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Abstract

Cardiovascular disease remains the leading cause of death globally, with heart failure affecting approxi-
mately 6.2 million Americans and carrying a five-year mortality rate of nearly 50% despite modern ther-
apies. This paper addresses three specific challenging clinical decision-making problems: selecting pa-
tients for cardiac resynchronization therapy (CRT), identifying those who would benefit from implantable
cardioverter-defibrillators (ICDs) for primary prevention of sudden cardiac death, and distinguishing ge-
netic cardiomyopathy from cardiac sarcoidosis and myocarditis. We develop deep learning approaches that
move beyond simplistic clinical heuristics toward precision medicine in cardiac care, leveraging rich infor-
mation contained in cardiac electrical and imaging data through sophisticated computational techniques
to improve patient selection for these important but costly and invasive therapies, ultimately enhancing
outcomes while reducing unnecessary procedures.

1 Introduction

Cardiovascular disease remains the leading cause of
death globally, with heart failure affecting approxi-
mately 6.2 million Americans and carrying a stag-
gering five-year mortality rate of nearly 50% despite
modern therapies (Heart Failure Society of Amer-
ica (2023)). Within this broad spectrum of car-
diac dysfunction, there are three specific challeng-
ing clinical decision-making problems: selecting pa-
tients for cardiac resynchronization therapy (CRT),
identifying those who would benefit from implantable
cardioverter-defibrillators (ICDs) for primary preven-
tion of sudden cardiac death (SCD), and distinguish-
ing genetic cardiomyopathy from cardiac sarcoidosis
and myocarditis.

1.1 Predicting CRT Response

Heart failure with reduced ejection fraction (HFrEF)
affects ventricular synchrony, leading to inefficient
cardiac contraction. CRT has revolutionized treat-
ment by resynchronizing ventricular contraction
through biventricular pacing, improving symptoms,
quality of life, and survival in selected patients. How-
ever, despite guideline-recommended selection crite-
ria based primarily on QRS duration and morphol-
ogy, 30-40% of patients show minimal benefit from
this invasive and costly intervention. The current
selection paradigm relies heavily on QRS duration
(typically ≥150 ms) and left bundle branch block
(LBBB) morphology as primary indicators for CRT
candidacy. This approach has significant limita-

tions, as these electrocardiographic parameters inad-
equately capture the complex electrical and mechani-
cal dyssynchrony patterns that may predict response.
Current guidelines do not account for the hetero-
geneity of cardiac dysfunction among patients with
similar ECG findings, leading to unnecessary proce-
dures in likely non-responders while potentially miss-
ing patients who might benefit despite not meeting
conventional criteria. The disconnect between elec-
trical markers on traditional ECG analysis and ac-
tual mechanical dyssynchrony highlights the need for
more sophisticated approaches to patient selection.
This gap represents a critical unmet need in heart
failure management and motivates previous work us-
ing advanced ECG analysis through functional prin-
cipal component decomposition (FPCD). For CRT
patient selection, functional principal component de-
composition (FPCD) of ECG waveforms could cap-
ture subtle electrical patterns associated with me-
chanical dyssynchrony and CRT response, however
remains limited in that it relies on the creation of
manually created features. Because of these limita-
tions, we propose an approach that uses ECG anal-
ysis using convolutional neural networks (CNNs) to
interpret ECG enabling accurate prediction of CRT
response.

1.2 Assessing Arrhythmia Risk

Similarly problematic is the current approach to
primary prevention of SCD in patients with is-
chemic cardiomyopathy (ICM). Ischemic cardiomy-
opathy (ICM) is a weakening of the heart muscle
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due to poor blood supply that results from coro-
nary artery disease (CAD) - a condition where the
blood vessels supplying the heart muscle become nar-
rowed or blocked due to plaque buildup. When coro-
nary arteries become blocked, they cause heart at-
tacks (myocardial infarctions) that damage the heart
muscle, creating areas of scar tissue that can serve
as substrates for dangerous arrhythmias. CAD is
the most frequent cause of sudden cardiac arrest, ac-
counting for nearly 70% of cases. Currently, implan-
tation of ICDs are the gold standard in preventing
SCD. Guidelines recommend prophylactic ICD im-
plantation based primarily on a left ventricular ejec-
tion fraction (LVEF) threshold of ≤35%, a criterion
derived from landmark trials conducted decades ago.
This dichotomous LVEF-based approach suffers from
significant limitations. First, LVEF has suboptimal
predictive value for arrhythmic events, with studies
showing that the majority of sudden cardiac deaths
occur in patients with LVEF >35%. Additionally,
advances in medical therapy since the original ICD
trials have decreased SCA rates, altering the risk-
benefit calculus. There is also increased recognition
of the competing risk of non-SCD mortality, partic-
ularly in patients with severely reduced LVEF. This
results in many ICD implantations in patients who
never experience life-threatening arrhythmias while
failing to protect many patients at genuine risk.

Interestingly, the presence, extent, and character-
istics of myocardial scar tissue, especially its hetero-
geneity and distribution, are more closely associated
with arrhythmic risk than LVEF alone. However,
these factors are not integrated into current clinical
decision-making. The significant limitations of the
LVEF-based approach highlight the need for more so-
phisticated risk stratification methods. We aimed to
develop more accurate predictive models that go be-
yond the limitations of LVEF alone. In order to do
this, we propose the development of Convolutional
Neural Network (CNN) models in order to evaluate
clinical outcomes from the myocardial scar tissue.

1.3 Genetic Cardiomyopathies

The last problem involves the accurate differentiation
between genetic cardiomyopathy, cardiac sarcoidosis,
and non-genetic myocarditis. This task is crucial be-
cause misdiagnosis leads to significant harm through
inappropriate treatments (unnecessary immunosup-
pression, risky biopsies) or missed opportunities for
life-saving interventions (ICD placement, exercise re-
strictions, family genetic testing). Standard diag-
nostic tools lack specificity, while indiscriminate ge-
netic testing introduces risks of uncertain findings.

We propose an approach that uses ECG analysis us-
ing convolutional neural networks (CNNs) to estab-
lish reliable phenotypic signatures, enabling accurate
distinction between these conditions and appropriate
clinical management without the drawbacks of broad
genetic testing.

All of these approaches share a common goal: mov-
ing beyond simplistic clinical heuristics toward preci-
sion medicine in cardiac care. By leveraging the rich
information contained in cardiac electrical and imag-
ing data through sophisticated computational tech-
niques, we sought to improve patient selection for
these important but costly and invasive therapies, ul-
timately enhancing outcomes while reducing unneces-
sary procedures. Improved patient selection for CRT
could prevent unnecessary procedures in likely non-
responders, reducing healthcare costs and avoiding
procedural complications. Similarly, more accurate
risk stratification for ICDs could protect high-risk pa-
tients currently missed by LVEF criteria while spar-
ing low-risk patients from unnecessary device implan-
tation. The potential healthcare impact is substan-
tial. With approximately 200,000 CRT devices and
150,000 ICDs implanted annually worldwide (Mela
et al. (2013)), even modest improvements in patient
selection algorithms could affect tens of thousands of
clinical decisions annually. This paper examines these
two related but distinct approaches to improving car-
diac care through advanced computational analysis
of cardiac data (ECGs and MRIs), demonstrating
how machine learning techniques can address long-
standing challenges in cardiovascular medicine and
move us closer to truly personalized cardiac care.

2 Methods

2.1 Predicting CRT Response

We developed a deep learning approach to predict
cardiac resynchronization therapy (CRT) response
using standard 12-lead electrocardiogram (ECG)
data. Our dataset comprised pre-procedure and post-
procedure ECGs from patients who underwent CRT
implantation, allowing us to identify electrical pat-
terns associated with successful therapy outcomes.

The dataset consisted of 12-lead ECG recordings
from patients who underwent CRT implantation. For
each patient, we collected both pre-CRT and post-
CRT ECG recordings, along with clinical outcome
data indicating whether the patient responded to
therapy (binary classification). A critical aspect of
our preprocessing was the extraction of the QRS com-
plex from each lead’s waveform, which was cropped
to a standardized 250 sample points. This crop-
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ping focused our analysis specifically on ventricu-
lar depolarization patterns most relevant to CRT re-
sponse. Each ECG recording was stored as a multi-
dimensional array with dimensions (12, 250, 1), where
12 represents the number of leads (I, II, III, aVR,
aVL, aVF, V1-V6), 250 represents the cropped QRS
complex points, and 1 represents the voltage dimen-
sion.

Our preprocessing pipeline included importing
ECG signals from the clinical database in Excel for-
mat, converting the signals to standardized tensors
with consistent dimensions, normalizing the ECG
voltage values to improve model training stability,
and creating a binary response label for each pa-
tient based on established clinical criteria for CRT
response.

The composite model architecture (ECGCompos-
iteNet) simultaneously processed both pre-CRT and
post-CRT ECGs to identify patterns associated with
successful therapy. The core ECG processing network
incorporated initial per-lead feature extraction using
three convolutional blocks, each with batch normal-
ization, ReLU activation, and max pooling. Interme-
diate feature dimensions progressed through 32, 64,
and 128 channels. Global feature combination was
achieved through fully connected layers with dropout
regularization (rates of 0.8 and 0.5) to prevent over-
fitting given the limited sample size. The model con-
cluded with a binary classification output using sig-
moid activation.

We implemented a cross-validation strategy to ro-
bustly evaluate model performance. The dataset was
split into 5 folds using stratified sampling to maintain
class balance. For each fold, we trained the model on
the training set and evaluated on the validation set
using binary cross-entropy loss and the Adam opti-
mizer with a learning rate of 0.0001. Early stopping
was implemented with a patience of 10 epochs to pre-
vent overfitting. Models were trained for a maximum
of 100 epochs with a batch size of 32.

For model interpretability, we created a simpler
and more clinically intuitive method that plotted
characteristic waveform features from the top three
and bottom three probability cases. By comparing
these extreme examples, we could identify pattern
differences between the patients most likely and least
likely to respond to CRT according to our model.
These visualizations provided clinically relevant in-
sights into the electrophysiological patterns associ-
ated with CRT response and potential mechanisms
underlying therapy effectiveness.

Performance was evaluated using area under the
receiver operating characteristic curve (AUC) and ac-
curacy metrics. The final reported performance rep-

Figure 1: CNN Model used for processing ECG Leads

resents the average across all 5 cross-validation folds.

2.2 Ventricular Arrhythmia

We trained a CNN model on a dataset of 235 patients
with each patient containing a set of CMR short axis
slices of the left ventricle with Late Gadolinium En-
hancement (LGE). Images were annotated by record-
ing the contours of the epicardium, the endocardium,
and the LV insertion point, all of which are coordi-
nates, which serves as metadata for specifying the
regions of interest for the model. For each short axis
slice, the pixel values were normalized by consider-
ing the maximum and minimum values within the
myocardium (region between epicardium and endo-
cardium contours). The short axis slices had their
orientation corrected by rotating the image such that
the LV insertion point will always be oriented down-
wards with the center of the LV as the rotation point.

For labels, we defined a binary composite outcome
where a positive label is assigned if any of the three
outcomes Sudden Cardiac Death (SCD), Cardiac Ar-
rest or if the patient had a sustained episode of Ven-
tricular Tachycardia.

For annotating the scar, we used a pretrained Swin-
Unet model trained from Professor Zhang’s lab that
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does binary segmentation of the myocardium region
to label scar maps. A sample result of the label is
shown in Fig. 14.

Figure 2: From Left to Right: Masked + Normalized
LGE Image, Cropped SA Image, Full SA Image (ori-
entation corrected), LGE Scar Annotation

Therefore, our dataset consists of cardiac MRI
data with dimensions (235, 2, 128, 128, 1). This 5-
dimensional tensor represents 235 patients. The sec-
ond dimension contains two distinct elements: (1) a
binary mask of the myocardium region derived from
metadata delineating the endocardial and epicardial
boundaries of short-axis (SA) slices, and (2) the cor-
responding scar tissue segmentation. Each element is
represented as a 128×128 single-channel image cap-
turing the regions of interest.
For the model, we trained on a CNN model that

evaluates each patient by processing each slice with
convolutions, before processing all the patient slices
with a standard MLP network.

Figure 3: Model Architecture for Scar Evaluation

The model architecture follows a sliding CNN ap-
proach that processes each cardiac MRI slice indi-
vidually before aggregating the results. The steps to
process a patient are shown below:

1. The model accepts input data consisting of 3-
10 short-axis (SA) slices per patient. Each

slice contains two channels: one representing
the myocardium mask and one representing the
LGE scar segmentation, each with dimensions of
128×128 pixels.

2. For each slice, the Sliding CNN Encoder pro-
cesses the 2-channel input through a series of
convolutional layers. This encoder extracts rele-
vant features from each slice independently, cap-
turing spatial patterns associated with myocar-
dial scarring.

3. After processing each slice individually, the
model produces a fixed-length feature vector for
each slice. These feature vectors are then fed
into an MLP (Multi-Layer Perceptron) network
that can handle up to 10 slices maximum.

4. The MLP network aggregates the information
across all slices, learning to weight the impor-
tance of different slices and their features in mak-
ing the final prediction.

5. Finally, the model outputs a binary prediction
indicating whether the patient is at risk for ven-
tricular arrhythmia based on the scar tissue char-
acteristics observed across all slices.

This sliding CNN approach effectively handles the
variable number of slices per patient while maintain-
ing the spatial relationships within each slice that are
critical for accurate prediction of cardiac outcomes.

We evaluated by utilizing 5-fold crossfold valida-
tion on AUC as well as accuracy.

2.3 Genetic Cardiomyopathy

We trained on 500 patients distinguishing between
genetic cardiomyopathy and cardiac sarcoidosis. For
this classification task, we employed the same com-
posite model architecture as the previous ECG net-
work described in Section 2.1. This approach allowed
us to leverage the same deep learning framework to
identify distinct ECG patterns associated with each
condition, potentially enabling non-invasive differen-
tiation between these clinically similar but etiologi-
cally distinct cardiomyopathies.

We developed separate binary classification mod-
els to distinguish between three clinically similar but
pathologically distinct cardiac conditions: genetic
cardiomyopathy (GEN), cardiac sarcoidosis (SARC),
and myocarditis (MYO). Our dataset comprised 500
patients with 12-lead ECG recordings. Similar to our
CRT response prediction methodology, we extracted
and cropped the QRS complex from each lead, but
additionally included RR interval data to capture
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timing-related features that might distinguish these
conditions.

3 Results

3.1 CRT Response

Table 1: AUC Results for ECG-based CNN Models
for CRT Response Prediction

Model Input AUC
Pre-CRT ECG 0.84
Post-CRT ECG 0.76
Combined Pre-CRT + Post-CRT ECG 0.87

Below are the plots of the ECG waveforms show-
ing the top 3 and the bottom three waveforms. These
plots allow one to intepreet the model’s behavior in
classifying what features or aspects the model attends
to in the waveform to give the waveform a high prob-
ability or a low probability. Especially in the lead 4
morphology, correlations in what the model classifies
as high probability or low probability can be observed
through the

Figure 4: ECG Lead 1 Morphologies for top 3 classi-
fied probabilities + bottom 3 probabilities

Figure 5: ECG Lead 4 Morphologies for top 3 classi-
fied probabilities + bottom 3 probabilities

Figure 6: ECG Lead 5 Morphologies for top 3 classi-
fied probabilities + bottom 3 probabilities

3.2 Ventricular Arrhythmia

Shown below are the reported AUCs for for 5-Fold
Cross fold Validation

Table 2: 5-Fold Cross-Validation AUC Results for
Ventricular Arrhythmia Prediction

Fold AUC
Fold 1 0.411
Fold 2 0.631
Fold 3 0.567
Fold 4 0.456
Fold 5 0.598
Mean AUC 0.533
Standard Deviation 0.090
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Figure 7: Fold 1 Training AUC Validation AUC
Training Convergence Graph

Figure 8: Fold 2 Training AUC Validation AUC
Training Convergence Graph

Figure 9: Fold 3 Training AUC Validation AUC
Training Convergence Graph

Figure 10: Fold 4 Training AUC Validation AUC
Training Convergence Graph

Figure 11: Fold 5 Training AUC Validation AUC
Training Convergence Graph

6



For the model, the reported AUC score for average
validation was 0.53. Additionally during training, the
training AUC was consistently higher than the vali-
dation AUC across all folds.

3.3 Genetic Cardiomyopathy

Shown below is the AUC values trained from CV Val-
idation when discriminating between the two classes.

Table 3: Test Set AUC Values
QRS RR (extended)

GEN vs. MYO 0.89 0.82
GEN vs. SARC 0.64 0.50

Shown below are the waveforms for the GEN vs
MYO binary classification task:

Figure 12: ECG Lead 1 Morphologies for top 3 clas-
sified probabilities + bottom 3 probabilities

Figure 13: ECG Lead 7 Morphologies for top 3 clas-
sified probabilities + bottom 3 probabilities

Figure 14: ECG Lead 12 Morphologies for top 3 clas-
sified probabilities + bottom 3 probabilities

4 Discussion

Our study demonstrates varying degrees of success in
applying deep learning approaches to three distinct
cardiac prediction tasks, each with important clinical
implications.

4.1 CRT Response Prediction

The CRT response prediction model achieved promis-
ing performance, with the combined pre/post-CRT
model yielding the highest AUC of 0.87, followed
by the pre-CRT model (AUC 0.84) and post-CRT
model (AUC 0.76). These results suggest that while
pre-CRT ECG data alone contains substantial predic-
tive information, the integration of post-implantation
electrical patterns further enhances prediction accu-
racy. This finding has important clinical implications,
as it indicates that baseline ECG characteristics be-
fore device implantation can provide meaningful in-
sight into likely response, potentially allowing for bet-
ter patient selection prior to this invasive procedure.

The morphological analysis of ECG waveforms in
Figures 5-7 reveals distinctive patterns between likely
responders and non-responders. These visual differ-
ences align with the model’s probability assignments,
suggesting the CNN has successfully identified clini-
cally relevant electrical patterns. Such interpretable
features provide a partial window into the ”black
box” of the neural network and could potentially in-
form clinical decision-making by highlighting specific
ECG characteristics that correlate with therapeutic
success.

The ability to predict CRT response with this level
of accuracy represents a significant improvement over
current clinical criteria based primarily on QRS du-
ration and morphology. By capturing more subtle
and complex electrical patterns through deep learn-
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ing, our approach highlights the potential for use of
deep learning methods to extract relevant features in
ECG for diagnosis.

4.2 Ventricular Arrhythmia Predic-
tion

The ventricular arrhythmia prediction model demon-
strated modest performance with a mean AUC of
0.533 (SD 0.090) across five cross-validation folds.
The substantial variability between folds (ranging
from 0.411 to 0.631) suggests model instability that
requires careful interpretation. This inconsistency
likely stems from several factors that warrant discus-
sion.

First, the training convergence graphs (Figures 9-
13) consistently show higher training AUC compared
to validation AUC across all folds, a classic indicator
of overfitting. This pattern reveals that the model
effectively learns patterns within the training data
but struggles to generalize these insights to unseen
examples. The relatively small dataset size (235 pa-
tients) likely contributes to this limitation, particu-
larly given the complexity of the model architecture
and the high-dimensional nature of cardiac MRI data.

Second, the variability across folds suggests that
the dataset may contain heterogeneous patterns or
subgroups of patients with distinct risk profiles. This
heterogeneity is a known challenge in arrhythmia pre-
diction, as the pathophysiological processes leading to
arrhythmic events can vary substantially between pa-
tients, even with similar scar patterns. The model’s
performance fluctuations across different subsets of
the data highlight the need for larger, more diverse
datasets that can better represent the full spectrum
of cardiac pathology.

Despite the modest overall performance, our ap-
proach represents an important step toward image-
based arrhythmia risk stratification that moves be-
yond the limitations of LVEF-based criteria. The in-
tegration of myocardial scar characteristics through
deep learning offers a foundation for future refine-
ment, potentially leading to more accurate risk as-
sessment tools with larger datasets and model opti-
mization.

4.3 Genetic Cardiomyopathy Classifi-
cation

The genetic cardiomyopathy classification models
showed distinct performance patterns across different
diagnostic comparisons. The GEN vs. MYO classifi-
cation achieved strong discriminative capability with

an AUC of 0.89 using QRS complex data and 0.82 us-
ing extended RR interval data. This suggests robust
electrocardiographic differences between genetic car-
diomyopathies and myocarditis that can be captured
through deep learning approaches.

In contrast, the GEN vs. SARC classification
showed more modest performance (AUC 0.64 with
QRS data and 0.50 with RR data), indicating greater
similarity in ECG patterns between these conditions.
This aligns with clinical experience, as cardiac sar-
coidosis can often mimic genetic cardiomyopathies
in its electrical manifestations, making differentiation
challenging even for experienced clinicians.

The morphological analysis of ECG leads (Figures
14-16) shows consistent in waveform characteristics
between conditions. Lead 12 (V1) shows particu-
larly distinctive patterns, with genetic cardiomyopa-
thy cases

These visual patterns correspond well with the
model’s classification probabilities, suggesting the
CNN has identified clinically relevant distinguishing
features.

The superior performance of QRS-based models
compared to RR interval-based models across both
classification tasks highlights the primary importance
of ventricular depolarization patterns in distinguish-
ing these conditions. This finding provides valuable
insight for further refinement of diagnostic algorithms
and potential clinical application.

4.4 Limitations and Future Directions

Several limitations warrant consideration. First, our
datasets remain relatively small for deep learning ap-
plications, potentially limiting generalizability. The
CRT dataset (196 patients) and VA dataset (235 pa-
tients), while substantial for clinical studies, are mod-
est by machine learning standards. This limitation is
particularly evident in the VA prediction task, where
model overfitting was apparent despite regularization
efforts.

Second, the binary outcome definitions, while clin-
ically relevant, may oversimplify the complex spec-
trum of treatment responses and disease manifesta-
tions. Future work might benefit from more nuanced
outcome measures or multi-class approaches that bet-
ter capture the heterogeneity of cardiac conditions
and treatment responses.

Third, while our interpretability approaches pro-
vide some insight into model decision-making, deep
neural networks remain partially opaque. Further de-
velopment of visualization techniques and feature at-
tribution methods could enhance clinical trust and
adoption of these predictive tools.
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Future work should focus on external validation
with independent cohorts to assess generalizabil-
ity, integration of multiple data modalities (combin-
ing ECG with imaging and clinical variables), and
prospective evaluation of these models in clinical
decision-making scenarios. Additionally, exploration
of transfer learning approaches might help overcome
the limited dataset sizes by leveraging knowledge
from larger, related datasets.

4.5 Conclusion

This study demonstrates that deep learning ap-
proaches can provide valuable predictive insights
across multiple challenging cardiac decision prob-
lems. Our models for CRT response prediction,
ventricular arrhythmia risk stratification, and car-
diomyopathy classification each showed varying de-
grees of success, with the CRT and cardiomyopathy
classification models achieving particularly promis-
ing performance. These approaches offer potential
paths toward more precise, personalized cardiac care
that moves beyond the limitations of current clinical
heuristics, potentially improving patient outcomes
while reducing unnecessary procedures and their as-
sociated costs and risks.
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