Database Selection in Distributed Information Retrieval:

Study of Multi-Collection Information Retrieval

A Dissertation
Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

Computer Science

by

Allison L. Powell

January 2001

(©Copyright by
Allison L. Powell
All Rights Reserved
January 2001

Approvals

This dissertation is submitted in partial fulfillment of the requirements for the degres of
Dactor of Philosophy

Computer Science

(Wi LBy

Allizon L. Powell

Approved:

@m@

JMHEE C. French '!Lr!wqr:n[']

i

ita .

—

TLes

John L. Pfaltz Donald E. Brown

(Minor Representative)

Accepted by the Scheol of Engineering and Applied Science:

B 2

Richard W. Miksad (Dean)

January 2001

Abstract

The proliferation of online information resources increases the importance of effective and
efficient information retrieval in a multi-collection environment. Multi-collection searching
includes distributed searching as a special case but is more broadly defined here to incor-
porate searching partitioned content independently from its physical storage. It is cast
in three parts: collection selection (also referred to as database selection) — decide where
should a query be sent; query processing — execute the query at each selected collection;
and results merging — combine the results from individual collections into a single coherent

list for the searcher. We focus our attention on collection selection.

We compare a number of different collection selection approaches and examine the ef-
fect of collection selection on document retrieval performance. We consider multi-collection
retrieval in six different test environments utilizing three document testbeds. Considering
collection selection in isolation, we find that effective collection selection can be achieved
using limited information about each collection. We then turn our attention from selection
alone to data item retrieval in a multi-collection environment, considering retrieval perfor-
mance in the same six test environments. First we find that good collection selection has
the potential to result in better retrieval effectiveness than can be achieved in an equivalent
single collection. Second we find that good performance can be achieved when only a few
collections are selected and that the performance generally increases as more collections are
selected. Finally we find that when collection selection is employed, it may not be necessary
to maintain collection wide information (CWTI), e.g., global idf. Local information can be

used to achieve equivalent performance. This means that multi-collection systems can be

v

engineered with more autonomy and less cooperation. This work demonstrates that im-
provements in collection selection can lead to broader improvements in document retrieval

performance.

Acknowledgements

First, thanks to my advisor, Jim French. His encouragement, support, and advice are
greatly appreciated. My thanks also go to Worthy Martin, John Pfaltz, Anita Jones and
Don Brown for serving on my dissertation committee.

Thanks to information retrieval research group members past and present. Special
thanks go to Charlie Viles for setting a good example and for later collaborations. Special
thanks also go to Travis Emmitt and Kevin Prey for assistance with testbed building and
early collection selection experiments and to Eddie O’Neil and James Watson for help in
collecting (and judging!) documents for the WWW metasearching experiments.

Thanks to Jamie Callan of Carnegie Mellon University and Margie Connell of the Uni-
versity of Massachusetts for collaborations and for CORI and Inquery expertise.

Thanks to Distributed Information Retrieval seminar class members Gary Monroe,
David Mikesell, Tram Phan, Rashmi Srinivasa and Nisanti Mohanraj and Eddie O’Neil for
valuable discussions about early versions of the WWW metasearching experiments.

Finally, heartfelt thanks to my family and all of my friends for providing invaluable
moral support.

NASA provided financial support for this work through Graduate Student Researchers
Program fellowship NGT5-50062.

vi

Contents

Abstract iv
Acknowledgements vi
List of Symbols xvii
List of Abbreviations xviii
1 Introduction 1
1.1 Problem and Motivation L L 2

1.2 Approach e 3
1.3 Contributions 3
1.4 Outline e 5

2 Background and Related Work 6
2.1 Information Retrieval from a Single Collection 7
2.1.1 Document Preprocessing 9

2.1.2 Information Retrieval Models 10

2.1.3 Evaluating Retrieval Results 13

2.1.4 Effectiveness Experiments Using Test Collections 14

2.2 Information Retrieval from Multiple Collections 15
2.2.1 Collection Selection oo 17

2.2.2 Results Merging 29

vil

Contents viil

2.3 Issues in Multi-collection Retrieval 36
2.3.1 Heterogeneous Collections 36
2.3.2 IndexinglIssues 37
2.3.3 Collection Representations 38

2.4 Early Internet Approaches L oL 42

2.5 Metasearching 44

2.6 Summary e 48

Notation and Definitions 49

3.1 Components. 50
3.1.1 Data Items and Collections 50
3.1.2 Indexes and Information Available for Indexing 52
3.1.3 Language Models 53
3.1.4 Queries and Relevance Judgements 53
3.1.5 Testbeds and Test Environments 54

3.2 Experimental Concepts 55
3.2.1 Merit, Baseline Rankings and Estimated Rankings 55
3.2.2 Collection Selection Lo 56
3.2.3 Results Merging L 57

3.3 An Important Detail—Data Item Storage 57

Testbeds and Queries 60

4.1 Features of the TREC Data 61

4.2 Querieso 62

4.3 Goals and Requirements for the Testbeds 65

4.4 The SYM-236, UDC-236 and UBC-100 Testbeds 66
441 SYM-236 (Source-Year-Month) 66
442 UDC-236 (Uniform-Document-Count) 70

443 UBC-100 (Uniform-Byte-Count) 71

4.5

Contents

4.4.4 A Summary of the Testbeds

Document and Relevant Document Distributions

5 Evaluation Measures and their Properties

5.1

5.2

Evaluating Collection Selection
5.1.1 Baselines and Estimators
5.1.2 General Evaluation Strategy
5.1.3 Issues in Comparison o . vt it
5.1.4 Properties of Measures oL
5.1.5 Properties of Rankings
5.1.6 Specific Measures for Comparison.
5.1.7 Expected Performance of Random Selection
Evaluating Data Item Retrieval
5.2.1 Recall and Precision

5.2.2 Precision at Fixed Points

6 Early gGIOSS and CORI Experiments

6.1

6.2

6.3

6.4

6.5

Test Environment e

6.2.2 ¢GIOSS Estimators
Comparing the Maz(l) and Sum(l) Estimators to the Ideal(l) Baseline

6.3.1 Mean Squared Error L oo
6.3.2 Recall and Precision Analogs
Comparing gGIOSS to the RBR baseline

6.4.1 Mean Squared Erroro oo

ix

Contents

Collection Selection — Comparative Experiments

7.1 Approaches Considered
7.1.1 gGIOSS e
7.1.2 CORI e
713 CVV ..

7.2 Test Environments and Experimental Setup

7.3 Correlation with the SBR Baseline

74 Results. e
T4.1 SYM-236 e
74.2 UDC-236 e
74.3 UBC-100 e

7.5 Comparison with Performance of Random Selection

7.6 Discussion e e

Collection Selection — Details and Analysis

8.1 Context e
8.2 Abstracting df - icf Approaches Lo
8.3 Experimental Environment 0oL,
8.4 Experiments and Results.
8.4.1 Influence of Algorithm Components
8.4.2 Modifications to CORI,
8.4.3 Comparison of df -icf Results
8.4.4 Summary e

8.5 Summary of Collection Selection Experiments

Contents x1

9 Multi-collection Retrieval Experiments 166
9.1 Test Environments and Experimental Setup 168
9.1.1 Query Processingo 170
9.1.2 Results Merging o 170
9.1.3 The Three Scenarios« . v v v i v it 171
9.1.4 Execution and Evaluation, 172

9.2 Results. o e 172
9.2.1 Single-Collection Scenario 172
9.2.2 Multiple Collections vs. Single Collection 173
9.2.3 The Effect of Selecting More Collections 178
9.2.4 The Effect of Collection-Wide Information. 182

9.3 Discussion e e 182
9.3.1 CWI and Merging Analysis 182
9.3.2 Distribution of Relevant Documents 185
9.3.3 Conceptual Subdivisions of Collections 186

9.4 Summary 188
10 Applicability to the WWW 190
10.1 The Conceptual Search Model 191
10.2 Fine-Grained Metasearching, 192
10.3 Constructing a WWW-Based Test Environment 193
10.3.1 Using Categories to Subdivide a Search Engine’s Content 194
10.3.2 Processing Queries in the Multi-Collection Environment 196
10.3.3 Probing to Build Language Models 198
10.3.4 Queries, Pages and Relevance Judgements 200

10.4 Experimental Setupo 203
10.4.1 Collection Selectiono 204

10.4.2 Issuing the Queries to the Collections 206

11

C

Contents xii

10.4.3 Results Merging 206
10.5 Preliminary Results o 207
10.5.1 Effectiveness of Traditional Metasearching 208
10.5.2 Metasearching vs. Fine-Grained Metasearching 209
10.6 Discussion and Future Work oL 212
Conclusions 213
11.1 Summary of Findings o 213
11.1.1 Collection Selectiono 214
11.1.2 Multi-collection Information Retrieval 215
11.1.3 Metasearching 216
11.2 Contributions L e e 216
11.3 Future Work and Summary 218
Making Fair Comparisons 219
A1 Two Versionsof CORI 220
A.2 Two Versions of Ideal(0) 222
A.3 UVA Implementation of CORI vs. Official (UMass) CORI 224
A.3.1 The UVA Implementation of CORI 225
A.3.2 Full UVA and Official CORI results 226
Significance Testing 229
B.1 PairedData 229
B.2 Paired t-test 229
B.3 Paired Wilcoxon Signed-Rank Test, 230

Hypergeometric Distribution 233

List of Figures

21

2.2

3.1

3.2

4.1
4.2
4.3
4.4

4.5

5.1

5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

An illustration of multi-collection retrieval. 16
A simple collection selection example.o 18
Collections, indexes and language models. 58
Data item storage scenarios.o 59
Document and query coverage for the SYM-236 testbed. 69
The distribution of documents in SYM-236, UDC-236 and UBC-100.. . .. 73
The distribution of documents and relevant documents in SYM-236. 76
The distribution of documents and relevant documents in UDC-236. 77
The distribution of documents and relevant documents in UBC-100. 78
An example baseline and estimate. 83
An example evaluation using R, ﬁn and Pp. - . . o oo 93
MSE comparison of ¢GIOSS estimators to Ideal(0) and Ideal(0.2) baselines. 107

R, ﬁn and P,, comparison of gGIOSS estimators to Ideal(0). 109

Mean squared error for Ideal(0) compared to relevance-based ranking (RBR).112

R, ﬁn and P, comparison of gGIOSS estimators to RBR. 113
(R, Py) for Ideal(0) compared to RBR. 115
Distribution of n* for Ideal(l) and RBR. 115
Why represent gGIOSS with Ideal(0) instead of Maz(l) or Sum(1)? 118
The effect of increasing [for Ideal(l). 119

xiil

6.9

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9

8.1
8.2
8.3
8.4
8.5
8.6
8.7

9.1
9.2
9.3

Al
A2
A3
A4

A5

List of Figures xiv

Comparing Ideal(0) and CORI to the RBR baseline. 121
Comparing Ideal(0), CORI and SBR to the RBR baseline.. 129
Spearman correlation of selection approaches with SBR baseline. 130
Collection selection results for the SYM-236 testbed. 134
Comparison of approaches, R,, measure, SYM-236 testbed, plus significance 135

Collection selection results for the UDC-236 testbed. 138
Comparison of approaches, R,, measure, UDC-236 testbed, plus significance 139
Collection selection results for the UBC-100 testbed. 142

Comparison of approaches, R,, measure, UBC-100 testbed, plus significance 143

Expected performance of R,, and P,, evaluation measures. 145
Ry, performance of simple df and df - icf approaches. 154
R, performance of simple normalization approaches. 156
The impact of normalization approaches for values of df. 157
Spearman correlation of df - icf selection approaches with SBR baseline. . . 159
Comparison of approaches, R,, measure, SYM-236 testbed, plus significance 163

Comparison of approaches, R,, measure, UDC-236 testbed, plus significance 164

Comparison of approaches, R,, measure, UBC-100 testbed, plus significance 165

Precision values for the multi-LI scenario, long queries. 175
Precision values for the multi-LI scenario, short queries. 177
An example use of a conceptual “multi-collection” arrangement. 187
Ensuring a fair comparison. L Lo 220
CORI using Inquery stats vs. CORI using SMART stats. 222
Ideal(0) using Inquery stats vs. Ideal(0) using SMART stats. 224
Three versions of CORI, plus significance of comparison. SYM-236 testbed,

very long queries. L. 227

A comparison of the UVA and UMass implementations of CORI. 228

List of Tables

2.1 Summary attributes of test environments used in previous work. 19
4.1 Summary characteristics of TREC data. 62
4.2 Coverage of topics over TREC data, disks 1-3, through TREC-4. 63
4.3 Summary characteristics of the document partition. 69
4.4 Summary statistics for the testbeds. oL 74
7.1 Number of times each algorithm achieved a value of R, lower than the

expected performance for random selection. 146
9.1 Average precision values for single. 173
9.2 Average precision over 100 long queries achieved in multi-CWI and multi-LI

for UBC-100, SYM-236 and UDC-236 testbeds. 174
9.3 Average precision over 100 short queries achieved in multi-CWI and multi-

LI for UBC-100, SYM-236 and UDC-236 testbeds. 176
9.4 The impact of selecting more or fewer collections for search using scenario

multi-LI. Long queries. 180
9.5 The impact of selecting more or fewer collections for search using scenario

multi-LI. Short queries. 181
9.6 Is multi-LI significantly better than multi-CWI? Long queries. 183
9.7 Is multi-LT significantly better than multi-CWI? Short queries.. 183
9.8 Summary statistics for the testbeds. oL 186
10.1 Category structure of the four search engines used in this chapter. 195

XV

List of Tables xvi

10.2 Characteristics of 10 of the 56 queries. 203
10.3 Three queries demonstrating collection selection behavior. 205
10.4 Comparison of engine and metasearch performance.. 209

10.5 Comparison metasearch and fine-grained metasearch performance. 210

List of Symbols

Qs, 91, Qui

q

RD—>C
Rem—e
Ry Rons P
rel_judge;;
C,Q,J)

a set of collections

the set of selected collections

an arbitrary collection, C € C

the set of data items

an arbitrary data item, d € D

the document frequency of term ¢; in collection C;

the set of indexes associated with C

the index associated with collection C;

the inverse collection frequency of term ¢;

the set of relevance judgements

the set of language models associated with C

the language model associated with collection C;j

the total merit in a set of collections C for query ¢

the total number of collections

the number of collections currently selected

the number of collections containing data items with non-zero merit
a set of queries

the sets of title, long and very long query formulations used in our
experiments

an arbitrary query, ¢ € Q

the relation specifying the data item to collection mapping

the relation specifying the language model to collection mapping
collection selection evaluation measures (defined in Chapter 5)

the relevance judgement of document d; for query ¢;

an experimental test environment made up of collections, queries and

relevance judgements

XVil

List of Abbreviations

CWI Collection-Wide Information
RBR Relevance Based Ranking baseline
SBR Size Based Ranking baseline

SYM-236 Source-Year-Month testbed
TREC Text REtrieval Conference
UBC-100 Uniform-Byte-Count testbed
UDC-236 Uniform-Document-Count testbed

XViil

Introduction

The growth of the internet, federated digital libraries and other information sources in
which data items may be spread across a number of providers has increased attention on
the problem of retrieving data items found in these environments. For reasons of efficiency,
intellectual property or copyright, it may not be feasible or desirable to assemble all data
items of interest at a central storage location or even to provide access through a centralized
index. Consider for example online journals by different publishers and technical reports
by different academic institutions or research labs. As a result, data items may be found in
a large number of collections. While this situation may be necessary from the information
provider’s point of view, it can prove problematic for end users. Unless some intermediary
is available, users must first be aware of useful collections, then issue their queries to each
useful collection in turn. Fortunately, if each collection provides a means to search for and
access data items, it is possible to employ an intermediary that provides a single point
of access to a set of collections. The underlying collections may actively cooperate with
the intermediary, as in the case of a federated digital library, or may be unaware of the
intermediary, as in the case of World Wide Web (WWW) metasearch engines. Within
the information retrieval community, the problem of retrieving data items from a set of
collections has typically been referred to as distributed information retrieval. We will refer
to the problem as multi-collection retrieval to emphasize the fact that collections may or

may not be physically distributed. While physical distribution is a common scenario, it is

1.1. Problem and Motivation 2

not a requirement.

1.1 Problem and Motivation

The problem of data item retrieval in a multi-collection environment can be broken down
into three major sub-problems. Given a set of collections to which a user’s query might
be sent, the first sub-problem is to either choose the order in which the collections will be
searched or alternately to choose a subset of the collections for search. We refer to this sub-
problem as the collection selection step. This step becomes increasingly important as the
number of collections grows or if the collections charge for access. The second sub-problem
is to forward the user’s query to the selected collections. This step can be challenging
in heterogeneous environments where the underlying collections may use different query
syntax. The third sub-problem is to take the individual results lists from each of the
selected collections and to merge those results into a single coherent list of results to be

presented to the user. We refer to this final step as results merging.

A great deal of work has been done on these individual sub-problems and additional
research has focused on the multi-collection retrieval problem as a whole. Because research
efforts have focused on different sub-problems as well as the whole, and due to the wide vari-
ety of evaluation measures and test environments, it has been difficult to directly compare
different published evaluation results. Also, because evaluation has generally been per-
formed for a sub-problem considered in isolation or for a multi-collection retrieval system
as a whole, the impact of improvements for a sub-problem on overall system performance

has been difficult to isolate.

Our primary goal for this work has been to enhance the understanding of the overall
multi-collection retrieval problem, including the potential that introducing multiple collec-
tions when a single one is possible may become advantageous. Additional goals have been
to compare competing collection selection techniques and to determine reasons for their

success or failure in different environments, to determine what information about collec-

1.2. Approach 3

tions is necessary to enable effective collection selection, to investigate the degree to which
improvements in collection selection can impact overall data item retrieval performance
and to investigate the applicability of experimentally-proven techniques in an operational
environment.

The thesis of this work is that collection selection in multi-collection environments can
be effective even when statistical information about collections is limited, and that given a

small number of well-chosen collections, effective document retrieval can be attained.

1.2 Approach

We have taken a three-pronged approach to studying the multi-collection retrieval prob-
lem. First, we have performed an in-depth comparison of competing collection selection
approaches. We have analyzed the performance for a common task, using three testbeds
and two query sets and have studied reasons for observed differences in performance. We
have also studied the components of the approaches to gauge what information about col-
lections is necessary for effective selection. We have studied data item retrieval performance
when different collection selection approaches were employed. For the data item retrieval
experiments, we used an existing collection selection approach then a best-case approach
to select a small number of collections. The resulting data item retrieval was compared
to gauge the retrieval performance gains that may be achieved using improved collection
selection. Finally, we have applied the top-performing collection selection approach from
our comparisons to a heterogeneous WWW metasearch environment to judge its broader

applicability.

1.3 Contributions

We make a number of contributions with this work, discussed here in the order of their
presentation. The primary two contributions, discussed in more detail below, are our com-

parison of collection selection approaches and our investigation of the impact of collection

1.3. Contributions 4

selection on multi-collection retrieval.

We introduce two new testbeds and include a third in our experiments. We character-
ize features of all three testbeds that may affect performance results. We also introduce
notation for describing multi-collection experiments such as those conducted here, and for
describing multi-collection experimental environments. We perform a direct comparison
of three competing collection selection approaches and analyze reasons for observed per-
formance differences, including the testbed features mentioned above. We show that very
limited information about the underlying collections is adequate for effective collection
selection. Presently, two major camps of collection selection approaches exist—one that
uses minimalist collection information and another that uses detailed information about
the documents within the collections. Our findings help to resolve the open question of
whether the detailed information is advantageous. We also find that communication among
collections may not be necessary given effective collection selection. This finding plus our
finding that minimalist collection information is adequate for collection selection bode well
for the transfer of experimental multi-collection retrieval techniques to an operational en-
vironment. We abstract the approach that performed best in our comparison of collection
selection approaches and examine the impact of its constituent components, isolating the
differences that are key to its success. We collect a variety of evaluation measures, show
relationships among them and discuss expected random performance under the measures.
We show that on average, published collection selection approaches outperform selecting
collections at random, a basic but reassuring finding. Of particular interest, we find that
for all three testbeds, good collection selection of a subset of collections can yield data
item retrieval results superior to those when all data items are located in a single collec-
tion. We present a new way of considering multi-collection environments that allows these
techniques to be layered on top of existing single collection systems. We have deployed
the multi-collection retrieval approaches studied here in a WWW metasearch environment.
We report preliminary effectiveness results, plus an experience report of issues faced when

applying these techniques to a heterogeneous operational environment.

1.4. Outline 5

1.4 Outline

Chapter 2 describes the multi-collection information retrieval problem in much more de-
tail and includes a primer on single-collection retrieval concepts that are applicable to
multi-collection retrieval. We discuss related work in the context of the broader problem
description. Chapter 3 introduces more detailed notation and definitions for concepts intro-
duced in Chapter 2. In Chapter 4 we describe the three different testbeds that we use, plus
the query sets employed. In Chapter 5 we collect the evaluation measures used in the ex-
periments reported here, discuss features of those evaluation measures and cover expected
performance under three of the measures for randomly generated rankings. Chapter 6
covers early experiments that studied the ¢gGIOSS [GGM95] collection selection algorithm
in detail. This chapter also explains the choice of the gGIOSS Ideal(0) baseline as the
representative for the gGIOSS approach in later experiments. Chapter 6 also presents the
results of a preliminary comparison of the ¢GIOSS and CORI [CLC95] collection selection
approaches. An important step in performing this comparison in a straightforward manner
was the vocabulary resolution work described in Appendix A. Chapters 7 and 8 report the
results of our collection selection algorithm comparisons and our study of the components
of one class of collection selection approaches. Chapter 9 contains results of a compari-
son of multi-collection and single-collection data item retrieval and Chapter 10 studies the

multi-collection retrieval problem in a WWW environment. Chapter 11 concludes.

Background and Related Work

Broadly speaking, information retrieval is concerned with identifying data items that have
the potential to satisfy a user’s information need. A great deal of research has been focused
on the problem of effectively and efficiently retrieving data items from a single collection.
This is generally referred to as centralized information retrieval, i.e. data items are con-
sidered to be located at a central source. However, the growth of the internet, federated
digital libraries and other information sources in which data items may be spread across
a number of sources has increased attention on the problem of retrieving data items from
multiple collections. This problem has generally been referred to as distributed information
retrieval. In this dissertation we will use the terms single-collection and multi-collection in

place of centralized and distributed, respectively.

The issues faced in single-collection information retrieval still hold in a multi-collection
environment. Given multiple collections from which we might wish to retrieve data items,
we are obviously still concerned with high-quality retrieval from each of those collections.
However, multi-collection retrieval involves additional challenges, for example, selecting
which collections to search, issues due to heterogeneity in the collections, and how to

present results from multiple collections to a user in a coherent fashion.

The work reported in this dissertation is concerned with the additional challenges that

are present for multi-collection information retrieval. However, a quick overview of single-

2.1. Information Retrieval from a Single Collection 7

collection retrieval will be useful for providing context and will introduce some applicable
terminology. Therefore, we will start with a brief overview of data item retrieval from a
single collection, then move on to a discussion of some of the issues specific to retrieval in a
multi-collection environment. The discussion of multi-collection retrieval will be organized
into a number of sections. Multi-collection retrieval can be divided into three steps, col-
lection selection, issuing queries to the selected collections, and results merging. We will
discuss collection selection and results merging individually, covering related work that fo-
cused on those specific sub-problems. We will then consider a few more detailed issues that
impact the multi-collection retrieval problem as a whole. We will also discuss the related

sub-problem of WWW metasearching.

In this chapter, we cover general background plus specific related work in the area of
multi-collection information retrieval. The data items found in a single- or multi-collection
environment might be text documents, images, sound recordings or binary files. However,
in the examples and experiments presented here, all data items are text documents. As
a result, when we are providing informal descriptions and examples we will refer to the
data items as documents. However, when we present more formal notation for describing
collections or experimental setup in Chapter 3, we will use the broader terminology data
items to emphasize that that our notation is applicable to data items other than text

documents.

2.1 Information Retrieval from a Single Collection

Information retrieval centers around a user with an information need. Given a collection
of documents, the purpose of an information retrieval system is to identify the documents
with the highest potential to satisfy that information need. This task is complicated by
the often complex and unstructured nature of the documents and the frequent inability of

a user to fully and accurately describe the information need.

Considered from an operational viewpoint, we start with a collection of documents.

2.1. Information Retrieval from a Single Collection 8

An information retrieval system will provide the capability to preprocess, then index the
documents. This creates an internal representation of each document that is used by the
information retrieval system but is not apparent to users. Given a user with an information
need, we assume that the user constructs a query that is a statement of that information
need in a format appropriate for submission to the information retrieval system. Given the
query and the internal representation of each document, a boolean information retrieval
system returns the set of documents that satisfy the boolean predicate specified by the
query. A similarity-based information retrieval system computes a score for each document
with respect to the query and returns the documents in order of decreasing similarity. The
user examines the returned documents to determine if any are relevant (i.e. satisfy the
original information need). For information retrieval systems, the user is the final arbiter
of relevance. Experimental systems are generally evaluated based their ability to locate
relevant documents. If no returned documents are relevant, or if an insufficient number
of relevant documents are returned, the user may choose to reformulate, (i.e. revise) the

query and try again.

One thing that makes information retrieval challenging is that it can be difficult for
users to formulate a query that fully and precisely captures the underlying information
need. Users often submit queries that contain only a few terms or queries that only cover
one facet of the information need. Users can also experience difficulty when the vocabulary

used in a query does not match the vocabulary used in documents.

Because our research is focused on issues particular to multi-collection information re-
trieval, our work is only indirectly dependent upon implementation decisions at individual
collections. As we mentioned earlier, we are obviously concerned that each collection pro-
vides high-quality results effectively and efficiently. Poor-quality results from the underly-
ing collections could seriously degrade the overall performance of a multi-collection system.
Aside from this obvious concern, we are also interested in the document preprocessing and
indexing approaches at the underlying collections because collection selection approaches

may utilize statistical information from the collections. Any heterogeneity at the underly-

2.1. Information Retrieval from a Single Collection 9

ing collections may have to be accounted for when building collection representations to be
used by a collection selection algorithm.

A multi-collection information retrieval approach may or may not have access to detailed
information about the information retrieval systems in place at the underlying collections.
As we will discuss in Section 2.2, some multi-collection information retrieval approaches
are more dependent upon detailed information than others.

In the discussion that follows, we will cover document preprocessing steps, general
information retrieval models and the statistical information used by systems based on
these models. These information retrieval models will be referred to in Section 2.2. Some
of the different multi-collection retrieval approaches that we study were originally based on
specific information retrieval systems at the underlying collections. We will refer to those
systems when surveying related multi-collection research. We will also cover the philosophy
behind the evaluation techniques that are used for data item retrieval evaluation. We will

revisit evaluation and evaluation measures in Chapter 5.

2.1.1 Document Preprocessing

Before documents in a collection are indexed they must be in a format that is compatible
with the information retrieval system. For example, a WWW search engine may be able to
directly handle HTML marked-up documents, while a more traditional text search engine
may treat HTML tags, javascript, etc. as normal, to-be-indexed text if it is not removed
in a preprocessing step. Once documents are in a compatible format, they are tokenized
to isolate the individual terms or phrases that make up the document. For simplicity,
we will assume that tokens are terms. Many information retrieval systems then employ a
stoplist to remove extremely common terms such as articles. The stoplist terms are removed
because they inflate the overall vocabulary size but are seldom useful in differentiating
one document from the next. The final commonly-used preprocessing step is stemming
in which word endings are removed. This is used to compress the vocabulary used for

indexing and to cause word variants to resolve to the same token/term. For example,

2.1. Information Retrieval from a Single Collection 10

“computer”, “compute” and “computing” might all stem to “comput”. See Salton [Sal81]

for an overview of the document indexing process which covers these steps in greater detail.

2.1.2 Information Retrieval Models

Information retrieval systems can be classified in terms of how they represent documents
internally, how they represent queries, and in terms of how they perform comparisons of
these internal representations of documents and queries for the purpose of creating a set
or list of documents to return to a user.

Indexing is the step by which an internal representation of each document is created.
The actual representation and the importance of individual terms or other document com-
ponents are particular to each individual retrieval system, but for text documents the
importance of a term is often some function of statistical information about the occurrence
of the term in the document and/or the frequency of occurrence of the term in the collection
at large. Two commonly-used statistics are term frequency (tf) and inverse document fre-
quency (idf). The term frequency (tf;;) is a count of the number of occurrences of term ¢;
in document d;. The inverse document frequency (idf;) is log (%) where N is the number
of documents in the collection and df; is the number of those documents containing term ¢;.
Functions of term frequency and inverse document frequency are often used in conjunction
with one another and different combinations of functions of these two components have
been well-studied [SB88]. The goal of combining these two statistics is to assign higher
weights to terms that occur frequently in a document but infrequently in the collection as
a whole. Such terms are considered to best represent the content of a document.

As a part of the indexing process, information retrieval systems may also employ some
form of document length normalization. Longer documents may produce higher values of
some statistics, for example term frequency, due solely to the higher overall count of terms.
Without normalization, some information retrieval systems tend to assign higher similarity
values to longer documents, and thus make longer documents appear more relevant simply

because of their length. Document length normalization combats this tendency and has

2.1. Information Retrieval from a Single Collection 11

been shown to improve information retrieval system performance [SB88, SBM96]. An
analogous effect for multi-collection retrieval has been observed for some collection selection
approaches and is discussed in Chapters 7 and 8.

While we summarize four different classes of information retrieval systems below, we
emphasize that we are not researching document indexing approaches. We summarize
the approaches here because the details of these approaches have implications for some of
the multi-collection retrieval approaches that we consider in Chapter 7. We also refer to
different classes of information retrieval systems during our discussion of multi-collection
related work in Section 2.2. In a multi-collection environment, we may not have control over
the information retrieval system(s) used by the underlying collections. In fact, different
information retrieval systems may be used by the different collections. This can have

compatibility and performance implications for multi-collection retrieval experiments.

Boolean model. Boolean information retrieval systems maintain a simple index that,
for each term in the vocabulary, is essentially a list of all documents containing at
least one instance of that term. A query is expressed as a boolean predicate and
the set of all documents satisfying that predicate is returned. Two major drawbacks
to simple boolean systems have been noted. First, users have difficulty constructing
effective queries. Second, the returned documents are not ordered. Some of the multi-
collection retrieval systems discussed in Section 2.2 are based on underlying boolean
collection indexes, but this approach is not used in any of the experiments reported

in this dissertation.

Vector space model. In the vector space model, both documents and queries are
represented as v-dimensional vectors where v is the number of terms in the collection
vocabulary. For example, document d; is represented as (wji,wjs,...,w;) where
w;j is the weight of term ¢; in document d;. The similarity between a document
and a query (or two documents or two queries) is computed as the cosine of the

angle between the two vectors. The vector space model is surveyed in Salton [Sal91]

2.1. Information Retrieval from a Single Collection 12

and covered in detail in Salton & McGill [SM83]. The SMART [Sal71] information
retrieval system is a vector-space system. Version 11.0 [Buc92] of the SMART system
was used as the underlying information retrieval engine for the experiments reported

in Chapter 6.

Probabilistic model. On a conceptual level, information retrieval systems based on
the probabilistic model seek to maximize the probability that relevant documents are
retrieved and minimize the probability that non-relevant documents are retrieved.
Relevance properties of documents in which query terms occur are considered and
used to weight query terms [RJ76]. Operationally, these relevance properties cannot
be known exactly and must be estimated based on training collections, collection
statistics, or relevance assessments of documents retrieved in response to previous

queries.

Inference net model. The inference network model [TC90, TC91, TC92] is a kind
of probabilistic model that generalizes both the boolean and probabilistic models
described above. An inference network is a directed acyclic graph. A document
network is used to represent a set of documents while a query network is used to
represent each query. Both documents and queries are nodes in their respective
networks. Concepts (often terms found in documents or in queries) are also nodes
in the graph and belief values are assigned to documents based on the presence or
absence of concepts. Given a query, concepts in the query network and document
network are matched to compute the probability (belief) that a document is relevant
to the query. The Inquery [CCH92] information retrieval system that is used as the
underlying retrieval engine for the experiments reported in Chapter 9 is based on the
inference net model. Inquery has been shown to perform well at TREC conferences

[VH9S).

2.1. Information Retrieval from a Single Collection 13

2.1.3 Evaluating Retrieval Results

The overall goal for an information retrieval system is to retrieve all of the relevant doc-
uments in a collection while at the same time retrieving no non-relevant documents. In
practice, this doesn’t happen very often. Realistically, assuming an output of a ranked
list of documents, we prefer an information retrieval system that ranks relevant documents

highly.

In an operational environment, the nature of the user’s information need can influence
the nature of the evaluation. There is a difference between fact-based searching and in-
depth searching. For example, if a user wants to know the capital of Virginia, a single
document that answers the question is sufficient. Additional relevant documents may serve
to lend credibility to the first but do not provide new information. Contrast this with a
search for related work for a dissertation, or a lawyer’s search for related case law. In the
latter cases, each new relevant document is valuable. In our experiments, we assume the

latter scenario—we assume that a user wants to retrieve every relevant document.

As we mentioned before, the user is the final arbiter of whether a data item is use-
ful. When evaluating information retrieval systems based on relevant documents retrieved,

researchers generally use two measures, recall and precision.

number of relevant documents retrieved

recall =
total number of relevant documents in the collection

number of relevant documents retrieved

precision = -
number of documents retrieved

Recall and precision are usually presented in one of two ways. One common approach
is to report recall-precision curves. For this approach, precision values are computed at
fixed recall points. For example, precision is computed when 10%, 20%, etc. of the relevant
documents have been retrieved. These results are generally presented as graphs where
precision values are computed for R = 0.1,0.2,...,1.0. Plots closer to R = 1, P = 1 denote

better performance. Alternately, researchers may report recall and/or precision at fixed

2.1. Information Retrieval from a Single Collection 14

values, for example when 10, 20, etc. documents have been retrieved. Reporting precision
at fixed values is particularly useful for WWW applications and other environments for
which recall values may not be known. This approach has also been used for reporting
TREC experimental results, based on the observation that users typically examine only
the most highly-ranked results. Recall values can be difficult to obtain because recall
requires that data items from the collection at large be judged, not just the data items
that are retrieved. This is problematic in environments with hundreds of thousands of data

1tems.

2.1.4 Effectiveness Experiments Using Test Collections

Information retrieval systems are often tested and evaluated using test collections. Test
collections for single-collection information retrieval experimentation are typically made
up of a collection of documents, a set of queries to be used in testing, plus a fixed set of
relevance judgements, generally compiled by an independent party. The relevance judge-
ments provided allow the computation of relevance-based evaluation measures like recall
and precision.

Test collections have a number of advantages. They represent an efficient use of human
effort. While it is time-intensive and tedious to judge large numbers of documents for a
large number of queries, once the judgements have been made for a test collection, many
researchers can use this information to evaluate their systems. This allows a large number
of experiments using different parameter settings or tuning changes to be tested without
assembling a set of users for each experiment. Different sets of users might disagree about
the relevance of a document; however, the relevance judgements of a test collections are
fixed. While differences in judgements between judges have been shown to have little
impact on comparisons of information retrieval systems [Voo00], it is useful to have the
judgements remain stable when testing modifications to a single system. Test collections
facilitate system comparisons by allowing different systems to be evaluated independently

of one another using the same environment. The use of standard test collections also allows

2.2. Information Retrieval from Multiple Collections 15

researchers to replicate the experiments of others. Test collections also have drawbacks.
For example, the types of documents or types of queries included may not be representative
of the types of documents or queries an operational system may encounter. However, at the
present time, test collections represent a convenient way to test and compare information
retrieval systems.

For effectiveness experiments, the possible sources of test data are relatively limited.
Older information retrieval test collections! were developed in the 1960s through the 1980s,
and due to manpower constraints were necessarily very small, on the order of a few thousand
data items and less than 300 queries. The small size of these traditional test collections
makes them ill-suited for experiments in which the data must be further sub-divided. The
introduction of the TREC/TIPSTER data represented a substantial leap in the size of
available test collections; by the fourth TREC [Har95] conference, there were more than

one million data items and 250 queries.

2.2 Information Retrieval from Multiple Collections

Up to this point, we have discussed issues that arise concerning information retrieval when
all documents can be found in a single collection. Now we move to a discussion of retrieval
in a multi-collection environment. The issues that we have been considering still apply. We
still want high quality overall document retrieval results and the end user is still the judge
of relevant documents. However, we now have additional considerations that are particular
to multi-collection environments.

Multi-collection information retrieval consists of three major steps, illustrated in a very
simplified fashion in Figure 2.1. First, given a set of collections that may be searched, the
collection selection step chooses the collections to which a query ¢ will be sent. In our
example, collections C; and Cjs are selected. Next, the query is processed at the selected
collections, producing a set of individual result-lists. Finally, those result-lists are merged

into a single list of documents to be presented to a user.

! Available from the Glasgow IDOM server, http://www.dcs.gla.ac.uk/idom/ir_resources/

2.2. Information Retrieval from Multiple Collections 16

¢]
collection selection
q \]

results results

merge

1.

2N

4 o~

Figure 2.1: An illustration of multi-collection retrieval. The collection selection
mechanism routes query ¢ to collections C7 and Cs. Query q is executed at those
collections, then the two results lists are merged into a single, coherent list for
presentation to the user.

2.2. Information Retrieval from Multiple Collections 17

We will cover each of the three steps of multi-collection retrieval and issues related to
those steps in more detail. Within that context, we will discuss related work within the
field of multi-collection retrieval. Some research has been focused on one of the individual

steps; other work has addressed more than one step and will be mentioned more than once.

2.2.1 Collection Selection

Given some query ¢ and a set of collections to which that query might be sent, the collection
selection step may be viewed in two ways. Under one interpretation, the collection selection
mechanism specifies the order in which the collections are searched. An alternate inter-
pretation is that the collection selection mechanism chooses a subset of the collections to
search. We use the former interpretation and assume that a collection selection mechanism
seeking a subset of n collections would simply use the first n collections in the ranking.

To state the problem more formally, we have a set of N collections C = {C1, Co,...,Cn}
that we wish to search to satisfy some query q. We assume that each collection C' € C has
some merit, denoted merit(q,C), with respect to the query gq. Merit could be defined as
the number of relevant documents in a collection, the proportion of relevant documents in
a collection, the number of documents in a collection, the number of documents that have
a given similarity to the query or any other assignment of values. We would like to search
the collections in order of decreasing merit to the query.

To isolate the selection problem, consider for example Figure 2.2. In this example, we
have five collections C = {C1,Cs,Cs,Cy,C5} with the illustrated merits with respect to
some query q. Because we wish to search collections in order of decreasing merit, for this
example, we would like to visit the collections in the following order: (Cs,Cy,Cy4, Co,Cs5).

This example brings up on interesting point—in fact we only want to search the shaded
collections (i.e. only the collections that have non-zero merit). Because collections Cy and
Cs have no merit with respect to query ¢, we should not direct the query to them. For
clarity of exposition, we have cast selection as an ordering task. The desired behavior of a

selection algorithm is to place zero-merit collections at the bottom of the ranking.

2.2. Information Retrieval from Multiple Collections 18

3 0 5 1 0
Cl C’2 03 04 C5

Figure 2.2: A simple collection selection example. Collections C;—Cs have the
illustrated merits; the goal is to search collections in order of decreasing merit.

Collection selection algorithms do not know the intrinsic merit of a collection with
respect to a query. Rather, they provide a means with which to estimate that merit.
These estimates are used to produce collection rankings. Because the actual collection
merits are not known, these rankings based on estimated merit may not be the same
as the desired ranking based on actual merit. One approach to evaluating a collection
selection technique determines the degree to which the selection technique is able to produce

collection orderings that approximate the desired rankings.

A number of different approaches for database or collection selection have been proposed
and individually evaluated. Direct comparisons of these collection selection approaches is
complicated by the variety of experimental environments and evaluation measures that have
been used by different research groups. An examination of Table 2.1 shows the variety
of test environments employed by researchers and gives some insight into the difficulty
of comparing findings from different research efforts. In addition, the methodology for
evaluating collection selection is not yet as standardized as the methodology for evaluating

document retrieval.

Comparisons are further complicated by differences in the overall goals of the different
approaches. The approaches can be divided into three major classes based on their overall
approach or goal. One group of approaches attempts to characterize the document-query
similarities of the documents that would be returned if a query were sent to a collection C.
These approaches typically have the stated goal of locating collections with a large number
of similar documents or with highly-similar documents. A second group of approaches has

the stated goal of identifying collections that have a large number of relevant documents

2.2. Information Retrieval from Multiple Collections 19

‘ Group ‘ Sources ‘ Num. Colls ‘ Queries ‘
Gravano & Garcia-Molina news groups 53 6,800 user
[GGMY5]
Meng et al.[MLY 98] news groups 3 6,597 user
Meng et al. [MLY"99] news groups 3 6,234 user
Liu et al. [LYM199]
Yu et al. [YLWT99] news groups 15 1,000 user
Voorhees [Voo95] TREC (source, year) 10 202-250
Voorhees et al.[VGJL95] | TREC (by source) 5 1-200
Voorhees [Voo96] TREC (source, month) 98 251-300
Voorhees & Tong [VT97] | TREC (by source) 5 51-200
Moffat & Zobel [MZ95] TREC (by source, disk) 9 51-150
Walczuch et al.[WFPS94] | TREC (by source) 5 151-200
Viles & French [VF95a)] TREC-CatB (random) 20 201-250
Callan et al.[CLC95] TREC (by source, disk) 17 51-150
Zobel [Zob97] TREC (disk 2) 13 51-150
TREC (disk 3) 91 202-250
Yuwono & Lee [YL97] CACM, CISI, CRAN, MED 431
Xu & Callan [XC98] 3 x TREC (20MB colls) 100, 107, 50 | 99 TREC

Table 2.1: Summary attributes of multi-collection test environments that have
been used in a sampling of previous work.

with respect to the query. The ways in which these approaches attempt to reach that
goal vary. Finally, a third group of approaches incorporates additional considerations, for

example the cost to search a collection or the expected response time of a collection.

We will discuss a number of different collection selection approaches individually below,
grouped by the overall goal. Three of the approaches, CORI [CLC95], CVV [YL97] and
gGl0SS? [GGM95, GGMTY99] were evaluated in a common environment by French et al.
[FPV*98, FPCT99b] and Callan et al. [CPFCO00], who found that there was significant
room for improvement in all approaches, especially when very few collections were selected.
Expanded versions of those experiments can be found in Chapters 6—-8. When introducing

those experiments, we will present a much more detailed discussion and analysis of the

2gG10SS was later renamed vGIOSS in Gravano et al. [GGMT99], but we will continue to refer to it as
gGlOSS for consistency with our previously published work.

2.2. Information Retrieval from Multiple Collections 20

CORI [CLC95], CVV [YL97] and gGIOSS [GGM95, GGMT99] algorithms; summaries are

provided here to place those approaches in the context of other related work.

2.2.1.1 Collections with Matching or Highly Similar Documents

The philosophy behind approaches that attempt to characterize the query-document simi-
larities of documents within a collection was stated by Gravano and Garcia-Molina [GGM95]
who argued that “the best we can hope for any tool like gGIOSS is that it predicts the
answers that the databases will give when presented with a query.” A number of ap-
proaches have a similar goal. We summarize some of those approaches here, then briefly
discuss environments in which they are applicable and environments for which they are less
well-suited.

Gravano et al. [GGMT94b] introduced GIOSS, the Glossary of Servers Server. GIOSS
operates in an environment of Boolean information retrieval systems. GIOSS utilizes doc-
ument frequency information for each term and assumes that terms are independently
distributed. Given a conjunctive boolean query, GIOSS computes the probability that all
query terms occur in a given document in a collection to estimate the expected result size of
matching documents. Using six collections and 6,897 queries, GIOSS was evaluated based
on the percentage of queries for which the best collection(s) were selected. The degree to
which GIOSS ranked the remaining collections correctly was not evaluated.

GIOSS was later generalized to ¢gGIOSS [GGMI5] to handle the vector space information
retrieval model. In the implementation and evaluation of gGIOSS, Gravano and Garcia-
Molina [GGM95] assumed that all of the collections in C employ the same algorithms to
compute term weights and similarities. Given a similarity function sim(q, d) that computes
the similarity between a query ¢ and document d in a collection, Gravano and Garcia-Molina
defined a notion of goodness for each collection. For similarity threshold I, goodness is
defined as the sum of all document similarities in the collection where sim(q,d) > . The
desired behavior of gGIOSS is to rank collections in decreasing order of goodness. Having

established the desired behavior, Gravano and Garcia-Molina then defined two estimators

2.2. Information Retrieval from Multiple Collections 21

that estimate goodness using two assumptions of query term co-occurrence. The Maz(l)
estimator assumes the highest possible level of co-occurrence of query terms in documents
while the Sum(l) estimator assumes that two terms appearing in the query do not appear
together in a collection document. gGIOSS needs two vectors of information from each
collection in order to make its estimates: the document frequency df; for each term ¢; and
the sum of the term weights w;; of each term over all documents d; in the collection. For
both estimators, it is assumed that the weight of a term is distributed uniformly over all
documents that contain that term. gGIOSS uses the assumptions underlying Maz(l) (or
Sum(l)) to estimate the number of documents in a collection C' having similarity to a query
greater than a threshold [. This forms the basis for the ¢gGIOSS estimate of the goodness
of C. Gravano and Garcia-Molina [GGM95] used a test environment of 53 collections and
6,800 queries and the R,, and P, evaluation measures (which we discuss in Chapter 5) to
evaluate the degree to which the Maz(l) and Sum(l) estimators could rank collections in
decreasing order of goodness. They found that both estimators perform well with respect

to that evaluation criterion.

Yuwono and Lee [YL97] described the D-WISE multi-collection retrieval system, which
considered collection selection, query forwarding and results merging. They referred to
the collection selection portion of their work as the Cue Validity Variance (CVV) ranking
method. CVV refers both to the ranking method and to a component in their calculation
of collection score. C'VV is discussed in much more detail in Chapter 7. The CVV ranking
method employs a combination of document frequency (df) information and cue validity
variance. Cue validity variance attempts to characterize the distribution of the density of
df values, i.e., the variability of the fraction of documents in a collection that contain a
given term. Document frequency information is used to approximate how important a term
is within a collection; the goal of the CVV component is to estimate whether a term is
useful for differentiating one collection from another. The CVV ranking method uses only
information from (or derivable from) collection document frequency statistics. The goal

of the CVV ranking method is to identify collections with a high concentration of query

2.2. Information Retrieval from Multiple Collections 22

terms. Despite the availability of relevance judgements for their test environment, Yuwono
and Lee used an evaluation approach similar to that employed by Gravano and Garcia-
Molina, considering the degree to which CVV predicted the sum of the similarities of the
top-ranked retrieved documents. Yuwono and Lee compared their approach to others but

unfortunately used only four collections and a small number of documents per collection.

Meng et al. [MLY 98] proposed a collection selection approach with goals that were
similar to those of Gravano and Garcia-Molina [GGM95]. Given a multi-collection environ-
ment, their goal was to estimate the number of documents in the collection that would have
a similarity to query ¢ greater than some threshold if a global similarity function had been
employed. While they use the information differently, Meng et al. require the same sta-
tistical information about each collection as Gravano and Garcia-Molina [GGM95]—both
document frequency information and average term weight information is required. The
document frequency information divided by the number of documents in the collection is
used as the probability that a document in the collection contains the term. In the most
basic formulation of their collection selection algorithm, Meng et al. assumed that terms
are independently distributed and that the average term weight is evenly distributed across
all documents that contain the term. They used collection statistics for each query term to
construct a polynomial generating function associated with each collection. The estimated
merit (number of documents with similarity greater than a threshold) for the collection was
extracted from the polynomial; the exponents represented threshold values while the coefli-
cients represented the probability that a document exceeded the threshold. In essence, the
polynomial generating function is a means to compute the probabilities of all combinations
of the presence or absence of query terms in documents in a collection, plus the expected
similarity of a document with the given combination of query terms present. Reported
variations of the collection selection approach relaxed the independence assumption, then
relaxed the assumption that the average term weight information is uniformly distributed.
The approach was tested using a three-collection reorganization of the data used by Gra-

vano and Garcia-Molina [GGM95]. The approach was shown to outperform the ¢gGIOSS

2.2. Information Retrieval from Multiple Collections 23

Maz(l) and Sum(l) estimators for the task of identifying collections containing documents
with similarity to a query that is greater than a given threshold. The evaluation focused on
the number of queries correctly and incorrectly identifying a collection as useful. Whether

collections could be ranked accurately was not reported.

Liu et al. [LYM™99] and Meng et al. [MLY199] later expanded the work of Meng et
al. [MLY"98]. The usefulness of a collection, which was previously defined as the number
of documents with similarity greater than some threshold, was redefined to also include
the average similarity of those documents. The authors introduced two modified collection
selection approaches, the subrange-based method [LYM™99, MLY t99] which relaxes a pre-
vious assumption that the average term weight information is evenly distributed across doc-
uments in a collection that contain the term, and the combining-terms [LYM199] method
that incorporates some term dependency information. Both the subrange-based method
and the combining terms method modify the collection selection approach of Meng et al.
[MLY *98] and expand it to utilize maximum document similarity information. The authors
reported collection selection results that outperformed those of Meng et al. [MLY *98] for
the same experimental environment. No modifications to the merging approach discussed

in Meng et al. [MLY 98] and summarized in Section 2.2.2 were reported.

Yu et al. [YLW199] revisited the subrange-based and combining-terms collection se-
lection approaches. They then provided a document retrieval plan that is guaranteed
to retrieve all of the top n globally most similar documents if the collections containing
those documents are ranked ahead of collections not containing those documents. Fur-
ther, the authors show that their subrange-based and combined term methods fulfill this
requirement for single term queries (due to the availability of the maximum term weight
information). Finally, for a test environment of 9,646 documents arranged in 15 collections
and 1000 queries, they compared their combined term method with the ¢GIOSS Maz(l)
method. The task was to retrieve the n most similar documents and to identify the collec-
tions containing those documents. The authors reported that the combined-term method

outperformed gGIOSS Maz(l) for those tasks.

2.2. Information Retrieval from Multiple Collections 24

Yu et al. [YML199] also considered using a hierarchy of collection representations when
the number of collections available is very large. As in their previous work [MLY 198,
MLY 99, YLW 99|, they focused on retrieving the globally most similar documents. They
demonstrated that the performance of their hierarchical approach is on par with the per-
formance of their related approach that uses a flat representation of collections.

The work of Baumgarten falls somewhat between the class of experiments described here
and the class described in the next section. Baumgarten proposed a probabilistic model
for multi-collection information retrieval [Bau97], assuming that the underlying collections
make use of probabilistic information retrieval systems. He assumed that collections can
be hierarchically partitioned. Collections are selected based on estimating the distribution
of retrieval status values (RSVs) by which documents are ranked for retrieval within the
collections. The collection scores are later used for scaling individual RSVs during a merging
step. While document relevance is later used for evaluation [Bau99], collection selection is
not based upon an estimation of relevant document distribution. The goal of the overall
approach is to maintain the overall top-ranked [documents that would be retrieved in a
search of a single collection containing all documents or by selecting all collections, while
at the same time restricting search to the collections that actually contribute documents
to the set of | documents. In the reported results, the performance of the multi-collection
system and single-collection system was very similar.

The majority of our experiments evaluate the degree to which collection selection ap-
proaches can locate collections with relevant documents instead of highly similar docu-
ments. However, we do study the ¢GIOSS approach in detail and use it as a representative
for approaches that utilize document term weight information and that attempt to locate
collections with highly similar documents.

Traditionally, information retrieval performance in a single-collection environment con-
taining the union of the documents in the multi-collection environment has been viewed

as the goal/upper bound for multi-collection retrieval performance3. While operational

%We will refer to the single collection containing the union of the documents in a multi-collection envi-

2.2. Information Retrieval from Multiple Collections 25

multi-collection environments have yet to exceed the performance seen in equivalent single
collection environments, we will show later that multi-collection retrieval performance has
the potential to outperform single-collection retrieval. Approaches, such as those described
above, that are designed to replicate single-collection performance have two potential weak-
nesses. First, these approaches may search a large subset of the collections if the globally
most similar documents are widely spread across the collections. Second, depending on
the degree to which they are capable of replicating single-collection performance, these ap-
proaches may also not be able to take advantage of the potential for higher multi-collection

performance.

2.2.1.2 Collections with Relevant Documents

The next group of collection selection approaches were proposed with the goal of identifying
collections with relevant documents. These approaches typically (but do not always) require
less statistical information than collection selection approaches with the goal of identifying
collections with highly similar documents.

CORI is the collection selection mechanism associated with the Inquery [CCH92] in-
formation retrieval system and was introduced by Callan et al. [CLC95]. In general, CORI
treats collections as virtual documents using document frequency (df) and inverse collection
frequency (icf) information. Collection selection can be considered as a sort of “document
retrieval” over the set of virtual documents. The authors presented two general formula-
tions of CORI [CLC95]. In our experiments we use the formulation that was shown to have
slightly higher performance scores. We discuss CORI in much more detail in Chapter 7.
Callan et al. provided a basic evaluation of CORI collection selection performance using a
test environment containing 17 collections.

The work of Voorhees et al. [VGIJL94, VGJL95, Voo95, VT97] is more closely asso-
ciated with results-merging and will be discussed further there. However, this work also

has interesting collection selection aspects. Most selection approaches do not specify the

ronment as an equivalent single-collection environment.

2.2. Information Retrieval from Multiple Collections 26

number of documents to be retrieved from a selected collection. Instead, the proportion
of documents from a given collection present in the merged results list is an artifact of
the merge strategy. In contrast Voorhees et al. defined two approaches for determining
the number of documents to be retrieved from each collection. Because that number may
be zero, these approaches serve as a collection selection step. The two approaches, Query
Clustering (QC) and Modeling Relevant Document Distributions (MRDD), do not use sta-
tistical representations of the collections but instead rely upon information learned from
training queries. While their results were promising, the necessity of training data would
be a drawback in an operational system. Training queries would need to be representative

of queries to be seen by the system and acquiring the training data could be expensive.

Hawking and Thistlewaite [HT99] compared an approach that they term Lightweight
Probes (LWP) to the QC and MRDD approaches of Voorhees et al. [VGJL94, VGJLI5,
Vo095, VT97] as well as to two other approaches that rely upon observations of collection
performance on previous queries. In contrast, the LWP approach is based upon statistical
information provided by the collections in response to a set of probe queries. We will discuss
the LWP approach further in a later section in which we consider collection representations

used for collection selection.

Zobel [Zob97] termed the approach of using term statistics about collection vocabulary
lezicon inspection and proposed a number of selection approaches using term statistics.
He evaluated the capability of these approaches to locate both relevant documents and
high-similarity documents. Overall, he found that an inner product using the query term
frequency, the document frequency within a collection and the inverse document frequency

within the testbed performed well.

Xu and Callan [XC98] focused on the nature of queries used for collection selection.
Their premise was that queries intended for document retrieval (often containing only a
few terms) are not appropriate for collection selection and that poor collection selection
performance hinders multi-collection document retrieval performance. They investigated

the inclusion of phrase information and the use of query expansion for collection selection.

2.2. Information Retrieval from Multiple Collections 27

They employed the same experimental methodology as Callan et al. [CLC95] but used three
different testbeds and two sets of queries. On average, both phrases and query expansion
produced results that outperformed the multi-collection base case and at times approached
the performance of the single-collection base case. Because Xu and Callan modified the
collection selection queries while employing consistent document retrieval queries, they were
able to conclude that the improvements in document retrieval were due to their modified
selection approaches. Xu and Callan only reported merged document retrieval results,

special-purpose collection selection performance measures were not used.

2.2.1.3 Other Considerations

Most collection selection approaches are based upon statistical information about the col-
lections and are concerned primarily with locating relevant or highly similar documents.
However, there are approaches that incorporate additional information or set different goals.

An early experiment that considered the use of subdivisions of collections was based on
efficiency considerations. Moffat and Zobel [MZ95] considered compression techniques plus
a collection selection approach that subdivided collections into blocks of B documents. A
selection step was employed to select blocks to which queries should be sent. Moffat and
Zobel varied the number of documents per block and studied the impact of block size on
the number of documents that must be considered in order to attain document retrieval
performance approaching that of an equivalent single collection. For the initial task of
retrieving 1,000 documents, they found that it was necessary to consider a large number
of documents. They found the approach to be more promising when retrieving a smaller
number of documents.

Given a desired number of documents (or a desired number of relevant documents)
to retrieve, Fuhr [Fuh99] presented a model for minimizing the cost of retrieving those
documents. Fuhr’s model takes into account much more information than most of the
other approaches outlined here. The model assumes that information is available about

the expected number of relevant documents per collection, the cost of executing queries

2.2. Information Retrieval from Multiple Collections 28

and retrieving documents from a collection, plus the cost to a user of viewing relevant and
non-relevant documents. All of this information is taken into account when considering the

overall cost of a query.

In the context of their experiments with Lightweight probes, Hawking and Thistlewaite
[HT99] also discussed the cost of accessing collections and considered the cost/benefit trade-

offs of selecting additional collections.

Dolin et al. [DAAD97, DAAP98, DAA99] described and evaluated the Pharos system
in a series of papers. Pharos differs from many other systems because it was explicitly
designed to incorporate both textual and non-textual information. The Pharos architec-
ture [DAADO7] requires hierarchical classification of collections (by subject area, date,
geographic area, etc.) and utilizes two levels of collection selection intermediaries. High-
level intermediaries maintain limited information about all collections while mid-level in-
termediaries maintain more detailed information about subsets of the classification scheme.
Evaluation was based upon the degree to which upper-level intermediaries can predict the
contents of mid-level intermediaries. Each collection is responsible for providing the re-
quired classification-based metadata. While Dolin et al. [DAAP98, DAA99] consider the
impact of automatically classified documents, simplifying the task of acquiring the required
metadata, Pharos still requires a higher level of cooperation from the participating collec-
tions than more minimalist term-statistics based collection selection approaches. Because
the evaluation of Pharos followed a different approach than most of the evaluations of
statistically-based approaches we have considered, it is difficult to determine if the ad-
ditional classification information provides an advantage for environments with textual

collections.

Craswell et al. [CBHOO] argued that the retrieval performance at a collection should
be incorporated into the collection selection step. They augmented the CORI collection
selection approach with expected collection retrieval performance, but unfortunately found
that the results were not significantly different from standard CORI results. Augmenting

CORI with information about actual document retrieval performance (not available in an

2.2. Information Retrieval from Multiple Collections 29

operational setting) did improve performance.

Xu et al. [XCLN98] focused on the problem of collection selection for multi-attribute
bibliographic databases. Like GIOSS [GGMT94b] but unlike many of the other approaches
surveyed here, they attempted to estimate the overall result size, not the number of highly
similar or relevant documents. They found that a modification of the CVV [YL97] approach
to incorporate multi-field data performed better than a proposed approach based solely on
training queries. Later related work by the same group of researchers described the design
and implementation of ZBroker [LXLN99], a query-routing broker for this problem area.
However, in that work, a modified version of GIOSS [GGMT94b] was used for collection
selection.

For the NetSerf system, Chakravarthy and Haase [CH95] focused on collections orga-
nized by subject content. They used hand-crafted representations of collections, then used

WordNet [Mil95] to structure, expand and disambiguate queries.

2.2.2 Results Merging

If more than one collection is selected during the collection selection step then the multiple
results lists generated by those selected collections will need to be handled in some way. The
simplest approach is to concatenate the results lists, delimiting them with some notation
of the collection from which they came. While straightforward, this approach does not
present a unified, seamless view of the multi-collection environment to the users. Results
merging is an attempt to create a single results list from the individual collection’s results.
The goal is to rank the overall most useful documents highly, to remove any duplicates,
and in general to present a coherent view of the results to the user. Results merging is
made challenging by heterogeneous information retrieval systems used by the underlying
collections. Even if the same information retrieval system is used at each collection, subtle
differences in indexing parameters or collection statistics mean that creating a merged list
of documents based solely on the similarity scores computed at the collections is rarely the

best approach.

2.2. Information Retrieval from Multiple Collections 30

There has been attention on results merging or collection fusion from the point of view of
query combination and data fusion as well as multi-collection retrieval. In multi-collection
retrieval, collection selection need not have taken place; a query may have been broadcast
to all collections.

Before we cover some of the merging approaches that have been suggested in the liter-
ature, we mention two simple approaches and two more heavyweight approaches to which
suggested results merging approaches are often compared. The simple approaches are eas-
iest to explain with an example. Consider a multi-collection environment with two collec-
tions, A and B. Assume that these collections return the following results lists, represented

here as pairs of document IDs and scores:
resultsg = ((a1,0.6), (a2,0.4), (a3,0.3), (a4,0.1)) and

resultsp = ((b1,0.8), (b2,0.6), (bs3,0.5))

Interleaving Results. One very simple approach is to interleave the documents from
the two sources in a round-robin fashion. This approach is applicable to a variety
of situations because the document scores provided by the collections need not be
comparable. In fact, the document scores are not necessary. For our example, this

approach would produce the merged list
resultsmerge = ((a1,0.6), (b1,0.8), (a2,0.4), (b2,0.6), (a3, 0.3), (b3,0.5), (as,0.1)).

This approach assumes that the documents from all collections are equally useful and
collections that return more documents have more influence. However, given that
document scores are sometimes not available and often not comparable, this can be

a reasonable simple approach.

Raw Score Merge. A raw score merge assumes (either correctly or incorrectly) that
the document scores produced by the collections are directly comparable. Results are
merged on the basis of these scores alone. In our example, a raw score merge would

produce the merged list

2.2. Information Retrieval from Multiple Collections 31
resultsmerge = ((b1,0.8), (a1,0.6), (b2, 0.6), (b3, 0.5), (a2, 0.4), (a3,0.3), (as,0.1)).

If the document scores are in fact comparable, a raw score merge can work well.
However, if the scores are not comparable the results can be unpredictable. For
collections A and B in our example, the scores appear to be on the scale of [0..1]. If
that is the case, our merged results may be reasonable. If, however, the results from
collection B are on the scale of [0..10], the returned results are likely to be very poor
matches and the quality of our merged results list is likely to be adversely affected

by ranking documents from collection B highly.

Document Re-weighting. If document reweighting is used to merge multiple results
lists, all of the documents retrieved from any collection are considered to constitute a
new collection. The document scores assigned by the original collections are discarded.
The retrieved documents are then re-indexed and the original query is compared to
them. The new document scores are used to rank the documents. While this merged

results list is consistent, this approach is computationally expensive.

Normalized Merge. Normalized merge approaches assume that global collection infor-
mation is available, allowing document scores from different collections to be adjusted
before they are used to rank documents in a merged list. This allows the merged list
to be exactly the same as the results list that would have been returned if all doc-
uments were found in a single collection. The main drawback to this approach is
the cost of maintaining and disseminating the global collection information. This

approach is one to which proposed merging techniques are frequently compared.

2.2.2.1 Query Combination and Data Fusion

A lot of the research on results merging has been done in the context of query combination
or data fusion. Query combination utilizes a collection of documents indexed by a single
information retrieval system. Given a single information need, multiple queries are con-

structed. Each of those queries is a different attempt to express the information need, or an

2.2. Information Retrieval from Multiple Collections 32

expression of different facets of the information need. Each query is issued to the collection,
producing one results list for each query. Data fusion employs multiple indexes of a collec-
tion. These indexes may be produced by different information retrieval systems and/or by
using different parameters of a single information retrieval system. Given an information
need, a query (in the appropriate format for the information retrieval system) is issued to
each index of the collection, producing one results list per index. For both query combina-
tion and data fusion, we are dealing with a single collection of documents. As a result, there
is the potential for overlap among the results lists. In fact, these approaches are based upon
observations that different query formulations and indexing approaches tend to produce re-
sults lists containing different relevant and non-relevant documents [KMT*82, SK88] but
that documents appearing in more than one list have a higher probability of being relevant
[SK88]. The task for both query combination and data fusion is to account for duplicates
and to merge the individual results lists into a single result list to be presented to the
user. The goal is to rank relevant documents from the individual results lists highly in the

merged list.

What follows is not a comprehensive survey of data fusion and query combination re-
search, but rather a brief summary of the research and an entry point into the literature.
Our primary interest is the results merging approaches that have been employed for data
fusion and query combination. We summarize some of the combination approaches sug-
gested, the results observed, and the degree to which these combination approaches have

been adopted.

For their TREC-2 experiments, Fox and Shaw [FS93] suggested six different approaches
for combining multiple “individual similarity” values for a given document d. These indi-
vidual similarity values may be due to retrieval by different query formulations or different
document indexing approaches. These approaches were later adopted by other researchers

so we summarize them below for reference:

2.2. Information Retrieval from Multiple Collections 33

CombMAX maximum of individual similarities
CombMIN minimum of individual similarities
CombMED median of individual similarities
CombSUM sum of individual similarities

CombANZ CombSUM - number of nonzero similarities

CombMNZ CombSUM x number of nonzero similarities

Fox and Shaw [FS93] found that, on average, all six approaches performed fairly well.
CombSUM and CombANZ generally outperformed the best-performing of the constituent
approaches, with CombSUM often outperforming CombANZ. They noted that the Comb-
SUM performance relative to the constituent approaches varied greatly. CombSUM was
adopted by Lee [Lee95] for a study of different classes of document indexing approaches.
Lee [Lee97] later expanded upon the type of experiments performed by Fox and Shaw [FS93]
but employed a different test environment. He studied the CombMAX, CombMIN, Comb-
SUM, CombANZ and CombMNZ approaches, arguing that CombMNZ should be more
effective given that it favors documents that are retrieved more frequently. CombMNZ was

found to be more effective within Lee’s test environment.

For their TREC-2 experiments, Belkin et al. [BKCQ93] used the simple approach of
issuing multiple query formulations as a single query, automatically producing a single
results list. They also used a variant of the median score rule (see CombMED above). In
later experiments, Belkin et al. [BKFS95] also considered using training information about
query performance to choose the best query formulation. Finally, a collaborative effort
by Belkin, Kantor, Fox and Shaw [BKFS95] considered the problem of combining results
obtained from different information retrieval systems. Variants of using the minimum,

maximum and sum of scores were used.

Rajashekar and Croft [RC95] used the standard Inquery query operators to combine

different representations for both queries and documents.

2.2. Information Retrieval from Multiple Collections 34
2.2.2.2 Merging and Multi-collection Retrieval

In a multi-collection retrieval environment, an appropriate results merging step is dependent
on the information retrieval system(s) at the collections. The merging approaches proposed
by different researchers depend upon whether knowledge is available about the information
retrieval systems used by the collections and whether document scores from different results
lists are comparable or can be normalized to make them more comparable.

Voorhees, et al. [VGJL95, VGJL94] proposed a merging approach in which the number
of documents retrieved from a collection was based on the estimated usefulness of that col-
lection. They used two approaches, modeling relevant document distributions (MRDD) and
query clustering (QC) to determine the number of documents retrieved from a collection.
Both approaches required a set of training queries. The retrieved documents were merged
using a probabilistic approach that employed what they termed a C-faced die to choose the
next collection from which a document was to be drawn. Voorhees et al. [VGJL95] noted
that when the actual distribution of relevant documents is known and utilized, the merged
performance can exceed system performance when a single collection is employed. Further
experiments by Voorhees [Voo95] studied QC and MRDD using different collections and
queries and discussed the efficiency of the techniques. Voorhees and Tong [VT97] later
showed that results observed in Voorhees, et al. [VGJL95, VGJL94, Voo95]| were stable
over different underlying search engines.

Yager and Rybalov [YR98| considered the merging problem as stated by Voorhees, et
al. [VGJLY95, VGJL94] but enumerated several deterministic merging approaches as an
alternative to the original probabilistic approach.

In the same paper in which they introduced the CORI collection selection algorithm
Callan et al. [CLC95] also presented a comparison of four different results merging ap-
proaches. These approaches included interleaving, raw score merge, normalized merge and
an approach they termed weighted scores. The weighted scores approach did not require
collection-wide information, but instead used a combination of the document score and the

source collection’s score from the collection selection step to compute a document score for

2.2. Information Retrieval from Multiple Collections 35

merging. Callan et al. found that the weighted scores approach had similar performance

to the normalized merge, but with less overhead.

In conjunction with their collection selection experiments, Meng et al. [MLY*98] con-
sidered the collection fusion problem with the goal of guaranteeing that they would locate
all of the documents that would be most similar to some query ¢ if a global similarity
function had been employed. This necessitated computing different similarity thresholds
for retrieving documents from each selected collection. Meng et al. presented two ap-
proaches for retrieving the globally most similar documents; however, because their their
test environment did not contain relevance judgements, a relevance-based evaluation was
not presented. If the global similarity function is used to order the retrieved documents, the
relevance-based performance of this approach would be bounded by the single-collection

performance.

Gravano and Garcia-Molina [GGM97] also considered the problem of results merging
and setting local similarity thresholds to retrieve the globally most similar data items. How-
ever, they considered collections containing structured records and examined the impact of
different assumptions about the types of information available from and returned by the

collections.

Craswell, et al. [CHT99] proposed two new merging techniques and compared their
performance to other published techniques. They compared results merging approaches
that used different sources of document and collection information, and found that re-
weighting documents retrieved from collections was highly effective. Their two proposed
re-weighting approaches, based on the position of query terms in the documents, performed

well for their test environment of five TREC-based collections.

While results merging is an important step for multi-collection retrieval, we focus most
of our experiments on the collection selection step. There are many different merging
approaches to choose from; we chose approaches that did not obscure the impact of the
collection step. The merging approach is generally held constant for our comparative ex-

periments. For the one case where merging is a potential issue, it is clearly discussed. When

2.3. Issues in Multi-collection Retrieval 36

merging is necessary for our experiments, we use a raw score merge (where appropriate)
or the default CORI merge. The experiments of Chapter 10 use a document re-weighting

approach for results merging.

2.3 Issues in Multi-collection Retrieval

There are a number of issues that cut across many multi-collection retrieval approaches,
although they are not always explictly mentioned. These issues include the impact of the
use of different information retrieval systems at the underlying collections and information
used for indexing collections. Of particular interest to us is the issue of collection repre-
sentations for collection selection, the information used for those representations and how

that information is acquired.

2.3.1 Heterogeneous Collections

There are many ways in which the individual collections in a multi-collection environment
might differ. Collections can employ different document indexing techniques and different
query processing techniques. The underlying search engine at one collection might support
options not allowed by others. The acceptable query formats may differ among the search
engines at the collections. The range of document scores can also vary by collection. In
the context of describing the STARTS internet metasearching protocol, Gravano et al.
[GCGMP9I7] discussed these issues in detail. Here, we mention a few specific issues that
have implications for our experiments.

Some approaches assume homogeneous underlying search engines. The general ap-
proaches that we consider do not. In our earlier discussion of the ¢gGIOSS [GGM95] collec-
tion selection approach, we noted that gGIOSS assumes that all collections use the same
similarity function to compute query-document similarities. In practice, this assumption
is only feasible when the same individual or organization controls all collections in the

multi-collection environment.

2.3. Issues in Multi-collection Retrieval 37

With the exception of gGIOSS, the approaches that we study in this dissertation do not
require document term weight information. In general, the approaches we study require
only document frequency information (the number of documents containing each term) and
other information that remains consistent even if different search engines or query formats
are used at the underlying collections. However, there is still one issue that we must be
aware of. Because collection selection indexes may be built from information provided by
collection indexes, tokenizing, stopping and stemming can have implications for collection

selection. Differences here can lead to incompatible vocabularies.

2.3.2 Indexing Issues

In addition to search engine issues, some researchers have also considered problems caused
by limited indexing information at the individual collections. If collections are small or spe-
cialized, the documents in the collection may not be representative of the set of documents
contained in all collections. This can result in artificially high or low similarity scores. One
approach to resolving this problem has been to incorporate statistical information from
other collections during indexing.

Viles and French [VF95b, FV96] studied the impact of what they termed collection
wide information (CWI) on multi-collection information retrieval performance. Their test
environment assumed that queries are broadcast to all collections and that a raw-score
merge would be employed. They found that while disseminating collection wide information
for use in indexing is advantageous, it is not necessary to collect statistical information from
all documents in all collections. The amount of statistical information required is dependent
upon characteristics of the underlying collections.

Walczuch et al. [WFPS94] compared their system performance using semi-local and
collection-wide information. They tested using five collections indexed using the SMART
information retrieval system. Results from the five collections were merged by re-ranking
using either df information from the pooled result set or collection-wide df information.

Walczuch et al. reported that they found no significant difference between the approaches;

2.3. Issues in Multi-collection Retrieval 38

however, given the small number of collections, it is difficult to compare their results to
those of Viles and French [VF95b, FV96] or the results reported in this dissertation.

de Kretser et al. [dMSZ98] considered three different levels of statistical information and
collection-wide information for collection selection and indexing. The simplest approach
provided nothing to the collection selection mechanism except a list of collections. A more
elaborate approach provided vocabulary information about the collections to the collection
selection approach. That vocabulary information was used for selection and also used as
collection-wide information for document retrieval. The collection block selection approach
of Moffat and Zobel [MZ95] was employed as a third approach. Overall, de Kretser et
al. reported similar results for the three approaches, with a small drop in performance
when very few blocks were selected by the third approach. The similar performance of
the first two approaches is of particular interest. From the description of experiments, it
appears that for both approaches queries are broadcast to all collections. The lack of impact
of collection-wide information implies that for the given test environment local collection
statistical information was representative of the test environment as a whole.

In their work on results merging Craswell, et al. [CHT99] used what they termed ref-
erence statistics. Instead of maintaining statistical information about all documents in all
collections, they maintained information about a sample of 10% of the documents. These

reference statistics were employed by their top-performing merging approach.

2.3.3 Collection Representations

Collection selection is difficult partly because collection selection algorithms do not typically
have access to the full contents of a collection. Instead, they utilize summary statistical
information about the collections. We will use the terminology used by Xu and Croft
[XC99] and Callan et al. [CCD99] and refer to the summary information about a collection
as a language model (LM). Collection selection algorithms differ in the type of information
that they require in the language models. For our experiments, each collection C; is rep-

resented by a corresponding language model LM;. We denote the set of language models

2.3. Issues in Multi-collection Retrieval 39

as LM = {LMy,LM,,...,LMy}. Given a query ¢, a formula for estimating merit, and
an appropriate set of language models LM representing C, a collection selection algorithm
computes the estimated merit for each collection with respect to the query, then sorts and

ranks collections using that estimated merit.

The language model LM; for a collection C; can be created in a number of ways. The
administrators of a collection might choose to make all documents available, in which case
a wide variety of statistical information is possible. Alternately, administrators may make

only limited statistical information available.

A number of protocols for describing collections have been proposed. One well-known
protocol is STARTS [GCGMP97], which was created with the input of a number of large
information providers. STARTS defines a rich set of metadata that is to be provided
by internet search engines that wish to cooperate in a joint metasearching project. The
assumption that the search engines wish to cooperate is key—STARTS requires a large

amount of metadata, some sites may not be willing or able to contribute.

Powell and Fox [PF98] defined SearchDB-ML, an application of XML (eXtensible Mark-
up Language) for describing a collection. SearchDB-ML can be used to describe the search
engine used at a collection, the query and results formats, and additional metadata. To
enable collection selection, each SearchDB-ML description of a collection can contain a
brief general description of the contents. The authors report that the simple descriptions
of SearchDB-ML make it easy to add new collections to the system; however, they also
report that some users expressed concern that the brief collection description would not be

sufficient for effective collection selection.

Hawking and Thistlewaite [HT99] suggested that their Lightweight Probes (LWP) ap-
proach may be a useful addition to STARTS. Rather than periodically collecting metadata
from collections, the LWP approach collects limited, query-specific statistical information
from collections at query time. Like STARTS, LWP assumes that the underlying collections
are willing and able to cooperate. The information requested by LWP includes document

frequency information, the number of documents in the collections, as well as proximity

2.3. Issues in Multi-collection Retrieval 40

and co-occurrence information.

As we mentioned earlier, gGlOSS [GGM95] needs two vectors of information from each
collection in order to make its estimates: the document frequency df; for each term ¢; and
the sum of the term weights w;; of each term over all documents d; in the collection. This
information is stored in two matrices, referred to as F' (document frequency) and W (term

weights) by Gravano and Garcia-Molina.

CORI [CLC95] is built on top of Inquery [CCH92| and as defined draws its required
document frequency information directly from the Inquery-indexed collections. However,
the published algorithm is amenable to use with heterogeneous underlying collections if
collection statistics can be provided or acquired by sampling. The use of phrases and
query expansion by Xu and Callan [XC98| increased the complexity of the basic CORI
approach. The use of phrases increases the size of the language model and also increases
the complexity of gathering the statistical information required. Their query expansion

approach required a training phase.

Callan et al. [CCD99] discussed a query-based sampling approach to generating lan-
guage models. The language model for each collection is constructed using a subset of
the documents in that collection. The subset of documents is gathered using a randomly
selected set of probe queries. Callan et al. described the methodology for constructing
the sample-based language models, covering the number of documents retrieved per probe
query, the selection of probe queries and stopping criteria. In this work, Callan et al.
measured the degree to which the sampled language models approximate language models
built using all documents in the collections. While there is discussion of automatic stopping
criteria, the reported results use samples of 300 or 500 documents per collection. Callan
et al. [CPFCO00] later studied the degree to which different collection selection approaches
are affected by language models created using query-based sampling. Collection selection
performance of CORI [CLC95], ¢GIOSS [GGM95] and CVV [YL97] was compared us-
ing complete and sample-based language models. Long, medium and short versions of the

queries were used. With a few exceptions, Callan et al. found that collection selection using

2.3. Issues in Multi-collection Retrieval 41

sample-based language models was effective. There was often little difference between col-
lection selection performance using complete and sample-based language models. However,
they did note some issues related to normalization approaches—as currently defined, CVV
was found to be incompatible with sample-based language models. Overall, the CORI

collection selection approach proved to be the most stable.

Craswell et al. [CBHO0] also presented a comparison of the impact of sample-based
language models on the CORI, ¢gGIOSS and CVV collection selection approaches. There
were a number of methodological differences; however, the overall results are complemen-
tary with those found by Callan et al. [CPFCO00]. For their experiments, Craswell et al.
[CBHOO| used a variant of the query-based sampling approach proposed by Callan et al.
[CCDY9]. Instead of using randomly-selected probe query terms, Craswell et al. used an
independent set of multi-term queries. They considered the performance of the collection
selection approaches when a varying number of probe queries were used to construct the
language models. Craswell et al. found that the eventual merged document retrieval per-
formance tended to improve as more probe queries (retrieving more documents) were used
to construct the language models. They also found that reasonable performance could be
obtained when selecting only ten collections and that CORI performed well using sampled

language models.

Liu et al. [LYM199] touched upon the potential unavailability of full statistical informa-
tion for their approach and outlined general sampling approaches to acquire estimates for
the required information. Xu et al. [XCLN98, LXLN99] also used a query-based sampling
approach (different from that defined by Callan et al. [CCD99]) to acquire statistical infor-
mation for their experiment using collections of bibliographic data. Of particular interest

is a characterization of the overhead incurred by sampling [LXLN99].

D’Souza and Thom [DT99] suggested n-term indezing in which only n terms from each
document in a collection are used to construct that collection’s representation. D’Souza
and Thom suggested a number of ways that the terms could be chosen and that the value

of n could be determined. For initial experiments [DT99], they chose the first 30 unique

2.4. Early Internet Approaches 42

terms occurring in each document. They used the experimental environment proposed
by Zobel [Zob97] and compared their results to Zobel’s inner product results. D’Souza
and Thom reported that n-term indexing performs noticeably worse than Zobel’s inner
product but better than selecting collections based solely on size (largest collections first).
The n-term indexing approach represents a departure from many of the other language
modeling approaches because it chooses terms on more of a document-centric basis. Unlike
some other approaches, n-term indexing requires access to the text of all documents in a
collection and also assumes that early terms are not only representative of the document

but also of the collection.

Xu and Croft [XC99] considered clustering, both in the creation of collections and the
construction of language models. They argued that clustering may be necessary to create
multi-collection environments suitable for effective collection selection. We will revisit this
argument in Chapter 9. Xu and Croft compared single-collection performance to four dif-
ferent approaches for constructing collections and language models. They considered a set
of collections containing roughly the same number of documents per collection (their base
case), a set of collections created by clustering all documents, a set of collections created by
clustering within a coarse decomposition of documents, and the use of multiple language
models to represent each collection. Xu and Croft reported improved performance over
the base case for all three proposed approaches. Unfortunately, the overhead of cluster-
ing and the requirement that the underlying collections cooperate may impact the broad

applicability of these approaches.

2.4 Early Internet Approaches

Early internet resource discovery systems, generally those in place shortly before the World
Wide Web began to be widely used, often focused on specific tasks within an environment
with multiple information sources. Examples include locating e-mail addresses or locating

files served by anonymous FTP servers. Broader tasks included locating potentially useful

2.4. Early Internet Approaches 43

WAIS or gopher servers. Schwartz [Sch93], Schwartz et al. [SEKN92| and Obraczka et al.
[ODL93] all provide excellent surveys of these approaches. Bowman et al. [BDMS94] also
consider some of these approaches in the context of scalability. At the time that these
resource discovery approaches were surveyed, the problem was one of notifying users of the
existence of distributed information sources that had the potential to be useful. As a result,
a basic form of collection selection (identifying potentially useful sources) was involved,;
however, the user was generally responsible for selecting which information sources were

employed.

The Discover system [SDWG95] was implemented on top of a set of WAIS servers using
an approach that the authors referred to as “content routing” [SDW*94]. A hierarchical
set of content routers contained descriptions of the information sources (WAIS servers); the
format of the descriptions was not constrained by the system. For the prototype system,
the descriptions were the very brief WAIS server description and the WAIS catalog file
(headlines for each document). A user interface was provided so that users could search
or browse these descriptions to identify potential information sources to search. Once a
user selected a set of collections to search, Discover provided a mechanism to send the
query to all of the collections. The results list was not merged but rather delimited by
the collection providing each set of documents. Discover differed from other systems of the
time by providing a query reformulation feature. The authors provided an example and a

qualitative performance report but reported no in-depth system evaluation.

The Harvest system [BDH'T95 BDH7'94] employed sets of gatherers and brokers to
provide efficient access to information across multiple collections. Gatherers were respon-
sible for exporting indexing information about information sources, while brokers provided
organization, plus a search interface. Efficiency was one of the primary goals of Harvest—
gatherers could provide information to multiple brokers, removing the need for each broker

(search mechanism) to download documents for indexing.

2.5. Metasearching 44

2.5 Metasearching

Internet metasearching is an interesting sub-problem of multi-collection information re-
trieval. A metasearch engine does not maintain its own index of WWW pages but instead
acts as an intermediary that forwards queries to an often predetermined set of traditional
internet search engines. Metasearch engines have been around almost as long as internet
search engines. One interesting aspect of metasearch engines is the very large scale on
which the internet search engines themselves operate. For example, as of July 2000, Search
Engine Showdown? estimated that ten major internet search engines indexed at least 100
million pages. Unfortunately, studies have shown that any given search engine indexes only
a small fraction of the total pages available on the WWW [LG99]. Metasearching is one
attempt to broaden search coverage.

The potential utility of metasearch engines is illustrated in the accessibility experiments
of Lawrence and Giles [LG99]. Their experiments, conducted in February 1999, estimated
eight hundred million web pages, with at most 16% of those pages indexed by any one
search engine. The observed overlap among the pages indexed by any two search engines
was small, suggesting that sending queries to more than one search engine may improve
the comprehensiveness of the results. Taken together, the eleven engines considered by
Lawrence and Giles [LG99] covered an estimated 42% of the pages.

Because metasearch engines exist in the changing WWW environment, evaluations of
published metasearch engines have varied widely in methodology. In general, recall and
precision-based results of the form commonly found for information retrieval experiments
are not reported.

Selberg and Etzioni introduced MetaCrawler [SE95] in July 1995. A current operational
version of MetaCrawler is available®, but we will discuss the published version [SE95].

MetaCrawler accessed Galaxy, InfoSeek, Lycos, Open Text, WebCrawler and Yahoo®, then

“http://www.searchengineshowdown.com/stats/sizeest.shtml

Shttp://www.metacrawler.com

Shttp://uww.galaxy.com/, Infoseek is now http://www.go.com/, http://www.lycos.com/, Open
Text no longer supports a general-purpose search engine but now provides a business-oriented site
http://pinstripe.opentext.com, http://www.yahoo.com.

2.5. Metasearching 45

collated the results. For evaluation purposes, the authors kept track of which returned links
were followed, which returned links were unique to each search engine, and the response
time of the underlying search engines. For the purposes of evaluating effectiveness, the
authors assumed that followed links were useful to the user. This is a common assumption
in metasearching experiments; however, the validity of the assumption is dependent upon
a number of factors. Poor summary information can influence whether or not a link is
followed, and users may follow an interesting link that does not satisfy the information
need. Keeping track of which returned links were followed allowed the authors to determine
which search engines provided followed links. They found that on average all search engines
provided followed links but that some appeared to provide more than others. They also
noted low overlap among the results lists from the search engines. These two factors
combined to suggest that MetaCrawler provided access to a broader array of interesting
web pages. MetaCrawler loaded the pages from the results lists to elide dead links and to
enable postprocessing steps like advanced query formulations. MetaCrawler was an early
metasearching approach and as a result Selberg and Etzioni also focused on the overhead

of the approach and the apparent acceptability to users.

SavvySearch was introduced by Dreilinger and Howe [DH97] in March 1995. Savvy-
Search is now available as C|Net search.com” but we will discuss the published version.
SavvySearch accessed both general-purpose search engines and specialized resources. One
interesting feature of SavvySearch was the use of search engine selection for efficiency
purposes. SavvySearch employed a selection approach, referred to as a search plan that
attempted to balance resource usage and the expected quality of the results. Given a user
query, search engines were ranked based upon whether they had previously returned re-
sults for terms in the query, whether those links returned had been followed and the recent
search engine response time. Dreilinger and Howe reported a number of experiments de-
signed to determine whether the selection approach was viable and to gauge the quality

of the suggested search order. Overall, they found that selection was viable (i.e. it is not

"http://www.search.com

2.5. Metasearching 46

necessary to broadcast a query to all search engines available to the metasearcher) but that
modifying the search order made only a small difference, possibly due to the presence of

general-purpose search engines in the search plans.

ProFusion® was recently acquired by IntelliSeek®. The version of ProFusion reported by
Gauch et al. [GWGY96] was notable for the discussion of merging issues. The published ver-
sion of ProFusion had the potential to send queries to AltaVista, Excite, InfoSeek, Lycos,
OpenText and WebCrawler'?. The default of ProFusion was to send queries to InfoSeek,
Lycos and Excite; alternately, a user could manually select search engines. An additional
option was to enable a search engine selection step that classified the query by topic then se-
lect three search engines based on that topic classification. A major focus of ProFusion was
a variety of postprocessing steps. Given results from the selected search engines, ProFusion
first took steps to remove duplicate pages, then merged the results using a combination
of the document score reported by the search engine and the estimated accuracy of the
search engine returning the page. Pages retrieved by more than one engine were given the
maximum score achieved by any instance of the page. ProFusion was compared to the six
constituent search engines plus MetaCrawler[SE95] and SavvySearch[DH97] using twelve
queries. ProFusion was found to outperform the constituent search engines and the other
metasearchers in terms of locating relevant documents and in terms of removing duplicate

pages and broken links.

MetaCrawler, SavvySearch and ProFusion were all included in a comparison of meta-
search engines conducted by Repman and Carlson [RC99] and all three ranked in the top
five. Repman and Carlson focused on whether metasearch engines were appropriate for
use at library terminals accessible to a variety of users, and as a result did not perform an
in-depth technical evaluation of the metasearch engines. However, their observations about

the usability and strengths and weaknesses of different metasearch engines provide useful

8http://wuw.profusion.com

Shttp://www.intelliseek.com

Ohttp://wuw.altavista.com, http://www.excite.com, Infoseek is now http://www.go.com/,
http://www.lycos.com/, Open Text no longer supports a general-purpose search engine but now
provides a business-oriented site http://pinstripe.opentext.com, http://www.webcrawler. com.

2.5. Metasearching 47

insight.

Inquirus [LG98a, LGI8b] is a prototype metasearch engine with a heavy emphasis on
processing documents retrieved from the individual search engines. Inquirus downloads the
retrieved pages, verifies that the pages are still available and that they still contain the query
terms. Because the pages are downloaded, Inquirus can re-rank the retrieved documents,
taking into account query term proximity, and can construct its own document summaries.
Documents producing the same summaries are declared to be duplicates. Another feature
of Inquirus is “specific expressive forms” in which common question forms are rephrased
in an attempt to improve recall. Inquirus begins displaying results before all documents
are processed. As a result, the Inquirus response time is shown to be on par with that of
other search engines, despite the additional processing. Search effectiveness results were
not reported.

In addition to the general-purpose metasearch engines that we have discussed so far,
there are also multisearch and metasearch systems that target specialized search engines.
Search Broker [MB97] prompts users to specify the subject of a query as the first term of the
query; that subject term is used to direct the query to a search engine. Search Broker does
not merge results, but presents summary results delimited by responding search engine,
therefore, it is classified as a multisearch system. Sugiura and Etzioni [SE00] described Q-
Pilot, a multisearch system that routes queries to specialized, topic-based internet search
engines. Sugiura and Etzioni compared three different methods for building collection
representations and also considered query expansion.

There have also been a number of less-widely-publicized research metasearch systems.
Smeaton and Crimmins [SC97] discussed a prototype metasearch system that incorporates
relevance feedback and query expansion!! functionality. This prototype system is notable
because it proposes a layer of functionality that need not be available from the underly-

ing search engines. In addition to standard metasearch, the Federated Searcher system

A system that employs relevance feedback uses relevance information about initial search results pro-
vided by users to improve later results. This relevance information can be used for query expansion, in
which new terms are added to the initial query.

2.6. Summary 48

described by Powell and Fox [PF98] addresses the problem of query translation for a multi-

lingual federated environment.

2.6 Summary

Because there are so many facets to multi-collection retrieval research, there is a broad
array of related work. In this chapter, we first gave a brief overview of single-collection
information retrieval to provide context and to introduce concepts that apply to both
single- and multi-collection retrieval. We then covered different facets of the multi-collection
retrieval problem and work that has taken place to date. We discussed a variety of collection
selection and results merging approaches, then considered additional issues that impact the
multi-collection retrieval problem as a whole. We closed with a discussion of the related

sub-problem of WWW metasearching.

Notation and Definitions

In this chapter, we formalize some of the concepts and components that were touched upon
and defined somewhat loosely in Chapter 2. We also expand upon previously-introduced
notation. Unfortunately, collection and many of the other terms that we employ have
been used in other senses, and/or may suggest certain system implementation decisions.
Prior exposure to these terms and any preconceived ideas about their exact meaning make
it difficult to specify some of the underlying experimental details that are varied in the
experiments reported in Chapters 7-9. Unclear definitions are also particularly detrimental
to a shift in interpretation that will be presented in Chapter 9. As a result, we will carefully
define a number of concepts, some of which are apparently trivial, then discuss assumptions

that were made and relationships among the defined concepts.

In presenting more formal definitions, we will start from the bottom up. We’ll begin by
defining the components involved (e.g. data items, collections), then define operations that
are stages in multi-collection retrieval (e.g. selection, merging) and concepts that are used
in evaluation. The specifics of the actual test environment that we will use are covered
in Chapter 4. While we begin defining concepts crucial to evaluation here, the evaluation

measures are defined in Chapter 5.

49

3.1. Components 50

3.1 Components

3.1.1 Data Items and Collections

Let D = {d4,d>, ..., d|D‘} denote a set of data items. At this point, we make no assumptions
about the organization or storage of these data items. Each d; is a data item that may be
retrieved in response to a user request. The data items might be text documents, images,
sound recordings or binary files. The notation presented here can apply to data items of
any format. In the examples and experiments presented in this dissertation, all data items

are text documents and will be referred to as documents.

We will use the term collection to refer to a selectable, searchable group of data items.
Membership in a collection is to be considered an organizational issue rather than a storage
issue. In other words, data items need not be stored on the same server to be members of

the same collection.

Let C = {C1,C5,...Cn} represent a set of N collections. Each collection conceptually
contains a set of data items. We assume that no duplicate data items occur within a
collection; we will discuss the potential for duplicate data items across collections in a

moment. C is defined as follows:
C1 = {du,dis, ... dyc,}
02 = {d21)d22)"'d2‘02|}

Cn = {dn1,dn2, ... dyjoy|}
where d;; is the jth data item in collection C; and d;; € D Vi,j where 1 < i < N and

1<j <[Cl. UL, Ci =D.

In an operational environment, duplicate data items may exist in the collections. If
duplicate data items exist, they may occur in different arrangements. We first assume
that duplicates are not collocated in a collection Cj, i.e., di; # di;Vi,j,k,j # k. Having
eliminated that case, and given a set of collections C there are a number of remaining

possibilities.

3.1. Components 51
1. at least one collection is replicated, that is, 3¢, j such that C; = Cj.

2. at least one data item is duplicated, i.e., found in more than one collection, that is,

3i, j such that C; # C; but C; N C; # 0.
3. both cases (1) and (2) occur.

In this work, we assume that each data item has a unique identifier. Data items with
the same unique identifier are by definition duplicates. Given an environment where unique
identifiers are not available, duplicate detection is more difficult. The general problem of
duplicate detection is beyond the scope of this work; however, it will be revisited briefly in
Chapter 10.

The existence of replicated collections or duplicate data items, generally out of our
control in operational environments, can complicate multi-collection information retrieval.
Replication and duplication are problematic during the collection selection step. Consid-
ering replication, if we have C; = Cj, we want to select either C; or C; but not both.
The presence of duplicated data items complicates both collection selection and evaluation.
Assume that collections C; and C; both contain useful data item dj. If collection Cj is
selected and data item dj retrieved, the usefulness to the user of data item dj, in collection
C; requires consideration. While data item dj, still satisfies the information need, the fact
that it has already been retrieved may impact an evaluation of the advisability of selecting
collection C;. Buckland [Buc95] and Buckland and Plaunt [BP97] provide a thoughtful
consideration of these issues in the context of searching multiple digital libraries.

Duplication or replication can also complicate results merging, the process by which
retrieved data items from selected collections are integrated into a single list for presentation
to a user. Once again, assume a data item dj and two selected collections C; and C; where
dr, € C;NCj. If di is retrieved from both C; and Cj, its placement in the merged list must
be resolved. Due to the intrinsic replication found in the approaches, work in the areas of
query combination and data fusion (see the discussion in Chapter 2) considered this issue.

The issues of duplication and replication complicate the multi-collection retrieval prob-

3.1. Components 52

lem but are resolvable. In the majority of our work, we assume that C is a partition of D,
obviating these issues. However, in a more general federated system or a WWW environ-
ment, the assumption that C is a partition of documents is rarely valid. Our experiments
on collection selection for metasearching, reported in Chapter 10 consider the problem of

duplicate data items.

3.1.2 Indexes and Information Available for Indexing

For ease of exposition, we will at times refer to executing a query at a selected collection.
In fact, the collection is just the selectable, searchable group of data items. A means of
searching the collection, i.e. retrieving data items that may satisfy the user’s information
need, is necessary. As a result, we will assume that some information retrieval system is in
place for each collection. Given a query in an appropriate format, the information retrieval
system will return a set or ranked list of data items.

Put more formally, for the set of collections C, we also assume a corresponding set of
indexes T = {Iy, I,...In} where I; contains indexed representations for each data item
d;; in collection C;. These indexes are produced by a potentially unknown information
retrieval system. The information retrieval system used at collection C; need not be the
same as that used at collection C;. Information used to create representations of collections
for collection selection purposes may be extracted from or provided by these indexes.

Given a user query, the query representation is compared to data item representations
to identify data items to be displayed to the user.

Unless otherwise noted, the index I; for collection Cj; is constructed using information
gathered from the set of data items found in C;. The information gathered is dependent
upon the information retrieval system used to perform the indexing. However, additional
information may sometimes be available. An external server may provide limited statistical
information about other collections, for example, df information. Collections in a federated
environment may also communicate periodically to share statistical information [VF95b].

In these cases, and for experiments reported in Chapters 9 and 10, we occasionally specify

3.1. Components 53

a set of data items that contribute statistical information to index I;. Unless otherwise

noted, the set of data items that contributes statistical information to I; is C;.

3.1.3 Language Models

As discussed in Chapter 2, we will use the terminology language model for the collection
representation used for collection selection purposes. For the set of collections C, we assume
a set of language models LM = {LM, LM, ... LM|;zq}. In the general case, |[CM| may
be larger or smaller than N; a relation R, aq—s¢ (discussed further in Section 3.2.2) specifies
the correspondence between language models and collections. For all experiments reported
in this dissertation, |LM| = N and LM corresponds directly with C. More specifically,
LM = {LM;,LMs,... LMy} where LM; is the language model representing collection C;.

Language models may be created using only a subset of the data items contained in a
collection. For example, sampling techniques result in language models built from a subset
of the data items. The default for our experiments is that the language model LM; is
constructed using information about all data items in collection C;. We will note when this

is not the case.

3.1.4 Queries and Relevance Judgements

Queries are either provided directly by a user or are created based on statements of a user’s
information need. We use the latter approach. Relevance judgements may be supplied as
users view the retrieved results or in the case of a test collection may be provided by third
party judgements.

We will refer to the set of queries used in experiments as Q = {q1,¢q2, ... ,q|Q|}. A set
of statements of user’s information needs may be used to produce multiple sets of queries.

In our test environments, we also have access to relevance judgements. For the TREC
data, TREC relevance assessors have determined which text documents from the TREC
data satisfy each stated information need. We apply those judgements to text documents

retrieved in response to our queries created from those statements of information need.

3.1. Components 54

The relevance judgements can be represented as three-tuples of query identifier ¢; € Q,
data item identifier d; € D and relevance judgement rel_judge;;. In our case, relevance
judgements are binary. If d; satisfies the information need of g;, then rel_judge;; = 1,

otherwise rel_judge;; = 0. The set of relevance judgements J is a set of three-tuples where

J = {(g,d;,rel_judge;j)}.

3.1.5 Testbeds and Test Environments

Traditional information retrieval test environments are often referred to as test collections,
encompassing the documents, queries and relevance judgements that are distributed as a
set. However, we have specifically defined the term collection to refer only to a searchable
group of data items. To avoid confusion, we will avoid the terminology test collection unless
we are referring to a single-collection test environment.

We will use the terminology test environment to refer to the combinations of collections,
queries and relevance judgements we use to evaluate collection selection approaches and
multi-collection information retrieval systems.

We can think of each test environment as a three-tuple (C, Q,J). We can compare
test environments by noting differences in any element of the three-tuple. For all of the
experiments reported in Chapters 7-9, the relevance judgements J will remain constant.
While we vary the sets of queries @ used for our experiments, the major comparative
performance differences seen in evaluation are due to changes in the sets of collections C
that we use. As a result, a great deal of discussion is focused on these sets of collections.
We will refer to these sets of collections as testbeds. Each testbed also has a mnemonic
name to facilitate discussion.

The creation of a testbed for our laboratory-based experiments requires a set of data
items D and a relation Rp_,¢ that specifies the placement of data items in collections such
that a set of collections C can be constructed from the data items in D. In an operational
environment, we may have the capability to retrieve data items from C but the data items

D and the relation Rp_,c may be unknown. D and C may also be variable. For example,

3.2. Experimental Concepts 55

given a metasearching environment in which the collections C are internet search engines,
the data items contained in each collection C; are not divulged; data items may be added

or removed from C; without notification.

In Chapter 4, we will define three testbeds (SYM-236, UDC-236, UBC-100) that will be
used in our experiments. We also define three sets of queries for which relevance judgements

are available. This allows the construction of the test environments used in Chapters 6-9.

3.2 Experimental Concepts

3.2.1 Merit, Baseline Rankings and Estimated Rankings

We will refer to a collection ranking that embodies the desired collection selection behavior
as a baseline or baseline ranking and the ranking produced by a collection selection algo-
rithm as an estimated ranking. A collection selection algorithm may also be referred to as

an estimator.

To begin, we assume that each collection C' € C has some merit, merit(q,C), to a
given query ¢q. We expect the baseline to be expressed in terms of this merit. Each
collection C' € C will also have an estimated merit est_merit(q, C') that is computed by a
collection selection algorithm. We expect the estimated merit est_merit(q, C') is an attempt
to implicitly or explicitly estimate the actual merit merit(q,C'). Different approaches to
computing est_merit(q,C) were summarized in Chapter 2. The exact computations for

CORI, CVV and gGlOSS will be detailed in Chapters 6 and 7.

Let Cp, and C¢; denote the collection in the ¢-th ranked position of the baseline and
estimated rankings respectively. The baseline and estimated rankings are constructed such

that merit (¢, Cy;) > merit (g, C,) and est_merit (g, Ce,) > est_merit (g, C

i+1) i e;1)- Some of
the merit-based evaluation measures presented in Chapter 5 determine the extent to which

merit (q, Ce;) > merit (g, Ce, .,).

i

3.2. Experimental Concepts 56
3.2.2 Collection Selection

Conceptually speaking, collection selection is easy to describe. Given a query and a set of
collections, we wish to either select a subset of the collections to which we will send the
query, or order the collections, so that we may send the query to the collections in that
order or send the query to the top-ranked n collections. We follow the latter interpretation,
which affords us flexibility in the usage of the collection selection results. Given a set of
collections, we view collection selection as producing a ranked list of those collections, in
decreasing order of estimated merit.

Estimated rankings are constructed such that est_merit (¢, Ce;) > est_merit (q,Ce,,,)
for 1 <i < N. The way in which est_merit(q,C) is calculated and the usage of language
models in this calculation requires clarification. We use the notation est_merit(q, C') for
broader applicability (some approaches do not use language models) and expositional clar-
ity (we cast the problem in terms of collection selection, not language model selection).
However, in the experiments described in Chapters 6-10, estimated merit is computed us-
ing the language models, LM, associated with the set of collections C. A correspondence
is maintained so that the merit computed for a collection using its language model is asso-
ciated with the collection. In most cases, the collection selection mechanism does not have
access to the contents of a collection, it only has access to the language models.

Ry m—sc is the relation that specifies the mapping between language models and collec-
tions. Let Roaq—c represent the set of language model, collection pairs where (LM;, C;)
denotes the default case where the estimated merit computed using LM; is applied to
collection C;. The default case will apply the vast majority of the time and is the case
illustrated in Figure 3.1. One exception found in the literature is the work of Xu and Croft
[XC99] in which a collection could be represented by multiple language models.

For our experiments, we assume that an estimator has access to a set of language
models, LM and the mapping relation R-aq—c. Given some query ¢, the estimator pro-
duces a set of collection, estimated merit pairs, {(C;, est_merit(q,C;))}. Sorting based on

est_merit(q,C;) allows us to produce an estimated ranking (C,;) where 1 < i < N. This

3.3. An Important Detail—Data Item Storage 57

notation only specifies the general components and output of a collection selection algo-
rithm. In Chapters 7 and 8, we will discuss a variety of algorithms and focus on the ways
in which the statistics provided by the language models are employed.

The estimated ranking can be used to specify a search order or to select the top n ranked
collections. The set of collection, estimated merit pairs, {(C;, est_merit(q, C;))} can be used
to select all collections with an estimated merit greater than a specified threshold.

The specified search order E will be defined in Chapter 5. When either a fixed-size
subset of the collections or all collections with an estimated merit greater than a specified
threshold are selected, we will refer to the selected subset as Cg. If all collections are

selected, Cse; = C.

3.2.3 Results Merging

For some experiments, we are concerned primarily with collection selection performance.
For others, we are also concerned with the overall quality of the data items that are retrieved
from the multicollection environment. For our experiments, evaluating the quality of the
overall data items retrieved requires that a results merging step be employed.

The results merging step takes the individual results lists from each of the selected
collections (resultsc for each C € C4e;) and produces a single results list (resultsmerge)-

The specific results merging algorithm that we employ is defined in Chapter 9.

3.3 An Important Detail—Data Item Storage

One important terminology detail was alluded to earlier but needs to be revisited. In these
experiments we use collections as a conceptual construct. Data items need not be stored
on the same server to be members of the same collection. Consider Figure 3.1. For the
purposes of our experiments, the important points are that ten data items can be found
in collections C7, C5 and Cj3, that an information retrieval mechanism is in place for each

collection and has produced indexes Ii, Is, I3 and finally that language models for each

3.3. An Important Detail—Data Item Storage 58

Selection mechanism

‘ LM; LM, ‘ LMs; ‘ Selection representations
I I I3 Indexes of data items
Collections of data items
Ol 02 03

Figure 3.1: Collections, indexes and language models.

collection (LMy, LMs, LMj3) are available to a collection selection mechanism.

In an operational environment, it is tempting to think of data item retrieval issues in
terms of the physical organization or storage of the actual data items. However, the core
issues are the control of and access to the data items. The access/control and organiza-
tion/storage aspects often parallel one another, but that need not be the case.

Consider Figure 3.2, which is a companion to Figure 3.1. Figure 3.2 parts (a)-(c) illus-
trate some possible data item organization/storage scenarios that could result in collections
{C1,Cs,C3} from Figure 3.1. Figure 3.2(b) represents a very simple case in which the data
items are stored together at storage location L; but are subdivided into collections, per-
haps by subject area. Figure 3.2(a) is identical to Figure 3.2(b) except that the actual data
items are stored in three different physical locations instead of only one.

If the control of the data items is the same in Figures 3.2(a) and 3.2(b) (i.e. the same
organization or person has control of the data items), the difference in physical location
need not affect the collections, indexes or language models. However, multiple storage
locations may imply that different authorities have control over the data items. This can
constrain the ways in which the data items are organized into collections and can affect
the amount of information available for the construction of language models. For example,

consider Figure 3.2(c) and first assume that a single authority has complete access to the

3.3. An Important Detail—Data Item Storage 59

Collections of Data Items

Figure 3.2: Data item storage scenarios.

data items, and that the same authority creates the collections and is responsible for the
language models and selection mechanism. In this case, the possibility exists to use a
wide variety of information about the data items and/or information from the indexes
to create the language models. If instead we assume that three different authorities are
responsible for the data items in storage locations L1, Lo, L3, the situation changes. First,
the creation of collection Cy would require the cooperation the two authorities responsible
for the data items in L; and Ls. Second, once collections C7, (9, C3 are indexed, the
information available for language model construction may be limited to information that

can be extracted from the indexes.

Testbeds and Queries

As we discussed in Chapter 2, traditional (single collection) information retrieval test col-
lections usually contain a set of data items D, a set of queries Q@ and a set of relevance
judgements J. In most widely-available information retrieval test collections, the data
items are text documents. Each query represents a statement of a user’s information need
and for each query, the relevance judgements identify the set of data items that are relevant

to the query, i.e. the data items that satisfy the information need.

Multi-collection test environments generally contain the same components as traditional
information retrieval test collections, with the exception that the documents are organized
into more than one collection. As we discussed in Chapter 3, the potential exists for
duplicate data items within a collection. However, in most previously-reported relevance

evaluation-based experiments, the collections are a partition of the documents.

Table 2.1 provides a summary of some of the test environments that have been used for
multi-collection information retrieval experiments. Because many of the evaluations were
relevance based, relevance judgements were needed and researchers were limited to the
traditional IR test collections and TREC/TIPSTER data. The large number of documents
available in the TREC data made it a popular choice as a basis for constructing multi-
collection test environments. At the time that we began these experiments, most of the test

environments used in published work had fewer than 100 collections. This, plus an initial

60

4.1. Features of the TREC Data 61

interest in a test environment with a controlled temporal component to the collections
led us to construct a different test environment for our experiments. Because we were
interested in both efficiency and effectiveness, and in evaluating systems using a large
number of collections, the TREC/TIPSTER data was the only realistic starting point.
Given the availability of TREC topics from which queries could be created and TREC
relevance judgements, we began by constructing a testbed, referred to as SYM-236. Over
the course of the experiments reported in Chapter 6, we noted that some collection selection
algorithms have a tendency to prefer collections with a large number of documents. We
created an additional testbed, UDC-236, to study this effect. We later added a testbed
created at the University of Massachusetts, referred to as UBC-100.

In this chapter, we will describe and characterize the test environments that are used in
the experiments presented in Chapters 6-9. We will focus mostly on the three testbeds that
are components of the test environments. We start by describing the underlying TREC
data from which each set of documents D will be drawn. The three testbeds described in
this chapter contain no duplicate documents. We then discuss the TREC topics, the subset
of the topics used for our experiments and the three sets of queries constructed using those
topics. Finally, we describe the three testbeds (sets of collections) used in our experiments

and discuss features of those testbeds.

4.1 Features of the TREC Data

The Text REtrieval Conferences (TREC) are a series of annual conferences co-sponsored
by the National Institute of Standards and Technology (NIST) and DARPA. Each year,
groups from industry, academia and government undertake a set of retrieval tasks, using a
supplied set of documents and queries!, then meet to discuss the results.

The SYM-236, UDC-236 and UBC-100 testbeds were all constructed using data avail-

able to participants in the TREC-4 [Har95] conference. Gross characteristics of the data

!The data available to TREC participants is generally referred to as TREC/TIPSTER or simply TREC
collections.

4.2. Queries 62

Disk Source Size (MB) | Size (docs)

AP (89) 259 84,678

DOE 186 226,087

1 FR (89) 262 25,960
WSJ (86-89) 270 98,732

ZIFF 245 75,180

AP (88) 241 79,919

5 FR (88) 211 19,860
WSJ (90-92) 247 74,520

ZIFF 178 56,920

AP (90) 242 78,321

5 SIMN (91) 290 90,257
PAT 245 6,711

ZIFF 349 161,021

| Totals | | 3225 | 1,078,166 |

Table 4.1: Summary characteristics of TREC data on disks 1, 2, 3. ZIFF from
disk 3 and DOE omitted for SYM-236 and UDC-236. (From Harman [Har96])

appear in Table 4.1. To summarize, this data is approximately 3 GB of text spread over sev-
eral years and from seven primary sources: AP Newswire (AP), Wall Street Journal (WSJ),
Computer Select (ZIFF), the Patent Office (PAT), San Jose Mercury News (SJMN), Fed-
eral Register (FR), and Department of Energy (DOE). This data was distributed on three
CD-ROMs and segments of data are sometimes referenced using the disk number on which
they were distributed. Much of the TREC data is from news sources and so has easily
identifiable date components. The one undated collection is the set of documents from

DOE.

4.2 Queries

The TREC data is distributed along with a set of statements of information need and
an accompanying set of relevance judgements. In TREC parlance, the statements of user
information need are referred to as topics. Unlike average user queries (especially Internet

search engine queries), most TREC topics are very detailed statements of information need.

4.2. Queries 63

Source Topic Set
Disk | 1-50 | 51-100 | 101-150 | 151-200 | 201-250
1 X X X X
2 X X X X X
3 X X X
[12 [X] X [X [X | |
L 23 [[X [X | | X]
(123 [[X [X | | |

Table 4.2: Coverage of topics over TREC data, disks 1-3, through TREC-4. This
table shows topic set, source disk pairs for which relevance judgements are avail-
able.

In many cases, they resemble detailed instructions to a professional searcher. The topics
may also contain instructions to the TREC judges of what constitutes a relevant document.
This information is contained in fields, all or some of which can be used to construct the
query that is actually issued to a collection. As a result, the formulation of actual queries
used in published results can differ widely. Later in this section, we discuss the approaches
that we employed when creating queries. We will refer to our formulations as queries while
retaining the TREC terminology of topic to refer to the original statement of information
need. We retain the TREC topic numbering for our queries. We will apply the relevance

judgements for a topic to each query generated from that topic.

In many years, the TREC conference has introduced new document sets. In every year,
new topic sets have been introduced, generally in batches of 50 topics per set. Because
of the evolutionary nature of the conference, relevance judgements are not available for
all combinations of topic and document sets. Through TREC-4, there were a total of 250
topics with relevance judgements over some portion of the TREC documents. In Table 4.2

we summarize this coverage.

The topic coverage (Table 4.2) is important because it constrains the possible combina-
tions of topic sets and document collections that can be used in a multi-collection retrieval

experiment where relevance judgements are needed. For example, if topics 201-250 are used

4.2. Queries 64

for evaluation, then any collections created using documents from disk 1 should not be used.
Similarly, if a researcher wants to work with the San Jose Mercury News data (found on
disk 3), then only three of the five topic sets are applicable. Given these constraints, we
will use only topics 51-150 in our experiments. This maximizes the number of documents

available for collection creation.

In our main body of experiments, we used two query formulation strategies, producing
two sets of 100 queries each. We will refer to these formulations as “short” and “long”. The
short queries, Q;, were constructed using the Title field of the TREC topics. These queries
average 3.5 words per query and are a very brief description of the information need. The
long queries, Q;, were constructed using the Concepts field of the TREC topics and average
21 words per query. The Concepts field contains words, phrases and especially proper names
that might be found in relevant documents. The terms found in the Concepts field have
the potential to resemble very well-thought-out user queries; however, our resulting long
queries contained more terms than queries typically received from real users. For example,
Spink and Saracevic [SS97] found that on average experienced searchers used approximately
15 terms per query, of which approximately 6 terms were taken from inital statements of
user information need (the remaining terms were added during user interaction, using a
thesaurus, etc.). For WWW queries, query length is even shorter. In analyses of different
Web search engine query logs, both Jansen et al. [JSBS98] and Silverstein et al. [SHMM?99]
found an average query length of 2.35 terms. Abdulla et al. [ALSF97] found that queries
from a variety of query logs rarely exceeded 4-5 terms. We chose to use both short and
long queries to account for the cases of longer, more detailed queries while also considering

the shorter queries typically found in operational environments.

In some early experiments, we used an even longer query formulation, which we will
refer to as “very long” or Q,;. These queries use all of the text available in the TREC topics
and averaged 49 terms per query. We later determined that the short and long approaches
were more commonly used in other research, so switched to those approaches. Only the

early experiments reported in Chapter 6 use the very long queries. As a result, plots from

4.3. Goals and Requirements for the Testbeds 65

the figures in Chapter 6 are not directly comparable to figures in Chapters 7-9.

4.3 Goals and Requirements for the Testbeds

We began our testbed-construction efforts with the goal of constructing a single multi-
collection test environment. Given the available TREC-4 data, the main problems to
address were how much of the data to use and how to partition the data into collections.

We started with a number of requirements and goals:

e A natural partition. Earlier experiments involving parameter driven creation of
document collections ([VF95b]) were illuminating, but the partitions themselves did
not reflect any physical (i.e. time or source) attribute of the source data. In addition,
the TREC data is often referenced in terms of source : disk number, and has often been
subdivided using one or both of those attributes [FKST92, WFPS94, CLC95, Voo96].
To the extent possible, a candidate partition should not obscure these other, more

coarse grained possibilities.

e At least 100 collections. We felt realistic experiments must involve at least 100

document collections.

e A temporal dimension. Date and source of publication are simple criteria by which
to organize a collection of documents. We wanted to study such an organization and
included this in our requirements. However, while we considered time of publication
for testbed creation, we do not study temporal issues in the experiments reported
in this dissertation. This requirement affected the SYM-236 testbed (the first we
created) and indirectly affected the UDC-236 testbed (both testbeds are described

in more detail later).

e Easy composition of “supercollections” from components. As much as pos-
sible, we wanted to create a partition of the data from which easily—identifiable com-

positions could be created. For example, disk 3 contains documents published on

4.4. The SYM-236, UDC-236 and UBC-100 Testbeds 66

the AP newswire in 1990. If we subdivide those documents into collections based on
month of publication, reconstructing a supercollection based on year of publication
will be simple. This requirement affects the SYM-236 testbed directly and UDC-236

indirectly.

These effects of these goals can be seen primarily in the SYM-236 testbed, the testbed
we initially set out to create. Residual effects can be seen in the UDC-236 testbed. The
UBC-100 testbed was not constructed by us and was constructed using a different set of

criteria.

4.4 The SYM-236, UDC-236 and UBC-100 Testbeds

In this section, we will describe the SYM-236, UDC-236 and UBC-100 testbeds. The
SYM-236 testbed will be covered in more detail partly because its construction was heavily
influenced by the goals outlined above and a number of compromises were necessary to meet
those goals. SYM-236 also has more unusual features than the other two testbeds.

Each experimental testbed is a set of N collections, C = {C1,C5,...Cn}. For the
SYM-236, UDC-236 and UBC-100 testbeds, C is a partition of D.

A testbed can be represented as data items, D, plus a data item to collection map,
Rp_.c, from which the set of collections, C, can be constructed. The data item to collection
map may be externally supplied, or constructed using some rule designed to create a testbed
with some desired characteristic(s).

Each of the three testbeds described here are based upon 3 gigabytes of data available

to participants in the TREC-4 [Har96] experiments.

4.4.1 SYM-236 (Source-Year-Month)

When constructing the SYM-236 testbed, we were working under the goals and require-
ments that we set forth above. As a result, there were some special cases in the selection of

the documents in D and in the creation of the mapping relation of documents to collections,

4.4. The SYM-236, UDC-236 and UBC-100 Testbeds 67

Rp_,¢c. The general rule for creating Rp_.¢ was to partition the documents on TREC CDs
1, 2 and 3 by publishing source, then by year and month of the publication date.

The first exceptions and special cases dealt with determining which documents from

TREC CDs 1, 2 and 3 would be included in D.

e No DOE documents. Because we were using publication date to create Rp_,¢, no
documents from the Department of Energy publishing source (DOE) were included

in D. The DOE data is undated.

¢ No ZIFF documents from TREC disk 3. Some of the data from the ZIFF
publishing source on disk 3 overlaps temporally with data from ZIFF on disks 1 and
2. We considered placing these documents with the others from the same month, but
this would have involved considerable intermingling of disk 3 documents with those
from disks 1 and 2. While certainly possible, it would have violated the composability
requirement given previously. As a result, ZIFF documents from disk 3 were not

included in D.

As we mentioned, the general rule for creating the mapping relation of documents to
collections, Rp_,¢, was to partition the documents on TREC CDs 1, 2 and 3 by publishing
source, then by year and month of the publication date. Our next set of special cases arose

when reconciling features of the documents in D with that rule.

¢ Disambiguation of dates in ZIFF. A small number of the documents from the
ZIFF publishing source are dated as “Summer”, “Winter”, etc. rather than by month.
In reconciling these dates, we were aided by the chronological nature of the ordering
of documents on the TREC CDs. In these cases, we determined the date of the doc-
uments by looking at the dates of documents surrounding the document in question.
Thus if a “Spring” document was immediately preceded by one dated “March”, then
we assigned the “Spring” document to the “March” collection for that source and

year.

4.4. The SYM-236, UDC-236 and UBC-100 Testbeds 68

¢ Disambiguation of multiple dates in PAT. The structure of the Patent Of-
fice (PAT) documents is complex and often contains references to previously issued
patents. To disambiguate, we used the first appearance of the “Application Filing
Date” (AFD) field within a document as the operative date. Subsequent occurrences

of this field within a document refer to other patent documents.

The net result of combining the particular attributes of the TREC data and our own
requirements was a partition comprised of 236 document collections derived from some but

not all of TREC disks 1, 2, and 3. Summary characteristics of this partition are given in

Table 4.3.

The temporal nature of our collection construction approach led to some interesting

features of the resulting SYM-236 testbed.

e Vast size variation. One of the most notable features of the SYM-236 testbed
is the vast size variation (in terms of documents per collection) of the collections.
There are a number of very large collections with more than 8,000 documents per
collection plus several dozen very small collections 1 to 20 documents in size. The
very small collections are mainly derived from early PAT data. The size variation of
the SYM-236 testbed will prove important for identifying a feature of some collection

selection algorithms.

e Temporal discontinuities. Collections were constructed using a fixed date incre-
ment of one month. However, many sources only contain partial years, so the data
is not continuous temporally. This is an attribute of the underlying TREC corpus.
Coverage of the 236 document collections by source and date is given in Figure 4.1.
Researchers who are interested in examining collection changes over time must be ju-
dicious in the subset of collections they use as the basis for their work. For example,

there are several multi-month “holes” in the Wall Street Journal collections.

4.4. The SYM-236, UDC-236 and UBC-100 Testbeds 69

Disk Source Num. Date Range Total
Coll. Coll.
WSJ (86-89) 29 12/86-11/89
AP (89) 12 01/89-12/89
1 ZIFF 14 11/89-12/90 67
FR (89) 12 01/89-12/89
DOE XX XX
WSJ (90-92) 22 04/90-03/92
2 AP (88) 11 02/88-12/88 54
ZIFF 11 01/89-11/89
FR (88) 10 01/88-12/88
AP (90) 12 01/90-12/90
3 SIMN (91) 12 01/91-12/91 116
ZIFF XX XX
PAT 92 06/82-08/92

Table 4.3: Summary characteristics of the document partition. Note: Total DB
column sums to 237 because there is overlap of one collection in ZIFF between
disks 1 and 2 (ZIFF.89.11).

Waar

aeee 51-1[0 By Ed S En
AP
I'n

W
T 1 01 1IINEEEI I
SJHM
IFF

a3z

[T T T S HY Eil Erh B

AP

IR

Wl

Pa I 1 HnEni I
SJEH

IFF

a7

L egend
I Cacament coverse (monshs for which there i o besst o docomest in ths TREC sauia)

B cuary coverags [month far which Thare s o |Gast sae ¢dey am Socurani far i5e quety in the TRED e
for thie rangs of quares gecied

Figure 4.1: Document and query coverage for the SYM-236 testbed (236 collec-
tions, partitioned by original source and date).

4.4. The SYM-236, UDC-236 and UBC-100 Testbeds 70
4.4.1.1 A Brief Summary of SYM-236

The SYM-236 (Source-Year-Month) testbed was designed to contain a temporal compo-
nent. Documents were organized into document collections based on the primary source and
the month and year of publication. For example, all AP Newswire articles from February

of 1988 were placed in the same collection.

D - Data items are text documents from TREC CDs 1, 2, and 3 minus DOE documents
(documents contain no date) and ZIFF documents from disk 3 (to maintain compos-

ability requirement).

Rp_c can be found at http://www.cs.virginia.edu/"cyberia/testbed.html labelled

trec123-236-by_source-by_month.
|D| = 691,058 documents in the testbed subdivided into

N = 236 collections.

4.4.2 UDC-236 (Uniform-Document-Count)

At the time that SYM-236 was created, an equally viable, alternative partitioning strategy
would have split the data into N equal sized collections. This partitioning approach has
attractive characteristics in that 1) it is easy to control the number of collections and 2)
one confounding variable, collection size, is held constant. We chose not to pursue this
strategy at the time because of our interest in exploring a document organization based
upon publication date and source.

However, as we noted during the description of SYM-236, the vast size variation of
SYM-236 proved interesting during the evaluation of collection selection algorithms that
will be discussed in Chapters 7 and 8. This prompted the creation of the UDC-236 testbed.
The UDC-236 testbed contains exactly the same documents as SYM-236; however, the doc-
uments were organized into collections containing roughly 2,900 documents each, ordered

as they appeared on the TREC CDs, and with the restriction that all of the documents in

4.4. The SYM-236, UDC-236 and UBC-100 Testbeds 71

a collection were from the same primary source. This testbed also contains 236 collections.

4.4.2.1 A Brief Summary of UDC-236

The UDC-236 (Uniform-Document-Count) testbed was designed to control for the ten-
dency of some collection selection algorithms to prefer collections with a large number of

documents. Collections for UD(C-236 contain roughly 2,900 documents each.
D - Data items are exactly the same as those for SYM-236.

Rp_c can be found at http://www.cs.virginia.edu/"cyberia/testbed.html labelled

trec123-236-eq_doc_counts.
|D| = 691,058 documents in the testbed subdivided into

N = 236 collections.

4.4.3 UBC-100 (Uniform-Byte-Count)

The UBC-100 testbed was constructed at the University of Massachusetts and was not
influenced by the goals and requirements that we set forth earlier in this chapter. All of
the documents from TREC CDs 1, 2 and 3 were included in this testbed. Data items were
organized into collections of roughly 30 megabytes each, ordered as they appeared on the
TREC CDs, and with the restriction that all of the data items in a collection were from
the same primary source. This testbed was added during the course of our collaboration

with researchers from the University of Massachusetts and Carnegie Mellon University.

D - Data items are text documents from TREC CDs 1, 2, and 3.

Rp_,¢c can be found at http://www.cs.cmu.edu/"callan/Data/ labelled trec123-100-

bysource-callan99.v2a.
|D| = 1,078,166 documents in the testbed subdivided into

N = 100 collections.

4.4. The SYM-236, UDC-236 and UBC-100 Testbeds 72

4.4.4 A Summary of the Testbeds

SYM-236 and UDC-236 have been used in evaluations of database selection algorithms
[FPVT98, FPC199b]. UBC-100 was used to study the scalability of CORI collection selec-
tion [FPCT99b] and the effect of sampled language models on collection selection[CPFCO00].

General characteristics of the testbeds appear in Table 4.4. This table shows both
features of the testbeds and the effects of particular constraints in testbed creation. The
UBC-100 and UDC-236 testbeds are constructed to contain collections of approximately
30 MB and collections of approximately 2,900 documents?, respectively. Depending on
individual document size, fixing one of these values can still result in variability in the
other. Because there was a temporal component, there was more variability in the sizes of
the SYM-236 collections. For example, there were generally few Patent Office documents
in a given month, but there were often many articles from the AP Newswire.

These three testbeds represent three convenient ways to organize documents into col-
lections or to partition a large collection into several smaller ones. Xu and Croft [XC99, p.
256] expressed concern that the distribution of relevant documents in sets of collections such
as these may adversely affect the efficiency or effectiveness of multi-collection retrieval. We
discuss this issue in Chapter 9. We also summarize the distribution of relevant documents
in the UBC-100, SYM-236, and UDC-236 testbeds in Figures 4.3-4.5.

Figure 4.2 provides a visual illustration of the distribution of documents in the SYM-

236, UDC-236 and UBC-100 testbeds. There are a number of main features to note:

e The distribution of documents in the SYM-236 testbed is very skewed. Not only are
there a large number of PAT collections with very few documents, the AP and SJM
collections tend to have twice as many documents as the FR, WSJ, and some of the

ZIFF collections.

e While the same documents are used, the distribution of collections per publishing

source is very different in UDC-236 than in SYM-236. There are only two PAT

*While creating UDC-236 we did not mix documents from different publishing sources in the same
collection. As a result, there are small differences in collection size.

¢’y 23y

‘007-040 PUR 96¢-0d ‘96¢-AS UL SYUSWNIOP JO UOTINLIISIP oY T,

uo1dI0)

1884V
1684V
1 06dV
1 goa
178844

1683
1 ENLVd
1 T6NIS

1 L8ISM
1788[SM

[9gfEA
1 14412

1 2ddIZ
1 €ddIZ

11 €dd1Z

Number of Documents

00001
- 0000
- 0000€

& 0000

uondd[10)

10dV
0rdv
0Tdv
0g€dV
0r'dv
05dv

09°'dvV

08'dV
10744

0144

10NLVd
T0NI'S

OI'INIS
0TINIS
PSR
0r'rsm
0TISM
0E'rSM
(A
0S'Ism
10°d41Z

orddiz
0T dd1Z
0g'ddIZ

0r'ddIZ
St'ddIZ

Number of Documents

= 00001
[~ 0000
[~ 0000€

= 0000t

uoydd[10)

T0°88°dV

10°68'dV

10°06'dV

10°88°¥d

10768 YA

90°C8'NLVd

TOP8NLVd

LO'S8'NLVd

£098'NLVd

10°L8NLVd

10°88'NLVd

1068 NLVd

10°06'NLVd

10'T6'NLVd

10°T6'NLVd

10'T6'NIS

10°L8°TSM

10°88°ISM

LO68'TSM

006 TSM

1016 TSM

1026 ISM
10°68°d41Z

10°06°d41Z

o6 ddIZ

0

Number of Documents

= 00001
= 0000
= 0000€

= 0000t

SPaqISSL, 00T-Dd PU® 9£5-0d ‘96¢-WAS UL ¥’V

€L

4.5. Document and Relevant Document Distributions 74
Testbed D) N Da.lta Items per coll. i Bytes per collection
Min. Avg. Max. Min. Avg. Max.
UBC-100 | 1,078,166 | 100 752 10,782 39,723 | 28,070,646 33,365,514 41,796,822
SYM-236 | 691,058 | 236 1 2928 8,302 7,668 11,789,423 34,782,134
UDC-236 | 691,058 | 236 | 2,891 2928 3,356 | 7,138,629 11,789,423 133,206,035

Table 4.4: Summary statistics for the testbeds.

collections and over fifty each of AP and WSJ collections.

e The illustrations re-emphasize that there are only 100 UBC-100 collections as opposed

to 236 SYM-236 and UDC-236 collections.

e The distribution of documents in the UBC-100 testbed is skewed, but in a different

way from SYM-236. There are a few small PAT collections, but the most striking

feature are the six DOE collections and two ZIFF collections that contain a very large

number of very small documents.

4.5 Document and Relevant Document Distributions

The three graphs of Figure 4.2 are repeated in Figures 4.3-4.5. They are accompanied by

graphs that show the distributions of relevant documents in the collections. Figures 4.3-4.5

should be viewed sideways and the two graphs of each figure are aligned so that points and

bars for each collection line up vertically. In the lower graph for each figure, we show the

number of queries for which each collection contains at least one relevant document. Then,

for each of those queries, we plot the mean number of relevant documents in the collection

along with error bars. Taken together, these values provide a rough characterization of the

distribution of relevant documents in the collections. Some observations follow:

e For all three testbeds, we find that the PAT collections contain very few relevant

documents for relatively few queries.

4.5. Document and Relevant Document Distributions 75

e We also note the same feature observed by Voorhees et al. [VGJL95], many relevant
documents are found in AP or WSJ collections. For most queries, picking AP or WSJ
collections is a reasonable heuristic. We also note that SJM collections qualify for

this observation.

e A more specific observation is that AP newswire articles published in 1990 tend to

have a noticeably higher average number of relevant documents per query.

e Despite the very large number of documents per collection, the DOE collections of
the UBC-100 testbed tend to contain relevant documents for only a few queries.
However, for those queries, the