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Abstract

The dynamic average consensus problem, a group of agents, each associated with

a time-varying signal, reaching consensus at the average of these signals by their

own distributed estimators that interact with each other through the communication

network among the agents, finds many applications such as distributed estimation,

formation control and sensor fusion. Many distributed estimators have been con-

structed that achieve either consensus precisely at the average of the signals or around

it depending on the properties of the signals. In this thesis, we revisit the dynamic av-

erage consensus problem in both the continuous-time and discrete-time settings. By

utilizing the information on the frequency components of the signals, we construct

distributed estimators that achieve accurate consensus at the average of the signals.

We further establish that our distributed estimators are robust to the interruption of

the network connectivity in the sense that connected subgroups of agents will con-

tinue to reach consensus around the average of all signals after an interruption of the

network as along as the signals are bounded and the later the interruption occurs the

more accurate the consensus will be. Numerical simulation is carried out to illustrate

these theoretical conclusions. We apply our proposed distributed estimators to a net-

worked battery system to achieve accurate state-of-charge balancing while delivering

the desirable total power accurately. Simulation results also verify the robustness of

the battery system when the communication is interrupted.
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Chapter 1

Introduction and Problem

Statement

1.1 Introduction

The dynamic average consensus problem is the problem of all agents in a networked

multi-agent system reaching consensus at the average of a set of time-varying signals,

each associated with one agent, through distributed algorithms. This problem, which

has been intensively studied over the past years, plays a vital role in numerous ap-

plications, such as battery management [1–3], distributed estimation [4–6], formation

control [7–10], multi-robot coordination [11–13], distributed sensor fusion [14, 15],

feature-based map merging [16, 17], distributed tracking [18, 19], and distributed

mapping [20]. Various appealing features of dynamic average consensus have been

explored in the literature, including its scalability, high rate of convergence, operation

in the presence of constraints on the actuation capacity, and protection of the privacy

of the information against competitors.

The dynamic average consensus problem has involved from the average consensus

1
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problem [21–23], where agents reach consensus at the average of their initial values.

In [24], distributed proportional and proportional-integral algorithms were proposed

to achieve dynamic average consensus with bounded steady-state errors. In [25], the

authors designed distributed algorithms that achieve dynamic average consensus with

steady-state errors that can be controlled by tuning design parameters. Conditions on

the signals were also identified in [25] under which the designed distributed algorithms

would achieve accurate dynamic average consensus, that is, with a zero steady-state

error. Signals that satisfy these conditions include constant signals and time-varying

signals that differ from one another by a constant value.

Separate efforts have also been made to develop distributed algorithms that achieve

accurate dynamic average consensus. For example, based on the internal model prin-

ciple, reference [26] designed filters to enhance the distributed algorithms proposed

in [24] so as to achieve accurate dynamic average consensus. Explicit conditions on

the denominator and the numerator polynomials of the filters were established. These

conditions include that some denominator polynomials contains the frequency compo-

nents of the time-varying signals. As such, knowledge of the frequency components of

the signals is required. Explicit construction of the filters that satisfy the conditions

established in [26] was given in [27]. On the other hand, in [28], authors introduced

robust dynamic average consensus algorithms that achieve accurate averge consensus

of time-varying signals with known bounded derivatives.

We note that a closely related problem is the leader-following consensus problem,

where agents reach consensus at a signal associated with a leader and not all agents are

directly connected to the leader. In particular, distributed observers were proposed

in [29] to achieve accurate leader following consensus. These observers are in the state

space form and all assume the knowledge of the frequency of the signal. In [30], only

the leader itself has the knowledge of signal and all other agents uses an adaptive
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algorithm to learn the frequency information of the signal.

In this thesis, we revisit the problem of dynamic average consensus problem. We

aim to develop distributed algorithms that will achieve accurate average consensus

of time-varying signals with known frequency components. We will take the state

space approach of [25, 29, 30] and explicitly construct distributed estimators in the

state-space form that incorporate the frequency information of the signals. The incor-

poration of frequency information of the signals also makes our distributed estimator

robust against the network connectivity interruption. In particular, we will establish

that, after the interruption, connected subgroups of agents will continue to reach

consensus around the average of all signals as along as the signals are bounded and

the later the interruption occurs the more accurate the consensus will be.

1.2 Problem Statement

We consider a networked system of N agents, operating either in continuous-time

or in discrete-time. Each agent is associated with a time-varying signal φi, generated

by the exosystem

φ̇i = Sφi, φi ∈ RM , (1.1)

or

φi(k + 1) = Sφi(k), φi(k) ∈ RM . (1.2)

We note that signals generated by the exosystem contain the frequency compo-

nents determined by the eigenvalues of matrix S but their magnitudes and phases are

freely determined by the initial conditions of the exosystem.

Our objective is to construct a distributed estimator for each agent such that,

under an appropriate communication topology, its state will asymptotically converge
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to the average value of all signals, that is, 1
N

∑N
j=1 φi. We would also like to estab-

lish the robustness property of our distributed estimators against the interruption of

the network connectivity. To demonstrate its practical applicability, we apply our

proposed distributed dynamic average consensus algorithm to a networked battery

system to achieve accurate state-of-charge balancing while delivering the desirable

total power accurately.

1.3 Preliminary

We will use an undirected graph G = {V , E} to represent the communication topol-

ogy. Each agent is represented by a vertex from the set of vertices V = {v1, v2, · · · , vN}

and the communication link between agent i and agent j is represented by an edge

from the set of edges E ∈ V × V .

The adjacency matrix A = [aij] ∈ RN×N of the graph is defined as aij = aji = 1

if there is a bidirectional communication link between agent i and agent j, otherwise

aij = aji = 0. In addition, we assume that aii = 0, i = 1, 2, · · · , N . The Laplacian

matrix associated with the graph is defined as L = [lij] ∈ RN×N , where lij = −aij if

i ̸= j and lii =
∑N

k=1,k ̸=i aik. The set of neighbors of agent i is defined as N = {j ∈

{1, 2, · · · , N} : aij = 1}.

A path between vi1 and vik in G is defined as a sequence of edges (vi1 , vi2), (vi2 , vi3),

· · · , (vik−1
, vik), where vi1 , vi2 , · · · , vik are distinct nodes. A graph is connected if there

exists a path between any two distinct nodes.

We make the following assumption on the communication topology among the

agents.

Assumption 1.1. The graph associated with the communication topology is undi-

rected and connected.
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Under Assumption 1.1, the graph Laplacian L is symmetric with eigenvalues 0 =

λ1 < λ2 ≤ λ3 ≤ · · · ≤ λN . In addition, 1N is the eigenvector associated with λ1 = 0,

that is, L1N = 0.

1.4 Organization and Notation

The remainder of the thesis is organized as follows. Chapter 2 proposes distributed

estimators for accurate consensus of continuous-time signals, establishes their robust-

ness against the network connectivity interruption and shows the properties with

simulation. Chapter 3 studies the dynamic accurate average consensus problem in

the discrete-time setting. Chapter 4 applies the proposed dynamic average consensus

algorithms to the state-of-charge balancing problem of networked battery systems.

Chapter 5 concludes the thesis.

Notation. Let R denote the real numbers. The vector 1N is the vector of N ones,

and IN is the N × N identity matrix. For matrices A and B, A ⊗ B denotes their

Kronecker product.



Chapter 2

Distributed Average Consensus of

Continuous-time Signals

2.1 The Distributed Average Consensus Algorithm

In this chapter, we design, for each agent i, i = 1, 2, · · · , N , the following dis-

tributed estimator in continuous-time,

˙̂yi =−µ
N∑
j=1

aij(ŷi − ŷj)− µ (ŷi − φi) + Sŷi + µvi, (2.1a)

v̇i =−µ

N∑
j=1

aij (ŷi − ŷj) + Svi, (2.1b)

where ŷi, vi ∈ RM , µ > 0 is a design parameter, whose value is to be determined, and

the initial condition of vi is chosen as vi(0) = 0.

The following theorem establishes that each of the distributed estimators (2.1)

asymptotically estimates the averaged signal 1
N

∑N
j=1 φj(t).

Theorem 2.1. Consider a networked system of N agents, labeled as 1, 2, · · · , N .

6
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Each agent i is associated with a signal φi(t) that is generated by an exosystem system

(1.1), where, without loss of generality, all eigenvalues of S are assumed to be on the

closed right-half plane. Let the communication topology among the agents satisfy

Assumption 1.1. Let each agent be equipped with a distributed estimator as given in

(2.1). Then, there exists µ > 0 such that

lim
t→∞

(
ŷi(t)−

1

N

N∑
j=1

φj(t)

)
= 0, i = 1, 2, · · · , N. (2.2)

Proof: Let ŷ =
[
ŷT1 ŷT2 · · · ŷTN

]T
, v =

[
vT1 vT2 · · · vTN

]T
and φ =

[
φT
1 φT

2 · · ·φT
N

]T
.

Then, by (2.1), we have

˙̂y=

(
− µ(L⊗ IM)− µ(IN ⊗ IM) + IN ⊗ S

)
ŷ + µφ+ µv, (2.3a)

v̇=−µ(L⊗ IM)ŷ + (IN ⊗ S)v. (2.3b)

Also, by (1.1), we have

φ̇ = (IN ⊗ S)φ. (2.4)

Define the estimation error as

ỹ = ŷ − 1N ⊗ 1

N

N∑
j=1

φj.

Then, by (2.3a) and (2.4), we have

˙̃y= ˙̂y − 1N ⊗ 1

N

N∑
j=1

φ̇j

=

(
− µ(L⊗ IM)− µ(IN ⊗ IM) + IN ⊗ S

)(
ỹ + 1N ⊗ 1

N

N∑
j=1

φj

)
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+µφ+ µv − 1N ⊗ 1

N

N∑
j=1

φ̇j

=

(
− µ(L⊗ IM)− µ(IN ⊗ IM) + IN ⊗ S

)
ỹ + µv + µ

(
φ− 1N ⊗ 1

N

N∑
j=1

φj

)

=

(
− µ(L⊗ IM)− µ(IN ⊗ IM) + IN ⊗ S

)
ỹ + µ

(
v + (ΠN ⊗ IM)φ

)
, (2.5)

where ΠN = IN − 1
N
1N1

T
N , and we have used

(IN ⊗ S)

(
1N ⊗ 1

N

N∑
j=1

φj

)
= (IN1N)⊗

(
S
1

N

N∑
j=1

φj

)

=1N ⊗ 1

N

N∑
j=1

φ̇j,

and the following identity resulting from the fact that L1N = 0,

(L⊗ IM)

(
1N ⊗ 1

N

N∑
j=1

φj

)
=(L1N)⊗

(
IM

1

N

N∑
j=1

φ̇j

)
= 0. (2.6)

On the other hand, let

ṽ = v + (ΠN ⊗ IM)φ.

Then, by (2.3b) and (2.4), we have

˙̃v= v̇ + (ΠN ⊗ IM)φ̇

=−µ(L⊗ IM)

(
ỹ + 1N ⊗ 1

N

N∑
j=1

φj

)
+ (IN ⊗ S)ṽ

−(IN ⊗ S)(ΠN ⊗ IM)φ+ (ΠN ⊗ IM)φ̇

=−µ(L⊗ IM)

(
ỹ + 1N ⊗ 1

N

N∑
j=1

φj

)
+ (IN ⊗ S)ṽ

−(ΠN ⊗ IM)(IN ⊗ S)φ+ (ΠN ⊗ IM) φ̇



9

=−µ(L⊗ IM)ỹ − µ(L⊗ IM)

(
1N ⊗ 1

N

N∑
j=1

φj

)

+(IN ⊗ S)ṽ − (ΠN ⊗ IM)

(
(IN ⊗ S)φ− φ̇

)
=−µ(L⊗ IM)ỹ + (IN ⊗ S)ṽ, (2.7)

where we have used (2.6) and the following identity,

(IN ⊗ S)(ΠN ⊗ IM)= (INΠN)⊗ (SIM)

= (ΠNIN)⊗ (IMS)

= (ΠN ⊗ IM)(IN ⊗ S). (2.8)

Equations (2.5) and (2.7) can be written in the following compact form,

 ˙̃y

˙̃v

 = C̃

 ỹ

ṽ

 , (2.9)

where

C̃ =

 IN ⊗ S 0

0 IN ⊗ S

+ µ

 −L⊗ IM − IN ⊗ IM IN ⊗ IM

−L⊗ IM 0

 .

In what follows, we will analyze the asymptotic properties of the dynamical system

(2.9). Under Assumption 1.1, that is, the graph representing the communication

topology is undirected and connected, the Laplacian matrix L is symmetric with

eigenvalues 0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λN and 1N is an eigenvector associated with

λ1 = 0. Let h = 1√
N
1N and H be such that hTH = 0 and HTH = IN−1.
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Consider the following change of variables,

 p

q

 = T1T2

 ỹ

ṽ

 , (2.10)

where

T1 =

 IN ⊗ IM 0

−IN ⊗ IM IN ⊗ IM

 , T2 =

 TT
3 0

0 TT
3

 ,

with T3 = [r R] = [h⊗IM H⊗IM ]. Then, by (2.9), we have

 ṗ
q̇

=T1T2C̃T−1
2 T−1

1

 p

q



=

TT
3

(
− µ(L⊗ IM) + IN ⊗ S

)
T3

0

TT
3

(
µ(IN ⊗ IM)

)
T3

TT
3

(
− µ(IN ⊗ IM)+IN ⊗ S

)
T3


p
q

 .(2.11)

We next partition the state variables p and q as

p =

 p1

p2:N

 , q =

 q1

q2:N

 ,

where p1, q1 ∈ RM and p2:N , q2:N ∈ RM(N−1). Then, the dynamics (2.11) can be

written as 

ṗ1

q̇1

ṗ2:N

q̇2:N


=

 C1 0

0 C2 + µC3




p1

q1

p2:N

q2:N


, (2.12)
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where

C1=

 S µIM

0 −µIM + S

 ,

C2=

 RT(IN ⊗ S)R 0

0 RT(IN ⊗ S)R

 ,

C3=

 −RT(L⊗ IM)R RT(IN ⊗ IM)R

0 −RT(IN ⊗ IM)R

 .

The eigenvalues of C2 are those of S, each with multiplicity 2(N − 1). The

eigenvalues of C3 are −λi, i = 2, 3, · · · , N , each with a multiplicity of M , and −1,

with a multiplicity of (N − 1)M . Recall that these λi’s are eigenvalues of L, which,

in view of Assumption 1.1, are all positive. Therefore, C3 is Hurwitz. Let µ > 0 be

sufficiently large such that S − µλiIM , i = 2, 3, · · · , N , and S − µIM are all Hurwitz.

Then, C2 + µC3 is Hurwitz, and, hence,

lim
t→∞

 p2:N(t)

q2:N(t)

 = 0.

The solution of the state equation (2.12) is given by



p1(t)

q1(t)

p2:N(t)

q2:N(t)


= Ω1(t)



p1(0)

q1(0)

p2:N(0)

q2:N(0)


,
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where

Ω1(t) =



eSt µ
∫ t

0
e(S−µIM )(t−τ)eSτdτ 0 0

0 e(S−µIM )t 0 0

0 0 Γ11(t) Γ12(t)

0 0 Γ21(t) Γ22(t)


,

and

Γ(t)= e(C2+µC3)t :=

 Γ11(t) Γ12(t)

Γ21(t) Γ22(t)

 ,

Γ11(t)= e
RT

(
IN⊗S−µ(L⊗IM )

)
Rt

,

Γ12(t)=µ

∫ t

0

e
RT

(
IN⊗S−µ(L⊗IM )

)
R(t−τ)

×e
RT

(
IN⊗S−µ(IN⊗IM )

)
Rτ

dτ,

Γ21(t)= 0,

Γ22(t)= e
RT

(
IN⊗S−µ(IN⊗IM )

)
Rt

.

Noting that

µ

∫ t

0

e(S−µIM )(t−τ)eSτdτ =µe(S−µIM )t

∫ t

0

eµIM τdτ = eSt − e(S−µIM )t,
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we can simplify Ω1 as

Ω1(t) =



eSt eSt − e(S−µIM )t 0 0

0 e(S−µIM )t 0 0

0 0 Γ11(t) Γ12(t)

0 0 Γ21(t) Γ22(t)


.

Then, in view of (2.10), we have

ỹ(t)=Λ11(t)ỹ(0) + Λ12(t)ṽ(0), (2.13a)

ṽ(t)=Λ21(t)ỹ(0) + Λ22(t)ṽ(0), (2.13b)

where

Λ11(t)= re(S−µIM )trT +R

(
Γ11(t)− Γ12(t)

)
RT,

Λ12(t)= r
(
eSt − e(S−µIM )t

)
rT +RΓ12(t)R

T,

Λ21(t)=R

(
Γ11(t)− Γ12(t) + Γ21(t)− Γ22(t)

)
RT,

Λ22(t)= reStrT +R

(
Γ12(t) + Γ22(t)

)
RT.

More explicitly, we have

ỹ(t)= reStrTṽ(0) + ε(t)

= 1N ⊗ 1

N
eSt

N∑
j=1

ṽj(0) + ε(t), (2.14)
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where

ε(t)=

(
re(S−µIM )trT +R

(
Γ11(t)− Γ12(t)

)
RT

)
ỹ(0)

+
(
RΓ12(t)R

T − re(S−µIM )trT
)
ṽ(0).

Recalling that S − µIM and C2 + µC3 are both Hurwitz, we have

lim
t→∞

Γij(t) = 0, i, j = 1, 2, (2.15)

and hence,

lim
t→∞

ε(t) = 0.

On the other hand, recalling that

ṽ(t) = v(t) + (ΠN ⊗ IM)φ(t)

and vi(0) = 0, i = 1, 2, · · · , N , we have

N∑
j=1

ṽj(0) =

(
N∑
j=1

ΠN,j ⊗ IM

)
φ(0) = 0,

where ΠN,j is the jth row of ΠN and
∑N

j=1ΠN,j = 0.

Thus, it follows from (2.14) that

lim
t→∞

ỹ(t) = 0,
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and hence, for all i = 1, 2, · · · , N ,

lim
t→∞

(
ŷi(t)−

1

N

N∑
j=1

φj(t)

)
= lim

t→∞
ỹi(t) = 0.

This completes the proof. □

2.2 Robustness Against Network Interruption

In what follows, we will establish that the distributed estimator (2.1) is robust

against interruption of the network connectivity. We summarize this robustness result

in the following theorem.

Theorem 2.2. Consider a networked system of N agents, with the associated signals

φi(t) and the distributed estimators as described in Theorem 2.1. Let S be neu-

trally stable, that is, all its eigenvalues are on the jω-axis and are simple. Let the

communication topology among the agents satisfy Assumption 1.1. Suppose that the

communication is interrupted at time tI > 0, with individual subgroups of agents re-

maining connected. Then, there exists µ > 0, independent of any subgroup, such that

each agent i within a subgroup of K < N agents continues to track the averaged signal

1
N

∑N
j=1 φj(t), with a bounded steady-state tracking error, that is,

ŷi(t) =
1

N

N∑
j=1

φj(t) + εs(t, tI) + δ(t, tI),

where ∥δ(t, tI)∥ ≤ δ0(tI) and

lim
t→∞

εs(t, tI)= 0,

lim
tI→∞

δ0(tI)= 0.



16

Proof: Recall from the proof of Theorem 2.1 that ṽ(t) = v(t) + (ΠN ⊗ IM)φ(t)

and
∑N

j=1 ṽj(0) = 0. Then, by (2.13b), we have

v(tI)=Λ21(tI)ỹ(0) + Λ22(tI)ṽ(0)− (ΠN ⊗ IM)φ(tI)

=Λ21(tI)ỹ(0) + 1N ⊗ 1

N
eStI

N∑
j=1

ṽj(0)

+R

(
Γ12(tI) + Γ22(tI)

)
RTṽ(0)− (ΠN ⊗ IM)φ(tI)

=Λ21(tI)ỹ(0) +R

(
Γ12(tI) + Γ22(tI)

)
RTṽ(0)− (ΠN ⊗ IM)φ(tI)

=χ(tI)− (ΠN ⊗ IM)φ(tI), (2.16)

where

χ(tI) = Λ21(tI)ỹ(0) +R

(
Γ12(tI) + Γ22(tI)

)
RTṽ(0),

and by (2.15),

lim
tI→∞

χ(tI) = 0. (2.17)

Let us now consider the evolution for t ≥ tI. Without loss of generality, let the

subgroup of K agents be agents 1, 2, · · · , K. Denote the Laplacian matrix of the

connected communication among these K agents as Ls. Let ŷs =
[
ŷT1 ŷT2 · · · ŷTK

]T
,

vs =
[
vT1 vT2 · · · vTK

]T
, and φs =

[
φT
1 φT

2 · · ·φT
K

]T
. Then, we have

˙̂ys =−µ

(
(L⊗ IM) + (IK ⊗ IM) + IK ⊗ S

)
ŷs + µφs + µvs, t ≥ tI,

v̇s =−µ(L⊗ IM)ŷs + (IK ⊗ S)vs, t ≥ tI,

and

φ̇s = (IK ⊗ S)φs, t ≥ tI.

Following the proof of Theorem 2.1 for the subgroup of agents 1, 2, · · · , K, we
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define

ỹs = ŷs − 1K ⊗ 1

K

K∑
j=1

φj, (2.18a)

ṽs = vs + (ΠK ⊗ IM)φs. (2.18b)

where ΠK = IK − 1
K
1K1

T
K .

Let hs = 1√
K
1K and Hs be such that (hs)T Hs = 0 and (Hs)T Hs = IK−1. Let

rs = hs ⊗ IM , Rs = Hs ⊗ IM and

Cs
2 =

 (Rs)T(IK ⊗ S)Rs 0

0 (Rs)T(IK ⊗ S)Rs

 ,

Cs
3 =

 −(Rs)T(Ls ⊗ IM)Rs (Rs)T(IK ⊗ IM)Rs

0 −(Rs)T(IK ⊗ IM)Rs

 .

Let µ be such that Cs
2 + µCs

3 is Hurwtiz for any connected subgroup of agents.

Let

Γs(t) = e(C
s
2+µCs

3)t :=

 Γs
11(t) Γs

12(t)

Γs
21(t) Γs

22(t)

 .

Then,

lim
t→∞

Γs
ij(t) = 0, i, j = 1, 2. (2.19)

Following the proof of Theorem 2.1, we can also obtain the following equation,

ỹs(t) = Λs
11(t− tI)ỹ

s(tI) + Λs
12(t− tI)ṽ

s(tI), (2.20)
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where

Λs
11(t− tI) = rs

(
e(S−µIM )(t−tI)

)
(rs)T +Rs

(
Γs
11(t− tI)− Γs

12(t− tI)

)
(Rs)T,

Λs
12(t− tI) = rs

(
eS(t−tI) − e(S−µIM )(t−tI)

)
(rs)T +Rs

(
Γs
12(t− tI)

)
(Rs)T.

We can rewrite (2.20) as

ỹs(t) = 1K ⊗ 1

K
eS(t−tI)

K∑
j=1

ṽj(tI) + εs(t, tI), (2.21)

where

εs(t, tI)=

(
RsΓs

12(t− tI)(R
s)T − rse(S−µIM )(t−tI)(rs)T

)
ṽs(tI) + Λs

11(t− tI)ỹ
s(tI).

By (2.19), we have

lim
t→∞

εs(t, tI) = 0. (2.22)

Recalling that ṽs(t) = vs(t) + (ΠK ⊗ IM)φs(t) and
∑K

j=1ΠK,j = 0 with ΠK,j being

the jth row of ΠK , we have

K∑
j=1

ṽj(tI)=
K∑
j=1

vj(tI) =
K∑
j=1

χj(tI)−
K∑
j=1

(ΠN,j ⊗ IM)φ(tI)

=
K∑
j=1

χj(tI)−

(
K∑
j=1

φj(tI)−
K

N

N∑
j=1

φj(tI)

)
, (2.23)

where we have used (2.16), and χj(tI) is the

(
(j − 1)M + 1

)th

to jM th rows of χ(tI)

in (2.16).



19

It then follows from (2.21) and (2.23) that

ŷs(t)= ỹs(t) + 1K ⊗ 1

K

K∑
j=1

φj(t)

= 1K⊗

(
1

K

K∑
j=1

φj(t)+
1

K
eS(t−tI)

K∑
j=1

ṽj(tI)

)
+εs(t, tI)

= 1K ⊗

(
1

K

K∑
j=1

φj(t) +
1

K
eS(t−tI)

K∑
j=1

χj(tI)

− 1

K
eS(t−tI)

(
K∑
j=1

φj(tI)−
K

N

N∑
j=1

φj(tI)

))
+εs(t, tI)

= 1K ⊗

(
1

K

K∑
j=1

φj(t) +
1

K
eS(t−tI)

K∑
j=1

χj(tI)

− 1

K

(
K∑
j=1

φj(t)−
K

N

N∑
j=1

φj(t)

))
+ εs(t, tI)

= 1K ⊗ 1

N

N∑
j=1

φj(t) + 1K ⊗

(
1

K
eS(t−tI)

K∑
j=1

χj(tI)

)
+ εs(t, tI)

= 1K ⊗ 1

N

N∑
j=1

φj(t) + εs(t, tI) + δ(t, tI),

where

δ(t, tI) = 1K ⊗

(
1

K
eS(t−tI)

K∑
j=1

χj(tI)

)
.

Since S is neutrally stable, we have
∥∥eS(t−tI)

∥∥ ≤ σ for some constant scalar σ > 0,

and hence,

∥δ(t, tI)∥ ≤ σK∥χ(tI)∥ := δ0(tI).

In view of (2.22) and (2.17), it is clear that

lim
t→∞

εs(t, tI) = 0,
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lim
tI→∞

δ0(tI) = 0.

This completes the proof. □

2.3 Simulation Results

In this section, we run simulation on a five agent system to verify our theoretical

results both in the continuous-time settings. The communication topology among the

agents is as shown in Fig. 2.1. We will also illustrate the robustness of our algorithms

against interruptions of the network connectivity (see Fig. 2.2).

Figure 2.1: The communication topology.

Figure 2.2: The communication topology after interruption at tI or kI.
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Let the signals be generated by the exosystem (1.1) with

S =



0 2 0 0

−2 0 0 0

0 0 0 1

0 0 0 0


and the initial values φi(0) = [4i− 7,−3i+ 18, 4i− 9,−2i+ 7]T, i = 1, 2, · · · , 5.

For the given communication topology,

L =



2 −1 0 0 −1

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

−1 0 0 −1 2


.

It can be verified that, with µ = 2, all conditions of Theorem 2.1 are satisfied. Shown

in Fig. 2.3 are the estimations of the average value of the five signals by the five

agents.

To illustrate the robustness of our distributed algorithm against network connec-

tivity interruption, we consider signals generated by a neutrally stable exosystem

(1.1) with

S =

 0 2

−2 0


and the initial conditions φi(0) = [4i−7,−3i+18]

T
, i = 1, 2, · · · , 5. It can be verified

that, with µ = 2, all conditions of Theorem 2.2 are satisfied.
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Figure 2.3: Estimations of the averaged signal by all agents.
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Shown in Fig. 2.4 and Fig. 2.5 are the norms of the estimation errors of agents

of both subgroups when the communication is interrupted at tI = 1 and tI = 3,

respectively. As is obvious, the later the interruption occurs, the more accurate the

estimations are.

Figure 2.4: Estimation errors when the communication is interrupted at time tI = 1.
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Figure 2.5: Estimation errors when the communication is interrupted at time tI = 3.



Chapter 3

Distributed Average Consensus of

Discrete-time Signals

3.1 The Distributed Average Consensus Algorithm

In this chapter, we design, for each agent i, i = 1, 2, · · · , N , the following dis-

tributed estimator in discrete-time,

ŷi(k + 1)=−α
N∑
j=1

aij

(
ŷi(k)− ŷj(k)

)
− β

(
ŷi(k)− φi(k)

)
+Sŷi(k) + βvi(k), (3.1a)

vi(k + 1)=−α
N∑
j=1

aij

(
ŷi(k)− ŷj(k)

)
+ Svi(k), (3.1b)

where ŷi(k), vi(k) ∈ RM , α and β are design parameters, whose values are to be

determined, and the initial condition of vi(k) is chosen as vi(0) = 0.

The following theorem establishes that each of the distributed estimators (3.1)

asymptotically estimates the averaged signal 1
N

∑N
j=1 φj(k).

Theorem 3.1. Consider a networked system of N agents, labeled as 1, 2, · · · , N .

25
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Each agent i is associated with a discrete-time signal φi(k) that is generated by an

exosystem system (1.2), where, without loss of generality, all eigenvalues of S are

assumed to be on or outside the unit circle. Let the communication topology among the

agents satisfy Assumption 1.1. Let each agent be equipped with a distributed estimator

as given in (3.1). Then, if there exist α ∈ R and β ∈ R such that S − αλiIM , i =

2, 3, · · · , N , and S − βIM are Schur. Then,

lim
k→∞

(
ŷi(k)−

1

N

N∑
j=1

φj(k)

)
= 0, i = 1, 2, · · · , N. (3.2)

Remark 3.1. Recall from Chapter 2 that, in the continuous-time setting, the av-

erage consensus can be realized for signals generated by any exosystem (1.1). In the

discrete-time setting, in the absence of high gain action, our ability to achieve average

consensus is constrained by the properties of the communication topology. Conditions

of Theorem 3.1 on parameters α and β reflect this constraint. Let λS
i , i = 1, 2, · · · ,M ,

be the eigenvalues of S. Assume that |Im(λS
i )| < 1. Let dri = Re(λS

i )−
√
1− Im2(λS

i )

and dli = Re(λS
i ) +

√
1− Im2(λS

i ). See Fig. 3.1 for an illustration. Then, there exist

α ∈ R and β ∈ R such that S − αλiIM , i = 2, 3, · · · , N , and S − βIM are Schur if

maxi=2,3,··· ,M dri
λ2

<
mini=2,3,··· ,M dli

λN

,

which is always satisfied if eigenvalues of S are all on the left-half of the unit circle

but not at ±j or they are all on the right-half of the unit circle but not at ±j.

Proof of Theorem 3.1: Let ŷ(k) =
[
ŷT1 (k) ŷ

T
2 (k) · · · ŷTN(k)

]T
, v(k) =

[
vT1 (k)

vT2 (k) · · · vTN(k)
]T

and φ =
[
φT
1 (k) φ

T
2 (k) · · ·φT

N(k)
]T
. Then, by (3.1), we have

ŷ(k + 1)=

(
− α(L⊗ IM)− β(IN ⊗ IM) + IN ⊗ S

)
ŷ(k)
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Figure 3.1: An illustration for Remark 3.1

+βφ(k) + βv(k), (3.3a)

v(k + 1)=−α(L⊗ IM)ŷ(k) + (IN ⊗ S)v(k). (3.3b)

We also have

φ(k + 1) = (IN ⊗ S)φ(k). (3.4)

Define the estimation error as

ỹ(k) = ŷ(k)− 1N ⊗ 1

N

N∑
j=1

φj(k).

Then, by (3.3a) and (3.4), we have

ỹ(k + 1)= ŷ(k + 1)− 1N ⊗ 1

N

N∑
j=1

φj(k + 1)

=

(
− α(L⊗ IM)− β(IN ⊗ IM) + IN ⊗ S

)
ŷ(k)

+βφ(k) + βv(k)− 1N ⊗ 1

N

N∑
j=1

Sφj(k)

=

(
− α(L⊗ IM)− β(IN ⊗ IM) + IN ⊗ S

)
ỹ(k)

+

(
− α(L⊗ IM)− β(IN ⊗ IM) + IN ⊗ S

)(
1N ⊗ 1

N

N∑
j=1

φj(k)

)
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+βφ(k) + βv(k)− 1N ⊗ 1

N

N∑
j=1

Sφj(k)

=

(
− α(L⊗ IM)− β(IN ⊗ IM) + IN ⊗ S

)
ỹ(k)

+β (v(k) + (ΠN ⊗ IM)φ(k)) , (3.5)

where ΠN = IN − 1
N
1N1

T
N , which is the same as defined in the proof of Theorem 2.1,

and we have used

(IN ⊗ S)

(
1N ⊗ 1

N

N∑
j=1

φj(k)

)
= (IN1N)⊗

(
S
1

N

N∑
j=1

φj(k)

)
,

and (2.6) established in the proof of Theorem 2.1.

On the other hand, let

ṽ(k) = v(k) + (ΠN ⊗ IM)φ(k).

Then, by (3.3b) and (3.4), we have

ṽ(k + 1)= v(k + 1) + (ΠN ⊗ IM)φ(k + 1)

=−α(L⊗ IM)ŷ(k) + (IN ⊗ S) v(k) + (ΠN ⊗ IM) (IN ⊗ S)φ(k)

= −α (L⊗ IM)

(
ỹ(k) + 1N ⊗ 1

N

N∑
j=1

φj(k)

)
+(IN ⊗ S) ṽ(k)− (IN ⊗ S) (ΠN ⊗ IM)φ(k)

+ (ΠN ⊗ IM) (IN ⊗ S)φ(k)

= −α (L⊗ IM) ỹ(k) + (IN ⊗ S) ṽ(k), (3.6)

where we have used (2.6) and (2.8).
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Equations (3.5) and (3.6) can be written in the following compact form,

 ỹ(k + 1)

ṽ(k + 1)

 = C̃

 ỹ(k)

ṽ(k)

 , (3.7)

where

C̃ =

 IN ⊗ S 0

0 IN ⊗ S

+

 −α(L⊗ IM)− β(IN ⊗ IM) β(IN ⊗ IM)

−α(L⊗ IM) 0

 .

In what follows, we will analyze the asymptotic properties of the dynamical system

(3.7). Let h = 1√
N
1N and H be such that hTH = 0 and HTH = IN−1. Consider the

following change of variables,

 p(k)

q(k)

 = T1T2

 ỹ(k)

ṽ(k)

 , (3.8)

where

T1 =

 IN ⊗ IM 0

−IN ⊗ IM IN ⊗ IM

 , T2 =

 TT
3 0

0 TT
3

 ,

with T3 = [r R] = [h⊗IM H⊗IM ]. Then, by (3.7), we have

 p(k + 1)

q(k + 1)

 = T1T2C̃T−1
2 T−1

1

 p(k)

q(k)

 , (3.9)

where

T1T2C̃T−1
2 T−1

1 =

TT
3 (IN ⊗ S)T3 0

0 TT
3 (IN ⊗ S)T3


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+

 −αTT
3 (L⊗ IM)T3 βTT

3 (IN ⊗ IM)T3

0 −βTT
3 (IN ⊗ IM)T3

 .

We next partition the state variables p and q as

p(k) =

 p1(k)

p2:N(k)

 , q(k) =

 q1(k)

q2:N(k)

 ,

where p1(k), q1(k) ∈ RM and p2:N(k), q2:N(k) ∈ RM(N−1). Then, the dynamics (3.9)

can be written as



p1(k + 1)

q1(k + 1)

p2:N(k + 1)

q2:N(k + 1)


=

 C1 0

0 C2 + C3




p1

q1

p2:N

q2:N


, (3.10)

where

C1=

 S βIM

0 S − βIM

 ,

C2=

 RT(IN ⊗ S)R 0

0 RT(IN ⊗ S)R

 ,

C3=

 −αRT(L⊗ IM)R βRT(IN ⊗ IM)R

0 −βRT(IN ⊗ IM)R

 .

By the conditions of the Theorem 3.1, α and β are such that the eigenvalues of
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C2 + C3 are all inside the unit circle. Hence, we have

lim
k→∞

 p2:N(k)

q2:N(k)

 = 0.

The solution of the state equation (3.10) is given by



p1(k)

q1(k)

p2:N(k)

q2:N(k)


= Ω1(k)



p1(0)

q1(0)

p2:N(0)

q2:N(0)


,

where

Ω1(k) =



Sk β
k−1∑
m=0

(S−βIM)k−1−mSm 0 0

0 (S − βIM)k 0 0

0 0 Γ11(k) Γ12(k)

0 0 Γ21(k) Γ22(k)


,

with

Γ(k)= (C2 + C3)
k :=

 Γ11(k) Γ12(k)

Γ21(k) Γ22(k)

 ,

Γ11(k)=

(
RT

(
IN ⊗ S − α(L⊗ IM)

)
R

)k

,

Γ12(k)= β
k−1∑
m=0

(
RT

(
IN ⊗ S − α(L⊗ IM)

)
R

)k−1−m

×

(
RT

(
IN ⊗ S − β(IN ⊗ IM)

)
R

)m

,

Γ21(k)= 0,
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Γ22(k)=

(
RT

(
IN ⊗ S − β(IN ⊗ IM)

)
R

)k

.

Noting that

β

k−1∑
m=0

(S − βIM)k−1−mSm

=

(
S − (S − βIM)

) k−1∑
m=0

(S − βIM)k−1−mSm

=Sk − (S − βIM)k,

we can simplify Ω1 as

Ω1(k) =



Sk Sk − (S − βIM)k 0 0

0 (S − βIM)k 0 0

0 0 Γ11(k) Γ12(k)

0 0 Γ21(k) Γ22(k)


.

Then, in view of (3.8), we have

ỹ(k)=Λ11(k)ỹ(0) + Λ12(k)ṽ(0), (3.11a)

ṽ(k)=Λ21(k)ỹ(0) + Λ22(k)ṽ(0), (3.11b)

where

Λ11(k)= r(S − βIM)krT +R

(
Γ11(k)− Γ12(k)

)
RT,

Λ12(k)= r
(
Sk − (S − βIM)k

)
rT +RΓ12(k)R

T,

Λ21(k)=R

(
Γ11(k)− Γ12(k) + Γ21(k)− Γ22(k)

)
RT,
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Λ22(k)= rSkrT +R

(
Γ12(k) + Γ22(k)

)
RT.

More explicitly, we have

ỹ(k)= rSkrTṽ(0) + ε(k)

= 1N ⊗ 1

N
Sk

N∑
j=1

ṽj(0) + ε(k), (3.12)

where

ε(k)=

(
r(S − βIM)krT +R

(
Γ11(k)− Γ12(k)

)
RT

)
ỹ(0)

+

(
− r(S − βIM)krT +RΓ12(k)R

T

)
ṽ(0).

Recalling that the eigenvalues of C2+C3 and S−βIM are all inside the unit circle,

we have

lim
k→∞

Γij(k) = 0, i, j = 1, 2, (3.13)

and hence,

lim
k→∞

ε(k) = 0.

On the other hand, recalling that

ṽ(k) = v(k) + (ΠN ⊗ IM)φ(k),

and vi(0) = 0, i = 1, 2, · · · , N , we have

N∑
j=1

ṽj(0) =

(
N∑
j=1

ΠN,j ⊗ IM

)
φ(0) = 0,
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where ΠN,j is the jth row of ΠN and
∑N

j=1ΠN,j = 0.

Thus, it follows from (3.12) that

lim
k→∞

ỹ(k) = 0,

and hence, for all i = 1, 2, · · · , N ,

lim
k→∞

(
ŷi(k)−

1

N

N∑
j=1

φj(k)

)
= lim

k→∞
ỹi(k) = 0.

This completes the proof. □

3.2 Robustness Against Network Interruption

In what follows, we will establish that the distributed discrete-time estimator

(3.1) is robust against interruption of the network connectivity. We summarize this

robustness result in the following theorem.

Theorem 3.2. Consider a networked system of N agents, with the associated discrete

signal φi(k) and the distributed estimators as described in Theorem 3.1. Let S be

neutrally stable, that is, all its eigenvalues are all on the unit circle and are simple. Let

the communication topology among the agents satisfy Assumption 1.1. Suppose that

the communication is interrupted at time kI > 0, with individual subgroups of agents

remaining connected. Then, without loss of generality, let the subgroup of K agents

be agents 1, 2, · · · , K. Denote the Laplacian matrix of the connected communication

among these K agents as Ls with eigenvalues 0 = λs
1 < λs

2 ≤ λs
3 ≤ ... ≤ λs

K. If S −

αλs
i, i = 2, 3, · · · , K, are still Schur, then, each agent i within the subgroup continues

to track the averaged signal 1
N

∑n
j=1 φj(k) with a bounded steady-state tracking error,
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that is,

ŷi(k) =
1

N

N∑
j=1

φj(k) + εs(k, kI) + δ(k, kI),

where ∥δ(k, kI)∥ ≤ δ0(kI) and

lim
k→∞

εs(k, kI)= 0,

lim
kI→∞

δ0(kI) = 0.

Proof: Recall from the proof of Theorem 3.1 that ṽ(k) = v(k) + (ΠN ⊗ IM)φ(k)

and
∑N

j=1 ṽj(0) = 0. Then, by (3.11b), we have

v(kI)=Λ21(kI)ỹ(0) + Λ22(kI)ṽ(0)− (ΠN ⊗ IM)φ(kI)

=Λ21(kI)ỹ(0) + 1N ⊗ 1

N
SkI

N∑
j=1

ṽj(0)

+R

(
Γ12(kI) + Γ22(kI)

)
RTṽ(0)− (ΠN ⊗ IM)φ(kI)

=Λ21(kI)ỹ(0) +R

(
Γ12(kI) + Γ22(kI)

)
RTṽ(0)− (ΠN ⊗ IM)φ(kI)

=χ(kI)− (ΠN ⊗ IM)φ(kI), (3.14)

where

χ(kI) = Λ21(kI)ỹ(0) +R

(
Γ12(kI) + Γ22(kI)

)
RTṽ(0),

and by (3.13),

lim
kI→∞

χ(kI) = 0. (3.15)

Let us now consider the evolution for k ≥ kI. Let ŷ
s(k) =

[
ŷT1 (k) ŷ

T
2 (k) · · · ŷTK(k)

]T
,

vs(k) =
[
vT1 (k) v

T
2 (k) · · · vTK(k)

]T
, and φs(k) =

[
φT
1 (k) φ

T
2 (k) · · ·φT

K(k)
]T
. Then, we
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have

ŷs(k + 1)=

(
−α(L⊗ IM)−β(IK ⊗ IM)+IK ⊗ S

)
ŷs(k)

+βφs(k) + βvs(k), k ≥ kI,

vs(k + 1) = −α(L⊗ IM)ŷs(k) + (IK ⊗ S)vs(k), k ≥ kI,

and

φs(k + 1) = (IK ⊗ S)φs(k), k ≥ kI.

Following the proof of Theorem 3.1 for the subgroup of agents 1, 2, · · · , K, we

define

ỹs(k)= ŷs(k)− 1K ⊗ 1

K

K∑
j=1

φj(k), (3.16a)

ṽs(k)= vs(k) + (ΠK ⊗ IM)φs(k). (3.16b)

Let hs = 1√
K
1K and Hs be such that (hs)T Hs = 0 and (Hs)T Hs = IK−1. Let

rs = hs ⊗ IM , Rs = Hs ⊗ IM and

Cs
2=

 (Rs)T(IK ⊗ S)Rs 0

0 (Rs)T(IK ⊗ S)Rs

 ,

Cs
3=

 −α(Rs)T(Ls ⊗ IM)Rs β(Rs)T(IK ⊗ IM)Rs

0 −β(Rs)T(IK ⊗ IM)Rs

 .

By the conditions of the theorem, α and β are such that all eigenvalues of Cs
2 + Cs

3

and S − βIM are inside the unit circle.
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Let

Γs(k) = (Cs
2 + Cs

3)
k :=

 Γs
11(k) Γs

12(k)

Γs
21(k) Γs

22(k)

 .

Then,

lim
k→∞

Γs
ij(k) = 0, i, j = 1, 2. (3.17)

Following the proof of Theorem 3.1, we can also obtain the following equation,

ỹs(k) = Λs
11(k − kI)ỹ

s(kI) + Λs
12(k − kI)ṽ

s(kI), (3.18)

where

Λs
11(k − kI)= rs(S − βIM)k−kI(rs)T +Rs

(
Γs
11(k − kI)− Γs

12(k − kI)

)
(Rs)T,

Λs
12(k − kI)= rs

(
Sk−kI − (S − βIM)k−kI

)
(rs)T +Rs

(
Γs
12(k − kI)

)
(Rs)T.

We can rewrite (3.18) as

ỹs(k) = 1K ⊗ 1

K
Sk−kI

K∑
j=1

ṽj(kI) + εs(k, kI), (3.19)

where

εs(k, kI)=

(
−rs(S − βIM)k−kI(rs)T +Rs

(
Γs
12(k − kI)

)
(Rs)T

)
ṽs(kI)

+Λs
11(k − kI)ỹ

s(kI).

By (3.17), we have

lim
k→∞

εs(k, kI) = 0. (3.20)

Recalling that ṽs(k) = vs(k)+ (ΠK ⊗ IM)φs(k) and
∑K

j=1ΠK,j=0 with ΠK,j being
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the jth row of ΠK , we have

K∑
j=1

ṽj(kI)=
K∑
j=1

vj(kI) =
K∑
j=1

χj(kI)−
K∑
j=1

(ΠN,j ⊗ IM)φ(kI)

=
K∑
j=1

χj(kI)−

(
K∑
j=1

φj(kI)−
K

N

N∑
j=1

φj(kI)

)
, (3.21)

where we have used (3.14), and χj(kI) is the

(
(j− 1)M +1

)th

to jM th rows of χ(kI)

in (3.14).

It then follows from (3.19) and (3.21) that

ŷs(k)= ỹs(k) + 1K ⊗ 1

K

K∑
j=1

φj(k)

= 1K ⊗

(
1

K

K∑
j=1

φj(k) +
1

K

(
Sk−kI

) K∑
j=1

ṽj(kI)

)
+ εs(k, kI)

= 1K ⊗

(
1

K

K∑
j=1

φj(k) +
1

K
Sk−kI

K∑
j=1

χj(kI)

− 1

K
Sk−kI

(
K∑
j=1

φj(kI)−
K

N

N∑
j=1

φj(kI)

))
+εs(k, kI)

= 1K ⊗

(
1

K

K∑
j=1

φj(k) +
1

K
Sk−kI

K∑
j=1

χj(kI)

− 1

K

(
K∑
j=1

φj(k)−
K

N

N∑
j=1

φj(k)

))
+ εs(k, kI)

= 1K ⊗ 1

N

N∑
j=1

φj(k) + 1K ⊗

(
1

K
Sk−kI

K∑
j=1

χj(kI)

)
+ εs(k, kI)

= 1K ⊗ 1

N

N∑
j=1

φj(k) + εs(k, kI) + δ(k, kI),
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where

δ(k, kI) = 1K ⊗

(
1

K
Sk−kI

K∑
j=1

χj(kI)

)
.

Since S is neutrally stable, we have
∥∥Sk−kI

∥∥ ≤ σ for some constant scalar σ > 0,

and hence

∥δ(k, kI)∥ ≤ σK∥χ(kI)∥ := δ0(kI).

In view of (3.20) and (3.15), it is clear that

lim
k→∞

εs(k, kI) = 0,

lim
kI→∞

δ0(kI) = 0.

This completes the proof. □

3.3 Simulation Results

In this section, we run simulation on a five agent system to verify our theoretical

results both in the discrete-time settings. The communication topology among the

agents is as shown in Fig. 2.1. We will also illustrate the robustness of our algorithms

against interruptions of the network connectivity (see Fig. 2.2).

Let the signals be generated by the exosystem (1.2) with

S =



cos π
6

sin π
6

0 0

− sin π
6

cos π
6

0 0

0 0 1 4

0 0 0 1


and the initial values φi(0) = [4i− 7,−3i+ 18, 4i− 9,−2i+ 7]T, i = 1, 2, · · · , 5.



40

For the given communication topology,

L =



2 −1 0 0 −1

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

−1 0 0 −1 2


.

It can be verified that, with α = 0.4 and β = 0.8, all conditions of Theorem 3.1 are

satisfied. Shown in Fig. 3.2 are the estimations of the average value of the five signals

by the five agents.

To illustrate the robustness of our distributed algorithm against network connec-

tivity interruption, we consider signals generated by a neutrally stable exosystem

(1.2) with

S =

 cos π
6

sin π
6

− sin π
6

cos π
6


and the initial conditions φi(0) = [4i−7,−3i+18]

T
, i = 1, 2, · · · , 5. It can be verified

that, with α = 0.4 and β = 0.8, all conditions of Theorem 3.2 are satisfied.

Shown in Fig. 3.3 and Fig. 3.4 are the norms of the estimation errors of agents

of both subgroups when the communication is interrupted at kI = 5 and kI = 15,

respectively. As is obvious, the later the interruption occurs, the more accurate the

estimations are.
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Figure 3.2: Estimations of the averaged signal by all agents.
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Figure 3.3: Estimation errors when the communication is interrupted at time kI = 5.
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Figure 3.4: Estimation errors when the communication is interrupted at time kI = 15.



Chapter 4

State-of-Charge Balancing of a

Networked Battery System

Energy storage systems are essential components in microgrids. They not only en-

sure the power quality and reliability but also reduce energy loss in microgrids. Among

various energy storage technologies, battery energy storage systems have emerged as

an appealing technology due to their versatility, rapid response, high energy density,

and efficiency. By absorbing power from the grid during off-peak time and supplying

power to the grid in peak time, battery systems enable the grid to have the ability

of peak-shaving/shifting, power quality enhancement, and congestion relief. A fun-

damental control objective of a battery system is to satisfy the charging/discharging

power desired by the grid while balancing the state-of-charge (SoC) of all its units [2].

In this chapter, we propose a practical application of our proposed dynamic average

consensus algorithms to the SoC balancing problem of a networked battery system.

Simulation results also show the robustness of the resulting battery system against

interruption of the communication network.

44
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4.1 Problem Statement

We consider a battery energy storage system consisting of N networked battery

units. Each battery unit, with its own distributed control algorithm, is able to com-

municate with nearby battery units and exchange critical states such as their SoC

and the desired power the grid needs. The desired power p∗(t) is generated by an

exosystem,

Ṗ ∗(t) = SP ∗(t), P ∗(t) ∈ RM ,

p∗(t) = Y P ∗(t), p∗(t) ∈ R. (4.1)

In order for the battery units to estimate the desired power p∗(t), we make the

following assumption.

Assumption 4.1. There is at least one battery unit that has access to the desired

power p∗(t).

We define the diagonal matrix B = diag{b1, b2, · · · , bN}, where bi = 1 if the ith

battery unit has access to the desired power p∗(t) and bi = 0 otherwise.

For each battery i, i = 1, 2, · · · , N , the SoC dynamics of the ith battery unit is

given by

ṡi =− 1

CiVi

pi, pi = Viii


> 0, (discharging),

< 0, (charging),

(4.2)

where si ∈ R is the SoC of ith battery, Ci ∈ R is the capacity of ith battery, Vi ∈ R

is the end voltage of ith battery, ii ∈ R is the current of ith battery and pi ∈ R is the

power of ith battery.
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Define the state of the battery unit i as

xi =


xd,i = CiVisi, (in discharging mode),

xc,i = CiVi(1− si), (in charging mode).

(4.3)

Then, the dynamics of the battery unit i is described as

ẋi =


−pi, (in discharging mode),

pi, (in charging mode).

(4.4)

Based (4.4), the control algorithm is given by

pi(t) =
xi(t)

xa(t)
pa(t), (4.5)

where xa(t) =
1
N

∑N
j=1 xj(t) is the average state for all the battery units and pa(t) =

1
N
p∗(t) is the average desired power among battery units. Since xa(t) and pa(t) are

global information that might not be available to all battery units, the dynamic

average consensus algorithms are needed to estimate pa(t) and xa(t).

By using consensus algorithms to estimate xa(t) and pa(t), (4.5) can be imple-

mented as,

pi(t) =
xi(t)

x̂a,i(t)
p̂a,i(t), i = 1, 2, · · · , N, (4.6)

where p̂a,i(t) and x̂a,i(t) are respectively the estimated values for pa(t) and xa(t) by

the ith battery unit.

In [2], the dynamic leader-following consensus algorithm [31] and the dynamic av-

erage consensus algorithm [25] are adapted to implement (4.6). The dynamic leader-

following consensus algorithm tracks the signal of the exosystem with a steady state
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error and the dynamic average consensus algorithm tracks the average value of all

the agents also with a steady state error. As a result, the SoC balancing algorithm

composed of the control algorithm (4.5), the dynamic leader-following consensus algo-

rithm [31] and the dynamic average consensus algorithm [25] enables the distributed

battery system to deliver the power desired by the grid with a steady state error and

balance the SoC of all its units within a level of accuracy.

Our objective is to implement the control algorithm (4.6) by using the dynamic

average consensus algorithm proposed in this thesis to accurately deliver the charg-

ing/discharging power while accurately balancing the SoC. In implementing (4.6)

with our dynamic average consensus algorithm, we also relax the requirement of the

knowledge of the number N of the battery units in the system.

4.2 Power Distribution Algorithm Design

Notice that only the exosystem knows the frequency components of the desired

power p∗(t). In this situation, we need to use the dynamic leader-following consensus

algorithm to estimate the frequency components of the desired power p∗(t) for each

battery unit. In order to achieve this goal, here we upgrade the dynamic average

consensus algorithm in Chapter 2 to

˙̂yi =−µ

N∑
j=1

aij(ŷi − ŷj)− µ (ŷi − φi) + Ŝiŷi + µ

N∑
j=1

aij(vi − vj) , (4.7a)

v̇i =−µ

N∑
j=1

aij (ŷi − ŷj) + Ŝivi, (4.7b)

˙̂
Si =−µ

(
N∑
j=1

aij

(
Ŝi − Ŝj

)
+ bi

(
Ŝi − S

))
, (4.7c)
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where ŷi(t), vi(t) ∈ RM , Ŝi(t) ∈ RM×M and µ > 0 is a design parameter, whose

value is to be determined. Notice that, because of the presence of vj(t), j ̸= i, in

(4.7), this upgraded dynamic average consensus algorithm no longer possesses the

robustness property of (2.1). That is, when the communication is interrupted at

time tI > 0, with individual subgroups of agents remaining connected, each agent

i within a subgroup of K < N agents will no longer be guaranteed to continue

to track the averaged signal 1
N

∑N
j=1 φj(t). However, it is precisely because of the

communication of vi among agents that the dynamic average consensus algorithm

(4.7) possesses a different robustness feature. When the communication is interrupted

at time tI > 0, with individual subgroups of agents remaining connected, each agent

i within a subgroup of K < N agents will track the averaged signal 1
K

∑K
j=1 φj(t).

This robustness is an appealing feature for the distributed SoC balancing algorithm

below.

In the following, we first apply the dynamic average consensus algorithm (4.7) to

construct our dynamic average consensus algorithm to estimate the average desired

power pa(t).

By (4.7c), the information S and Y in the exosystem (4.1) can be estimated by

battery unit i with the following dynamic leader-following consensus algorithm,

˙̂
Si =−µ

(
N∑
j=1

aij

(
Ŝi − Ŝj

)
+ bi

(
Ŝi − S

))
, (4.8a)

˙̂
Yi =−µ

(
N∑
j=1

aij

(
Ŷi − Ŷj

)
+ bi

(
Ŷi − Y

))
, (4.8b)

where Ŝi(t) and Ŷi(t) are the estimation values of the ith battery for S and Y , re-

spectively. Notice that, even though
∑N

j=i ai,j is defined for j = 1 to N , it can be

computed over all ai,j ̸= 0. Hence, the information of N is not required.
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For each battery unit i, i = 1, 2, · · · , N , we use (4.7), (4.8) and (4.1) to design

the following dynamic average consensus algorithm to estimate average desired power

pa(t),

˙̂
Pa,i =−µ

N∑
j=1

aij

(
P̂a,i − P̂a,j

)
− µ

(
P̂a,i −

bi∑N
j=1 bj

P ∗

)

+ŜiP̂a,i + µ
N∑
j=1

aij(Vi − Vj) , (4.9a)

V̇i =−µ

N∑
j=1

aij

(
P̂a,i − P̂a,j

)
+ ŜiVi, (4.9b)

p̂a,i = Ŷ P̂a,i, (4.9c)

where P̂a,i(t) is the estimation values of the ith battery for 1
N

∑N
i=1

(
bi∑N

j=1 bj
P ∗(t)

)
and p̂a,i(t) is the estimation values of the ith battery for 1

N
Y
∑N

i=1

(
bi∑N

j=1 bj
P ∗(t)

)
.

Here, we notice that, even though
∑N

j=i ai,j and
∑N

j=i bi,j are defined for j = 1 to

N , they can be computed over all ai,j ̸= 0 and bi,j ̸= 0, respectively. Hence, the

information of N is not required. We also notice that

1

N

N∑
i=1

(
bi∑N
j=1 bj

P ∗(t)

)
=

1

N
P ∗(t) = Pa(t),

1

N
Y

N∑
i=1

(
bi∑N
j=1 bj

P ∗(t)

)
= Y Pa(t) = pa(t),

which means that what P̂a,i(t) and p̂a,i(t) actually track are Pa(t) and pa(t), respec-

tively.

Next, we design, for each battery unit i, a dynamic average consensus algorithm to

estimate the average unit state xa(t) for the discharging model by using (4.1), (4.7),
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(4.8) and (4.9),

˙̂
Xa,i =−µ

N∑
j=1

aij

(
X̂a,i − X̂a,i

)
− µ

(
X̂a,i − Pi

)
+ ŜiX̂a,i

+µ
N∑
j=1

aij(Wi −Wj) , (4.10a)

Ẇi=−µ

N∑
j=1

aij

(
X̂a,i − X̂a,j

)
+ ŜiWi, (4.10b)

˙̂xa,i =−µ

N∑
j=1

aij(x̂a,i − x̂a,i)− µ (x̂a,i − xi)− ŶiX̂a,i + µ

N∑
j=1

aij(wi − wj) ,(4.10c)

ẇi=−µ
N∑
j=1

aij (x̂i − x̂j)− ŶiWi, (4.10d)

where X̂a,i(t) and x̂a,i(t) are the estimation values of the ith battery for 1
N

∑N
i=1 Pi(t)

and 1
N

∑N
i=1 xi(t), respectively, and Pi(t) can be given by

Pi(t) =
xi(t)

x̂a,i(t)
P̂a,i(t).

Notice that, as with the implementation of (4.8) and (4.9), the information of N is

not required in implementing (4.10). The dynamic average consensus algorithm to

estimate the average unit state xa(t) for the charging model can be constructed by

using similar way.

We can now implement the control algorithm (4.6) as follows,

pi(t) =
xi(t)

x̂a,i(t)
Ŷi(t)P̂a,i(t). (4.11)

If the communication topology satisfies Assumptions 1.1 and 4.1, the battery

dynamics satisfies (4.2) and (4.4), and the exosystem knows the information on the

frequency components of the desired power, under the control algorithm (4.11) and
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the dynamic average consensus algorithms (4.9), (4.10) and (4.8), a battery energy

storage system could accurately satisfy the charging/discharging power desired by the

grid while accurately balancing the SoC of all its units without knowing the number of

the battery units. Meanwhile, the resulting system possesses the robustness property

when the communication is interrupted. When the communication is interrupted at

time tI > 0, with subgroups of battery units remaining connected and containing at

least one agent that has access to the information of the exosystem, the SoC of the

battery units of each of these subgroups will reach balancing among battery units in

the subgroup while all remaining battery units stop working. The total output power

of the battery system still tracks the desired power accurately.

4.3 Simulation Results

In this section, we verify the effectiveness of the control algorithm (4.11) by sim-

ulation performed with a battery system consisting of six networked battery units.

The parameters of the battery units are (C1, C2, C3, C4, C5, C6) = (180, 190, 200,

210, 220, 230)Ah and (V1, V2, V3, V4, V5, V6) = (20, 20, 20, 20, 20, 20)V . The initial SoC

of the battery units are (0.96, 0.89, 0.75, 0.8, 0.73, 0.88).

The communication topology of the system is shown in Fig. 4.1. In addition, only

battery unit 1 has access to the desired charging/discharging power, i.e., b1 = 1 and

bi = 0, i = 2, 3, ..., 6.

Figure 4.1: The communication topology of the battery system.

We will also illustrate the robustness of our algorithms against interruptions of
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the network connectivity (see Fig. 4.2).

Figure 4.2: The communication topology of the battery system after interruption at
t = tI.

We consider the discharge mode in the following simulation. The simulation for

the charging mode can be carried out in a similar way.

Let matrices S and Y in the exosystem (4.1) be given by

S =


0 0 0

0 1 0

−1 0 0

 , Y =

[
1 1 0

]
.

Then the desired discharging power is given by

p∗(t) = (300 cos(t) + 300)W,

corresponding to P ∗(0) = [300, 300, 0]T.

Shown in Fig. 4.3-4.6 are evolution of the SoC of all battery units during the

discharging process, the total power of the battery system, the estimates of the av-

erage desired power by all battery units and the estimates of average units state by

all battery units. It is observed that the SoC of all battery units reach balancing

accurately and the total delivering power of the battery system tracks the desired
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power accurately.

Figure 4.3: Evolution of SoC of all battery units.

Figure 4.4: The total output power of all battery units and the desired power.

To illustrate the robustness of our distributed SoC balancing algorithm against

network connectivity interruption, we consider the situation when the communication

is interrupted at tI = 25h. After this interruption, a subgroup of battery units, units

1, 2 and 3, remains connected with unit 1 having access to the information of the

exosystem. Shown in Fig. 4.7-4.10 are evolution of the SoC of all battery units during

the discharging process, the total power of the battery system, the estimates of the

average desired power by all battery units and the estimates of average units state
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Figure 4.5: Estimates of the average unit state x̂a,i by all battery units and the actual
average unit state of xa.

Figure 4.6: Estimates of the average desired power p̂a,i by all battery units and the
actual average desired power pa.
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by all battery units. It is observed that the SoC of the battery units in the subgroup

of battery units 1, 2 and 3 still reach balancing accurately and the remaining battery

units stop working. The total output power of the battery system still tracks the

desired power accurately.

Figure 4.7: Evolution of SoC of all battery units.

Figure 4.8: The total output power of all battery units and the desired power.
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Figure 4.9: Estimates of the average unit state x̂a,i by all battery units and the actual
average unit state of xa.

Figure 4.10: Estimates of the average desired power p̂a,i by all battery units and the
actual average desired power pa.



Chapter 5

Conclusions

In this thesis, we have constructed distributed estimators for a group of agents op-

erating on a connected directed communication network, in both the continuous-time

and discrete-time settings. These distributed estimators reach consensus precisely at

the average of the time-varying signals each associated with one agent. Such precise

consensus is made possible by including the frequency information of time-varying

signals in the estimators, which also makes the estimators robust to the interruption

of the network connectivity. After the occurrence of an interruption, subgroups of

connected agents that continue to reach consensus around the average of all signals

as long as the signals are bounded and the later the interruption occurs the more

accurate the consensus will be. To demonstrate their practical application, we ap-

ply our proposed distributed dynamic average consensus algorithms to a networked

battery system to achieve accurate state-of-charge balancing while delivering the de-

sirable total power accurately without knowing the number of the battery units, and

to have robustness property when the communication is interrupted. When the com-

munication is interrupted at time tI > 0, with subgroups of battery units remaining

connected and containing at least one agent that has access to the information of

57
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the exosystem, the SoC of the battery units of each of these subgroups will reach

balancing among battery units in the subgroup while all remaining battery units stop

working. The total output power of the battery system still tracks the desired power

accurately.
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