
Database Selection in Distributed Information Retrieval: A

Study of Multi-Collection Information Retrieval

A Dissertation

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Ful�llment of the Requirements for the Degree of

Doctor of Philosophy

Computer Science

by

Allison L. Powell

January 2001



cCopyright by

Allison L. Powell

All Rights Reserved

January 2001





Abstract

The proliferation of online information resources increases the importance of e�ective and

e�cient information retrieval in a multi-collection environment. Multi-collection searching

includes distributed searching as a special case but is more broadly de�ned here to incor-

porate searching partitioned content independently from its physical storage. It is cast

in three parts: collection selection (also referred to as database selection) { decide where

should a query be sent; query processing { execute the query at each selected collection;

and results merging { combine the results from individual collections into a single coherent

list for the searcher. We focus our attention on collection selection.

We compare a number of di�erent collection selection approaches and examine the ef-

fect of collection selection on document retrieval performance. We consider multi-collection

retrieval in six di�erent test environments utilizing three document testbeds. Considering

collection selection in isolation, we �nd that e�ective collection selection can be achieved

using limited information about each collection. We then turn our attention from selection

alone to data item retrieval in a multi-collection environment, considering retrieval perfor-

mance in the same six test environments. First we �nd that good collection selection has

the potential to result in better retrieval e�ectiveness than can be achieved in an equivalent

single collection. Second we �nd that good performance can be achieved when only a few

collections are selected and that the performance generally increases as more collections are

selected. Finally we �nd that when collection selection is employed, it may not be necessary

to maintain collection wide information (CWI), e.g., global idf. Local information can be

used to achieve equivalent performance. This means that multi-collection systems can be
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engineered with more autonomy and less cooperation. This work demonstrates that im-

provements in collection selection can lead to broader improvements in document retrieval

performance.
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Introduction

The growth of the internet, federated digital libraries and other information sources in

which data items may be spread across a number of providers has increased attention on

the problem of retrieving data items found in these environments. For reasons of e�ciency,

intellectual property or copyright, it may not be feasible or desirable to assemble all data

items of interest at a central storage location or even to provide access through a centralized

index. Consider for example online journals by di�erent publishers and technical reports

by di�erent academic institutions or research labs. As a result, data items may be found in

a large number of collections. While this situation may be necessary from the information

provider's point of view, it can prove problematic for end users. Unless some intermediary

is available, users must �rst be aware of useful collections, then issue their queries to each

useful collection in turn. Fortunately, if each collection provides a means to search for and

access data items, it is possible to employ an intermediary that provides a single point

of access to a set of collections. The underlying collections may actively cooperate with

the intermediary, as in the case of a federated digital library, or may be unaware of the

intermediary, as in the case of World Wide Web (WWW) metasearch engines. Within

the information retrieval community, the problem of retrieving data items from a set of

collections has typically been referred to as distributed information retrieval. We will refer

to the problem as multi-collection retrieval to emphasize the fact that collections may or

may not be physically distributed. While physical distribution is a common scenario, it is

1
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not a requirement.

1.1 Problem and Motivation

The problem of data item retrieval in a multi-collection environment can be broken down

into three major sub-problems. Given a set of collections to which a user's query might

be sent, the �rst sub-problem is to either choose the order in which the collections will be

searched or alternately to choose a subset of the collections for search. We refer to this sub-

problem as the collection selection step. This step becomes increasingly important as the

number of collections grows or if the collections charge for access. The second sub-problem

is to forward the user's query to the selected collections. This step can be challenging

in heterogeneous environments where the underlying collections may use di�erent query

syntax. The third sub-problem is to take the individual results lists from each of the

selected collections and to merge those results into a single coherent list of results to be

presented to the user. We refer to this �nal step as results merging.

A great deal of work has been done on these individual sub-problems and additional

research has focused on the multi-collection retrieval problem as a whole. Because research

e�orts have focused on di�erent sub-problems as well as the whole, and due to the wide vari-

ety of evaluation measures and test environments, it has been di�cult to directly compare

di�erent published evaluation results. Also, because evaluation has generally been per-

formed for a sub-problem considered in isolation or for a multi-collection retrieval system

as a whole, the impact of improvements for a sub-problem on overall system performance

has been di�cult to isolate.

Our primary goal for this work has been to enhance the understanding of the overall

multi-collection retrieval problem, including the potential that introducing multiple collec-

tions when a single one is possible may become advantageous. Additional goals have been

to compare competing collection selection techniques and to determine reasons for their

success or failure in di�erent environments, to determine what information about collec-
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tions is necessary to enable e�ective collection selection, to investigate the degree to which

improvements in collection selection can impact overall data item retrieval performance

and to investigate the applicability of experimentally-proven techniques in an operational

environment.

The thesis of this work is that collection selection in multi-collection environments can

be e�ective even when statistical information about collections is limited, and that given a

small number of well-chosen collections, e�ective document retrieval can be attained.

1.2 Approach

We have taken a three-pronged approach to studying the multi-collection retrieval prob-

lem. First, we have performed an in-depth comparison of competing collection selection

approaches. We have analyzed the performance for a common task, using three testbeds

and two query sets and have studied reasons for observed di�erences in performance. We

have also studied the components of the approaches to gauge what information about col-

lections is necessary for e�ective selection. We have studied data item retrieval performance

when di�erent collection selection approaches were employed. For the data item retrieval

experiments, we used an existing collection selection approach then a best-case approach

to select a small number of collections. The resulting data item retrieval was compared

to gauge the retrieval performance gains that may be achieved using improved collection

selection. Finally, we have applied the top-performing collection selection approach from

our comparisons to a heterogeneous WWW metasearch environment to judge its broader

applicability.

1.3 Contributions

We make a number of contributions with this work, discussed here in the order of their

presentation. The primary two contributions, discussed in more detail below, are our com-

parison of collection selection approaches and our investigation of the impact of collection
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selection on multi-collection retrieval.

We introduce two new testbeds and include a third in our experiments. We character-

ize features of all three testbeds that may a�ect performance results. We also introduce

notation for describing multi-collection experiments such as those conducted here, and for

describing multi-collection experimental environments. We perform a direct comparison

of three competing collection selection approaches and analyze reasons for observed per-

formance di�erences, including the testbed features mentioned above. We show that very

limited information about the underlying collections is adequate for e�ective collection

selection. Presently, two major camps of collection selection approaches exist|one that

uses minimalist collection information and another that uses detailed information about

the documents within the collections. Our �ndings help to resolve the open question of

whether the detailed information is advantageous. We also �nd that communication among

collections may not be necessary given e�ective collection selection. This �nding plus our

�nding that minimalist collection information is adequate for collection selection bode well

for the transfer of experimental multi-collection retrieval techniques to an operational en-

vironment. We abstract the approach that performed best in our comparison of collection

selection approaches and examine the impact of its constituent components, isolating the

di�erences that are key to its success. We collect a variety of evaluation measures, show

relationships among them and discuss expected random performance under the measures.

We show that on average, published collection selection approaches outperform selecting

collections at random, a basic but reassuring �nding. Of particular interest, we �nd that

for all three testbeds, good collection selection of a subset of collections can yield data

item retrieval results superior to those when all data items are located in a single collec-

tion. We present a new way of considering multi-collection environments that allows these

techniques to be layered on top of existing single collection systems. We have deployed

the multi-collection retrieval approaches studied here in a WWW metasearch environment.

We report preliminary e�ectiveness results, plus an experience report of issues faced when

applying these techniques to a heterogeneous operational environment.



1.4. Outline 5

1.4 Outline

Chapter 2 describes the multi-collection information retrieval problem in much more de-

tail and includes a primer on single-collection retrieval concepts that are applicable to

multi-collection retrieval. We discuss related work in the context of the broader problem

description. Chapter 3 introduces more detailed notation and de�nitions for concepts intro-

duced in Chapter 2. In Chapter 4 we describe the three di�erent testbeds that we use, plus

the query sets employed. In Chapter 5 we collect the evaluation measures used in the ex-

periments reported here, discuss features of those evaluation measures and cover expected

performance under three of the measures for randomly generated rankings. Chapter 6

covers early experiments that studied the gGlOSS [GGM95] collection selection algorithm

in detail. This chapter also explains the choice of the gGlOSS Ideal(0) baseline as the

representative for the gGlOSS approach in later experiments. Chapter 6 also presents the

results of a preliminary comparison of the gGlOSS and CORI [CLC95] collection selection

approaches. An important step in performing this comparison in a straightforward manner

was the vocabulary resolution work described in Appendix A. Chapters 7 and 8 report the

results of our collection selection algorithm comparisons and our study of the components

of one class of collection selection approaches. Chapter 9 contains results of a compari-

son of multi-collection and single-collection data item retrieval and Chapter 10 studies the

multi-collection retrieval problem in a WWW environment. Chapter 11 concludes.



2

Background and Related Work

Broadly speaking, information retrieval is concerned with identifying data items that have

the potential to satisfy a user's information need. A great deal of research has been focused

on the problem of e�ectively and e�ciently retrieving data items from a single collection.

This is generally referred to as centralized information retrieval, i.e. data items are con-

sidered to be located at a central source. However, the growth of the internet, federated

digital libraries and other information sources in which data items may be spread across

a number of sources has increased attention on the problem of retrieving data items from

multiple collections. This problem has generally been referred to as distributed information

retrieval. In this dissertation we will use the terms single-collection and multi-collection in

place of centralized and distributed, respectively.

The issues faced in single-collection information retrieval still hold in a multi-collection

environment. Given multiple collections from which we might wish to retrieve data items,

we are obviously still concerned with high-quality retrieval from each of those collections.

However, multi-collection retrieval involves additional challenges, for example, selecting

which collections to search, issues due to heterogeneity in the collections, and how to

present results from multiple collections to a user in a coherent fashion.

The work reported in this dissertation is concerned with the additional challenges that

are present for multi-collection information retrieval. However, a quick overview of single-

6
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collection retrieval will be useful for providing context and will introduce some applicable

terminology. Therefore, we will start with a brief overview of data item retrieval from a

single collection, then move on to a discussion of some of the issues speci�c to retrieval in a

multi-collection environment. The discussion of multi-collection retrieval will be organized

into a number of sections. Multi-collection retrieval can be divided into three steps, col-

lection selection, issuing queries to the selected collections, and results merging. We will

discuss collection selection and results merging individually, covering related work that fo-

cused on those speci�c sub-problems. We will then consider a few more detailed issues that

impact the multi-collection retrieval problem as a whole. We will also discuss the related

sub-problem of WWW metasearching.

In this chapter, we cover general background plus speci�c related work in the area of

multi-collection information retrieval. The data items found in a single- or multi-collection

environment might be text documents, images, sound recordings or binary �les. However,

in the examples and experiments presented here, all data items are text documents. As

a result, when we are providing informal descriptions and examples we will refer to the

data items as documents. However, when we present more formal notation for describing

collections or experimental setup in Chapter 3, we will use the broader terminology data

items to emphasize that that our notation is applicable to data items other than text

documents.

2.1 Information Retrieval from a Single Collection

Information retrieval centers around a user with an information need. Given a collection

of documents, the purpose of an information retrieval system is to identify the documents

with the highest potential to satisfy that information need. This task is complicated by

the often complex and unstructured nature of the documents and the frequent inability of

a user to fully and accurately describe the information need.

Considered from an operational viewpoint, we start with a collection of documents.
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An information retrieval system will provide the capability to preprocess, then index the

documents. This creates an internal representation of each document that is used by the

information retrieval system but is not apparent to users. Given a user with an information

need, we assume that the user constructs a query that is a statement of that information

need in a format appropriate for submission to the information retrieval system. Given the

query and the internal representation of each document, a boolean information retrieval

system returns the set of documents that satisfy the boolean predicate speci�ed by the

query. A similarity-based information retrieval system computes a score for each document

with respect to the query and returns the documents in order of decreasing similarity. The

user examines the returned documents to determine if any are relevant (i.e. satisfy the

original information need). For information retrieval systems, the user is the �nal arbiter

of relevance. Experimental systems are generally evaluated based their ability to locate

relevant documents. If no returned documents are relevant, or if an insu�cient number

of relevant documents are returned, the user may choose to reformulate, (i.e. revise) the

query and try again.

One thing that makes information retrieval challenging is that it can be di�cult for

users to formulate a query that fully and precisely captures the underlying information

need. Users often submit queries that contain only a few terms or queries that only cover

one facet of the information need. Users can also experience di�culty when the vocabulary

used in a query does not match the vocabulary used in documents.

Because our research is focused on issues particular to multi-collection information re-

trieval, our work is only indirectly dependent upon implementation decisions at individual

collections. As we mentioned earlier, we are obviously concerned that each collection pro-

vides high-quality results e�ectively and e�ciently. Poor-quality results from the underly-

ing collections could seriously degrade the overall performance of a multi-collection system.

Aside from this obvious concern, we are also interested in the document preprocessing and

indexing approaches at the underlying collections because collection selection approaches

may utilize statistical information from the collections. Any heterogeneity at the underly-
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ing collections may have to be accounted for when building collection representations to be

used by a collection selection algorithm.

A multi-collection information retrieval approach may or may not have access to detailed

information about the information retrieval systems in place at the underlying collections.

As we will discuss in Section 2.2, some multi-collection information retrieval approaches

are more dependent upon detailed information than others.

In the discussion that follows, we will cover document preprocessing steps, general

information retrieval models and the statistical information used by systems based on

these models. These information retrieval models will be referred to in Section 2.2. Some

of the di�erent multi-collection retrieval approaches that we study were originally based on

speci�c information retrieval systems at the underlying collections. We will refer to those

systems when surveying related multi-collection research. We will also cover the philosophy

behind the evaluation techniques that are used for data item retrieval evaluation. We will

revisit evaluation and evaluation measures in Chapter 5.

2.1.1 Document Preprocessing

Before documents in a collection are indexed they must be in a format that is compatible

with the information retrieval system. For example, a WWW search engine may be able to

directly handle HTML marked-up documents, while a more traditional text search engine

may treat HTML tags, javascript, etc. as normal, to-be-indexed text if it is not removed

in a preprocessing step. Once documents are in a compatible format, they are tokenized

to isolate the individual terms or phrases that make up the document. For simplicity,

we will assume that tokens are terms. Many information retrieval systems then employ a

stoplist to remove extremely common terms such as articles. The stoplist terms are removed

because they inate the overall vocabulary size but are seldom useful in di�erentiating

one document from the next. The �nal commonly-used preprocessing step is stemming

in which word endings are removed. This is used to compress the vocabulary used for

indexing and to cause word variants to resolve to the same token/term. For example,



2.1. Information Retrieval from a Single Collection 10

\computer", \compute" and \computing" might all stem to \comput". See Salton [Sal81]

for an overview of the document indexing process which covers these steps in greater detail.

2.1.2 Information Retrieval Models

Information retrieval systems can be classi�ed in terms of how they represent documents

internally, how they represent queries, and in terms of how they perform comparisons of

these internal representations of documents and queries for the purpose of creating a set

or list of documents to return to a user.

Indexing is the step by which an internal representation of each document is created.

The actual representation and the importance of individual terms or other document com-

ponents are particular to each individual retrieval system, but for text documents the

importance of a term is often some function of statistical information about the occurrence

of the term in the document and/or the frequency of occurrence of the term in the collection

at large. Two commonly-used statistics are term frequency (tf) and inverse document fre-

quency (idf). The term frequency (tfij) is a count of the number of occurrences of term tj

in document di. The inverse document frequency (idfj) is log (
N
dfj
) where N is the number

of documents in the collection and dfj is the number of those documents containing term tj.

Functions of term frequency and inverse document frequency are often used in conjunction

with one another and di�erent combinations of functions of these two components have

been well-studied [SB88]. The goal of combining these two statistics is to assign higher

weights to terms that occur frequently in a document but infrequently in the collection as

a whole. Such terms are considered to best represent the content of a document.

As a part of the indexing process, information retrieval systems may also employ some

form of document length normalization. Longer documents may produce higher values of

some statistics, for example term frequency, due solely to the higher overall count of terms.

Without normalization, some information retrieval systems tend to assign higher similarity

values to longer documents, and thus make longer documents appear more relevant simply

because of their length. Document length normalization combats this tendency and has
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been shown to improve information retrieval system performance [SB88, SBM96]. An

analogous e�ect for multi-collection retrieval has been observed for some collection selection

approaches and is discussed in Chapters 7 and 8.

While we summarize four di�erent classes of information retrieval systems below, we

emphasize that we are not researching document indexing approaches. We summarize

the approaches here because the details of these approaches have implications for some of

the multi-collection retrieval approaches that we consider in Chapter 7. We also refer to

di�erent classes of information retrieval systems during our discussion of multi-collection

related work in Section 2.2. In a multi-collection environment, we may not have control over

the information retrieval system(s) used by the underlying collections. In fact, di�erent

information retrieval systems may be used by the di�erent collections. This can have

compatibility and performance implications for multi-collection retrieval experiments.

Boolean model. Boolean information retrieval systems maintain a simple index that,

for each term in the vocabulary, is essentially a list of all documents containing at

least one instance of that term. A query is expressed as a boolean predicate and

the set of all documents satisfying that predicate is returned. Two major drawbacks

to simple boolean systems have been noted. First, users have di�culty constructing

e�ective queries. Second, the returned documents are not ordered. Some of the multi-

collection retrieval systems discussed in Section 2.2 are based on underlying boolean

collection indexes, but this approach is not used in any of the experiments reported

in this dissertation.

Vector space model. In the vector space model, both documents and queries are

represented as v-dimensional vectors where v is the number of terms in the collection

vocabulary. For example, document di is represented as (wi1; wi2; : : : ; wiv) where

wij is the weight of term tj in document di. The similarity between a document

and a query (or two documents or two queries) is computed as the cosine of the

angle between the two vectors. The vector space model is surveyed in Salton [Sal91]
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and covered in detail in Salton & McGill [SM83]. The SMART [Sal71] information

retrieval system is a vector-space system. Version 11.0 [Buc92] of the SMART system

was used as the underlying information retrieval engine for the experiments reported

in Chapter 6.

Probabilistic model. On a conceptual level, information retrieval systems based on

the probabilistic model seek to maximize the probability that relevant documents are

retrieved and minimize the probability that non-relevant documents are retrieved.

Relevance properties of documents in which query terms occur are considered and

used to weight query terms [RJ76]. Operationally, these relevance properties cannot

be known exactly and must be estimated based on training collections, collection

statistics, or relevance assessments of documents retrieved in response to previous

queries.

Inference net model. The inference network model [TC90, TC91, TC92] is a kind

of probabilistic model that generalizes both the boolean and probabilistic models

described above. An inference network is a directed acyclic graph. A document

network is used to represent a set of documents while a query network is used to

represent each query. Both documents and queries are nodes in their respective

networks. Concepts (often terms found in documents or in queries) are also nodes

in the graph and belief values are assigned to documents based on the presence or

absence of concepts. Given a query, concepts in the query network and document

network are matched to compute the probability (belief) that a document is relevant

to the query. The Inquery [CCH92] information retrieval system that is used as the

underlying retrieval engine for the experiments reported in Chapter 9 is based on the

inference net model. Inquery has been shown to perform well at TREC conferences

[VH98].
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2.1.3 Evaluating Retrieval Results

The overall goal for an information retrieval system is to retrieve all of the relevant doc-

uments in a collection while at the same time retrieving no non-relevant documents. In

practice, this doesn't happen very often. Realistically, assuming an output of a ranked

list of documents, we prefer an information retrieval system that ranks relevant documents

highly.

In an operational environment, the nature of the user's information need can inuence

the nature of the evaluation. There is a di�erence between fact-based searching and in-

depth searching. For example, if a user wants to know the capital of Virginia, a single

document that answers the question is su�cient. Additional relevant documents may serve

to lend credibility to the �rst but do not provide new information. Contrast this with a

search for related work for a dissertation, or a lawyer's search for related case law. In the

latter cases, each new relevant document is valuable. In our experiments, we assume the

latter scenario|we assume that a user wants to retrieve every relevant document.

As we mentioned before, the user is the �nal arbiter of whether a data item is use-

ful. When evaluating information retrieval systems based on relevant documents retrieved,

researchers generally use two measures, recall and precision.

recall =
number of relevant documents retrieved

total number of relevant documents in the collection

precision =
number of relevant documents retrieved

number of documents retrieved

Recall and precision are usually presented in one of two ways. One common approach

is to report recall-precision curves. For this approach, precision values are computed at

�xed recall points. For example, precision is computed when 10%, 20%, etc. of the relevant

documents have been retrieved. These results are generally presented as graphs where

precision values are computed for R = 0:1; 0:2; : : : ; 1:0. Plots closer to R = 1; P = 1 denote

better performance. Alternately, researchers may report recall and/or precision at �xed
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values, for example when 10, 20, etc. documents have been retrieved. Reporting precision

at �xed values is particularly useful for WWW applications and other environments for

which recall values may not be known. This approach has also been used for reporting

TREC experimental results, based on the observation that users typically examine only

the most highly-ranked results. Recall values can be di�cult to obtain because recall

requires that data items from the collection at large be judged, not just the data items

that are retrieved. This is problematic in environments with hundreds of thousands of data

items.

2.1.4 E�ectiveness Experiments Using Test Collections

Information retrieval systems are often tested and evaluated using test collections. Test

collections for single-collection information retrieval experimentation are typically made

up of a collection of documents, a set of queries to be used in testing, plus a �xed set of

relevance judgements, generally compiled by an independent party. The relevance judge-

ments provided allow the computation of relevance-based evaluation measures like recall

and precision.

Test collections have a number of advantages. They represent an e�cient use of human

e�ort. While it is time-intensive and tedious to judge large numbers of documents for a

large number of queries, once the judgements have been made for a test collection, many

researchers can use this information to evaluate their systems. This allows a large number

of experiments using di�erent parameter settings or tuning changes to be tested without

assembling a set of users for each experiment. Di�erent sets of users might disagree about

the relevance of a document; however, the relevance judgements of a test collections are

�xed. While di�erences in judgements between judges have been shown to have little

impact on comparisons of information retrieval systems [Voo00], it is useful to have the

judgements remain stable when testing modi�cations to a single system. Test collections

facilitate system comparisons by allowing di�erent systems to be evaluated independently

of one another using the same environment. The use of standard test collections also allows
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researchers to replicate the experiments of others. Test collections also have drawbacks.

For example, the types of documents or types of queries included may not be representative

of the types of documents or queries an operational system may encounter. However, at the

present time, test collections represent a convenient way to test and compare information

retrieval systems.

For e�ectiveness experiments, the possible sources of test data are relatively limited.

Older information retrieval test collections1 were developed in the 1960s through the 1980s,

and due to manpower constraints were necessarily very small, on the order of a few thousand

data items and less than 300 queries. The small size of these traditional test collections

makes them ill-suited for experiments in which the data must be further sub-divided. The

introduction of the TREC/TIPSTER data represented a substantial leap in the size of

available test collections; by the fourth TREC [Har95] conference, there were more than

one million data items and 250 queries.

2.2 Information Retrieval from Multiple Collections

Up to this point, we have discussed issues that arise concerning information retrieval when

all documents can be found in a single collection. Now we move to a discussion of retrieval

in a multi-collection environment. The issues that we have been considering still apply. We

still want high quality overall document retrieval results and the end user is still the judge

of relevant documents. However, we now have additional considerations that are particular

to multi-collection environments.

Multi-collection information retrieval consists of three major steps, illustrated in a very

simpli�ed fashion in Figure 2.1. First, given a set of collections that may be searched, the

collection selection step chooses the collections to which a query q will be sent. In our

example, collections C1 and C3 are selected. Next, the query is processed at the selected

collections, producing a set of individual result-lists. Finally, those result-lists are merged

into a single list of documents to be presented to a user.

1Available from the Glasgow IDOM server, http://www.dcs.gla.ac.uk/idom/ir_resources/



2.2. Information Retrieval from Multiple Collections 16

collection selection

q

q

results results

q

merge

1.
2.
3.
4.
...
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Figure 2.1: An illustration of multi-collection retrieval. The collection selection
mechanism routes query q to collections C1 and C3. Query q is executed at those
collections, then the two results lists are merged into a single, coherent list for
presentation to the user.
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We will cover each of the three steps of multi-collection retrieval and issues related to

those steps in more detail. Within that context, we will discuss related work within the

�eld of multi-collection retrieval. Some research has been focused on one of the individual

steps; other work has addressed more than one step and will be mentioned more than once.

2.2.1 Collection Selection

Given some query q and a set of collections to which that query might be sent, the collection

selection step may be viewed in two ways. Under one interpretation, the collection selection

mechanism speci�es the order in which the collections are searched. An alternate inter-

pretation is that the collection selection mechanism chooses a subset of the collections to

search. We use the former interpretation and assume that a collection selection mechanism

seeking a subset of n collections would simply use the �rst n collections in the ranking.

To state the problem more formally, we have a set of N collections C = fC1; C2; :::; CNg
that we wish to search to satisfy some query q. We assume that each collection C 2 C has

some merit, denoted merit(q; C), with respect to the query q. Merit could be de�ned as

the number of relevant documents in a collection, the proportion of relevant documents in

a collection, the number of documents in a collection, the number of documents that have

a given similarity to the query or any other assignment of values. We would like to search

the collections in order of decreasing merit to the query.

To isolate the selection problem, consider for example Figure 2.2. In this example, we

have �ve collections C = fC1; C2; C3; C4; C5g with the illustrated merits with respect to

some query q. Because we wish to search collections in order of decreasing merit, for this

example, we would like to visit the collections in the following order: hC3; C1; C4; C2; C5i.
This example brings up on interesting point|in fact we only want to search the shaded

collections (i.e. only the collections that have non-zero merit). Because collections C2 and

C5 have no merit with respect to query q, we should not direct the query to them. For

clarity of exposition, we have cast selection as an ordering task. The desired behavior of a

selection algorithm is to place zero-merit collections at the bottom of the ranking.
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3 0 5 1 0

C1 C2 C3 C4 C5

Figure 2.2: A simple collection selection example. Collections C1{C5 have the
illustrated merits; the goal is to search collections in order of decreasing merit.

Collection selection algorithms do not know the intrinsic merit of a collection with

respect to a query. Rather, they provide a means with which to estimate that merit.

These estimates are used to produce collection rankings. Because the actual collection

merits are not known, these rankings based on estimated merit may not be the same

as the desired ranking based on actual merit. One approach to evaluating a collection

selection technique determines the degree to which the selection technique is able to produce

collection orderings that approximate the desired rankings.

A number of di�erent approaches for database or collection selection have been proposed

and individually evaluated. Direct comparisons of these collection selection approaches is

complicated by the variety of experimental environments and evaluation measures that have

been used by di�erent research groups. An examination of Table 2.1 shows the variety

of test environments employed by researchers and gives some insight into the di�culty

of comparing �ndings from di�erent research e�orts. In addition, the methodology for

evaluating collection selection is not yet as standardized as the methodology for evaluating

document retrieval.

Comparisons are further complicated by di�erences in the overall goals of the di�erent

approaches. The approaches can be divided into three major classes based on their overall

approach or goal. One group of approaches attempts to characterize the document-query

similarities of the documents that would be returned if a query were sent to a collection C.

These approaches typically have the stated goal of locating collections with a large number

of similar documents or with highly-similar documents. A second group of approaches has

the stated goal of identifying collections that have a large number of relevant documents
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Group Sources Num. Colls Queries

Gravano & Garc��a-Molina
[GGM95]

news groups 53 6,800 user

Meng et al.[MLY+98] news groups 3 6,597 user

Meng et al. [MLY+99]
Liu et al. [LYM+99]

news groups 3 6,234 user

Yu et al. [YLW+99] news groups 15 1,000 user

Voorhees [Voo95] TREC (source, year) 10 202-250

Voorhees et al.[VGJL95] TREC (by source) 5 1-200

Voorhees [Voo96] TREC (source, month) 98 251-300

Voorhees & Tong [VT97] TREC (by source) 5 51-200

Mo�at & Zobel [MZ95] TREC (by source, disk) 9 51-150

Walczuch et al.[WFPS94] TREC (by source) 5 151-200

Viles & French [VF95a] TREC-CatB (random) 20 201-250

Callan et al.[CLC95] TREC (by source, disk) 17 51-150

Zobel [Zob97] TREC (disk 2) 43 51-150
TREC (disk 3) 91 202-250

Yuwono & Lee [YL97] CACM, CISI, CRAN, MED 431

Xu & Callan [XC98] 3 � TREC (20MB colls) 100, 107, 50 99 TREC

Table 2.1: Summary attributes of multi-collection test environments that have
been used in a sampling of previous work.

with respect to the query. The ways in which these approaches attempt to reach that

goal vary. Finally, a third group of approaches incorporates additional considerations, for

example the cost to search a collection or the expected response time of a collection.

We will discuss a number of di�erent collection selection approaches individually below,

grouped by the overall goal. Three of the approaches, CORI [CLC95], CVV [YL97] and

gGlOSS 2 [GGM95, GGMT99] were evaluated in a common environment by French et al.

[FPV+98, FPC+99b] and Callan et al. [CPFC00], who found that there was signi�cant

room for improvement in all approaches, especially when very few collections were selected.

Expanded versions of those experiments can be found in Chapters 6{8. When introducing

those experiments, we will present a much more detailed discussion and analysis of the

2gGlOSS was later renamed vGlOSS in Gravano et al. [GGMT99], but we will continue to refer to it as
gGlOSS for consistency with our previously published work.
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CORI [CLC95], CVV [YL97] and gGlOSS [GGM95, GGMT99] algorithms; summaries are

provided here to place those approaches in the context of other related work.

2.2.1.1 Collections with Matching or Highly Similar Documents

The philosophy behind approaches that attempt to characterize the query-document simi-

larities of documents within a collection was stated by Gravano and Garc��a-Molina [GGM95]

who argued that \the best we can hope for any tool like gGlOSS is that it predicts the

answers that the databases will give when presented with a query." A number of ap-

proaches have a similar goal. We summarize some of those approaches here, then briey

discuss environments in which they are applicable and environments for which they are less

well-suited.

Gravano et al. [GGMT94b] introduced GlOSS, the Glossary of Servers Server. GlOSS

operates in an environment of Boolean information retrieval systems. GlOSS utilizes doc-

ument frequency information for each term and assumes that terms are independently

distributed. Given a conjunctive boolean query, GlOSS computes the probability that all

query terms occur in a given document in a collection to estimate the expected result size of

matching documents. Using six collections and 6,897 queries, GlOSS was evaluated based

on the percentage of queries for which the best collection(s) were selected. The degree to

which GlOSS ranked the remaining collections correctly was not evaluated.

GlOSS was later generalized to gGlOSS [GGM95] to handle the vector space information

retrieval model. In the implementation and evaluation of gGlOSS, Gravano and Garc��a-

Molina [GGM95] assumed that all of the collections in C employ the same algorithms to

compute term weights and similarities. Given a similarity function sim(q; d) that computes

the similarity between a query q and document d in a collection, Gravano and Garc��a-Molina

de�ned a notion of goodness for each collection. For similarity threshold l, goodness is

de�ned as the sum of all document similarities in the collection where sim(q; d) > l. The

desired behavior of gGlOSS is to rank collections in decreasing order of goodness. Having

established the desired behavior, Gravano and Garc��a-Molina then de�ned two estimators
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that estimate goodness using two assumptions of query term co-occurrence. The Max(l)

estimator assumes the highest possible level of co-occurrence of query terms in documents

while the Sum(l) estimator assumes that two terms appearing in the query do not appear

together in a collection document. gGlOSS needs two vectors of information from each

collection in order to make its estimates: the document frequency dfj for each term tj and

the sum of the term weights wij of each term over all documents di in the collection. For

both estimators, it is assumed that the weight of a term is distributed uniformly over all

documents that contain that term. gGlOSS uses the assumptions underlying Max(l) (or

Sum(l)) to estimate the number of documents in a collection C having similarity to a query

greater than a threshold l. This forms the basis for the gGlOSS estimate of the goodness

of C. Gravano and Garc��a-Molina [GGM95] used a test environment of 53 collections and

6,800 queries and the Rn and Pn evaluation measures (which we discuss in Chapter 5) to

evaluate the degree to which the Max(l) and Sum(l) estimators could rank collections in

decreasing order of goodness. They found that both estimators perform well with respect

to that evaluation criterion.

Yuwono and Lee [YL97] described the D-WISE multi-collection retrieval system, which

considered collection selection, query forwarding and results merging. They referred to

the collection selection portion of their work as the Cue Validity Variance (CVV) ranking

method. CVV refers both to the ranking method and to a component in their calculation

of collection score. CVV is discussed in much more detail in Chapter 7. The CVV ranking

method employs a combination of document frequency (df) information and cue validity

variance. Cue validity variance attempts to characterize the distribution of the density of

df values, i.e., the variability of the fraction of documents in a collection that contain a

given term. Document frequency information is used to approximate how important a term

is within a collection; the goal of the CVV component is to estimate whether a term is

useful for di�erentiating one collection from another. The CVV ranking method uses only

information from (or derivable from) collection document frequency statistics. The goal

of the CVV ranking method is to identify collections with a high concentration of query
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terms. Despite the availability of relevance judgements for their test environment, Yuwono

and Lee used an evaluation approach similar to that employed by Gravano and Garc��a-

Molina, considering the degree to which CVV predicted the sum of the similarities of the

top-ranked retrieved documents. Yuwono and Lee compared their approach to others but

unfortunately used only four collections and a small number of documents per collection.

Meng et al. [MLY+98] proposed a collection selection approach with goals that were

similar to those of Gravano and Garc��a-Molina [GGM95]. Given a multi-collection environ-

ment, their goal was to estimate the number of documents in the collection that would have

a similarity to query q greater than some threshold if a global similarity function had been

employed. While they use the information di�erently, Meng et al. require the same sta-

tistical information about each collection as Gravano and Garc��a-Molina [GGM95]|both

document frequency information and average term weight information is required. The

document frequency information divided by the number of documents in the collection is

used as the probability that a document in the collection contains the term. In the most

basic formulation of their collection selection algorithm, Meng et al. assumed that terms

are independently distributed and that the average term weight is evenly distributed across

all documents that contain the term. They used collection statistics for each query term to

construct a polynomial generating function associated with each collection. The estimated

merit (number of documents with similarity greater than a threshold) for the collection was

extracted from the polynomial; the exponents represented threshold values while the coe�-

cients represented the probability that a document exceeded the threshold. In essence, the

polynomial generating function is a means to compute the probabilities of all combinations

of the presence or absence of query terms in documents in a collection, plus the expected

similarity of a document with the given combination of query terms present. Reported

variations of the collection selection approach relaxed the independence assumption, then

relaxed the assumption that the average term weight information is uniformly distributed.

The approach was tested using a three-collection reorganization of the data used by Gra-

vano and Garc��a-Molina [GGM95]. The approach was shown to outperform the gGlOSS
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Max(l) and Sum(l) estimators for the task of identifying collections containing documents

with similarity to a query that is greater than a given threshold. The evaluation focused on

the number of queries correctly and incorrectly identifying a collection as useful. Whether

collections could be ranked accurately was not reported.

Liu et al. [LYM+99] and Meng et al. [MLY+99] later expanded the work of Meng et

al. [MLY+98]. The usefulness of a collection, which was previously de�ned as the number

of documents with similarity greater than some threshold, was rede�ned to also include

the average similarity of those documents. The authors introduced two modi�ed collection

selection approaches, the subrange-based method [LYM+99, MLY+99] which relaxes a pre-

vious assumption that the average term weight information is evenly distributed across doc-

uments in a collection that contain the term, and the combining-terms [LYM+99] method

that incorporates some term dependency information. Both the subrange-based method

and the combining terms method modify the collection selection approach of Meng et al.

[MLY+98] and expand it to utilize maximum document similarity information. The authors

reported collection selection results that outperformed those of Meng et al. [MLY+98] for

the same experimental environment. No modi�cations to the merging approach discussed

in Meng et al. [MLY+98] and summarized in Section 2.2.2 were reported.

Yu et al. [YLW+99] revisited the subrange-based and combining-terms collection se-

lection approaches. They then provided a document retrieval plan that is guaranteed

to retrieve all of the top n globally most similar documents if the collections containing

those documents are ranked ahead of collections not containing those documents. Fur-

ther, the authors show that their subrange-based and combined term methods ful�ll this

requirement for single term queries (due to the availability of the maximum term weight

information). Finally, for a test environment of 9,646 documents arranged in 15 collections

and 1000 queries, they compared their combined term method with the gGlOSS Max(l)

method. The task was to retrieve the n most similar documents and to identify the collec-

tions containing those documents. The authors reported that the combined-term method

outperformed gGlOSS Max(l) for those tasks.
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Yu et al. [YML+99] also considered using a hierarchy of collection representations when

the number of collections available is very large. As in their previous work [MLY+98,

MLY+99, YLW+99], they focused on retrieving the globally most similar documents. They

demonstrated that the performance of their hierarchical approach is on par with the per-

formance of their related approach that uses a at representation of collections.

The work of Baumgarten falls somewhat between the class of experiments described here

and the class described in the next section. Baumgarten proposed a probabilistic model

for multi-collection information retrieval [Bau97], assuming that the underlying collections

make use of probabilistic information retrieval systems. He assumed that collections can

be hierarchically partitioned. Collections are selected based on estimating the distribution

of retrieval status values (RSVs) by which documents are ranked for retrieval within the

collections. The collection scores are later used for scaling individual RSVs during a merging

step. While document relevance is later used for evaluation [Bau99], collection selection is

not based upon an estimation of relevant document distribution. The goal of the overall

approach is to maintain the overall top-ranked l documents that would be retrieved in a

search of a single collection containing all documents or by selecting all collections, while

at the same time restricting search to the collections that actually contribute documents

to the set of l documents. In the reported results, the performance of the multi-collection

system and single-collection system was very similar.

The majority of our experiments evaluate the degree to which collection selection ap-

proaches can locate collections with relevant documents instead of highly similar docu-

ments. However, we do study the gGlOSS approach in detail and use it as a representative

for approaches that utilize document term weight information and that attempt to locate

collections with highly similar documents.

Traditionally, information retrieval performance in a single-collection environment con-

taining the union of the documents in the multi-collection environment has been viewed

as the goal/upper bound for multi-collection retrieval performance3. While operational

3We will refer to the single collection containing the union of the documents in a multi-collection envi-
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multi-collection environments have yet to exceed the performance seen in equivalent single

collection environments, we will show later that multi-collection retrieval performance has

the potential to outperform single-collection retrieval. Approaches, such as those described

above, that are designed to replicate single-collection performance have two potential weak-

nesses. First, these approaches may search a large subset of the collections if the globally

most similar documents are widely spread across the collections. Second, depending on

the degree to which they are capable of replicating single-collection performance, these ap-

proaches may also not be able to take advantage of the potential for higher multi-collection

performance.

2.2.1.2 Collections with Relevant Documents

The next group of collection selection approaches were proposed with the goal of identifying

collections with relevant documents. These approaches typically (but do not always) require

less statistical information than collection selection approaches with the goal of identifying

collections with highly similar documents.

CORI is the collection selection mechanism associated with the Inquery [CCH92] in-

formation retrieval system and was introduced by Callan et al. [CLC95]. In general, CORI

treats collections as virtual documents using document frequency (df) and inverse collection

frequency (icf) information. Collection selection can be considered as a sort of \document

retrieval" over the set of virtual documents. The authors presented two general formula-

tions of CORI [CLC95]. In our experiments we use the formulation that was shown to have

slightly higher performance scores. We discuss CORI in much more detail in Chapter 7.

Callan et al. provided a basic evaluation of CORI collection selection performance using a

test environment containing 17 collections.

The work of Voorhees et al. [VGJL94, VGJL95, Voo95, VT97] is more closely asso-

ciated with results-merging and will be discussed further there. However, this work also

has interesting collection selection aspects. Most selection approaches do not specify the

ronment as an equivalent single-collection environment.
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number of documents to be retrieved from a selected collection. Instead, the proportion

of documents from a given collection present in the merged results list is an artifact of

the merge strategy. In contrast Voorhees et al. de�ned two approaches for determining

the number of documents to be retrieved from each collection. Because that number may

be zero, these approaches serve as a collection selection step. The two approaches, Query

Clustering (QC) and Modeling Relevant Document Distributions (MRDD), do not use sta-

tistical representations of the collections but instead rely upon information learned from

training queries. While their results were promising, the necessity of training data would

be a drawback in an operational system. Training queries would need to be representative

of queries to be seen by the system and acquiring the training data could be expensive.

Hawking and Thistlewaite [HT99] compared an approach that they term Lightweight

Probes (LWP) to the QC and MRDD approaches of Voorhees et al. [VGJL94, VGJL95,

Voo95, VT97] as well as to two other approaches that rely upon observations of collection

performance on previous queries. In contrast, the LWP approach is based upon statistical

information provided by the collections in response to a set of probe queries. We will discuss

the LWP approach further in a later section in which we consider collection representations

used for collection selection.

Zobel [Zob97] termed the approach of using term statistics about collection vocabulary

lexicon inspection and proposed a number of selection approaches using term statistics.

He evaluated the capability of these approaches to locate both relevant documents and

high-similarity documents. Overall, he found that an inner product using the query term

frequency, the document frequency within a collection and the inverse document frequency

within the testbed performed well.

Xu and Callan [XC98] focused on the nature of queries used for collection selection.

Their premise was that queries intended for document retrieval (often containing only a

few terms) are not appropriate for collection selection and that poor collection selection

performance hinders multi-collection document retrieval performance. They investigated

the inclusion of phrase information and the use of query expansion for collection selection.
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They employed the same experimental methodology as Callan et al. [CLC95] but used three

di�erent testbeds and two sets of queries. On average, both phrases and query expansion

produced results that outperformed the multi-collection base case and at times approached

the performance of the single-collection base case. Because Xu and Callan modi�ed the

collection selection queries while employing consistent document retrieval queries, they were

able to conclude that the improvements in document retrieval were due to their modi�ed

selection approaches. Xu and Callan only reported merged document retrieval results,

special-purpose collection selection performance measures were not used.

2.2.1.3 Other Considerations

Most collection selection approaches are based upon statistical information about the col-

lections and are concerned primarily with locating relevant or highly similar documents.

However, there are approaches that incorporate additional information or set di�erent goals.

An early experiment that considered the use of subdivisions of collections was based on

e�ciency considerations. Mo�at and Zobel [MZ95] considered compression techniques plus

a collection selection approach that subdivided collections into blocks of B documents. A

selection step was employed to select blocks to which queries should be sent. Mo�at and

Zobel varied the number of documents per block and studied the impact of block size on

the number of documents that must be considered in order to attain document retrieval

performance approaching that of an equivalent single collection. For the initial task of

retrieving 1,000 documents, they found that it was necessary to consider a large number

of documents. They found the approach to be more promising when retrieving a smaller

number of documents.

Given a desired number of documents (or a desired number of relevant documents)

to retrieve, Fuhr [Fuh99] presented a model for minimizing the cost of retrieving those

documents. Fuhr's model takes into account much more information than most of the

other approaches outlined here. The model assumes that information is available about

the expected number of relevant documents per collection, the cost of executing queries
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and retrieving documents from a collection, plus the cost to a user of viewing relevant and

non-relevant documents. All of this information is taken into account when considering the

overall cost of a query.

In the context of their experiments with Lightweight probes, Hawking and Thistlewaite

[HT99] also discussed the cost of accessing collections and considered the cost/bene�t trade-

o�s of selecting additional collections.

Dolin et al. [DAAD97, DAAP98, DAA99] described and evaluated the Pharos system

in a series of papers. Pharos di�ers from many other systems because it was explicitly

designed to incorporate both textual and non-textual information. The Pharos architec-

ture [DAAD97] requires hierarchical classi�cation of collections (by subject area, date,

geographic area, etc.) and utilizes two levels of collection selection intermediaries. High-

level intermediaries maintain limited information about all collections while mid-level in-

termediaries maintain more detailed information about subsets of the classi�cation scheme.

Evaluation was based upon the degree to which upper-level intermediaries can predict the

contents of mid-level intermediaries. Each collection is responsible for providing the re-

quired classi�cation-based metadata. While Dolin et al. [DAAP98, DAA99] consider the

impact of automatically classi�ed documents, simplifying the task of acquiring the required

metadata, Pharos still requires a higher level of cooperation from the participating collec-

tions than more minimalist term-statistics based collection selection approaches. Because

the evaluation of Pharos followed a di�erent approach than most of the evaluations of

statistically-based approaches we have considered, it is di�cult to determine if the ad-

ditional classi�cation information provides an advantage for environments with textual

collections.

Craswell et al. [CBH00] argued that the retrieval performance at a collection should

be incorporated into the collection selection step. They augmented the CORI collection

selection approach with expected collection retrieval performance, but unfortunately found

that the results were not signi�cantly di�erent from standard CORI results. Augmenting

CORI with information about actual document retrieval performance (not available in an
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operational setting) did improve performance.

Xu et al. [XCLN98] focused on the problem of collection selection for multi-attribute

bibliographic databases. Like GlOSS [GGMT94b] but unlike many of the other approaches

surveyed here, they attempted to estimate the overall result size, not the number of highly

similar or relevant documents. They found that a modi�cation of the CVV [YL97] approach

to incorporate multi-�eld data performed better than a proposed approach based solely on

training queries. Later related work by the same group of researchers described the design

and implementation of ZBroker [LXLN99], a query-routing broker for this problem area.

However, in that work, a modi�ed version of GlOSS [GGMT94b] was used for collection

selection.

For the NetSerf system, Chakravarthy and Haase [CH95] focused on collections orga-

nized by subject content. They used hand-crafted representations of collections, then used

WordNet [Mil95] to structure, expand and disambiguate queries.

2.2.2 Results Merging

If more than one collection is selected during the collection selection step then the multiple

results lists generated by those selected collections will need to be handled in some way. The

simplest approach is to concatenate the results lists, delimiting them with some notation

of the collection from which they came. While straightforward, this approach does not

present a uni�ed, seamless view of the multi-collection environment to the users. Results

merging is an attempt to create a single results list from the individual collection's results.

The goal is to rank the overall most useful documents highly, to remove any duplicates,

and in general to present a coherent view of the results to the user. Results merging is

made challenging by heterogeneous information retrieval systems used by the underlying

collections. Even if the same information retrieval system is used at each collection, subtle

di�erences in indexing parameters or collection statistics mean that creating a merged list

of documents based solely on the similarity scores computed at the collections is rarely the

best approach.
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There has been attention on results merging or collection fusion from the point of view of

query combination and data fusion as well as multi-collection retrieval. In multi-collection

retrieval, collection selection need not have taken place; a query may have been broadcast

to all collections.

Before we cover some of the merging approaches that have been suggested in the liter-

ature, we mention two simple approaches and two more heavyweight approaches to which

suggested results merging approaches are often compared. The simple approaches are eas-

iest to explain with an example. Consider a multi-collection environment with two collec-

tions, A and B. Assume that these collections return the following results lists, represented

here as pairs of document IDs and scores:

resultsA = h(a1; 0:6); (a2; 0:4); (a3; 0:3); (a4; 0:1)i and

resultsB = h(b1; 0:8); (b2 ; 0:6); (b3; 0:5)i

Interleaving Results. One very simple approach is to interleave the documents from

the two sources in a round-robin fashion. This approach is applicable to a variety

of situations because the document scores provided by the collections need not be

comparable. In fact, the document scores are not necessary. For our example, this

approach would produce the merged list

resultsmerge = h(a1; 0:6); (b1; 0:8); (a2; 0:4); (b2; 0:6); (a3; 0:3); (b3 ; 0:5); (a4; 0:1)i.

This approach assumes that the documents from all collections are equally useful and

collections that return more documents have more inuence. However, given that

document scores are sometimes not available and often not comparable, this can be

a reasonable simple approach.

Raw Score Merge. A raw score merge assumes (either correctly or incorrectly) that

the document scores produced by the collections are directly comparable. Results are

merged on the basis of these scores alone. In our example, a raw score merge would

produce the merged list



2.2. Information Retrieval from Multiple Collections 31

resultsmerge = h(b1; 0:8); (a1; 0:6); (b2; 0:6); (b3; 0:5); (a2; 0:4); (a3 ; 0:3); (a4; 0:1)i.

If the document scores are in fact comparable, a raw score merge can work well.

However, if the scores are not comparable the results can be unpredictable. For

collections A and B in our example, the scores appear to be on the scale of [0::1]. If

that is the case, our merged results may be reasonable. If, however, the results from

collection B are on the scale of [0::10], the returned results are likely to be very poor

matches and the quality of our merged results list is likely to be adversely a�ected

by ranking documents from collection B highly.

Document Re-weighting. If document reweighting is used to merge multiple results

lists, all of the documents retrieved from any collection are considered to constitute a

new collection. The document scores assigned by the original collections are discarded.

The retrieved documents are then re-indexed and the original query is compared to

them. The new document scores are used to rank the documents. While this merged

results list is consistent, this approach is computationally expensive.

Normalized Merge. Normalized merge approaches assume that global collection infor-

mation is available, allowing document scores from di�erent collections to be adjusted

before they are used to rank documents in a merged list. This allows the merged list

to be exactly the same as the results list that would have been returned if all doc-

uments were found in a single collection. The main drawback to this approach is

the cost of maintaining and disseminating the global collection information. This

approach is one to which proposed merging techniques are frequently compared.

2.2.2.1 Query Combination and Data Fusion

A lot of the research on results merging has been done in the context of query combination

or data fusion. Query combination utilizes a collection of documents indexed by a single

information retrieval system. Given a single information need, multiple queries are con-

structed. Each of those queries is a di�erent attempt to express the information need, or an
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expression of di�erent facets of the information need. Each query is issued to the collection,

producing one results list for each query. Data fusion employs multiple indexes of a collec-

tion. These indexes may be produced by di�erent information retrieval systems and/or by

using di�erent parameters of a single information retrieval system. Given an information

need, a query (in the appropriate format for the information retrieval system) is issued to

each index of the collection, producing one results list per index. For both query combina-

tion and data fusion, we are dealing with a single collection of documents. As a result, there

is the potential for overlap among the results lists. In fact, these approaches are based upon

observations that di�erent query formulations and indexing approaches tend to produce re-

sults lists containing di�erent relevant and non-relevant documents [KMT+82, SK88] but

that documents appearing in more than one list have a higher probability of being relevant

[SK88]. The task for both query combination and data fusion is to account for duplicates

and to merge the individual results lists into a single result list to be presented to the

user. The goal is to rank relevant documents from the individual results lists highly in the

merged list.

What follows is not a comprehensive survey of data fusion and query combination re-

search, but rather a brief summary of the research and an entry point into the literature.

Our primary interest is the results merging approaches that have been employed for data

fusion and query combination. We summarize some of the combination approaches sug-

gested, the results observed, and the degree to which these combination approaches have

been adopted.

For their TREC-2 experiments, Fox and Shaw [FS93] suggested six di�erent approaches

for combining multiple \individual similarity" values for a given document d. These indi-

vidual similarity values may be due to retrieval by di�erent query formulations or di�erent

document indexing approaches. These approaches were later adopted by other researchers

so we summarize them below for reference:
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CombMAX maximum of individual similarities

CombMIN minimum of individual similarities

CombMED median of individual similarities

CombSUM sum of individual similarities

CombANZ CombSUM � number of nonzero similarities

CombMNZ CombSUM � number of nonzero similarities

Fox and Shaw [FS93] found that, on average, all six approaches performed fairly well.

CombSUM and CombANZ generally outperformed the best-performing of the constituent

approaches, with CombSUM often outperforming CombANZ. They noted that the Comb-

SUM performance relative to the constituent approaches varied greatly. CombSUM was

adopted by Lee [Lee95] for a study of di�erent classes of document indexing approaches.

Lee [Lee97] later expanded upon the type of experiments performed by Fox and Shaw [FS93]

but employed a di�erent test environment. He studied the CombMAX, CombMIN, Comb-

SUM, CombANZ and CombMNZ approaches, arguing that CombMNZ should be more

e�ective given that it favors documents that are retrieved more frequently. CombMNZ was

found to be more e�ective within Lee's test environment.

For their TREC-2 experiments, Belkin et al. [BKCQ93] used the simple approach of

issuing multiple query formulations as a single query, automatically producing a single

results list. They also used a variant of the median score rule (see CombMED above). In

later experiments, Belkin et al. [BKFS95] also considered using training information about

query performance to choose the best query formulation. Finally, a collaborative e�ort

by Belkin, Kantor, Fox and Shaw [BKFS95] considered the problem of combining results

obtained from di�erent information retrieval systems. Variants of using the minimum,

maximum and sum of scores were used.

Rajashekar and Croft [RC95] used the standard Inquery query operators to combine

di�erent representations for both queries and documents.
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2.2.2.2 Merging and Multi-collection Retrieval

In a multi-collection retrieval environment, an appropriate results merging step is dependent

on the information retrieval system(s) at the collections. The merging approaches proposed

by di�erent researchers depend upon whether knowledge is available about the information

retrieval systems used by the collections and whether document scores from di�erent results

lists are comparable or can be normalized to make them more comparable.

Voorhees, et al. [VGJL95, VGJL94] proposed a merging approach in which the number

of documents retrieved from a collection was based on the estimated usefulness of that col-

lection. They used two approaches, modeling relevant document distributions (MRDD) and

query clustering (QC) to determine the number of documents retrieved from a collection.

Both approaches required a set of training queries. The retrieved documents were merged

using a probabilistic approach that employed what they termed a C-faced die to choose the

next collection from which a document was to be drawn. Voorhees et al. [VGJL95] noted

that when the actual distribution of relevant documents is known and utilized, the merged

performance can exceed system performance when a single collection is employed. Further

experiments by Voorhees [Voo95] studied QC and MRDD using di�erent collections and

queries and discussed the e�ciency of the techniques. Voorhees and Tong [VT97] later

showed that results observed in Voorhees, et al. [VGJL95, VGJL94, Voo95] were stable

over di�erent underlying search engines.

Yager and Rybalov [YR98] considered the merging problem as stated by Voorhees, et

al. [VGJL95, VGJL94] but enumerated several deterministic merging approaches as an

alternative to the original probabilistic approach.

In the same paper in which they introduced the CORI collection selection algorithm

Callan et al. [CLC95] also presented a comparison of four di�erent results merging ap-

proaches. These approaches included interleaving, raw score merge, normalized merge and

an approach they termed weighted scores. The weighted scores approach did not require

collection-wide information, but instead used a combination of the document score and the

source collection's score from the collection selection step to compute a document score for
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merging. Callan et al. found that the weighted scores approach had similar performance

to the normalized merge, but with less overhead.

In conjunction with their collection selection experiments, Meng et al. [MLY+98] con-

sidered the collection fusion problem with the goal of guaranteeing that they would locate

all of the documents that would be most similar to some query q if a global similarity

function had been employed. This necessitated computing di�erent similarity thresholds

for retrieving documents from each selected collection. Meng et al. presented two ap-

proaches for retrieving the globally most similar documents; however, because their their

test environment did not contain relevance judgements, a relevance-based evaluation was

not presented. If the global similarity function is used to order the retrieved documents, the

relevance-based performance of this approach would be bounded by the single-collection

performance.

Gravano and Garc��a-Molina [GGM97] also considered the problem of results merging

and setting local similarity thresholds to retrieve the globally most similar data items. How-

ever, they considered collections containing structured records and examined the impact of

di�erent assumptions about the types of information available from and returned by the

collections.

Craswell, et al. [CHT99] proposed two new merging techniques and compared their

performance to other published techniques. They compared results merging approaches

that used di�erent sources of document and collection information, and found that re-

weighting documents retrieved from collections was highly e�ective. Their two proposed

re-weighting approaches, based on the position of query terms in the documents, performed

well for their test environment of �ve TREC-based collections.

While results merging is an important step for multi-collection retrieval, we focus most

of our experiments on the collection selection step. There are many di�erent merging

approaches to choose from; we chose approaches that did not obscure the impact of the

collection step. The merging approach is generally held constant for our comparative ex-

periments. For the one case where merging is a potential issue, it is clearly discussed. When



2.3. Issues in Multi-collection Retrieval 36

merging is necessary for our experiments, we use a raw score merge (where appropriate)

or the default CORI merge. The experiments of Chapter 10 use a document re-weighting

approach for results merging.

2.3 Issues in Multi-collection Retrieval

There are a number of issues that cut across many multi-collection retrieval approaches,

although they are not always explictly mentioned. These issues include the impact of the

use of di�erent information retrieval systems at the underlying collections and information

used for indexing collections. Of particular interest to us is the issue of collection repre-

sentations for collection selection, the information used for those representations and how

that information is acquired.

2.3.1 Heterogeneous Collections

There are many ways in which the individual collections in a multi-collection environment

might di�er. Collections can employ di�erent document indexing techniques and di�erent

query processing techniques. The underlying search engine at one collection might support

options not allowed by others. The acceptable query formats may di�er among the search

engines at the collections. The range of document scores can also vary by collection. In

the context of describing the STARTS internet metasearching protocol, Gravano et al.

[GCGMP97] discussed these issues in detail. Here, we mention a few speci�c issues that

have implications for our experiments.

Some approaches assume homogeneous underlying search engines. The general ap-

proaches that we consider do not. In our earlier discussion of the gGlOSS [GGM95] collec-

tion selection approach, we noted that gGlOSS assumes that all collections use the same

similarity function to compute query-document similarities. In practice, this assumption

is only feasible when the same individual or organization controls all collections in the

multi-collection environment.
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With the exception of gGlOSS, the approaches that we study in this dissertation do not

require document term weight information. In general, the approaches we study require

only document frequency information (the number of documents containing each term) and

other information that remains consistent even if di�erent search engines or query formats

are used at the underlying collections. However, there is still one issue that we must be

aware of. Because collection selection indexes may be built from information provided by

collection indexes, tokenizing, stopping and stemming can have implications for collection

selection. Di�erences here can lead to incompatible vocabularies.

2.3.2 Indexing Issues

In addition to search engine issues, some researchers have also considered problems caused

by limited indexing information at the individual collections. If collections are small or spe-

cialized, the documents in the collection may not be representative of the set of documents

contained in all collections. This can result in arti�cially high or low similarity scores. One

approach to resolving this problem has been to incorporate statistical information from

other collections during indexing.

Viles and French [VF95b, FV96] studied the impact of what they termed collection

wide information (CWI) on multi-collection information retrieval performance. Their test

environment assumed that queries are broadcast to all collections and that a raw-score

merge would be employed. They found that while disseminating collection wide information

for use in indexing is advantageous, it is not necessary to collect statistical information from

all documents in all collections. The amount of statistical information required is dependent

upon characteristics of the underlying collections.

Walczuch et al. [WFPS94] compared their system performance using semi-local and

collection-wide information. They tested using �ve collections indexed using the SMART

information retrieval system. Results from the �ve collections were merged by re-ranking

using either df information from the pooled result set or collection-wide df information.

Walczuch et al. reported that they found no signi�cant di�erence between the approaches;
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however, given the small number of collections, it is di�cult to compare their results to

those of Viles and French [VF95b, FV96] or the results reported in this dissertation.

de Kretser et al. [dMSZ98] considered three di�erent levels of statistical information and

collection-wide information for collection selection and indexing. The simplest approach

provided nothing to the collection selection mechanism except a list of collections. A more

elaborate approach provided vocabulary information about the collections to the collection

selection approach. That vocabulary information was used for selection and also used as

collection-wide information for document retrieval. The collection block selection approach

of Mo�at and Zobel [MZ95] was employed as a third approach. Overall, de Kretser et

al. reported similar results for the three approaches, with a small drop in performance

when very few blocks were selected by the third approach. The similar performance of

the �rst two approaches is of particular interest. From the description of experiments, it

appears that for both approaches queries are broadcast to all collections. The lack of impact

of collection-wide information implies that for the given test environment local collection

statistical information was representative of the test environment as a whole.

In their work on results merging Craswell, et al. [CHT99] used what they termed ref-

erence statistics. Instead of maintaining statistical information about all documents in all

collections, they maintained information about a sample of 10% of the documents. These

reference statistics were employed by their top-performing merging approach.

2.3.3 Collection Representations

Collection selection is di�cult partly because collection selection algorithms do not typically

have access to the full contents of a collection. Instead, they utilize summary statistical

information about the collections. We will use the terminology used by Xu and Croft

[XC99] and Callan et al. [CCD99] and refer to the summary information about a collection

as a language model (LM). Collection selection algorithms di�er in the type of information

that they require in the language models. For our experiments, each collection Ci is rep-

resented by a corresponding language model LMi. We denote the set of language models
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as LM = fLM1; LM2; :::; LMNg. Given a query q, a formula for estimating merit, and

an appropriate set of language models LM representing C, a collection selection algorithm

computes the estimated merit for each collection with respect to the query, then sorts and

ranks collections using that estimated merit.

The language model LMi for a collection Ci can be created in a number of ways. The

administrators of a collection might choose to make all documents available, in which case

a wide variety of statistical information is possible. Alternately, administrators may make

only limited statistical information available.

A number of protocols for describing collections have been proposed. One well-known

protocol is STARTS [GCGMP97], which was created with the input of a number of large

information providers. STARTS de�nes a rich set of metadata that is to be provided

by internet search engines that wish to cooperate in a joint metasearching project. The

assumption that the search engines wish to cooperate is key|STARTS requires a large

amount of metadata, some sites may not be willing or able to contribute.

Powell and Fox [PF98] de�ned SearchDB-ML, an application of XML (eXtensible Mark-

up Language) for describing a collection. SearchDB-ML can be used to describe the search

engine used at a collection, the query and results formats, and additional metadata. To

enable collection selection, each SearchDB-ML description of a collection can contain a

brief general description of the contents. The authors report that the simple descriptions

of SearchDB-ML make it easy to add new collections to the system; however, they also

report that some users expressed concern that the brief collection description would not be

su�cient for e�ective collection selection.

Hawking and Thistlewaite [HT99] suggested that their Lightweight Probes (LWP) ap-

proach may be a useful addition to STARTS. Rather than periodically collecting metadata

from collections, the LWP approach collects limited, query-speci�c statistical information

from collections at query time. Like STARTS, LWP assumes that the underlying collections

are willing and able to cooperate. The information requested by LWP includes document

frequency information, the number of documents in the collections, as well as proximity
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and co-occurrence information.

As we mentioned earlier, gGlOSS [GGM95] needs two vectors of information from each

collection in order to make its estimates: the document frequency dfj for each term tj and

the sum of the term weights wij of each term over all documents di in the collection. This

information is stored in two matrices, referred to as F (document frequency) and W (term

weights) by Gravano and Garc��a-Molina.

CORI [CLC95] is built on top of Inquery [CCH92] and as de�ned draws its required

document frequency information directly from the Inquery-indexed collections. However,

the published algorithm is amenable to use with heterogeneous underlying collections if

collection statistics can be provided or acquired by sampling. The use of phrases and

query expansion by Xu and Callan [XC98] increased the complexity of the basic CORI

approach. The use of phrases increases the size of the language model and also increases

the complexity of gathering the statistical information required. Their query expansion

approach required a training phase.

Callan et al. [CCD99] discussed a query-based sampling approach to generating lan-

guage models. The language model for each collection is constructed using a subset of

the documents in that collection. The subset of documents is gathered using a randomly

selected set of probe queries. Callan et al. described the methodology for constructing

the sample-based language models, covering the number of documents retrieved per probe

query, the selection of probe queries and stopping criteria. In this work, Callan et al.

measured the degree to which the sampled language models approximate language models

built using all documents in the collections. While there is discussion of automatic stopping

criteria, the reported results use samples of 300 or 500 documents per collection. Callan

et al. [CPFC00] later studied the degree to which di�erent collection selection approaches

are a�ected by language models created using query-based sampling. Collection selection

performance of CORI [CLC95], gGlOSS [GGM95] and CVV [YL97] was compared us-

ing complete and sample-based language models. Long, medium and short versions of the

queries were used. With a few exceptions, Callan et al. found that collection selection using
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sample-based language models was e�ective. There was often little di�erence between col-

lection selection performance using complete and sample-based language models. However,

they did note some issues related to normalization approaches|as currently de�ned, CVV

was found to be incompatible with sample-based language models. Overall, the CORI

collection selection approach proved to be the most stable.

Craswell et al. [CBH00] also presented a comparison of the impact of sample-based

language models on the CORI, gGlOSS and CVV collection selection approaches. There

were a number of methodological di�erences; however, the overall results are complemen-

tary with those found by Callan et al. [CPFC00]. For their experiments, Craswell et al.

[CBH00] used a variant of the query-based sampling approach proposed by Callan et al.

[CCD99]. Instead of using randomly-selected probe query terms, Craswell et al. used an

independent set of multi-term queries. They considered the performance of the collection

selection approaches when a varying number of probe queries were used to construct the

language models. Craswell et al. found that the eventual merged document retrieval per-

formance tended to improve as more probe queries (retrieving more documents) were used

to construct the language models. They also found that reasonable performance could be

obtained when selecting only ten collections and that CORI performed well using sampled

language models.

Liu et al. [LYM+99] touched upon the potential unavailability of full statistical informa-

tion for their approach and outlined general sampling approaches to acquire estimates for

the required information. Xu et al. [XCLN98, LXLN99] also used a query-based sampling

approach (di�erent from that de�ned by Callan et al. [CCD99]) to acquire statistical infor-

mation for their experiment using collections of bibliographic data. Of particular interest

is a characterization of the overhead incurred by sampling [LXLN99].

D'Souza and Thom [DT99] suggested n-term indexing in which only n terms from each

document in a collection are used to construct that collection's representation. D'Souza

and Thom suggested a number of ways that the terms could be chosen and that the value

of n could be determined. For initial experiments [DT99], they chose the �rst 30 unique
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terms occurring in each document. They used the experimental environment proposed

by Zobel [Zob97] and compared their results to Zobel's inner product results. D'Souza

and Thom reported that n-term indexing performs noticeably worse than Zobel's inner

product but better than selecting collections based solely on size (largest collections �rst).

The n-term indexing approach represents a departure from many of the other language

modeling approaches because it chooses terms on more of a document-centric basis. Unlike

some other approaches, n-term indexing requires access to the text of all documents in a

collection and also assumes that early terms are not only representative of the document

but also of the collection.

Xu and Croft [XC99] considered clustering, both in the creation of collections and the

construction of language models. They argued that clustering may be necessary to create

multi-collection environments suitable for e�ective collection selection. We will revisit this

argument in Chapter 9. Xu and Croft compared single-collection performance to four dif-

ferent approaches for constructing collections and language models. They considered a set

of collections containing roughly the same number of documents per collection (their base

case), a set of collections created by clustering all documents, a set of collections created by

clustering within a coarse decomposition of documents, and the use of multiple language

models to represent each collection. Xu and Croft reported improved performance over

the base case for all three proposed approaches. Unfortunately, the overhead of cluster-

ing and the requirement that the underlying collections cooperate may impact the broad

applicability of these approaches.

2.4 Early Internet Approaches

Early internet resource discovery systems, generally those in place shortly before the World

Wide Web began to be widely used, often focused on speci�c tasks within an environment

with multiple information sources. Examples include locating e-mail addresses or locating

�les served by anonymous FTP servers. Broader tasks included locating potentially useful
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WAIS or gopher servers. Schwartz [Sch93], Schwartz et al. [SEKN92] and Obraczka et al.

[ODL93] all provide excellent surveys of these approaches. Bowman et al. [BDMS94] also

consider some of these approaches in the context of scalability. At the time that these

resource discovery approaches were surveyed, the problem was one of notifying users of the

existence of distributed information sources that had the potential to be useful. As a result,

a basic form of collection selection (identifying potentially useful sources) was involved;

however, the user was generally responsible for selecting which information sources were

employed.

The Discover system [SDWG95] was implemented on top of a set of WAIS servers using

an approach that the authors referred to as \content routing" [SDW+94]. A hierarchical

set of content routers contained descriptions of the information sources (WAIS servers); the

format of the descriptions was not constrained by the system. For the prototype system,

the descriptions were the very brief WAIS server description and the WAIS catalog �le

(headlines for each document). A user interface was provided so that users could search

or browse these descriptions to identify potential information sources to search. Once a

user selected a set of collections to search, Discover provided a mechanism to send the

query to all of the collections. The results list was not merged but rather delimited by

the collection providing each set of documents. Discover di�ered from other systems of the

time by providing a query reformulation feature. The authors provided an example and a

qualitative performance report but reported no in-depth system evaluation.

The Harvest system [BDH+95, BDH+94] employed sets of gatherers and brokers to

provide e�cient access to information across multiple collections. Gatherers were respon-

sible for exporting indexing information about information sources, while brokers provided

organization, plus a search interface. E�ciency was one of the primary goals of Harvest|

gatherers could provide information to multiple brokers, removing the need for each broker

(search mechanism) to download documents for indexing.
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2.5 Metasearching

Internet metasearching is an interesting sub-problem of multi-collection information re-

trieval. A metasearch engine does not maintain its own index of WWW pages but instead

acts as an intermediary that forwards queries to an often predetermined set of traditional

internet search engines. Metasearch engines have been around almost as long as internet

search engines. One interesting aspect of metasearch engines is the very large scale on

which the internet search engines themselves operate. For example, as of July 2000, Search

Engine Showdown4 estimated that ten major internet search engines indexed at least 100

million pages. Unfortunately, studies have shown that any given search engine indexes only

a small fraction of the total pages available on the WWW [LG99]. Metasearching is one

attempt to broaden search coverage.

The potential utility of metasearch engines is illustrated in the accessibility experiments

of Lawrence and Giles [LG99]. Their experiments, conducted in February 1999, estimated

eight hundred million web pages, with at most 16% of those pages indexed by any one

search engine. The observed overlap among the pages indexed by any two search engines

was small, suggesting that sending queries to more than one search engine may improve

the comprehensiveness of the results. Taken together, the eleven engines considered by

Lawrence and Giles [LG99] covered an estimated 42% of the pages.

Because metasearch engines exist in the changing WWW environment, evaluations of

published metasearch engines have varied widely in methodology. In general, recall and

precision-based results of the form commonly found for information retrieval experiments

are not reported.

Selberg and Etzioni introduced MetaCrawler [SE95] in July 1995. A current operational

version of MetaCrawler is available5, but we will discuss the published version [SE95].

MetaCrawler accessed Galaxy, InfoSeek, Lycos, Open Text, WebCrawler and Yahoo6, then

4http://www.searchengineshowdown.com/stats/sizeest.shtml
5http://www.metacrawler.com
6http://www.galaxy.com/, Infoseek is now http://www.go.com/, http://www.lycos.com/, Open

Text no longer supports a general-purpose search engine but now provides a business-oriented site
http://pinstripe.opentext.com, http://www.yahoo.com.
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collated the results. For evaluation purposes, the authors kept track of which returned links

were followed, which returned links were unique to each search engine, and the response

time of the underlying search engines. For the purposes of evaluating e�ectiveness, the

authors assumed that followed links were useful to the user. This is a common assumption

in metasearching experiments; however, the validity of the assumption is dependent upon

a number of factors. Poor summary information can inuence whether or not a link is

followed, and users may follow an interesting link that does not satisfy the information

need. Keeping track of which returned links were followed allowed the authors to determine

which search engines provided followed links. They found that on average all search engines

provided followed links but that some appeared to provide more than others. They also

noted low overlap among the results lists from the search engines. These two factors

combined to suggest that MetaCrawler provided access to a broader array of interesting

web pages. MetaCrawler loaded the pages from the results lists to elide dead links and to

enable postprocessing steps like advanced query formulations. MetaCrawler was an early

metasearching approach and as a result Selberg and Etzioni also focused on the overhead

of the approach and the apparent acceptability to users.

SavvySearch was introduced by Dreilinger and Howe [DH97] in March 1995. Savvy-

Search is now available as CjNet search.com7 but we will discuss the published version.

SavvySearch accessed both general-purpose search engines and specialized resources. One

interesting feature of SavvySearch was the use of search engine selection for e�ciency

purposes. SavvySearch employed a selection approach, referred to as a search plan that

attempted to balance resource usage and the expected quality of the results. Given a user

query, search engines were ranked based upon whether they had previously returned re-

sults for terms in the query, whether those links returned had been followed and the recent

search engine response time. Dreilinger and Howe reported a number of experiments de-

signed to determine whether the selection approach was viable and to gauge the quality

of the suggested search order. Overall, they found that selection was viable (i.e. it is not

7http://www.search.com
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necessary to broadcast a query to all search engines available to the metasearcher) but that

modifying the search order made only a small di�erence, possibly due to the presence of

general-purpose search engines in the search plans.

ProFusion8 was recently acquired by IntelliSeek9. The version of ProFusion reported by

Gauch et al. [GWG96] was notable for the discussion of merging issues. The published ver-

sion of ProFusion had the potential to send queries to AltaVista, Excite, InfoSeek, Lycos,

OpenText and WebCrawler10. The default of ProFusion was to send queries to InfoSeek,

Lycos and Excite; alternately, a user could manually select search engines. An additional

option was to enable a search engine selection step that classi�ed the query by topic then se-

lect three search engines based on that topic classi�cation. A major focus of ProFusion was

a variety of postprocessing steps. Given results from the selected search engines, ProFusion

�rst took steps to remove duplicate pages, then merged the results using a combination

of the document score reported by the search engine and the estimated accuracy of the

search engine returning the page. Pages retrieved by more than one engine were given the

maximum score achieved by any instance of the page. ProFusion was compared to the six

constituent search engines plus MetaCrawler[SE95] and SavvySearch[DH97] using twelve

queries. ProFusion was found to outperform the constituent search engines and the other

metasearchers in terms of locating relevant documents and in terms of removing duplicate

pages and broken links.

MetaCrawler, SavvySearch and ProFusion were all included in a comparison of meta-

search engines conducted by Repman and Carlson [RC99] and all three ranked in the top

�ve. Repman and Carlson focused on whether metasearch engines were appropriate for

use at library terminals accessible to a variety of users, and as a result did not perform an

in-depth technical evaluation of the metasearch engines. However, their observations about

the usability and strengths and weaknesses of di�erent metasearch engines provide useful

8http://www.profusion.com
9http://www.intelliseek.com

10http://www.altavista.com, http://www.excite.com, Infoseek is now http://www.go.com/,
http://www.lycos.com/, Open Text no longer supports a general-purpose search engine but now
provides a business-oriented site http://pinstripe.opentext.com, http://www.webcrawler.com.
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insight.

Inquirus [LG98a, LG98b] is a prototype metasearch engine with a heavy emphasis on

processing documents retrieved from the individual search engines. Inquirus downloads the

retrieved pages, veri�es that the pages are still available and that they still contain the query

terms. Because the pages are downloaded, Inquirus can re-rank the retrieved documents,

taking into account query term proximity, and can construct its own document summaries.

Documents producing the same summaries are declared to be duplicates. Another feature

of Inquirus is \speci�c expressive forms" in which common question forms are rephrased

in an attempt to improve recall. Inquirus begins displaying results before all documents

are processed. As a result, the Inquirus response time is shown to be on par with that of

other search engines, despite the additional processing. Search e�ectiveness results were

not reported.

In addition to the general-purpose metasearch engines that we have discussed so far,

there are also multisearch and metasearch systems that target specialized search engines.

Search Broker [MB97] prompts users to specify the subject of a query as the �rst term of the

query; that subject term is used to direct the query to a search engine. Search Broker does

not merge results, but presents summary results delimited by responding search engine,

therefore, it is classi�ed as a multisearch system. Sugiura and Etzioni [SE00] described Q-

Pilot, a multisearch system that routes queries to specialized, topic-based internet search

engines. Sugiura and Etzioni compared three di�erent methods for building collection

representations and also considered query expansion.

There have also been a number of less-widely-publicized research metasearch systems.

Smeaton and Crimmins [SC97] discussed a prototype metasearch system that incorporates

relevance feedback and query expansion11 functionality. This prototype system is notable

because it proposes a layer of functionality that need not be available from the underly-

ing search engines. In addition to standard metasearch, the Federated Searcher system

11A system that employs relevance feedback uses relevance information about initial search results pro-
vided by users to improve later results. This relevance information can be used for query expansion, in
which new terms are added to the initial query.
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described by Powell and Fox [PF98] addresses the problem of query translation for a multi-

lingual federated environment.

2.6 Summary

Because there are so many facets to multi-collection retrieval research, there is a broad

array of related work. In this chapter, we �rst gave a brief overview of single-collection

information retrieval to provide context and to introduce concepts that apply to both

single- and multi-collection retrieval. We then covered di�erent facets of the multi-collection

retrieval problem and work that has taken place to date. We discussed a variety of collection

selection and results merging approaches, then considered additional issues that impact the

multi-collection retrieval problem as a whole. We closed with a discussion of the related

sub-problem of WWW metasearching.
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Notation and De�nitions

In this chapter, we formalize some of the concepts and components that were touched upon

and de�ned somewhat loosely in Chapter 2. We also expand upon previously-introduced

notation. Unfortunately, collection and many of the other terms that we employ have

been used in other senses, and/or may suggest certain system implementation decisions.

Prior exposure to these terms and any preconceived ideas about their exact meaning make

it di�cult to specify some of the underlying experimental details that are varied in the

experiments reported in Chapters 7-9. Unclear de�nitions are also particularly detrimental

to a shift in interpretation that will be presented in Chapter 9. As a result, we will carefully

de�ne a number of concepts, some of which are apparently trivial, then discuss assumptions

that were made and relationships among the de�ned concepts.

In presenting more formal de�nitions, we will start from the bottom up. We'll begin by

de�ning the components involved (e.g. data items, collections), then de�ne operations that

are stages in multi-collection retrieval (e.g. selection, merging) and concepts that are used

in evaluation. The speci�cs of the actual test environment that we will use are covered

in Chapter 4. While we begin de�ning concepts crucial to evaluation here, the evaluation

measures are de�ned in Chapter 5.

49
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3.1 Components

3.1.1 Data Items and Collections

Let D = fd1; d2; :::; djDjg denote a set of data items. At this point, we make no assumptions
about the organization or storage of these data items. Each di is a data item that may be

retrieved in response to a user request. The data items might be text documents, images,

sound recordings or binary �les. The notation presented here can apply to data items of

any format. In the examples and experiments presented in this dissertation, all data items

are text documents and will be referred to as documents.

We will use the term collection to refer to a selectable, searchable group of data items.

Membership in a collection is to be considered an organizational issue rather than a storage

issue. In other words, data items need not be stored on the same server to be members of

the same collection.

Let C = fC1; C2; : : : CNg represent a set of N collections. Each collection conceptually

contains a set of data items. We assume that no duplicate data items occur within a

collection; we will discuss the potential for duplicate data items across collections in a

moment. C is de�ned as follows:

C1 = fd11; d12; : : : d1jC1jg
C2 = fd21; d22; : : : d2jC2jg
. . .

CN = fdN1; dN2; : : : dN jCN jg
where dij is the jth data item in collection Ci and dij 2 D 8i; j where 1 � i � N and

1 � j � jCij. [Ni=1Ci = D.

In an operational environment, duplicate data items may exist in the collections. If

duplicate data items exist, they may occur in di�erent arrangements. We �rst assume

that duplicates are not collocated in a collection Ci, i.e., dij 6= dik8i; j; k; j 6= k. Having

eliminated that case, and given a set of collections C there are a number of remaining

possibilities.
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1. at least one collection is replicated, that is, 9i; j such that Ci = Cj.

2. at least one data item is duplicated, i.e., found in more than one collection, that is,

9i; j such that Ci 6= Cj but Ci \ Cj 6= ;.

3. both cases (1) and (2) occur.

In this work, we assume that each data item has a unique identi�er. Data items with

the same unique identi�er are by de�nition duplicates. Given an environment where unique

identi�ers are not available, duplicate detection is more di�cult. The general problem of

duplicate detection is beyond the scope of this work; however, it will be revisited briey in

Chapter 10.

The existence of replicated collections or duplicate data items, generally out of our

control in operational environments, can complicate multi-collection information retrieval.

Replication and duplication are problematic during the collection selection step. Consid-

ering replication, if we have Ci = Cj , we want to select either Ci or Cj but not both.

The presence of duplicated data items complicates both collection selection and evaluation.

Assume that collections Ci and Cj both contain useful data item dk. If collection Ci is

selected and data item dk retrieved, the usefulness to the user of data item dk in collection

Cj requires consideration. While data item dk still satis�es the information need, the fact

that it has already been retrieved may impact an evaluation of the advisability of selecting

collection Cj . Buckland [Buc95] and Buckland and Plaunt [BP97] provide a thoughtful

consideration of these issues in the context of searching multiple digital libraries.

Duplication or replication can also complicate results merging, the process by which

retrieved data items from selected collections are integrated into a single list for presentation

to a user. Once again, assume a data item dk and two selected collections Ci and Cj where

dk 2 Ci \Cj . If dk is retrieved from both Ci and Cj , its placement in the merged list must

be resolved. Due to the intrinsic replication found in the approaches, work in the areas of

query combination and data fusion (see the discussion in Chapter 2) considered this issue.

The issues of duplication and replication complicate the multi-collection retrieval prob-
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lem but are resolvable. In the majority of our work, we assume that C is a partition of D,
obviating these issues. However, in a more general federated system or a WWW environ-

ment, the assumption that C is a partition of documents is rarely valid. Our experiments

on collection selection for metasearching, reported in Chapter 10 consider the problem of

duplicate data items.

3.1.2 Indexes and Information Available for Indexing

For ease of exposition, we will at times refer to executing a query at a selected collection.

In fact, the collection is just the selectable, searchable group of data items. A means of

searching the collection, i.e. retrieving data items that may satisfy the user's information

need, is necessary. As a result, we will assume that some information retrieval system is in

place for each collection. Given a query in an appropriate format, the information retrieval

system will return a set or ranked list of data items.

Put more formally, for the set of collections C, we also assume a corresponding set of

indexes I = fI1; I2; : : : INg where Ii contains indexed representations for each data item

dij in collection Ci. These indexes are produced by a potentially unknown information

retrieval system. The information retrieval system used at collection Ci need not be the

same as that used at collection Cj . Information used to create representations of collections

for collection selection purposes may be extracted from or provided by these indexes.

Given a user query, the query representation is compared to data item representations

to identify data items to be displayed to the user.

Unless otherwise noted, the index Ii for collection Ci is constructed using information

gathered from the set of data items found in Ci. The information gathered is dependent

upon the information retrieval system used to perform the indexing. However, additional

information may sometimes be available. An external server may provide limited statistical

information about other collections, for example, df information. Collections in a federated

environment may also communicate periodically to share statistical information [VF95b].

In these cases, and for experiments reported in Chapters 9 and 10, we occasionally specify
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a set of data items that contribute statistical information to index Ii. Unless otherwise

noted, the set of data items that contributes statistical information to Ii is Ci.

3.1.3 Language Models

As discussed in Chapter 2, we will use the terminology language model for the collection

representation used for collection selection purposes. For the set of collections C, we assume
a set of language models LM = fLM1; LM2; : : : LMjLMjg. In the general case, jLMj may
be larger or smaller than N ; a relation RLM!C (discussed further in Section 3.2.2) speci�es

the correspondence between language models and collections. For all experiments reported

in this dissertation, jLMj = N and LM corresponds directly with C. More speci�cally,

LM = fLM1; LM2; : : : LMNg where LMi is the language model representing collection Ci.

Language models may be created using only a subset of the data items contained in a

collection. For example, sampling techniques result in language models built from a subset

of the data items. The default for our experiments is that the language model LMi is

constructed using information about all data items in collection Ci. We will note when this

is not the case.

3.1.4 Queries and Relevance Judgements

Queries are either provided directly by a user or are created based on statements of a user's

information need. We use the latter approach. Relevance judgements may be supplied as

users view the retrieved results or in the case of a test collection may be provided by third

party judgements.

We will refer to the set of queries used in experiments as Q = fq1; q2; : : : ; qjQjg. A set

of statements of user's information needs may be used to produce multiple sets of queries.

In our test environments, we also have access to relevance judgements. For the TREC

data, TREC relevance assessors have determined which text documents from the TREC

data satisfy each stated information need. We apply those judgements to text documents

retrieved in response to our queries created from those statements of information need.
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The relevance judgements can be represented as three-tuples of query identi�er qi 2 Q,
data item identi�er dj 2 D and relevance judgement rel judgeij . In our case, relevance

judgements are binary. If dj satis�es the information need of qi, then rel judgeij = 1,

otherwise rel judgeij = 0. The set of relevance judgements J is a set of three-tuples where

J = f(qi; dj ; rel judgeij)g.

3.1.5 Testbeds and Test Environments

Traditional information retrieval test environments are often referred to as test collections,

encompassing the documents, queries and relevance judgements that are distributed as a

set. However, we have speci�cally de�ned the term collection to refer only to a searchable

group of data items. To avoid confusion, we will avoid the terminology test collection unless

we are referring to a single-collection test environment.

We will use the terminology test environment to refer to the combinations of collections,

queries and relevance judgements we use to evaluate collection selection approaches and

multi-collection information retrieval systems.

We can think of each test environment as a three-tuple (C;Q;J ). We can compare

test environments by noting di�erences in any element of the three-tuple. For all of the

experiments reported in Chapters 7{9, the relevance judgements J will remain constant.

While we vary the sets of queries Q used for our experiments, the major comparative

performance di�erences seen in evaluation are due to changes in the sets of collections C
that we use. As a result, a great deal of discussion is focused on these sets of collections.

We will refer to these sets of collections as testbeds. Each testbed also has a mnemonic

name to facilitate discussion.

The creation of a testbed for our laboratory-based experiments requires a set of data

items D and a relation RD!C that speci�es the placement of data items in collections such

that a set of collections C can be constructed from the data items in D. In an operational

environment, we may have the capability to retrieve data items from C but the data items

D and the relation RD!C may be unknown. D and C may also be variable. For example,
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given a metasearching environment in which the collections C are internet search engines,

the data items contained in each collection Ci are not divulged; data items may be added

or removed from Ci without noti�cation.

In Chapter 4, we will de�ne three testbeds (SYM-236, UDC-236, UBC-100 ) that will be

used in our experiments. We also de�ne three sets of queries for which relevance judgements

are available. This allows the construction of the test environments used in Chapters 6{9.

3.2 Experimental Concepts

3.2.1 Merit, Baseline Rankings and Estimated Rankings

We will refer to a collection ranking that embodies the desired collection selection behavior

as a baseline or baseline ranking and the ranking produced by a collection selection algo-

rithm as an estimated ranking. A collection selection algorithm may also be referred to as

an estimator.

To begin, we assume that each collection C 2 C has some merit, merit(q; C), to a

given query q. We expect the baseline to be expressed in terms of this merit. Each

collection C 2 C will also have an estimated merit est merit(q; C) that is computed by a

collection selection algorithm. We expect the estimated merit est merit(q; C) is an attempt

to implicitly or explicitly estimate the actual merit merit(q; C). Di�erent approaches to

computing est merit(q; C) were summarized in Chapter 2. The exact computations for

CORI, CVV and gGlOSS will be detailed in Chapters 6 and 7.

Let Cbi and Cei denote the collection in the i-th ranked position of the baseline and

estimated rankings respectively. The baseline and estimated rankings are constructed such

that merit (q; Cbi) � merit
�
q; Cbi+1

�
and est merit (q; Cei) � est merit

�
q; Cei+1

�
. Some of

the merit-based evaluation measures presented in Chapter 5 determine the extent to which

merit (q; Cei) � merit
�
q; Cei+1

�
.
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3.2.2 Collection Selection

Conceptually speaking, collection selection is easy to describe. Given a query and a set of

collections, we wish to either select a subset of the collections to which we will send the

query, or order the collections, so that we may send the query to the collections in that

order or send the query to the top-ranked n collections. We follow the latter interpretation,

which a�ords us exibility in the usage of the collection selection results. Given a set of

collections, we view collection selection as producing a ranked list of those collections, in

decreasing order of estimated merit.

Estimated rankings are constructed such that est merit (q; Cei) � est merit
�
q; Cei+1

�
for 1 � i < N . The way in which est merit(q; C) is calculated and the usage of language

models in this calculation requires clari�cation. We use the notation est merit(q; C) for

broader applicability (some approaches do not use language models) and expositional clar-

ity (we cast the problem in terms of collection selection, not language model selection).

However, in the experiments described in Chapters 6-10, estimated merit is computed us-

ing the language models, LM, associated with the set of collections C. A correspondence

is maintained so that the merit computed for a collection using its language model is asso-

ciated with the collection. In most cases, the collection selection mechanism does not have

access to the contents of a collection, it only has access to the language models.

RLM!C is the relation that speci�es the mapping between language models and collec-

tions. Let RLM!C represent the set of language model, collection pairs where (LMi; Ci)

denotes the default case where the estimated merit computed using LMi is applied to

collection Ci. The default case will apply the vast majority of the time and is the case

illustrated in Figure 3.1. One exception found in the literature is the work of Xu and Croft

[XC99] in which a collection could be represented by multiple language models.

For our experiments, we assume that an estimator has access to a set of language

models, LM and the mapping relation RLM!C. Given some query q, the estimator pro-

duces a set of collection, estimated merit pairs, f(Ci; est merit(q; Ci))g. Sorting based on

est merit(q; Ci) allows us to produce an estimated ranking hCeii where 1 � i � N . This



3.3. An Important Detail|Data Item Storage 57

notation only speci�es the general components and output of a collection selection algo-

rithm. In Chapters 7 and 8, we will discuss a variety of algorithms and focus on the ways

in which the statistics provided by the language models are employed.

The estimated ranking can be used to specify a search order or to select the top n ranked

collections. The set of collection, estimated merit pairs, f(Ci; est merit(q; Ci))g can be used
to select all collections with an estimated merit greater than a speci�ed threshold.

The speci�ed search order E will be de�ned in Chapter 5. When either a �xed-size

subset of the collections or all collections with an estimated merit greater than a speci�ed

threshold are selected, we will refer to the selected subset as Csel. If all collections are

selected, Csel = C.

3.2.3 Results Merging

For some experiments, we are concerned primarily with collection selection performance.

For others, we are also concerned with the overall quality of the data items that are retrieved

from the multicollection environment. For our experiments, evaluating the quality of the

overall data items retrieved requires that a results merging step be employed.

The results merging step takes the individual results lists from each of the selected

collections (resultsC for each C 2 Csel) and produces a single results list (resultsmerge).

The speci�c results merging algorithm that we employ is de�ned in Chapter 9.

3.3 An Important Detail|Data Item Storage

One important terminology detail was alluded to earlier but needs to be revisited. In these

experiments we use collections as a conceptual construct. Data items need not be stored

on the same server to be members of the same collection. Consider Figure 3.1. For the

purposes of our experiments, the important points are that ten data items can be found

in collections C1, C2 and C3, that an information retrieval mechanism is in place for each

collection and has produced indexes I1; I2; I3 and �nally that language models for each
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Selection representations

Selection mechanism

Indexes of data items

Collections of data items

C1
C2 C3

I1 I2 I3

LM1 LM2 LM3

Figure 3.1: Collections, indexes and language models.

collection (LM1; LM2; LM3) are available to a collection selection mechanism.

In an operational environment, it is tempting to think of data item retrieval issues in

terms of the physical organization or storage of the actual data items. However, the core

issues are the control of and access to the data items. The access/control and organiza-

tion/storage aspects often parallel one another, but that need not be the case.

Consider Figure 3.2, which is a companion to Figure 3.1. Figure 3.2 parts (a)-(c) illus-

trate some possible data item organization/storage scenarios that could result in collections

fC1; C2; C3g from Figure 3.1. Figure 3.2(b) represents a very simple case in which the data

items are stored together at storage location L1 but are subdivided into collections, per-

haps by subject area. Figure 3.2(a) is identical to Figure 3.2(b) except that the actual data

items are stored in three di�erent physical locations instead of only one.

If the control of the data items is the same in Figures 3.2(a) and 3.2(b) (i.e. the same

organization or person has control of the data items), the di�erence in physical location

need not a�ect the collections, indexes or language models. However, multiple storage

locations may imply that di�erent authorities have control over the data items. This can

constrain the ways in which the data items are organized into collections and can a�ect

the amount of information available for the construction of language models. For example,

consider Figure 3.2(c) and �rst assume that a single authority has complete access to the
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Collections of Data Items

Storage of Data Items

(a)

(b) (c)

C1

C1C1

C2

C2C2

C3

C3C3

L1

L1 L1

L2

L2

L3

L3

Figure 3.2: Data item storage scenarios.

data items, and that the same authority creates the collections and is responsible for the

language models and selection mechanism. In this case, the possibility exists to use a

wide variety of information about the data items and/or information from the indexes

to create the language models. If instead we assume that three di�erent authorities are

responsible for the data items in storage locations L1; L2; L3, the situation changes. First,

the creation of collection C2 would require the cooperation the two authorities responsible

for the data items in L1 and L2. Second, once collections C1; C2; C3 are indexed, the

information available for language model construction may be limited to information that

can be extracted from the indexes.
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Testbeds and Queries

As we discussed in Chapter 2, traditional (single collection) information retrieval test col-

lections usually contain a set of data items D, a set of queries Q and a set of relevance

judgements J . In most widely-available information retrieval test collections, the data

items are text documents. Each query represents a statement of a user's information need

and for each query, the relevance judgements identify the set of data items that are relevant

to the query, i.e. the data items that satisfy the information need.

Multi-collection test environments generally contain the same components as traditional

information retrieval test collections, with the exception that the documents are organized

into more than one collection. As we discussed in Chapter 3, the potential exists for

duplicate data items within a collection. However, in most previously-reported relevance

evaluation-based experiments, the collections are a partition of the documents.

Table 2.1 provides a summary of some of the test environments that have been used for

multi-collection information retrieval experiments. Because many of the evaluations were

relevance based, relevance judgements were needed and researchers were limited to the

traditional IR test collections and TREC/TIPSTER data. The large number of documents

available in the TREC data made it a popular choice as a basis for constructing multi-

collection test environments. At the time that we began these experiments, most of the test

environments used in published work had fewer than 100 collections. This, plus an initial

60
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interest in a test environment with a controlled temporal component to the collections

led us to construct a di�erent test environment for our experiments. Because we were

interested in both e�ciency and e�ectiveness, and in evaluating systems using a large

number of collections, the TREC/TIPSTER data was the only realistic starting point.

Given the availability of TREC topics from which queries could be created and TREC

relevance judgements, we began by constructing a testbed, referred to as SYM-236. Over

the course of the experiments reported in Chapter 6, we noted that some collection selection

algorithms have a tendency to prefer collections with a large number of documents. We

created an additional testbed, UDC-236, to study this e�ect. We later added a testbed

created at the University of Massachusetts, referred to as UBC-100.

In this chapter, we will describe and characterize the test environments that are used in

the experiments presented in Chapters 6{9. We will focus mostly on the three testbeds that

are components of the test environments. We start by describing the underlying TREC

data from which each set of documents D will be drawn. The three testbeds described in

this chapter contain no duplicate documents. We then discuss the TREC topics, the subset

of the topics used for our experiments and the three sets of queries constructed using those

topics. Finally, we describe the three testbeds (sets of collections) used in our experiments

and discuss features of those testbeds.

4.1 Features of the TREC Data

The Text REtrieval Conferences (TREC) are a series of annual conferences co-sponsored

by the National Institute of Standards and Technology (NIST) and DARPA. Each year,

groups from industry, academia and government undertake a set of retrieval tasks, using a

supplied set of documents and queries1, then meet to discuss the results.

The SYM-236, UDC-236 and UBC-100 testbeds were all constructed using data avail-

able to participants in the TREC-4 [Har95] conference. Gross characteristics of the data

1The data available to TREC participants is generally referred to as TREC/TIPSTER or simply TREC
collections.
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Disk Source Size (MB) Size (docs)

AP (89) 259 84,678
DOE 186 226,087

1 FR (89) 262 25,960
WSJ (86-89) 270 98,732

ZIFF 245 75,180

AP (88) 241 79,919
FR (88) 211 19,8602

WSJ (90-92) 247 74,520
ZIFF 178 56,920

AP (90) 242 78,321
SJMN (91) 290 90,2573

PAT 245 6,711
ZIFF 349 161,021

Totals 3,225 1,078,166

Table 4.1: Summary characteristics of TREC data on disks 1, 2, 3. ZIFF from
disk 3 and DOE omitted for SYM-236 and UDC-236. (From Harman [Har96])

appear in Table 4.1. To summarize, this data is approximately 3 GB of text spread over sev-

eral years and from seven primary sources: AP Newswire (AP), Wall Street Journal (WSJ),

Computer Select (ZIFF), the Patent O�ce (PAT), San Jose Mercury News (SJMN), Fed-

eral Register (FR), and Department of Energy (DOE). This data was distributed on three

CD-ROMs and segments of data are sometimes referenced using the disk number on which

they were distributed. Much of the TREC data is from news sources and so has easily

identi�able date components. The one undated collection is the set of documents from

DOE.

4.2 Queries

The TREC data is distributed along with a set of statements of information need and

an accompanying set of relevance judgements. In TREC parlance, the statements of user

information need are referred to as topics. Unlike average user queries (especially Internet

search engine queries), most TREC topics are very detailed statements of information need.
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Source Topic Set

Disk 1-50 51-100 101-150 151-200 201-250

1 X X X X

2 X X X X X

3 X X X

1,2 X X X X

2,3 X X X

1,2,3 X X

Table 4.2: Coverage of topics over TREC data, disks 1-3, through TREC-4. This
table shows topic set, source disk pairs for which relevance judgements are avail-
able.

In many cases, they resemble detailed instructions to a professional searcher. The topics

may also contain instructions to the TREC judges of what constitutes a relevant document.

This information is contained in �elds, all or some of which can be used to construct the

query that is actually issued to a collection. As a result, the formulation of actual queries

used in published results can di�er widely. Later in this section, we discuss the approaches

that we employed when creating queries. We will refer to our formulations as queries while

retaining the TREC terminology of topic to refer to the original statement of information

need. We retain the TREC topic numbering for our queries. We will apply the relevance

judgements for a topic to each query generated from that topic.

In many years, the TREC conference has introduced new document sets. In every year,

new topic sets have been introduced, generally in batches of 50 topics per set. Because

of the evolutionary nature of the conference, relevance judgements are not available for

all combinations of topic and document sets. Through TREC-4, there were a total of 250

topics with relevance judgements over some portion of the TREC documents. In Table 4.2

we summarize this coverage.

The topic coverage (Table 4.2) is important because it constrains the possible combina-

tions of topic sets and document collections that can be used in a multi-collection retrieval

experiment where relevance judgements are needed. For example, if topics 201-250 are used
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for evaluation, then any collections created using documents from disk 1 should not be used.

Similarly, if a researcher wants to work with the San Jose Mercury News data (found on

disk 3), then only three of the �ve topic sets are applicable. Given these constraints, we

will use only topics 51-150 in our experiments. This maximizes the number of documents

available for collection creation.

In our main body of experiments, we used two query formulation strategies, producing

two sets of 100 queries each. We will refer to these formulations as \short" and \long". The

short queries, Qs, were constructed using the Title �eld of the TREC topics. These queries

average 3.5 words per query and are a very brief description of the information need. The

long queries, Ql, were constructed using the Concepts �eld of the TREC topics and average

21 words per query. The Concepts �eld contains words, phrases and especially proper names

that might be found in relevant documents. The terms found in the Concepts �eld have

the potential to resemble very well-thought-out user queries; however, our resulting long

queries contained more terms than queries typically received from real users. For example,

Spink and Saracevic [SS97] found that on average experienced searchers used approximately

15 terms per query, of which approximately 6 terms were taken from inital statements of

user information need (the remaining terms were added during user interaction, using a

thesaurus, etc.). For WWW queries, query length is even shorter. In analyses of di�erent

Web search engine query logs, both Jansen et al. [JSBS98] and Silverstein et al. [SHMM99]

found an average query length of 2.35 terms. Abdulla et al. [ALSF97] found that queries

from a variety of query logs rarely exceeded 4-5 terms. We chose to use both short and

long queries to account for the cases of longer, more detailed queries while also considering

the shorter queries typically found in operational environments.

In some early experiments, we used an even longer query formulation, which we will

refer to as \very long" or Qvl. These queries use all of the text available in the TREC topics

and averaged 49 terms per query. We later determined that the short and long approaches

were more commonly used in other research, so switched to those approaches. Only the

early experiments reported in Chapter 6 use the very long queries. As a result, plots from
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the �gures in Chapter 6 are not directly comparable to �gures in Chapters 7{9.

4.3 Goals and Requirements for the Testbeds

We began our testbed-construction e�orts with the goal of constructing a single multi-

collection test environment. Given the available TREC-4 data, the main problems to

address were how much of the data to use and how to partition the data into collections.

We started with a number of requirements and goals:

� A natural partition. Earlier experiments involving parameter driven creation of

document collections ([VF95b]) were illuminating, but the partitions themselves did

not reect any physical (i.e. time or source) attribute of the source data. In addition,

the TREC data is often referenced in terms of source : disk number, and has often been

subdivided using one or both of those attributes [FKS+92, WFPS94, CLC95, Voo96].

To the extent possible, a candidate partition should not obscure these other, more

coarse grained possibilities.

� At least 100 collections. We felt realistic experiments must involve at least 100

document collections.

� A temporal dimension. Date and source of publication are simple criteria by which

to organize a collection of documents. We wanted to study such an organization and

included this in our requirements. However, while we considered time of publication

for testbed creation, we do not study temporal issues in the experiments reported

in this dissertation. This requirement a�ected the SYM-236 testbed (the �rst we

created) and indirectly a�ected the UDC-236 testbed (both testbeds are described

in more detail later).

� Easy composition of \supercollections" from components. As much as pos-

sible, we wanted to create a partition of the data from which easily{identi�able com-

positions could be created. For example, disk 3 contains documents published on
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the AP newswire in 1990. If we subdivide those documents into collections based on

month of publication, reconstructing a supercollection based on year of publication

will be simple. This requirement a�ects the SYM-236 testbed directly and UDC-236

indirectly.

These e�ects of these goals can be seen primarily in the SYM-236 testbed, the testbed

we initially set out to create. Residual e�ects can be seen in the UDC-236 testbed. The

UBC-100 testbed was not constructed by us and was constructed using a di�erent set of

criteria.

4.4 The SYM-236, UDC-236 and UBC-100 Testbeds

In this section, we will describe the SYM-236, UDC-236 and UBC-100 testbeds. The

SYM-236 testbed will be covered in more detail partly because its construction was heavily

inuenced by the goals outlined above and a number of compromises were necessary to meet

those goals. SYM-236 also has more unusual features than the other two testbeds.

Each experimental testbed is a set of N collections, C = fC1; C2; : : : CNg. For the

SYM-236, UDC-236 and UBC-100 testbeds, C is a partition of D.
A testbed can be represented as data items, D, plus a data item to collection map,

RD!C, from which the set of collections, C, can be constructed. The data item to collection

map may be externally supplied, or constructed using some rule designed to create a testbed

with some desired characteristic(s).

Each of the three testbeds described here are based upon 3 gigabytes of data available

to participants in the TREC-4 [Har96] experiments.

4.4.1 SYM-236 (Source-Year-Month)

When constructing the SYM-236 testbed, we were working under the goals and require-

ments that we set forth above. As a result, there were some special cases in the selection of

the documents in D and in the creation of the mapping relation of documents to collections,
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RD!C. The general rule for creating RD!C was to partition the documents on TREC CDs

1, 2 and 3 by publishing source, then by year and month of the publication date.

The �rst exceptions and special cases dealt with determining which documents from

TREC CDs 1, 2 and 3 would be included in D.

� No DOE documents. Because we were using publication date to create RD!C , no

documents from the Department of Energy publishing source (DOE) were included

in D. The DOE data is undated.

� No ZIFF documents from TREC disk 3. Some of the data from the ZIFF

publishing source on disk 3 overlaps temporally with data from ZIFF on disks 1 and

2. We considered placing these documents with the others from the same month, but

this would have involved considerable intermingling of disk 3 documents with those

from disks 1 and 2. While certainly possible, it would have violated the composability

requirement given previously. As a result, ZIFF documents from disk 3 were not

included in D.

As we mentioned, the general rule for creating the mapping relation of documents to

collections, RD!C, was to partition the documents on TREC CDs 1, 2 and 3 by publishing

source, then by year and month of the publication date. Our next set of special cases arose

when reconciling features of the documents in D with that rule.

� Disambiguation of dates in ZIFF. A small number of the documents from the

ZIFF publishing source are dated as \Summer", \Winter", etc. rather than by month.

In reconciling these dates, we were aided by the chronological nature of the ordering

of documents on the TREC CDs. In these cases, we determined the date of the doc-

uments by looking at the dates of documents surrounding the document in question.

Thus if a \Spring" document was immediately preceded by one dated \March", then

we assigned the \Spring" document to the \March" collection for that source and

year.
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� Disambiguation of multiple dates in PAT. The structure of the Patent Of-

�ce (PAT) documents is complex and often contains references to previously issued

patents. To disambiguate, we used the �rst appearance of the \Application Filing

Date" (AFD) �eld within a document as the operative date. Subsequent occurrences

of this �eld within a document refer to other patent documents.

The net result of combining the particular attributes of the TREC data and our own

requirements was a partition comprised of 236 document collections derived from some but

not all of TREC disks 1, 2, and 3. Summary characteristics of this partition are given in

Table 4.3.

The temporal nature of our collection construction approach led to some interesting

features of the resulting SYM-236 testbed.

� Vast size variation. One of the most notable features of the SYM-236 testbed

is the vast size variation (in terms of documents per collection) of the collections.

There are a number of very large collections with more than 8,000 documents per

collection plus several dozen very small collections 1 to 20 documents in size. The

very small collections are mainly derived from early PAT data. The size variation of

the SYM-236 testbed will prove important for identifying a feature of some collection

selection algorithms.

� Temporal discontinuities. Collections were constructed using a �xed date incre-

ment of one month. However, many sources only contain partial years, so the data

is not continuous temporally. This is an attribute of the underlying TREC corpus.

Coverage of the 236 document collections by source and date is given in Figure 4.1.

Researchers who are interested in examining collection changes over time must be ju-

dicious in the subset of collections they use as the basis for their work. For example,

there are several multi-month \holes" in the Wall Street Journal collections.
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Num. Total
Disk Source

Coll.
Date Range

Coll.

WSJ (86-89) 29 12/86{11/89
AP (89) 12 01/89{12/89

1 ZIFF 14 11/89{12/90 67
FR (89) 12 01/89{12/89
DOE XX XX

WSJ (90-92) 22 04/90{03/92
2 AP (88) 11 02/88{12/88 54

ZIFF 11 01/89{11/89
FR (88) 10 01/88{12/88

AP (90) 12 01/90{12/90
3 SJMN (91) 12 01/91{12/91 116

ZIFF XX XX
PAT 92 06/82{08/92

Table 4.3: Summary characteristics of the document partition. Note: Total DB
column sums to 237 because there is overlap of one collection in ZIFF between
disks 1 and 2 (ZIFF.89.11).

Figure 4.1: Document and query coverage for the SYM-236 testbed (236 collec-
tions, partitioned by original source and date).
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4.4.1.1 A Brief Summary of SYM-236

The SYM-236 (Source-Year-Month) testbed was designed to contain a temporal compo-

nent. Documents were organized into document collections based on the primary source and

the month and year of publication. For example, all AP Newswire articles from February

of 1988 were placed in the same collection.

D - Data items are text documents from TREC CDs 1, 2, and 3 minus DOE documents

(documents contain no date) and ZIFF documents from disk 3 (to maintain compos-

ability requirement).

RD!C can be found at http://www.cs.virginia.edu/~cyberia/testbed.html labelled

trec123-236-by source-by month.

jDj = 691; 058 documents in the testbed subdivided into

N = 236 collections.

4.4.2 UDC-236 (Uniform-Document-Count)

At the time that SYM-236 was created, an equally viable, alternative partitioning strategy

would have split the data into N equal sized collections. This partitioning approach has

attractive characteristics in that 1) it is easy to control the number of collections and 2)

one confounding variable, collection size, is held constant. We chose not to pursue this

strategy at the time because of our interest in exploring a document organization based

upon publication date and source.

However, as we noted during the description of SYM-236, the vast size variation of

SYM-236 proved interesting during the evaluation of collection selection algorithms that

will be discussed in Chapters 7 and 8. This prompted the creation of the UDC-236 testbed.

The UDC-236 testbed contains exactly the same documents as SYM-236 ; however, the doc-

uments were organized into collections containing roughly 2,900 documents each, ordered

as they appeared on the TREC CDs, and with the restriction that all of the documents in



4.4. The SYM-236, UDC-236 and UBC-100 Testbeds 71

a collection were from the same primary source. This testbed also contains 236 collections.

4.4.2.1 A Brief Summary of UDC-236

The UDC-236 (Uniform-Document-Count) testbed was designed to control for the ten-

dency of some collection selection algorithms to prefer collections with a large number of

documents. Collections for UDC-236 contain roughly 2,900 documents each.

D - Data items are exactly the same as those for SYM-236.

RD!C can be found at http://www.cs.virginia.edu/~cyberia/testbed.html labelled

trec123-236-eq doc counts.

jDj = 691; 058 documents in the testbed subdivided into

N = 236 collections.

4.4.3 UBC-100 (Uniform-Byte-Count)

The UBC-100 testbed was constructed at the University of Massachusetts and was not

inuenced by the goals and requirements that we set forth earlier in this chapter. All of

the documents from TREC CDs 1, 2 and 3 were included in this testbed. Data items were

organized into collections of roughly 30 megabytes each, ordered as they appeared on the

TREC CDs, and with the restriction that all of the data items in a collection were from

the same primary source. This testbed was added during the course of our collaboration

with researchers from the University of Massachusetts and Carnegie Mellon University.

D - Data items are text documents from TREC CDs 1, 2, and 3.

RD!C can be found at http://www.cs.cmu.edu/~callan/Data/ labelled trec123-100-

bysource-callan99.v2a.

jDj = 1; 078; 166 documents in the testbed subdivided into

N = 100 collections.
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4.4.4 A Summary of the Testbeds

SYM-236 and UDC-236 have been used in evaluations of database selection algorithms

[FPV+98, FPC+99b]. UBC-100 was used to study the scalability of CORI collection selec-

tion [FPC+99b] and the e�ect of sampled language models on collection selection[CPFC00].

General characteristics of the testbeds appear in Table 4.4. This table shows both

features of the testbeds and the e�ects of particular constraints in testbed creation. The

UBC-100 and UDC-236 testbeds are constructed to contain collections of approximately

30 MB and collections of approximately 2,900 documents2, respectively. Depending on

individual document size, �xing one of these values can still result in variability in the

other. Because there was a temporal component, there was more variability in the sizes of

the SYM-236 collections. For example, there were generally few Patent O�ce documents

in a given month, but there were often many articles from the AP Newswire.

These three testbeds represent three convenient ways to organize documents into col-

lections or to partition a large collection into several smaller ones. Xu and Croft [XC99, p.

256] expressed concern that the distribution of relevant documents in sets of collections such

as these may adversely a�ect the e�ciency or e�ectiveness of multi-collection retrieval. We

discuss this issue in Chapter 9. We also summarize the distribution of relevant documents

in the UBC-100, SYM-236, and UDC-236 testbeds in Figures 4.3{4.5.

Figure 4.2 provides a visual illustration of the distribution of documents in the SYM-

236, UDC-236 and UBC-100 testbeds. There are a number of main features to note:

� The distribution of documents in the SYM-236 testbed is very skewed. Not only are

there a large number of PAT collections with very few documents, the AP and SJM

collections tend to have twice as many documents as the FR, WSJ, and some of the

ZIFF collections.

� While the same documents are used, the distribution of collections per publishing

source is very di�erent in UDC-236 than in SYM-236. There are only two PAT

2While creating UDC-236 we did not mix documents from di�erent publishing sources in the same
collection. As a result, there are small di�erences in collection size.
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Data Items per coll. Bytes per collectionTestbed jDj N
Min. Avg. Max. Min. Avg. Max.

UBC-100 1,078,166 100 752 10,782 39,723 28,070,646 33,365,514 41,796,822

SYM-236 691,058 236 1 2,928 8,302 7,668 11,789,423 34,782,134
UDC-236 691,058 236 2,891 2,928 3,356 7,138,629 11,789,423 133,206,035

Table 4.4: Summary statistics for the testbeds.

collections and over �fty each of AP and WSJ collections.

� The illustrations re-emphasize that there are only 100 UBC-100 collections as opposed

to 236 SYM-236 and UDC-236 collections.

� The distribution of documents in the UBC-100 testbed is skewed, but in a di�erent

way from SYM-236. There are a few small PAT collections, but the most striking

feature are the six DOE collections and two ZIFF collections that contain a very large

number of very small documents.

4.5 Document and Relevant Document Distributions

The three graphs of Figure 4.2 are repeated in Figures 4.3{4.5. They are accompanied by

graphs that show the distributions of relevant documents in the collections. Figures 4.3{4.5

should be viewed sideways and the two graphs of each �gure are aligned so that points and

bars for each collection line up vertically. In the lower graph for each �gure, we show the

number of queries for which each collection contains at least one relevant document. Then,

for each of those queries, we plot the mean number of relevant documents in the collection

along with error bars. Taken together, these values provide a rough characterization of the

distribution of relevant documents in the collections. Some observations follow:

� For all three testbeds, we �nd that the PAT collections contain very few relevant

documents for relatively few queries.
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� We also note the same feature observed by Voorhees et al. [VGJL95], many relevant

documents are found in AP or WSJ collections. For most queries, picking AP or WSJ

collections is a reasonable heuristic. We also note that SJM collections qualify for

this observation.

� A more speci�c observation is that AP newswire articles published in 1990 tend to

have a noticeably higher average number of relevant documents per query.

� Despite the very large number of documents per collection, the DOE collections of

the UBC-100 testbed tend to contain relevant documents for only a few queries.

However, for those queries, the number of relevant documents in the DOE collections

tends to be large but variable.

� The number of relevant documents in ZIFF collections tends to vary widely on a

query-by-query basis.

We will consider the implications of these distributions of documents and relevant docu-

ments when we evaluate collection selection approaches in Chapters 7 and 8.
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Figure 4.3: The distribution of documents and the number of queries for which a
collection contains relevant documents in SYM-236.
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Figure 4.4: The distribution of documents and the number of queries for which a
collection contains relevant documents in UDC-236.
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Figure 4.5: The distribution of documents and the number of queries for which a
collection contains relevant documents in UBC-100.
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Evaluation Measures and their Properties

Two major classes of evaluation are performed over the course of the experiments reported

in this dissertation: the evaluation of collection selection approaches found in Chapters 6{

8 and the evaluation of document retrieval performance found in Chapters 9. Di�erent

evaluation measures are used for these two classes of evaluation; we will de�ne and discuss

both sets of measures here.

In a multi-collection retrieval environment, collection selection and document retrieval

are often performed sequentially. The e�ects of collection selection performance can often

be seen in document retrieval performance. To give a very simplistic example, if no collec-

tions containing relevant documents are selected, �nal relevance-based document retrieval

performance using those selected collections will obviously be very poor. However, while

collection selection performance and document retrieval performance are often related, it

is necessary to measure the performance of both steps individually. Excellent collection

selection is ine�ective if a poor document retrieval approach is used at a selected collec-

tion. A good document retrieval approach at a collection does not a�ect performance if

the collection is not selected. The use of multiple evaluation stages helps us to determine

the cause of retrieval performance successes or failures.

The evaluation methodology for document retrieval performance is more well-established

in the information retrieval �eld than the methodology for collection selection performance.

79
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Therefore, we will present a more thorough discussion of issues arising during collection

selection performance evaluation. We will start with a discussion of collection selection

evaluation measures1 then proceed to de�nitions of document retrieval evaluation mea-

sures.

5.1 Evaluating Collection Selection

As we mentioned earlier, the methodology for evaluating collection selection algorithms has

not yet been standardized. However, at the heart of most proposed evaluation approaches

is an attempt to determine to what extent an estimated ranking produced by a collection

selection approach approximates a baseline ranking that represents some desired behavior.

We will begin by giving brief de�nitions of the baselines and estimators used in our

evaluations. The baselines and estimators are covered in much more detail in the context

of the experiments in which they are used (Chapters 6{9). We will give a overview of

the evaluation approach then discuss general evaluation issues. We will de�ne the speci�c

measures used in these experiments, then discuss the expected performance of random

collection selection under these measures. Finally, we will present some features of and

relationships among the collection selection evaluation measures.

5.1.1 Baselines and Estimators

Baselines and estimators are both simply rankings of collections, the di�erence is one of

interpretation. If a collection ranking is being used to represent some desired behavior

then it is a baseline. If a collection ranking is being evaluated to determine if it exhibits

the desired behavior then it is an estimator. Generally speaking, baselines are created

using information about collections that is not readily available in an operational setting,

while estimators employ summary statistical information about the collections to create

their rankings. However, the same collection ranking may be used as both a baseline and

1This chapter represents an expansion of our previous investigation of collection selection evaluation
measures [FP99, FP00].
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an estimator. For example, the Ideal(0) ranking was originally de�ned as a baseline for

the gGlOSS collection selection algorithm [GGM95]; however, for most experiments we use

Ideal(0) as an estimator. Chapter 6 contains a full discussion of our use of Ideal(0).

There are many possible baselines that could be used for performance evaluation. We

discuss four here.

Count-Based Ranking (CBR): The baseline is constructed by ordering the collections

in decreasing order of the number of documents contained in the collection that satisfy

a Boolean predicate.

Ideal(l): In Gravano and Garc��a-Molina [GGM95] it was assumed that (a) all collections

employ the same weighting strategies and similarity algorithm; and (b) the only

documents in a collection that are useful to a query q are those with a similarity

greater than some threshold l. With these assumptions in mind they de�ne

Goodness(l; q; C) =
X

fd2Cjsim(q;d)>lg

sim(q; d)

The Ideal(l) rank is then formed by sorting the collections with respect to their

goodness to q.

Relevance-Based Ranking (RBR): The baseline is constructed by ordering the collec-

tions in decreasing order of the number of relevant records contained in the collection.

Size-based Ranking (SBR): Collections are ordered by the total number of documents

they contain. Note that this ranking is constant for all queries.

There are many other possible rankings. Those listed above are representative of rankings

that have been reported in the literature. For example, CBR was used by Gravano et

al. [GGMT94b] for evaluating GlOSS ; Ideal(l) was used by Gravano and Garc��a-Molina

[GGM95] to report their performance evaluation of gGlOSS ; RBR was used by Callan et

al. [CLC95] for their evaluation of CORI and by French et al. [FPV+98, FPC+99b, FPC99a]
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in their investigations; SBR was used by French et al. [FPC+99b] to isolate and study a

bias toward large collections that is exhibited by some collection selection algorithms

Note that when evaluating a set of queries Q, we will generally have a separate baseline
instance for each q 2 Q. SBR is one exception to this; it is query-independent and simply

speci�es the order in which collections should be visited to satisfy any query.

The purpose of our evaluation is to gauge the performance of a set of estimators. These

estimators will include:

� collection selection algorithms proposed in the literature,

� modi�ed versions of those published algorithms intended to isolate the impact of

algorithm components on performance, and

� new collection selection algorithms based on very simple collection statistics.

The actual estimators evaluated are de�ned in Chapters 7 and 8. These estimators employ

summary statistical information about a set of collections to produce a ranking of those

collections. Given the ranking, we can specify a subset of collections to be searched or a

collection search order.

Before de�ning the speci�c evaluation measures we employ, we will cover some theo-

retical issues that arise in performing comparisons and some properties of baselines and

estimators that can a�ect evaluation.

5.1.2 General Evaluation Strategy

Given some goal baseline B and an algorithm producing an estimate, E, of that goal, we

endeavor to determine the quality of the estimate by means of some measure m(E;B) com-

paring the estimate to the goal. To make this discussion and later de�nitions of evaluation

measures more concrete, we present an example of baseline and estimated rankings in Fig-

ure 5.1. For six collections, C = fA;B;C;D;E; Fg and three queries Q = fq1; q2; q3g, we
show the merit in terms of the baseline, say RBR, and as estimated by some hypothetical

estimator. Collections are sorted using those merit values to create the rankings shown.
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Baseline Merits Estimated Merits

A B C D E F A B C D E F
q1 6 2 9 5 1 7 q1 0.7 0.4 0.6 0.2 0.1 0.5
q2 4 18 3 9 5 1 q2 0.2 0.8 0.4 0.7 0.9 0.1
q3 2 1 2 0 4 0 q3 0.2 0.0 0.3 0.4 0.5 0.1

Baseline Rankings Estimated Rankings

1 2 3 4 5 6 1 2 3 4 5 6
q1 C F A D B E q1 A C F B D E
q2 B D E A C F q2 E B D C A F
q3 E A C B D F q3 E D C A F B

Figure 5.1: An example baseline and estimate. Rankings are created using the
corresponding merits.

Note that for none of the queries do the estimated rankings exactly match the baseline

rankings. A given measure m(E;B) is used to determine the degree and impact of the

di�erence in the rankings.

Most evaluations are conducted over a query set Q. The performance of an estimator

with respect to a baseline is evaluated for each query. Overall results are usually presented

as aggregate summary measures of the following form:

1

jQj
X
q2Q

m(Eq; Bq):

Note that m(Eq; Bq) might itself already be an aggregate measure, for example, mean

squared error discussed below.

5.1.3 Issues in Comparison

Recall that given a baseline ranking B and estimated ranking E, we will employ a measure

m(E;B) to compare the estimate to the baseline.
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Many of our evaluations will be of the form

m(E1; B) vs: m(E2; B)

In this scenario, we are performing a direct comparison of two estimators using the same

baseline and evaluation measure. These results are often presented as di�erent plots on the

same graph.

Since m(E;B) is a comparison of E to B, we might also like to evaluate a particular

algorithm in a variety of ways. In that case E is constant but B or m(E;B) might change.

This gives rise to three situations that must be considered.

1. Multiple measures, single baseline:

m1(E;B) vs: m2(E;B):

This is probably the most common situation. Here we are evaluating the estimate

against the baseline using multiple yardsticks. This is often useful to expose di�erent

aspects of the phenomena under study.

2. Single measure, multiple baselines:

m(E;B1) vs: m(E;B2):

One example of this situation is when the baseline is parameterized and varying the

baseline parameters while holding the measure constant is the technique being used.

3. Multiple measures, multiple baselines:

m1(E;B1) vs: m2(E;B2):

This situation occurs when measuring against multiple baselines and no single mea-

sure is appropriate for all baselines.
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No standardization for comparisons has emerged. Evaluations reported in the literature

are quite idiosyncratic, compounding the problem of comparing methods for collection

selection.

5.1.4 Properties of Measures

It is often useful in an evaluation to understand the properties of the measures being

employed. At the very least we want to know:

1. the value of the measure when the baseline is applied to itself, m(B;B);

2. the value of the measure when the worst ranking using the merit values employed by

the baseline, say �B, is applied to the baseline, i.e., m( �B;B); and

3. whether the measure is symmetric, m(X;Y ) = m(Y;X).

Other properties might be important as well. To be useful a ranking measure should also

have the following property:

m( �B;B) � m(E;B) � m(B;B):

m( �B;B) is the operational lower bound on performance. If a ranking measure m(X;Y ) � 0

and satis�es this property then it can be normalized to be in [0; 1].

5.1.5 Properties of Rankings

There are two situations under which we would say that two rankings E1 and E2 are

equivalent. The two scenarios are:

1. when there are equivalence classes of collections in the rankings, i.e., one or more

collections have identical merit, and the only di�erence in the rankings is found in

the ordering of items in the equivalence classes; and

2. when two rankings have the same value under the measure, i.e., for some query and

measure m(�), m(E1; B) = m(E2; B).
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In principle these two situations might have di�erent implications. In practice, equivalence

(1) above should imply (2), but the converse need not hold.

Note that an extreme example of (1) above is the case where all collections have equal

merit. In that case, every permutation of the collections is an equivalent ranking.

We need to be concerned about this issue when we compare against a baseline that

has equivalent rankings. It is important that all equivalent rankings be reduced to some

canonical form so that valid comparisons can be made. For example, consider the example in

Figure 5.1. For query q3, collections A and C have the same merit under the baseline. When

the collections are sorted to produce the ranking, the tiebreaker was placing collections in

alphabetical order. However, this is arbitrary. Because collections A and C have equivalent

merit, the estimated ranking should not be penalized during evaluation for transposing the

order.

5.1.6 Speci�c Measures for Comparison

There is no general agreement on how this type of comparison should be done. The general

problem is that we are given a baseline ranking for some query and a ranking produced by

some collection selection algorithm. The goal is to decide how well the candidate ranking

approximates the baseline ranking and to reveal potential performance implications of the

quality of the approximation. We describe some of the approaches given in the literature

and discuss new measures here.

5.1.6.1 Mean Squared Error

Callan et al. [CLC95] reported their comparisons using mean squared error of the predicted

ranks and the desired ranks. So given a set of N collections, C, to rank for any candidate

ranking we compute

MSE =
1

N

NX
i=1

(base rank(Ci)� est rank(Ci))
2
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where base rank(Ci) is the baseline or desired rank and est rank(Ci) is the predicted rank

for Ci.

Mean squared error is a widely used measure of dispersion but does not give us any real

intuition about ranking quality. We might bene�t here from a normalization step based on

comparison with worst case behavior. For any baseline B, the worst case con�guration, �B,

is simply the reverse ranking. We can calculate the sum of squared di�erences as follows.

(N � 1)2 + (N � 3)2 + (N � 5)2 + � � �

� � � + (3�N)2 + (1�N)2

=
NX
i=1

[N � (2i� 1)]2

=
N(N2 � 1)

3
(5.1)

From Eq. 5.1 we see that the maximum MSE is given by

MSEmax =
N2 � 1

3
: (5.2)

5.1.6.2 Spearman Coe�cient of Rank Correlation

The Spearman coe�cient of rank correlation [Gib76], �, is given by

� = 1� 6
PN

i=1D
2
i

N(N2 � 1)
(5.3)

where Di is the di�erence in the i-th paired ranks. We have �1 � � � 1 where � = 1 when

two rankings are in perfect agreement and � = �1 when they are in perfect disagreement.

Note that the computational formula for Spearman's � is much more involved when ties
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are allowed. The formulation corrected for ties [Gib76] is given by

� =
N(N2 � 1)� 6

�PN
i=1D

2
i

�
� 6(u0 + v0)�p

N(N2 � 1)� 12u0
��p

N(N2 � 1)� 12v0
� (5.4)

where u0 =
�P

u3 �Pu
�
=12 and v0 =

�P
v3 �P v

�
=12. u is the number of observations

in the �rst sample that are tied at a given rank; v is the corresponding value for the second

sample. The sum is over all sets of u (or v) tied ranks in the sample.

In our work we use the mid-rank2 method for assigning ranks when ties are present and

we use the Spearman calculation corrected for ties.

5.1.6.3 Recall and Precision Analogs

In this section we discuss performance metrics that are analogous to the well known IR

metrics of recall and precision. We begin by introducing some terminology and notation

that tries to make this analysis neutral and generalizes it to include a variety of baselines.

Recall that for each query we provide a baseline ranking that represents a desired goal

or query plan. Given some algorithm that produces an estimated ranking, our goal is to

decide how well the estimated ranking approximates the baseline ranking.

To begin, we assume that each collection C in C has some merit, merit(q; C), to a given

query q. We expect the baseline to be expressed in terms of this merit; we expect the

estimated ranking to be formulated by implicitly or explicitly estimating merit.

Let Cbi and Cei denote the collection in the i-th ranked position of the baseline and

estimated rankings respectively. Next we de�ne two sequences, B and E, based on the

merit of the collections in the two rankings. Let

Bi = merit (q; Cbi) and Ei = merit (q; Cei)

denote the merit associated with the i-th ranked collection in the baseline and estimated

2The mid-rank is simply the mean of the ranks of tied observations. For example, given four collections
with merits 8, 6, 6, 3, the midranks of those four collections would be 1, 2.5, 2.5, 4 respectively.
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rankings respectively. The total merit, M , is given by M =
PN

i=1Bi

We note that for viable baseline rankings it should always be the case that

Bi � Bi+1; i = 1:::N � 1:

For the baselines discussed here this is always true because we assume that the baseline

ranking is determined by sorting the collections in decreasing order of merit for some

appropriate de�nition of merit. However, it is not generally the case that Ei � Ei+1. The

performance evaluation problem discussed here is an attempt to quantify the degree to

which this is true for any estimated ranking.

This point needs a bit of explanation. The estimators will rank collections in decreasing

order of estimated merit (as calculated by the estimator). However, note that Ei is the

actual merit associated with Cei , i.e. the merit used to create the baseline ranking. The

degree to which Ei � Ei+1 reects the accuracy of the algorithm's estimates of Ei.

Gravano and Garc��a-Molina [GGM95] de�ned Rn as follows.

Rn(E;B) =

Pn
i=1EiPn
i=1Bi

: (5.5)

Rn(E;B) is a measure of how much of the available merit in the top n ranked collections

of the baseline has been accumulated via the top n collections in the estimated ranking.

This is a variant of the normalized cumulative recall measure de�ned by Tomasic et al.

[TGL+97] and later generalized by Gravano et al. [GGMT94a].

We propose an alternate de�nition of a recall-like measure that can be used to present

performance results. First we need one more de�nition. Let

n� = k such that Bk 6= 0 and Bk+1 = 0:

Intuitively, n� is the ordinal position in the ranking of the last collection with non-zero

merit; it is the breakpoint between the useful and useless collections. Clearly n� � N and,
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moreover, the total merit, M , of a baseline is given by M =
Pn�

i=1Bi. With this de�nition

we de�ne our alternative recall metric as follows.

bRn(E;B) =

Pn
i=1EiPn�

i=1Bi

=

Pn
i=1Ei

M
(5.6)

The denominator is just the total merit contributed by all the collections that are useful

to the query. Thus, bRn(E;B) is a measure of how much of the total merit has been

accumulated via the top n collections in the estimated ranking. This measure has also been

proposed by Lu et al. [LCC96] and was used to report results by French et al. [FPV+98,

FPC+99b, FPC99a].

These two measures are clearly related. Since

Rn(E;B)
nX
i=1

Bi = bRn(E;B)
n�X
i=1

Bi; (5.7)

we have Rn(E;B) � bRn(E;B) and Rn�(E;B) = bRn�(E;B). (Note that we generally

simplify the notation as follows: Rn�(E;B) = R� and similarly for P�.)
We formalize the relationship between bRn(E;B) and Rn(E;B) in Theorem 1 below.

Theorem 1 bRn(E;B) = Rn(E;B) � bRn(B;B)

Proof: Follows directly from Equation 5.7.

From the theorem we can see that another way to interpret Rn(E;B) is to regard it as

the rate at which the available baseline merit is being accumulated.

Gravano and Garc��a-Molina [GGM95] have also proposed a precision-related measure,

Pn(E;B). It is de�ned as follows.

Pn(E;B) = jfCi 2 Topn(E)jmerit(q; Ci) > 0gj
jTopn(E)j =

jfCi 2 Topn(E)jmerit(q; Ci) > 0gj
n

(5.8)

This gives the fraction of the top n collections in the estimated ranking that have non-zero

merit. Topn(E) is just the set of collections given in the �rst n ranks. An alternative
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interpretation for Pn(E;B) is that it measures the degree to which collections with zero

merit have been interleaved with those having nonzero merit.

Some additional properties follow.

1. Rn(E;B) � Rn(B;B) and Pn(E;B) � Pn(B;B)

2. Rn(B;B) = 1 and Pn(B;B) = 1

3. bRn(B;B) � 1

In the remainder of the dissertation we simplify the notation by dropping all arguments to

the measures when it is clear that we are referring to a speci�c algorithm's estimates (E)

and measuring against a prespeci�ed baseline (B).

To illustrate these recall and precision-based evaluation measures, consider the example

shown in Figure 5.2. In this example, there are six collections, C = fA;B;C;D;E; Fg and

three queries Q = fq1; q2; q3g. This example is an extension of Figure 5.1 and Figure 5.1 is

included as the upper portion of Figure 5.2. For each query we wish to visit the collections

in order of the number of relevant documents for that query. Therefore, we will use the

RBR baseline for evaluation and the merit of a collection will be the number of relevant

documents for a query.

Assume that for queries q1, q2 and q3 there are 30, 40 and 9 relevant documents respec-

tively, distributed as shown in the Merits{Baseline table in the upper left of Figure 5.2.

Sorting the collections using merit produces the Rankings{Baseline table. Next assume that

the estimator being evaluated produces the estimates and ranking shown in the Merits{

Estimate and Rankings{Estimate tables. There are two things to note about the estimated

merits and rankings. First, the ranking produced by the estimator does not match the

baseline ranking exactly; therefore, relevant documents will not be accumulated as quickly

as they could be. Second, a more subtle point is the estimated merit of collection B for

query q3. Our hypothetical estimator has estimated that collection B has zero merit with

respect to query q3. As a result, we denote collection B as \not selected" for query q3.

Note that collection B is italicized in the Ranked Collections table of Figure 5.2. This is
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meant to convey that while collection B is placed at the bottom of the ranking for rank

correlation purposes, it will not be counted by some of our evaluation measures. This is

not a frequently{occurring case in our experiments, but it does become an issue in Section

6.3.2 of Chapter 6, so we cover it here.

First, we consider the MSE of the baseline and estimated rankings for the three queries.

The MSE values for q1, q2 and q3 are 1.33, 1.33 and 2.25, respectively. The maximum MSE

value for each query is 11.67. This illustrates the utility of considering the maximum MSE

value. Our example represents a far di�erent test environment than the SYM-236 testbed,

for example, which has a maximum MSE of 18,565. Note that the MSE values for q1 and

q2 are identical. However, when we consider the merit values assigned to the collections, we

�nd that placing the two collections with the most merit at ranks 2 and 3 has the potential

for more serious performance consequences for query q2; if we only search the top-ranked

collection we have missed more relevant documents. The Rn, bRn and Pn measures utilize

merit information whereas MSE does not.

The middle portion of Figure 5.2 redisplays the baseline and estimate collection rank-

ings and illustrates how the baseline merits are used to evaluate the estimate. This was

alluded to in the de�nition of Bi = merit(q; Cbi) and Ei = merit(q; Cei). Recall that while

estimated merits are used to produce the estimated rankings, the actual merits (as used to

compute the baseline) are substituted in when evaluating the estimator. This is because

in our evaluation we want to determine how quickly we're accumulating merit (approx-

imating the baseline in terms of the baseline merit). The example of Figure 5.2 makes

this clearer. In our example we are interested in locating relevant documents. So, given

the estimated ranking for a query, we want to determine how many relevant documents

are actually available in the n top ranked collections. We use the estimated ranking, but

substitute in the number of relevant documents found in the collections when performing

the evaluation. Note that the merit of collection B in the estimated ranking for query q3

is left empty because B is not selected by the estimator. Also note that the use of baseline

merits in the computation of Rn, bRn and Pn means that in general these measures are not
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Baseline Merits Estimated Merits
A B C D E F A B C D E F

q1 6 2 9 5 1 7 q1 0.7 0.4 0.6 0.2 0.1 0.5
q2 4 18 3 9 5 1 q2 0.2 0.8 0.4 0.7 0.9 0.1
q3 2 1 2 0 4 0 q3 0.2 0.0 0.3 0.4 0.5 0.1

Baseline Rankings Estimated Rankings

1 2 3 4 5 6 1 2 3 4 5 6
q1 C F A D B E q1 A C F B D E
q2 B D E A C F q2 E B D C A F
q3 E A C B D F q3 E D C A F B

Merits as Used to Compute Rn, bRn and Pn
Ranked Collections Substitute in Merits

q1 q2 q3 q1 q2 q3
B E B E B E B E B E B E

1 C A B E E E 1 9 6 18 5 4 4
2 F C D B A D 2 7 9 9 18 2 0
3 A F E D C C 3 6 7 5 9 2 2
4 D B A C B A 4 5 2 4 3 1 2
5 B D C A D F 5 2 5 3 4 0 0
6 E E F F F B 6 1 1 1 1 0 ;

Rn, bRn and Pn results
n

1 2 3 4 5 6
Rn 6/9 15/16 22/22 24/27 29/29 30/30

q1 bRn 6/30 15/30 22/30 24/30 29/30 30/30
Pn 1/1 2/2 3/3 4/4 5/5 6/6
Rn 5/18 23/27 32/32 35/36 39/39 40/40

q2 bRn 5/40 23/40 32/40 35/40 39/40 40/40
Pn 1/1 2/2 3/3 4/4 5/5 6/6
Rn 4/6 4/6 6/8 8/9 8/9 8/9

q3 bRn 4/9 4/9 6/9 8/9 8/9 8/9
Pn 1/1 1/2 2/3 3/4 3/5 3/6

Figure 5.2: An example evaluation using the Rn, bRn and Pn evaluation measures.
The collection rankings from the example in Figure 5.1 are evaluated.
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symmetric.

The lower portion Figure 5.2 illustrates how the performance of the estimated rankings

for q1, q2 and q3 will appear when evaluated using Rn, bRn and Pn. Again, Rn shows

the rate at which the estimator accrues available relevant documents while bRn shows the

rate at which the total number of relevant documents are accrued. Pn shows the fraction

of collections that have any relevant documents. Because all collections have relevant

documents for queries q1 and q2, the Pn measure doesn't shed any light on performance for

those queries. However, Rn and bRn allow a comparison of q1 and q2 and show what the

MSE measure did not. Despite the fact that the degree of misplacement was the same, the

misplacement of collection E for query q2 has greater performance implications than the

similar misplacement of collection A for query q1.

5.1.7 Expected Performance of Random Selection

Another approach to evaluating collection selection algorithms is to ask how they compare

to randomly generated rankings. Losee has suggested evaluating IR system performance

analytically [Los95]. This approach can be extended to collection selection algorithms and

lets us derive the expected performance of an algorithm that generates rankings randomly.

We can then use this result to examine the behavior of other algorithms to see if they have

better performance than an algorithm that generates rankings randomly. We develop these

ideas further in this section.

It should be noted that comparison with randomly-generated rankings is of more than

theoretical interest. There are realistic situations in which we could not expect any algo-

rithm to perform better than an algorithm that simply selects an ordering at random.

As a simple example, consider the extreme case in which each collection C 2 C has

merit(q; C) = 1. In this situation any ordering of the collections is as good as any other;

all orderings achieve the same e�ectiveness. More generally, this situation arises whenever

all of the available merit for a query is spread approximately evenly across all or any subset

of the collections. In these situations, and they do occur reasonably frequently, we can



5.1. Evaluating Collection Selection 95

look to the expected value of randomly-generated rankings to develop a lower bound on

performance. Of course, SBR is often more useful as an operational lower bound but much

can be learned by examining these random-generated rankings. In particular, we have seen

instances of queries for which collection selection algorithms actually perform worse than

random selection (see Table 7.1 in Chapter 7).

De�nition 1 Given a set of collections, fC1; C2; :::; CNg, a random ranking algorithm is

one in which each of the N ! permutations is equally likely.

So by randomly generated ranking we mean selecting a permutation from the uniform

distribution of all permutations.

Lemma 1 Given a randomly generated ranking of N collections, let Xn denote the number

of collections in the �rst n ranks having nonzero merit. Xn is a hypergeometric random

variable with expected value given by

E[Xn] = n � n�=N

Proof: This follows from the theorem in the Appendix C where M = N , and W = n�.

Theorem 2 The expected value of the precision, E[Pn], of the �rst n elements of a ran-

domly generated ranking is given by

E[Pn] = n�

N

Proof: Given a random ranking, let Xn denote the number of collections in the �rst n

ranks having nonzero merit. Then

Pn = jfCi 2 Topn(E)jmerit(q; Ci) > 0gj
n

=
Xn

n
so that E[Pn] = E[Xn]

n
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The result now follows directly from Lemma 1.

We would expect a good ranking algorithm to have signi�cantly greater precision.

Corollary 2.1 E[P�] = n�

N
.

We have fully characterized Pn for randomly generated rankings. Now let's take a look

at Rn and bRn for these rankings.

Condition 1 The total merit M is spread evenly over all n� collections.

The net e�ect of this condition is to make all rankings with P� = 1 equivalent.

Theorem 3 Let Xn denote the number of collections having nonzero merit in the �rst n

ranks of a randomly generated ranking. If Condition 1 holds then

1. Rn = Pn

2. E[Rn] = n�=N

3. bRn = Xn=n
�

4. E[ bRn] = n=N

Proof: Condition 1 implies that each collection with nonzero merit contributesM=n� merit

to the accumulated total.

Part 1:

Rn =

Pn
i=1EiPn
i=1Bi

=
Xn � (M=n�)

n � (M=n�)
=
Xn

n
= Pn

Part 2: Taking expectations from Part 1 we have E[Rn] = E[Pn]. The result now follows

directly from Theorem 2.

Part 3:

bRn =

Pn
i=1EiPn�

i=1Bi

=
Xn � (M=n�)

M
=
Xn

n�
:

Part 4: From Part 3 and Lemma 1 we have

E[ bRn] =
E[Xn]

n�
=

n

N
:
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Corollary 3.1 If Condition 1 holds then for all rankings in which Pn = 1, we have Rn = 1

and bRn = n=n�, n � n�.

Corollary 3.2 If Condition 1 holds then

bRn =
n

n�
Pn = n

n�
Rn

where n � n�.

Proof: From Theorem 3(3)and Theorem 3(1).

Theorem 4 E[ bRn] =
n
N

Proof:

E[ bRn] =
expected merit

total merit

=
n � expected merit per collection

M

=
n
�
M
N

�
M

=
n

N

Note that this is a stronger result than Theorem 3(4) since it does not require Condi-

tion 1. So Theorem 4 can be used to determine the expected value of bRn for an arbitrary

baseline.

Corollary 4.1 E[R�] = E[ bR�] = E[P�] = n�

N
.

Proof: By de�nition R� = bR�, so by Theorem 4 R� = bR� =
n�

N
. Together with Corol-

lary 2.1 this completes the proof.

Theorem 5 E[Rn] =
MPn

i=1
Bi
E[ bRn]

Proof: From Theorem 1 we have

bRn(E;B) = Rn(E;B) � bRn(B;B):
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Taking expectations yields

E[ bRn(E;B)] = bRn(B;B) � E[Rn(E;B)]

since E[cX] = cE[X]. The desired result follows from bRn(B;B) =

Pn

i=1
Bi

M
.

The following corollary to Theorem 5 is immediate from Theorem 4.

Corollary 5.1 E[Rn] =
nM

N
Pn

i=1
Bi

5.2 Evaluating Data Item Retrieval

Data item retrieval is generally evaluated in the same way for both single-collection and

multi-collection environments. Data item retrieval evaluation in a single-collection envi-

ronment was discussed in more detail in Chapter 2. Given a list of retrieved data items,

recall and precision or precision at �xed points can be reported.

5.2.1 Recall and Precision

Recall and precision are two commonly used data item retrieval evaluation measures. These

measures were initially presented in Chapter 2; we repeat them here for reference.

recall =
number of relevant documents retrieved

total number of relevant documents in the collection

precision =
number of relevant documents retrieved

number of documents retrieved

When considered in conjunction, recall and precision are usually presented as recall-

precision curves. For this approach, precision values are computed at �xed recall points.

These results are generally presented as graphs where precision values are computed for

R = 0:1; 0:2; : : : ; 1:0. Plots closer to R = 1; P = 1 denote better performance.
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5.2.2 Precision at Fixed Points

For the data item retrieval experiments reported in Chapter 9 we use the approach that has

been used for reporting TREC experimental results. We report precision at �xed values,

when 5, 10, 15, 20, 50 and 100 documents have been retrieved.



6

Early gGlOSS and CORI Experiments

Our early comparative collection selection experiments began with an evaluation of the

gGlOSS [GGM95, GGMT99] collection selection approach. Our initial evaluation of gGlOSS

is covered in greater detail in French et al. [FPV+98]. We summarize the evaluation results

and provide some additional analysis here.

The original gGlOSS work [GGM95] de�ned two parameterized estimators, Max(l)

and Sum(l), plus a parameterized baseline Ideal(l) representing the desired performance

of Max(l) and Sum(l). Ideal(l) is based upon similarities of data items in a collection to

a query. The original gGlOSS evaluation compared the gGlOSS rankings produced by

Max(l) and Sum(l) to the Ideal(l) rankings. Gravano and Garc��a-Molina [GGM95] argued

that \ranks based on end-user relevance are not appropriate for evaluating schemes like

gGlOSS." They further claimed that \the best we can hope for any tool like gGlOSS is

that it predicts the answers that the databases will give when presented with a query." We

strongly agreed with the latter assertion, but felt that there was something to be learned

by evaluating against end-user relevance; in the end that is the only interesting metric from

a user's standpoint. We conducted a study of gGlOSS, focusing on two major questions.

1. How well do the gGlOSS estimators predict the Ideal(l) baseline?

2. How well does Ideal(l) predict a relevance-based ranking (RBR as de�ned in Chap-

ter 5)?

100
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After our initial study of gGlOSS, we moved to a direct comparison of gGlOSS and the

CORI collection selection algorithm. Some steps were required to allow a direct compar-

ison. First, we selected a single representative for gGlOSS, the Ideal(0) baseline. Second,

we undertook vocabulary resolution steps to allow a straightforward comparison. These

vocabulary resolution steps are detailed in Appendix A. Having completed those steps,

we performed the initial comparison that is reported here. Additional collection selection

algorithm comparisons using more algorithms, alternate query formulations and additional

testbeds are reported in Chapter 7.

6.1 Test Environment

We used a single test environment for the experiments reported in this chapter. The test

environment can be speci�ed (SYM-236;Qvl;JTREC4). We used the SYM-236 testbed as

de�ned in Chapter 4, the very long query formulations created using TREC topics 51-150

and the relevance judgements supplied with the TREC-4 data. TREC topics 51-150 were

chosen for reasons outlined in Chapter 4. The very long query formulations, Qvl, are only

used for the experiments reported in this chapter and in Appendix A. For the experiments

of Chapter 7{9 we moved to the short and long query formulations, Qs and Ql, to be more

compatible with other reported results.

We prepared each collection by using version 11.0 of the SMART information retrieval

system [Buc92]. Statistical information extracted from the SMART indexes is the input to

gGlOSS. SMART is freely-available research software and is a vector-space model retrieval

system (see Chapter 2 for a discussion of di�erent types of retrieval systems). We used the

following SMART parameters to be consistent with published gGlOSS evaluation [GGM95].

� Documents were indexed using SMART indexing parameter ntc: document term

weights were formed using a combination of term frequency (tf) and inverse document

frequency (idf), normalized by vector length.

� Queries were indexed using SMART indexing parameter nnn: query term weights
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were based on query term frequency (tf).

� Query-document similarity was computed using the dot product of the document and

query vectors.

Note that for these experiments each of the 236 collections used the same parameters and

search engine to process queries.

The next step was to prepare a union vocabulary incorporating all of the terms ap-

pearing at any of the separate collections. This gave us a canonical global vocabulary with

which to store the document frequencies and weight sums required by gGlOSS to make its

estimates.

Next, TREC topics 51-150 were indexed by SMART to convert them into term lists in

the global vocabulary for use by gGlOSS. Finally, we computed the Ideal(0) and Ideal(0.2)

baselines and produced gGlOSS rankings for each of the queries using theMax(0),Max(0.2),

Sum(0) and Sum(0.2) estimators. These are the same threshold values used by Gravano

and Garc��a-Molina [GGM95] in their experiments.

Before presenting results of the comparison of the estimators to the baselines, we will

provide a more detailed description of the gGlOSS Max(l), Sum(l) and Ideal(l) computa-

tions.

6.2 gGlOSS

Gravano et al. [GGMT94b] proposedGlOSS, theGlossary-of-Servers Server, as an approach

to the collection selection problem. GlOSS originally assumed a Boolean retrieval model but

was later generalized to gGlOSS [GGM95] to handle the vector space information retrieval

model.

gGlOSS assumes that a group of collections can be characterized according to their

goodness with respect to any particular query. gGlOSS 's job is then to estimate the good-

ness of each candidate collection with respect to a particular query and then suggest a

ranking of the collections according to the estimated goodness.
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6.2.1 Goodness and Ideal Ranks

In [GGM95], Gravano and Garc��a-Molina made the following two assumptions:

1. all of the collections in a testbed, i.e. group of collections, employ the same algorithms

to compute term weights and similarities; and

2. given a query q and a document d, d is only useful for q if sim(q; d) > l for a given

similarity threshold l and similarity measure sim(q; d).

They then de�ned a notion of goodness for each collection Ci as follows.

Goodness(l; q; Ci) =
X

fd2Cijsim(q;d)>lg

sim(q; d) (6.1)

Once Goodness(l; q; Ci) has been calculated for each collection Ci with respect to q at

threshold l, the ideal rank for the query at threshold l, Ideal(l) can be formed by sorting

the collections in descending order of their goodness.

Note that gGlOSS does not compute Ideal(l), rather Ideal(l) is advanced as the goal to

which gGlOSS ranks will be compared. The strategy employed by gGlOSS is to attempt to

estimate the goodness of each collection and thereby create a ranking. Since by hypothesis

the collection utility to the query is expressed by goodness, it is reasonable to measure

the performance of gGlOSS by how well it estimates this goodness. That leaves open the

question of how well goodness correlates to relevance.

6.2.2 gGlOSS Estimators

gGlOSS needs two vectors of information from each collection Ci in order to make its

estimates. These vectors are stored as two matrices, F and W .

1. F = [dfij ] where dfij is the document frequency (the number of documents in the

collection containing the term) for each term tj in Ci; and

2. W = [wij ] where wij is the sum of the weights of each term tj over all documents in

Ci.
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This information is gathered periodically by unspeci�ed means from all collections in the

group of collections and used to formulate estimates.

As we have already noted, gGlOSS creates rankings for each query by estimating the

goodness of each collection with respect to that query. There are many ways that one

might make these estimates; two estimates, Max(l) and Sum(l) were reported in [GGM95].

Complete details for calculating the Max(l) and Sum(l) estimators are given in Gravano

et al. [GGM95, GGMT99]. The equations are reproduced here for reference; the gGlOSS

papers contain more discussion and examples. Our reproduction of the equations uses the

notation of this dissertation. As a result there are some notational di�erences between the

gGlOSS papers and this dissertation.

6.2.2.1 High-Correlation Scenario

The Max(l) estimator is based on what Gravano and Garc��a-Molina [GGM95] refer to as a

high-correlation scenario. If two query terms t1 and t2 appear in Ci and dfi1 � dfi2 then it

is assumed that every document in Ci that contains t1 also contains t2. For this scenario,

it is assumed that terms are ordered such that dfij � dfik for all j � k.

For the computation of Max(l) over collection Ci, gGlOSS �rst de�nes

simk =
nX

j=k

qj � wij

dfij

The Max(l) ranking is produced by sorting collections by their estimated merit. For

Max(l), the estimated merit is computed byEstimate(l; q; Ci) as de�ned below. To compute

Estimate(l; q; Ci), gGlOSS determines the value p such that simp > l but simp+1 � l.

Given the value of p,

Estimate(l; q; Ci) =
pX

j=1

(dfij � dfi(j�1))� simj (6.2)
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6.2.2.2 Disjoint Scenario

The Sum(l) estimator is based on what Gravano and Garc��a-Molina [GGM95] refer to as the

disjoint scenario. For any two query terms, the set of documents in collection Ci containing

term t1 is assumed to be disjoint with the set of documents containing term t2. Like the

Max(l) estimator, the Sum(l) estimator is produced by sorting collections based on their

estimated merit. In the case of Sum(l), the estimated merit is computed as follows.

Estimate(l; q; Ci) =
Xn

j=1::nj

�
(dfij>0)^

�
qj�

wij
dfij

>l

��o dfij �
 
qj � wij

dfij

!
(6.3)

In both Max(l) and Sum(l) it is further assumed that the weight of a term is distributed

uniformly over all documents that contain the word.

gGlOSS uses the assumptions underlying Max(l) or Sum(l) to estimate the number of

documents in a collection Ci having similarity to a query greater than a threshold l. This

forms the basis for the gGlOSS estimate of the goodness of Ci.

6.2.2.3 Max(0) = Sum(0) = Ideal(0)

Gravano and Garc��a-Molina [GGM95] note that the de�nitions of Estimate(l; q; Ci) are

identical for Max(l) and Sum(l) when l = 0.

Estimate(0; q; Ci) =
nX

j=1

qj � wij (6.4)

We note that Max(0) and Sum(0) are also identical to Ideal(0), that is, at threshold

l = 0 both estimators give identically the Ideal(0) ranking of collections for all queries. This

is an artifact of the summing approach of the computation of the estimators and Ideal(0).

When l = 0, all documents contribute to Goodness(l; q; Ci) and to Estimate(l; q; Ci).
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6.3 Comparing the Max(l) and Sum(l) Estimators to the

Ideal(l) Baseline

Our �rst experiments were essentially a con�rmation of the results presented by Gravano

and Garc��a-Molina [GGM95], who found that the Max(l) and Sum(l) estimators approx-

imated the Ideal(l) baseline very accurately. Their experiments were conducted using 53

collections; we veri�ed that Max(l) and Sum(l) performed well in our 236 collection test

environment before proceeding with experiments to determine how well gGlOSS approxi-

mates relevance.

6.3.1 Mean Squared Error

We �rst evaluated the gGlOSS rankings against the Ideal(l) baseline using the mean squared

error (MSE) of the ranks. Our usage of mean squared error is described in Chapter 5.

Because Max(0) = Sum(0) = Ideal(0), we simply veri�ed this case. For all other cases we

produced a plot of MSE by query ID to help get a sense of the error distribution. The

plots of these comparisons are shown in Figure 6.1. The plot labels in the graphs are of

the form E.B where E is the estimate ranking and B is the baseline ranking. This labelling

convention will be employed for many of the �gures in the remainder of the dissertation.

Because Max(0) = Sum(0) = Ideal(0), Max(0) and Sum(0) are not plotted in the

Ideal(0) graph of Figure 6.1. Also, Max(0) and Sum(0) are represented by the same plot in

the Ideal(0.2) graph of Figure 6.1. Overall, theMax(0) andMax(0.2) estimators had a very

small mean squared error when compared to both the Ideal(0) and Ideal(0.2) baselines.

Sum(0.2) had considerably more variability and higher MSE values. Our initial MSE

analysis suggests that the gGlOSS estimators are reasonably accurate models of Ideal(l).

Of particular interest here is the observation that ranking di�erences vary on a query-

by-query basis, for example Sum(l) estimator is much more accurate for some queries than

for others.

Unfortunately, while MSE can identify variability, it is not very useful for resolving
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Figure 6.1: MSE comparison of gGlOSS Max(l) and Sum(l) estimators to Ideal(0)
and Ideal(0.2) baselines.

the source of variability. A high MSE value could be caused by a few very badly ranked

collections or a large number of smaller ranking errors. In addition, MSE cannot reveal if

the ranking di�erences have broader performance implications. We probe this further and

utilize additional performance measures in the next section.

6.3.2 Recall and Precision Analogs

Our continuing analysis used the Rn and Pn measures proposed by Gravano and Garc��a-

Molina [GGM95], plus our bRn measure. These measures are covered in detail in Chapter 5.

We continued to study the degree to which theMax(l) and Sum(l) estimators approximated

the Ideal(l) baseline.

Our analysis involved several di�erent representations and interpretations of the results

using these evaluation measures. We plotted (n;Rn), (n; bRn) and (n;Pn) averaged over all

queries for n = 1:::N where N is the total number of collections in the testbed. (n;Rn),

(n; bRn) and (n;Pn) plots are used most frequently in the remainder of the dissertation to

present average estimator performance, so plots from French et al. [FPV+98] are reproduced
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here to show Max(l) and Sum(l) performance.

Our original analysis also contained a number of scatterplots on the (R;P) plane. Each
point on the plane represented the Rn and Pn values measured for a particular query

when compared against the operative baseline metric. 100 points, one for each query, were

plotted. We considered two �xed values of n, 5 and 10, as well as n�1. The two �xed values

were chosen to determine how well an estimated ranking would perform when selecting a

small number of collections. The scatterplots can be found in French et al. [FPV+98] but are

not reproduced here. The (n;Rn), (n; bRn) and (n;Pn) plots are su�cient to demonstrate

that the Max(l) and Sum(l) estimators approximate the Ideal(l) baseline very well. The

larger question, which we will address in Section 6.4 is whether or not the overall gGlOSS

approach can predict the presence of relevant documents.

The (n;Rn), (n; bRn) and (n;Pn) plots are found in Figure 6.2. Only baseline Ideal(0)

comparisons are shown here. The primary observation to make is that these results cor-

roborate the MSE conclusion that the gGlOSS estimators model Ideal(0) well.

In addition, a comparison of the Rn and bRn graphs in Figure 6.2 illustrates the dif-

ferences in interpretation of Rn and bRn, which provide di�erent points of view. The Rn

plots track how much of the available merit in the top n collections of the baseline has

been accumulated by the top n collections of the estimate. In contrast, the Rn plots track

the fraction of total merit accumulated. It is apparent that the two measures can produce

drastically di�erent numeric results; however, the two measures are mathematically related

(see Chapter 5).

In addition to a comparison of estimator performance, the bRn graph of Figure 6.2

provides insight into the distribution of merit (goodness) in the SYM-236 testbed. In

general, the merit with respect to a query is not evenly distributed. Recall from Figure 4.3

that there are a number of collections with very few documents. These collections tend to

result in very low merit and are usually (correctly) placed at the bottom of the rankings.

The \knee" in the plots on the bRn graph represents a transition from high- or medium-merit

1Recall that n� is the number of collections with non-zero merit with respect to a query.
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Figure 6.2: Comparison of gGlOSS Max(l) and Sum(l) estimators to the Ideal(0)
baseline using Rn, bRn and Pn measures.
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collections to low-merit collections. In general, nearly all of the total merit is accounted

for when 60% of the collections have been selected.

Also of interest is the Pn graph of Figure 6.2. The �rst thing to note is that for values of
n less than approximately 150, all of the estimators exhibit what appears to be very good

performance under the Pn measure. However, this is due to a feature of the baseline rather
than to features of the estimators. Under the Ideal(0) baseline, nearly all collections have

non-zero merit for all queries. As a result, there are very few zero-merit collections to be

interleaved in the ranking, virtually guaranteeing good Pn performance for any estimator.

Given this, the performance for values of n greater than approximately 150 in the Pn
graph of Figure 6.2 is surprising at �rst glance. TheMax(0.2).Ideal(0) and Sum(0.2).Ideal(0)

plots exhibit behavior that is not found in other Pn graphs that we present. Namely, there

is a drop in precision for high values of n. This is due to the non-zero value of l used for

those estimators. For the SYM-236 testbed, there exist queries and collections for which

the estimated merit is zero. However, the actual merit (goodness) is very small but non-

zero. Due to the estimated merit of zero, we denote those collections as \not selected".

However, our evaluation methodology continues to evaluate selection performance as long

as a collection with non-zero merit has not yet been selected. The dip in Pn is a combina-

tion of these two experimental decisions and can be interpreted as a penalty for incorrectly

assigning zero merit to a collection. A milder version of this e�ect can also be seen in the

plots on the Rn graph where a close observation reveals that the Sum(0.2).Ideal(0) curve

approaches but does not reach 1:0. The e�ect there is less noticeable because the missed

collections have very small actual merit. The e�ect on the Rn measure is smaller than that

on the Pn measure. The Pn measure reveals that a collection with merit was missed while

Rn takes into account the amount of merit missed. This e�ect is not seen in other plots

because most of the measures we evaluate rarely assign zero merit.
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6.4 Comparing gGlOSS to the RBR baseline

In the previous section, we con�rmed that the gGlOSS Max(l) and Sum(l) estimators

approximate the Ideal(l) baseline well for our SYM-236 testbed. This veri�es the �ndings

of Gravano and Garc��a-Molina [GGM95]. Our next step was to study the extent to which

the gGlOSS estimators and baselines are able to predict relevance.

6.4.1 Mean Squared Error

We �rst examined the mean squared error of the RBR and gGlOSS rankings. While the

rankings of the gGlOSS estimators and baselines are generally self-similar, the MSE analysis

suggests that the gGlOSS rankings are not strong predictors of RBR. The MSE values for

comparisons of all gGlOSS measures to the RBR baseline tend to be high. Due to the

self-similarity of the gGlOSS measures and their general dissimilarity to RBR, there is very

little to di�erentiate the di�erent MSE comparisons of the gGlOSS measures to RBR.

As we noted earlier, MSE is useful for determining the degree of di�erence in two

rankings but not the cause or impact of that di�erence. This shortcoming of MSE makes

the measure less useful than the Rn, bRn and Pn measures for these comparisons.

The MSE comparison of Ideal(0) to the RBR baseline is representative of the gGlOSS

comparisons. We include it as Figure 6.3 as an example.

6.4.2 Recall and Precision Analogs

Our next step was to compare the gGlOSS rankings to the RBR baseline using the Rn,bRn and Pn recall and precision analogs. The plots of these measures for n = 1:::N are

shown in Figure 6.4. We would like to emphasize that the di�erence between Figure 6.4

and Figure 6.2 is the baseline to which the estimators are being compared. The measures

and their interpretation are the same.

Overall, neither the gGlOSS baselines nor estimators approximate the RBR baseline

closely, especially for small values of n. We will discuss each of the graphs of Figure 6.4 in
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Figure 6.3: Mean squared error when the gGlOSS Ideal(0) ranks are compared to
the relevance-based ranking (RBR).

more detail. In all graphs, the plot RBR.RBR represents the baseline's estimation of itself,

i.e. the best possible performance for an estimator compared to the baseline under a given

performance measure.

The Rn graph of Figure 6.4 reveals that the collections with the most merit (in terms of

relevant documents) tend not to be ranked extremely highly by the gGlOSS estimates. Over

the top twenty ranked collections, only about 40-55% of the potential relevant documents

are located by the estimators. This is due to a combination of factors. First, it is often

the case that the estimators rank highly collections with average, but non-zero, merit.

Unfortunately, it is also the case that the estimates rank highly collections with no merit

with respect to the query. The Pn graph of Figure 6.4 reveals the degree to which the

gGlOSS approaches interleave zero-merit collections into the rankings.

The bRn graph of Figure 6.4 illustrates why ranking highly collections with small or zero

merit is problematic. The RBR.RBR curve in the bRn graph shows the distribution of merit

for the SYM-236 testbed, averaged over 100 queries. Overall, the distribution of relevant
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Figure 6.4: Comparison of gGlOSS Max(l) and Sum(l) estimators to the RBR
baseline using Rn, bRn and Pn measures.
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documents is very skewed. For an average query, relevant documents are found in less than

half of the collections with some collections containing many more relevant documents than

others. In a testbed with characteristics like this, errors in ranking have the potential to

produce noticeable degradation in measured selection performance.

The \knee" in the curves that can be observed in the Rn and bRn graphs of Figure 6.4 is

indicative of interesting features of both the SYM-236 testbed and the gGlOSS estimators

and Ideal(l) baseline. In the SYM-236 testbed, there are a number of collections that have

no merit for most queries. The gGlOSS estimators and Ideal(l) baseline all do well at

identifying those special-case collections. However, gGlOSS is not infallible at separating

useful and useless collections, as evidenced by the Pn plots.

6.4.2.1 (R�;P�) Scatterplots

We mentioned is Section 6.3.2 that our original analysis included a number of scatterplots

on the (R;P ) plane. Each point represents a single query and shows the Rn and Pn values

measured for that query when the estimated ranking was compared to the operative baseline

metric. Most of the scatterplots found in French et al. [FPV+98] are not reproduced;

however, we include one here both because it raises an interesting point and to illustrate

the strengths and weaknesses of that representation.

Figure 6.5 is a plot of (Rn� ;Pn�) for the performance of Ideal(0) with respect to the

RBR baseline. This �gure is typical of all the comparisons that we made between gGlOSS

estimators and the RBR baseline. We want to emphasize that n� is potentially di�erent for

every query and this a�ects the way that the plots are interpreted. To make this distinction

clear we will write Rn� as R�. and Pn� as P�.
To help visualize the distribution of points in Figure 6.5, we show arcs centered at (1; 1)

in increments of 0.25 as well as the line P� = R�. Note that by de�nition R� and P�
evaluate to one when applied to the baseline ranking.

The (R�;P�) scatterplot is interesting and useful because it allows us to view perfor-

mance on a query by query basis. It is easy to see that some queries perform far better
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These factors combine to make (R�;P�) scatterplots di�cult to interpret. At best, they
are useful for providing an overview of query-by-query performance. We will rely primarily

on average (n;Rn), (n; bRn) and (n;Pn) plots for experiments reported in the body of the

dissertation.

6.5 Using Ideal(0) to Represent gGlOSS

The gGlOSS approach includes a variety of parameterized baselines and estimators. In the

early experiments presented in this chapter, we have shown that the gGlOSS estimators

approximate the gGlOSS baselines very well. We have shown that both the estimators and

baselines have very similar performance when used to approximate the RBR baseline. For

the remainder of the dissertation, we will use the Ideal(0) baseline to represent gGlOSS in

comparisons with other collection selection techniques. Here, we motivate that decision.

There were two other options, using Max(l) or Sum(l), or using Ideal(l) for some l > 0. We

cover the two cases separately.

6.5.1 Why not use Max(l) or Sum(l)?

An immediate question is why we chose a gGlOSS baseline instead of one of the estimators

as the representative. After all, it was the estimators that Gravano and Garc��a-Molina

proposed for actual use. However, recall that Max(0) = Sum(0) = Ideal(0), that is, at

threshold l = 0 both estimators and the Ideal(0) baseline give identical rankings of the

collections for all queries.

Given this equivalence, using the Ideal(0) formulation is simpler from an implementation

standpoint. gGlOSS requires two vectors of information from each collection Ci in order

to make its Max(l) and Sum(l) estimates,

1. the document frequency dfij for each term tj in Ci; and

2. the sum of the weight of each term tj over all documents in Ci.
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If the underlying collection cannot be made to divulge this information directly, it is in

principle still possible to compute the estimates. However, the two vectors of information

must be recovered in some way, possibly by issuing a single-term query for each vocabulary

term. Our choice of Ideal(0) obviates this; if the information required to compute Ideal(0)

is not readily available, we can compute Ideal(0) directly from the collections by simply

issuing the test queries.

Finally, when used to approximate the RBR baseline, Ideal(0) consistently achieves good

performance relative to the Max(l) and Sum(l) estimators. The upper portion of Figure 6.7

shows the performance of Ideal(0) plus Max(l) and Sum(l) for l = 0:1 and l = 0:2. The

lower portion shows pairwise signi�cance comparisons of the plots for di�erent values of n.

For each comparison, the baseline is no signi�cant di�erence (NSD); the plot shifts to one

of the approaches when that approach is signi�cantly better than the approach with which

it is paired. For most values of n, there is no signi�cant di�erence between Ideal(0) and

the Max(l) and Sum(l) plots. Ideal(0) often signi�cantly outperforms the others, especially

for small values of n. Figure 6.7 also reveals that Sum(l) rarely outperforms the other

approaches.

Given the general performance equivalence and the operational advantages of Ideal(0),

we chose Ideal(0) over Max(l) or Sum(l) as the gGlOSS representative.

6.5.2 Why not use Ideal(l), l > 0?

A secondary question is whether an alternate choice of l for Ideal(l) would be more appro-

priate than Ideal(0). For some experimental environments, this may very well be the case;

however, the choice of l > 0 is problematic for two reasons.

Figure 6.8 illustrates one di�culty with choosing the value of l. Choosing a value

of l that is too high will incorrectly estimate zero merit for many collections, seriously

degrading average performance. Note in Figure 6.8 that while Ideal(0.5) and Ideal(1.0)

produce slightly better average performance than Ideal(0), the Ideal(5.0) performance is

very poor. Using Ideal(0) avoids this di�culty.
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Figure 6.7: Why represent gGlOSS with Ideal(0) instead of Max(l) or Sum(l)?



6.5. Using Ideal(0) to Represent gGlOSS 119

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

RBR.RBR
Ideal(0).RBR
Ideal(0.5).RBR
Ideal(1.0).RBR
Ideal(5.0).RBR

R n

n

Figure 6.8: The e�ect of increasing l for Ideal(l).

A second di�culty is that as gGlOSS is de�ned, the value of l is a constant across all

collections. When all collections use the same indexing scheme with the same ranges of pos-

sible similarity values, the only di�culty is the one noted above|choosing an appropriate

value of l. However, in an operational environment it may be the case that the underly-

ing collections use di�erent information retrieval systems that produce di�erently scaled

similarity values (i.e. sim(q; d) in Equation 6.1). Consider collection C1 with potential

similarity values of 1 to 100 and a second collection C2 with potential similarity values of 1

to 10. A threshold value of l = 5 would require that documents have a much higher relative

similarity to contribute to the goodness of C2 than to C1. This makes ranking collections

based on these goodness values di�cult.

When l = 0 is used as a threshold, all documents with non-zero similarity to the

query contribute to the goodness of the collection. This allows a consistent comparison of

collections with di�erent underlying retrieval systems. Note that while the comparison is

consistent, it may still not be straightforward. Generally speaking, sums of values from 1

to 100 will grow much faster than sums of 1 to 10.
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For these reasons, l = 0 represents the simplest and generally most reliable choice for a

threshold. We use Ideal(0) to represent gGlOSS.

6.6 A Preliminary Comparison of Ideal(0) and CORI

Our initial experiments with gGlOSS, originally reported in French et al. [FPV+98] and

summarized above, con�rmed that the gGlOSS Max(l) and Sum(l) estimators approximate

the Ideal(l) baseline well. We also showed that the Ideal(0) baseline is not a very strong

predictor of relevance, i.e. the RBR baseline. However, the question of how gGlOSS

compared to other collection selection algorithms still remained. We began to address

that question in French et al. [FPC+99b]. We summarize the initial results here; the issue

of comparing di�erent collection selection algorithms is covered in much more detail in

Chapter 7.

In the results that follow, we report a comparison of gGlOSS and CORI [CLC95].

As discussed in Section 6.5, we use the baseline Ideal(0) to represent gGlOSS. A brief

description of CORI can be found in Appendix A; a more detailed description is given in

Chapter 7. For both algorithms, the evaluation was conducted using the full 236 collections

of the SYM-236 testbed. We used the \very long" query formulations of TREC topics 51-

150 as the test query set. As a result, these experimental results are directly comparable to

those presented in Appendix A. However, the experimental environment di�ers from those

used in Chapters 7{8. While the overall conclusions are comparable, the numerical results

may be on di�erent scales.

Our �rst step in this comparison was the rather involved process of insuring that the

two approaches used the same vocabulary when performing the collection selection com-

putation. Minor di�erences in vocabulary existed due to di�erences in the underlying

indexing technology as de�ned by Gravano and Garc��a-Molina [GGM95] and by Callan

et al. [CLC95]. The steps we took to achieve a uniform vocabulary are outlined in Ap-

pendix A. We also con�rmed that the steps taken had very little impact on algorithm
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Figure 6.9: Comparing Ideal(0) and CORI to the RBR baseline.

performance.

Figure 6.9 shows a preliminary comparison of Ideal(0) and CORI performance approxi-

mating the RBR baseline using the Rn evaluation measure. The plot labeled Ideal(0).RBR

is exactly the same as plots with the same label in the Rn graph of Figure 6.4 and with

the plot Ideal(0)-smart.RBR of Figure A.3 in Appendix A. The plot labeled CORI.RBR

is the same as CORI-UVA.RBR in Figure A.4.

Figure 6.9 reveals that on average CORI visibly outperforms Ideal(0) for n less than

approximately 120. We performed a paired Wilcoxon signi�cance test for p = 0:05. Because

only two approaches were compared, signi�cance is shown on the same graph. Values of

n for which CORI signi�cantly outperforms gGlOSS are marked at the bottom of the

graph. Both approaches did equally well identifying the special case collections mentioned in

Section 6.4.2. In Chapter 7, we examine potential reasons for the di�erence in performance,

including an Ideal(0) preference for collections with a large number of documents.

One thing to note is that while CORI outperforms gGlOSS, there is still a lot of room

for improvement, especially for small values of n.



7

Collection Selection | Comparative Experiments

This chapter presents a comparative evaluation of three collection selection approaches,

CORI [CLC95], gGlOSS [GGM95, GGMT99] and CVV [YL97]. When they were proposed,

these approaches were independently evaluated; however, the evaluations were conducted

using a variety of test environments. It was not possible to compare these algorithms

reliably based solely on the published evaluations. Prior to our early comparative experi-

ments [FPV+98, FPC+99b], there had been only one extremely limited comparison of these

approaches1. This chapter represents an expansion of our early comparative experiments.

Here, we present a direct comparison of the CORI, gGlOSS and CVV approaches us-

ing the SYM-236, UDC-236 and UBC-100 testbeds and both the title and long query

formulations of TREC topics 51-150. For this comparison, we are concerned only with

the collection selection performance of these approaches. The impact that collection se-

lection can have on data item retrieval in a multi-collection environment will be covered

in Chapter 9. Our goal for these experiments was to perform a direct comparison of the

approaches in a variety of test environments to determine relative performance, the e�ect of

test environment on performance, and whether the additional statistical information used

by gGlOSS is bene�cial.

In this chapter we will �rst describe the CORI and CVV collection selection approaches.

1Yuwono and Lee [YL97] compared the ability of CORI, gGlOSS and CVV to identify collections with
highly similar documents using a very small test environment.

122
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gGlOSS was covered in detail in Chapter 6. We then describe the test environments and

cover our experimental setup. We will present results of our direct comparison of the three

approaches using theRn, bRn and Pn measures de�ned in Chapter 5. Finally, we will discuss
the correlation of these approaches with the SBR baseline and compare the performance

of these approaches to the expected performance of random selection.

7.1 Approaches Considered

We compare the performance of three collection selection approaches in a variety of test

environments. Here we provide the details of the collection selection algorithms; summaries

of the original experiments performed by the researchers who proposed these techniques

are provided in Chapter 2.

7.1.1 gGlOSS

gGlOSS [GGM95, GGMT99] was described and examined in detail in Chapter 6. Here,

we summarize the Ideal(0) baseline that we use as a representative for gGlOSS in all

remaining experiments. The choice of Ideal(0) as a representative for gGlOSS was covered

in Section 6.5.

From the original de�nition of Ideal(l), Ideal(0) can be computed by sorting collections

in decreasing order of Goodness when l = 0 (from Equation 6.1).

Goodness(0; q; Ci) =
X

fd2Cijsim(q;d)>0g

sim(q; d)

Because Max(0) = Sum(0) = Ideal(0), Ideal(0) can also be computed using only the W

matrix required by gGlOSS, using the following computation,

Estimate(0; q; Ci) =
nX

j=1

qj � wij

repeated here from Equation 6.4.
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7.1.2 CORI

Given a set of collections to search, the CORI collection selection approach creates a

collection selection index in which each collection is represented by its terms and their

document frequencies df. Collections are ranked for a query q by a variant of the Inquery

document ranking algorithm. The belief p(rkjCi) in collection Ci due to observing query

term rk is determined by:

T =
df

df + 50 + 150 � cw=cw

I =
log

�
N+0:5
cf

�
log (N + 1:0)

p(rkjCi) = 0:4 + 0:6 � T � I (7.1)

where:

df is the number of documents in Ci containing rk,

cf is the number of collections containing rk,

N is the number of collections being ranked,

cw is the number of words in Ci, and

cw is the mean cw of the collections being ranked.

In the general case, the belief in a collection depends upon the query structure; for our

experiments it is the average of the p(rkjCi) values for each query term [CLC95].

The constants found in the formulation of T in Equation 7.1 are explained by a para-

metric study reported in Callan et al. [CLC95]. T was originally de�ned as

T = dt + (1� dt) � df

df +K

where K = k � ((1� b)+ b � cw=cw) and k and b are constants. A parametric study [CLC95]

found that for the 17 collection test environment used the best combination of values was
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k = 200, b = 0:75. For those values and dt = 0, the original de�nition of T yields the

constants found in Equation 7.1. We use those constants for our experiments.

The CORI approach to ranking collections can be summarized as df .icf , where icf

is inverse collection frequency. Given a set of collections to search, the CORI collection

selection index essentially represents each collection as a virtual document made up of a

list of terms and their document frequencies in the underlying collections. The virtual

documents are indexed by the Inquery information retrieval system[CCH92]. A query q

is applied to the collection selection index to rank the virtual documents. The resulting

virtual document ranking is the CORI ranking of the collections.

7.1.3 CVV

Yuwono and Lee [YL97] proposed an approach to the broader problem of distributed search,

considering collection selection, query forwarding and results merging. They referred to

the collection selection portion of their work as the Cue Validity Variance (CVV) ranking

method. CVV refers both to the ranking method and to a component in their calculation

of a collection's estimated merit or score.

The CVV approach is based loosely on the concept of cue validity as used in cognitive

science. A summary description of cue validity can be found in Smith and Medin [SM81].

In short, it has been observed that a feature Fi is useful for categorizing a concept Xj if

the feature is not also associated with a contrasting concept. The traditional de�nition of

cue validity of Fi for Xj is

P (Xj jFi) = P (FijXj)

P (FijXj) + P (FijXk)

where Xk is some contrasting concept. The cue validity increases with the probability

that feature Fi describes concept Xj but decreases if Fi is also representative of some

other concept Xk. Yuwono and Lee use a variant of the traditional cue validity de�nition,

suggested by Goldberg [Gol96]. In this variant a concept is contrasted with the union of
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all other concepts.

The CVV ranking method employs a combination of document frequency (df) infor-

mation and cue validity variance. Cue validity variance, as de�ned by Yuwono and Lee

[YL97], attempts to characterize the distribution of the density of df values, i.e., the vari-

ability of the fraction of documents in a collection that contain a given term. Document

frequency information is used to approximate how important a term is within a collection;

the goal of the CVV component is to estimate whether a term is useful for di�erentiating

one collection from another.

The CVV estimated merit computation is summarized below. Note that there are some

notational di�erences between our summary and the version presented by Yuwono and Lee

[YL97]. We have modi�ed the notation to be conformant with the notation used in the

rest of this dissertation.

est merit(Ci; q) =
X
ftj2qg

CV Vj � dfij (7.2)

where tj is a term in query q, dfij is the document frequency of tj in collection Ci, and

CV Vj =

PN
i=1(CVij � CVj)

2)

N

where

CVi;j =

dfij
jCij

dfij
jCij

+

PN

k 6=i
dfkjPN

k 6=i
jCkj

and

CVj =

PN
i=1CVij
N

The CVV ranking method uses only information from (or derivable from) the matrix

F used by gGlOSS. The goal of the CVV merit estimation method is to identify collections



7.2. Test Environments and Experimental Setup 127

with a high concentration of query terms.

7.2 Test Environments and Experimental Setup

We used a six test environments for the experiments reported in this chapter. As we

mentioned earlier, we used the SYM-236, UDC-236 and UBC-100 testbeds and both the

long and short query formulations of TREC topics 51-150. The six test environments can

be speci�ed as:

� (SYM-236;Ql;JTREC4), (SYM-236;Qs;JTREC4),

� (UDC-236;Ql;JTREC4), (UDC-236;Qs;JTREC4),

� (UBC-100;Ql;JTREC4) and (UBC-100;Qs;JTREC4).

Note that the relevance judgements for all six test collections are those provided with the

TREC-4 data. When describing the results, we will refer to the test environments using

testbed and the query set names. We �nd that collection selection results vary more on

a testbed-by-testbed basis than on a query set basis. Therefore, we present results by

testbed, with long and short query results displayed side-by-side for easier comparison.

For each test environment and all experiments, the default con�gurations of LM and

RLM!C apply. Speci�cally, for each test environment, LMi is constructed using all data

items from Ci and the merit computed using LMi is applied to collection Ci.

We prepared each collection in each testbed using version 11.0 of the SMART informa-

tion retrieval system [Buc92]. Statistical information extracted from the SMART indexes

is used to create the F and W matrices that are the input to gGlOSS. In Appendix A we

discuss the steps that were taken to ensure a fair comparison between gGlOSS and CORI

in Chapter 6. To ensure a fair comparison here, the document frequency (df) information

required by CORI and CVV was taken from the F matrix used by gGlOSS 's Ideal(0).

To facilitate the use of external df information, we use the UVA implementation of CORI
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described in Appendix A. The versions of Ideal(0) and CVV that we use are also UVA

implementations of the published algorithms.

Queries were processed using SMART to convert them into term lists compatible with

the vocabularies used by the collection selection approaches. However, SMART was not

used for the implementations of the collection selection approaches or for actually issuing

the queries.

For these experiments, we are concerned with the ability of these collection selection

approaches to locate collections containing relevant documents. As a result, we use the

RBR baseline for comparison. We also utilize the SBR baseline to illustrate a simple lower

bound on performance.

7.3 Correlation with the SBR Baseline

Before we present the results of our comparative experiments, we need to point out a feature

that the three collection selection approaches share to varying degrees. We previously

introduced the SBR baseline, which orders collections simply in decreasing order of the

number of documents in the collection. We presented SBR as a simple heuristic that could

also serve as a useful lower bound on performance. Over the course of our experiments

we found that SBR is also useful for explaining a feature of collection selection algorithm

performance.

Our interest in SBR started with a detailed analysis of the Ideal(0) results shown in

Chapter 6. We were attempting to isolate the cause of the observed performance di�erence

between Ideal(0) and CORI 2. A detailed examination of the collection rankings revealed

that many of the same collections were highly ranked by Ideal(0) for a startling number of

the queries. Further examination revealed that the highly-ranked collections tended to be

the collections with the largest number of documents. The SBR baseline provides a means to

examine the tendency of Ideal(0) and other algorithms to prefer larger collections. Plotting

SBR.RBR on Figure 6.9 to produce Figure 7.1 makes a circumstantial case for a correlation

2Recall that these experiments used the very long query formulations.
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Figure 7.1: Comparing Ideal(0), CORI and SBR to the RBR baseline.

between Ideal(0) and SBR. Note that because Figure 6.9 reports early experimental results,

the very long query set was used here.

Turning our attention to our current set of six experimental environments, we use

Spearman's � as de�ned in Chapter 5 to measure the correlation between the SBR rankings

and the rankings produced by RBR and the three collection selection approaches. Figure 7.2

presents the Spearman correlation coe�cient values for the short and long queries for the

SYM-236 and UBC-100 testbeds3. Each graph of Figure 7.2 is a scatterplot of � values for

a testbed, query set pair. The values of � are computed for each of the 100 short queries

and each of the 100 long queries and presented as a scatterplot. Each point represents a

query under the labeled approach.

First, consider the Spearman values for the SYM-236 testbed, the testbed for which a

correlation between Ideal(0) and SBR was originally suspected. The correlations between

3Because the UDC-236 testbed was constructed to contain collections with roughly the same number
of documents, the SBR baseline is not applicable for this testbed. In fact, SBR essentially devolves to
alphabetical order (our tiebreaker) and comparisons with it are not illuminating. There are no correlations
with SBR for Figure 7.2 and no SBR.RBR plot presented for any of the later UDC-236 testbed results.
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Figure 7.2: Spearman correlation of selection approaches with SBR baseline.
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Ideal(0) and SBR and between CVV and SBR are very strong for both long and short

queries. The correlation between CORI and SBR is still positive but not as dramatic.

For later reference, note that correlation between RBR and SBR is positive, suggesting

that for many queries, collections containing a large number of documents also tend to

contain relevant documents. The correlations between all of the approaches and SBR for

the UBC-100 testbed are not as pronounced, but are still positive on the whole.

We note that a preference for large collections is not necessarily a liability. If large

collections tend to have high merit, selection based on this heuristic and selection ap-

proaches correlated with collection size can be e�ective. However, SBR and approaches

highly correlated with it will generally perform poorly if the largest collections have little

or no merit.

7.4 Results

This section presents the initial results comparing the CORI, CVV and gGlOSS collection

selection approaches in the test environments described above. We consider the results on

a testbed by testbed basis, using the bRn, Rn and Pn measures together in an attempt to

present a comprehensive view of performance. We will discuss the results for each testbed

individually, drawing out features of the testbeds that a�ect performance. In a later section,

we will discuss comparisons with the expected performance of bRn, Rn and Pn for random

selection. Finally, in Section 7.6, we will present a more uni�ed discussion of the overall

results.

7.4.1 SYM-236

The �rst two test environments we consider utilize the SYM-236 testbed and both short

and long queries. These test environments can be speci�ed as (SYM-236;Ql;JTREC4) and

(SYM-236;Qs;JTREC4). The collection selection evaluation results for these environments

are presented in Figure 7.3. Figure 7.3 contains six graphs and presents results from two
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test environments using three di�erent evaluation measures. Each graph is labeled with the

testbed, evaluation measure and query set it represents. The results for test environments

utilizing the UDC-236 and UBC-100 testbeds will follow the same organizational approach.

The �rst thing to note is that the SYM-236 testbed is the same testbed used for

the experiments reported in Chapter 6. The di�erence between these graphs and the

graphs reported in Chapter 6 is that di�erent query formulations were used. While the

query formulations are di�erent, the distribution of relevant documents is the same. As we

discussed in Chapter 6, the SYM-236 testbed contains a number of collections that have

no merit for most queries. The \knee" in the RBR.RBR plots on the bRn graphs represents

the transition from high- and medium-merit collections to very low-merit collections. The

plateaus in the plots for CORI, CVV, Ideal(0) and SBR at approximately n = 140 show

that all of these approaches do a similarly good job at placing the very low-merit collections

at the bottom of their rankings.

The steep climb of the RBR.RBR curve under the bRn evaluation measure reveals that

for most queries, relevant documents are not evenly distributed across the collections in

the SYM-236 testbed. In other words, for many queries, there are a few collections with a

large number of relevant documents as well as collections with no relevant documents. Any

approach that is able to correctly identify the collections with a large number of relevant

documents will perform very well under the bRn and Rn measures. Conversely, collection

selection approaches that do not identify high-merit collections will perform poorly. One of

the hallmarks of the SYM-236 testbed is that small perturbations in ranks can have larger

e�ects under our evaluation measures.

The performance of CORI, CVV and Ideal(0) is best revealed by examining the Rn and

Pn graphs together. The graphs reveal that, especially for n < 50, while the approaches

tend to identify collections with some relevant documents (revealed by the Pn measure),

they do not identify the collections with the most relevant documents (revealed by the Rn

measure).

Comparisons between the performance of the approaches using the two di�erent query
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formulations are facilitated by the RBR.RBR and SBR.RBR curves. These curves are not

a�ected by the query formulation and are the same for each pair of bRn, Rn and Pn graphs.

Overall, we note that the relative performance of the three approaches is similar under both

the long and short query formulations, but that the overall performance of the approaches

is slightly worse for the short queries. The di�erences among the approaches are smaller

under the short queries; however, on average, CORI appears to be a�ected more by the

short query e�ect.

Overall, the performance curves for CORI, Ideal(0) and CVV appear to be similar

under all three evaluation measures. The tendency of the plots to follow a similar path

can obscure the di�erence between the curves; the di�erences between the curves need to

be observed vertically. The vertical di�erences between the points are greater than they

appear when only the track of the curves is considered. For example, consider the SYM-

236, Rn, long queries graph of Figure 7.3. Averaged over the values 1 � n � 50, we �nd

that CORI performs 10% better than Ideal(0) and 20% better than CVV.

Figure 7.4 presents a pairwise comparison of approaches using a paired Wilcoxon

(p=0.05) signi�cance test for the evaluation results under the Rn measure. Figure 7.4

reveals that the pairwise di�erences between the approaches are signi�cant for most values

of n less than approximately 140. For the SYM-236 testbed, all approaches are equally

e�ective at placing the very low-merit collections (which also contain a very small num-

ber of documents) at the bottom of the rankings. As a result, there is little visible (or

signi�cant) di�erence between the approaches for n greater than approximately 140. We

also note that the drop in the performance of CORI for the short queries results in no

signi�cant di�erence between CORI and Ideal(0) for some of the lower values of n.

One additional thing to note about Figure 7.3 is the slight shift in SBR performance

for 50 < n < 70. This is due to the presence of a consecutively-ranked group of ZIFF

collections. Note in Figure 4.3 that the ZIFF collections contain a fairly large number

of documents. However, there are relatively few queries for which these documents are

relevant. These large, but often non-relevant collections adversely a�ect the performance
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Figure 7.3: Collection selection results for the SYM-236 testbed, long and short
queries, Rn, bRn and Pn evaluation measures.
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Figure 7.4: Comparison of approaches using the Rn measure, SYM-236 testbed,
long and short queries, plus signi�cance of comparison.
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of SBR.

A comparison of Figure 7.3 and Figure 7.1 leads to an obvious question. In Section 7.3

we noted a pronounced visible \tracking" of SBR by Ideal(0) for very long queries. However,

that tracking is much less evident for the long queries and not seen for the short queries.

A detailed examination of the placement of ZIFF collections within the collection rankings

reveals that for many very long queries ZIFF collections are ranked within the 50 < n < 70

range, as they are for SBR. This behavior is still evident but less common for the short and

long queries. While Figure 7.2 shows that Ideal(0) is still very highly positively correlated

with SBR for short and long queries, the ZIFF collections are less tightly grouped, lessening

the visible e�ect.

7.4.2 UDC-236

The next pair of test environments that we consider utilize the UDC-236 testbed and both

long and short queries. These test environments can be speci�ed as (UDC-236;Ql;JTREC4)

and (UDC-236;Qs;JTREC4). Results are presented in Figure 7.5.

Recall that the UDC-236 testbed uses the same document set D and the same number of

collections N as the SYM-236 testbed, the documents are merely organized into collections

di�erently. UDC-236 was designed so that the number of documents per collection is

roughly uniform. A related feature, although a result that was not explicitly designed

into the testbed, is that the number of relevant documents per collection is more uniform

for UDC-236 than for SYM-236. As a result, in Figure 7.5 we don't see the pronounced

plateaus in the performance curves for CORI, CVV and Ideal(0) that we saw for the

SYM-236 testbed. However, the shape of the RBR.RBR curve under the bRn evaluation

measure reveals that for most queries there are collections for which some query has no

relevant documents. The RBR.RBR curve is not as steep as that seen in the SYM-236

testbed, however it is still much steeper than the curves for the three collection selection

approaches. Similar to what we observed for SYM-236, UDC-236 contains collections

with large numbers of relevant documents with respect to the queries. The di�erences
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in relevant documents per collection simply are not as pronounced as they were in the

SYM-236 testbed.

The Rn and Pn graphs of Figure 7.5 reveal comparative performance of CORI, CVV

and Ideal(0) that is similar to that we saw for the SYM-236 testbed. All three approaches

tend to identify collections with some relevant documents but not the collections containing

the highest number of relevant documents. Comparisons between the performance of the

approaches using the two di�erent query formulations are more di�cult because of the lack

of an SBR.RBR curve. The di�erence between the performance of short and long queries

is most obvious for the Rn measure. Overall, we note that the relative performance of the

three approaches is similar under both the long and short query formulations, but that

the overall performance is slightly worse for the short queries. The di�erences among the

approaches are smaller under the short queries.

Figure 7.6 presents a pairwise comparison of the approaches using a paired Wilcoxon

(p=0.05) signi�cance test for the evaluation results under the Rn measure. For most values

of n, the di�erences between the three approaches are signi�cant for the long queries. For

the short queries, there is no signi�cant di�erence more often, most notably between CORI

and Ideal(0) for very small values of n. However, for most comparisons and most values

of n the pairwise di�erences are signi�cant. It is interesting to note that the CVV and

Ideal(0) performance curves for short queries cross over at approximately n = 140 and

CVV becomes signi�cantly better at approximately n = 180. However, this is unlikely to

have a large e�ect due to the very high value of n.

One �nal thing to note about Figure 7.5 is that UDC-236 is a more di�cult testbed than

SYM-236. As we noted earlier, the relevant documents are more evenly distributed. While

the performance curves for all three approaches are similar to those seen for SYM-236 the

overall values under the performance measures are lower.
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Figure 7.5: Collection selection results for the UDC-236 testbed, long and short
queries, Rn, bRn and Pn evaluation measures.
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Figure 7.6: Comparison of approaches using the Rn measure, UDC-236 testbed,
long and short queries, plus signi�cance of comparison.
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7.4.3 UBC-100

The third pair of test environments that we consider utilize the UBC-100 testbed and both

long and short queries. These test environments can be speci�ed as (UBC-100;Ql;JTREC4)

and (UBC-100;Qs;JTREC4). The results for these test environments using the bRn, Rn and

Pn evaluation measures are presented in Figure 7.7.

When examining the results in Figure 7.7, recall that there are a few di�erences between

the UBC-100 testbed and the SYM-236 and UDC-236 testbeds. The UBC-100 testbed

contains more documents spread over fewer collections. Despite these di�erences, the shape

of the RBR.RBR curve under the bRn measure is similar to that seen for the UDC-236

testbed.

The most striking thing about the results of Figure 7.7 is the performance of SBR

and Ideal(0). The performance of SBR is much poorer than that seen for the SYM-236

testbed|while SBR tracked the other approaches closely in SYM-236, the performance in

UBC-100 is obviously much poorer. The Pn graphs provide a �rst clue as to the cause of

the poor performance. The Pn graphs reveal that for very small values of n, SBR chooses

collections with zero merit approximately 80% of the time. The source of this di�culty is

illustrated by Figure 4.5. Six DOE and two ZIFF collections are far larger than the other

collections but contain relevant documents for few queries4.

While Ideal(0) is somewhat less correlated with SBR in this testbed than in SYM-236

(see Figure 7.2), that correlation is enough to adversely a�ect performance. For the UBC-

100 testbed, Ideal(0) performs signi�cantly more poorly than CVV whereas in SYM-236

and UDC-236, Ideal(0) performs better than CVV. Under the evaluation measures that we

use, very poor early performance can have rami�cations for values of n other than those

for which poor selection occurred. The UBC-100 testbed reveals the potential downfall of

collection selection approaches that prefer collections with a large number of documents.

The presence of large collections with few relevant documents will often confound these

4Recall that ZIFF collections as a whole proved problematic for SBR within the SYM-236 testbed. For
UBC-100, the other ZIFF collections are su�ciently scattered through the SBR ranking that they have no
visible impact.
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approaches.

It is interesting to note that with the exception of Ideal(0) and SBR, the overall per-

formance trends presented in Figure 7.7 are similar to those seen for the SYM-236 and

UDC-236 testbeds. The pairwise Wilcoxon (p=0.05) signi�cance tests presented in Fig-

ure 7.8 reveal that for most values of n, the di�erences between the three approaches are

signi�cant for the long and short queries.

7.5 Comparison with Performance of Random Selection

The graphs of Figure 7.9 show the expected performance of random selection under the Rn

and Pn measures. E[ bRn] is de�ned as n=N and as a result is the same for all testbeds (the

line x = y), so is not plotted here. It is interesting to note that the bRn performance ob-

served by Hawking and Thistlewaite [HT99] when collections were experimentally selected

at random is very close to the expected values that we predict.

Both evaluation measures are plotted for the SYM-236, UDC-236 and UBC-100 test-

beds. The short query results �rst shown in Figures 7.3, 7.5 and 7.7 are included for

reference. Pn is the only measure for which a substantial di�erence can be seen between

the testbeds. This is due to the distribution of collections containing at least one relevant

document for queries. The more skewed distribution of relevant documents for SYM-236

makes it more di�cult to select a collection with non-zero merit at random, reducing the

expected Pn performance.

With the exception of SBR selection for testbed UBC-100, all collection selection ap-

proaches tend to perform much better than random selection when performance over 100

queries is averaged. However, it is also illuminating to consider performance on a query-by-

query basis. Using the same data that was used to generate Figure 7.9, we compared the

short query performance of the three collection selection algorithms to the expected value

of Rn given randomly generated rankings. We chose the short query results because they

tended to perform slightly worse than long query results. For each n, Table 7.1 records the
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Figure 7.7: Collection selection results for the UBC-100 testbed, long and short
queries, Rn, bRn and Pn evaluation measures.
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Figure 7.8: Comparison of approaches using the Rn measure, UBC-100 testbed,
long and short queries, plus signi�cance of comparison.
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number of queries for which each algorithm performed worse than the expected value given

randomly generated rankings. RBR always performed better than the expected value for

randomly generated rankings and is therefore not included in the table. Because we eval-

uated 100 queries at each n, the values in the table may be interpreted as the percentage

of queries for which the approach performed worse than the random algorithm. Table 7.1

shows results for all three testbeds. These results tend to reinforce the conclusions that

we drew using the Figures 7.3, 7.5 and 7.7. The number of queries for which the col-

lection selection approaches performed worse than the expected performance for random

selection is initially startling; however, we note familiar trends. On a whole, CORI tends

to outperform the other approaches and overall CORI performs well relative to expected

performance for random selection. Again, we note that for all approaches UDC-236 is a

more challenging testbed. Finally, we note that the SBR and Ideal(0) results su�er badly

in the UBC-100 testbed.

Table 7.1 also provides valuable insight into the performance of the di�erent collection

selection approaches. When examining Figures 7.3, 7.5 and 7.7 it would be easy to conclude

that for low values of n there is not much di�erence in the performance of the competing

algorithms. Table 7.1 tells a di�erent story and implies that CORI has fewer failures

than the other algorithms tested. This is an additional data point for consideration when

evaluating such algorithms.

Table 7.1 was truncated at n = 40 for brevity. Most approaches continued to exhibit

failures for larger values of n, although the instance of failures continued to decrease as n

grew.

7.6 Discussion

In this chapter, we have presented a comparative collection selection evaluation for CORI,

CVV and gGlOSS using six di�erent test environments. We have also compared the per-

formance to that of the SBR baseline and the expected performance of random selection.
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Figure 7.9: Expected performance of Rn and Pn evaluation measures.
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SYM-236 UDC-236 UBC-100

n SBR CVV Ideal(0) CORI CVV Ideal(0) CORI SBR CVV Ideal(0) CORI
1 36 24 18 13 50 35 29 93 22 44 22
2 32 18 11 5 42 25 19 87 16 42 18
3 30 16 9 6 31 19 13 90 16 41 16
4 22 13 10 5 31 17 14 86 16 40 13
5 20 11 8 5 34 16 12 84 16 41 13
6 19 10 9 4 33 16 12 83 15 39 12
7 19 12 8 3 32 20 14 83 11 29 12
8 15 10 9 3 31 21 13 84 13 29 9
9 13 8 7 2 31 20 13 80 14 26 8
10 14 9 7 2 30 22 12 77 11 22 8
11 13 8 6 2 27 18 12 72 11 23 7
12 11 7 6 2 30 17 12 64 9 20 7
13 14 9 6 2 29 18 11 61 7 17 9
14 11 8 5 2 29 17 11 61 7 16 9
15 8 8 6 2 29 17 12 59 8 15 8
16 10 9 6 2 30 16 12 60 6 12 9
17 11 6 5 2 31 17 11 57 3 11 8
18 10 6 5 1 31 17 11 53 5 9 8
19 10 6 5 1 30 16 13 56 3 10 6
20 9 6 4 1 29 16 10 51 3 8 4
21 10 6 3 1 28 15 9 52 2 6 4
22 9 8 3 1 26 17 9 53 2 8 4
23 10 7 3 1 23 18 10 47 2 7 4
24 4 5 3 1 22 18 9 46 2 7 3
25 4 5 3 1 24 16 10 49 2 6 3
26 6 4 3 22 15 9 45 2 5 3
27 6 4 3 22 14 9 43 2 5 3
28 6 5 3 22 13 9 39 3 5 3
29 7 5 3 24 13 8 38 5 5 3
30 7 3 4 24 12 8 33 4 5 3
31 6 3 4 22 10 7 24 4 5 2
32 7 3 4 22 10 6 20 4 5 2
33 7 3 4 21 10 7 19 4 5 2
34 7 3 3 20 10 6 17 4 5 1
35 7 3 3 21 10 6 17 4 6 2
36 7 3 3 1 21 10 5 14 4 5 2
37 7 3 2 18 10 5 15 4 5 2
38 8 3 19 11 5 14 4 5 1
39 7 2 21 9 4 13 4 5 2
40 7 2 20 9 4 14 4 5 2

Table 7.1: Number of times each algorithm achieved a value of Rn lower than the
expected performance for random selection.
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This had produced a potentially ba�ing array of �gures containing results.

Despite the variety of experimental environments, the overall results are fairly consis-

tent. While there is signi�cant di�erence between CORI, Ideal(0), CVV and SBR, they

tend to perform similarly when compared to the performance of the baseline against itself

(RBR.RBR). There is substantial room for improvement for all of the collection selection

approaches.

Overall, the CORI collection selection approach performs most accurately and most

consistently. For all six experimental environments, CORI is signi�cantly better than

(or not signi�cantly di�erent from) the other approaches. In Chapter 8, we will study

CORI and the overall df:icf approach in more detail. In Chapter 9, we will use CORI as

the collection selection approach when we investigate the impact of collection selection on

document retrieval in a multi-collection environment.

The gGlOSS representative Ideal(0) performed adequately but its correlation with SBR

proved problematic for the UBC-100 testbed. When comparing CORI and Ideal(0) in a

broader scope, the main advantage of CORI is that it requires less statistical information

about the collections. The df information that CORI requires is also easier to compare

across collections using di�erent information retrieval systems than the term weight infor-

mation required by gGlOSS. Also, as we will see later, df information can be e�ciently

approximated by sampling techniques.

While CVV is an intuitively appealing approach that also requires limited statistical

information, CVV tended to be the worst-performing approach in all of our experiments.



8

Collection Selection | Details and Analysis

In Chapter 7 we performed comparisons of the published CORI, gGlOSS and CVV col-

lection selection approaches using six di�erent experimental environments. With those

experiments, we were able to identify di�erences in collection selection performance and

to identify some of the reasons for the di�erences. We found that a correlation with SBR

is partly responsible for the gGlOSS representative Ideal(0)'s performance. However, the

experiments of Chapter 7 did not study the components of the collection selection algo-

rithms in detail. Here, we isolate components of the CORI algorithm, which consistently

performed well in the experiments of Chapter 7, to provide additional insight into collection

selection performance.

We begin by providing context for these experiments. We then abstract the general

df:icf approach employed by CORI and describe our experiments. We present results

that examine the inuence of the general df and icf components, discuss normalization ap-

proaches and examine the CORI algorithm in more detail. We follow this with a comparison

of several straightforward df � icf approaches. We wrap up the chapter with a summary of

the collection selection experiments reported in this chapter as well as in Chapters 6 and

7.

148
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8.1 Context

Because gGlOSS, CVV and CORI use similar collection statistics as the basis of their

ranking algorithms, we saw an opportunity to learn more about the behavior of collection

selection algorithms by means of a careful study of some of the components of the CORI

algorithm. In particular, we hoped to discover why CORI did not exhibit the pronounced

tendency to select large collections observed for Ideal(0).

The object of our study was to discover what factors in the CORI algorithm were most

important in terms of its performance. There were two obvious di�erences in the CORI

and gGlOSS approaches.

1. CORI represents collections as virtual documents with suitable term weights and

employs a document processing strategy on this representation.

2. CORI contains a normalization component that scales document frequency (df) in-

formation within those virtual documents based on collection size.

In part the CORI advantage over gGlOSS is due to the fact that it is not highly correlated

to SBR. There is clearly some size compensation going on, which may be intrinsic to the

representation or may be due to collection size normalization. We undertook a systematic

study to examine these and other e�ects.

One set of experiments examined CORI directly, individually disabling portions of

the CORI computation to gauge the impact on performance. Additional experiments

investigated the basic components of the CORI approach. For these experiments, we

abstracted the collection selection process in a way that let us have reasonably �ne control

over a family of weighting functions so that we could observe the e�ects of changes in a

controlled environment.
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8.2 Abstracting df � icf Approaches

CORI represents collections as virtual documents, that is, each collection is represented

by terms and their document frequencies. In fact this is nothing more than the matrix

F = [dfij ] that gGlOSS requires for its operation. The di�erence between CORI and

gGlOSS is simply in the usage of the document frequency information. Where gGlOSS

uses the information in F in conjunction with term weight information from an additional

W matrix, each row of F is a virtual document in the CORI terminology. F contains N

rows, one for each collection and a column for each term in the union vocabulary, the set

of all unique terms in all the collections. It will be the case that dfij = 0 when term tj

does not occur in any document of collection Ci. Depending on the heterogeneity of the

collections, F can be a very sparse matrix.

CORI treats the virtual documents as a collection and performs a similarity calculation

of a query q against these \documents." The subsequent document ranking is the desired

collection ranking. A virtual document representation is not limited to the CORI collection

selection approach; this interpretation can be used for other collection selection techniques.

This is the approach that we take for these experiments. Treating collections as virtual

documents is simply a variation of the general document retrieval tf �idf approach discussed

in Chapter 2, with a subtle di�erence. In the representation for the collections we are using

df as the tf component and inverse collection frequency (icf) as the idf component. This

means that the weighting strategies are of the form df � icf , and this is actually the form we

investigate. The intuition is that a collection having many documents containing a term tj

that is reasonably rare across all the collections (i.e., occurs in very few other collections)

should be ranked highly; the term tj is a good discriminator.

We note that CORI does not have this precise form (see Equation 7.1 in Chapter 7). In

particular, the df component of the CORI ranking function is df=(df + 50 + 150 � cw=cw),
and the icf component is normalized by log (N + 1:0). However, while both components

are normalized, CORI is a form of the general df � icf approach.
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Considering df and icf simply as abstract components is useful from an experimental

standpoint. Information retrieval research has found that di�erent combinations of tf and

idf are e�ective for document retrieval [SB88, SBM96]. Just as we can vary the inuence

of components for documents using tf � idf approaches, we can vary the inuence of the

analogous components for collection selection. In French et al. [FPC99a], we presented

an in-depth study of varying the inuence of the df and icf components. We provide a

high-level summary of similar experiments here, but do not cover the full range of detail.

Instead, in this chapter, we focus on the overall potential of the df � icf approaches and

the details of the CORI algorithm. Emmitt [Emm99] performed an extensive evaluation of

the components of the CVV algorithm, including adding a CVV component to the df � icf
formulation. He found, as we did, that while CVV uses the same information of generic

df � icf approaches, the generic df � icf approaches are simpler to compute and often more

e�ective.

8.3 Experimental Environment

For these experiments, we used the same six test environments used in Chapter 7. These

test environments utilize the SYM-236, UDC-236 and UBC-100 testbeds and both the

long and short query formulations of TREC topics 51-150. The six test environments can

be speci�ed as:

� (SYM-236;Ql;JTREC4), (SYM-236;Qs;JTREC4),

� (UDC-236;Ql;JTREC4), (UDC-236;Qs;JTREC4),

� (UBC-100;Ql;JTREC4) and (UBC-100;Qs;JTREC4).

For each test environment and all experiments, the default con�gurations of LM and

RLM!C apply. We used the same preparation of the F matrix that was described in

Chapter 7.
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8.4 Experiments and Results

In this section we report performance results for two classes of experiments. In the �rst set

of experiments, we consider the basic df � icf approach, then investigate some obvious ways

to normalize df values. In the second set of experiments, we examine the CORI algorithm

by systematically disabling the features that di�erentiate CORI from the bare-bones df �icf
approach. Queries are handled in the same way for each approach. As was the case for

CORI, the collection score is the average of the values due to each query term. We will

co-opt the description approach used by Callan et al. [CLC95] to de�ne our test cases. T

is used to represent the df component and I the icf component, so that these functions

will have the form T � I. For brevity, we report performance using only the Rn evaluation

measure. We later summarize representative approaches and discuss the signi�cance of the

di�erences in performance.

8.4.1 Inuence of Algorithm Components

We start by considering a very simple use of the df information, using unaugmented, un-

normalized df information to represent each collection. For this case,

T = df

I = 1

This approach is labeled df:RBR in Figure 8.1.

We then considered a very simple un-normalized df � icf approach:

T = df

I = log

�
N + 0:5

cf

�

This approach is labeled df � icf:RBR in Figure 8.1.

In Figure 8.1, these two approaches are compared to CORI and SBR. It is no surprise
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to �nd that the addition of an icf component improves average performance over that seen

with df alone; the icf component decreases the inuence of very common terms, allowing

terms with more discriminating power to guide selection. However, it is interesting to

note that even collection selection based on very simple df information exhibits reasonable

performance.

We have noted before that df �icf approaches require less statistical information from col-

lections than Ideal(0). In addition, simple df � icf formulations are simpler to compute than

either Ideal(0) or CVV. In Chapter 7, we established that CORI tends to outperform both

Ideal(0) and CVV in our six test environments. We have also compared the performance

of Ideal(0) and CVV to the very simple df � icf formulation de�ned above. CVV did not

signi�cantly outperform df�icf for any of our six test environments. Ideal(0), on the other

hand, did perform better than df � icf for some values of n for the (SYM-236;Ql;JTREC4)

and (UDC-236;Qs;JTREC4) test environments.

Our second step was to consider a few obvious approaches for normalizing the df com-

ponent. Approaches that employ an un-normalized df component, and do not use any

other form of collection size normalization have the potential to exhibit a high correlation

with SBR. Put another way, a df value of 50 has a di�erent interpretation in a collection

of 100 documents than in a collection of 1,000 documents. We would like for a collection

selection approach to reect this.

Our �rst approach was to consider the obvious solution of normalizing the df value by

the number of documents in the collection:

T =
df

jCj
I = log

�
N + 0:5

cf

�

These results are labeled (df=jCj) � icf:RBR in Figure 8.2. Unfortunately, we �nd that

this can give disproportionate inuence to small collections. When terms occur in even

one document in these collections, the normalized value causes the term to appear very
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Figure 8.1: Rn performance of simple df and df � icf approaches.
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representative of that collection. Note that this is not an issue for the UDC-236 testbed,

in which all collections contain roughly the same number of documents. However, for both

long and short queries using the SYM-236 and UBC-100 testbeds, the performance of

(df=jCj)� icf was poor.

Our next approach was a scaling approach rather than a normalization approach. In

Callan et al. [CLC95], T was originally de�ned as

T = dt + (1� dt) � df

df +K

where K = k � ((1� b) + b � cw=cw) and k and b are constants. The basic formulation was

originally suggested by Robertson and Walker [RW94] as an approximation to the 2-Poisson

model in a document retrieval context. This approach has been shown to perform well for

document retrieval [RWJ+94]. It was transformed to accommodate collection selection for

its use in CORI. Figure 8.3(a) illustrates the impact of the CORI normalization approach

on df values when collections are average size, one half average size and twice average size.

Note that df values have higher impact in smaller collections. However, the normalization

overall is very subtle.

Observing the shape of the curves representing normalized values, we considered the

possibility of approximating this e�ect by taking the log of the df values. While this does

not meet all of the criteria set forth by Robertson and Walker [RW94]1, it may prove to be

a reasonable approximation for our purposes. log(df) is included in Figure8.3(b). While

the e�ect di�ers for very small values of df , the overall shapes of the curves are similar.

When considered on the larger scale of un-normalized df (Figure8.3(c)), the impact on df

values is similar.

We can describe this approach as:

T = log (df)

1While log(df) increases monotonically with df , and increases asymptotically, log(df) is not de�ned for
df = 0 and is not appropriate for approximating probabilities because it is not in the range [0; 1].
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Figure 8.2: Rn performance of simple normalization approaches for the df com-
ponent.
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Figure 8.3: The impact of normalization approaches for values of df .
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I = log

�
N + 0:5

cf

�

The results are labeled ln(df)�icf:RBR in Figure 8.2. The results are much more promising

than those seen for (df=jCj)� icf:RBR. We will consider the ln(df)� icf:RBR approach

in more detail later.

8.4.2 Modi�cations to CORI

When we began this chapter, we speculated that the performance exhibited by CORI in

Chapter 7 is due to either the df � icf -based virtual document representation or to CORI 's

normalization step. We were particularly interested in the fact that CORI does not exhibit

a pronounced SBR correlation. Stated operationally, we noted that CORI consistently

identi�es medium-sized collections that contain large numbers of relevant documents.

To determine if CORI 's df �icf -based virtual document representation is responsible for
its performance, we used the Spearman correlation coe�cient to compare the correlation

of a simple df � icf approach to SBR and to compare the correlation of CORI to SBR. The

results are shown in the graphs of Figure 8.4. Mean values for � are included in the plot

labels. While the correlation results for the simple df � icf approach and CORI are similar,

we �nd that the simple df � icf approach is more highly correlated with SBR on average. In

addition, for the SYM-236 testbed 89 of the long queries and 86 of the short queries were

more highly correlated with SBR using df � icf than CORI ; for the UBC-100 testbed,

90 of the long queries and 76 of the short queries were more correlated with SBR using

df � icf than CORI. This suggests that the CORI normalization approach bears further

investigation.

We proceeded with a direct examination of the CORI algorithm, systematically dis-

abling features that di�erentiated it from a simple df � icf approach. For reference, the

standard CORI approach can be speci�ed as follows:

T =
df

df + 50 + 150 � cw=cw
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Figure 8.4: Spearman correlation of df � icf selection approaches with the SBR
baseline.
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I =
log

�
N+0:5
cf

�
log (N + 1:0)

Our �rst step was to consider the normalization of the icf component. Given our treat-

ment of queries, the denominator log (N + 1:0) is simply a constant that can be factored

from the computation. We veri�ed that performance did not change when we removed

this normalization component. Given this, the only di�erence between CORI and a basic

df � icf approach is in the df component (speci�ed as T here).

The cw normalization component used by CORI requires information about the number

of words in a collection. In an operational environment, this information may be di�cult to

obtain. To study the impact of the cw component, we performed two slight modi�cations

to the T component, but found little impact on the average results. We �rst considered the

impact on performance if we assume that all collections are \average sized", i.e. cw = cw

or cw=cw = 1 for all collections. This modi�cation had little impact on the average results

for our six test environments. For the UDC-236 and UBC-100 testbeds, assuming that

collections are \average sized" is not unreasonable, given their parameters for construction.

For the SYM-236 testbed, a subtle di�erence was visible. Because this heuristic defeats

collection size normalization, we do not recommend it in the general case; however, if col-

lection size information is unavailable, or if most collections are average sized, this appears

to be a reasonable heuristic. We also considered replacing the cw term with the number

of documents per collection, statistical information that may be easier to obtain. Unfortu-

nately, these results are less promising than the standard CORI results. For our six test

environments, simply assuming that collections are average sized, or taking the log of the

df values is a better heuristic.

8.4.3 Comparison of df � icf Results

The variations of df � icf collection selection approaches that we have discussed so far have

helped to isolate the impact of components on performance. However, we are also interested

in the comparative performance of approaches that are fairly obvious choices for inclusion
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in a system. In Figures 8.5{8.7 we present comparisons of the df:RBR, df � icf:RBR,

ln(df)� icf:RBR and CORI:RBR results from Figures 8.1 and 8.2. We also include the

paired Wilcoxon results for the signi�cance of the comparisons. Overall, we �nd that CORI

and ln(df)� icf tend to outperform df and df � icf . The di�erences between CORI and

ln(df)� icf vary by testbed and query set. If cw information is available, we prefer CORI

because it incorporates collection size information. For environments with even greater

variety in collection size than that seen in SYM-236, the collection size normalization may

prove to be crucial. We also know that CORI performs well using sampled language models

and we have no information for ln(df)� icf in this case. However, lacking cw information,

ln(df)� icf appears to be a reasonable heuristic.

8.4.4 Summary

These rather �ne-grained experiments were designed to study the components of the CORI

collection selection approach, which was shown in Chapter 7 to perform well in our test

environments. We �nd that, overall, df � icf collection selection approaches perform well.

They require limited information from the underlying collections and the computations

are generally simple. We �nd that the CORI df normalization approach is the key to its

improved performance over more bare-bones df � icf approaches.

In addition to answering this broader question, we also uncovered some more detailed

�ndings.

� We con�rmed that adding an icf component to a df virtual document representation

improves collection selection performance by allowing terms with higher discrimina-

tory power to inuence collection selection.

� We note that a simple df �icf approach consistently meets or exceeds the performance

of CVV, while having a much simpler computation. This very simple df �icf approach

can perform better or worse than Ideal(0), depending on the test environment.

� When normalizing df values, an obvious approach is to divide them by the number of
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documents in the collection. Unfortunately, we �nd that this can give undue inuence

to very small collections.

� The more subtle CORI df normalization approach is more e�ective than dividing df

by the number of documents in the collection. However, simply taking the log of the

df values is a reasonable heuristic.

8.5 Summary of Collection Selection Experiments

With this chapter, we bring to a close the experiments focused directly on collection selec-

tion. With Chapter 9 we will move on to study the implications of collection selection for

information retrieval in a multi-collection environment. For those experiments, we will use

CORI and RBR collection selection. However, before we move to the next phase of our

experiments, we would like to recap our collection selection experiments.

Our earliest experiments, covered in Chapter 6, focused on the gGlOSS collection selec-

tion approach, studied within a single experimental environment. With those experiments,

we showed that the gGlOSS Max(l) and Sum(l) estimators approximate the Ideal(0) base-

line well, but that Ideal(0) is not a strong predictor of the presence of relevant documents in

a collection. During the course of these experiments, we chose Ideal(0) as a representative

for gGlOSS for further experiments.

Following those early experiments, we expanded the scope of our e�orts substantially.

We undertook a comparative study of the CORI, CVV and gGlOSS approaches using six

di�erent test environments. These experiments represented the �rst large-scale comparisons

of these approaches in common environments. With these experiments, we found that

CORI consistently performs well in all six of our test environments. This led us to the

investigation of the general df � icf approach to collection selection, of which CORI is an

example. In this chapter, we showed that df � icf approaches are generally e�ective and

that the CORI df normalization approach gives it the advantage over very simple instances

of the approach.
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Figure 8.5: Comparison of approaches using the Rn measure, SYM-236 testbed,
long and short queries, plus signi�cance of comparison.
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Figure 8.6: Comparison of approaches using the Rn measure, UDC-236 testbed,
long and short queries, plus signi�cance of comparison.



8.5. Summary of Collection Selection Experiments 165

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

RBR.RBR
CORI.RBR
ln(df)-icf.RBR
df-icf.RBR
df.RBR

R n

n
0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

RBR.RBR
CORI.RBR
ln(df)-icf.RBR
df-icf.RBR
df.RBR

R n

n

20 40 60 80 100
n

CORI
NSD

ln(df)-icf

CORI
NSD
df-icf

CORI
NSD

df

ln(df)-icf
NSD
df-icf

ln(df)-icf
NSD

df

df-icf
NSD

df

UBC-100, long queries

20 40 60 80 100
n

CORI
NSD

ln(df)-icf

CORI
NSD
df-icf

CORI
NSD

df

ln(df)-icf
NSD
df-icf

ln(df)-icf
NSD

df

df-icf
NSD

df

UBC-100, short queries

Figure 8.7: Comparison of approaches using the Rn measure, UBC-100 testbed,
long and short queries, plus signi�cance of comparison.
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Multi-collection Retrieval Experiments

In Chapters 6{8 we studied a variety of collection selection approaches in detail. However,

collection selection is only one facet of multi-collection retrieval. We are also concerned

with the e�ectiveness of document retrieval within a multi-collection environment in which

collection selection is employed. In this chapter, we explore multi-collection document

retrieval using the same six test environments employed in Chapters 7 and 8. We study

document retrieval e�ectiveness when CORI and RBR are used for collection selection.

These experiments are an expansion of the work reported in Powell et al. [PFC+00].

To date, document retrieval in a multi-collection environment has been compared to,

and performed less e�ectively than, retrieval in an equivalent single-collection environment.

However, in recent work, Xu and Croft [XC99] discussed the possibility that retrieval per-

formance in a multi-collection environment may exceed performance in an equivalent single-

collection environment. In that work, Xu and Croft were pessimistic about the potential

to achieve both retrieval e�ciency and e�ectiveness in heterogeneous multi-collection envi-

ronments. Instead they focused on document collections created by clustering documents.

They achieved good results with this clustering approach; however, clustering requires the

cooperation of the owning organizations that administer the collections being searched.

Unfortunately, this level of cooperation may not be feasible in most operational environ-

ments.

166
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We believe that the potential exists to exceed single-collection document retrieval per-

formance while maintaining search e�ciency even in multi-collection environments where

clustering is not possible or where the composition of document collections is imposed by

the owning organization and is outside our control. Document collections may be created

according to many di�erent criteria, for example, according to publication source, publi-

cation date, or to equalize collection size. We will need to engineer retrieval systems that

are robust to such decompositions. Accordingly, we need to know how various algorithms

behave in such environments. In this chapter we report on experiments conducted using

six di�erent test environments.

Our goal for this chapter is to investigate the following general questions. For di�er-

ent multi-collection organizations of documents, how does document retrieval performance

compare to equivalent single-collection performance? What is the overall impact of se-

lecting more or fewer collections to search? What is the impact on document retrieval of

disseminating collection-wide information among the collections?

We restate these questions as three hypotheses to focus the problem.

Hypothesis 1: When very good collection selection is employed, multi-collection retrieval

can outperform single-collection retrieval in a variety of environments.

Hypothesis 2: It is possible to achieve good document retrieval performance when few

collections are selected; however, increasing the number of collections selected will

improve performance.

Hypothesis 3: In a multi-collection environment, the use of collection wide information

(CWI) will improve document retrieval performance.

The �rst hypothesis requires some clari�cation. We are interested in determining if

the use of very good collection selection can enable multi-collection retrieval to outper-

form single-collection retrieval in multi-collection environments where documents may not

have been organized to enhance retrieval. For example, the documents may be organized

chronologically or to equalize the size of collections.
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9.1 Test Environments and Experimental Setup

In the experiments reported here, we examined retrieval performance in both single-collection

and multi-collection test environments. We used the six multi-collection test environments

speci�ed in Chapter 7:

� (SYM-236;Ql;JTREC4), (SYM-236;Qs;JTREC4),

� (UDC-236;Ql;JTREC4), (UDC-236;Qs;JTREC4),

� (UBC-100;Ql;JTREC4) and (UBC-100;Qs;JTREC4),

as well as their corresponding equivalent single-collection environments. For each test

environment and for all experiments, the default con�gurations of LM and RLM!C apply.

Some of our experimental scenarios varied the documents used to create Ii for collection Ci.

We will elaborate on this in a later section. For our experiments, we varied the collection

selection approach, the number of collections searched and the results-merging approach.

We evaluated the impact that these variations had on the �nal document retrieval

results. We searched the highest-ranked collections, merged the returned results, then

evaluated the quality of the merged list of documents. Descriptions of the testbeds can be

found in Chapter 4, while details of the selection approaches are provided in Chapter 7. A

description of the merging approaches, and a more detailed description of the evaluation

approach are given below.

This work di�ers from previous research in multi-collection retrieval in several ways.

First, we utilized multiple testbeds with di�erent distributions of relevant documents for

our experiments. Second, whereas other e�orts have �xed the number of collections selected

[XC98, XC99, CPFC00], we study the impact of selecting more or fewer collections. We also

consider the combination of both collection selection and the dissemination of collection-

wide information. Viles and French [VF95b, FV96] studied the use of CWI in a multi-

collection environment in which collection selection was not used, while Xu and Croft used

CWI for all experiments reported in [XC99].
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We employed two di�erent collection selection approaches in our experiments|we chose

one achievable approach as a realistic case and one very good, but as yet unachievable

approach as a best-case scenario. A comparison of di�erent existing collection selection

algorithms reported in Chapter 7, plus the comparisons reported by Callan et al. [CPFC00]

showed that the CORI [CLC95] approach outperforms both CVV [YL97] and gGlOSS

[GGM95, GGMT99]. As a result, we chose CORI as our achievable collection selection

approach1. As our best-case approach, we chose the RBR baseline that was used to evaluate

the di�erent collection selection approaches in Chapters 6{8.

In these experiments, we used RBR as an oracle for selection; RBR provides the best

collection ordering that is possible given only knowledge of where the relevant documents

for a query are located. It has no knowledge of document ranking or merging. As a result,

there may be situations for which a di�erent ordering of collections produces a better

overall document retrieval performance than RBR. For example, a collection containing a

large number of relevant documents may be poorly maintained and may be inoperative

when queries are issued. Given this additional information, not available to RBR, selecting

a di�erent collection might be considered more appropriate.

Our six test environments are composed of the SYM-236, UDC-236 and UBC-100

testbeds and the Qs and Ql query formulations of TREC topics 51-150. The three testbeds

represent three convenient ways to organize documents into collections or to partition a

large collection into several smaller ones. Xu and Croft [XC99, p. 256] expressed concern

that the distribution of relevant documents in collection decompositions such as these may

adversely a�ect the e�ciency or e�ectiveness of multi-collection retrieval. We discuss this

issue in Section 9.3.2 and summarize the distribution of relevant documents in the UBC-100,

SYM-236, and UDC-236 testbeds in Table 9.8.

1Recall that for these experiments, we are using the o�cial UMass implementation of CORI instead
of the UVA implementation that was used for the comparative collection selection experiments. For a
comparison of the UMass and UVA implementations of CORI, see Appendix A.
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9.1.1 Query Processing

In all scenarios and all experiments, query processing at the collections was performed using

Inquery [CCH92]. We used unstructured queries and retrieved 100 documents from each

collection.

9.1.2 Results Merging

We used two di�erent merging approaches in these experiments. The �rst approach was

a simple raw-score merge. When collection-wide information is used in a multi-collection

environment, the document scores from di�erent collections are comparable and a raw-

score merge is feasible. Our second merging approach was to use the default Inquery

multi-collection merging algorithm. This approach uses a combination of the score for the

collection and the score for the document to estimate a normalized score.

The collection score was computed di�erently for the two collection selection approaches.

When CORI was used for collection selection, the normalized collection score was computed

as follows:

C 0 = (C � Cmin)=(Cmax � Cmin) (9.1)

where C is the raw collection belief score for the collection (see Chapter 7 for the de�nition

of the raw belief score), and Cmax and Cmin are the maximum and minimum scores a

collection could obtain for a particular query. When RBR was used for collection selection,

the normalized collection score was computed as:

C 0 = (101 �R)=100 (9.2)

where R is the collection rank.

The normalized document score D00 for a document with initial score D was computed

as:

D0 = ((D �Dmin)=(Dmax �Dmin) (9.3)
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D00 = (1:0 �D0 + 0:4 � C 0 �D0)=1:4 (9.4)

where Dmax was the highest score an ideal document could get for that query in that

collection, and Dmin was the lowest score a document could get for that query in that

collection. The normalization of D00 by 1.4 is done to restrict document scores to the range

[0; 1].

9.1.3 The Three Scenarios

To enable a comparison of multi-collection and single-collection performance, and to judge

the impact of the use of CWI in multi-collection retrieval, we used three di�erent document

organization scenarios.

single { For each of the test environments, all documents from the collections in the

testbed, D = [Ni=1Ci, are considered as a single collection. No merging step is neces-

sary.

multi-LI (local information) { For each of the multi-collection test environments, the

index Ii for each collection Ci is constructed using only statistical information from

documents contained in Ci. For this scenario, CWI is not available, so document

scores from the di�erent collections are not directly comparable. The default Inquery

merge is used.

multi-CWI (collection-wide information) { For each of the multi-collection test en-

vironments, CWI is available for collection indexing. That is, the index Ii for each

collection Ci is constructed using statistical information gathered from all documents

d 2 D. For example, global idf values are available for determining term selectivity

and all document length values are available for performing document length nor-

malization. Operationally, for some document d, query q, and similarity measure

sim(q; d), the document-query similarity is the same if document d is located in col-

lection Ci or Ci+1 or if d is located in an equivalent single-collection environment.
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Note however that Ii only contains representations for the documents in Ci. Docu-

ment scores from di�erent collections are comparable, so a raw-score merge is used.

9.1.4 Execution and Evaluation

Given a testbed, a document organization scenario and a selection approach, we used the

selection approach to rank all of the collections in the testbed. Then, the top-ranked 2, 5,

10 and 20 collections were considered selected for search, i.e. elements of Csel. The query
used to rank the collections was executed at each selected collection and 100 documents

were returned from each collection. The individual result lists were merged using the merge

algorithm speci�ed in the scenario description. The top 100 documents from the merged

list were evaluated.

We used the trec eval2 program to measure precision at document ranks 5, 10, 15,

20, 50 and 100. We used both the paired t-test and paired Wilcoxon test discussed by

Hull [Hul93] for signi�cance testing. Due to the presence of ties in our data, we used an

alternate formulation of the Wilcoxon test [Ott93]. There was a high degree of agreement

between the two tests|the Wilcoxon results are reported here.

9.2 Results

9.2.1 Single-Collection Scenario

Table 9.1 contains the results for all six environments under the single scenario, where

all documents from the testbed are located in a single collection. Note that because they

contain exactly the same documents, the results for the SYM-236 and UDC-236 test envi-

ronments are identical. The documents contained in SYM-236 and UDC-236 are a subset

of those contained in UBC-100|the overall SYM-236/UDC-236 performance results are

very close to the UBC-100 results.

2trec eval is the o�cial evaluation program for the TREC experiments. It is available from NIST via
http://trec.nist.gov and as part of the SMART information retrieval system.
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Long Queries Short Queries
Precision

SYM-236 SYM-236
at Rank UBC-100

UDC-236
UBC-100

UDC-236

5 docs 0.642 0.640 0.470 0.482
10 docs 0.609 0.600 0.468 0.486
15 docs 0.596 0.593 0.469 0.477
20 docs 0.582 0.574 0.461 0.461
50 docs 0.538 0.534 0.418 0.424
100 docs 0.495 0.484 0.374 0.379

Table 9.1: Average precision values for the single collection scenario for the
UBC-100, SYM-236 and UDC-236 testbeds using both short and long queries.

9.2.2 Multiple Collections vs. Single Collection

Tables 9.2 and 9.3 present a summary of results for both of the multi-collection scenarios

over all six test environments. The results using the long query formulations are presented

in Table 9.2 while the results for the short query formulations are found in Table 9.3.

Within each table, the �rst sub-table shows the results for the UBC-100 testbed, the second

sub-table the results for the SYM-236 testbed and the third sub-table the results for the

UDC-236 testbed. Within each sub-table, results for the the two multi-collection scenarios

are shown using both RBR and CORI selection at 2, 5, 10 and 20 collections selected.

Overall, the results from the long queries and the short queries show similar performance

trends. However, the numeric average precision scores were lower for the short queries.

The typography of Tables 9.2 and 9.3 is used to show the results of a comparison with the

corresponding single-collection document retrieval performance. Using a paired Wilcoxon

test at p = 0.05, items shown in boldface are signi�cantly better than the corresponding

single performance from Table 9.1, while italicized items are signi�cantly worse. The

default typeface denotes no signi�cant di�erence3. Referring back to Hypothesis 1, we �nd

that when very good (RBR) selection is employed, it is possible to exceed the corresponding

3We used the paired Wilcoxon test as our primary signi�cance test because it does not require an
underlying normal distribution. We veri�ed those signi�cance results using a paired t-test at p = 0.05.
There were di�erences in determination of signi�cance for only 3% of the comparisons for long queries and
4% for short queries.
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UBC 100-collection testbed

Precision RBR selection CORI selection
at Rank 2 sel 5 sel 10 sel 20 sel 2 sel 5 sel 10 sel 20 sel

5 docs 0.670 0.652 0.670 0.670 0.509 0.528 0.570 0.602

10 docs 0.633 0.651 0.647 0.661 0.477 0.512 0.551 0.588
15 docs 0.608 0.637 0.633 0.643 0.451 0.498 0.531 0.567

multi-CWI
20 docs 0.586 0.623 0.623 0.628 0.430 0.481 0.520 0.553

50 docs 0.481 0.551 0.571 0.582 0.340 0.416 0.462 0.508

100 docs 0.375 0.468 0.508 0.523 0.259 0.348 0.398 0.452

5 docs 0.686 0.694 0.680 0.682 0.540 0.571 0.586 0.610
10 docs 0.656 0.683 0.685 0.691 0.501 0.561 0.567 0.595
15 docs 0.629 0.665 0.669 0.682 0.475 0.535 0.558 0.593multi-LI
20 docs 0.605 0.653 0.659 0.673 0.454 0.508 0.546 0.579
50 docs 0.490 0.570 0.606 0.616 0.361 0.432 0.485 0.529
100 docs 0.378 0.481 0.531 0.556 0.265 0.358 0.412 0.473

SYM 236-collection testbed

Precision RBR selection CORI selection
at Rank 2 sel 5 sel 10 sel 20 sel 2 sel 5 sel 10 sel 20 sel

5 docs 0.646 0.680 0.674 0.690 0.483 0.546 0.554 0.592

10 docs 0.613 0.643 0.653 0.673 0.464 0.499 0.527 0.555

15 docs 0.569 0.620 0.635 0.653 0.423 0.469 0.510 0.540
multi-CWI

20 docs 0.545 0.598 0.621 0.636 0.397 0.448 0.493 0.535

50 docs 0.431 0.513 0.542 0.580 0.287 0.368 0.416 0.472

100 docs 0.309 0.414 0.469 0.506 0.195 0.287 0.343 0.404

5 docs 0.700 0.718 0.704 0.726 0.538 0.568 0.554 0.624
10 docs 0.647 0.682 0.696 0.705 0.480 0.537 0.553 0.586
15 docs 0.608 0.656 0.663 0.698 0.435 0.506 0.536 0.570multi-LI
20 docs 0.572 0.626 0.652 0.677 0.403 0.483 0.520 0.556
50 docs 0.440 0.532 0.569 0.603 0.296 0.379 0.435 0.495

100 docs 0.316 0.427 0.484 0.528 0.200 0.297 0.356 0.420

UDC 236-collection testbed

Precision RBR selection CORI selection
at Rank 2 sel 5 sel 10 sel 20 sel 2 sel 5 sel 10 sel 20 sel

5 docs 0.726 0.700 0.708 0.708 0.480 0.506 0.546 0.557

10 docs 0.658 0.684 0.680 0.693 0.427 0.479 0.499 0.531

15 docs 0.604 0.653 0.669 0.679 0.384 0.444 0.491 0.514
multi-CWI

20 docs 0.574 0.623 0.650 0.666 0.346 0.419 0.468 0.493

50 docs 0.386 0.512 0.565 0.598 0.228 0.315 0.384 0.430

100 docs 0.246 0.380 0.462 0.515 0.143 0.221 0.293 0.359

5 docs 0.718 0.722 0.732 0.732 0.501 0.508 0.549 0.561

10 docs 0.662 0.692 0.707 0.699 0.443 0.499 0.541 0.547
15 docs 0.620 0.676 0.681 0.693 0.400 0.460 0.513 0.530

multi-LI
20 docs 0.574 0.638 0.665 0.668 0.362 0.431 0.493 0.518

50 docs 0.396 0.520 0.575 0.614 0.236 0.325 0.391 0.455

100 docs 0.249 0.388 0.471 0.526 0.147 0.228 0.303 0.370

Table 9.2: Average precision over 100 long queries achieved in the multi-CWI and
multi-LI scenarios for the UBC-100, SYM-236 and UDC-236 testbeds. Typeface
changes reect a comparison with single performance (bold = signi�cantly better,
italics = signi�cantly worse).
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Figure 9.1: Precision values for the multi-LI scenario using long queries, both
RBR and CORI selection approaches and the three testbeds. The values plotted
here are those presented in Table 9.2.
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UBC 100-collection testbed

Precision RBR selection CORI selection
at Rank 2 sel 5 sel 10 sel 20 sel 2 sel 5 sel 10 sel 20 sel

5 docs 0.520 0.540 0.560 0.544 0.373 0.412 0.448 0.460
10 docs 0.486 0.523 0.521 0.515 0.337 0.401 0.430 0.447
15 docs 0.475 0.505 0.519 0.504 0.312 0.373 0.406 0.433

multi-CWI
20 docs 0.452 0.487 0.516 0.496 0.297 0.353 0.397 0.425

50 docs 0.362 0.421 0.450 0.452 0.232 0.293 0.338 0.383

100 docs 0.278 0.352 0.394 0.401 0.168 0.240 0.288 0.333

5 docs 0.528 0.532 0.568 0.560 0.362 0.420 0.462 0.494
10 docs 0.493 0.538 0.538 0.542 0.333 0.389 0.425 0.458
15 docs 0.466 0.515 0.539 0.527 0.310 0.362 0.411 0.444multi-LI
20 docs 0.449 0.499 0.519 0.516 0.293 0.347 0.391 0.426
50 docs 0.361 0.431 0.459 0.461 0.224 0.289 0.340 0.387

100 docs 0.274 0.357 0.405 0.412 0.164 0.235 0.289 0.333

SYM 236-collection testbed

Precision RBR selection CORI selection
at Rank 2 sel 5 sel 10 sel 20 sel 2 sel 5 sel 10 sel 20 sel

5 docs 0.530 0.572 0.584 0.560 0.394 0.404 0.434 0.484
10 docs 0.485 0.517 0.543 0.539 0.324 0.377 0.403 0.453
15 docs 0.458 0.494 0.523 0.525 0.298 0.347 0.391 0.436

multi-CWI
20 docs 0.436 0.477 0.508 0.520 0.279 0.322 0.378 0.416

50 docs 0.332 0.404 0.433 0.461 0.203 0.259 0.311 0.359

100 docs 0.237 0.318 0.371 0.396 0.136 0.196 0.254 0.302

5 docs 0.530 0.574 0.574 0.570 0.390 0.402 0.422 0.470
10 docs 0.488 0.532 0.547 0.540 0.325 0.363 0.406 0.432

15 docs 0.460 0.503 0.519 0.526 0.291 0.339 0.377 0.411multi-LI
20 docs 0.430 0.481 0.504 0.506 0.269 0.318 0.360 0.401

50 docs 0.324 0.399 0.437 0.453 0.197 0.252 0.304 0.348

100 docs 0.235 0.314 0.364 0.396 0.134 0.192 0.246 0.295

UDC 236-collection testbed

Precision RBR selection CORI selection
at Rank 2 sel 5 sel 10 sel 20 sel 2 sel 5 sel 10 sel 20 sel

5 docs 0.550 0.568 0.592 0.580 0.366 0.419 0.436 0.478
10 docs 0.504 0.528 0.555 0.585 0.312 0.369 0.402 0.454
15 docs 0.467 0.517 0.534 0.564 0.281 0.341 0.383 0.431

multi-CWI
20 docs 0.430 0.498 0.517 0.547 0.254 0.318 0.364 0.409

50 docs 0.299 0.402 0.454 0.479 0.166 0.233 0.289 0.339

100 docs 0.198 0.294 0.359 0.412 0.106 0.163 0.221 0.277

5 docs 0.536 0.572 0.604 0.600 0.361 0.400 0.434 0.478
10 docs 0.499 0.531 0.550 0.581 0.318 0.361 0.390 0.433

15 docs 0.463 0.510 0.535 0.549 0.280 0.335 0.377 0.404
multi-LI

20 docs 0.430 0.491 0.520 0.533 0.255 0.314 0.358 0.396

50 docs 0.300 0.396 0.445 0.472 0.164 0.229 0.281 0.329

100 docs 0.196 0.293 0.356 0.404 0.106 0.160 0.216 0.267

Table 9.3: Average precision over 100 short queries achieved in the multi-CWI and
multi-LI scenarios for the UBC-100, SYM-236 and UDC-236 testbeds. Typeface
changes reect a comparison with single performance (bold = signi�cantly better,
italics = signi�cantly worse).
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Figure 9.2: Precision values for the multi-LI scenario using short queries, both
the RBR and CORI selection approaches and the three testbeds. The values
plotted here are those presented in Table 9.3.
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single-collection performance in all six test environments. Referring to the �rst portion of

Hypothesis 2, we see that it is possible to meet or exceed single-collection performance

even when a small number of collections are selected using RBR selection. We do, however,

see decreased e�ectiveness at high document ranks when a very small number (2 or 5) of

collections are selected. This decreased e�ectiveness is due to a combination of e�ects. The

�rst e�ect is a phenomenon that concerned Xu and Croft [XC99]|for some queries, there

are very few relevant documents to be found in the top-ranked 2 or 5 collections. The

second e�ect is an aspect of the evaluation approach. When very few relevant documents

are available in the top 2 or 5 collections, there exist queries for which all available relevant

documents may be retrieved in the top 10 or 20 documents. However, because all 100

retrieved documents are evaluated, precision at the 50 or 100 document cuto� for these

queries will be very low. These queries can depress the average precision values for high

document cuto� values.

The results of the multi-LI portions of Tables 9.2 and 9.3 are also shown in Figures 9.1

and 9.2. Figures 9.1 and 9.2 provide a visual illustration of the potential to exceed single

performance when RBR selection is used. The average performance curve when 20 collec-

tions are selected using RBR is consistently above the single-collection performance curve

for all six test environments.

When currently achievable (CORI ) selection is employed, the results tend to be signif-

icantly worse than the corresponding single performance (see the right-hand columns of

Tables 9.2 and 9.3 and the CORI results from Figures 9.1 and 9.2. However, the results do

approach single performance when 20 collections are selected and for some cases there is

no signi�cant di�erence between the approaches.

9.2.3 The E�ect of Selecting More Collections

In the previous section, we noted that it is possible for both multi-CWI and multi-LI

to exceed single performance, even when a small number of collections are selected for

search, con�rming the �rst portion of Hypothesis 2. We now turn our attention to the
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second portion of that hypothesis. We are interested in the impact of selecting more or

fewer collections to search. Examining Tables 9.2 and 9.3, we noted that at each document

rank level, increasing the number of collections selected for search tended to (but did not

always) improve document retrieval performance. Tables 9.4 and 9.5 address the question

of whether the observed improvement was signi�cant.

In Tables 9.4 and 9.5, items in boldface type are signi�cantly better (using a paired

Wilcoxon test at p = 0.05) than the corresponding item in the column immediately to the

left. Bold-italic denotes cases for which an item is signi�cantly better than the correspond-

ing item in some column to the left. The default typeface denotes no signi�cant di�erence.

Note that this typography convention is di�erent from the convention used in Tables 9.2,

9.3, 9.6 and 9.7.

There are a number of interesting things to observe in Tables 9.4 and 9.5. First, when

CORI is used for selection, selecting a larger number of collections for search tends to be

advantageous. This is understandable given that, while its collection selection performance

is good, CORI is not guaranteed to select collections with the most (or even any) relevant

documents. In this case, selecting more collections increases the chances of selecting a

relevant-rich collection. The bene�cial e�ect of selecting additional collections when CORI

selection is employed is also illustrated in Figures 9.1 and 9.2.

When RBR is used for selection, the greatest improvement can be seen when 5 or 10

collections are selected (instead of 2). This can be seen in both Tables 9.4 and 9.5 and in

Figures 9.1 and 9.2. This may be due to the e�ect discussed in Section 9.2.2|there are

queries for which there are few relevant documents to be found in the top 2 collections.

Searching a larger number of collections increases the number of available relevant doc-

uments. The lesser improvement when 20 collections are selected can be explained by a

similar phenomenon|there also exist queries for which many relevant documents can be

found in the top 10 selected collections. For these queries, searching a larger number of

collections does not provide a large bene�t.
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Precision RBR selection CORI selection
at Rank 2 sel 5 sel 10 sel 20 sel 2 sel 5 sel 10 sel 20 sel

5 docs 0.686 0.694 0.680 0.682 0.540 0.571 0.586 0.610

10 docs 0.656 0.683 0.685 0.691 0.501 0.561 0.567 0.595
15 docs 0.629 0.665 0.669 0.682 0.475 0.535 0.558 0.593

UBC-100
20 docs 0.605 0.653 0.659 0.673 0.454 0.508 0.546 0.579
50 docs 0.490 0.570 0.606 0.616 0.361 0.432 0.485 0.529
100 docs 0.378 0.481 0.531 0.556 0.265 0.358 0.412 0.473
5 docs 0.700 0.718 0.704 0.726 0.538 0.568 0.554 0.624

10 docs 0.647 0.682 0.696 0.705 0.480 0.537 0.553 0.586

15 docs 0.608 0.656 0.663 0.698 0.435 0.506 0.536 0.570
SYM-236

20 docs 0.572 0.626 0.652 0.677 0.403 0.483 0.520 0.556
50 docs 0.440 0.532 0.569 0.603 0.296 0.379 0.435 0.495
100 docs 0.316 0.427 0.484 0.528 0.200 0.297 0.356 0.420
5 docs 0.718 0.722 0.732 0.732 0.501 0.508 0.549 0.561

10 docs 0.662 0.692 0.707 0.699 0.443 0.499 0.541 0.547

15 docs 0.620 0.676 0.681 0.693 0.400 0.460 0.513 0.530
UDC-236

20 docs 0.574 0.638 0.665 0.668 0.362 0.431 0.493 0.518
50 docs 0.396 0.520 0.575 0.614 0.236 0.325 0.391 0.455
100 docs 0.249 0.388 0.471 0.526 0.147 0.228 0.303 0.370

Table 9.4: The impact of selecting more or fewer collections for search using
scenario multi-LI. Long queries. Bold = signi�cantly better than item directly
to left, Bold italic = better than some item to left.

9.2.3.1 More isn't always better

Finally, we should point out that while searching additional collections tends to improve

retrieval performance in Tables 9.4 and 9.5, there are limits to that trend. When all

collections that contain relevant documents have been selected, no additional improvement

will be seen.

In fact, beyond a certain point, searching additional collections may degrade perfor-

mance. For example, consider the multi-CWI portions of Tables 9.2 and 9.3 when RBR

is used for collection selection. For all six test environments, there are numerous cases

for which multi-CWI outperforms single. However, given the construction of multi-CWI,

when all collections are selected the performance (when up to 100 documents are retrieved)

will be exactly that of single. At some point between selecting 20 collections and selecting

all of them, performance began to degrade.
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Precision RBR selection CORI selection
at Rank 2 sel 5 sel 10 sel 20 sel 2 sel 5 sel 10 sel 20 sel

5 docs 0.528 0.532 0.568 0.560 0.362 0.420 0.462 0.494

10 docs 0.493 0.538 0.538 0.542 0.333 0.389 0.425 0.458
15 docs 0.466 0.515 0.539 0.527 0.310 0.362 0.411 0.444

UBC-100
20 docs 0.449 0.499 0.519 0.516 0.293 0.347 0.391 0.426
50 docs 0.361 0.431 0.459 0.461 0.224 0.289 0.340 0.387
100 docs 0.274 0.357 0.405 0.412 0.164 0.235 0.289 0.333
5 docs 0.530 0.574 0.574 0.570 0.390 0.402 0.422 0.470

10 docs 0.488 0.532 0.547 0.540 0.325 0.363 0.406 0.432

15 docs 0.460 0.503 0.519 0.526 0.291 0.339 0.377 0.411
SYM-236

20 docs 0.430 0.481 0.504 0.506 0.269 0.318 0.360 0.401
50 docs 0.324 0.399 0.437 0.453 0.197 0.252 0.304 0.348
100 docs 0.235 0.314 0.364 0.396 0.134 0.192 0.246 0.295
5 docs 0.536 0.572 0.604 0.600 0.361 0.400 0.434 0.478

10 docs 0.499 0.531 0.550 0.581 0.318 0.361 0.390 0.433

15 docs 0.463 0.510 0.535 0.549 0.280 0.335 0.377 0.404
UDC-236

20 docs 0.430 0.491 0.520 0.533 0.255 0.314 0.358 0.396

50 docs 0.300 0.396 0.445 0.472 0.164 0.229 0.281 0.329
100 docs 0.196 0.293 0.356 0.404 0.106 0.160 0.216 0.267

Table 9.5: The impact of selecting more or fewer collections for search using
scenario multi-LI. Short queries. Bold = signi�cantly better than item directly
to left, Bold italic = better than some item to left.
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9.2.4 The E�ect of Collection-Wide Information

In addition to comparisons of the two multi-collection approaches to the single-collection

approach, we were also interested in the relative performance of multi-CWI and multi-LI.

Examining Table 9.2, we noted that under a strict numeric comparison, multi-LI often

outperformed multi-CWI. The question of whether the di�erence between multi-CWI and

multi-LI was signi�cant remained. Table 9.6 repeats the multi-LI sections of Table 9.2 for

all three testbeds. Here, however, the numbers in boldface denote cases where the multi-

LI performance is signi�cantly greater than the corresponding multi-CWI performance. In

this table, there is no case for which multi-LI performance is signi�cantly worse than the

corresponding multi-CWI performance. The results using short queries were less clear-cut.

Examining Table 9.3, we �nd that the di�erences in multi-CWI and multi-LI performance

tended to be mixed, with neither scenario holding a clear advantage. Table 9.7 repeats the

multi-LI sections of Table 9.3 for all three testbeds with signi�cance denoted by changes

in typeface. For the short queries, it is generally the case that there is no signi�cant

di�erence between multi-CWI and multi-LI. Overall, for all six test environments, we �nd

that Hypothesis 3 is false.

9.3 Discussion

9.3.1 CWI and Merging Analysis

An issue that deserves immediate attention is the apparent contradiction of this work and

the work of Viles and French [VF95b, FV96]. Based on the work of Viles and French,

we expected that Hypothesis 3 would be true (i.e., the use of CWI would improve multi-

collection retrieval performance); however, the multi-LI results were signi�cantly better

than the multi-CWI results for long queries and generally not signi�cantly di�erent for

short queries.

Our initial reaction was that the di�erence in the multi-CWI and multi-LI results

was due to the di�erence in the merging step for the two scenarios. multi-CWI used a
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Precision RBR selection CORI selection
at Rank 2 sel 5 sel 10 sel 20 sel 2 sel 5 sel 10 sel 20 sel

5 docs 0.686 0.694 0.680 0.682 0.540 0.571 0.586 0.610
10 docs 0.656 0.683 0.685 0.691 0.501 0.561 0.567 0.595
15 docs 0.629 0.665 0.669 0.682 0.475 0.535 0.558 0.593

UBC-100
20 docs 0.605 0.653 0.659 0.673 0.454 0.508 0.546 0.579
50 docs 0.490 0.570 0.606 0.616 0.361 0.432 0.485 0.529
100 docs 0.378 0.481 0.531 0.556 0.265 0.358 0.412 0.473
5 docs 0.700 0.718 0.704 0.726 0.538 0.568 0.554 0.624
10 docs 0.647 0.682 0.696 0.705 0.480 0.537 0.553 0.586
15 docs 0.608 0.656 0.663 0.698 0.435 0.506 0.536 0.570

SYM-236
20 docs 0.572 0.626 0.652 0.677 0.403 0.483 0.520 0.556
50 docs 0.440 0.532 0.569 0.603 0.296 0.379 0.435 0.495
100 docs 0.316 0.427 0.484 0.528 0.200 0.297 0.356 0.420
5 docs 0.718 0.722 0.732 0.732 0.501 0.508 0.549 0.561
10 docs 0.662 0.692 0.707 0.699 0.443 0.499 0.541 0.547
15 docs 0.620 0.676 0.681 0.693 0.400 0.460 0.513 0.530

UDC-236
20 docs 0.574 0.638 0.665 0.668 0.362 0.431 0.493 0.518
50 docs 0.396 0.520 0.575 0.614 0.236 0.325 0.391 0.455
100 docs 0.249 0.388 0.471 0.526 0.147 0.228 0.303 0.370

Table 9.6: Is multi-LI signi�cantly better than multi-CWI? Long queries. Type-
face changes | bold indicates multi-LI signi�cantly better.

Precision RBR selection CORI selection
at Rank 2 sel 5 sel 10 sel 20 sel 2 sel 5 sel 10 sel 20 sel

5 docs 0.528 0.532 0.568 0.560 0.362 0.420 0.462 0.494
10 docs 0.493 0.538 0.538 0.542 0.333 0.389 0.425 0.458
15 docs 0.466 0.515 0.539 0.527 0.310 0.362 0.411 0.444

UBC-100
20 docs 0.449 0.499 0.519 0.516 0.293 0.347 0.391 0.426
50 docs 0.361 0.431 0.459 0.461 0.224 0.289 0.340 0.387
100 docs 0.274 0.357 0.405 0.412 0.164 0.235 0.289 0.333
5 docs 0.530 0.574 0.574 0.570 0.390 0.402 0.422 0.470
10 docs 0.488 0.532 0.547 0.540 0.325 0.363 0.406 0.432
15 docs 0.460 0.503 0.519 0.526 0.291 0.339 0.377 0.411

SYM-236
20 docs 0.430 0.481 0.504 0.506 0.269 0.318 0.360 0.401
50 docs 0.324 0.399 0.437 0.453 0.197 0.252 0.304 0.348
100 docs 0.235 0.314 0.364 0.396 0.134 0.192 0.246 0.295

5 docs 0.536 0.572 0.604 0.600 0.361 0.400 0.434 0.478
10 docs 0.499 0.531 0.550 0.581 0.318 0.361 0.390 0.433

15 docs 0.463 0.510 0.535 0.549 0.280 0.335 0.377 0.404
UDC-236

20 docs 0.430 0.491 0.520 0.533 0.255 0.314 0.358 0.396
50 docs 0.300 0.396 0.445 0.472 0.164 0.229 0.281 0.329

100 docs 0.196 0.293 0.356 0.404 0.106 0.160 0.216 0.267

Table 9.7: Is multi-LI signi�cantly better than multi-CWI? Short queries. Type-
face changes | bold indicates multi-LI signi�cantly better.
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raw-score merge while multi-LI used the default CORI merge. We speculated that the

incorporation of the collection score into the CORI merge contributed to the performance

di�erence. Therefore, we replaced the raw score merge used in the multi-CWI case with

the CORI merge, creating multi-CWI-CM.

When we compared multi-CWI-CM and multi-CWI, we found that the performance

of multi-CWI was either the same as or better than the performance of multi-CWI-CM,

eliminating the merge explanation. However, there are additional di�erences between the

multi-CWI and multi-LI experiments and between our experiments and those of Viles and

French that help explain the results. First, Viles and French were investigating a di�erent

problem. They showed that when a query was broadcast to all collections, a raw score

merge using CWI is better than raw score merge using only local collection information.

Second, Viles and French showed that the usefulness of CWI is related to characteristics of

the collections. Third, and related to the �rst point, multi-CWI and multi-LI represent

di�erent ways to make the document scores from di�erent collections comparable. In

multi-CWI, the use of CWI makes the document scores directly comparable. The intent of

the D00 normalization step in multi-LI is also to make the document scores from di�erent

collections comparable. In multi-LI, the general interpretation is that documents that

scored well within their collection and that also came from highly-ranked collections should

be ranked highly.

However, these di�erences should not be allowed to distract from the take-home mes-

sage. Given a multi-CWI or multi-LI scenario, very good collection performance enables

very good document retrieval performance. Currently-achievable collection selection per-

formance enables document retrieval performance on par with single-collection; better se-

lection can enable multi-collection information retrieval performance to exceed performance

in an equivalent single-collection environment.

Singhal et al. [SAM+99] found similar results in their experiments dividing the 100GB

TREC-8 VLC2 corpus into 20 5GB collections. They compared results using CWI to a

raw score merge and found very little di�erence. They concluded that when a very large
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collection was subdivided into smaller collections CWI was not necessary. We found that

this is the case for these experiments but will show in Chapter 10 that CWI can be useful

in some environments.

9.3.2 Distribution of Relevant Documents

Xu and Croft [XC99] expressed concern that the distribution of relevant documents in

multiple collections organized by publication source or collection size might hinder multi-

collection retrieval performance. As a result, we examine that issue as it applies to our test

environments.

Table 9.8 summarizes the distributions of relevant documents in the UBC-100, SYM-

236 and UDC-236 testbeds. The number of collections containing relevant documents, and

the distribution of those relevant documents is tied to the relevance judgements JTREC4

for the TREC topics. Because the short and long queries were generated from the TREC

topics, these distributions apply to both the short and long queries. The values shown here

are computed over TREC topics 51-150. The �rst data column, labelled Average n� is

simply the average (over all 100 queries) of the number of collections that contain at least

one relevant document. The remaining three data columns summarize the distribution of

relevant documents. For each query, we divided the total number of relevant documents by

the n� value for that query. We report the minimum, maximum and average values for that

ratio over all 100 queries. Table 9.8 can be considered in conjunction with Figures 4.3{4.5

as characterization of the number of relevant documents per collection within the testbeds.

Note that in Table 9.8, the UBC-100 testbed tends to have both more collections

with relevant documents and more relevant documents per collection. However, recall that

the UBC-100 testbed contains more documents per collection. Also note that relevant

documents are more evenly distributed in the UDC-236 testbed than in SYM-236 and

UBC-100.

While Xu and Croft did report better performance when using clustered collections,

we have not observed di�culties of the type Xu and Croft [XC99] predicted. For our
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Relevant Documents

Testbed Average per Collection

n* Min. Avg. Max.

UBC-100 51.6 1.9 8.7 26.8

SYM-236 76.7 1.3 5.1 15.4

UDC-236 111.0 1.1 3.4 8.8

Table 9.8: Summary statistics for the testbeds.

three testbeds, the distribution of relevant documents does not appear to have had a large

impact on the overall retrieval performance. Each testbed has di�erent relevant document

distribution characteristics; however, the overall performance for the three testbeds was

similar (see Tables 9.2 and 9.3).

9.3.3 Conceptual Subdivisions of Collections

In these experiments, the multi-CWI scenario was considered in the context of an existing

multi-collection environment. However, given the potential of multi-collection retrieval to

outperform single-collection retrieval, we consider an alternate interpretation.

Given an existing large single collection, the documents in that collection could be

conceptually organized into a \multi-collection" arrangement. The physical storage, or-

ganization and indexing of the documents need not change, but each document would be

assigned to a conceptual \pseudo-collection". Queries could be handled at the collection as

usual, producing a single result list. The impact of the conceptual \multi-collection" organi-

zation could be realized as a post-processing step. Given a query, a collection selection step

could be added, performed on the languages models representing the pseudo-collections.

Documents from the selected pseudo-collections would be declared eligible for retrieval.

Only eligible documents would be presented to a user.

The e�ects of this conceptual organization are clari�ed by an example. Assume that we

have a single large indexed collection for which documents have been conceptually organized

into a set of pseudo-collections fA;B;C;D;E; F;G;H; I; Jg. Consider the lefthand side of
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Ranked List Score Relevant? Ranked List Score Relevant?

� A57 0.97 1 A57 0.97 1
B17 0.95 0 C05 0.82 1
F22 0.90 0 �! G33 0.75 0

� C05 0.82 1 A93 0.72 1
B80 0.81 1 C68 0.67 1
D15 0.77 0
H45 0.76 0

� G33 0.75 0
� A93 0.72 1
� C68 0.67 1

Figure 9.3: An example use of a conceptual \multi-collection" arrangement. In
this example, documents from pseudo-collections A, C and G are declared eligible
for retrieval.

Figure 9.3 which shows a ranked list of documents4 for some query, the document score

and the relevance of the retrieved documents. Assume that we select pseudo-collections A,

C and G, and declare documents assigned to those collections eligible for retrieval. The

documents from the other collections would simply be elided from the results list, producing

the modi�ed results list on the righthand side of Figure 9.3. Note that the similarity scores

and order of the remaining documents remains the same. In our example, precision at �ve

documents retrieved improves from 0.6 to 0.8, despite losing relevant document B80 from

pseudo-collection B which was not selected.

Our results from the multi-CWI experiments suggest that this post-processing step

could improve the quality of the result-list. In order to achieve this, however, improvements

in collection selection performance are necessary. With existing approaches, we have seen

that it is possible to equal single-collection performance. It was only with the best-case

selection scenario that we saw improvements over single-collection performance.

4For clarity, we denote the pseudo-collection assignment in the document ID. That need not be the case
in an operational environment.
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9.4 Summary

In this chapter we have reported experiments that support the following conclusions.

� When very good selection is employed, multi-collection retrieval can outperform re-

trieval in an equivalent single-collection environment.

� It is possible to achieve good document retrieval performance by selecting a small

number of heterogeneous collections. Selecting more collections does improve perfor-

mance (up to a point).

� Given very good selection, conceptually decomposing a single collection into multiple

collections and interposing a selection step has the potential to improve performance.

� The use of collection-wide information is a complex issue. Given the scenario in the

bullet above, the straightforward approach of using already-available CWI plus a raw

score merge produces good results. However, given a pre-existing multi-collection

environment, using local information works well if collection selection is employed

and the document scores are suitably normalized before merging is performed.

By examining six test environments utilizing three di�erent document testbeds we have

also shown that these conclusions have wide applicability. There are several implications to

these conclusions. First, single-collection performance is not necessarily the gold standard

that we should be aiming for. It is possible for multi-collection searches to achieve better

retrieval performance. Second, we can get good retrieval performance when only a few

collections are selected. This implies that multi-collection searching with good collection

selection should scale well. Third, we can conceptually decompose a single collection into

subcollections and by introducing a selection step it is possible to achieve better perfor-

mance than by searching (ranking) the entire collection. So we �nd that selection plus

ranking has the potential to improve the e�ectiveness of ranking alone. Moreover, we

can use a simple raw score merge in this case and nothing more elaborate. Fourth, local

information is adequate for good retrieval performance when good collection selection is
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employed. This means that it is unnecessary to disseminate collection-wide information

when selection is a part of the search strategy.

We set out to examine the e�ect of collection selection on end-user retrieval perfor-

mance. Previous work focused on explicit evaluation of the collection selection technique.

Our work sought to determine the degree to which collection selection would have an impact

on retrieval performance. We believe that we met our goal and have provided concrete con-

clusions that can usefully guide the engineering of large-scale multi-collection information

retrieval systems.
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Applicability to the WWW

Our multi-collection information retrieval experiments detailed in Chapter 9 suggest that

information retrieval performance in a multi-collection environment can meet or exceed

performance in an equivalent single-collection environment. In this chapter, we address

the question of the broader applicability and e�ectiveness of the approach. Here we show

a straightforward application of the multi-collection information retrieval approaches de-

scribed in Chapters 7 and 9 to an operational WWW-based environment. We also show

how to extend the approach to metasearching both when the search engines will supply

collections statistics to the metasearcher and when they will not. In the latter case we

show how to develop language models [CCD99, XC99] for the WWW-based collections

using query-based sampling.

The question of the e�ectiveness of information retrieval systems on the WWW has

been addressed to some extent by other researchers. Hawking et al. [HCTH99] found that

for TREC queries internet search engines operating on a \live" version of the WWW exhib-

ited poorer performance than o�cial TREC results of experimental information retrieval

systems operating on an older snapshot of a subset of the WWW. Hawking et al. note

that the di�erent document sets make direct comparisons di�cult, but that the internet

search engines had the advantage of more and more current data. Also of interest, results of

the TREC-8 Web Track showed a strong correlation between information retrieval system

190
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performance on a standard TREC task and for the Web Track [HVCB99].

Previous experiments have focused on the ability of information retrieval systems to

handle the volume and type of data found in the WWW. The experiments presented here

study the impact of adding a collection selection step to a WWW environment with a

pre-existing organization of documents into collections.

Obviously, the experiments we conduct here cannot make use of the six experimental

environments used in Chapters 7{9. As a result, we �rst describe a new experimental envi-

ronment and discuss some of the issues that are particular to that environment. We found

it necessary to address issues related to language-model building, query set construction,

duplicate page removal and the acquisition of relevance judgements. We then describe

our experiments as they relate to traditional metasearching and what we term �ne-grained

metasearching. We present some preliminary results, then conclude with lessons learned

and future work.

10.1 The Conceptual Search Model

Information retrieval as conducted by the current search engines on the WWW is achieved

by treating all of the pages indexed by the search engine as a single monolithic collection.

However, recent research outlined in Chapter 9 suggests that in a multi-collection environ-

ment it is possible to achieve performance comparable to, and in some cases better than,

the performance obtained by treating all of the indexed pages as a single collection. The

crucial observation here is that the gain in e�ectiveness is not due to the fact that the data

is distributed across di�erent servers, rather it is due entirely to the fact that the data

is decomposed into subcollections [PFC+00]. The decomposition lets us discard much use-

less data while con�ning the search to more relevant-rich data. This potential to improve

retrieval e�ectiveness has also been observed by Craswell et al. [CBH00].

In the general case, we can take advantage of this phenomenon if we are able to �nd

a suitable decomposition of a single collection into multiple collections and then employ
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a collection selection step prior to document ranking. In a WWW-based environment,

there are a number of scenarios that may allow us to take advantage of a multi-collection

organization of documents. First, the overlap between the existing internet search engines

tends to be small [LG99]. As a result, the potential exists to apply a collection selection

approach to a traditional metasearch environment, in which each collection C 2 C is an

existing internet search engine1. A second option is to �nd a suitable organization of the

documents of a search engine or other searchable WWW source and to decompose the

source into multiple subcollections.

Given a suitable organization of documents into multiple collections, the overall oper-

ation of a WWW-based multi-collection system is conceptually very similar to the general

approach described in Chapter 2. Given a set of collections C to which we might send a

query, we require a set of language models LM to be used by a collection selection ap-

proach. We use the language models to rank the collections, then send the queries to the

selected collections. The individual results lists from each collection are then merged into a

single list of results for presentation to a user. In an operational environment, C is unlikely

to be a partition, raising the issues that we touched on in Chapter 2. We will revisit the

problem of duplicate data items in a moment.

So far we have not discussed the manner in which we arrive at a decomposition of a

collection C into subcollections. For arbitrary collections, this is an open research question.

However, certain operational constraints suggest an appropriate partition for extant search

engines. We discuss this further in Section 10.3.1.

10.2 Fine-Grained Metasearching

We suggest that a combination of the two collection-division strategies described above may

be advantageous. Given a set of search engines in a traditional metasearch environment,

we suggest that the content of the search engines be subdivided so that a �ner-grained

1Note that C is highly unlikely to be a partition and the union of all documents contained in C represents
only a fraction of the documents available via the WWW.
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selection may be made. Rather than targeting a query to a search engine, we select speci�c

subcollections of the indexed content. The intuition here is that we are trying to eliminate

as much irrelevant material as possible from consideration. In this way we hope to increase

the overall retrieval e�ectiveness for a query.

Many of the large search engines operating today o�er a category structure as part

of their service. While organized as a browsing aid, the search engines often provide a

means to search for documents within the category organization. In our work, we used this

organization as a subdivision of the search engines.

To achieve this described level of selectivity among search engine subcollections, a

metasearcher must have available a language model for each candidate component. In

some environments the required metadata might be available directly from search engines,

for example the Networked Computer Science Technical Reference Library (NCSTRL) pro-

vides an open protocol for requesting metadata [DL00]. It is more likely, however, that the

required information is not readily available. In this latter case we will build language

models by query-based sampling [CPFC00].

10.3 Constructing a WWW-Based Test Environment

A WWW-based TREC environment has been under development for some time now. The

environment is based upon a roughly 300GB spider crawl of the Internet. From that, a

100GB subset was extracted to form the TREC-7 VLC2 collection [HCT98]. For TREC-7,

much of the focus was on e�ciency and the ability of systems to handle collections of that

size. TREC-8 o�ered optional \Large Web" and \Small Web" tracks using the VLC2 col-

lection and a smaller 2GB subset respectively [HCTH99, HVCB99]. These tracks focused

more on the e�ectiveness of the participating systems for WWW data. Further re�nements

of the collections have been made for TREC-9. We are considering experiments using the

TREC-9 data, but it is not yet widely available. While the TREC-9 collections are interest-

ing because of their scope, the lack of current availability was problematic. We performed
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the initial experiments reported in this chapter using a di�erent test environment.

In this section, we describe the test environment that we created for these experiments.

Because we essentially constructed this test environment from scratch for these experi-

ments, we will need to cover a number of points that were not issues for our previous test

environment. First, we will describe the collections and their language models and how

each was constructed. We will discuss our choice of queries as well as how we obtained

relevance judgements.

Unlike our previous test environments, the complete set of documents D and the exact

contents of the collections C 2 C are unknowable. Having chosen some set of collections C,
our only access to the collections and the documents within is via their search mechanism.

10.3.1 Using Categories to Subdivide a Search Engine's Content

For this study we adopted the browsable top-level category structure provided by four search

engines as the subdivision of the search engines' content into a set of collections. This is

only one possible subdivision of the data; however, for our purposes it serves as a convenient

assumption, giving us access to topically subdivided data. This organization has a feature

that was not found in the three testbeds that we used for previous experiments. In this

test environment, web pages have been organized by topic. As a result, we might expect

relevant documents to occur in only a few collections, and might expect the documents

within a given collection to be self-similar. We can also qualitatively judge the quality of

collection selection output.

In deciding upon the set of collections to be used, we originally examined the category

structure of six search engines (Altavista, Infoseek, Lycos, NorthernLight, Snap, and Ya-

hoo!) chosen because each had query syntax for restricting searches to speci�c categories, a

necessary requirement of our methodology. However, because we are also interested in tra-

ditional metasearching, we also require that the search engine provide a means to restrict a

query to documents contained in the category tree as a whole. We will discuss this further

in a moment. Snap and Lycos did not o�er the latter capability and were later excluded
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Altavista Infoseek NorthernLight Yahoo
(15) (19) (16) (14)

arts arts & humanities arts arts
autos automotive
business & �nance business business & investing business & economy

careers
computers computing computing & internet computers & internet

contemporary life
education education education
entertainment entertainment entertainment
family

games
gov't & politics gov't, law & politics government

health & �tness health health & medicine health
home & family

humanities
internet

living
marketplace
money

news & media news news & media
people

products & services
real estate

recreation & travel recreation & sports
reference reference reference
regional regional
science science science & mathematics science

social sciences social science
society & culture society & culture
sports sports sports & recreation

technology
travel travel

Table 10.1: Category structure of the four search engines used in this chapter.
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from our experiments. The categories from the remaining four search engines, available

as of June 2000 are shown in Table 10.1. Each search engine was treated as having been

subdivided into its categories, giving rise to 64 collections available for selection by our

metasearcher. This is in contrast to conventional metasearching strategy that would select

from among the four search engines used in our study. Note that this subdivision strategy

results in the search engines being decomposed into di�erent numbers of subcollections:

Altavista (15), Infoseek (19), NorthernLight (16) and Yahoo! (14). This is not a problem

nor is it a requirement of our approach.

It is tempting to attempt to infer category content from the category labels. Table 10.1

reinforces that temptation by attempting to place \like" categories on the same row. How-

ever, this is simply a value judgement without any appeal to the content. In this work

we simply assume that similar category names imply similar content. That is a reasonable

assumption for our purposes.

It is important to note one feature of our strategy for acquiring subdivided data. If

we compared our category-based �ne-grained metasearching to traditional metasearching

using the four search engines, we would be implicitly assuming that the union of the pages

represented within the category structure is equal to the full content indexed by the search

engine. At the present time this is not true for any of the search engines in our study.

This is why we require the search engines to support a search of the documents in the

entire category tree. We allow this search to stand in for the search engine as a whole.

This allows us to make a fair comparison between the approaches, but means that our

\traditional metasearching" approach has access to far fewer documents than are indexed

by the search engines.

10.3.2 Processing Queries in the Multi-Collection Environment

In the conventional metasearching environment, query processing has three steps:

1. identify the search engine(s) to which the query should be sent;
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2. send the query to the search engine(s) identi�ed and get a result list from each; and

3. merge the result lists according to some strategy for presentation to the user.

The modi�cation to query processing in our �ne-grained metasearching environment is

straightforward. The �rst two steps become:

10: identify the subcollections of the search engines over which the query should be

processed; and

20: process the query at each of the selected subcollections.

The third step remains the same.

Note that there are two ways to interpret step 20. First, we can process the query by

sending it to a search engine while requiring the search engine to restrict the search to a

speci�c category. This strategy might require repeated searches at the same search engine

with di�erent category restrictions. Second, we can process the query by sending it to a

search engine and requiring the search engine to restrict the search to a list of categories,

i.e., those identi�ed in step 10. The former approach is presently supportable with extant

search engines, the latter approach is not.

The �rst approach could, in principle, result in 64 separate searches in our test envi-

ronment. The second approach would never require more than four. The e�ectiveness of

the results could be directly a�ected by the choice of approaches. The �rst approach of-

fers the best granularity for merging; any score normalization performed during the merge

step would be under the control of the metasearcher. The second approach potentially has

the edge in e�ciency at the possible expense of some retrieval e�ectiveness; the way in

which document scores for the documents from di�erent collections were computed and/or

possibly already merged may be unknown. These issues need further study.

As a concrete example, if we are given the query \How do you prevent and treat Lyme

disease?" we would expect our metasearcher to focus on the categories health & �tness (Al-

tavista), health (Infoseek, Yahoo), and health & medicine (NorthernLight) from Table 10.1

in preference to many of the other categories.
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To summarize, our approach centers around identifying the collections (search engine

categories) thought to be of most use in answering a query. This requires generating a

language model for each collection and using these models together with a collection selec-

tion algorithm. Here we are only interested in collection selection algorithms requiring no

user intervention, i.e., that are based solely on examination of the language models. Previ-

ous work reported in Chapters 7{9 has shown that the CORI [CLC95] collection selection

approach performs well. Further, our approach involves generating language models by

query-based sampling [CCD99]. Our studies have shown that df � icf algorithms, of which

CORI is an example, are robust when using sampled language models [CPFC00], so we

restrict our choice of selection algorithms to one in this class.

10.3.3 Probing to Build Language Models

In our previous experiments, we had access to all of the documents in each collection Ci 2 C
from which to construct each language model LMi 2 LM. That is not the case here. We

have no access to summary statistical information from the collections, nor is it feasible

to download all documents in each collection C to use in constructing a full language

model. As a result, we employ a query-based sampling [CCD99] approach to acquire the

sampled set of documents from each collection Ci 2 C from which to build language model

LMi 2 LM. The query-based sampling approach uses a set of single-term probe queries

to acquire the sampled set of documents.

The assumption behind this approach is that by randomly sampling a collection's pages,

we will eventually build a language model that is a representative view of the vocabulary

content contained in the collection. If we can e�ectively create language models of collec-

tions by sampling in this way, we can use a small subset of each collection's pages to build

an accurate language model of the collection to be used by a collection selection approach.

We sample each of the subcollections at each search engine using a very general language

model building tool, LAMB [OF00]. Given a collection that we wish to sample, we start

with an initial probe query, submit the query to the search engine and retrieve an initial
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set of results. In our sampling runs to date, up to ten results pages are viewed for each

query. Dead links and obviously non-HTML documents are dropped from the list of pages

seen for each query; usually fewer than all ten of the sampled pages retrieved by a probe

query are actually useful. A link may be dead, too short or not HTML content. Long

HTML documents are truncated to a �xed byte length to prevent very long documents

(for example novels from Project Gutenberg2 or inventory lists from online catalogs) from

unduly inuencing the language model. Each remaining page is fetched using the URL that

the search engine returned, the HTML tags and any javascript or other scripting code are

removed, and the page is �ltered by a stoplist. The remaining content is stemmed, and the

resulting terms and their statistics are then added to an accumulating language model of

the contents of the search engine category being sampled. Our current collection selection

approach requires only document frequency information.

Once we have processed the pages retrieved by the initial probe query, another query

term is selected. All probe queries are single term queries, and currently the new probe

query is taken from a growing list of the total unstemmed vocabulary seen so far. Each

term in the vocabulary has an equal chance of being chosen as the next probe query, but

the terms are chosen without replacement (i.e., no term is used more than once as probe

query). The chosen term is used as the next query, and the process described above is

repeated until a stopping criterion has been met. For the work reported here, we sample

until 500 pages have been included in the language model. Work by Callan et al. [CCD99]

and Monroe et al. [MMF00, Mon00] suggests that a large portion of the most frequently-

occurring vocabulary can be identi�ed using a sample of 500 documents.

Clearly it is improbable that a �xed sample size is appropriate for all collections, espe-

cially given the potential for wide variability of the underlying population sizes. A exible

stopping criterion is more appropriate. For example, we would like to sample until the lan-

guage model is \good enough". Of course, de�ning \good enough" is a di�cult task even

when a full language model based on complete statistical information about a collection is

2http://promo.net/pg/
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available for comparison. We only have the option to collect information about changes in

the language model as we sample more documents from a collection. Initial investigations

geared towards identifying a exible stopping criterion are underway [MMF00].

The collection selection algorithms of interest to us all require information about the

document frequency of each term in the language model. Recall that the document fre-

quency dfij of a term tj in collection Ci is the number of documents in collection Ci

containing at least one instance of term tj. However, our sampled language model only

contains true df information for the sample, not for the entire collection. We can only es-

timate the document frequency of a term from a sample of size s if we know the size of the

underlying collection, jCij. If we know the collection size, we can estimate the document

frequency as

dfij
s
� jCij:

Unfortunately, we generally do not know jCj for any collection C that we sample. The

lack of knowledge of collection size, combined with the potential for stopping criteria that

produce samples of di�erent size, led us to investigate collection selection methods based

exclusively on the df proportions
�
dfij
s

�
. A preliminary study showing the e�ectiveness

of this approach can be found in [SPM+00]. However, we do not consider this approach

further in this chapter. For these experiments, we use �xed samples of 500 documents.

We assume that language models constructed from these samples are representative of the

underlying collections and use them directly.

10.3.4 Queries, Pages and Relevance Judgements

Having built language models for each of our 64 category-based collections, we needed

queries, retrieved pages and relevance judgements in order to evaluate our �ne-grained

metasearching approach.

The TREC-8 conference included a question and answer track with 200 short fact-based

topics (queries) phrased as simple questions. While we did not use the TREC documents or
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relevance judgements, we did want to use a set of independently-generated queries for our

experiments, so we began with this set of questions. Before retrieving any documents, we

eliminated some questions for which relevance rules might be ambiguous. For example, one

question asked Who was the Democratic nominee in the American presidential election?,

but did not specify which election year. We also removed questions for which the answer

might have changed recently, complicating the task of judging the documents. For example:

Who is the prime minister of Japan? We also eliminated questions for which we felt there

was a reasonable chance of �nding the answer in an image. While we did download page

images, our original plan had been to download only the text of the pages.

When we had �nished eliminating questions, 58 remained. An additional two questions

were later eliminated when we found that they were ambiguous, leaving 56 questions. For

each question (TREC topic), we formulated a short query statement. For each query, we

began by selecting 20 categories using the CORI collection selection approach over our

previously obtained sampled language models. We issued the query to each of the four

search engines at large, searching only the categorized pages, then to the 20 categories

individually. In each case, we stored the top 20 retrieved documents, keeping track of

which search engine or category returned each document. The documents were retrieved

and stored due to the changing nature of the WWW and search engines. For the four

search engines, we had the potential to retrieve 80 documents; for the 20 categories, 400,

yielding a total of 480 potential documents to judge.

Obtaining relevance judgements is time-consuming and tedious, prompting us to retrieve

documents from only the top 20 selected categories for each collection. While this choice

does not a�ect our �nal retrieval results, it does have unfortunate implications for our

ability to judge collection selection performance. Because we do not know how many

relevant documents are found in the unselected collections, we cannot use the Rn, bRn and

Pn measures de�ned in Chapter 5. Our ability to use the Rn, bRn and Pn measures is also

hampered because we do not know how many relevant documents we did not retrieve from

each selected collection. We will discuss implications of this later.
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Our next step was to completely anonymize the queries for the purpose of acquiring

relevance judgements. We renamed each downloaded page then sorted pages by the original

URL|it was impossible to tell from which engine or category a page had been retrieved.

It was also impossible to tell which general approach had yielded the page. In the case of

duplicate pages (exact same URL), we only judged one copy.

We then judged the pages based on whether or not they answered the whole question,

not just some portion of the question 3. We were also strict in our judgements. For example,

for question 77 shown in Table 10.2, it was not su�cient for a page to state that Marlon

Brando played Don Vito Corleone in \The Godfather". It was also necessary for it to be

clear that Vito Corleone was the title character. Despite the fact that these queries all have

simple answers, we assume that each page that answers the question is relevant. We were

able to expedite the acquisition of relevance judgements by requiring that terms from the

answer appear on a page in order to be judged. For example, for question 77, all pages that

did not include the term \brando" were automatically judged non-relevant. Only pages

that included the term \brando" were examined to see if they met our stricter criteria for

relevance.

At present, we have relevance judgements for all 56 queries. Table 10.2 contains a

summary of information about 10 representative queries from the set of queries that we

used. The ID is the original TREC topic number; we have also included the text of the

question asked. We show the total and unique number of pages downloaded by both

approaches, plus the number of relevant pages found by each approach. Note that there

may be overlap in the pages and relevant pages found by the two approaches. There are

three interesting things to note about Table 10.2. First, we have the potential to retrieve

up to 80 pages for each query for the search engines. However, in Table 10.2, we �nd that

we retrieve all 80 pages for only one of the 10 queries shown; in many cases we only retrieve

60 pages. For these 10 queries, this is due to a di�culty with the Yahoo search engine|for

some queries Yahoo may retrieve no pages, for others it may not retrieve all 20 allowed. We

3Gordon and Pathak [GP99] note that when fact-based questions are used relevance judgements by
experimenters are acceptable.
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URLs URLs RelevantQuery (TREC Q&A Topic)
engines 20 categories pages

ID Query text tot. uniq. tot. uniq. eng. cat.
33 What is the largest city in Germany? 60 60 360 306 4 6
77 Who played the part of the Godfather 60 60 318 280 2 2

in the movie, \The Godfather"?

What is the name of the promising
80 anticancer compound derived from the 61 61 274 243 19 40

paci�c yew tree?

82 How many consecutive baseball games 60 57 350 295 26 66
did Lou Gehrig play?

87 Who followed Willy Brandt as chancellor 60 60 254 225 17 15
of the Federal Republic of Germany?

125 In what city is the US Declaration of 80 74 350 230 6 4
Independence located?

173 How many moons does Jupiter have? 75 69 291 236 19 26

183 What was the name of the computer in 72 68 348 287 20 37
\2001: A Space Odyssey"?

193 Who was the 16th President of the 60 59 260 204 30 29
United States?

199 How tall is the Matterhorn? 60 60 295 259 5 6

Table 10.2: Characteristics of 10 of the 56 queries, showing total and unique pages
retrieved using both approaches, plus the number of relevant pages.

will revisit this di�culty with Yahoo shortly. Another interesting feature is the source of

relevant documents. Given that the four search engines retrieve up to 80 pages while the 20

categories can retrieve up to 400 pages, we would expect to �nd more relevant documents

retrieved by the categories. However, for many of the queries shown here, the numbers of

relevant documents per approach is similar. Finally, we �nd that some queries have very

few relevant documents; the implications of this will be discussed later.

10.4 Experimental Setup

The general approach of using search engine categories as a subdivision of the total content,

then applying a �ne-grained metasearching approach to searching is applicable to a broad

array of applications. However, the speci�c test environment that we described above,

including the stored pages, the queries and the relevance judgements, was created for a
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speci�c set of metasearching experiments, and as a result is slightly more limited. However,

it does allow us to perform a number of interesting comparisons. For our set of queries,

we can compare the performance of the individual search engines, the performance of

traditional metasearching and the performance of �ne-grained metasearching. We also have

the capability to study �ne-grained metasearching when smaller numbers of collections are

selected (i.e. we can use fewer than the twenty collections originally selected). We can

examine di�erent results-merging approaches and have the option of examining the results

when di�erent subsets of our queries are employed.

In this section, we provide some further details of the implementation of our experi-

mental environment, including a recap of our collection selection approach, how we issued

queries to the individual collections and our results merging approach.

10.4.1 Collection Selection

As we mentioned earlier, our language models are built from 500-document samples of each

collection. These 500-document samples are treated as representatives of the collections|

selecting the representative implies that the query will be sent to the original collection.

On a conceptual level, there is some question as to whether this is a viable approach. In

our current environment, we do not have access to the full language models, so we cannot

determine how representative the sampled language model is. However, earlier work has

shown that CORI collection selection holds up well for sample-based language models

[CPFC00, CBH00], so we begin with this approach.

Table 10.3 demonstrates the behavior of the collection selection approach in our exper-

imental environment. The score shown in the �rst column of the tables is a normalized

collection ranking. The top 10 highest-ranked categories are listed, along with the number

of relevant documents returned when the query is issued to the category. There are a

number of things to note here. At this point, we have not accounted for duplicates|the

same pages may have been retrieved via multiple categories. At this point, each category

will get credit for retrieving a relevant page, even if others retrieve it as well.
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TREC Q&A topic 80
Description: What is the name of the promising anticancer
compound derived from the paci�c yew tree?
Actual query: anticancer paci�c yew tree
Score Search Engine Category Rel. Docs
1.00 Yahoo business & economy
0.81 Yahoo social science
0.70 Altavista home
0.64 Altavista health 2
0.63 Northern Light health & medicine 20
0.61 Infoseek health 1
0.59 Yahoo government
0.59 Infoseek travel
0.52 Altavista regional
0.50 Altavista science

TREC Q&A topic 154
Description: How many Grand Slam titles did Bjorn Borg win?
Actual query: grand slam titles bjorn borg
Score Search Engine Category Rel. Docs
1.00 Yahoo entertainment
0.97 Infoseek sports 2
0.66 Altavista sports 1
0.61 Northern Light technology 1
0.58 Altavista arts 7
0.48 Altavista games
0.47 Altavista society 2
0.44 Infoseek arts & humanities
0.43 Yahoo arts
0.42 Altavista autos

TREC Q&A topic 173
Description: How many moons does Jupiter have?
Actual query: moons jupiter
Score Search Engine Category Rel. Docs
1.00 Altavista news 13
0.49 Northern Light science & mathematics 5
0.43 Altavista science 14
0.31 Infoseek science 5
0.29 Northern Light technology 2
0.25 Infoseek entertainment
0.24 Altavista arts
0.22 Yahoo entertainment
0.20 Infoseek education 5
0.20 Infoseek computing

Table 10.3: Three queries demonstrating collection selection behavior.
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We �rst consider the results on a qualitative level. Note that 3 of the 4 \health"

categories are suggested in the �rst 6 ranks of query 80. The \science" categories are

similarly represented in query 173. Query 154 shows more variability in the suggested

categories, choosing only two of the \sports" categories and a slightly wider variety of other

categories. Overall, these categories seem eminently reasonable. When we consider the

number of relevant pages available from each category, we note that there is variability in the

number of relevant pages available. On this point, we are at the mercy of both the selection

step and the ability of the search engine to locate and rank highly relevant documents within

the category. We �nd that there are di�erent numbers of relevant documents available to

each query but until we actually retrieve and merge the pages, the impact of this is unknown.

10.4.2 Issuing the Queries to the Collections

Each of the search engines that we employed was chosen because it provides the capability

to restrict a search to a single category and to the entire category hierarchy. While this is

generally accomplished by selecting check-boxes or pull-down menus on the search engine's

search page, the selections are embedded in the search URL, allowing us to achieve the

same results in a more automated fashion.

We used the default \simple search" protocol of each of the search engines to issue

each query to each selected category. This seemed a reasonable choice, given that this is

the default behavior of the search engines and this is the choice of most users [JSBS98,

SHMM99].

Of course, for our experiments, we do not re-fetch the pages. We simply use the stored

versions of the pages that were used to acquire relevance judgements.

10.4.3 Results Merging

As we discussed in Chapter 2, there are a number of di�erent approaches to results merging

that can be employed. For these experiments, we did not always have access to the docu-

ment scores used by the search engines to rank the documents. At the same time, we were
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aware that the results from some collections may be more relevant-rich than the results

from others. We chose to re-rank the retrieved documents using Excite for Web Servers

(EWS)4.

EWS has a number of appealing properties. Because it is intended for searching WWW

sites, it can automatically handle HTML documents. Because Excite was not one of the

search engines that we used for our test environment, EWS can serve as an independent

merge step. For example, if we had used Altavista to merge, there may be the potential

that documents originally retrieved from an Altavista category would be preferred in some

way during the merge.

EWS was used to index and rank all of the unique pages retrieved from the selected

collections. For our experiments, only pages with identical URLs were counted as dupli-

cates. The general problem of duplicate detection is beyond the scope of this work, but

has been considered by other researchers. For example, Yan and Garc��a-Molina [YGM95]

consider duplicate detection in the context of routing incoming documents to standing

queries, Gauch et al. [GWG96] consider duplicate removal for metasearching and Bharat

et al. [BBDH00] examine the problem of identifying mirrored WWW sites (replicated col-

lections in our parlance). For our experiments, given the original query, the EWS results

were the merged results for the multi-collection search.

Unfortunately, because the algorithm is not described and the source code is not dis-

tributed, EWS is a black box results merging step. While the document rankings that are

returned appear to be quite good overall, we cannot comment upon features of the ranking

algorithm that we use for merging.

10.5 Preliminary Results

In this section, we present preliminary results from our metasearching and �ne-grained

metasearching experiments. Overall, our results are inconclusive as to retrieval e�ective-

4http://www.excite.com/navigate
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ness, due to some issues with our underlying data set5, nonetheless the results are in-

structive. We will comment upon this as we discuss the results and present suggestions

for improvement. However, the main thing to take away from this chapter is that multi-

collection information retrieval approaches can be applied successfully in an operational

environment.

All results are presented in two versions. For each table, subtable (a) represents results

for all 56 queries. However, query-by-query analysis of the results revealed that there are

many queries for which there are very few relevant documents. All approaches appear to be

similarly a�ected by these queries and the overall a�ect is to depress the average precision

values. We elided all queries for which there are less than 20 unique relevant documents

across all search engine categories and category trees (i.e. less than 20 unique relevant

documents out of the potential 480 judged pages). This alternate view of the data is shown

in sub-table (b) of each table.

10.5.1 E�ectiveness of Traditional Metasearching

Our �rst step was to verify the usefulness of traditional metasearching for our test environ-

ment. Given our relevance judgements, we examined precision at 5, 10, 15 and 20 documents

for each of the four engines individually and for the merged traditional metasearch results.

Tables 10.4(a) and (b) show the results. The most striking feature of both sub-tables is the

apparently very poor performance of Infoseek and Yahoo (a di�culty with Yahoo was �rst

noted in conjunction with Table 10.2). Both Infoseek and Yahoo appear to have fallen prey

to our multi-term queries. While we cannot tell exactly how Infoseek and Yahoo process

queries, it appears that pages are required to contain all query terms. In addition, Yahoo

appears to index very little information about pages in its category structure. As a result,

for many queries Infoseek and Yahoo return very few documents (the number of queries for

which an engine returned at least one page is noted in the table heading). This factor is

5As we will note in a moment, there were issues with Infoseek and Yahoo regarding our multi-term
queries. In addition, we use at most 56 queries for these experiments. Buckley and Voorhees [BV00]
recommended that at least 100 queries be used when evaluating using precision at 20 documents.
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Precision Metasearch Altavista Infoseek Northern Light Yahoo
at Rank (54 queries) (54 queries) (51 queries) (54 queries) (29 queries)

5 docs 0.404 0.230 0.098 0.422 0.097
10 docs 0.432 0.194 0.071 0.422 0.066
15 docs 0.430 0.175 0.052 0.396 0.060
20 docs 0.414 0.151 0.045 0.399 0.057

(a)

Precision Metasearch Altavista Infoseek Northern Light Yahoo
at Rank (26 queries) (26 queries) (26 queries) (26 queries) (17 queries)

5 docs 0.592 0.377 0.162 0.608 0.165
10 docs 0.669 0.319 0.123 0.619 0.119
15 docs 0.654 0.290 0.092 0.600 0.098
20 docs 0.648 0.252 0.079 0.619 0.094

(b)

Table 10.4: Comparison of engine and metasearch performance for (a) all 56
queries and (b) the 26 queries with at least 20 relevant documents.

unfortunate on a number of fronts. First, the performance results for these search engines

is depressed. Second, this in turn a�ects the metasearch results di�erently for each query.

Third, when categories from these search engines are selected for �ne-grained metasearch-

ing, no documents may be returned. This can a�ect the �ne-grained metasearching results

for a given query in unpredictable ways, depending on the number of categories from these

search engines that are selected.

This issue aside, the main result to take away is that, despite problems at the constituent

search engines, metasearching generally outperforms even the two best constituents. Also

note that the same general performance trends are seen for all 56 queries and the 26 queries

with at least 20 relevant documents. The primary di�erence between the two sets of queries

is in the numeric values of the scores.

10.5.2 Metasearching vs. Fine-Grained Metasearching

Our next step was to compare the more highly focused �ne-grained metasearching to the

traditional metasearching approach. Tables 10.5(a) and (b) show the results.

Our initial approach was to issue the queries to all 20 collections selected using CORI,
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Precision 20 cat 10 cat 4 cat 4 cat 4 cat

at Rank Metasearch (CORI) (CORI) (CORI) (RBR) (RBR)

(local) (CWI)

5 docs 0.404 0.426 0.382 0.293 0.441 0.467
10 docs 0.432 0.432 0.352 0.276 0.419 0.459
15 docs 0.430 0.417 0.341 0.249 0.419 0.441
20 docs 0.414 0.385 0.323 0.232 0.411 0.421

(a)

Precision 20 cat 10 cat 4 cat 4 cat 4 cat

at Rank Metasearch (CORI) (CORI) (CORI) (RBR) (RBR)

(local) (CWI)

5 docs 0.592 0.639 0.554 0.431 0.615 0.654
10 docs 0.669 0.662 0.570 0.442 0.612 0.654
15 docs 0.654 0.649 0.562 0.410 0.623 0.651
20 docs 0.648 0.604 0.542 0.389 0.621 0.633

(b)

Table 10.5: Comparison metasearch and �ne-grained metasearch performance for
(a) all 56 queries and (b) the 26 queries with at least 20 relevant documents.

merge the results, then compare to the traditional metasearch results. The average numeric

performance was sometimes better and sometimes worse than traditional metasearch.

Unfortunately, a direct comparison of traditional metasearching using four search en-

gines and category metasearching using 20 selected categories is less than satisfying. While

the �ne-grained category metasearching searches a smaller set of documents (each category

is a subset of the documents in the whole category tree), the e�ort expended in terms of

network tra�c and searches executed is not comparable, making it di�cult to comment

upon any e�ciency gain �ne-grained metasearching might eventually provide. In addition,

20 collections selected represents approximately one third of the available collections. For

scalability reasons, we would prefer to be able to search a smaller subset of the collections.

As a result, we also considered performance when both ten and four categories are

selected. We chose to examine selecting four categories because that allows network tra�c

and number of queries issued to be held constant. While the full category tree searches
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have a much larger set of documents to work with during initial retrieval, the hope is that

the set of documents available to the selected categories was more relevant-rich.

We note a steady decline in retrieval e�ectiveness performance when ten, then four

categories are selected. The results when only four categories are selected are much worse

than the traditional metasearching results. We considered the possibility that our selec-

tion step performed poorly in selecting just the top four collections. To test for this, we

performed selection using the RBR6 selection baseline. For this approach, we selected the

four categories with the most relevant pages (i.e. used an oracle for category selection).

Note that we did not account for duplicates|there may exist a case for which the second

selected category was not in fact the best choice because it contained pages already found

by the �rst selected category.

These results are reported in Tables 10.5 (a) and (b), column \4 cat (RBR) (local)".

There was substantial improvement over the original \4 cat (CORI)" results, and perfor-

mance approaches that seen for traditional metasearch. This implies that poor selection

was a major cause of the poor performance of \4 cat (CORI)".

An additional observation prompted another experiment. We noticed a disturbing trend

when examining the raw results of \4 cat (RBR)". The ranks of some relevant documents

had in fact degraded from the ranks seen when twenty categories were selected (i.e. non-

relevant documents were now being ranked ahead of relevant ones). This e�ect would not be

seen if we simply removed documents from un-selected collections from the ranking. This

e�ect is due to a change in merging. While we do not know the exact algorithm of EWS,

we do know that when only four categories are selected, the merge algorithm has a much

smaller pool of pages from which to draw statistical information. Given a homogeneous set

of pages (like we would get if, as we intended, we selected pages from the same general topic

or category area), the collection statistics might not be accurate [VF95b]. While our recent

research, reported in Chapter 9, has suggested that CWI might not be necessary given

good selection, given our current very small sample of pages, it might be necessary. To

6Note that for these experiments, RBR means the best four collections of the original 20 selected.
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test this possibility, we selected the best four categories but we merged using the statistical

information for the pages from all 20 categories. These results are shown in Table 10.5

as column \4 cat (RBR) (CWI)". The use of CWI did lead to a small increase in average

performance.

10.6 Discussion and Future Work

In this chapter, we have shown that the multi-collection retrieval techniques covered in

Chapter 9 are applicable to an operational WWW-based environment. We have described

a novel application of data decomposition to web searching and metasearching and have

demonstrated the feasibility of acquiring the necessary summary statistical information by

query-based sampling. The technique is readily adaptable to the search engine technology

deployed today.

Our evaluation of the approach was hampered by data issues which we are currently

working to resolve. Throughout the chapter, we noted speci�c experimental points that

need to be addressed. The primary point to be addressed is the way in which queries are

issued to the underlying search engines. For some search engines, the default operation is

not well suited to multi-term queries such as those that we use.



11

Conclusions

This dissertation reports the results of a large empirical study that has produced a number

of interesting �ndings that can be usefully applied to the engineering of single- and multi-

collection information retrieval systems. We have presented detailed results on a number

of fronts; unfortunately, this may have obscured the broader picture. The overall problem

that we have addressed has been information retrieval in a multi-collection environment.

This problem presents challenges beyond those of traditional single-collection information

retrieval because, in addition to being concerned about e�ective retrieval at each of the

multiple collections, we must also be concerned with e�ectively selecting the collections to

which queries should be sent and then merging the individual results lists. Our experiments

have focused primarily upon comparing collection selection techniques and determining

their impact upon multi-collection retrieval.

We begin by briey summarizing our �ndings, then outline the major contributions of

this work. We conclude with remaining work to be considered and �nal comments.

11.1 Summary of Findings

Here we summarize the key points of our �ndings, focusing on collection selection and its

impact on multi-collection information retrieval. We also consider the applicability of these

approaches to an operational WWW-based environment.

213
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11.1.1 Collection Selection

A large portion of this dissertation (Chapters 6{8) has been concerned with the collection

selection step of multi-collection information retrieval.

We conducted comparisons of three published approaches, CORI [CLC95], gGlOSS

[GGM95] and CVV [YL97] using six test environments. Among those published ap-

proaches, CORI consistently performed the best for our test environments.

On a more detailed front, we found that all approaches that we considered exhibit

some degree of positive correlation with SBR (the number of documents per collection).

A positive correlation with SBR is not necessarily a detriment; the number of relevant

documents per collection also tends to be correlated with SBR. However, gGlOSS exhibits

a very strong positive correlation with SBR, which led to performance downfalls for some

of our test environments. With a few exceptions, we also found that, on average, CORI,

gGlOSS and CVV all tend to perform better than the expected performance of selecting

collections at random. While not surprising, this �nding is reassuring, suggesting that the

e�ort being expended on collection selection is bene�cial.

CORI is an instance of a df �icf approach. We also investigated variations of the general

df � icf approach. We found that while the df component normalization of CORI is the key

to its slight performance advantage, overall, the basic df �icf appears to be very sound. This

is very interesting because df �icf approaches tend to require less statistical information from
collections than gGlOSS and to have simpler computations than gGlOSS and CVV. The

very simple document frequency information required by df � icf approaches tends to make

them more easily applicable to collections using di�erent information retrieval systems,

so long as resolution of any vocabulary di�erences can be performed. Finally, CORI has

been shown to hold up well using incomplete language models. This suggests that CORI is

particularly useful for environments where the full cooperation of the underlying collections

cannot be gained.

We hope that with these experiments we have helped to resolve, or at least clarify the

ongoing debate about whether detailed statistical information about collections is necessary
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or useful. There is still substantial room for collection selection improvement, so an as-yet-

unforeseen use of detailed information may eventually prove to be useful. However, our

experiments showed simpler approaches to be more e�ective.

11.1.2 Multi-collection Information Retrieval

In Chapter 9 we considered the question of the impact of CORI and RBR collection selec-

tion on multi-collection information retrieval. Once again, we performed our experiments

using six test environments utilizing three di�erent document testbeds. We gathered a

varied set of �ndings from these experiments.

First, we found that when very good selection is employed, multi-collection retrieval

can outperform retrieval in an equivalent single-collection environment. This veri�ed for

a broad array of test environments an e�ect mentioned by Xu and Croft [XC99] and seen

by Voorhees et al. [VGJL95] and Craswell et al. [CBH00]. This result suggests that single-

collection performance is not necessarily the gold standard that we should be aiming for.

It is possible for multi-collection searches to achieve better retrieval performance.

Second, we found that it is possible to achieve good document retrieval performance by

selecting a small number of heterogeneous collections. This bodes well for the scalability

of multi-collection information retrieval systems. At the present time, the use of a multi-

collection information retrieval system may be an engineering choice or may be imposed

by external circumstances. This �nding, and the previous one, suggest that environments

such as these need not be a performance liability and in fact may become a performance

advantage.

Third, we have observed that we can conceptually decompose a single collection into

subcollections and by introducing a selection step it is possible to achieve better perfor-

mance than by searching (ranking) the entire collection. This observation is hinged upon

improvements in collection selection; however, we �nd that selection plus ranking has the

potential to improve the e�ectiveness of ranking alone. Moreover, we can use a simple raw

score merge in this case and nothing more elaborate.
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Fourth, we have found that the use of collection-wide information is a complex issue.

While this is not a surprise, it is important to re-iterate that this is something to consider

carefully during system design. Given the scenario in the third observation above (labeled

multi-CWI in Chapter 9), the straightforward approach of using already-available CWI plus

a raw score merge produced good results. However, given a pre-existing multi-collection

environment, using local information works well if collection selection is employed and the

document scores are suitably normalized before merging is performed. Yet, we found in

Chapter 10 that if we are dealing with small collections or small samples of collections,

CWI can be useful.

With these experiments, we sought to determine the degree to which collection selection

would have an impact on multi-collection retrieval performance. We believe that we met

this goal and have provided concrete conclusions that can usefully guide the engineering of

large-scale multi-collection information retrieval systems.

11.1.3 Metasearching

In Chapter 10, we addressed the question of whether laboratory-based multi-collection in-

formation retrieval techniques could be applied to the World Wide Web. We described a

novel application of data decomposition to web searching and metasearching and demon-

strated the feasibility of acquiring the necessary summary statistical information by query-

based sampling. We encountered some data-based issues in our experiments; however,

these experiments represent a useful feasibility study and showed that the multi-collection

retrieval techniques covered in Chapter 9 are applicable to an operational WWW-based

environment.

11.2 Contributions

This work makes two primary contributions, listed here in experimental order. First, our

comparison of collection selection approaches showed that e�ective collection selection can
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be performed using very limited collection information (document frequency). We hope

that this clari�es the debate about whether more detailed statistical information is required.

Second, our investigation of the impact of collection selection on multi-collection retrieval

showed the impact of selecting di�erent numbers of collections and showed on a broader

scale than previously seen the potential to exceed equivalent single-collection performance.

The environments required to conduct these experiments, and the process of describ-

ing the experiments have led to a number of related contributions. First, we conducted

experiments using six test environments utilizing three testbeds. We constructed two of

those testbeds and have made the details of construction available so that they can be

used by other researchers. We have also characterized features of all three testbeds and

used those features to shed light on collection selection performance. In the process of

describing our experiments, we have introduced notation for describing multi-collection ex-

periments such as those conducted here, and for describing multi-collection experimental

environments. Finally, the evaluation methodology for collection selection experiments is

not as standardized as the methodology for document retrieval. We collected a variety of

evaluation measures for use in these experiments, showed relationships among them and

discussed expected random performance under the measures.

The collection selection experiments of the �rst major contribution above also yielded

additional contributions. We performed a direct comparison of three competing collection

selection approaches and analyzed reasons for observed performance di�erences, includ-

ing a consideration of features of the experimental test environments. We abstracted the

approach that performed best in our comparison of collection selection approaches and

examined the impact of its constituent components, isolating the di�erence that is key to

its success.

In the process of conducting the experiments for the second major contribution, we

found that for all six test environments, good collection selection of a subset of collections

can yield data item retrieval results superior to those when all data items are located in

an equivalent single collection. We presented an interpretation of multi-collection environ-
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ments that allows these techniques to be layered on top of existing single collection systems.

We also revisited the issue of collection-wide information in multi-collection retrieval.

Finally, we have studied the multi-collection retrieval approaches discussed here in a

WWW metasearch environment. We reported preliminary e�ectiveness results, plus an

experience report of issues faced when applying these techniques to a heterogeneous oper-

ational environment.

11.3 Future Work and Summary

Two avenues of remaining work are apparent. For the WWW-based experiments reported

in Chapter 10, we pointed out that while our results are instructive and serve as a valuable

experience report, they are inconclusive regarding retrieval e�ectiveness due to data issues.

Throughout that chapter, we pointed out issues that need to be addressed. We plan

to address those issues and to conduct further experiments to gauge the e�ectiveness of

these techniques in a WWW environment. In addition, throughout this disseration we

have noted instances where query-speci�c issues have impacted average performance. For

example, some queries have very few relevant documents or have relevant documents in few

collections. A detailed examination of results reveals that collection selection and document

retrieval performance can vary signi�cantly on a query-by-query basis. We believe that an

in-depth study of query-speci�c performance would be instructive.

To summarize, we set out to increase understanding of collection selection and its impact

on multi-collection information retrieval. We have studied di�erences in collection selection

algorithms and shown how improvements in these algorithms have the potential to impact

multi-collection information retrieval. With the experiments reported here and the analysis

of collection-speci�c issues, we have improved understanding of the problem, clari�ed a

number of issues and shown the importance of continued research into improving collection

selection. We have given speci�c guidance that can be applied to the engineering of large-

scale multi-collection and single-collection information retrieval systems.
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Making Fair Comparisons

When performing our early comparisons of gGlOSS and CORI discussed in Chapter 6, we

wanted to be certain that any di�erences in performance were due solely to di�erences in

the algorithms. One concern was that subtle underlying di�erences in parsing, tokenizing,

stopping, stemming, or indexing could be a�ecting the two approaches di�erently.

These subtle di�erences existed because we were

� attempting to replicate the published version of gGlOSS [GGM95], and

� using an o�cial distribution of CORI.

Figure A.1 illustrates the di�erences found and our steps to control for those di�erences.

Published gGlOSS results were obtained using SMART indexes of the underlying collec-

tions, while the authoritative version of CORI uses statistical information gleaned from

Inquery indexes. These implementations are denoted by the heavy arrows in Figure A.1.

SMART and Inquery di�er slightly in the tokenizer, stoplist and stemmer used1. There

was also the potential for slight di�erences in parsing the original TREC SGML document

format provided by NIST. Finally, Inquery and SMART also di�ered in their overall index-

ing approach. The di�erent indexing approach is a factor only for gGlOSS, which uses term

weight information and document-query similarities. Overall, the potential for variability

1A tokenizer breaks a text document into words or tokens for indexing, a stoplist removes extremely
common words such as articles, and a stemmer compresses the indexing vocabulary by removing word
su�xes.
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Figure A.1: Ensuring a fair comparison.

was greater for gGlOSS than for CORI. CORI relies primarily on document frequency

information and as a result is a�ected by vocabulary di�erences caused by di�erences in

the parser, tokenizer, stoplist and stemmer. gGlOSS is sensitive to these di�erences plus

the di�erences in indexing.

Please note that these comparisons were performed during early stages of the exper-

iments. As a result, the \very long" queries were used. The experiments reported here

use the same test environment as was used in Chapter 6, (SYM-236;Qvl;JTREC4). The

graphs shown here are directly comparable to those shown in Chapter 6 but due to query

di�erences, vary from those shown in Chapters 7 and 8.

A.1 Two Versions of CORI

For the purpose of the algorithm comparisons reported in French et al. [FPC+99b] and

summarized in Chapter 6, it was necessary to guarantee that the same indexing vocabulary

was used by gGlOSS and CORI. To control for the aforementioned di�erences in parsing,
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tokenizing, stopping and stemming, we synthesized pseudo-documents for each collection.

We used the stemmed and stopped vocabulary from the SMART indexes used for earlier

gGlOSS experiments [FPV+98], emitted each term tf times, and padded the document

back to it original length with a fake word. Inquery was then run with stemming o� and

a single word stoplist (the fake word). It was also necessary to handle special characters

di�erently. For example, the SMART default would be to treat smith@virginia.edu as a

single indexable unit (token), while the Inquery default would be to create three tokens:

smith, virginia and edu. To ensure that the same vocabulary was used, it was necessary

to override the Inquery default. The end result was that Inquery indexed exactly the same

vocabulary that SMART did in the earlier experiments.

CORI was constrained to use the same vocabulary as gGlOSS to enable a straightfor-

ward comparison between the two approaches. However, the potential still existed that

by doing this we had hampered the overall performance. For example, the Inquery tok-

enizing, parsing, etc. might have lead to better CORI or gGlOSS performance. As an

initial check, we also ranked the collections using CORI with Inquery defaults then eval-

uated the ranking. We compared the average CORI performance results using the two

underlying indexing approaches. These results are shown in Figure A.2. The plot of CORI

using Inquery indexing is labeled CORI-UMass and the vocabulary-controlled version is

labelled CORI-UMass-V The average performance results using Inquery default indexing

were nearly identical to the CORI results using the controlled vocabulary.

There was some some signi�cant di�erence between the two CORI results. In Figure A.2

signi�cance is shown at the very bottom of the graph. Points for which the Inquery version

of CORI signi�cantly outperforms the SMART version are marked. Both versions of CORI

outperformed Ideal(0); the impact of the CORI di�erences was negligible2.

2The only di�erence in signi�cance was when n = 141 collections had been selected. The Inquery version
of CORI outperformed Ideal(0) signi�cantly while the vocabulary-controlled version did not.
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Figure A.2: CORI using Inquery stats vs. CORI using SMART stats

A.2 Two Versions of Ideal(0)

The second half of our vocabulary resolution experiments were prompted when examining

the comparison results covered in Chapter 6.

The immediate question was why CORI approximated the RBR baseline more closely

than gGlOSS Ideal(0). Our initial observation was that the performance di�erences could

be due to indexing di�erences. Our initial gGlOSS experiments were intended to reproduce

the experimental setup of Gravano and Garc��a-Molina [GGM95]. As a result, we used

the exact underlying retrieval engine and parameter settings reported|SMART using ntc

weights for document terms and nnn weights for query terms.

It has been shown that using di�erent weights and normalization approaches in SMART

improves document retrieval performance for the large TREC collections [BAS93, BSA92,

SBM96], so we considered that Inquery, shown to perform well at TREC, might provide

better-tuned indexing information. Therefore, we used the underlying Inquery collection

indexes|used to generate the CORI inference net|to generate an additional Ideal(0)



A.2. Two Versions of Ideal(0) 223

baseline based upon the Inquery indexing information. We will refer to the new Ideal(0)

baseline as Ideal(0)-inquery. If Ideal(0)-inquery approximated RBR more accurately than

Ideal(0), it would imply that the indexing weights used by Inquery provided a better input

to the gGlOSS algorithm. In this case, it would be more representative to compare the

CORI performance to that of Ideal(0)-inquery than to that of Ideal(0) (labeled Ideal(0)-

smart in Figure A.3 for clarity). The comparisons of Ideal(0) and Ideal(0)-inquery to

baseline RBR for evaluation measure Rn are shown in Figure A.3. Points for which the

SMART version of Ideal(0) signi�cantly outperforms the Inquery version are marked on

Figure A.3.

Note that, in fact, the performance of Ideal(0) declined when the Inquery weighting

information was used. While there may exist weighting schemes that yield better Ideal(0)

performance, it was not our goal to uncover them. We merely wished to verify that the

already-available Inquery indexes did not yield superior Ideal(0) performance.

Closer examination revealed that document-query similarity scores produces by Inquery

tend to fall within a more compressed range than the scores produced by SMART using

the ntc:nnn parameters. An examination of the Ideal(0) computation reveals that these

similarity scores are summed during the computation. The compressed range of values

for Inquery scores exacerbates the tendency of Ideal(0) to prefer large collections (see

the discussion of the correlation between Ideal(0) and SBR in Chapter 7). We used the

SMART versions of both Ideal(0) and CORI for the comparisons reported in French et al.

[FPC+99b].

At the time of these comparisons, we were not certain what aspect of the CORI database

selection algorithm was responsible for its performance di�erence. We conjectured that to

gGlOSS a database with many documents of low similarity may appear more useful than

a database with a few documents of high similarity [FPV+98]. We also considered the

possibility that CORI was utilizing a better length normalization strategy that allowed it

to avoid this di�culty. These issues are discussed in more detail in Chapter 8.
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Figure A.3: Ideal(0) using Inquery stats vs. Ideal(0) using SMART stats.

A.3 UVA Implementation of CORI vs. O�cial (UMass)

CORI

Because the distributed version of CORI is intended for use with Inquery, it is not straight-

forward to build a CORI selection index over statistical information produced by an al-

ternate indexer. The approach that we described above of fabricating pseudo-documents

to be indexed by Inquery was cumbersome. As a result, we implemented a version of the

published CORI algorithm that used directly the df information provided by an alternate

indexer.

The UVA implementation of CORI was used for the collection selection comparisons

reported in Chapters 6, 7 and 8 so that the algorithms could be compared using identical

vocabularies. However, having veri�ed that CORI is a reasonable choice for selection, when

we moved to the document retrieval experiments in Chapter 9 we used the authoritative

University of Massachusetts (UMass) version of CORI.

Here, we summarize experiments performed to verify the e�ectiveness of the UVA im-
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plementation of CORI. First, we compare three di�erent versions of CORI : the two versions

presented in Figure A.2 and the UVA implementation. This comparison is performed us-

ing the \very long" query formulation and the SYM-236 testbed. We later present the

authoritative UMass and UVA versions of CORI results for short and long queries using

the SYM-236, UDC-236 and UBC-100 testbeds. We use the UVA version of CORI when

performing the comparisons presented in Chapters 7 and 8 to enable a more straightforward

comparison. However, the authoritative UMass version of CORI often performs slightly

better, so we present those performance curves here for reference.

A.3.1 The UVA Implementation of CORI

The �rst two versions of CORI are shown in Figure A.2; the third is our implementation

of the published algorithm. To quickly summarize, the CORI belief values are computed

as follows. A more detailed discussion of CORI can be found in Chapter 7.

The belief p(rkjCi) in collection Ci due to observing query term rk is determined by:

T =
df

df + 50 + 150 � cw=cw

I =
log

�
N+0:5
cf

�
log (N + 1:0)

p(rkjCi) = 0:4 + 0:6 � T � I (A.1)

where:

df is the number of documents in Ci containing rk,

cf is the number of collections containing rk,

N is the number of collections being ranked,

cw is the number of words in Ci, and

cw is the mean cw of the collections being ranked.

The df values are available from the F matrix that is maintained for use by other

selection algorithms. The icf values can be computed using the F matrix. That leaves
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only the cw values, the number of words in a collection prior to stopping, stemming, etc.

Given access to the collections, determining that value is straightforward.

Given this required information, we computed a belief value for each collection using the

published algorithm. The belief in a collection is the average of the p(rkjCi) values for each

query term. Ranking collections using these belief values produces our new CORI-UVA

rankings.

The three versions of CORI are shown in Figure A.4. The average performance curves

appear nearly identical; however, there is some signi�cant di�erence between the implemen-

tations (paired Wilcoxon, p = 0:05). Pairwise signi�cance is shown in the lower portion of

Figure A.4. For each comparison, the baseline is no signi�cant di�erence (NSD); the plot

shifts to one of the approaches when that approach is signi�cantly better than the approach

with which it is paired.

The CORI-UVA rankings di�er from the CORI-UMass ranking in vocabulary. There

is also the possibility of subtle di�erences in the calculation of cw between CORI-UVA and

the other two rankings.

A.3.2 Full UVA and O�cial CORI results

Figure A.5 shows both the UMass and UVA CORI results for the SYM-236, UDC-236 and

UBC-100 testbeds using short and long queries. The UVA results are used for the selection

algorithm comparisons presented in Chapters 7 and 8. The o�cial results are used for the

retrieval experiments in Chapter 9.

Overall, the average performance of the two implementations is very similar. The

greatest di�erence can be seen when the short queries are used. Signi�cance values are

also provided for Figure A.5. Signi�cance was computed using the paired Wilcoxon test at

p = 0:05 and is denoted using the black and gray bars at the bottom of the �gures. Black

marks denote values of n for which CORI-UMass signi�cantly outperformed CORI-UVA;

gray marks denote values of n for which CORI-UVA signi�cantly outperformed CORI-

UMass; no mark denotes no signi�cant di�erence.
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Figure A.4: Three versions of CORI, plus signi�cance of comparison. SYM-236

testbed, very long queries.
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Figure A.5: A comparison of the UVA and UMass implementations of CORI.
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Signi�cance Testing

B.1 Paired Data

In the experiments presented here, the comparisons between competing approaches were

performed using the same set of queries. Therefore, the performance results for a query

qi in one approach are paired with the results for qi in the second approach. Signi�cance

tests that assume independent random samples are not appropriate in this case because the

variability of the performance of an approach on di�erent queries obscures the di�erence

between the two approaches. Instead, paired signi�cance tests were used.

Descriptions of paired signi�cances tests can be found in many statistics textbooks.

The use of these approaches in information retrieval was summarized by Hull [Hul93].

When performing a paired signi�cance test, we assume that two retrieval techniques

A and B are being compared and that at a given evaluation point, both A and B have

some evaluation score for each query, using the same evaluation measure. Ai is the score

of approach A and Bi is the score of B for query qi.

B.2 Paired t-test

This description is a summary of the de�nitions given in Hull [Hul93], Ott [Ott93] and

McClave and Dietrich [MF94] but can be found in many intermediate statistics textbooks.

229
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De�ne Di = Ai � Bi for queries i = 1 : : : n. The null hypothesis is that there is no

di�erence between the two approaches.

Here we summarize the one-tailed test for determining of approach A is signi�cantly

better than approach B. Let Di = Ai � Bi for queries qi, i = 1 : : : n. The null hypothesis

is that there is no di�erence between the two approaches.

H0 : �A = �B

Ha : �A > �B

Test Statistic : t =
D

s(Di)=
p
n
; where

D =
1

n

nX
i=1

Di is the sample mean of the paired di�erences and

s(Di) =

vuut 1

n� 1

nX
i=1

(Di �D)2 is the sample standard deviation.

For a speci�ed value of � and n� 1 degrees of freedom, reject H0 if t > t�.

The paired t-test assumes that the di�erences Di are normally distributed and becomes

less reliable if that assumption does not hold. This distribution under H0 is Student's t

distribution with n� 1 degrees of freedom.

B.3 Paired Wilcoxon Signed-Rank Test

The paired Wilcoxon signed-rank test is a non-parametric test and does not have the

normality assumption of the paired t-test. This test is based upon ranking the di�erences

between competing approaches.

Assume that we wish to determine if some retrieval or selection approach B tends to

outperform an alternate approach A over a set of n queries. This comparison calls for a

one-tailed comparison.
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First, we de�ne Di = Ai � Bi for queries qi, i = 1 : : : n. Ai and Bi are respectively

e�ectiveness scores for approaches A and B applied to query qi. We discard any queries for

which Di = 0, leaving k queries. Next sort the absolute values of the di�erences, keeping

track of the sign for later use. Rank the sorted di�erences, using the midrank in case of ties.

T+ and T�, de�ned below, are calculated by summing the ranks of positive and negative

di�erences, respectively.

k = the number of queries for which Di 6= 0:

T+ = the sum of the ranks of positive di�erences.

T� = the sum of the ranks of negative di�erences.

If approach B tends to outperform approach A, we would expect that for paired values

Bi > Ai, yielding a larger number of negative Di values. As a result, T� will be large and

T+ will be small. If T+ is below a speci�ed threshold, we will accept the hypothesis that

approach B tends to perform approach A.

Given the de�ned values, the Wilcoxon test is performed as follows. The test is di�erent

for k � 25 and k > 25.

H0 : There is no di�erence between approach A and approach B.

Ha : The e�ectiveness of approach B tends to be greater than that of

approach A.

Test Statistic (k � 25) : T+

For a speci�ed value of �, and number of non-zero di�erences k, reject H0 if the value of T+
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is less than or equal to the appropriate entry in a table of critical values for the Wilcoxon

signed-rank test.

Test Statistic (k > 25) : z =
T+ � k(k+1)

4q
k(k+1)(2k+1)

24

For a speci�ed value of �, reject H0 if z < �z�.



C

Hypergeometric Distribution

The following is taken from [Lar74] but can be found in any introductory probability

textbook.

De�nition 2 An urn contains M balls of which W are white. Let X denote the number

of white balls that occur in a sample of n balls drawn at random from the urn without

replacement. X is called the hypergeometric random variable.

Theorem 6 If X is the hypergeometric random variable, then

pX(k) =

0B@ W

k

1CA
0B@ M �W

n� k

1CA
0B@ M

n

1CA
; k = 0; 1; :::; n:

The mean, �X , and variance, �2X , of the hypergeometric random variable X are given

by

�X =
nW

M

and

�2X =
nW

M
� M �W

M
� M � n

M � 1

respectively.
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