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Abstract 

The number and complexity of transcriptional regulators (TR) make identification of these proteins that 

function within cancer difficult. However, identification of TR can lead to better targets for cancer therapies 

and provide a more concrete understanding of cancer genomics for other researchers. Current methods to 

measure genome-wide TF have limitations due to accuracy and scalability and pipelines, such as Chicdiff 

and Selfish, are only effective when analyzing binding patterns of a chosen transcriptional regulator. To 

improve on current identification methods, we developed a computational pipeline for analyzing tumor Hi-

C data by incorporating existing and novel computational methods, BART3D and HiC-Pro. We applied the 

pipeline to colorectal cancer (CRC) as the epigenetics of CRC are still not well understood and it is the 

third most common cancer diagnosed in the US. The computational method HiC-Pro was utilized to 

produce normalized contact maps from raw, paired-end fastq data. These contact maps were used within 

BART3D, which leverages over 7,000 transcriptional regulator binding profiles from the public domain to 

infer those regulators that are associated with genome-wide differential chromatin interactions. The top 20 

TRs associated with either increasing or decreasing chromatin interactions were identified in CRC. 

Literature review was conducted on the ranked list of TRs and revealed supporting evidence of these TRs 

within colorectal and other cancers. 
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Introduction 

Cancer is a complex disease involving multiple 

layers of dysregulation in the genome, epigenome, and 

higher-order genome organization. A key regulator of 

genome organization is CCCTC-binding factor (CTCF), 

which has critical functions in 3-dimensional (3D) genome 

organization, especially looping1. It has been shown that 

CTCF binding can be induced by other transcription factors 

to regulate oncogenic gene expression2,3. A number of 

computational frameworks have been developed to study 

functional regulators like CTCF at these different levels. 

Previously, Binding Analysis for Regulation of 

Transcription (BART) and BART3D have been 

developed4,5. These computational tools rely on publicly 

available ChIP-seq data sets to rank putative transcriptional 

regulators that control differential expression (BART) or 

differential chromatin interactions (BART3D) in a 

treatment group versus control. Where BART takes in a 

gene list, scored region set, or ChIP-seq reads, BART3D 

relies on interaction matrices as input, like those produced 

by HiC-Pro. HiC-Pro is a computational tool capable of 

taking in raw fastq files from chromatin conformation 

capture methods and processing them to raw and 

normalized contact maps. 

 

Currently, pipelines exist that perform differential 

analysis of Hi-C data. These include Chicdiff and Selfish. 

Chicdiff is a powerful computational tool for analyzing Hi-

C data and the detection of differential interactions. The 

authors validated Chicdiff on human monocytes and 

confirmed associations between promoter regions and gene 

expression. Much like Chicdiff, Selfish is a novel tool for 

measuring reproducibility of Hi-C replicates and 

differential chromatin interactions. Chicdiff and Selfish 

both accomplish differential analysis in a locus-to-locus 

manner. While these methods are effective at analyzing 
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short, specific regions of the genome, they are only effective 

when analyzing binding patterns of a chosen transcriptional 

regulator. In order to identify potential transcriptional 

regulators for experimental confirmation, the differential 

analysis would need to be genome-wide while maintaining 

high resolution. To this end, we developed hic3d, a 

computational pipeline that combines the function of 

constructing interaction matrices, whole genome 

differential interaction identification, and putative 

transcriptional regulator prediction.  We applied hic3d to 

 

Fig. 1. Pipeline Overview. (A) Schematic representation of the pipeline with steps that include data selection, contact map creation, and transcriptional 
regulator prediction. (B) Sample HTML output. This is the main output of the pipeline. It consists of a table of transcriptional regulators and their 
corresponding statistics. Each column is sortable. In this figure, the table is sorted by decreasing Z-score. The most important statistic is the Irwin-Hall P-
value (IHPV). Those with IHPVs less than 0.01 are marked in bold and the entire row is highlighted to indicate significance. (C) Command line help menu 
for the pipeline. 
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3D colorectal cancer genome data to predict putative 

functional transcriptional regulators involved in colorectal 

tumorigenesis. An overview of the pipeline can be seen in 

Figure 1.  

Results 

Pipeline Overview 

The usage of the pipeline is twofold. First, to 

generate interaction matrices of both a treatment and control 

group. Second, to use the previously generated matrices to 

calculate differential interaction and predict those 

transcriptional regulators that are responsible for areas of 

increased and decreased interaction in treatment compared 

to normal. In order to achieve the first goal, we utilized HiC-

Pro and to achieve the second goal we utilized BART3D. 

Details of these computational tools can be found in the 

Materials and Methods section. 

 

The main input of the pipeline is two folders: one 

containing raw fastq reads for the treatment condition and 

one containing raw fastq reads for the control condition. 

There are several other parameters that need to be specified 

but they all directly relate to the two main folder inputs. 

After the pipeline processes the data, the main output is a 

ranked transcriptional regulator table. There is one table 

ranking the putative regulators responsible for increased 

genome interaction in treatment versus control and one table 

ranking the putative regulators responsible for decreased 

genome interaction in treatment versus control. These tables 

come in two forms, text file and HTML file. The two 

different file types contain the same information. The text 

file is provided for ease of use in other projects and 

extraction of data whereas the HTML file is used for 

viewing. A sample HTML output is shown in Figure 2. 

Colorectal Cancer Application 

To demonstrate the power of the pipeline, we 

applied it to colorectal cancer. Colorectal cancer is the third 

leading cause of cancer death in the world6. It is estimated 

that there will be 104,610 new cases of colon cancer and 

43,340 cases of rectal cancer diagnosed in 20207. 

 

Data Collection 

Hi-C data from three colorectal cancer samples and 

two normal colon samples were downloaded from the 

National Center for Biotechnology Information Gene 

Expression Omnibus (GEO) and the Encyclopedia of DNA 

Elements (ENCODE). A summary of the data sets collected 

can be found in Table 1. 

 

Replicate Testing 

While the three cancer datasets weren’t exactly 

replicates, the sample source for all three were the same 

HCT116. Thus, we expected that they would yield similar 

results. Figure 2A displays Venn diagrams comparing the 

top ranked transcriptional regulators (Irwin-Hall p < 0.01) 

among the cancer types for each normal sample. These 

Venn diagrams illustrate significant overlap between the 

first Rao sample and the Jung sample as well as some 

overlap between the two Rao samples. Figure 2B was drawn 

to further investigate the correlation between the cancer 

samples. Here, it is further evident that the first Rao and 

Jung samples are significantly correlated whereas the 

second Rao samples didn’t seem to display any significant 

correlation. This correlation supports the eventual 

combination of the first Rao and Jung samples. While the 

second Rao sample didn’t align with the first Rao sample in 

any metric, the two datasets were marked as replicates in 

GEO and will be used as such. 

To explore whether or not the two normal samples 

should be combined in replicate, the correlation between the 

two for each cancer sample was measured. Figure 2C 

displays these correlations. For each cancer sample both the 

increased and decreased interaction rankings appear to be 

significantly correlated. For this reason and the fact that 

they were marked as replicates in ENCODE, they will be 

used as replicates in the analysis. 

Finally, two different combinations of replicates 

were tested. First, just the Rao samples were tested in 

replicate versus the normal samples in replicate. Then all of 

the cancer samples (Rao and Jung) were tested in replicate 

versus the normal samples in replicate. The increased 

interaction correlation between just the Rao samples and all 

of the HCT116 replicates, as seen in Figure 2D, had a 

correlation coefficient of 0.993. The decreased interaction 

correlation of these samples also had a strong correlation of 

0.997. Since the pipeline ranked the transcriptional 

regulators nearly the same in each replicate combination, 

and therefore had high correlation values, we will use all of 

the collected cancer samples in replicate and all of the 

collected normal samples in replicate for further analysis.  

Table 1. Summary of collected colorectal cancer data. Data collected 
from the public domain that were used to validate the pipeline. 
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Colorectal Cancer Results 

Table 2 displays the top twenty ranked 

transcriptional regulators using all of the cancer samples in 

replicate and all of the normal samples in replicate as input 

to the pipeline. Using a p-value of less than 0.01 to indicate 

significance, 68 transcriptional regulators were marked as 

significant predictions in increased interaction and 102 

transcriptional regulators were marked as significant 

predictions in decreased interaction. In the following 

analysis, only the top twenty ranked transcriptional 

regulators of each type, increased and decreased, were used 

for literature validation. 

 

Fig. 2. Replicate Testing. (A) Common transcriptional regulators. After the pipeline was applied to the individual datasets, the top regulators with Irwin-
Hall p-value less than 0.01 were collected. Displayed here are the number of TRs shared among each group. (B) Correlation between cancer group 
rankings. These scatter plots were drawn to assess the correlation between the cancer groups’ complete rankings. Rao 1 and Jung appear to be the best 
correlated. (C) Correlation between normal group rankings. These scatter plots were drawn to assess the correlation between the normal groups’ complete 
rankings. All of these plots serve as supporting evidence for the combination of the normal samples to be used in replicate. (D) Replicate configuration 
correlations. 
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Discussion 

Literature Validation 

Increased Interaction 

Several of the ranked increased interaction 

transcription factors (Figure 3A) had supporting literature 

evidence of the promotion of colorectal cancer specifically. 

SIRT1, a NAD+ dependent class III deacetylase, has been 

shown to enhance tumorigenesis in colorectal carcinoma 

patients9. GTF2I promotes cell cycle progression by the 

downregulation of TGFβR212. The zinc finger protein SP1 

plays an important role in the regulation of gene 

expression14. Another member of the SP protein family, SP2 

is also involved in the regulation of proliferation, apoptosis, 

and differentiation39. Increase in MBD2 has been linked to 

a promotion in tumor growth and metastasis in colorectal 

cancer15. RNF2, a critical component of polycomb 

repressive complex 1, is upregulated in many kinds of 

cancers and an elevation of this protein is associated with 

poor cancer prognosis18. 

 

Decreased Interaction 

The ranked decreased interaction transcriptional 

regulators with supporting literature research for colorectal 

cancer were AR, HOXB13, TLE3, PIAS2, GATA4, and 

CDX2 (Figure 3B). ARs are involved in the differentiation  

 

and progression of colorectal cancer tissues and are one of 

the most important sex hormones24. Decreased HOXB13 

expression is associated with poorer differentiation and 

lymph node metastasis in gastric cancer26. TLE has been 

shown to suppress colorectal cancer proliferation through 

the inhibition of MAPK and AKT signaling pathways34. 

PIAS1 regulates the interferon-gamma signaling pathway 

which affects tumor development and biology36. GATA, a 

zinc finger protein controls the development of tissues 

through the activation and suppression of transcription31. 

CDX2 has been shown to suppress Wnt/β-catenin signaling 

and thereby inhibit colon cancer proliferation41. 

Limitations 

Despite including over 900 transcriptional 

regulators, there are approximately 1600 proteins presumed 

to function as transcriptional regulators in the human 

genome. Additionally, the pipeline only utilizes ChIP-seq 

data sets that are publicly available. For these reasons, the 

predictions are potentially less accurate as there are many 

regulators that do not have publicly available ChIP-seq data. 

Table 2. Colorectal Cancer Results. Displayed here at the top twenty transcriptional regulators in increased interaction 
and decreased interaction categories. Additionally, those that had supporting literature have their references noted. If  a 
reference is in bold, it means that reference specifically studied colorectal cancer while those that are not bolded have 
literature supporting their role in cancer in general. 
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Future Perspectives 

Currently, this pipeline has only been applied to 

colorectal cancer using the publicly available datasets. 

However, there are many Hi-C datasets publicly available 

for various disease states. For example, Table 3 summarizes 

which cancer types have both tumor and corresponding 

normal Hi-C samples presently available in the Gene 

Expression Omnibus. Additionally, this pipeline may be 

applied to various disease states where data for normal 

conditions and disease conditions are available. 

 

 

Materials and Methods 

Data Collection 

Hi-C data from three human colorectal cancer 

HCT116 and two normal cells lines from the transverse 

colon were collected from NCBI GEO. All cancer samples 

are accessible through the National Center for 

Biotechnology Information’s Gene Expression Omnibus 

(NCBI GEO). Fastq-dump, as provided by the SRA Toolkit, 

was used to download the data. The normal data was stored 

in the ENCODE database and was downloaded using the 

command line utility wget. After running quality control 

metrics using FastQC to ensure acceptability of the 

published data, the raw fastq files were used as input to the 

proposed pipeline. Between all six transcriptional regulator 

ranking results from preliminary data, there was substantial 

agreement among the twenty top ranked regulators. This 

indicates that the samples could be combined into two 

groups, cancer and normal. Detailed information regarding 

accession numbers of collected samples can be found in 

Table 1. 

HiC-Pro 

The collected raw data in paired-end fastq format 

was converted to normalized contact matrices with a 

resolution of 5k base pairs using HiC-Pro40. During the 

workflow of HiC-Pro, reads only uniquely aligned with the 

reference genome are assigned to a restriction fragment. 

Each read pair was assigned to a restriction fragment. 

Invalid ligation products were filtered and single genome-

wide interaction maps were created. Normalization within 

HiC-Pro was applied to eliminate Hi-C systematic bias. The 

HiC-Pro pipeline is optimized to run on a single computer 

or cluster, which was ideal for a general 3D analysis 

pipeline. The resulting chromosomal contact maps were 

used within BART3D to infer transcriptional regulators. 

BART3D 

Computational method BART3D was utilized to 

infer transcriptional regulators associated with genome-

wide differential chromatin interactions. Hi-C contact maps 

from normal and cancerous data sets were used as input. 

 

Fig. 3. Top ranked regulators. (A) Increased interaction regulators. 
Those highlighted are discussed as having supporting evidence. (B)  
Decreased interaction regulators. Those highlighted are discussed as 
having supporting evidence. 

 

Table 3. Summary of Available Data. 



Hickman et al., 29 Apr 2021 – preprint copy - BioRxiv 

 

Chromosomes were scanned to generate differential 

chromatin interaction profiles (DCI) by comparing 

interactions between the two inputs4. The BART algorithm 

was applied to associate public ChIP-seq data with the DCI 

profiles and two ranked lists of transcriptional regulators 

associated with either increasing or decreasing chromatin 

interactions were generated. 

Pipeline Design and Construction 

The pipeline was written using bash script as 

BART3D and HiC-Pro were both provided as command 

line tools. Additionally, python was used to implement a 

text file to HTML file conversion. Both text files and 

HTML files were provided for ease of use and ease of 

visualization, respectively. 

Literature Review 

The top twenty ranked transcriptional regulators 

were the focus of the literature searches. The following 

search terms were used to find in vivo colorectal cancer: 1) 

“TRANSCRIPTIONAL REGULATOR colorectal cancer”, 

2) “TRANSCRIPTIONAL REGULATOR tumorigenesis 

colorectal cancer”, and 3) “TRANSCRIPTIONAL 

REGULATOR tumor suppressor colorectal cancer”. 
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