatmap in Figure 3.3 shows how the average range of admissible fluxes for
each reaction in a subsystem changes during the shift. High values indicate that the flux through
a subsystem can vary significantly while still achieving optimal growth. Lower values correspond
to tight metabolic regulation.

Yeast grown with an ample glucose supply strongly repress catabolism of all other carbon sources
[40]. When glucose is removed, a genome-wide transcriptional adjustment re-activates pathways
involved in transport and utilization of other nutrients. The MADE-generated models reflect this
shift. Cells grown in YPD display the smallest range in flux variability, corresponding to a tightly
regulated metabolic state that is highly optimized toward glucose utilization. After the shift to
glycerol, the flux variability increases as the organism increases its metabolic versatility.

3.4.2 Incorporating a Transcriptional Regulatory Network

The differential expression initiated by the glucose to glycerol switch is due in part to transcriptional
regulation. In order to refine the MADE-generated models, I coupled the iND750 model with
iMH805, a transcriptional regulatory network previously assembled from primary literature [28].
The network consists of 436 Boolean rules capturing expression relationships among 82 nutrients,
55 transcription factors, and 750 metabolic genes. The network was converted to a MILP system
using the SR-FBA formalism, and the resulting equations were added to the GPR constraint set –
no further modification of the MADE algorithm was necessary to calculate best fit expression states
for each of the 55 transcription factors. The addition of the TRN changed the MADE prediction
for 122 (16.4%) of the metabolic genes (see Supplementary Data). As expected, the network did
help refine the MADE prediction: for example, ENO2, a phosphopruvate hydratase, is known to
be expressed in glycerol-based media (SGD). Without the TRN, MADE predicted that only the
related gene ENO1 would be expressed. With the TRN, MADE correctly identified both ENO1
and ENO2 as being “on.”

3.4.3 Accuracy of MADE

As previously mentioned, the binary variables representing gene expression in the FBA framework
cannot describe all possible expression patterns. Using the prototypic model in Figure 3.1 as an
example, the total number of comparisons is six (3 genes × 2 transitions). However, the number
of feasible comparisons is only five, since the binary description of right expression cannot in-
crease twice consecutively. Therefore, when measuring the ability of MADE’s results to reproduce
the expression change dynamics, it is useful to also calculate the percent of feasible transitions

3.5. CONCLUSIONS 31

matched. The number of feasible matches can be calculated by running MADE without the min-
imum metabolic objective constraint. This allows MADE to fit gene expression states without
regard for overall model functionality.

The fermentive/glycolytic shift data contained 3715 transitions, of which 2991 were feasible.
MADE matched 98.8% of the feasible transitions (83.6% of all transitions). It is important to note
that the 15.4% of transitions that are infeasible are a consequence of the binary representation of
gene expression in FBA. Additionally, the assumption in MADE that the statistical significance of
differential gene expression correlates with biological significance does not always hold. Also, some
of the correctly matched transitions may not accurately reflect the true metabolic behavior. The
transitions in gene expression data are not necessarily a completely accurate representation of the
actual expression state due to errors in the experimental data.

3.5 Conclusions

The Metabolic Adjustment by Differential Expression (MADE) algorithm integrates gene expression
data and a metabolic model without a priori determination of activity thresholds. The method
attempts to match most closely the genes that exhibit the most statistically significant changes
in expression levels. The resulting gene states always produce functioning models and match the
direction of differential expression with high accuracy. Results from the glucose/glycerol shift
in Saccharomyces cerevisiase indicate that MADE-derived models also recapitulate the overall
behavior of the actual biological system.

32 CHAPTER 3. MADE

Chapter 4

Automated visualization of
genome-scale metabolic models

4.1 Introduction

The number of genome-scale metabolic models has increased greatly in recent years [44]. An
accompanying expansion in available algorithms for analyzing these models in the context of high-
throughput data [18] has created the need for tools to visualize large models and datasets. Cy-
toscape [45] and similar graph-drawing software can visualize arbitrary biological networks. How-
ever, the resulting node-and-edge graphs are visually distinct from the more familiar “metabolic
map” layout where lines show the flow of reactants coming together before branching into prod-
ucts. Only a few genome-scale metabolic reconstructions include a manually curated visualization.
However, producing these maps is difficult and time-consuming, and the maps are rarely updated
as the model is revised.

KEGG [46] and other metabolic pathway databases provide visualizations of indexed reac-
tions, but these maps exclude reactions not in the database (such as transport or species-specific
reactions). Metabolic modeling software packages such as the COBRA Toolbox [47] and CellNe-
tAnalyzer [30] can overlay flux and gene expression data on reaction maps. While both packages
allow users to modify existing maps, no software package is capable of assembling a complete
genome-scale metabolic map de novo from a set of reactions.

4.2 Features

In this chapter, I describe MetDraw, an online tool and software package for automatically gen-
erating a reaction map for genome-scale metabolic reconstructions. MetDraw also allows users to
visualize metabolomic, reaction flux, and gene/protein expression data directly on the resulting
maps. Maps are created from SBML model files and exported as SVG images. This widely-accept
image format allows users to easily customize details of the final maps with image editing software.
Although the map creation process is completely automated, several features allow users to control
the drawing output.

Parts of this chapter are adapted from: Jensen PA, Papin JA. MetDraw: Automated visualization of genome-scale
metabolic models and high-throughput data. under revision.

33

34 CHAPTER 4. METDRAW

Figure 4.1: Visualization of the E. coli metabolic model described in [48]. The map was created by
MetDraw from the SBML model file without additional user input. A. Pathways from lipopolysac-
charide biosynthesis and recycling pathways, enlarged to show detail. B. Visualization of Gibbs
free energy change for reactions (∆Gr) in the alternative carbon metabolism subsystem. Coloring
was applied by MetColor. Blue (red) indicates positive (negative) ∆Gr.

4.2.1 Input

MetDraw begins with a valid SBML file of the metabolic reconstruction. The SBML file can be
uploaded to the MetDraw website (http://www.metdraw.com), or the software can be run on a local
computer. MetDraw allows compartmentalized models with transport reactions spanning multiple
compartments. For optimal layouts, the SBML file should also contain subsystem assignments
in the “notes” section of several reactions. These designations are used to partition the smaller
subgraphs that can be visualized more easily.

4.2.2 Layout Overview

Metabolites are designated as “major” or “minor” depending on the number of reactions involving
each species. Major metabolites are drawn once in each compartment with arrows denoting how the
species is produced or consumed by each reaction. Minor, or currency, metabolites are those that
appear in many reactions, e.g. high-energy phosphates, water, protons, and common metabolic
cofactors. Minor metabolites are redrawn for each reaction rather than being drawn once per
subsystem and shared by multiple reactions. The removal of minor metabolites reduces much of
the visual clutter caused by these highly connected species. MetDraw identifies minor metabolites
by thresholding metabolite/reaction participation counts. Optionally, MetDraw will export a list of
reaction counts for each metabolite and allow the user to designate the minor metabolites manually.

If subsystem designations are available for any reactions, MetDraw partitions the correspond-
ing reactions. Very small subsystems or subsystems that share nearly all reactions with other
subsystems are merged to preserve information flow in the final map. Subsystems and unclassified
reactions are then placed into compartments. Transport reactions, reactions with reactants in more
than one compartment, are identified and separated for layout across the compartment boundaries.

The final layout uses the widely-used Graphviz [49] software. MetDraw converts the reactions
to a series of edges and nodes using the Graphviz DOT language. Unlike other graph drawing
programs for biological networks, MetDraw inserts invisible nodes and edges and uses multiple

4.2. FEATURES 35

graph elements to create a final layout that more closely resembles a classical biochemical map.
Even after identifying minor metabolites and partitioning the reactions by subsystem, the re-

sulting graph may still contain several overlapping edges that clutter the map. MetDraw attempts
to alleviate these problem areas by identifying major metabolites that are more highly connected
than other metabolites in the same subsystem. These metabolites are “cloned” and redrawn sev-
eral times in the subsystem to spread the layout and remove overlapping reactions. The cloned
metabolites are connected with a dashed line to aid viewing.

Compartments are bounded by a box and labeled in the final image. Subsystems can either
be bounded in a similar manner or left free for tighter packing of the compartment. Transport
reactions are added to visualize mass flow between compartments.

4.2.3 Reaction and subsystem classification

The SBML file assigns each metabolite to a compartment. MetDraw requires that compartments
provide sufficient “inner” and “outer” attributes to properly nest the compartments. (For example,
it must be possible to determine that the nucleus is inside the cytoplasm, which is itself inside the
extracellular compartment.)

Reactions containing only metabolites from a single compartment are assigned to that compart-
ment. Reactions with metabolites in two or more compartments are labeled as exchange reactions.
Exchange reactions are assigned to the innermost compartment of any of its metabolites. Ex-
change reactions are rendered separately from other reactions. This rendering is controlled by the
SHOW EXCHANGES parameter.

Subsystem assignments are very helpful when rendering a map with MetDraw. Subsystems are
rendered separately, reducing clutter and edge intersections. The SBML standard does not provide
a mechanism for classifying reactions into subsystems. Instead, metabolic models usually encode
this information in the “notes” tag for a reaction. MetDraw searches the notes tag for the pattern
“SUBSYSTEM:” to identify a reaction’s subsystem. Reactions without a subsystem designation
are orphan reactions. Orphan reactions are rendered as a separate subsystem in each compartment.

4.2.4 Minor metabolite identification

Many “minor” or “currency” metabolites (water, ATP, cofactors, etc.) participate in hundreds of
reactions. Drawing these metabolites as only one node per subsystem would create many over-
lapping edges denoting participation in several reactions. Instead, it is preferable to draw these
metabolites separately for each reaction. By default, any metabolite that participates in at least
MINOR MET FRACTION of the total number of reactions in the model is considered a minor metabo-
lite. To designate individual metabolites as major or minor, a listing of metabolites and reaction
counts can be generated with the --count mets option to MetDraw. After selecting the minor
metabolites, this file can be passed to a subsequent MetDraw run with the --mets argument.

4.2.5 Metabolite cloning

Some major metabolites are highly connected in a subsystem. Drawing these metabolites only once
per subsystem could create a large, unintelligible cluster. However, treating these metabolites as
minor species would remove the important connectivity information from the network map. In-
stead, MetDraw offers another solution, metabolite cloning. If a major metabolite participates in at
least CLONE LEVEL reactions in a single subsystem, it is re-drawn (cloned) for each reaction in that
subsystem. If the parameter LINK CLONES is true, the clones are connected with a dashed line to
represent their connectivity. (The parameters of these links are controlled by the CLONE LINK ATTRS

36 CHAPTER 4. METDRAW

Figure 4.2: MetDraw rendering of a reaction with multiple major and minor reactants and products.
Gray labels identify invisible nodes inserted by MetDraw.

parameter.) By default, the clone linking-edges are weights much less than reaction edges, pre-
venting a tight cluster of clones and improving the visualization of the subsystem. To turn off
metabolite cloning, set CLONE LEVEL to a very large number.

4.2.6 Reaction layout

After the reactions have been assigned and partitioned, and the metabolites have been classified and
cloned, MetDraw begins creating a DOT representation of the network. The DOT representation
is rendered by Graphviz to give a pathway map of the model.

MetDraw uses a series of invisible nodes and edges to render maps in a pathway style that
is more similar to standard metabolic maps than other graph-theoretic layouts. Five invisible
node types are added. For large reactions (those with two or more major and minor reactants
and products), the major reactants are connected to a node named rnode, the minor reactants
to rmnode, the major products to pnode, and the minor products to pmnode. (The actual names
appearing in the DOT file will be appended with the reaction ID to distinguish among reactions.)
A sample reaction is shown in Figure 4.2 with the default nodes and connectivity.

For smaller reactions, or when MetDraw is run with the COMPACT parameter, some of the
invisible nodes are excluded. Reactions with only one major and one minor reactant connect both
metabolites to rnode. In some cases, both reactants and products are connected to a common node
cnode. The connectivity for larger reactions depends on the number of major reactants (Mr), minor
reactants (mr), major products (Mp), and minor products (mp). The final layout is determined by
the following rules:

1. Start with the first rule in the Table 4.1, and continue until the first match.

2. If Mr = 0 and mr = 0, insert an invisible node so Mr = 1.

3. If Mr = 0 and mr > 0, treat the minors as majors (Mr → mr, mr → 0).

4. If Mr +mr < Mp +mp, or when a pattern is not specified, switch the products and reactants
(with rnode → pnode and rmnode → pmnode).

4.2. FEATURES 37

Reaction Parameters Connected to...

Mr mr Mp mp compact Mr mr Mp mp

1 0 ≤ 1 0 Mp
1

1 ≤ 1 ≤ 1 0 rnode rnode

> 1 1 true cnode cnode

> 1 1 false rnode rmnode

> 1 > 1 rnode rmnode

Table 4.1: Connectivity rules for reactions based on the number of major reactants (Mr), minor
reactants (mr), major products (Mp), and minor products (mp).

Figure 4.3: Nested compartments to position exchange reactions. The reaction shown transports
a metabolite from the lysozome into the cytosol. The dashed lines do not appear in the final visu-
alization. The line surrounding the “lysozome-exchange” compartment forms the visual boundary
for the lysozome compartment.

4.2.7 Transport and exchange reaction layout

Compartments (and subsystems if CLUSTER SUBSYSTEMS is true) are rendered as “subgraphs” in
Graphviz. Graphviz renders each subgroup independently; these subgraphs are subsequently repo-
sitioned in the final layout, but nodes and edges inside each subgraph are not repositioned to
improve their location relative to nodes outside the subgraph. This rendering scheme creates a
problem for transport and exchange reactions where reactants and products are contained in sepa-
rate compartments. To render these reactions, MetDraw creates two additional subgraphs around
the inner compartment. The first subgraph contains the metabolites for the inner compartment;
the second contains metabolites for the outer compartments. As shown in Figure 4.3, the com-
partment boundary that appears in the final map is actually the border between these additional
subgraphs. All other boundaries are invisible.

The SHOW EXCHANGES parameter can be used to hide all exchange reactions. The line and font
properties for subgraph boundaries are controlled by the COMPARTMENT FONTSIZE, SUBSYSTEM FONTSIZE,
and SUBSYSTEM BORDER STYLE parameters.

38 CHAPTER 4. METDRAW

4.2.8 Output and Data Visualization

By default, MetDraw exports an SVG image of the reconstruction. This format is compatible with
MetDraw’s data visualization features. MetDraw can also export visualization in any other format
supported by Graphviz, including PDF, PNG, and EPS. Final changes to the layout can be made
with a vector graphic editing program. Users can freely add graphical elements or move metabolites
and reactions; the resulting images can still be used to visualize data with MetDraw.

MetDraw allows visualization of fluxomic, metabolomic, gene/protein expression data on metabolic
maps. MetDraw accepts a text file containing numerical data for each metabolite or reaction over
several conditions. These data are normalized, applied to a colormap, and overlayed on a previously
generated metabolic map. If several conditions are given in the same data file, MetDraw creates a
separate image for each condition using the same color scale. These images can be combined for
visual comparisons and to animate transient conditions.

Many metabolic models contain gene associations for a subset of the model’s reactions. These
mappings can be used to visualize gene (or protein) expression data on a map of metabolic reactions.
MetDraw creates a gene-protein-reaction (GPR) mapping file by extracting gene associations from
the “notes” field of the SBML file. The associations are stored in a file with a “.gpr” suffix. This
filename can be provided as an argument to MetColor via the --gprfile parameter. When a gene
name appears in the data file for MetColor, the value is mapped to the corresponding reaction using
the GPR. If a reaction’s GPR contains multiple genes, the gene expression values are averaged to
color the corresponding reaction.

4.3 Implementation

MetDraw is written in Python 2.7 and runs on Linux, Microsoft Windows, and Mac OS X. MetDraw
requires Graphviz 2.28 or later. An online interface is available at http://www.metdraw.com. The
web server is built with Node.js 0.92 and provides asynchronous access through the Jade tempting
engine.

4.4 Conclusions

MetDraw provides the first fully-automated pipeline for creating metabolic reaction maps. The
software attempts to create maps resembling common pathway layouts without user input. Users
can customize the appearance of the map by adjusting layout parameters or editing the final map.
The accompanying program MetColor allows streamlined visualization of flux, metabolite, and gene
expression data.

Chapter 5

Linking enzyme architectures and
reaction networks

5.1 Introduction

Among the most simplifying assumptions of the FBA framework is the representation of genes as
binary variables. If a gene is “off”, the associated reactions cannot carry any flux. If a gene is “on”,
the corresponding reactions can carry any physiologically feasible flux. It is therefore assumed that
enzymes encoded by “on” genes are always expressed at a level that is never flux limiting. This
assumption contradicts observed correlations between enzyme abundance and reaction flux [50]. In
reality, gene expression varies continuously and exerts control over the flux through a pathway.

The first attempt at incorporating continuous gene expression data as constraints on reaction
fluxes in a COBRA model followed a two-step procedure [51]. First, expression values were com-
bined using the GPR to compute an upper bound for each reaction. The GPR rules were applied by
substituting a max operator to replace and, and a min operator instead of or. For example, if a reac-
tion’s GPR rule is g1 and g2, the corresponding constraint on reaction flux is v ≤ min{E(g1), E(g2)},
where E(g) is the expression of gene g, usually derived from the log-intensity of a microarray probe-
set [52]. The upper bound on flux implies that flux is limited by the least expressed subunit of an
enzymatic complex. Replacing the or operator with max in GPR rules for reactions with isozymes
implies the flux is limited only by the abundance of the most highly expressed enzyme.

The approach reinforces observations that flux through metabolic pathways can be approxi-
mated with log-linear kinetic laws as functions of enzyme abundance [53]. In bacteria, the close
correlation between gene and protein expression for metabolic enzymes [54] supports the use of
gene expression as a surrogate for enzyme abundance – the former being much easier to measure
with microarray and RNA sequencing technology. Although post-translational modifications do
control flux distributions at some metabolic branch points [55], predicting flux distributions in a
COBRA model from gene expression alone has proven useful as a first approximation [56].

However, the flux-bounding formalism described above has two key limitations. First, the flux
bounds for each reaction are computed independently. Many enzymes catalyze separate reactions
through the same catalytic site [57]. Enzyme “promiscuity” creates a dependency between enzyme
abundance and the fluxes through all reactions catalyzed by the same enzyme. This coupling is
not reflected when flux bounds are computed independently. Second, the mapping from expression
values to reactions must be computed before the FBA optimization. The expression of each gene
is not included as a decision variable in the FBA problem, limiting the questions that can be asked
with the model. This limitation is analogous to the limitations of the two-stage FBA procedure

39

40 CHAPTER 5. FALCON

before the invention of SR-FBA and its extensions in TIGER.

In this chapter, I present a new formalism for representing genome-scale metabolic models
– Flux/Activity Linked Constraints (FALCON). FALCON extends COBRA models to include
continuous variables representing the activity of each enzyme. The logic of the GPR associations is
preserved, and reactions catalyzed by the same enzyme are coupled appropriately. I demonstrate
how FALCON allows the direct interrogation of the enzymatic network and how this integration
improves predictions about network properties.

5.2 FALCON formalism

Building an FALCON model begins with a constraint-based model amenable to analysis by FBA.
Each reaction/GPR pair in the FBA model is converted to a set of activity-linked reactions (ALRs).
Figure 5.2 describes the ALR conversion for some simple reaction/GPR pairs. If the reaction A→ B
is catalyzed by enzyme e, a new species, Activity(e), is introduced to represent the activity of e,
as shown in Figure 5.2a. We use “activity” to represent the catalytic activity required to allow
one unit of flux through the reaction. The ALR for this reaction becomes A + Activity(e) → B.
The stoichiometry constrains the production of B by requiring both one unit of A and one unit of
activity from enzyme e.

If, as in Figure 5.2b, the reaction A→ B requires activity from two enzymes to carry flux (e.g.,
if two protein subunits are required for a functioning enzyme complex), the corresponding ALR is
A+ Activity(e1) + Activity(e2)→ B. Notice that if the activity of either e1 or e2 is constrained to
be zero, the reaction cannot carry flux, as if one the pseudo-reactants Activity(e1) or Activity(e2)
is not supplied. By contrast, the reaction in Figure 5.2c can be catalyzed by either of two enzymes.
In this situation, a separate ALR is constructed for each isozyme: A + Activity(e1) → B, and
A + Activity(e2) → B. To ensure that these separate reactions preserve the thermodynamic flux
constraints in the original FBA problem, we add a constraint requiring that the fluxes through each
ALR sum to the flux of the original FBA reaction.

The FALCON procedure can be applied to enzymes that participate in more than one reaction.
Consider the example in Figure 5.2d, where a promiscuous enzyme e catalyzes both the reactions
A → B and C → D. The corresponding ALRs both include Activity(e) as a reactant (A +
Activity(e) → B and C + Activity(e) → D). If a constraint is placed on the maximum level of e’s
activity, a tradeoff is created in the optimization problem. Allowing more flux through the A→ B
reaction requires a decrease in the flux through the C → D reaction, since both reactions draw
from the same pool of e activity. Analogous to FBA’s use of optimization to determine the flux
distribution through a reaction network, the solution of an FALCON model reveals an activity
distribution that maximizes the metabolic objective. (And, since the activity is coupled directly
to the reaction fluxes, a corresponding optimal flux distribution is calculated simultaneously for
FALCON models.)

The FALCON procedure in the proceeding examples can be generalized to all reactions with
arbitrarily-complex GPR mappings through the following algorithm:

1. If the reaction is reversible, re-write the reaction as the difference between two irreversible
reactions representing the forward and reverse fluxes.

2. Factor the GPR into the disjunctive normal form – a set of clauses composed of conjunctions
(e1 & e2 & . . .) that are joined by or operators. Each clause corresponds to a set of proteins
that are sufficient to catalyze the reaction.

5.2. FALCON FORMALISM 41

A

B

C

D
A B

e

C D
e

A B
Activity(e)

C D

A B
e

A B

Activity(e)

A B

Activity(e1)

Activity(e2)

A B
e1 | e2

(isozymes)

Flux Balance
Analysis (FBA)

Flux/Activity Linked
Constraints (FALCON)

A B

Activity(e2)

Activity(e1)

A B
e1 & e2

(subunits)

Figure 5.1: FALCON ALR equivalents for simple GPR/reaction pairs. A. Single enzyme. B. Two
required enzymes. C. Two independent isozymes. D. One enzyme catalyzing two reactions.

42 CHAPTER 5. FALCON

3. For each clause, construct an ALR using the activity of each enzyme in the clause as a
pseudo-reactant.

4. Enforce the bounds on the original reaction flux (vorig) by adding the constraint

vorig =
∑
i∈F

vi −
∑
i∈R

vi (5.1)

where F is the set of ALRs for the forward reaction, and R is the set of ALRs for the reverse
reaction. This constraint ensures that no matter how many ALRs needed to link the enzymes
in a GPR to a reaction, the sum of all fluxes through the ALRs will not exceed the flux
bounds on the original reaction.

5. Require that only forward or reverse ALRs can carry flux at the same time through the
constraints ∑

i∈F
vi ≤ vmax

orig If (5.2)∑
i∈R

vi ≤ vmin
orig(1− If) (5.3)

where If is a binary indicator variable. If is equal to one if a positive flux exists in the
forward direction.

5.3 Computational complexity and efficiency

The complexity of FBA problems is determined by the complexity of the underlying linear program.
FBA requires one constraint for each metabolite and one variable for each reaction in the metabolic
network. Because the size of a factored Boolean GPR may be exponentially larger than the original
rule [58], I wanted to verify that FALCON models of currently reconstructed organisms do not
contain exponentially more constraints or variables than the FBA model from which they were
derived. I generated FALCON models for six well-characterized constraint-based reconstructions.
The models included three species of bacteria (E. coli [59], P. aeruginosa [60], and P. putida [61])
and two eukaryotic microbes (the yeast Saccharomyces cerevisiae [17] and the algae Chlamdymonas
reinhardtii [62]). As shown in Figure 5.2a, the number of constraints and variables added to create
an FALCON model scales linearly with the size of the original FBA model.

The computer runtime to find an optimal solution to a MILP can vary significantly for problems
of similar complexity. Unlike linear programs, there is no way to estimate the solution time of a
MILP from problem size alone. To ensure that FACON problems are not intractable, I performed
simulations to compare the solution time of a FALCON-based model to an FBA model with genes
integrated by SR-FBA. Because FALCON models include continuous variables describing enzyme
activity and SR-FBA uses binary variables to represent gene state, a direct comparison is not
possible without modifications to either formalism. Two modifications to FALCON models allow
the direct application of any SR-FBA-based algorithm (GIMME, MADE, etc.). First, a set of
binary indicator variables are added to represent the on/off state of each gene. Second, the activity
of each enzyme is bounded by the gene indicator, i.e. Activity(ei) ≤ Mgi, where M is a constant
larger than the maximum possible activity in the model. This constraint requires that “off” genes
have zero activity, but allows “on” genes to carry any feasible activity. In essence, this modified
FALCON framework (termed binary-FALCON) is analogous to SR-FBA with the Boolean logic of
the GPR encoded by continuous variables instead of binary inequalities.

5.3. COMPUTATIONAL COMPLEXITY AND EFFICIENCY 43

A B

1000 1200 1400 1600

30
00

40
00

50
00

Metabolites

A
dd
ed
C
on
st
ra
in
ts

E. coli

S. cerevisiae

C. reinhardtii

L. major

P. aeruginosa

P. putida

800 1200 1600

40
00

50
00

60
00

70
00

Reactions

A
dd
ed
V
ar
ia
bl
es

E. coli

S. cerevisiae

C. reinhardtii

L. major

P. aeruginosa

P. putida

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0.
0

0.
2

0.
4

0.
6

0.
8

GIMME MADE GIMME MADE

E. coli S. cerevisiae

SR-FBA FALCON All differences are significant (p<10-27,n=100)

R
u
n
ti
m

e
(s

ec
on

d
s)

Figure 5.2: Size and complexity of FALCON models. A. The number of variables and constraints in
FALCON models is proportional to the size of the underlying COBRA model. B. Average runtime
to solve GIMME and MADE problems with the E. coli model [59] and random gene expression
data. The binary-FALCON formalism was used to allow direct comparison with SR-FBA.

44 CHAPTER 5. FALCON

It is important to note that when compared to FALCON, the binary-FALCON representation
of a COBRA model will contain thousands of additional constraints and binary variables. The
runtime of a binary-FALCON model will always be longer than a FALCON model and therefore
is an upper bound on the FALCON performance. This tradeoff is necessary to allow a direct
comparison with SR-FBA. Using the E. coli metabolic model [59], I performed 100 simulations of
the GIMME and MADE algorithms using randomized gene expression data. As shown in Figure
5.2b, the binary-FALCON models solved significantly faster for both algorithms. It is difficult to
link runtime with model structure in MILPs, but the differences in these simulations are most likely
attributable to the substitution of binary intermediate variables in SR-FBA for continuous ALR
fluxes in FALCON.

5.4 Identifying correlated enzyme sets

Many of the FBA-derived algorithms rely on sampling flux distributions in COBRA models [18].
Such algorithms require reaction fluxes to be continuous variables, and are therefore not appli-
cable to the Boolean gene associations underlying the metabolic network. With FALCON, any
reaction-centric algorithm can be applied to sample the activity distribution of a metabolic net-
work. The ability to analyze enzyme interactions directly creates new opportunities for interrogat-
ing metabolism on a systems level.

One successful method for identifying connectivity in reaction networks is the computation of
correlated reaction sets, or “cosets” [63]. At steady state, a reaction in a coset carries flux if and
only if all other reactions in the coset carry nonzero flux. One example of a coset is a series of
reactions in an unbranched, linear pathway. Only two flux distributions are possible at steady state
– no flux through any reaction, or a net flux through all reactions in the pathway. If only part
of the linear pathway carried flux, intermediate metabolites would accumulate inside the pathway,
violating the steady state assumption.

Cosets have been widely used to identify pathways for metabolic engineering [64]. Because
reactions in cosets function together, it is hypothesized that enzymes associated with the reactions
must be modulated as a group to increase pathway flux. Indeed, a previous study revealed that
genes associated with a coset are more likely to show correlated expression than randomly chosen
metabolic genes [65]. Like all coset studies, this work mapped genes to cosets by creating the union
of all genes associated to at least one reaction in a coset [64]. Mapping genes to cosets a posteriori
ignores the subtle complexity of the GPR mappings.

I hypothesized that sets of genes identified by sampling enzyme activity distributions will show
stronger correlation in expression than sets of genes derived from mapping the GPR rules to re-
actions in a coset. For example, consider the conversion of 2-phosphoglycerate (2-PG) to phos-
phoenolpyruvate (PEP). This reaction is the next-to-last step in upper glycolysis in the yeast
S. cerevisiae and is catalyzed by the product of either of two enolase genes, ENO1 and ENO2 [66].
If the enolase reaction were included in a coset, both ENO1 and ENO2 would be added to the
gene list for the coset. However, ENO1 and ENO2 are isozymes, each capable of independently
catalyzing the production of PEP [67]. Expression of ENO1 and ENO2 are not correlated, and
it is well know that the two genes are activated at distinct times during the cell cycle [68]. If an
activity-based sampling were performed, ENO1 or ENO2 would not be found in the same enzyme
set, since either enzyme can be active without activity from the other.

Using a FALCON model, it is possible to directly sample activity distributions and identify
correlated enzyme sets, or CORES. Sampling is accomplished with a simple Monte Carlo procedure:

1. The feasible bounds for each enzyme’s activity are computed by applying an FVA-like algo-

5.5. CONCLUSIONS 45

rithm on a FALCON model. The activity of each enzyme is maximized and minimized in two
separate optimizations. The objective values of these optimizations are the activity bounds.

2. A random activity distribution is created by uniformly sampling within the bounds of each
enzyme.

3. Least-squares constrained optimization is used to find the feasible activity distribution with
the shortest Euclidian distance from the random activity distribution. By constraining the
optimization with the FALCON model, we are assured that the activity distribution corre-
sponds to a mass balanced flux distribution.

After repeatedly sampling the FALCON model, a correlation matrix is calculated from the activity
distributions. Sets of enzymes with high (r > 0.95) correlation coefficients are partitioned into
CORES.

I calculated cosets and CORES for a genome-scale metabolic model of the bacterium Pseu-
domonas aeruginosa, model iMO1086 [60]. Mapping genes in the GPR associations to reactions in
the cosets produced a list of gene sets for comparison to the enzymes in the CORES. The sampling
identified 58 CORES and 48 cosets in the iMO1086 model. The 48 gene-mapped cosets are not
a subset of the 58 CORES, although 33 of the CORES and cosets contain at least one gene in
common.

To test my hypothesis that CORES would include more strongly correlated genes, I performed a
meta-analysis of 120 microarray datasets for P. aeruginosa downloaded from the Gene Expression
Omnibus (GEO). Spearman correlation coefficients were calculated for all pairs of genes in the
iMO1086 model. Figure 5.3a shows the average correlation coefficient between all pairs of genes in a
CORE or coset. The correlation between any two randomly selected genes from the iMO1086 model
is 0.05. The average correlation coefficient between genes mapped to a CORE is significantly higher
than the correlation between genes in a coset. As shown in Figure 5.3b, the average correlation
in CORES does not depend as strongly on the size of the set. The collection of iMO1086 cosets,
however, includes several large groups of poorly correlated genes. When the CORES and cosets
are aligned by pairing sets that share genes, CORES usually produce stronger correlations (Figure
5.3b). This indicates that CORES are not identifying completely new sets with correlated genes,
but modifying the composition of sets to remove lowly-correlated genes.

5.5 Conclusions

I have developed the FALCON framework for including enzyme activities as continuous variables
in COBRA models. FALCON preserves the logic of the GPR rules for each reaction and couples
reactions catalyzed by the same enzyme. FALCON models contain integral constraints and are pro-
portional to the size of the original COBRA model. A binary extension to the FALCON framework
allows compatibility with all SR-FBA algorithms, and simulations indicate the binary-FALCON
models will solve faster than equivalent SR-FBA models. This observation has led to a “fast GPR”
extension to the TIGER toolbox where models are built with a hybrid SR-FBA/binary-FALCON
strategy for improved performance.

FALCON allows any algorithm using reaction fluxes as decision variables to be applied directly
to the enzymatic network. Comparisons between cosets and the FALCON-derived CORES demon-
strates how sampling enzyme activities directly improves correspondence with correlations in gene
expression data. Importantly, these improvements require only a change in the mathematical for-
mulation of the model. FALCON models are built from the GPR associations already present

46 CHAPTER 5. FALCON

Fraction
Shared

A

B C

Figure 5.3: Comparisons between CORES and coset-derived gene sets. A. Average Spearman
correlation coefficient between two genes in the same set. B. Comparison of average gene pair
correlation in aligned CORES and cosets. Circle color indicates the fractional overlap in genes
between the CORE and coset. C. Dependence of average gene pair correlation on set size.

5.5. CONCLUSIONS 47

in a COBRA model. The improvements seen in the iMO1086 case study were essentially “free”,
requiring no additional effort or information from the modeler.

48 CHAPTER 5. FALCON

Chapter 6

A miniaturized device for
high-throughput phenotypic screening

6.1 Introduction

COBRA models predict biomass yield given a metabolic environment and genotypic state [15]. Val-
idating these models requires data on a microbe’s growth rate under a wide range of environments
and genetic perturbations. Two assays are commonly used to generate validation data. Phenotypic
microarrays (PMs) are multiwell plates with a different metabolic environment in each well [69].
The most widely used PMs are manufactured by Biolog and contain nearly 1000 environments in
a set of 96 well plates. Cells in PMs are incubated with a tetrazolium-based clear solution [70].
When the microbes respire, some of the tetrazolium is reduced to formazan, a purple dye. The dye
provides a visual readout of cellular respiration [70]. Measuring the effects of genetic perturbations
is usually accomplished by screening collections of single gene mutants. Ordered arrays of single
gene mutants have been produced for several model bacteria, either by gene deletion [71] or trans-
poson insertion mutagenesis [72, 73, 74]. In a typical screen, multiwell plates containing a defined
media are inoculated with the mutant collection. The plates are incubated for several hours, and
an optical density measurement is used to score each mutant as “grow” or “no grow” [72].

Despite the widespread use of PMs and mutant collections for validating COBRA models, the
readouts of these assays are not optimal. COBRA models predict the rate of biomass production,
and biomass synthesis is a more demanding phenotype than cellular respiration. COBRA models
can easily make grow/no grow predictions to match mutant array screens. However, several gene
deletion strains have reduced fitness, but are still able to grow [75]. These defects would not be
identified by a grow/no grow screen, and focusing only on conditionally essential genes unnecessarily
reduces the validation data collected from a screen. In both cases, measuring cellular growth
by tracking optical density (OD) over time would be a more useful metric. A culture’s OD is
proportional to its dry cell weight, so the rate of change in OD is proportional to the biomass
production rate predicted by the COBRA model [60].

Benchtop plate readers measure OD by absorbance of a fixed wavelength of light. For kinetic
measurements over the entire growth cycle, specialized plate readers with internal incubators,
shakers, and gas exchangers are necessary to produce a controlled metabolic environment. For

Parts of this chapter are the the subject of US Patent Application No. 61/710,961.

49

50 CHAPTER 6. MINIREADER

screens involving thousands of environments or strains, reading one microtiter plate at a time is
prohibitively low-throughput. Robotic plate changers can be attached to plate readers to cycle
multiple plates during one experiment; however, plate changers are not an optimal solution due to
their high cost and the need to incubate, shake, and control the environment of the entire robotic
assembly. Additionally, reading multiple plates sequentially limits the temporal resolution of the
experiment, as it takes minutes to insert, read, and remove each plate.

In this chapter, I describe the development and validation of a novel, miniature plate reader for
low-cost, high-throughput phenotypic screening. This “minireader” can measure optical density in
PMs, mutant arrays, or any other microbial assay in 96 well plates. I also provide data highlighting
the advantages of measuring full growth curves over grow/no grow screening.

6.2 Growth profiling of a P. aeruginosa mutant array.

Transposon mutant libraries exist for the PA14 strain of the human pathogen P. aeruginosa [72].
As part of a larger project in the Papin lab, I began growth profiling all 5400 mutants in the PA14
array. These data would be used to validate a PA14 COBRA model generated from the existing
iMO1086 model of PAO1 strain [60]. (The PA14 model building is currently in progress, led by
Jennifer Bartell and Anna Blazier, with help from Nelitza Martinez Vega and Moira Smith.) The
protocol for the screen is outlined in Figure 6.1. Twelve multiwell plates were place in a benchtop
incubator. Each well contained a PA14 transposon mutant cultured in a synthetic cystic fibrosis
medium (SCFM) [76]. Plates were moved one at a time into a Tecan 200 Infinite Pro plate reader
for three replicate OD measurements. Readings were recorded every 40 minutes for six hours from
pre-exponential to early stationary phase. The data were compiled and growth rates were estimated
by linear regression.

The growth rates for 2688 PA14 mutants are shown in Figure 6.2. Approximately 1.4%
(37/2688) of the interrupted genes are conditionally essential – the mutant grows in rich media
(lysogeny broth), but cannot grow in the defined SCFM (lactate, glucose, 17 amino acids, and
salts) [76]. In addition, another 4.6% (123/2688) mutants show a fitness of less than 0.8, i.e., their
growth rate is reduced by at least 20%. These growth-reduced mutants would not be identified by
a grow/no grow screen. Measuring growth rate rather than growth/no growth generated a 330%
increase in the number of data points for validating genome-scale models.

An in vitro growth screen generates hypotheses regarding the fitness contribution of individual
genes. For example, the PA14 library screen revealed that mutations in the histidine degradation
pathway decrease growth rate. The last step of this pathway, the hydrolysis of N-formimino-
glutamate to formate and L-glutamate, is catalyzed by either of two enzymes in P. aeruginosa –
PA5091 (hutG), or PA3175 [77]. Previous studies have verified the mechanism of both enzymatic
routes, but the relative importance of the two competing enzymes has not been examined [77]. In
our screen, the PA3175 mutant grew at a relative rate of 0.87, while the PA5091 mutant showed a
relative growth rate of only 0.41. Degradation by PA5091 appears to be the predominant branch
of the histidine utilization pathway in SCFM, although neither enzyme is able to fully compensate
for the deletion of the other.

The growth-impaired mutants identified by this screen are not evenly distributed across func-
tional subsystems. Figure 6.3 shows the fraction of mutants in each PseudoCAP classification with
a defect. (PseudoCAP classifications are an ontology system curated by the Pseudomonas com-
munity [78].) Nearly one third of all genes involved in cell division show defective growth. The
most overrepresented metabolic ontologies are nucleotide biosynthesis (20%) and cofactor synthesis
(18%). Genes in central metabolism and carbon metabolism were surprisingly not well represented

6.2. GROWTH PROFILING OF A P. AERUGINOSA MUTANT ARRAY. 51

PA14 transposon
library

condition on SCFM
for 24-48 hours grow to exponential phase,

split into replicate plates

measure optical density
changes for 4-6 hours

normalize data and
compute growth rates

time

lo
g
(O

D
6
0
0
)

Figure 6.1: Workflow for manual phenotypic screening. Plates were moved by hand through the
reading cycle. Data collection and analysis was completed offline after the experiment completed.

52 CHAPTER 6. MINIREADER

● ●
●

●

●
●

●

●●
●

● ●
●

●

●

●

● ●
●●

●

● ●●● ● ●●
●

●

● ●
●

●

●●

●

●●
●

●

●
●
●

●●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●
●

●
●●

●

●●

●

●

●

●

●●

●

●●●
●

●

●

●

●

●

●

●●
●

●
●
●

●

●

●

●
●●●

●●
●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●●●
●●
●

●

●

●
●

●

●
●●
●●
●
●
●
●

●

●●●
●

●

●
●●●
●

●

●

●

●●
●
●
●
●
●●
●
●

●

●

●
●
●●

●●●
●

●

●●

●

●
●
●●
●

●●
●

●
●

●

●●

●

●
●●

●

●

●
●
●●

●
●●

●

●

●
●

●

●●
●

●●
●

●●

●

●
●
●
●
●
●●
●
●
●
●●
●

●
●●
●

●
●
●●●●●●

●●
●
●●●●

●

●●●

●
●
●
●●●●
●

●

●●
●

●
●

●●

●
●●
●
●
●

●

●●
●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●●●
●
●●●

●●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●●●

●

●
●●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●
●●

●
●

●

●

●

●
●●
●
●
●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●
●
●●

●

●
●

●

●

●

●
●

●●

●
●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●
●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●
●●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●●●●
●

●

●
●

●

●●
●

●●

●

●

●

●

●

●●

●
●●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●●
●
●
●●

●

●

●

●

●

●●

●

●
●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●●

●

●

●

●

●●

●

●

●

●●
●

●●

●
●
●

●

●
●●
●●●

●

●

●●

●●
●

●

●

●

●

●
●
●

●●

●

●

●
●●●
●

●●

●

●

●●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●●

●●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●●
●
●
●
●

●
●●

●

●
●

●
●
●
●

●
●●●

●

●
●

●●●

●
●

●●
●

●

●●

●

●●

●
●
●
●
●
●

●

●

●●

●●
●

●●●

●

●
●
●
●

●

●
●●
●

●●

●

●

●

●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●●

●

●

●

●
●
●

●

●●
●

●

●

●
●●●

●

●

●●●

●

●

●

●

●

●

●
●●

●
●

●

●

●●
●
●

●

●
●

●
●
●
●

●

●

●
●●●

●●
●

●
●
●
●●
●
●

●
●

●
●

●

●●

●

●

●

●
●
●

●
●●●
●
●●
●

●

●

●

●
●

●
●
●●

●●

●●

●●

●●

●

●
●

●●

●

●

●

●
●

●
●
●●●●

●

●

●
●
●

●

●

●
●

●
●

●

●●

●

●●

●

●
●
●●

●●

●●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●●

●
●

●
●

●

●

●

●

●●
●
●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●●

●●

●
●●
●
●●●

●

●●●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●●
●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●●●
●

●●

●

●

●

●

●
●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●
●

●

●
●

●

●
●●

●

●
●

●
●
●

●●
●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●
●

●●
●

●

●

●

●●●
●

●
●
●●

●

●

●

●

●
●●
●

●●●

●

●
●

●

●

●
●

●

●

●
●

●

●
●
●

●●
●●

●

●
●

●

●

●
●
●

●

●
●●●

●
●●

●●
●●

●

●●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●●

●

●

●

●

●

●
●
●

●
●

●
●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●
●

●

●

●

●

●●
●●●
●
●

●

●
●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●●
●

●●●
●●

●
●

●

●

●

●

●●

●●
●

●●

●

●●●

●

●●●

●
●

●●

●
●
●
●
●

●

●
●

●●

●
●

●●●
●

●

●●●

●●

●●

●

●●

●

●

●

●

●

●
●

●

●●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●●

●
●
●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●
●
●

●●

●
●
●
●
●
●●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●
●

●

●●

●●

●

●
●

●

●

●

●

●

●●●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●●
●
●●

●●

●
●

●●
●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●●●
●●

●
●●●●●
●
●
●
●

●

●

●

●
●
●
●
●

●

●●
●

●●

●

●

●

●●●

●

●

●

●●
●●

●

●
●
●

●●

●

●

●

●

●●●

●

●

●
●

●

●

●●
●

●

●

●

●●

●

●

●

●
●
●●

●

●

●●

●

●

●

●●

●
●

●

●●

●

●
●●

●●
●

●

●

●

●●

●

●●
●●

●

●●
●

●
●
●
●

●

●
●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●●●

●
●●●
●●●
●●●●

●
●●

●

●
●●●●●

●
●

●

●

●

●

●
●

●●●●●

●
●●
●
●
●●
●●●●

●

●

●

●
●
●●
●

●

●
●●●
●
●

●●●●●●
●
●

●

●

●
●
●

●

●●
●●

●

●●●

●

●

●●

●●

●

●
●

●
●
●

●

●
●

●

●●●●●
●

●

●

●
●●

●●

●
●●
●●●
●

●
●

●
●●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●
●
●●●

●

●●

●

●

●

●●

●●
●●●

●●
●

●

●
●

●
●●
●●●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●
●

●
●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●
●
●
●

●
●
●
●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●●
●

●

●

●

●

●

●●

●

●●
●

●
●

●
●
●
●

●

●

●●
●

●

●
●

●●
●

●

●●

●

●

●

●

●
●

●●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●●
●

●●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●●

●

●●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●
●

●●●
●
●
●
●●●

●

●

●

●●
●
●

●●
●

●

●

●
●

●
●●●●●

●

●

●

●●●

●●

●

●●●●

●

●

●●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

R
el

at
iv

e
G

ro
w

th
 R

at
e

conditionally
essential genes

growth-reducing genes
(not identified by

grow/no grow screen)

0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 6.2: Normalized growth rates of PA14 mutants. A normalized growth rate of 1.0 corresponds
to wild type growth (no fitness defect). Blue points are growth reduced by at least 20%. Red
points are conditionally essential and showed no growth in SCFM. Error bars represent SEM for 3
replicates.

6.2. GROWTH PROFILING OF A P. AERUGINOSA MUTANT ARRAY. 53

Percent annotated mutants with growth deficiency

Adaptation, Protection

Amino acid biosynthesis and metabolism

Antibiotic resistance and susceptibility

Biosynthesis of cofactors, prosthetic groups and carriers

Carbon compound catabolism

Cell division

Cell wall / LPS / capsule

Central intermediary metabolism

Chemotaxis

DNA replication, recombination, modification and repair

Energy metabolism

Fatty acid and phospholipid metabolism

Hypothetical, unclassified, unknown

Membrane proteins

Motility & Attachment

Nucleotide biosynthesis and metabolism

Protein secretion/export apparatus

Putative enzymes

Related to phage, transposon, or plasmid

Secreted Factors (toxins, enzymes, alginate)

Transcriptional regulators

Transcription, RNA processing and degradation

Translation, post−translational modification, degradation

Transport of small molecules

Two−component regulatory systems

0 10 20 30 40

Ps
eu

d
oC

A
P

cl
as

si
fi
ca

ti
on

Figure 6.3: PseudoCAP distribution of fitness defective PA14 mutants. Horizontal bars indicate
the fraction of mutants screened that were defective in each category. Error bars represent standard
error of the proportion.

in the defective list. Their absence is mostly likely attributable to the catabolic versatility of
P. aeruginosa and the presence of multiple carbon sources in SCFM.

Although this screen produced a validation dataset for the PA14 modeling project, the data
contain some technical issues. The mutants in Figure 6.2 are ordered chronologically. The data
display a periodicity caused by batch effects as the plates are moved from the incubator to the
plate reader. This is most likely attributable to condensation forming on the plate during reading,
which skews the OD of the wells at the end of the plate. Troubles with condensation are not unique
to our plate reader or incubator setup; other groups using plate moving robots struggle with the
same problem1.

Another problem with the plate-swapping protocol appears as highly-variable rates in the middle
of Figure 6.2. Because reading each plate takes at least three minutes, the fastest all 12 plates can
be read is every 36 minutes. For fast-growing bacteria like P. aeruginosa, 36 minute readings
place only three or four readings in exponential phase. If timed correctly four reads are captured,
but mis-timing the reads can leave only three usable points. As seen in Figure 6.2, estimating

1Tecan, Inc., personal communication

54 CHAPTER 6. MINIREADER

the exponential growth rate with only three points significantly increases the variability of the
measurements.

6.3 Developing a novel plate reader

Measuring OD requires a relatively simple electronic circuit. A light-emitting diode (LED) pro-
duces light focused on a peak emission wavelength, usually 600 nm. The light passes through the
sample where it is partly absorbed by the suspended cells. The transmitted light is translated to
a proportional voltage by a phototransistor (PT). The absorbed light is calculated as the differ-
ence between the emitted and transmitted light. OD is defined as the logarithm of the absorbance
(relative to a transparent standard).

Most plate readers measure fluorescence, luminescence, and other optical properties in addition
to OD. Fluroescence in particular requires expensive laser and photomultiplier equipment to detect
faint emissions from samples. The optics equipment in plate readers are mounted to a robotic arm
that aligns the emitter/receiver pair sequentially over the wells in a microtiter plate. The robotics
and optical hardware comprises the majority of the cost and size of the plate reader. By focusing
only on measuring OD in 96 wells plates, much of the hardware in a plate reader can be removed.
LED/PT pairs are inexpensive, especially those components with peak wavelengths in the infrared
(IR) range. (IR LEDs and PTs are found in many consumer electronics and are therefore mass
produced at low cost.) I hypothesized that replacing the robotics in a plate reader with a fixed
array of 96 LED/PT pairs would produce a small, low-cost OD reader.

A prototype “minireader” is shown in Figure 6.4a. A printed circuit board (PCB) holds IR
LEDs and PTs spaced to match a 96 well plate.2 Besides offering support for the optoelectronic
components, the PCB is engineered with two cost-saving features. First, rather than connect
each LED/PT to a separate amplifier and analog-to-digital convertor (ADC), the PCB uses a grid
of analog multiplexers to connect all pairs to a single anode and cathode. These two wires are
connected to a single amplifier/ADC chip, and seven digital logic lines selectively connect each well
to the sensing hardware. Second, the layout of the PCBs is identical for both the LED and PT
(bottom and top) boards. The LED and PT circuits differ, but these differences have been moved
to a common controller board that houses the sensor hardware. The dual-use PCBs require only
one template for manufacturing, significantly reducing manufacturing cost.

The LED and PT boards are connected by ribbon cables to a controller board (Figure 6.4b).
This board contains

- An integrated analog front end (AFE). The AFE (Texas Instruments LMP90100) contains
a 24-bit ADC with pV resolution, corresponding to nano-OD theoretical sensitivity. The
AFE also includes automatic background correction to adjust for temperature variation and
programmable gain to allow calibration by software.

- A 16-bit micro controller (Arduino Micro). The microcontroller coordinates well switching,
reads the voltage from the AFE, and stores or transmits data.

- A voltage regulator, allowing the minireader to be powered by battery or DC current from a
wall-mounted power supply.

- Communication links. A category 5 (“ethernet style”) cable provides serial connectivity. A
XBee wireless chip can be added for cable-free monitoring.

2Spacing in a microtiter plates is standardized by a working group of the Society for Laboratory and Screening to
facilitate interoperability among plates and plate readers.

6.3. DEVELOPING A NOVEL PLATE READER 55

A

B

C D

Figure 6.4: Miniaturized plate reader for phenotypic screening. A. Fixed-position IR LED/PT
pairs measure optical density at 840nm. Each reader is slightly larger than a 96 well plate. B. A
controller board links optoelectronics, hardware sensors, and communication links. C. Eight readers
stacked in a benchtop incubator. D. Companion web-based analysis software provides visualizations
of entire plates (top) or single wells (bottom).

- Data storage. A microSD card provides long-term storage and a backup cache to prevent
data loss during transmission.

The multiplexed PCB design greatly reduces board complexity and cost, but requires that each
well be read sequentially. Switching and reading wells on the minireader is fast enough to avoid
any issues with the sampling rate. Because the minireader has no moving parts, the time to read
each well is a combination of the multiplexer switching time (10 ns) plus the read time of the ADC
(100 µs). The entire plate can be read in under 0.1 s, far shorter than the timescale for bacterial
growth.

Multiple minireader units can be placed in a single benchtop incubator (Figure 6.4c). Simul-
taneous OD reading during incubation removes the batch effects observed during plate transfer.
By placing the entire reader in the incubator, the environment can be controlled without addi-
tional equipment. The minireader can fit inside an anaerobic chamber, on a shaker to improve
aeration, or inside a BSL containment suite. The battery power allows the minireader to function
in resource-limited laboratories and during remote fieldwork studies.

Data from the controller board is transmitted to an embedded computer in the device. The
computer hosts a web server broadcasted over a standalone wireless access point. Users can connect
to the minireader’s wireless network with an internet browser for real-time data visualization and
export (Figure 6.4d). The server computes instantaneous growth rates for each well and reports
the maximum growth rate during exponential phase.

56 CHAPTER 6. MINIREADER

0.0 0.5 1.0

0.
0

1.
0

2.
0

op
tic

al
 d

en
si

ty

time (days)

http://wikipedia.org/Biofilm

LED PT

2.5 2.6 2.7 2.8 2.9

0.
2

0.
4

0.
6

0.
8

op
tic

al
 d

en
si

ty

voltage (V)

A

D

B C

E F

Figure 6.5: A novel device for quantifying biofilm production rate. A. Optically dense biofilms on
the aerobic surface of PAO1 cultures [81]. B. A dual-axis measurement strategy. Emitter/detector
pairs are place either above and below or in adjacent wells of a microtiter plate. C. Expected optical
density transients for horizontal (red) and vertical (blue) sensors. Optical density increases faster
along the vertical axis due to BLS accumulation on the aerobic interface. D. Prototype biofilm
reader atop a 96 well plate. E. Cutaway view of a 96 well plate. LED/PT pairs are suspended from
the PCB and read across the sample well. F. Calibration curve for horizontal OD readings.

6.4 Future work: biofilm monitoring

A hallmark of many bacterial infections is the production of a thick, mucoid biofilm. Previous
studies have used genome-scale metabolic models to explore biofilm production capabilities [79],
but few data exist to validate the model predictions. Existing assays for biofilm growth quantify
cellular attachment rather than production rate of biofilm and biofilm-like substance (BLS) [80].
I have developed a high-throughput assay for quantifying the production rate of biofilm and BLS.
My method is based on the observation that biofilm largely accumulates on the top of a bacterial
culture at the aerobic interface (Figure 6.5a). The compact biofilm layer has significantly higher
optical density than the rest of the culture. I have adapted my plate readers to measure optical
density along both the horizontal and vertical axes (Figure 6.5b). As the biofilm forms at the top
of the well, the optical density measured by the vertical sensors will increase faster than the optical
density measured horizontally (Figure 6.5c). The difference between these optical density curves
is proportional to the total biofilm produced at any time, and the accumulation of the integrated
difference is proportional to the biofilm production rate. Screening a mutant library for biofilm
production with the device will generate four growth parameters for each mutant: 1.) exponential
growth rate, 2.) time of biofilm initiation, 3.) biofilm and BLS production rate, and 4.) total
biofilm and BLS produced.

Figure 6.5d shows a prototype of the biofilm monitor. A PCB holding the horizontal LED/PT
pairs sits atop a 96 well plate. Holes in the PCB allow vertical OD readings when the plate/PCB
combination is placed in a minireader. The sideview LED/PT pairs are suspended from the PCB

6.5. CONCLUSIONS 57

into wells neighboring the sample well (Figure 6.5e). Despite reading through four curved surfaces,
the horizontal LED/PT pair shows excellent linearity over the OD range of interest for bacterial
cultures (Figure 6.5f).

While the majority of the BLS and total biofilm mass accumulates at the aerobic interface,
some biofilm formation occurs on the walls and bottom of the culture vessel. Biofilm on the walls
can decrease the biofilm predicted by my proposed two-axis method. I will quantify the biofilm
attached to the vessel walls by traditional crystal-violet staining protocols [82]. These data will be
used to normalize the biofilm predictions for each well.

6.5 Conclusions

The minireader device for growth screening provides a low-cost, scalable platform for phenotypic
profiling. The prototypes described in this chapter cost under $500 US to produce, over tenfold less
expensive than the smallest commercially-available plate reader. The 16 minireaders in the Papin
lab can complete a full phenotypic microarray or PA14 mutant library screen in under one week.
The entire minireader set costs less than the least expensive Tecan plate reader, not including the
robotic system necessary to achieve a comparable throughput.

Although the initial design focused on measuring OD, any absorbance assay could be incorpo-
rated by changing the LED/PT pairs. We have not thoroughly investigated building a fluorescent
minireader, since the 96 pairs of fluorescent optoelectronics would most likely be prohibitively
expensive.

Most importantly, the ability to assay a full growth curve, rather than respiration or simple
growth, provides a wealth of new data for validating COBRA models. The pilot screen of the PA14
mutant library demonstrates the added benefits of continuous growth monitoring.

6.6 Acknowledgements

This chapter summarize years of work by several researchers. I have the fortune of leading an
excellent team, and I wish to acknowledge their numerous contributions to this project.

Tom Moutinho designed the mechanical frame for the first prototypes and the layout for the
revised controller board. He assembled many of the devices with help from Matt Biggs and Matt
Jenny. Matt Biggs also wrote networking software for the first controller boards. Bonnie Dougherty
wrote much of the microcontroller and communication code for the second generation prototypes.
She currently manages a collaboration with SPARK Engineering and the UVA Coulter Foundation
to commercialize the technology. David Chen organized focus groups to gather feedback on initial
designs. Several researchers from UVA attended these sessions, including members of my thesis
committee. The project is funded by a Coulter Foundation grant to Jason Papin and Erik Hewlett.

Jennie Bartell dared to prepare one of the first full-scale test screens with the readers, and was
gracious enough to continue speaking to me after all the data were lost in a software crash at 3am.
Katherine Estep spent weeks moving plates between an incubator and a plate reader, providing
part of the motivation for this work.

58 CHAPTER 6. MINIREADER

Chapter 7

Summary

COBRA modeling has expanded into widespread applications, including metabolic engineering,
infectious disease, and ecology [11]. The mathematical framework underlying these analyses has
remained largely unchanged during the past two decades. The view of the genome as a “parts list”
for metabolic reactions ignores the dynamic role gene play in regulating cell function. My work has
focused on updating the COBRA formalism to give genetic networks equal status in the metabolic
model. My goal was to prepare the COBRA framework for new roles in the era of functional
genomics.

Identifying inconsistencies in the S. cerevisiae regulatory network and the results of the CORES
analysis highlights an important consideration for large models. Often, the quality of a model’s
predictions are assumed to be a function of the input data and the knowledge of the underlying
biology. My results suggest that a mathematical framework can also impact the accuracy of a
model and its ability to represent a biological system. The computational details of a model are
important, and we should look beyond mathematical convenience when choosing an appropriate
framework.

I believe the frameworks and algorithms in this thesis share a common strength in their univer-
sality and ease of use. TIGER can add logical rules of any complexity to a COBRA model, allowing
rule formulations that best represent the underlying biology. MADE removes the need to assign
arbitrary thresholds to expression data and is compatible with any model that can be assembled
with TIGER. MetDraw is the first fully-automated software for mapping an entire COBRA model.
Any COBRA model can be reformulated as a FALCON model, allowing all algorithms designed for
reaction networks to be directly applied to the enzymatic architecture. In all cases, I have focused
on providing solutions at no additional cost to the modeler. As a result, the software I have pub-
lished so far has been downloaded hundreds of times, and I have corresponded with research groups
on four continents who are using the tools. I hope my work continues to find wide use outside of
my own research interests.

One important application of COBRA models is the search for novel antibiotics. Microbial
metabolism provides a link between cellular growth rate, biofilm secretion, and virulence factor
production. Pathogens must dynamically allocate metabolic resources among these processes during
the course of an infection. Rather than study these processes independently, a metabolic model
can explore the tradeoffs in these subsystems.

My work offers new tools to address the complexity of modeling infection-causing microbes.
MADE and TIGER allow genome-scale models to be tailored to a single strain or clinical iso-
late. Pathogenic bacteria display enormous genetic and phenotypic diversity, and capturing these
differences with a mechanistic model is an important step towards a “personalized medicine” ap-

59

60 CHAPTER 7. SUMMARY

proach to model-guided drug discovery. An in silico drug screen is fast and inexpensive, allowing
an enormous number of strain-specific models to be screened within hours. By contrast, the cost
of large-scale experimental drug screening limits traditional drug discovery approaches to a few
well-characterized reference strains.

The scalability of computerized drug screening creates opportunities for combinatorial screening
to identify synergistic drug pairs. Ideally, models could identify sets of drug targets that are likely
to synergize. This goal is difficult to achieve with a standard COBRA model due to the binary
representation of essential genes. In models with binary gene-reaction mappings, removing an
essential gene results in a no-growth condition. There is no room for synergy in such conditions,
as the pathogen is already dead. Finding genes that interact with essential genes requires the
continuous gene-reaction mapping provided by FALCON. The CORES algorithm for FALCON
models identifies genes that are functionally coupled to other drug targets. These gene sets may
be promising leads for synergistic gene pairs.

The power of computational drug screening can shift the drug discovery bottleneck from target
identification to target validation. Experimentally testing “hits” in multiple strains using many
combinations of antibiotics requires large phenotypic screens. In contrast to drug discovery screens,
validation screens typically require high resolution and accuracy. The miniaturize plate readers
I developed are ideally suited for this task. These devices provide the necessary experimental
throughput for validating predictions from genome-scale models, demonstrating how computational
and experimental technologies must advance in parallel.

Appendix A

Supplementary Computational
Methods

Complete TIGER Grammar

This section describes the syntax used for all rules that can be parsed by TIGER. The grammar
was designed to resemble Boolean operations in common programming languages.

Expressions are composed of atoms and numerics joined by operators. Atoms are either

• Identifiers composed of a sequence of any characters except ~!&|()<>= or whitespace. Iden-
tifiers are case sensitive and cannot overlap with an operator (see below).

• Quoted strings of any characters. Either single (') or double (") quotes may be used. Quo-
tation marks appearing inside a quoted string may be escaped with a backslash character
(\).

Numerics are integer or floating point numbers that appear in conditionals. Scientific notation
is allowed in the forms ‘1e-10’ or ‘-2E5’. Some metabolic models use gene identifiers that could
be interpreted as numbers, e.g. the Entrez gene identifier. TIGER allows two solutions to this
potential ambiguity. First, numbers in quotation marks are interpreted as atoms. Second, the
parse_string function allows numeric parsing to be turned off for all identifiers.

Two atoms or numerics can also be compared using the comparison operators =, >, <, >=, <=,
and ~=. The expressions are called conditionals and correspond to a value of one (true) if the
condition is satisfied, and a zero (false) otherwise.

Atoms and conditionals are joined by the Boolean AND, OR, and NOT operators to create expres-
sions of arbitrary complexity. Two expressions are joined by the => (if) or <=> (if and only if)
operators to form a rule.

The TIGER operators obey the following order of precedence:

highest NOT

=, >, <, >=, <=, and ~=

AND, OR
lowest =>, <=>

All operators are left-associative. Parentheses can be used to change the order of operations in
rules. Without parenthesis, the following expressions are parsed as shown

61

62 APPENDIX A. SUPPLEMENTARY COMPUTATIONAL METHODS

a AND b AND c → (a AND b) AND c

a > 2 OR b → (a > 2) OR b

NOT a AND b → (NOT a) AND b

NOT a <= 3 → (NOT a) <= 3

a AND NOT b OR c → (a AND (NOT b)) OR c

The add_rule function allows two different interpretations of the not operator when applied
to a multilevel variable. The binary form considers any nonzero value of x to be true, while the
inverted form requires that x+ not x = xmax. The differences are described in the following table
for x ∈ {0, 1, 2, 3}:

x not x, binary not x, inverted

0 1 3
1 0 2
2 0 1
3 0 0

Notice that for binary variables, both forms are equivalent.

In order to increase the number of existing COBRA models that can be parsed by TIGER
without modification, synonyms are allowed for the following operators:

Operator Other allowed forms

AND and, &, &&
OR or, |, ||
NOT not, ~, !
=> ->, ==>, -->, if, IF
<=> <->, <==>, <-->, iff, IFF
= ==

~= !=, <>

The following formal grammar incorporates the above information and describes all rules that
can be parsed and translated by the TIGER platform.

rule → expr (⇒ | ⇔) expr

expr → not expr

| expr and expr

| expr or expr

| cond

| id

cond → id op (id |number)
op → (≤ | < | = | ∼= | > | ≥)

number → [+-]!\d+\.!\d*([eE]+[+-]!\d+)!

id → [^~!&|()<>=]+

| "([^"]|\")+"

| '([^']|\')+'

63

Converting Rules to Linear Inequalities

As described in the main text, TIGER allows generalized rules of the form

f(x, y, . . .) (⇒ | ⇔) g(x, y, . . .) (A.1)

We define an atomic expression as either x or not x, where x is a discrete variable. If g(x, y, . . .) is
not atomic, we define an indicator variable I such that

f(x, y, . . .)(⇒ | ⇔) I (A.2)

g(x, y, . . .)⇔ I (A.3)

Using the recursive substitution procedure outlined in the text, rules (A.2) and (A.3) can be reduced
to one of the following forms:

x (⇒ | ⇔) I (A.4)

x and y (⇒ | ⇔) I (A.5)

x or y (⇒ | ⇔) I (A.6)

x 〈op〉 y (⇒ | ⇔) I (A.7)

where x, y, and I are all atomic. We now describe how each of these cases is converted into a set
of linear inequalities.

Binary variables

If x and y are binary, the following transformations are used:

x⇒ I → I ≥ x
x⇔ I → I = x

x and y ⇒ I → 2x+ 2y − 4I ≤ 3

x and y ⇔ I →

{
x and y ⇒ I

2x+ 2y − 4I ≥ −1

x or y ⇒ I → − x− y + 3I ≥ 0

x or y ⇔ I →

{
x or y ⇒ I

− x− y + 3I ≤ 2

Multilevel or continuous variables

The following transformations are used when either x or y are positive integers or continuous real
values. If both x and y are discrete (x ∈ {0, . . . , xmax}, y ∈ {0, . . . , ymax}), I will be discrete
and valued in the set {0, . . . , Imax}. If either x or y is continuous with x ∈ [xmin, xmax] and
y ∈ [ymin, ymax], then I is a continuous variables with bounds [Imin, Imax].

The rules x⇒ I and x⇔ I follow the same transformations as in the binary case. The junction
operators are interpreted as

x or y ⇒ I → I ≥ max{x, y}
x or y ⇔ I → I = max{x, y}

x and y ⇒ I → I ≥ min{x, y}
x and y ⇔ I → I = min{x, y}

64 APPENDIX A. SUPPLEMENTARY COMPUTATIONAL METHODS

These transformations are implemented with the following inequalities:

x or y ⇒ I →

{
I ≥ x
I ≥ y

x or y ⇔ I →

x or y ⇒ I

x > y ⇔ Iaux

I ≤ x+ (xmax − xmin)(1− Iaux)

I ≤ y + (ymax − ymin)Iaux

x and y ⇒ I →

x > y ⇔ Iaux

x− (xmax − xmin)Iaux ≤ I
y − (ymax − ymin)(1− Iaux) ≤ I

x and y ⇔ I →

x and y ⇒ I

I ≤ x
I ≤ y

where the axillary variable Iaux is binary. The bounds on I are

Imin Imax

x or y ⇒ I max{xmin, ymin} max{xmax, ymax}
x or y ⇔ I max{xmin, ymin} max{xmax, ymax}

x and y ⇒ I min{xmin, ymin} max{xmax, ymax}
x and y ⇔ I min{xmin, ymin} min{xmax, ymax}

Conditionals

Consider the simple rule ∑
i

φixi ≥ k ⇒ I (A.8)

that is a linear inequality in terms of variables xi with constant coefficients φi. We convert this
expression to an equivalent set of rules ∑

i

φixi + s = k (A.9)

s ≤ 0⇒ I (A.10)

where s is a continuous slack variable that is strictly positive if and only if
∑

i φixi < k. We can
represent rule (A.10) with the inequality I + s > 0. Because MILP solvers do not allow strict
inequalities, this constraint is implemented as I + s ≥ ε, where ε is a very small, positive number.

The upper and lower bounds, u and l, on the quantity
∑

i φixi are

u =
∑
i

max{φixmax
i , φix

min
i }

l =
∑
i

min{φixmax
i , φix

min
i }

Thus, the bounds s ∈ [k − u, k − l] are sufficient to allow the slack variable s to always satisfy the
constraint (A.9).

65

To represent the rule ∑
i

φixi ≥ k ⇔ I (A.11)

we begin by following the above procedure and add constraints (A.9) and (A.10). Then, to enforce
that I ⇒ s ≤ 0, we require that

s ≤ (k − l)(1− I) (A.12)

This completes the “if and only if” implication.
Finally, we show that all conditionals parsed by TIGER can be represented in terms of rules

(A.8) and (A.11) through the following substitutions:

x > y → not (−x ≥ −y)

x < y → not (x ≥ y)

x ≤ y → − x ≥ −y
x = y → (x ≥ y) and (−x ≥ −y)

x 6= y → not ((x ≥ y) and (−x ≥ −y))

The difference operator

Some algorithms require the inclusion of the nonlinear absolute value operator, often to measure
the difference between two variables, |x − y|. TIGER includes the add_diff function that adds a
variable d = |x− y|. If x and y are binary, then

d = x XOR y = (x or y) and (not (x and y)) (A.13)

If either x or y is continuous or multilevel, then d is constructed as the maximum of x − y and
y − x. This is represented by the following constraints:

f+ = x− y, f+ ∈ [xmin − ymax, xmax − ymin]

f− = y − x, f− ∈ [ymin − xmax, ymax − xmin]

d = max{f+, f−}
= f+ or f−

Finding Infeasible Rules

Consider a feasible TIGER model M and a set of rules R that, when added to M , make the
resulting problem infeasible. We can find a minimal set of rules in R that are inconsistent though
the following procedure.

Each rule in R is of the form
p⇒ q (A.14)

or
p⇔ q (A.15)

We create a set S of artificially satisfiable rules by taking each rule in R and adding a set of Boolean
variables as follows:

p⇒ q → p⇒ q or ri

p⇔ q → p or li ⇔ q or ri

66 APPENDIX A. SUPPLEMENTARY COMPUTATIONAL METHODS

These rules are artificially satisfiable since setting all variables li and ri to true will satisfy every
rule in R. If all li and ri are set to false, then the original logic in R is preserved, i.e. R = S|li,ri=0.
A MILP is then formulated as

min
∑
i

li +
∑
i

ri

subject to

M,S

Any rule containing a true li or ri in the optimal solution of this problem is returned by TIGER
as part of the set of infeasible rules. The find_infeasible_rules function also reports whether
each infeasible rule was artificially satisfied on the left (li true) or right (ri true) side.

Appendix B

Experimental Methods

PA14 mutant screening

Plates inoculated from frozen stocks of the PA14 transposon library [72] were grown overnight in
lysogeny broth (Sigma) at 37oC. A 96 well plate containing 200µl SCFM [76] was inoculated with
a pinning tool and allowed to grow overnight at 37oC. The following morning, three plates were
inoculated with 10µl culture into 200µl SCFM. Plates were incubated 37oC with shaking at 225
RPM. OD reading were taken every 40 minutes in a Tecan Infinite Pro 200 plate reader (600nm, 5
flashes/well). OD readings over 0.3 were discarded due to the onset of stationary phase.

67

68 APPENDIX B. EXPERIMENTAL METHODS

Bibliography

[1] L. Michaelis, M. L. Menten, K. A. Johnson, and R. S. Goody, “The original Michaelis constant:
translation of the 1913 Michaelis-Menten paper.,” Biochemistry, vol. 50, pp. 8264–9, Oct. 2011.

[2] D. Fell, “Increasing the flux in metabolic pathways: A metabolic control analysis perspective,”
Biotechnology and bioengineering, vol. 58, pp. 121–4, Apr. 1998.

[3] J. Higgins, “Analysis of sequential reactions.,” Annals of the New York Academy of Sciences,
vol. 108, pp. 305–21, May 1963.

[4] H. Kacser and J. A. Burns, “The control of flux.,” Symposia of the Society for Experimental
Biology, vol. 27, pp. 65–104, Jan. 1973.

[5] R. Heinrich and T. A. Rapoport, “A linear steady-state treatment of enzymatic chains. General
properties, control and effector strength.,” European journal of biochemistry / FEBS, vol. 42,
pp. 89–95, Feb. 1974.

[6] A. Cornish-Bowden, Fundamentals of Enzyme Kinetics. Portland Press Limited, 1995.

[7] D. A. Fell and J. R. Small, “Fat synthesis in adipose tissue. An examination of stoichiometric
constraints.,” The Biochemical journal, vol. 238, pp. 781–6, Sept. 1986.

[8] A. Varma and B. O. Palsson, “Metabolic capabilities of Escherichia coli: I. synthesis of biosyn-
thetic precursors and cofactors.,” Journal of theoretical biology, vol. 165, pp. 477–502, Dec.
1993.

[9] J. S. Edwards, R. U. Ibarra, and B. O. Palsson, “In silico predictions of Escherichia coli
metabolic capabilities are consistent with experimental data.,” Nature biotechnology, vol. 19,
pp. 125–30, Feb. 2001.

[10] A. Varma and B. O. Palsson, “Stoichiometric flux balance models quantitatively predict growth
and metabolic by-product secretion in wild-type Escherichia coli W3110.,” Applied and envi-
ronmental microbiology, vol. 60, pp. 3724–31, Oct. 1994.

[11] D. McCloskey, B. O. Palsson, and A. M. Feist, “Basic and applied uses of genome-scale
metabolic network reconstructions of Escherichia coli.,” Molecular systems biology, vol. 9,
p. 661, Jan. 2013.

[12] S. Bordel, R. Agren, and J. Nielsen, “Sampling the solution space in genome-scale metabolic
networks reveals transcriptional regulation in key enzymes.,” PLoS computational biology,
vol. 6, p. e1000859, Jan. 2010.

[13] A. M. Feist and B. O. Palsson, “The biomass objective function.,” Curr Opin Microbiol, vol. 13,
pp. 344–349, June 2010.

69

70 BIBLIOGRAPHY

[14] S. S. Fong and B. O. Palsson, “Metabolic gene-deletion strains of Escherichia coli evolve to
computationally predicted growth phenotypes.,” Nature genetics, vol. 36, pp. 1056–8, Oct.
2004.

[15] J. D. Orth, I. Thiele, and B. O. Palsson, “What is flux balance analysis?,” Nat Biotechnol,
vol. 28, pp. 245–248, Mar. 2010.

[16] S. Schuster, T. Pfeiffer, and D. A. Fell, “Is maximization of molar yield in metabolic networks
favoured by evolution?,” Journal of theoretical biology, vol. 252, pp. 497–504, June 2008.

[17] N. C. Duarte, M. J. Herrg̊a rd, and B. O. Palsson, “Reconstruction and validation of Sac-
charomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model,”
Genome Res, vol. 14, pp. 1298–1309, July 2004.

[18] N. E. Lewis, H. Nagarajan, and B. O. Palsson, “Constraining the metabolic genotype-
phenotype relationship using a phylogeny of in silico methods.,” Nat Rev Microbiol, vol. 10,
pp. 291–305, Apr. 2012.

[19] R. Mahadevan and C. H. Schilling, “The effects of alternate optimal solutions in constraint-
based genome-scale metabolic models.,” Metab Eng, vol. 5, pp. 264–276, Oct. 2003.

[20] Y. Bilu, T. Shlomi, N. Barkai, and E. Ruppin, “Conservation of expression and sequence of
metabolic genes is reflected by activity across metabolic states.,” PLoS computational biology,
vol. 2, p. e106, Aug. 2006.

[21] T. Shlomi, Y. Eisenberg, R. Sharan, and E. Ruppin, “A genome-scale computational study
of the interplay between transcriptional regulation and metabolism,” Mol Syst Biol, vol. 3,
p. 101, 2007.

[22] A. P. Burgard, P. Pharkya, and C. D. Maranas, “Optknock: a bilevel programming framework
for identifying gene knockout strategies for microbial strain optimization,” Biotechnol Bioeng,
vol. 84, pp. 647–657, Dec. 2003.

[23] J. Kim and J. L. Reed, “OptORF: Optimal metabolic and regulatory perturbations for
metabolic engineering of microbial strains,” BMC Syst Biol, vol. 4, p. 53, 2010.

[24] P. A. Jensen and J. A. Papin, “Functional integration of a metabolic network model and
expression data without arbitrary thresholding,” Bioinformatics, vol. 27, pp. 541–547, Feb.
2011.

[25] D. Barua, J. Kim, and J. L. Reed, “An automated phenotype-driven approach (GeneForce)
for refining metabolic and regulatory models,” PLoS Comput Biol, vol. 6, no. 10, p. e1000970,
2010.

[26] P. F. Suthers, A. Zomorrodi, and C. D. Maranas, “Genome-scale gene/reaction essentiality
and synthetic lethality analysis.,” Mol Syst Biol, vol. 5, p. 301, 2009.

[27] M. W. Covert, E. M. Knight, J. L. Reed, M. J. Herrgard, and B. O. Palsson, “Integrating high-
throughput and computational data elucidates bacterial networks,” Nature, vol. 429, pp. 92–96,
May 2004.

[28] M. J. Herrg̊a rd, B.-S. Lee, V. Portnoy, and B. O. Palsson, “Integrated analysis of regulatory
and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae,”
Genome Res, vol. 16, pp. 627–635, May 2006.

BIBLIOGRAPHY 71

[29] M. W. Covert, C. H. Schilling, and B. Palsson, “Regulation of gene expression in flux balance
models of metabolism.,” J Theor Biol, vol. 213, pp. 73–88, Nov. 2001.

[30] S. Klamt, J. Saez-Rodriguez, and E. D. Gilles, “Structural and functional analysis of cellular
networks with CellNetAnalyzer.,” BMC Syst Biol, vol. 1, p. 2, 2007.

[31] M. Cvijovic, R. Olivares-Hernández, R. Agren, N. Dahr, W. Vongsangnak, I. Nookaew, K. R.
Patil, and J. Nielsen, “BioMet Toolbox: genome-wide analysis of metabolism.,” Nucleic Acids
Res, vol. 38, pp. W144—-W149, July 2010.

[32] S. A. Becker, A. M. Feist, M. L. Mo, G. Hannum, B. O. Palsson, and M. J. Herrgard, “Quanti-
tative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox,”
Nat Protoc, vol. 2, no. 3, pp. 727–738, 2007.

[33] H. W. Kuhn, A. W. Tucker, and G. B. Dantzig, Linear inequalities and related systems, vol. no.
38. Princeton: Princeton University Press, 1956.

[34] S. Gudmundsson and I. Thiele, “Computationally efficient flux variability analysis.,” BMC
Bioinformatics, vol. 11, p. 489, 2010.

[35] E. P. Gianchandani, J. A. Papin, N. D. Price, A. R. Joyce, and B. O. Palsson, “Matrix
formalism to describe functional states of transcriptional regulatory systems.,” PLoS Comput
Biol, vol. 2, p. e101, Aug. 2006.

[36] T. G. Turi and J. C. Loper, “Multiple regulatory elements control expression of the gene
encoding the Saccharomyces cerevisiae cytochrome P450, lanosterol 14 alpha-demethylase
(ERG11).,” J Biol Chem, vol. 267, pp. 2046–2056, Jan. 1992.

[37] J. F. Moxley, M. C. Jewett, M. R. Antoniewicz, S. G. Villas-Boas, H. Alper, R. T. Wheeler,
L. Tong, A. G. Hinnebusch, T. Ideker, J. Nielsen, and G. Stephanopoulos, “Linking high-
resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the
global regulator Gcn4p,” Proc Natl Acad Sci U S A, vol. 106, pp. 6477–6482, Apr. 2009.

[38] S. A. Becker and B. O. Palsson, “Context-specific metabolic networks are consistent with
experiments,” PLoS Comput Biol, vol. 4, p. e1000082, May 2008.

[39] T. Shlomi, M. N. Cabili, M. J. Herrg̊a rd, B. O. Palsson, and E. Ruppin, “Network-based
prediction of human tissue-specific metabolism,” Nat Biotechnol, vol. 26, pp. 1003–1010, Sept.
2008.

[40] J. R. Dickinson and M. Schweizer, The Metabolism and Molecular Physiology of Saccharomyces
cerevisiase. CRC Press, 2nd ed., 2004.

[41] J. L. DeRisi, V. R. Iyer, and P. O. Brown, “Exploring the metabolic and genetic control of
gene expression on a genomic scale,” Science, vol. 278, pp. 680–686, Oct. 1997.

[42] M. Carlson, “Glucose repression in yeast,” Curr Opin Microbiol, vol. 2, pp. 202–207, Apr.
1999.

[43] G. G. Roberts and A. P. Hudson, “Transcriptome profiling of Saccharomyces cerevisiae during
a transition from fermentative to glycerol-based respiratory growth reveals extensive metabolic
and structural remodeling,” Mol Genet Genomics, vol. 276, pp. 170–186, Aug. 2006.

72 BIBLIOGRAPHY

[44] M. A. Oberhardt, B. O. Palsson, and J. A. Papin, “Applications of genome-scale metabolic
reconstructions,” Mol Syst Biol, vol. 5, p. 320, 2009.

[45] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin,
B. Schwikowski, and T. Ideker, “Cytoscape: a software environment for integrated models
of biomolecular interaction networks.,” Genome Res, vol. 13, pp. 2498–2504, Nov. 2003.

[46] M. Kanehisa, S. Goto, Y. Sato, M. Furumichi, and M. Tanabe, “KEGG for integration and
interpretation of large-scale molecular data sets.,” Nucleic Acids Res, vol. 40, pp. D109—-
D114, Jan. 2012.

[47] J. Schellenberger, R. Que, R. M. T. Fleming, I. Thiele, J. D. Orth, A. M. Feist, D. C. Zielinski,
A. Bordbar, N. E. Lewis, S. Rahmanian, J. Kang, D. R. Hyduke, and B. O. Palsson, “Quan-
titative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox
v2.0.,” Nat Protoc, vol. 6, pp. 1290–1307, Sept. 2011.

[48] J. D. Orth, T. M. Conrad, J. Na, J. A. Lerman, H. Nam, A. M. Feist, and B. O. Palsson, “A
comprehensive genome-scale reconstruction of Escherichia coli metabolism–2011,” Mol Syst
Biol, vol. 7, p. 535, 2011.

[49] E. R. Gansner and S. C. North, “An open graph visualization system and its applications
to software engineering,” SOFTWARE - PRACTICE AND EXPERIENCE, vol. 30, no. 11,
pp. 1203–1233, 2000.

[50] K. Kochanowski, U. Sauer, and V. Chubukov, “Somewhat in control-the role of transcription in
regulating microbial metabolic fluxes.,” Current opinion in biotechnology, vol. 24, pp. 987–93,
Apr. 2013.

[51] C. Colijn, A. Brandes, J. Zucker, D. S. Lun, B. Weiner, M. R. Farhat, T.-Y. Cheng, D. B.
Moody, M. Murray, and J. E. Galagan, “Interpreting expression data with metabolic flux
models: predicting Mycobacterium tuberculosis mycolic acid production.,” PLoS computa-
tional biology, vol. 5, p. e1000489, Aug. 2009.

[52] J. Pevsner, Bioinformatics and Functional Genomics. Wiley-Blackwell, 2009.

[53] K. Smallbone, E. Simeonidis, N. Swainston, and P. Mendes, “Towards a genome-scale kinetic
model of cellular metabolism.,” BMC systems biology, vol. 4, p. 6, Jan. 2010.

[54] R. C. Taylor, B.-J. M. Webb Robertson, L. M. Markillie, M. H. Serres, B. E. Linggi, J. T.
Aldrich, E. A. Hill, M. F. Romine, M. S. Lipton, and H. S. Wiley, “Changes in translational
efficiency is a dominant regulatory mechanism in the environmental response of bacteria.,”
Integrative biology : quantitative biosciences from nano to macro, vol. 5, pp. 1393–406, Nov.
2013.

[55] A. P. Oliveira, C. Ludwig, P. Picotti, M. Kogadeeva, R. Aebersold, and U. Sauer, “Regulation
of yeast central metabolism by enzyme phosphorylation.,” Molecular systems biology, vol. 8,
p. 623, Jan. 2012.

[56] B. R. B. Haverkorn van Rijsewijk, A. Nanchen, S. Nallet, R. J. Kleijn, and U. Sauer, “Large-
scale 13C-flux analysis reveals distinct transcriptional control of respiratory and fermentative
metabolism in Escherichia coli.,” Molecular systems biology, vol. 7, p. 477, Mar. 2011.

BIBLIOGRAPHY 73

[57] B. Szappanos, K. Kovács, B. Szamecz, F. Honti, M. Costanzo, A. Baryshnikova, G. Gelius-
Dietrich, M. J. Lercher, M. Jelasity, C. L. Myers, B. J. Andrews, C. Boone, S. G. Oliver,
C. Pál, and B. Papp, “An integrated approach to characterize genetic interaction networks in
yeast metabolism.,” Nature genetics, vol. 43, pp. 656–62, July 2011.

[58] F. M. Brown, Boolean Reasoning: The Logic of Boolean Equations (Dover Books on Mathe-
matics). Dover Publications, 2012.

[59] D. McCloskey, J. A. Gangoiti, Z. A. King, R. K. Naviaux, B. A. Barshop, B. O. Palsson, and
A. M. Feist, “A model-driven quantitative metabolomics analysis of aerobic and anaerobic
metabolism in E. coli K-12 MG1655 that is biochemically and thermodynamically consistent.,”
Biotechnology and bioengineering, Oct. 2013.

[60] M. A. Oberhardt, J. Pucha\lka, K. E. Fryer, V. A. P. M. dos Santos, and J. A. Papin,
“Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aerug-
inosa PAO1.,” J Bacteriol, vol. 190, pp. 2790–2803, Apr. 2008.

[61] J. Puchaka, M. A. Oberhardt, M. Godinho, A. Bielecka, D. Regenhardt, K. N. Timmis, J. A.
Papin, and V. A. P. Martins dos Santos, “Genome-scale reconstruction and analysis of the
Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology.,”
PLoS computational biology, vol. 4, p. e1000210, Oct. 2008.

[62] R. L. Chang, L. Ghamsari, A. Manichaikul, E. F. Y. Hom, S. Balaji, W. Fu, Y. Shen, T. Hao,
B. O. Palsson, K. Salehi-Ashtiani, and J. A. Papin, “Metabolic network reconstruction of
Chlamydomonas offers insight into light-driven algal metabolism.,” Molecular systems biology,
vol. 7, p. 518, Jan. 2011.

[63] A. P. Burgard, E. V. Nikolaev, C. H. Schilling, and C. D. Maranas, “Flux coupling analysis
of genome-scale metabolic network reconstructions,” Genome Res, vol. 14, pp. 301–312, Feb.
2004.

[64] Y. Xi, Y.-P. P. Chen, C. Qian, and F. Wang, “Comparative study of computational methods
to detect the correlated reaction sets in biochemical networks.,” Briefings in bioinformatics,
vol. 12, pp. 132–50, Mar. 2011.

[65] O. Rokhlenko, T. Shlomi, R. Sharan, E. Ruppin, and R. Y. Pinter, “Constraint-based func-
tional similarity of metabolic genes: going beyond network topology.,” Bioinformatics (Oxford,
England), vol. 23, pp. 2139–46, Aug. 2007.

[66] J. Strathern, ed., The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene
Expression (Cold Spring Harbor monograph series). Cold Spring Harbor Laboratory Pr, 1982.

[67] “The Saccharomyces Genome Database, http://www.yeastgenome.org.”

[68] A. A. Carmen, P. K. Brindle, C. S. Park, and M. J. Holland, “Transcriptional regulation
by an upstream repression sequence from the yeast enolase gene ENO1.,” Yeast (Chichester,
England), vol. 11, pp. 1031–43, Sept. 1995.

[69] BIOLOG, “BIOLOG Phenotype MicroArrays Panels PM-M1 to PM-M14,” 2007.

[70] Biolog, “Biolog Redox Dye Mixes,” tech. rep., 2007.

74 BIBLIOGRAPHY

[71] T. Baba, T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba, K. A. Datsenko, M. Tomita,
B. L. Wanner, and H. Mori, “Construction of Escherichia coli K-12 in-frame, single-gene knock-
out mutants: the Keio collection.,” Molecular systems biology, vol. 2, p. 2006.0008, 2006.

[72] N. T. Liberati, J. M. Urbach, S. Miyata, D. G. Lee, E. Drenkard, G. Wu, J. Villanueva,
T. Wei, and F. M. Ausubel, “An ordered, nonredundant library of Pseudomonas aeruginosa
strain PA14 transposon insertion mutants,” Proc Natl Acad Sci U S A, vol. 103, pp. 2833–2838,
Feb. 2006.

[73] P. D. Fey, J. L. Endres, V. K. Yajjala, T. J. Widhelm, R. J. Boissy, J. L. Bose, and K. W.
Bayles, “A genetic resource for rapid and comprehensive phenotype screening of nonessential
Staphylococcus aureus genes.,” mBio, vol. 4, pp. e00537–12, Jan. 2013.

[74] L. A. Gallagher, E. Ramage, R. Patrapuvich, E. Weiss, M. Brittnacher, and C. Manoil,
“Sequence-Defined Transposon Mutant Library of Burkholderia thailandensis.,” mBio, vol. 4,
Jan. 2013.

[75] T. van Opijnen, K. L. Bodi, and A. Camilli, “Tn-seq: high-throughput parallel sequencing for
fitness and genetic interaction studies in microorganisms.,” Nature methods, vol. 6, pp. 767–
772, 2009.

[76] K. L. Palmer, L. M. Aye, and M. Whiteley, “Nutritional cues control Pseudomonas aeruginosa
multicellular behavior in cystic fibrosis sputum.,” J Bacteriol, vol. 189, pp. 8079–8087, Nov.
2007.

[77] R. Mart́ı-Arbona, C. Xu, S. Steele, A. Weeks, G. F. Kuty, C. M. Seibert, and F. M. Raushel,
“Annotating enzymes of unknown function: N-formimino-L-glutamate deiminase is a member
of the amidohydrolase superfamily.,” Biochemistry, vol. 45, pp. 1997–2005, Feb. 2006.

[78] “Pseudomonas genome database – http://www.pseudomonas.com.”

[79] G. Sigurdsson, R. M. T. Fleming, A. Heinken, and I. Thiele, “A systems biology approach to
drug targets in Pseudomonas aeruginosa biofilm,” PLoS One, vol. 7, no. 4, p. e34337, 2012.

[80] C. L. Haley, J. A. Colmer-Hamood, and A. N. Hamood, “Characterization of biofilm-like
structures formed by Pseudomonas aeruginosa in a synthetic mucus medium,” BMC Microbiol,
vol. 12, p. 181, 2012.

[81] Wikipedia, “PAO biofilm.”

[82] L. M. Junker and J. Clardy, “High-throughput screens for small-molecule inhibitors of Pseu-
domonas aeruginosa biofilm development,” Antimicrob Agents Chemother, vol. 51, pp. 3582–
3590, Oct. 2007.

