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Abstract

I develop an estimation framework for a model tracking population changes over time

where observations are recorded by multiple sources with differing frequency and precision.

I apply this framework to recover the number of unmarried men and women by age and

race in each state for every year over the last three decades by combining measurements

from the Decennial Census, the Current Population Survey, and the American Community

Survey. Estimates of the model parameters are used to generate yearly measures of sex

ratios and to estimate the impact of this marriage market feature on the marriage timing

decision of women. Previous research has relied on the infrequent snapshots of marriage

markets features. Using the yearly estimates of sex ratios I find a decrease in waiting time

to first marriage for National Longitudinal Survey of Youth 1979 (NLY79) women when the

relative number of potential spouses increases.

Yearly estimates of potential partner supply are also used to identify and estimate the

effect of mother’s marriage on children born out of wedlock. I use the Child and Young Adult

Survey (CNLSY79), a survey that collects information on children of the NLSY79 women,

to link children with their mothers and the marriage markets these women experienced.

Ordinary least squares (OLS) regressions show that black children whose mothers marry

are more likely to obtain a high school diploma relative to children whose mothers remain

unwed. The effect of marital union is also positive when sex ratios are used as instruments

for the mother’s marriage decision. However, the instrumental variable results are not robust

to the inclusion of other explanatory variables that can affect marriage market features.

JEL-Classification: I20, J11, J12, J13

Keywords: Demographics, Marriage, Census, Children, Education
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Introduction

Empirical research on the effect of marriage market characteristics on the marriage decision

often contends with a shortage of data available to describe markets. A decline in the relative

availability of partners has been found to decrease the probability of marriage for females,

however reliable data measuring potential partner supply is often infrequent. I address the

deficit in reliable and frequent demographic data by developing and estimating a model

that combines multiple sources of data to recover frequent partner availability measures.

The model incorporates information from multiple sources of data, where each source has a

different frequency of observation and propensity for accurate measurement of populations

by demographic category. I find that lower supply of potential partners increases waiting

time until first marriage for women, and that the model generated measures of partner

supply have larger predictive power than measures constructed solely form the observed

data. Besides helping to predict marriage, better data on partner availability can also be

used to study the link between marriage and other outcomes. Whenever partner availability

is uncorrelated with the outcomes of interest, the former can be used as an instrumental

variable for marriage. The frequent partner availability measures generated by the model are

used to investigate the effect of mother’s marriage on child outcomes for a group of children

born to unmarried women. I find some evidence that a mother’s marriage increases the

probability that her child obtains a high school diploma.

In the first chapter of this dissertation, I develop and estimate a model of observed

population counts by demographic category. I combine information on population counts

from the Decennial Census, the American Community Survey (ACS), and the Current
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Population Survey (CPS). The model of the data generating process accounts for missing

observations and allows for data-source-specific measurement error. Estimates of model

parameters permit the construction of sex ratios, a measure of the number of unmarried

men for each unmarried woman, for each marriage market and time period. The model

generated ratios are then used to predict the effect of partner availability on waiting time to

first marriage for the women of the National Longitudinal Survey of Youth 1979 (NLSY79).

In accordance with previous research, I find that higher relative supply of potential partners

decreases waiting time to first marriage. Additionally, compared to coefficients for ratios

based purely on the data, the coefficients on the ratios from the model have higher predictive

power, suggesting the possibility of attenuation bias due to measurement error in the ratios

based solely on the data. The ratios generated from the model appear to succeed in reducing

measurement errors and seem to reflect the true sex ratios faced by the NLSY79 respondents

more accurately.

In the second chapter of this dissertation, I estimate the impact of mother’s marriage

on outcomes of children born to unwed mothers. Ordinary least squares (OLS) regressions

show that children of the NLSY79 mothers who marry are more likely to graduate from

high school or obtain a GED relative to their peers whose mothers remain unmarried.

Because mother’s marriage is likely to be correlated with unobservables in the high school

graduation equation, I also use measures of sex ratios estimated by the model described in

the first chapter as instrumental variables for the marriage decision. The results of Chapter

1 indicate that sex ratios have an impact on the waiting time until first marriage for the

NLSY79 women. I use yearly measures of partner availability in the mother’s marriage

market in a General Method of Moments (GMM) estimation framework and find that

mother’s marriage has a large and positive effect on the high school graduation status of

their children. However, the coefficient estimates decline and become insignificant when

state-specific prison rates are included in the outcome equation, suggesting unobservable

factors related to incarceration might affect the sex ratios in the mother’s marriage market

and high school graduation status of their children. These results suggest caution when

considering the GMM coefficient estimates.
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Chapter 1

Estimating Marriage Market

Features Using Multiple Sources of

Data Measured with Error

1.1 Introduction

Marriage is correlated with a range of outcomes for the individuals entering marital unions

and with outcomes of children they might choose to have. Motivated by these correlations

researchers have long been interested in learning about the connection between marital

decisions and marriage market characteristics. Longitudinal datasets, which often contain

detailed information about the timing into first marriage, are particularly suited for this

task. To fully use the information on waiting times and transitions one also needs a good

set of measures characterizing the marriage market over the observed period. The fur-

ther the measure of the relevant market feature from the truth, the more likely one is to

underestimate its impact, if any, on marital decisions.1 Unfortunately for many of the peri-

ods spanned by older longitudinal datasets like the National Longitudinal Survey of Youth

1979 (NLSY79), there is no accurate yearly source of data on population counts disaggre-

gated by many demographic categories. Population counts by category allow flexibility in

1See Brien (1997).
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construction of marriage market features along many demographic dimensions of interest.

I address the lack of appropriate data by combining three different sources of data

measuring the U.S. population. I focus on the sex ratio, a measure of the number of

unmarried men for each unmarried woman, as the market feature that captures relative

supply of available partners. To recover measures of sex ratios for each market and each

time period, I use a system of equations framework to develop and estimate a model of the

mean number of individuals in each demographic category of interest. The model accounts

for missing observations, allows for and identifies data-source-specific measurement error,

and is flexible enough to allow for sex ratio definition along any measured demographic

characteristic. With the parameter estimates in hand, I construct market- and time-specific

estimates of the sex ratios. Using the NLSY79 data I estimate the impact of sex ratios

on waiting time until first marriage, and compare the coefficients when ratios are based

solely on the observed data to coefficients on ratios generated by the model. Results suggest

coefficient estimates on the sex ratios from the observed data are biased toward zero relative

to estimates based on model generated ratios.

The most accurate source of demographic data comes from the Decennial Census. Every

ten years the Census Bureau collects information about all the individuals living in the

United States in that year. The Public Use Microdata Samples (PUMS), a subsample of

the Census, includes individual level records which are weighted to be representative of

the entire population. Using the Census PUMS allows one to generate total numbers of

individuals by any measured demographic characteristic of interest. These in turn can be

used to construct a wide variety of measures of marriage market features. However, the

precision and flexibility afforded by the Census is offset by the infrequency of data collection.

In light of the data limitations, many researchers rely on infrequent but detailed ob-

servations of the U.S. population to connect aggregate marriage rates to marriage market

characteristics like the sex ratios. For instance, South (1992) and Frieden (1974) use a sin-

gle year of observations while Wood (1995) and Angrist (2002) rely on multiple Decennial

Census surveys to connect aggregate marriage rates with marriage market characteristics.

Some researchers use longitudinal datasets to model the effect of sex ratios on marriage
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at the individual level, but find the lack of appropriate marriage market measures to be a

hindrance. Brien (1997), who uses the National Longitudinal Study of 1972 (NLS72) and

the 1980 Decennial Census, often relies on a measure at a single point in time to describe

the marriage markets faced by the sample over nearly a 15 year period. Lichter et al. (1992)

also use the 1980 Census data to construct sex ratios, but limit the waves of the NLSY79

survey they use to a 7 year period between 1979 to 1986 to assure more accuracy between

their measures and the ones experienced by the women in the NLSY79. Lack of frequent

demographic data has an impact on research outside the marriage market literature as well.

Often linear interpolation between Census points is used to generate estimated population

counts for the intercensal years.2

Instead of artificially censoring longitudinal data or relying solely on linear interpolation

of demographic data, I mitigate the infrequency of the Census data by supplementing it

with yearly information from the Current Population Survey (CPS) and the American

Community Survey (ACS). While data frequency is an advantage over the Decennial Census,

smaller sample size of the ACS and especially the CPS make them prone to larger deviations

from the actual population counts. Sample deviations imply that each population count

observed by any of the data sources is likely to be measured with error. Because of smaller

sample size, the ACS and the CPS are also more likely to have missing observations. In

these surveys, individuals with a certain set of characteristics might not be sampled. For

instance, the CPS might not sample the number of 20 year old black females in Indiana

in 1990 but will sample the number of 20 year old black males. I develop and estimate

a model that accounts for both of these features in the observed data, the presence of

data-source-specific measurement error and missing observations.

The remainder of my paper is organized as follows: First, I highlight issues with infre-

quent demographic data encountered in previous research. Next, I define marriage markets

and sex ratios, discuss how limitations of available data affects the sex ratios, and describe

the data used. Later, I present the model and the estimation strategy. Last, I discuss the

results.

2See Wolfers (2006), Caceres-Delpiano (2012), Johnson (2009).
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1.2 Literature Review

1.2.1 Demographic Data Limitations in Research

Research on the impact of marriage market features on marital decisions often depends

on infrequent demographic data. Observing market characteristics at only a few points in

time influences, and sometimes limits, the ability to identify the effects of interest. Some

studies, like Freiden (1974) and South and Lloyd (1992), use data from a single point in

time, and rely on cross sectional covariation in market characteristics, like sex ratios and

marriage rates.3 Others, like Wood (1993) and Angrist (2002), use repeated cross section

data measured once every decade, and add covariation in time to estimate the relationship

between marriage and market features.4 Research that utilizes detailed information on

waiting times to marriage employs infrequent data to characterize market features as well.

Lichter et al. (1992) use the NLSY79 data waves between 1979 to 1986 to connect sex ratios

generated from the 1980 Census to the timing of first marriage for each female respondent.

Brien (1997) uses the NLS72 data waves between 1972 and 1986 and often just one point

in time, the 1980 Census, to characterize marriage markets.5 Studies that use longitudinal

data sets are a particularly good example of how lack of frequent demographic data can be

a hindrance. Survey respondents are observed over multiple periods of time, but infrequent

data on marriage markets lacks information on how markets change over time. Lichter et al.

(1992) limit the waves of the NLSY79 they use so that the marriage markets experienced by

the respondents are close to the measures from the 1980 Census, while Brien (1997) often

uses measures at only one point in time to describe markets over a 14 year period.

A more frequent demographic data source for the time frame of the older longitudinal

data sets like the NLSY79 or NLS72 is available. The Current Population Survey (CPS)

collects data every year and can be used to construct yearly marriage market characteristics.

3Freiden (1974) uses the 1960 U.S. Census data, while South and Lloyd (1992) use the 1980 U.S. Census
to estimate the impact of marriage market conditions on marriage rates.

4Wood (1993) uses the 1970 and 1980 U.S. Census data, while Angrist (2002) uses the PUMS data files
from 1910, 1920 and 1940

5Some of Brien’s measures rely on two points in time, but are also constructed from the 1980 Decennial
Census. The 1980 Census asked a subsample of respondents questions about their residential status five
years prior to the Census, allowing him to construct the 1975 ratios for some definitions.
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However, the measures derived from the CPS are likely to be inaccurate.6 For example,

the work of Seitz (2009) relies on measuring sex ratios every year during a 15 year period

for a cohort of NLSY79 respondents.7 To construct the sex ratios for each sample year

Seitz (2009) reweights the NLSY79 sampling weights so that the number of married and

unmarried men and women in each marriage market match the CPS counts for that category

and year.8 After reweighting, new ratios are constructed from the counts of unmarried

individuals for each market and year. The resulting ratios, however, appear to be measured

with error. Seitz divides the U.S. into four regional marriage markets and in three of the

four regions reports an increase in sex ratios for whites as the NLSY79 respondents grow

older. This result runs counter to other empirical evidence, where sex ratios tend to decline

with age.9 Besides the direction of change, the magnitude and volatility of changes in the

ratios cast additional doubt on the suitability of the sex ratios used. For instance, ratios

for whites in the Western region of the U.S. increased from approximately 1 to 1.4 in a

single year; a 40 percent increase in the relative availability of unmarried men in a region

encompassing 14 states of the union.

Inaccurate ratios can be detrimental to estimation, and the propensity of the CPS to

measure population counts with error is a likely contributor to the poor features of the ratios

used by Seitz (2009). Brien (1997) presents evidence that measurement errors in population

counts might cause attenuation bias in the predicted effect of sex ratios on marriage. He

compares the predictive power of sex ratios defined at three geographic levels, the state,

SMSA, and the county group. In theory, smaller geographic areas should approximate the

actual marriage market faced by individuals more accurately. However, Brien (1997) finds

that coefficient estimates decline as the geographic areas decrease. Using a larger subsample

6The small sample size of the CPS is one of the reasons for the large propensity for measurement error,
suggesting one possible reason why it was not chosen by Lichter et al. (1992) and Brien (1997). See Section
1.8.

7Analysis is from 1979 to 1994. She derives a dynamic equilibrium model, where men and women make
marriage and employment choices every period, and are able to predict future sex ratios. Unfavorable ratios
in the future imply higher search frictions for an adequate partner and can impact the decisions made in
the current period.

8Seitz (2009) explains that attrition in the NLSY79 might cause mismeasurement of individuals in various
categories, necessitating the reweighting.

9See Lichter et al. (1992) and Table 1.11. Higher mortality and incarceration rates for men cause sex
ratios to decline as cohorts age.
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of the Decennial Census he constructs a different measure of marriageable men and uses

it as an instrumental variable for his preferred ratios.10 The instrumental variable results

support the measurement error hypothesis, smaller geographic areas depend on smaller

number of observations and are likely to be more volatile and poorly measured.

Brien (1997) and Lichter et al. (1992) serve as a jumping off point for some of the

work in this paper. Both studies would have benefited from access to data on market

characteristics for all period actually experienced by the longitudinal survey respondents.

They use many observations on respondents over time, but only one or two observations on

marriage market characteristics experienced by the survey participants. However, frequent

data is not enough. As shown by Brien (1997), the coefficient predicting entry into marriage

will be biased toward zero if the data used has large measurement error. The model I develop

and estimate allows for construction of marriage market features that are available yearly

and are likely to reduce the amount of measurement error.

The results of this paper are also applicable to a wide range of other research topics.

Besides research on sex ratios and marriage markets, lack of frequent and accurate demo-

graphic data has an impact on a variety of applied work. Many times, to fill the gaps in the

explanatory variables, researchers use Census data and linearly interpolate between two, or

more, data points. Wolfers (2006) investigates the impact of divorce laws on divorce. One

of his explanatory variables uses the proportion of married individuals by state, which is

constructed using the Decennial Census data and interpolated for the non-Census years.

While studying the impact of divorce laws on crime Caceres-Delpiano and Giolito (2012)

also linearly interpolate part of a series on population counts for each state (s), race (b) and

year (t) combination. Drewianka (2008) uses linear interpolation to generate yearly mea-

sures of population characteristics when researching the impact of divorce laws on family

formations. He uses the Census micro data for 1950- 2000 to generate frequent measures

on characteristics like the distribution of the population in various age or race categories.

10Brien (1997) uses the 5 percent PUMS file to create his original ratios. He uses the State Summary
Tape File (STF) from the 1980 Census to construct the instruments. The STF data includes 19 percent of
the U.S. population, unfortunately one is forced to use tabulations for categories already constructed by the
Census limiting how marriage markets are defined.
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The lack of timely demographic data also impacts fields outside of economics. Johnson and

Raphael (2009) investigate the relationship between incarceration rates and AIDS infection

rates. To construct the rate of AIDS infections, they use linear interpolation to connect the

Census micro data for each state (s), race (b), age (a), sex (x) category. Linear interpola-

tion imposes what might be a strong assumption on the evolution of populations between

Census years. Without more frequent data, researchers give up any non-linear variation

between time periods and between groups. I incorporate yearly information on population

characteristics to supplement the infrequent data, and recover population counts in the

intercensal years.

1.2.2 Marriage and Marriage Market Characteristics

Despite data limitations researchers find that marriage market conditions have an impact

on the marital decision. In a wide range of time periods, data sources, and empirical

specifications considered, higher availability of potential partners increases the probability

that women marry. Freiden (1974) derives and tests the predictions of a static model relating

marriage market features to martial behavior.11 His model predicts that an increase in the

number of males, will generate an increase in the number of marriages. Freiden (1974)

uses the 1960 U.S. Census data to regress female marriage ratio on sex ratios, earnings of

men relative to women, and cost of divorce indicators and finds that higher ratios have a

statistically significant and positive impact on the proportion of females married. South

and Lloyd (1992) use the National Center for Health Statistics (NCHS) from 1980 and

1981, and the 1980 U.S. Census data to investigate differences in the predictive power of a

variety of partner availability measures on rates of new marriage formations. They find that

higher ratios of unmarried males to females increases the rate of black marriages. When

marriage markets are further disaggregated by education level the effect of higher male

availability is positive and statistically significant for both whites and blacks. Wood (1993)

11Individuals decide to marry when utility flow from marriage exceeds the utility of remaining single.
Marriages form as long as both members of the couple are weakly better off when married. Differences in
utility of remaining single across individuals implies some individuals with high values of being single remain
unmarried.
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uses the 1970 and 1980 waves of the U.S. Census to study the effects of relative availability

of marriageable men on the fraction of women ever married at the SMSA level. Data

from multiple time periods allows him to control for unobservable SMSA-level fixed effects

that generate different marriage rates and might be correlated with partner availability

measures.12 He finds that an increase in marriageable men increases the share of females

that marry.13

More recent work utilizes natural experiments as a cause for variation in the supply

of potential partners. Angrist (2002) uses changes in the US immigration policy in the

early 20th century as exogenous variation that changed sex ratios for various ethnic groups

in the U.S.. Marriages of second generation immigrants, who to a very large degree still

married within their ethnic group, were effected by changes in the supply of partners. His

results show that a decrease in sex ratios decreased the probability of marriage for women.14

Abramitzky et al. (2011) use the differential mortality rates in World War I for French men

to investigate the impact of sex ratios on a variety of marital market outcomes. Male

mortality during World War I was high and varied considerably between different regions

of France. French soldiers usually served in regiments with others from their region, and

regiments suffered different casualty rates based on the battles in which they participated.

The authors find that relative scarcity of men allowed French men to marry women of higher

social class, that in regions with higher mortality rates women were less likely to marry,

and that women married at older ages.

Research on the effect of sex ratios on timing of first marriage also finds that a higher

relative supply of partners induce women to enter marriage earlier. Lichter et al. (1992)

combine the 1980 Census data with the NLSY79 data between 1979 to 1986 to investigate

the timing of the transition to first marriage for female respondents. Sex ratios, defined as

12Only factors that are constant over a decade are controlled for because of the spacing of the U.S. Census.
13Because his definitions depend on employment and income characteristics, which can be correlated

with marriage, Wood instruments changes in his measures of relative availability of marriageable men using
changes in industrial structure of SMSA and the change in relative number of men in the military. The two
stage least squares coefficients decrease in magnitude relative to OLS estimates and are insignificant.

14The immigrant counts in the Census are subject to measurement error, due to return migration for
instance. Angrist instruments these with measures of immigrants admitted into the United States. The
2SLS estimates are significant and also predict that lower sex ratios decrease probability of marriage.
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number of men over women, are age specific and change as respondents get older.15 The

authors find that higher ratios reduce the waiting time to first marriage for NLSY79 women.

However, they use only one point in time, the 1980 Census, to construct the sex ratios. Brien

(1997) builds on the work of Lichter et al. (1992). Using National Longitudinal Study of

1972 (NLS72) data he compares the predictive power of various definitions of the relevant

marriage markets in explaining waiting times to first marriage. Definitions vary based on

the geographic size of the market, or the economic characteristics considered, but are all

constructed using the 1980 Census. All of the definitions considered imply that higher male

to female ratios reduce waiting time to first marriage for women.

1.3 Definition of the Relevant Markets and Sex Ratios

I use sex ratios to capture the relative availability of potential partners from the perspective

of a woman of race (b) and age (a) living in state (s) at time (t). In order to measure the

relative supply of potential partners, I must first define the relevant market. While the

relevant marriage market varies from one individual to another, there are some common

features and constraints which I attempt to address. First, I assume that women prefer

unmarried men of the same race (b).16 Next, I assume that most search occurs within a

limited geographic region. Ideally one would like to define the area to be small enough to

accurately reflect the true pool of available partners. However, due to data limitations and

possible heterogeneity in the geographic limitations across individuals, I choose to use the

state (s) as the appropriate unit.17 Finally, the relevant marriage markets vary with the age

of the woman. I follow Lichter et al. (1992) and assume that a woman of age (a) considers

unmarried men between the ages (a) and (a + 10) as potential partners and unmarried

women between the ages (a− 2) and (a+ 8) as potential competitors.

15The ratios include only individuals close to the age of the respondent.
16In 1980 for instance, 98.15 percent of white women were married to white men, 98.5 percent of black

women were married to black men, and 80 percent of Hispanic women were married to Hispanic men. See
Finlay and Neumark (2010) Table 1.

17The smaller the area, the more potential for individuals endogenously selecting to move. This is less
likely to happen across states. A broad geographic definition also allows for less measurement error in the
sex ratio even if statewide sex ratios are imprecise measures of the relevant marriage market.
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Let ÛMs,b,a,t,d and ÛFs,b,a,t,d represent the observed number of unmarried males (M) and

females (F) from data source (d), at time (t), for age (a), state (s), and race (b). Using

data source (d) the sex ratio at time (t) is constructed as

r̂ds,b,a,t =
Σ10
k=0Û

M
s,b,a+k,t,d

Σ8
k=−2Û

F
s,b,a+k,t,d

. (1.1)

The observed data cells, ÛMs,b,a,t,d and ÛFs,b,a,t,d, are measures of the true underlying number

of unmarried males and females, UMs,b,a,t and UFs,b,a,t, measured with error. The size of the

errors is likely to vary depending on the data source. The CPS, the only source available

every year during the NLSY79 time frame, is likely to be the least precise. Unlike the

Decennial Census and the ACS, the CPS has a much smaller sample size and was not

designed to be primarily a census of the U.S. population.

Each observed sex ratio, r̂ds,b,a,t, is made up of twenty different data cells, and ratios that

share the same (s, b, t) and are close enough in age will have many observed data cells in

common. For example, r̂ds,b,a,t and r̂ds,b,a+1,t will share eighteen of the same data cells in their

constructions.18 The number of data cells in common decreases as sex ratios move farther

apart in age and only when the difference in age exceeds ten are the sex ratios not reliant

on common observations. Therefore, a measurement error in any of the observed data cells

will propagate across many of the observed sex ratios. Further, even if measurement errors

are data cell-specific and are independent across cells, because sex ratios share common

data cells in their construction, the measurement error in r̂ds,b,a,t will be correlated with

measurement errors in sex ratios for other age categories.

In addition to errors from mismeasurement of cells, missing observations on data cells

ÛMs,b,a,t,d and ÛFs,b,a,t,d will induce more measurement errors in r̂ds,b,a,t. In any given year some

of the relevant data cells might not be sampled by data source (d). For instance, the CPS

might not measure the number of 20 year old black females in Indiana in 1990 but will

measure the number of 20 year old black males. Just like data cell-specific measurement

18The overlapping observations for males are ÛM
s,b,a+1,t,d, Û

M
s,b,a+2,t,d, . . . , Û

M
s,b,a+10,t,d, and for females,

ÛF
s,b,a−1,t,d, Û

F
s,b,a,t,d, . . . , Û

F
s,b,a+7,t,d.
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errors, errors in r̂ds,b,a,t due to missing observations will also propagate across ages and induce

correlation in errors for sex ratios across ages within a given (s, b, t, d) category.

Large measurement error in r̂ds,b,a,t will invariably be detrimental when estimating the

effect of the sex ratios on marriage.19 The problem is more likely to affect sex ratios

constructed using the CPS, the primary source of data for many of the years of interest in

the older longitudinal data sets. To diminish the impact of measurement errors but still

obtain a measure of sex ratios for every year, I develop and estimate a model that generates

the observed ÛMs,b,a,t,d, Û
F
s,b,a,t,d. I then recover the conditional expectation of sex ratios for

each (s, b, a, t)

E[r̂ds,b,a,t|Σ8
k=−2Û

F
s,b,a+k,t,d > 0], (1.2)

where the conditioning statement ensures that the observed sex ratios exist.20 The expec-

tation integrates out measurement errors providing a more accurate measure of sex ratios

every year in each marriage market.

1.4 Data

1.4.1 Data on Populations by Demographic Category

I combine three different sources of measurement for data cells of interest. The U.S. Census,

the American Community Survey (ACS), and the Current Population Survey (CPS). At any

given time (t), at most only two measures for the same observation will be available, and, for

many of the years, only one source of data is available. To ensure comparability of the sample

being measured by each data source, I exclude the members of the military and those living

in institutionalized group quarters like correction facilities and mental institutions.21 While

prisoners and inmates in other types of institutions are unlikely to participate in marriage

19See Brien (1997).
20For notational convenience, in the remainder of this paper I suppress the conditioning statement in the

expectation. Whenever an expectation of a ratio is discussed the conditional statement guaranteeing that
the denominator is not zero should be assumed. For example, the above conditional expectation will be
expressed as E[r̂ds,b,a,t].

21The CPS does not sample the same groups as the Census and ACS. To ensure comparability, individuals
living in the following quarter types are excluded from the Census and the ACS: institution, correction
institution, mental institution, institutions for the elderly, institutions for the handicapped, institutions for
the poor, and the military.
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markets at time (t), the exclusion of members of the military might be problematic. For

instance, if the military accounts for a large fraction of the state’s population for a given

race (b), then exclusion of the military might produce biased estimates of the true sex ratios

in that state. This problem is likely to affect only small states with very large military bases.

U.S. Census

I use the 5% Public Use Microdata Samples (PUMS) for the years 1980, 1990, and 2000.

These represent a random sample covering 5% of the housing units in the United States

at the time of the survey. The PUMS are drawn from the full Census sample, which is

the fraction of the population that receives the long form of the Census (approximately 1

in 6 or 16.7% of the entire population). To tabulate an estimated number of indiviudals

in a given data cell (Ûxs,b,a,t), I sum the weights for the unmarried individuals that share

the same (s, b, a, x, t) characteristics. Only geographic units that contain at least 100,000

people can be identified in the data.

The American Community Survey (ACS)

I use yearly waves of the American Community Survey (ACS) starting with the year 2001.

Each year between 2001 and 2004, the ACS sampled around 1 in 240 individuals in the

United States. No geographic unit smaller than the state could be identified. Starting

in 2005, the sample size improved to include 1 in every 100 individuals in the US with

users able to identify geographic units that are subsections of the state. Estimates for each

data cell are obtained by summing over the individuals that share the same demographic

characteristics of interest.

Current Population Survey (CPS)

I use the CPS waves starting with the year 1979 sample. The survey size increased from

roughly 150,000 individuals to about 200,000 individuals in the United States since 1979.

The national sample consists of independent samples for all states and the District of Colom-

bia. Each CPS household is interviewed for 4 consecutive months, given an eight month
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break from interviews, and then interviewed again for another 4 months. The CPS inter-

views individuals who are not institutionalized and not in the Armed Forces. Individuals

who live in prisons and other types of institutions are also excluded. Each person sampled

in the survey is assigned a CPS derived weight. An estimated number of people in any

given data cell is obtained by summing the weights for unmarried males and females with

the same (s, b, a, t) characteristics. For a discussion of CPS weights and the possible impact

of using weights in estimation see Appendix 1.A.

Data Cleaning

Each of the three above mentioned data sets is obtained from the Integrated Public Use

Microdata Series (iPUMS). iPUMS preforms a considerable amount of work to standardize

definitions and categories across data sets and across years within each data source. The

number of unmarried individuals by state of residence, race, and sex is constructed by

summing population weights for all individuals that report those characteristics. Individuals

are considered unmarried if they reported never being married, if they are divorced, or

widowed at the time of the interview. I estimate the model for three race categories: whites,

blacks, and Hispanics. The Hispanic category includes any individual that reported being

Hispanic regardless of the race association. The whites category includes individuals who

reported white but not Hispanic, and the black category includes individuals who reported

black but not Hispanic. All other race-ethnicity categories, American Indian or Chinese for

example, were excluded due to the relatively small size of those groups. In addition, because

the number of observations for blacks in the the state of Montana was small, I exclude that

category from estimation. Only individuals between the ages of 14 and 60 at the time of

the interview were included.

There is considerable variation in the number of data cells observed by each data source

across geographic locations. A data cell is defined as the number of individuals in state

(s), race (b), sex (x), and age (a) at the time period when a survey was fielded. Figure 1.1

shows the fraction of data cells observed by data source and state for the 20 most populous

states. The fraction for each state and data source is obtained by calculating the number
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of race, sex, and age categories for the years the survey was actually fielded. For instance,

because the Census was fielded only 3 times then for each state the denominator includes 3

race categories times 46 age categories times 2 sex categories over 3 years.22 The numerator

includes the actual number of cells observed. Figure 1.1 shows that the CPS has the highest

propensity to not observe data cells.

1.4.2 Marriage Timing Data

To ascertain the impact of sex ratios on marital transitions I use the National Longitudinal

Survey of Youth 1979 (NLSY 79). The NLSY79 has followed a nationally representative

sample of young men and women since 1979. The respondents were between the ages of 14 to

22 years old at the time of the first survey in 1979. The surveys were conducted on a yearly

basis between 1979 and 1994, and every two years thereafter. NLSY79 contains a rich set of

variables about the respondents, like demographic and family background characteristics,

household composition, educational status and attainment, intelligence scores, labor market

activity, fertility, health, and marital history. At each interview date respondents provide

information about any changes in marital status since the last interview and the dates of

those changes. In addition, on a restricted basis, respondents’ geographic area of residence is

also made available. Location of residence allows me to connect respondents to the marriage

markets they experienced.

Over the course of the survey administration, the poor whites and the military subsam-

ples were dropped from the NLSY79. I also exclude these subsamples from the analysis. In

addition, I exclude respondents that were incarcerated during the study period, or served

in the military, as these groups are more likely to deviate from the general population in

ways in which they participate in marriage markets. Further, I also exclude observations

that were marked by the interviewers as deaf, blind, mentally or physically handicapped as

these observations are also likely to deviate from the general population in their participa-

tion in marriage markets. I exclude individuals that were reported as deceased. Finally, I

also drop respondents who reported a marital transition but the date of first marriage was

22In total 828 categories.
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unavailable.

Geographic Location

NLSY79 collects data on the respondents’ county, SMSA, and state of residence at the

time of each interview. Information on state and county location at the time of birth

and at age 14 is also collected. The geographic data at the time of interview is available

to researchers on a restricted basis and allows one to connect marriage market features

to respondents. However, unlike marital history, which contains exact dates of transition

between marital states, information on transitions between geographic locations is not as

robust. Geographic location is available for all respondents at the time of the first interview

in 1979. Subsequently, at each interview time, geographic location is available only when

the respondent was actually interviewed. If a respondent was not interviewed in a particular

round of data collection, geographic location during the absence might not be available.

Given the information available, I develop a set of rules to derive geographic information

when respondents were not interviewed. For years 1980, 1983, and 2000 through 2010

respondents were asked if they moved since the last interview date, and if so did they

change city, county, or state, and the date of their moves between interviews.23 For a given

survey year (t) that includes the moving question, if a responded was interviewed, if the

state of residence for that year can be determined, and if they have a non-interview spell

prior to the survey year (t), I establish the state at the date of the last interview prior to

the spell. Therefore, I have the state of residence prior to the non-interview spell and after

the non-interview spell. Whenever a respondent did not move, or moved but did not report

a change in city, county, or state, the state of residence at survey year (t) is used for all the

missing years between (t) and last interview date. However, if they did move at some point

during the non-interview spell and did report a change in city, county, or state, I proceed

to establish the date of the first move and the date of the last move. This allows me to

extend the geographic information at the beginning and end of the non interview spell. For

the years missing prior to the date of first move the geographic information for the state as

23Unfortunately, information on which of the three, the city, county, or state changed was not asked.
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of the date of the last interview is used. For years missing after the date of the last move,

I use information from the survey time (t).

In years the question about moves was not asked, I do not know if respondents moved

between interview dates. While this is less likely to be a problem up to 1994 when interviews

were conducted annually, two year periods between interview dates after 1994 might be more

problematic. For 1995 and 1997, I use the following rules: (i) if respondent was observed in

the same state between two interview dates, use that state; (ii) if respondent was observed

in two different states between interview dates, I assume respondent moved at the end of

the first interview year (i.e., moved at the end of 1994 if lived in a different state in 1996).

Because more detailed moving questions were consistently asked in 2000 and later, I use

the following rule for odd years starting with 1999: (i) if a respondent lived in the same

state in two interview years and did not report a move, use that state; (ii) if a respondent

reported two different states at the interview dates, establish a date of first move between

states and assume that after the first move the respondent lived in the new state.24

The final sample includes women who were 18 years old or less at the time of the first

interview, and for whom state of residence can be determined at all times while single and

participating in the survey. Table 1.1 summarizes the number and shares of women by race.

The sample includes observations on 2,336 women with whites accounting for 54 percent of

observations, blacks for 30 percent, and Hispanics for 16 percent.

1.5 The Model Generating the Data

Measurement errors and missing data cells will likely cause the sex ratios observed in the

CPS r̂ds,b,a,t, the only data source for many of the relevant years, to deviate significantly

from the actual ratios,

rs,b,a,t =
Σ10
k=0U

M
s,b,a+k,t,d

Σ8
k=−2U

F
s,b,a+k,t,d

. (1.3)

24For example, if the respondent moved after June 1999 I use year 2000 information for 1999, and if the
respondent moved prior to June 1999 I use 1998 information for 1999.



19

Therefore I propose using an estimate of the expectation of the observed sex ratio,

E[r̂ds,b,a,t] as the more appropriate measure of market tightness.25 The most convenient

approach to modeling E[r̂ds,b,a,t] would be to assume that measurement error enters r̂ds,b,a,t

in an additively separable way. Such an assumption is justifiable if the measurement errors

for each data cell do not display heteroskedasticity with respect to age.26 Unfortunately

this assumption is rejected by the data.

Instead of working with sex ratios directly, I proceed by modeling the data generating

process for each data cell used in the definition of r̂ds,b,a,t in equation (1). To do so, I must

recover information about the number of unmarried males and females (UMs,b,a,t, U
F
s,b,a,t) in

the presence of missing data and measurement error. I model the natural log of observed

measures as

ln(Ûxs,b,a,t,d) = µxs,b,a,t + exs,b,a,t,d (1.4)

where x = {M,F}. µxs,b,a,t is the mean I aim to estimate, and exs,b,a,t,d is the deviation from

the mean. I allow the deviation from the mean to have the form,

exs,b,a,t,d = vxs,b,a,t + εxs,b,a,t,d. (1.5)

The term εxs,b,a,t,d represents the data-source-specific measurement error which is indepen-

dent across all observations. vxi,a,t is the portion of the deviation from the mean common

across sources of data.

I model sex ratios for three racial groups: blacks, whites, and Hispanics. Given data

source (d) for each state (s), age (a), and time (t), I collect the observations for both sexes

and all three races into a 6× 1 vector of observed data ln(
~̂
Us,a,t,d). Then I define

ln(
~̂
Us,a,t,d) = ~µs,a,t + ~es,a,t,d (1.6)

25Depending on modeling choices, it might also be possible to estimate E[rs,b,a,t], the expectation of the
actual population sex ratios.

26See Appendix 1.B.
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where ~es,a,t,d represents a 6× 1 vector of deviations from the means ~µs,a,t. I model the joint

distribution of deviations as multivariate normal

 ~vs,a,t
~εs,a,t,d

 ∼ N(0,Ωv,ε
s,a,d), (1.7)

where ~vs,a,t is a 6×1 vector of non-measurement error deviation from the mean, and ~εs,a,t,d is

a 6×1 vector of the data-source-specific measurement errors. Given the definition of exs,b,a,t,d

in equation (1.5) and the distributional assumptions on the errors in 1.7 the deviations from

the mean have the following distribution,

~es,a,t,d ∼ N(0,Ωe
s,a,d) (1.8)

where Ωe
s,a,d is a 6× 6 covariance matrix.27 For each state (s), age (a), and data source (d),

the deviations ~es,a,t,d are independent across time periods. I assume that the measurement

errors are independent across all observations, and with the additive structure on exs,b,a,t,d,

I can express the covariance matrix as

Ωe
s,a,d = Ωv

s,a + Ωε
s,a,d. (1.9)

Ωε
s,a,d is a diagonal matrix of variances for measurement errors in state (s), age (a) and

data source (d). Ωv
s,a is common to all data sources and has a flexible structure that can

allow for correlation in deviations at time (t) in state (s) and age (a) between sex and race

categories. The flexibility of Ωv
s,a allows for period-specific events, an idiosyncratic shock to

marriage rates for instance, which impacts both the number of unmarried men and women

across race categories.

For any given time period (t), at most two different data sources measuring the same

category of unmarried individuals will be observed. The Census is observed every decade,

the CPS and ACS are observed every year with the latter starting in 2001. For the majority

of years, the CPS is the only source of data. Modeling choices on the deviations from the

27For derivation of the distribution of exs,b,a,t,d see Section 1.6.
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mean ~es,a,t,d imply a structure on the covariances between data sources. In periods when

the Census (d=1) and CPS (d=3) both measure the same observations, the errors have the

following joint distribution

~es,a,t,d=1

~es,a,t,d=3

 ∼ N(0,Ωs,a,d=1,3) (1.10)

where the covariance matrix is

Ωs,a,d=1,3 =

Ωv
s,a + Ωε

s,a,d=1 Ωv
s,a

Ωv
s,a Ωv

s,a + Ωε
s,a,d=3

 . (1.11)

In periods when the ACS (d=2) and CPS (d=3) are jointly observed, we have

~es,a,t,d=2

~es,a,t,d=3

 ∼ N(0,Ωs,a,d=1,2) (1.12)

with

Ωs,a,d=2,3 =

Ωv
s,a + Ωε

s,a,d=2 Ωv
s,a

Ωv
s,a Ωv

s,a + Ωε
s,a,d=3

 . (1.13)

Finally, in periods when only the CPS data is observed we have

~es,a,t,d=3 ∼ N(0,Ωs,a,d=3) (1.14)

and

Ωs,a,d=3 =
[
Ωv
s,a + Ωε

s,a,d=3

]
. (1.15)

Within each state (s) and age (a) category, the number of observed measures and the

structure of their covariance will depend on the time period (t). Missing observations add

further variability to the covariance structure across time periods (t). The vector of observed
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measures ln(
~̂
Us,a,t,d) will oftentimes have less than 6 observed elements. For instance, the

CPS might not have a record for 20 year old black females in Indiana in 1991 but will have

measures for whites, Hispanics, and black men. When the CPS does not measure the 20

year old black females in Indiana in 1991, the observed data has a 5× 5 covariance matrix

that is a subset of Ωs,a,d=3.

1.6 Likelihood Equation and Estimation

Given the distributional assumptions on the deviations from the mean exs,b,a,t,d, I estimate the

model using the maximum likelihood framework. To construct the appropriate likelihood I

must consider the events that render any data cell of interest observed or unobserved. First,

a data cell (s,b,a,t) can be observed by data source (d) when there is at least one individual

in the sample with those attributes, Uxs,b,a,t ≥ 1. This implies,

ln(Ûxs,b,a,t,d) ≥ 0 only if ln(Uxs,b,a,t) ≥ 0. (1.16)

The probability of a vector ln(
~̂
Us,a,t,d) with all 6 elements observed is expressed as

P (ln(
~̂
Us,a,t,d)− ~µs,a,t = ~es,a,t,d, ~µs,a,t + ~vs,a,t > 0) = (1.17)

P (ln(
~̂
Us,a,t,d)− ~µs,a,t = ~es,a,t,d | ~vs,a,t > −~µs,a,t)P (~vs,a,t > −~µs,a,t).

The conditioning statement on the observed data vector excludes the possibility that a data

cell is sampled when in fact no individuals with attributes (s,b,a,t) exist.28

Second, not all data cells will be observed. One way to explicitly model the missing

28In other words, for a given µx
s,b,a,t, the restriction guarantees that the pair (vxs,b,a,t, ε

x
s,b,a,t,d) does not fall

in a region where µx
s,b,a,t + vxs,b,a,t ≤ 0, but due to large measurement error µx

s,b,a,t + vxs,b,a,t + εxs,b,a,t,d > 0.



23

data mechanism is to think of missing cells as censored. An observations is missing if,

ln(Ûxs,b,a,t,d) < 0 (1.18)

µxs,b,a,t + exs,b,a,t,d < 0.

Let (i) be an index of all the age and year combinations observed in the data.29 The

number of elements in the vector ln(
~̂
Ui), will depend on the year. If CPS is the only survey

fielded, ln(
~̂
Ui) is a 6× 1 vector, otherwise ln(

~̂
Ui) has 12 elements. Let ~Di represent a G× 1

vector30 of indicators for missing observations where each element (g) is defined

Di,g =

1 when µxs,b,a,t,d + exs,b,a,t,d ≥ 0

0 when µxs,b,a,t,d + exs,b,a,t,d < 0
. (1.19)

The pattern of missing data also dictates the restrictions on the observed data. Let O( ~Di)

represent a set of restrictions on observed data given a missing data pattern, ~Di. For each

race and sex (b,x) combination, if ln(Ûxs,b,a,t,d) is observed by any data source the set O( ~Di)

will include the restriction µxs,b,a,t + vxs,b,a,t ≥ 0. For example, if the Census and CPS are

fielded in the same year and number of 20 year old black females in Indiana is recorded by at

least one data source, we know that the restriction on sampling only observed cells is binding

for that demographic group. The number of restrictions in O( ~Di) can vary from six, where

both males and females of all three races are observed by at least one data source, to just

one, where only one sex and race combination is observed.31 Given the index of observed

data restrictions, o = {1, 2, . . . , 32}, the elements of the set O( ~Di) can be expressed as a

vector inequality

~vi,o ≥ −~µi,o (1.20)

29(i) represents an index over all the elements in a set that is a cross product of age and time i ∈ I = {A×T}
for state (s) where n is the number of those elements. I use data from 1979 to 2010 for ages 16 to 50, so
i = {1, . . . , 1120}.

30G is either 6 or 12.
31Depending on the sampling units in a given survey and the geographic definition of the data cells,

theoretically it might be possible that O( ~Di) contains no elements because no data cell was sampled. I use
the state as the geographic unit and each data source samples the population in each state.
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where the vector dimensions depend on the number of restriction in the set O( ~Di).

For each observation (i), the observed and missing data cells imply the following joint

probability

P (ln(
~̂
Ui), ~Di, O( ~Di)). (1.21)

Consider the case where (i) corresponds to a year where both CPS and Census are observed,

and all six race and sex categories are observed by each data source. The joint probability

for (i) is

P (ln(
~̂
Ui), ~Di, O( ~Di)) = P (ln(

~̂
Ui)− ~µi = ~ei, ~vi,o ≥ −~µi,o), (1.22)

and depends on the joint distribution of the data cell errors ~ei and the non-measurement

error deviations from the mean, ~vi,o. The probability will involve a statement on 18 elements,

12 exs,b,a,t,d elements, and 6 vxs,b,a,t elements. To model the probability I derive the joint

distribution for (~vi,o, ~ei) and I rely on the assumption that

~vi,o
~εi

 ∼ N(0,Ωv,ε). (1.23)

In periods where two sources of data are observed, Census (d=1) and CPS (d=3) for in-

stance,

Ωv,ε
i =


Ωv
s,a 0 0

0 Ωε
s,a,d=1 0

0 0 Ωε
s,a,d=3

 . (1.24)

In periods where only one sources of data is observed,

Ωv,ε
i =

Ωv
s,a 0

0 Ωε
s,a,d

 . (1.25)

The off-diagonal matrices have all elements equal to zero because of the independence

between data source specific measurement errors, εxs,b,a,t,d, and non-measurement error de-
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viations from the mean, vxs,b,a,t. By definition each deviation from the mean is

exs,b,a,t,d = vxs,b,a,t + εxs,b,a,t,d, (1.26)

therefore, the mapping from (~vi,o, ~εi) to (~vi,o, ~ei) is just a linear transformation of a multi-

variate normal, and can be expressed as

~vi,o
~ei

 = B

~vi,o
~εi

 . (1.27)

A linear transformation of a multivariate normal vector has a multivariate normal dis-

tribution, with ~vi,o
~ei

 ∼ N(0,Ωv,e) (1.28)

where Ωv,e = BΩv,εBT .32 To derive the structure of the covariance matrix Ωv,e, let I be a

6× 6 identity matrix, then the linear transformation can be expressed as

B =


I 0 0

I I 0

I 0 I

 . (1.29)

Given the independence assumption on the non-measurement error deviations from the

mean, I obtain

Ωv,e = BΩv,εBT =


I 0 0

I I 0

I 0 I




Ωv
s,a 0 0

0 Ωε
s,a,d=1 0

0 0 Ωε
s,a,d=3



I I I

0 I 0

0 0 I

 , (1.30)

32Greene(2003).
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and block multiplication yields

Ωv,e = BΩv,εBT =


Ωv Ωv Ωv

Ωv Ωv + Ωε
d=1 Ωv

Ωv Ωv Ωv + Ωε
d=3

 . (1.31)

Any observed and missing data combination will have the distribution in (1.28), or a

marginal distribution derived from (1.28). Therefore, for observation (i) where Census and

CPS are observed and no data cells are missing,

P (ln(
~̂
Ui), Di, O(Di)) = P (ln(

~̂
Ui)− ~µi = ~ei, ~vi,o ≥ −~µi,o) (1.32)

=

∫ ∞
−~µi,o

f(~vo, ~ei)d~vi,o =

∫ ∞
−~µi,o

f(~vo|~ei)f(~ei)d~vi,o

where the integration sign is a shorthand for multiple integrals.

Next, I derive the probability for (i) given that at least one observation is missing. For

any observation (i) and pattern of missing data ~Di it is helpful to reorder the elements

ln(
~̂
Ui) and put the missing observations first. Define the mapping of the vectors ln(

~̂
Ui), ~Di

C : (ln(
~̂
Ui), ~Di) 7→ ln(

~̂
Ui,c) (1.33)

where ln(
~̂
Ui,c) has been reordered such that the first (l) data cells are missing, and (c) is

an index of all possible missing data patterns.33 If (i) represents the vector of 20 year olds

in Indiana in 1991 and the CPS does not sample 20 year old black females in Indiana in

1991, then ln(
~̂
Ui,c) has the first element missing and the remaining five elements include

the CPS observations on 20 year old whites, Hispanics and black men in Indiana in 1991.

Given missing data pattern (c), I can write

ln(
~̂
Ui,c) = ~µi,c + ~ei,c (1.34)

33Possible combinations of missing data cells will depend on the year of observation. In years where only
the CPS is observed there are 26 = 64 combinations of missing data cells. In years where two data sources
are observed, CPS and Census or CPS and ACS, there are 212 = 4096 possible combinations of missing data
cells.
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where

ln(
~̂
Ui,c) =

ln(
~̂
Ui,c,1)

ln(
~̂
Ui,c,2)

 , ~µi,c =

~µi,c,1
~µi,c,2

 , and ~ei,c =

~ei,c,1
~ei,c,2

 . (1.35)

The elements ln(
~̂
Ui,c,1), ~µi,c,1 and ~ei,c,1 correspond to missing data cells.

The probability of data vector (i) with missing data pattern (c) and observed cell restric-

tions (o) involves the p.d.f. for the vector (~vi,o, ~ei,c,1, ~ei,c,2)
T , which has a multivariate normal

distribution with a covariance matrix that is a subset of Ωv,e. Therefore, for observation (i)

P (ln(
~̂
Ui), ~Di, O( ~Di)) = P (ln(

~̂
Ui,c,2)− ~µi,c,2 = ~ei,c,2, ~ei,c,1 < −~µi,c,1, ~vi,o ≥ −~µi,o) (1.36)

=

∫ ∞
−~µi,o

∫ −~µi,c,1
−∞

f(~vi,o, ~ei,c,1, ~ei,c,2)d~ei,c,1d~vi,o

=

∫ ∞
−~µi,o

∫ −~µi,c,1
−∞

f(~vi,o, ~ei,c,1|~ei,c,2)f(~ei,c,2)d~ei,c,1d~vi,o

where the integration signs are a shorthand for multiple integrals, depending on the dimen-

sions ~µi,o and ~µi,c,1.

Both f(~vi,o|~ei) and f(~vi,o, ~ei,c,1|~ei,c,2) represent the density conditional on observed val-

ues, and will have a multivariate normal p.d.f. with a mean that depends on the observed

data. Given ~Di and O( ~Di) where at least one data cell is missing, the covariance matrix

for the vector (~vi,o, ~ei,c,1, ~ei,c,2)
T can be partitioned

Ωv,e
c,o =

Ωv,e
c,o,11 Ωv,e

c,o,12

Ωv,e
c,o,21 Ωv,e

c,o,22

 (1.37)

where Ωv,e
c,o,11 is the covariance matrix for (~vi,o, ~ei,c,1)

T , and Ωv,e
c,o,22 is the covariance matrix

for the observed data cells. The distribution conditional on the observed data is

 ~vi,o
~ei,c,1

| ~ei,c,2

 ∼ N(~µi,o,c,1.2,Ω
v,e
i,o,c,1.2) (1.38)
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where

~µi,o,c,1.2 = Ωv,e
c,o,12(Ω

v,e
c,o,22)

−1~ei,c,2, (1.39)

Ωv,e
i,o,c,1.2 = Ωv,e

c,o,11 − Ωv,e
c,o,12(Ω

v,e
c,o,22)

−1Ωv,e
c,o,21, (1.40)

and

~ei,c,2 = ln(
~̂
Ui,c,2)− ~µi,c,2. (1.41)

In the case where none of the data cells is missing, the likelihood contribution is,

Li,c,o = f(~ei)

∫ ∞
−~µo

f(~vi,o|~ei)d~vi,o (1.42)

with a log likelihood

Li,c,o = ln(Li,c,o) = ln(f(~ei)) + ln(

∫ ∞
−~µo

f(~vi,o|~ei)d~vi,o). (1.43)

The likelihood contribution for an observation (i) with a missing data pattern (c) and

observed restriction (o), can be denoted as

Li,c,o = f(~ei,c,2)

∫ ∞
−~µo

∫ −~µi,c,1
−∞

f(~ei,c,1, ~vi,o|~ei,c,2)d~ei,c,1d~vi,o. (1.44)

with a log likelihood

Li,c,o = ln(Li,c,o) = ln(f(~ei,c,2)) + ln

(∫ ∞
−~µo

∫ −~µi,c,1
−∞

f(~ei,c,1, ~vi,o|~ei,c,2)d~ei,c,1d~vi,o

)
. (1.45)

The log likelihood function for the observed data values and the missing and observed

data patterns is expressed as,

L = Σn
i Li,c,o = Σn

i ln(f(~ei,c,2)) + Σn
i ln

(∫ ∞
−~µo

∫ −~µi,c,1
−∞

f(~ei,c,1, ~vi,o|~ei,c,2)d~ei,c,1d~vi,o

)
. (1.46)
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1.6.1 Simplified Likelihood

Estimation of equation (1.46) requires integration over multiple dimensions which can be

computationally burdensome. A substantial simplification of the likelihood equation is

possible whenever the underlying data generating process satisfies two assumptions about

the observed and missing data cells. First, one can take advantage of working with state

level data and assume that non-measurement error deviations from the mean vxs,b,a,t are

very small relative to the observed means µxs,b,a,t. When all data cells are observed the

probability of the observed data values and the observability restriction can be expressed

P (ln(
~̂
Uxs,b,a,t,d)− ~µs,a,t = ~es,a,t,d, ~vs,a,t > −~µs,a,t) = (1.47)

P (ln(
~̂
Uxs,b,a,t,d)− ~µs,a,t = ~es,a,t,d|~vs,a,t > −~µs,a,t)P (~vs,a,t > −~µs,a,t).

Because

P (~vs,a,t > −~µs,a,t) ≈ 1 (1.48)

and

P (ln(
~̂
Uxs,b,a,t,d)− ~µs,a,t = ~es,a,t,d|~vs,a,t > −~µs,a,t) ≈ P (ln(

~̂
Uxs,b,a,t,d)− ~µs,a,t = ~es,a,t,d), (1.49)

when the elements of ~µs,a,t are large relative to ~vs,a,t, the censoring of the joint distribution

of ~vs,a,t is negligible and one can use the following approximation to probability of the

observed data,

P (ln(
~̂
Us,a,t,d)− ~µs,a,t = ~es,a,t,d, ~µs,a,t + ~vs,a,t > 0) ≈ (1.50)

P (ln(
~̂
Us,a,t,d)− ~µs,a,t = ~es,a,t,d).

The same approximation applies when some data cells in vector (i) are missing. The ap-

proximation will induce bias in estimation, although when the measured population is large

and stable over (t), the size of the bias should be small.

Second, modeling the missing data mechanism can omitted. Little and Rubin (2002)
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show that, if the data is Missing at Random (MAR), researchers can forgo explicitly mod-

eling the process generating the missing data and still obtain consistent estimates of their

model. MAR requires that, conditional on the observed data, the mechanism generating

the missing observations does not depend on the values of those missing observations.34

In cases where all the cells in ln(
~̂
Us,a,t,d) are unobserved because the Census or the ACS

were not fielded that year, MAR is easily satisfied. However, when observations are missing

because they were not sampled, it is possible that MAR fails if the unobservables are large

enough to influence the probability of being sampled.

Whenever MAR holds and the approximation to the probability of the observed data is

appropriate, the log likelihood can be represented as

L2 = Σn
i ln(f(~ei,c,2)) = Constant− 1

2
Σn
i ln |Ωi| −

1

2
Σn
i (~ei)

′Ω−1i (~ei) (1.51)

where ~ei is a vector of errors for males and females of all three race categories and data

sources available at time (t) and Ωi is the covariance of these elements. The size of ~ei

can vary from twelve elements at most to just one or two elements. Every element of the

vector is defined as exs,b,a,t,d = ln(Ûxs,b,a,t,d) − µxs,b,a,t. Each Ωi is some subset of Ωs,a,d as

defined in equations (1.11), (1.13), and (1.15). The size and structure of Ωi depends on the

data sources available at time (t) and race and sex combination these data sources actually

measured in their sample. The approximate likelihood does not require integration and is

computationally much faster to evaluate.

1.6.2 Parametrization

The estimation framework relies on the independence of ei between (i), in other words

deviations from the mean are allowed to be correlated between sex, race, and data source

categories but are independent across age and time within a given state. However, it seems

natural for any given Uxs,b,a,t to be correlated with Uxs,b,a+1,t+1. For instance, many of the

19 year old unmarried white women in Indiana in 1990 become the 20 year old unmarried

34For a further discussion see Appendix 1.C.
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white women in Indiana in 1991. As any cohort ages its numbers diminish in time through

marriage and mortality, and shrink or grow depending on the size of net migration between

states. It is also very likely that Uxs,b,a,t will be correlated with Uxs,b,a,t+1. Population growth

and slow changes in marriage patterns also imply that the number of 19 year old unmarried

women in 1990 will be correlated with 19 year old unmarried women in 1991. I adopt a

flexible functional form for µxs,b,a,t to capture correlations within groups across time and age

and allow for the unobservables to be uncorrelated across age and time. Let,

µxs,b,a,t =βx,s,b0 + βx,s,b1 ∗ age+ βx,s,b2 ∗ age2 + βx,s,b3 ∗ age3 (1.52)

+ βx,s,b4 ∗ year + βx,s,b5 ∗ year2 + βx,s,b6 ∗ (year ∗ age).

I estimate 42 mean parameters per state. Let βs represent the set of mean parameters for

state (s).

For each data source (d), Ωε
s,a,d is a diagonal 6×6 matrix. I allow for heteroskedasticity in

age by modeling two age groups with the age of 25 as the dividing line. In total, for each (s)

there are 36 variance parameters for the measurement errors Ωε
s,a,d. Ωv

s,a is a 6×6 matrix and

given that I allow for two age groups, will at most involve 42 parameters for each state (s).

The model allows for a flexible structure on Ωv
s,a. A diagonal Ωv

s,a assumes independence

for the deviations while a fully parametrized Ωv
s,a allows for covariance between all the

deviations across sex and race categories. Let θs represent the set of covariance parameters

to be estimated for state (s).

1.6.3 Identification

Independence of measurement errors across time (t), states (s), race (b), age (a), and sex

(x) allows me to separately identify the parameters of Ωv
s,a and Ωε

s,a,d. Whenever the same

data cell is measured by two data sources covariance between the residuals will identify the

variance of the deviation vs,b,a. With diagonal elements of Ωv
s,a identified, the remainder of

elements will be identified by the covariance of residuals across categories within and across

datasets. Once Ωv
s,a is identified, variances of the measurement errors can be separately
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identified by using the variance of the residuals.

1.6.4 Estimation Details

For each state (s) parameters that maximize the likelihood function are found using a

quasi-newton algorithm.35 The probability of missing and observed data cells, conditional

on observed data cell values, requires multidimensional integration and is approximated

using the GHK algorithm. For each (i)

ln(P ( ~Di, O( ~Di)|ln(
~̂
Ui)) = ln

(∫ ∞
−~µo

∫ −~µi,c,1
−∞

f(~ei,c,1, ~vi,o|~ei,c,2)d~ei,c,1d~vi,o

)
(1.53)

≈ ln
(

1

Q
ΣQ
q=1Pi,q

)

where q represents the simulated draws of random variables and Pi,q is the GHK approxi-

mation to the integral of a multivariate normal distribution. Antithetic acceleration is used

to reduce the additional variance in estimated parameters due to simulation.36

Evaluation of the likelihood equation involves calculating the natural log of the determi-

nant of Ωi for each (i). This requires that for all (i), Ωi be positive definite at each parameter

step (w).37 To ensure a positive definite Ωi, I use Cholesky decomposition and find the pa-

rameters of the triangular matrix.38 I start the iterative algorithm with parameters βw=0,

θw=0 such that all Ωi are positive definite.

35D.C. is also estimated separately. I use the fmincon function with the sqp algorithm option in Matlab
to find the minimum of the negative likelihood equation. The Hessian of the likelihood at parameter values
is approximated using the BFGS method.

36See Stern (1997). I set Q=5, which results in 10 random variable draws given the use of antithetic
acceleration.

37Statistical theory also requires that Ωv
s,a for both age groups, all six Ωε

s,a,d and all their submatrices be
positive definite.

38The diagonal elements have lower bounds to ensure that all of the variance parameters are bounded
away from zero, and upper bounds to ensure a smooth stepping of the maximization algorithm.
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1.7 Expectation of the Sex Ratios

Combining the definitions in equations (1) and (4), the observed sex ratios can be written

as

r̂ds,b,a,t =
Σ10
k=0Û

M
s,b,a+k,t,d

Σ8
k=−2Û

F
s,b,a+k,t,d

=
Σ10
k=0e

µMs,b,a+k,t+e
M
s,b,a+k,t,d

Σ8
k=−2e

µFs,b,a+k,t+e
F
s,b,a+k,t,d

. (1.54)

Generating an expectation of the sex ratio involves integrating out 20 different error terms

exs,b,a,t,d for each (s,b,a,t). Instead I simulate the expectation using the parameter esti-

mates for µ̂xs,b,a,t and Ω̂s,a,d. I draw a vector ~es,a,t from a multivariate normal distribution

N(0, Ω̂s,a,d) (q) times. The simulated expectation of each sex ratio for data source (d) is

Ẽ[r̂ds,b,a,t] =
1

Q
ΣQ
q=1

Σ10
k=0exp(µ̂

M
s,b,a+k,t + eMs,b,a+k,t,d,q)

Σ8
k=−2exp(µ̂

F
s,b,a+k,t + eFs,b,a+k,t,d,q)

, (1.55)

where I set Q = 100.

1.8 Results

I estimate two versions of the likelihood equation, the full model in equation (1.46) which

explicitly deals with missing and observed data cells, and the simplified model in equation

(1.51) which assumes data is missing at random (MAR) and uses approximations for the

probability of the observed data. To illustrate some general results, I discuss a subset of

parameter estimates for two states, New York and Virginia, and start with the full model

results. Tables 1.2 and 1.3 present the parameter estimates for the state of New York for

two parameterizations of the model, and Tables 1.4 and 1.5 present estimates Virginia.

Tables 1.2 and 1.4 present results from a parametrization that allows for covariance in

non-measurement errors between men and women within the same category. Tables 1.3

and 1.5 present results from a parametrization that does not allow for any covariances.

Because I allow for heteroskedasticity in age, each table has two sets of variance parameters:

for populations less than 25 years old and older than 25. Measurement errors appear to
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account for much of the deviation from the mean. For the majority of demographic groups

in Virginia and New York, the variance for non-measurement deviations from the mean,

σ2v , is considerably smaller than variances associated with the measurement errors, σ2ε . The

variance parameters differ between the states, race categories, and age groups suggesting the

importance of allowing for heteroskedasticity along those dimensions. The model parameters

are also informative about some features of the observed data. for instance, there is more

volatility in population counts when cohorts age and exit the unmarried state. Variance

estimates for younger populations are smaller than older ones, therefore sex ratios based

on the data are likely to deviate from the true ratios more for older individuals. Moreover,

as expected, the variance of the CPS measurement errors is frequently larger than Census

and ACS variances, suggesting the small sample size of the CPS makes it prone to larger

deviations from actual population counts. Sex ratios based on the CPS data alone are likely

to contain more measurement error relative to the other two data sources.

Relative to the estimates of measurement error variance parameters for the Census

and ACS data, the CPS estimates display large differences between demographic groups,

and a propensity for large parameter values. The variance parameters for the CPS in the

state of Virginia in Table 1.4 are the most dramatic example of this. The smallest variance

parameter is 0.11 while the largest one is nearly 200. The increase in the size of measurement

errors corresponds to a decrease in the proportion of the data cells observed by that data

source. The left panel of Table 1.6 shows the number of observations for each data source by

demographic category in the state of Virginia while the right one shows the fraction of cells

observed relative to the number that would be observed if that cell was sampled every year

the survey was fielded. The measurement error variance estimates for Virginia are largest

for the CPS blacks and Hispanics, two categories that have the lowest fraction of observed

cells. A similar pattern is observed for the state of New York in Table 1.7, where CPS

observations for black and Hispanic men are low. For Virginia and New York, the propensity

for unobserved data cells is mostly attributed to the measurement error part of the deviation

from the mean. Tables 1.8 and 1.9 present variance estimates for the simplified model where
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I do not account for the mechanisms that render data cells unobserved.39 As illustrated in

those tables, the CPS measurement error variance estimates also exceed Census and ACS

variances, and heteroskedasticity in age and race persists. However, because the simplified

model does not explicitly address the occurrence of unobserved data cells, often the CPS

variance parameters are far smaller compared to the full model. Covariance parameters

from the two models are closer to each other for New York than for Virginia. The results

from the simplified model suggest that in states where the fraction of observed data cells

is high, the simplified likelihood might be a good approximation to the full likelihood.

Figure 1.1 illustrates the proportion of cells observed by data source for each of the 20 most

populous states. Virginia is far more likely to have missing CPS observations than New

York, therefore states with missing data patterns similar to New York are better candidates

for the use of the simplified model.

1.8.1 Waiting Time for First Marriage

Next, I discuss the results when sex ratios are constructed from parameter estimates and

used as explanatory variables for waiting time until first marriage. I use the National

Longitudinal Survey of Youth 1979 (NLSY79) to estimate the impact of sex ratios on the

transition to first marriage. In particular, I compare the magnitude and significance of

coefficient estimates when model generated expectations, Ẽ[r̂ds,b,a,t], are used as explanatory

variables, to results when ratios constructed from the data alone, r̂ds,b,a,t, are used. The

majority of the NLSY79 respondents entered their first marriage in the 1980’s and 1990’s,

a time frame for which the CPS is the only source of yearly data on marriage market

features. There are considerable differences in marital behavior and the distribution of

sex ratios between races. As illustrated in Table 1.10, black women are the least likely to

marry, followed by Hispanics and whites. Only 6 percent of the white women in the NLSY79

sample did not marry, while nearly 27 percent of black women did not report a transition

to first marriage. Age at marriage also differs by race. Nearly 67 percent of whites and

Hispanics entered first marriage before the age of 25, while only 43 percent of black women

39I assume MAR holds, and use approximations to the probability of the observed data.
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entered marriage by that age. The distribution of sex ratios varies considerably by race as

well. I use the definition of sex ratio in equation (1.1) to capture the relative availability

of potential partners for each woman in the sample. Figure 1.2 illustrates the estimated

density for sex ratios constructed using the Census data. Blacks have the lowest sex ratios,

followed by Hispanics and whites. Hispanics have the most variance in the sex ratios, while

sex ratios for whites appear to have the least dispersion. As illustrated in Table 1.11, ratios

also tend to decline when cohorts grow older. Different incarceration rates and mortality

rates between men and women contribute to this imbalance. Moreover, as cohorts age and

enter marriage the overall number of unmarried men and women declines, exacerbating any

initial differences between the sexes.40

I estimate a parametric survival model with log-normal errors to determine the impact

of sex ratios on waiting time to first marriage. The model allows for sex ratios that vary

over time and for the presence of person-specific unobserved heterogeneity in preferences for

marriage. Each woman enters the analysis at the age 18. I compare results for six different

sources of sex ratios. The first two are constructed using observed data only. rCNACS

combines the Census and the ACS observations. Whenever available I use the ACS or

Census numbers, and in years where neither survey collected data I use the Census data

that is closest in absolute distance to the year considered.41 rCPS relies solely on the

CPS data which is available for every year. The next four measures of partner availability

are based on simulated expectations from models estimated under different assumptions.

Er1 and Er2 are estimates from the simplified likelihood function, where I assume MAR

holds for unobserved data cells and I can use the approximation to the probability of the

observed data cells. Er3 and Er4 are estimated from the full likelihood function, where I

model the process generating missing and observed data cells explicitly. For each likelihood

specification I also estimate models with different assumptions on the covariances between

unobservables Ωv
s,a. Er1 and Er3 assume that all shocks are independent.42 Er2 and Er4

40Consider a market where there are 900 unmarried men and 1000 unmarried women. The initial sex
ratio is 900

1000
= .9. Over time let 600 marriages take place. The new number of unmarried men is 300 and

unmarried women is 400 giving a sex ratio of 300
400

= .75.
41For instance, for 1994 I use the 1990 Census sex ratios and for 1996 I use the 2000 Census sex ratios.
42In other words, Ωv

s,a has nonzero terms only on the diagonal.
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allow for within race covariance in unobservables between men and women.

Table 1.12 presents the estimated coefficients for different sources of sex ratios on entry

into first marriage. Each column represents a separate survival analysis where explanatory

variables include race indicators, log of AFQT score, and the sex ratios indicated in each

row. The coefficients for all the definitions have the predicted sign. Higher sex ratios,

meaning more unmarried men per unmarried woman, result in shorter waiting times for

transition into marriage. The coefficient on Census ratios, rCNACS, is significantly higher

than the coefficient on the CPS ratios, rCPS. Brien (1997) finds evidence of bias towards

zero for the coefficient on sex ratios when the ratios are measured with error. The small size

of the estimated coefficient when CPS ratios are used suggests the presence of considerable

measurement error in the CPS sex ratios. The Census measures, even with the arbitrary

assumption on the evolution of sex ratios through time, fare much better in predicting entry

into first marriage for NLSY79 women. However, using simulated expectations generates

larger and more significant coefficients relative to coefficients when ratios are based solely on

the data. The expectations appear to succeed in reducing the measurement error associated

with observed ratios, and appear to better predictors of the true ratios for the intercensal

years. The coefficients on ratios from the full model, Er3 and Er4, are higher than the

coefficients on ratios from the simplified model, Er1 and Er2, suggesting the importance

of using models that are closer to approximating the true data generating process for the

observed population counts.

Estimation results in Table 1.13 replicate the analysis in Table 1.12 but also include

state fixed effects. The state fixed effects are meant to capture the effect of time invariant

state-specific factors influencing marriage which might be correlated to sex ratios. Similarly

to results in Table 1.12, simulated expectations of sex ratios have higher coefficients than

the sex ratios from the observed data sources, rCNACS and rCPS, and the ratios from the

full likelihood, Er3 and Er4, generate higher coefficients than the simplified model ratios,

Er1 and Er2. The simulated sex ratios from parameterizations that allow for greater

flexibility in correlations between shocks across groups, Er2 and Er4, also produce higher

coefficients, suggesting more flexible specification might approximate the true sex ratios
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better. State fixed effects might not account for all sources of unobservables that are

possibly correlated with sex ratios. There might exist time varying covariates that impact

the marriage decision and sex ratios. In an attempt to account for these, I also include

prison rates and unemployment rates by state and year. Unemployment rates are meant

to control for differences in economic climate that might impact sex ratios, while prison

rates are meant to capture the effect on marital behavior, if any, of different criminal

justice systems.43 The results are summarized in Table 1.14. The simulated sex ratios have

higher coefficients relative to the coefficients on sex ratios from observed data alone. In

this specification the coefficients on ratios from the full likelihood are also larger relative

to the simplified likelihood, and coefficients on ratios from parameterizations with more

flexible covariance structures are also higher. In all three survival analysis specifications,

the coefficients predicting entry into first marriage are higher when expected ratios are used

as explanatory variables relative to coefficients when ratios are constructed just from the

observed data.

1.9 Conclusion

In many research situations ideal data might not be available. I develop a model that

combines multiple data sources, each with individual strengths and weaknesses, to recover

the features of interest for the data generating process. The model is applied to mitigate

the infrequency of the Decennial Census data by supplementing it with yearly information

from the CPS and the ACS. I account for data-source-specific measurement error, and allow

for missing observations. Using the model estimates, I construct sex ratios, a measure of

market tightness, and use them to predict entry into first marriage for NLSY79 women. I

find evidence that model generated ratios diminish the presence of measurement error in

sex ratios relative to the ratios constructed from yearly CPS data.

The modeling framework is used to recover information between distant time periods,

however other notions of distance can be accommodated. For instance, when smaller geo-

43Data on prison rates and unemployment rates by state was obtained from John J. Donohue.
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graphic units are of interest and are measured with error, but accurate data on large geo-

graphic units is available. In addition, the modeling framework can accommodate measures

other than just population levels. Total population counts might be available infrequently

and can be supplemented with imprecise measures of changes in the population.
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1.A Appendix: Survey Weights

For the ACS and the CPS, I obtain the number of unmarried individuals Ûxs,b,a,t,d in state

(s) of race (b), age (a), time (t), sex (x) from data source (d) by summing the weights for all

unmarried individuals in data source (d) at survey time (t) that are in the category (s,b,a).

Using the CPS as the main example I briefly describe the process of creating the weights

in the CPS and discuss whether using survey weights violates any of the assumptions I

have made on ln(
~̂
Us,a,t,d). I find that some of the assumptions made on the measurement

errors might be violated. It is possible that the expectation of these errors is not zero, and

it’s unlikely that the measurement errors are independent. The modeling framework allows

me to relax the independence assumption and to model possible correlations between the

errors.

The CPS is a probability sample44 where the CPS knows the probability of selecting

each unit in the sample.45 These probabilities are used in the construction of estimators.

According to the CPS:

“An unbiased estimator of the population total for any characteristic investigated in the

survey can be obtained by multiplying the value of that characteristic for each sample unit

(person or household) by the reciprocal of the probability with which that unit was selected

and summing the products over all units in the sample (Hansen, Hurwitz, and Madow,

1953).”46

The inverse probability of selection for each unit is used as the base for the weights.

The CPS then makes a set of adjustments to the weights, like corrections for nonresponse.

To reduce the variance of their estimates the CPS also adjust the weights in order to

match the sample distribution for a certain set of characteristics with a “known population

distribution” for these characteristics.47 At the state level the weights are adjusted so that

sex (x), age (a) and race (b) groups in the sample match independent estimates of the state

44“A probability sample is defined as a sample that has a known nonzero probability of selection for each
sample unit.” Zbikowski (2006) at p10-1.

45“...the probability of selecting each unit in the CPS is known, and every attempt is made to keep
departures from true probability sampling to a minimum.” Zbikowski (2006) at p10-2.

46Zbikowski (2006) at p10-2.
47The ACS also adjusts its weights to match “population characteristics”.
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population.48 The independent estimates of the population distribution are projections

based on the Census numbers supplemented with information from others sources on births,

deaths and migration.49

The weight creation process might have several implications for the assumptions made

on ln(
~̂
Us,a,t,d). I assume that E(~es,a,t,d) = 0. If the projection of the population distribution,

on which sample weights are based, for the cell (s,b,a,x) at year (t) is unbiased, then the

number of people who are unmarried in (s,b,a,x) should also be unbiased because that is just

a fraction of the total population in (s,b,a,x). However, if the projection of the population

distribution is biased, then it is likely that the estimate for the number of people who are

unmarried is also biased and E(~es,a,t,d) 6= 0.

I also make assumptions on the structure of exs,b,a,t,d, which divides into a measurement

error component εxs,b,a,t,d and a deviation from the mean that is not part of measurement

error vxs,b,a,t, and its correlation between categories. I assume that measurement errors are

independent across data cells. This might no longer be true, especially since the CPS relies

on the Census information to make projections. It is likely that any measurement error in

the Census will be correlated with measurement error in the CPS. Measurement errors in

the CPS might also be correlated through time as the population projections move further

away from the year of the Census. Moreover, the adjustment steps made on the weights

to match various characteristics of the population distribution might induce correlations

between measurement errors across other categories. For instance, the adjustment of the

sample weights to match the “population” estimates at the national level might induce

48“In the first-stage ratio adjustment, weights are adjusted so that the distribution of the single-race Black
population and the population that is not single-race Black (based on the Census) in the sample PSUs in
a state corresponds to the same population groups Census distribution in all PSUs in the state. In the
national-coverage ratio adjustment, weights are adjusted so that the distribution of age-sex-race-ethnicity
groups match independent estimates of the national population. In the state-coverage ratio adjustment,
weights are adjusted so that the distribution of age-sex-race groups match independent estimates of the
state population. In the second-stage ratio adjustment, weights are adjusted so that aggregated CPS sample
estimates match independent estimates of population in various age/sex/race and age/sex/ethnicity cells at
the national level. Adjustments are also made so that the estimated state populations from the CPS match
independent state population estimates by age and sex.” Zbikowski (2006) at p10-3.

49“The independent population controls used in the second-stage ratio adjustment and in the coverage
adjustment steps are prepared by projecting forward the population figures derived from Census 2000 using
information from a variety of other sources that account for births, deaths, and net migration. ... Prepared
in this manner, the controls are themselves estimates. However, they are derived independently of the CPS
and provide useful information for adjusting sample estimates.” Zbikowski (2006) at p10-8.



42

correlations in measurement errors across states.50 I can relax some of the constraints on

the correlations between measurement errors, which will imply a new covariance structure

on exs,b,a,t,d. Because the CPS does not match the sample distribution to population pro-

jections for the unmarried category the measurement error can be decomposed into two

components, the part of error attributable to the CPS population projections φxs,b,a,t,d and

the independent sampling error ψxs,b,a,t,d.

εxs,b,a,t,d = φxs,b,a,t,d + ψxs,b,a,t,d (1.56)

φxs,b,a,t,d will be correlated across categories depending on the weight adjustment process.

However, it is unlikely that I would be able to separately identify variance-covariance pa-

rameters for vxs,b,a,t and φxs,b,a,t,d.

50If the projection for the number of Hispanics for the nations has an error, then it is likely that there is
correlation in measurement error across states for the Hispanics.
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1.B Appendix: Additively Separable Measurement Error in

Sex Ratios

A very convenient modeling approach when estimating E[r̂ds,b,a,t] is to assume that measure-

ment error enters the observed measures r̂ds,b,a,t in an additively separable way. For instance,

using natural log of the sex ratios as the dependent variable, let

ln(r̂ds,b,a,t) = ln(rs,b,a,t) + ξs,b,t,d (1.57)

where ξs,b,t,d is the measurement error. If I assume that measurement error is the same for

all age groups for a given (s,b,t,d) and has the following form

ÛMs,b,a,t,d = UMs,b,a,t ∗ εMs,b,t,d (1.58)

then

Σ10
k=0Û

M
s,b,a+k,t,d = εMs,b,t,d ∗ (Σ10

k=0U
M
s,b,a+k,t). (1.59)

If I assume the same for women, the log of the sex ratio is equal to

ln(r̂ds,b,a,t) = ln

(
Σ10
k=0U

M
s,b,a+k,t

Σ8
k=−2U

W
s,b,a+k,t

)
+ ln

(
εMs,b,t,d

εWs,b,t,d

)
= ln(rs,b,a,t) + ξs,b,t,d. (1.60)

With a normalizing assumption E[ξs,b,t,d] = 0, the additive error has the additional de-

sirable feature of E[ln(r̂ds,b,a,t)] = E[ln(rs,b,a,t)].
51 Assuming linearity on E[ln(rs,b,a,t)] and

the covariance structure for errors ξs,b,t,d leads to a Generalized Least Squares approach to

estimation. An additively separable measurement error can be justified if the measurement

errors for each data cell do not display heteroskedasticity with respect to age (a); an as-

sumption that is, unfortunately, rejected by the data.

51This feature should persist even if some of the data cells are missing, since the measurement error is
proportional to the true unobserved Ux

s,b,a,k,t for all age groups within a (s, b, t, d) category.
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1.C Appendix: The Missing Data Problem and Estimation

Supplementing the infrequent Census with more frequent ACS and CPS introduces a missing

data problem. Smaller sample size implies that not all data cells will be observed by some

data sources. Little and Rubin (2002) develops conditions under which researchers can

ignore explicitly modeling the process generating the missing data and still obtain consistent

estimates of their model. The most important condition, Missing at Random (MAR),

requires that conditional on observed data the mechanism generating the missing data does

not depend on the values of the missing observations. Following Little and Rubin, let the

joint distribution of data (Y) and missing data indicators (D) be written as f(Y,D|θ, ψ) =

f(Y |θ)f(D|Y, ψ), where θ, ψ are the parameters describing the data generating process.

The data are divided into the observed Yobs and missing components Ymis and so

f(Y,D|θ, ψ) = f(Yobs, Ymis|θ)f(D|Yobs, Ymis|ψ). (1.61)

The MAR assumption requires that f(D|Yobs, Ymis, ψ) = f(D|Yobs, ψ) allowing the joint

density of (Y) and (D) to be expressed

f(Y,D|θ, ψ) = f(Yobs, Ymis|θ) ∗ f(D|Yobs, ψ). (1.62)

The density of the actual observed data f(Yobs, D|θ, ψ) is obtained by integrating out the

missing data.

f(Yobs, D|θ, ψ) =

∫
f(Y,D|θ, ψ)dYmis = (1.63)

f(D|Yobs, ψ)

∫
f(Yobs, Ymis|θ)dYmis = f(D|Yobs, ψ)f(Yobs|θ)

If θ are the parameters of interest, likelihood estimation ignoring the missing data mecha-

nism will rely on f(Yobs|θ) and will be proportional to maximizing the full likelihood that

explicitly models the missing data.
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I model the number of unmarried individuals in each data cell, for notational simplicity

denoted by (i), as Ûi = eµi(Zi)+vi+εi where Zi is a set of indicators for sex (x), state (s),

race (b), age (a), and year of observation (t). vi is a deviation of observation (i) from the

mean µi(Zi), and εi is the measurement error. Let Di be an indicator equal to 1 if the

observation is missing and zero otherwise. Zi is always observed. The probability that

observation (i) is missing can be denoted by Pr(Di = 1|Zi, ln(Ûi)) which is equivalent to

Pr(Di = 1|Zi, vi, εi) given the assumptions made on Ûi. Missing data mechanism is MAR

if Di is independent of deviations from the mean, vi, and measurement errors, εi. For data

cells (i) missing because the surveys were not fielded in those years MAR is easily satisfied,

probability of missing does not depend on the unobserved number of individuals measured

with error. However if a data cell is more or less likely to be missing given the direction

and the size of the deviation from the mean vi, then MAR fails. A large positive shock for

instance implies a large number of individuals in that data cell, increasing the probability

that some of these individuals are sampled by a survey.
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Tables

Table 1.1: NLSY Sample by Race

White Black Hipanic Total

number 1,266 702 368 2,336
% of total 54% 30% 16%

NLSY79 sample of women whose marital decision was
investigated. Excludes observations with gaps in res-
idence while at risk of getting married.

Table 1.2: New York

White Black Hispanic
Male Female Male Female Male Female

Age <25
σ2v 0.016 0.034 0.010 0.012 0.014 0.019
σ2ε CN 0.010 0.010 0.010 0.010 0.010 0.010
σ2ε ACS 0.019 0.019 0.038 0.031 0.029 0.026
σ2ε CPS 0.036 0.035 0.147 0.099 0.083 0.068

Age ≥ 25
σ2v 0.033 0.033 0.030 0.021 0.012 0.015
σ2ε CN 0.010 0.010 0.010 0.010 0.010 0.010
σ2ε ACS 0.046 0.035 0.346 0.132 0.290 0.110
σ2ε CPS 0.213 0.119 11.892 1.745 8.391 1.198

Full model with covariances in errors within race

Table 1.3: New York

White Black Hispanic
Male Female Male Female Male Female

Age <25
σ2v 0.010 0.029 0.010 0.010 0.010 0.010
σ2ε CN 0.010 0.010 0.010 0.010 0.010 0.010
σ2ε ACS 0.021 0.021 0.039 0.032 0.030 0.028
σ2ε CPS 0.043 0.045 0.148 0.101 0.089 0.077

Age ≥ 25
σ2v 0.022 0.010 0.010 0.010 0.010 0.010
σ2ε CN 0.030 0.024 0.037 0.011 0.015 0.010
σ2ε ACS 0.047 0.038 0.347 0.133 0.291 0.110
σ2ε CPS 0.224 0.142 11.951 1.771 8.403 1.206

Full model with no covariances
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Table 1.4: Virginia

White Black Hispanic
Male Female Male Female Male Female

Age <25
σ2v 0.010 0.018 0.012 0.015 0.031 0.037
σ2ε CN 0.010 0.010 0.010 0.010 0.023 0.010
σ2ε ACS 0.034 0.062 0.215 0.184 0.524 0.595
σ2ε CPS 0.112 0.385 4.584 3.372 27.329 35.229

Age ≥ 25
σ2v 0.029 0.033 0.063 0.050 0.660 0.220
σ2ε CN 0.010 0.010 0.010 0.010 1.582 0.010
σ2ε ACS 0.290 0.240 0.695 0.461 3.229 1.633
σ2ε CPS 8.363 5.737 48.051 21.172 150.904 187.453

Full model with covariances in errors within race

Table 1.5: Virginia

White Black Hispanic
Male Female Male Female Male Female

Age <25
σ2v 0.010 0.010 0.010 0.010 0.010 0.010
σ2ε CN 0.022 0.023 0.017 0.010 0.056 0.051
σ2ε ACS 0.034 0.063 0.215 0.184 0.523 0.594
σ2ε CPS 0.112 0.390 4.584 3.380 27.202 35.131
Age ≥ 25
σ2v 0.010 0.010 0.010 0.010 0.010 0.010
σ2ε CN 0.035 0.031 0.080 0.062 2.964 0.163
σ2ε ACS 0.291 0.241 0.695 0.461 3.891 1.895
σ2ε CPS 8.409 5.765 48.108 21.140 140.831 192.876

Full model with no covariances
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Table 1.6: Virginia

Count of Observed Data Cells Fraction of Observed Data Cells*

White Black Hispanic White Black Hispanic
Male Female Male Female Male Female Male Female Male Female Male Female

Age <25 Age <25
Census 33 33 33 33 33 33 Census 100% 100% 100% 100% 100% 100%
ACS 99 99 99 99 99 99 ACS 100% 100% 100% 100% 100% 100%
CPS 352 351 333 338 246 221 CPS 100% 100% 95% 96% 70% 63%

Age ≥ 25 Age ≥ 25
Census 108 108 108 108 101 108 Census 100% 100% 100% 100% 94% 100%
ACS 324 324 324 324 279 308 ACS 100% 100% 100% 100% 86% 95%
CPS 1,026 1,068 681 874 308 347 CPS 89% 93% 59% 76% 27% 30%

VA, *Numerator is the number of observed data cells, denominator is the number of cells that would be observed if the cell was observed every period
data was fielded.
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Table 1.7: New York

Count of Observed Data Cells Fraction of Observed Data Cells*

White Black Hispanic White Black Hispanic
Male Female Male Female Male Female Male Female Male Female Male Female

Age <25 Age <25
Census 33 33 33 33 33 33 Census 100% 100% 100% 100% 100% 100%
ACS 99 99 99 99 99 99 ACS 100% 100% 100% 100% 100% 100%
CPS 352 352 352 352 352 352 CPS 100% 100% 100% 100% 100% 100%

Age ≥ 25 Age ≥ 25
Census 108 108 108 108 108 108 Census 100% 100% 100% 100% 100% 100%
ACS 324 324 324 324 324 324 ACS 100% 100% 100% 100% 100% 100%
CPS 1,151 1,152 981 1,128 1,015 1,136 CPS 100% 100% 85% 98% 88% 99%

NY, *Numerator is the number of observed data cells, denominator is the number of cells that would be observed if the cell was observed every period
data was fielded.
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Table 1.8: New York

White Black Hispanic
Male Female Male Female Male Female

Age <25
σ2v 0.010 0.017 0.026 0.029 0.024 0.028
σ2ε CN 0.012 0.102 0.024 0.017 0.138 0.035
σ2ε ACS 0.034 0.023 0.028 0.028 0.056 0.057
σ2ε CPS 0.045 0.055 0.119 0.079 0.069 0.054

Age ≥ 25
σ2v 0.031 0.037 0.035 0.028 0.027 0.042
σ2ε CN 0.076 0.074 0.054 0.068 0.142 0.163
σ2ε ACS 0.084 0.077 0.074 0.068 0.199 0.213
σ2ε CPS 0.132 0.139 0.265 0.262 0.262 0.188

Simplified model with covariances in errors within race

Table 1.9: Virginia

White Black Hispanic
Male Female Male Female Male Female

Age <25
σ2v 0.014 0.012 0.012 0.019 0.010 0.012
σ2ε CN 0.055 0.180 0.056 0.073 0.183 0.207
σ2ε ACS 0.039 0.076 0.044 0.061 0.117 0.105
σ2ε CPS 0.125 0.149 0.272 0.322 0.410 0.338

Age ≥ 25
σ2v 0.060 0.033 0.014 0.020 0.103 0.023
σ2ε CN 0.120 0.181 0.131 0.283 0.190 0.292
σ2ε ACS 0.190 0.170 0.175 0.193 0.191 0.269
σ2ε CPS 0.260 0.346 0.501 0.469 1.247 1.381

Simplified model with covariances in errors within race
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Table 1.10: Marriage by Race and Age for NLSY79 Women

Number % by race
White Black Hispanic Total White Black Hispanic Total

never married 79 186 47 312 6.39 26.72 12.98 13.60
up to 20 350 89 132 571 28.32 12.79 36.46 24.89
20 to 24 481 211 112 804 38.92 30.32 30.94 35.05
25 to 29 209 107 47 363 16.91 15.37 12.98 15.82
30 to 34 77 52 13 142 6.23 7.47 3.59 6.19
35 or older 40 51 11 102 3.24 7.33 3.04 4.45
Total 1236 696 362 2294 100.00 100.00 100.00 100.00
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Table 1.11: Census Sex Ratios by Age

age mean median

18 1.098 1.000
19 1.090 0.997
20 1.097 1.005
21 1.103 1.008
22 1.091 0.997
23 1.097 1.004
24 1.090 1.018
25 1.090 1.024
26 1.091 1.034
27 1.079 1.036
28 1.080 1.036
29 1.069 1.039
30 1.069 1.048
31 1.059 1.045
32 1.055 1.037
33 1.034 1.020
34 1.026 1.008
35 1.018 0.997
36 0.994 0.963
37 0.975 0.958
38 0.958 0.934
39 0.963 0.926
40 0.941 0.897
41 0.918 0.876
42 0.903 0.860
43 0.885 0.844
44 0.870 0.822
45 0.853 0.806
46 0.826 0.775
47 0.808 0.746
48 0.788 0.729
49 0.758 0.703
50 0.743 0.682
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Table 1.12: Waiting Time for First Marriage: Coefficients on Sex Ratios

1 2 3 4 5 6

rCNACS -1.045**
(se) (0.330)

p-value 0.002

rCPS -0.140
(se) (0.096)

p-value 0.143

Er1 -2.157***
(se) (0.420)

p-value 0.000

Er2 -2.397***
(se) (0.422)

p-value 0.000

Er3 -2.341***
(se) (0.339)

p-value 0.000

Er4 -2.793***
(se) (0.404)

p-value 0.000

N 18911 18911 18911 18911 18911 18911

The errors have a log-normal distribution. Time constant person-specific unobserved het-
erogeneity is included. Only observations for whom state of residence is available for all
periods while at risk are used. Race indicators and log of AFQT score are included in all
specifications.
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Table 1.13: Waiting Time for First Marriage: Coefficients on Sex Ratios

1 2 3 4 5 6

rCNACS -1.230**
(se) (0.445)

p-value 0.006

rCPS -0.0962
(se) (0.096)

p-value 0.317

Er1 -2.001***
(se) (0.506)

p-value 0.000

Er2 -2.374***
(se) (0.519)

p-value 0.000

Er3 -2.954***
(se) (0.401)

p-value 0.000

Er4 -3.807***
(se) (0.503)

p-value 0.000

State FE YES YES YES YES YES YES
N 18911 18911 18911 18911 18911 18911

The errors have a log-normal distribution. Time constant person-specific unobserved het-
erogeneity is included. Only observations for whom state of residence is available for all
periods while at risk are used. Race indicators and log of AFQT score are included in all
specifications.
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Table 1.14: Waiting Time for First Marriage: Coefficients on Sex Ratios

1 2 3 4 5 6

rCNACS -1.144**
(se) (0.371)

p-value 0.002

rCPS -0.101
(se) (0.086)

p-value 0.240

Er1 -1.582***
(se) (0.414)

p-value 0.001

Er2 -1.863***
(se) (0.422)

p-value 0.000

Er3 -2.298***
(se) (0.349)

p-value 0.000

Er4 -2.845***
(se) (0.437)

p-value 0.000

State FE YES YES YES YES YES YES
Unemp Rate YES YES YES YES YES YES
Prison Rate YES YES YES YES YES YES

N 18911 18911 18911 18911 18911 18911

The errors have a log-normal distribution. Time constant person-specific unobserved hetero-
geneity is included. Only observations for whom state of residence is available for all periods
while at risk are used. Race indicators and log of AFQT score are included in all specifications.
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Figures

Figure 1.1: Fraction of Observed Data Cells
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Figure 1.2: Census Data Sex Ratios by Race
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Chapter 2

The Impact of Mothers’ Decision

to Marry on Child Outcomes

2.1 Introduction

In the United States, children raised in families with two biological parents have better

outcomes than children in other types of family structures.1 However, non-traditional family

structures have been on the rise. In particular, the percentage of births to unmarried

women doubled since 1980, and by 2007 represented 40 percent of all births.2 Children in

single mother households are more likely to live below the poverty line, prompting some to

suggest marriage promotion as a policy to reduce childhood poverty.3 While it might reduce

poverty, the impact of a mother’s marriage on children born out of wedlock is difficult to

determine. Empirical research must address the possibility that a host of other factors,

potentially unobserved, is also correlated with child outcomes and mother’s marriage. I use

the National Longitudinal Survey of Youth 1979 (NLSY79) and the Child and Young Adult

supplement (CNLSY79) to study the effects of mother’s marriage on children born out of

wedlock. To address the endogeneity of the mother’s marital status, I use an instrumental

1See McLanahan and Sandefur (1994), and Ginther and Pollak (2004).
2According to the Center of Disease Control (CDC), 18 percent of all births were to unmarried women

in 1980.
3See Sigle-Rushton and McLanahan (2002).
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variable approach. Previous research has found that relative availability of partners has an

effect on the marital decisions of women, and the results of Chapter 1 allow for a construction

of frequent measures for marriage market features experienced by the NLSY79 women. I

use these measures as instrumental variables for mother’s marital status.

Marriage is likely to affect the child in a variety of ways. For one, it is likely to change

the level of resources in the household which in turn might change the amount of resources

devoted to the child. In a household with two potential earners instead of one, the mother

might choose to work less and devote more of her leisure time to the child. Marriages are also

likely to be more stable than other types of relationships, increasing the stability in house-

hold resources available and potentially decreasing the number of future partners for the

mother.4 Mother’s marriage can also have negative consequences. For instance, marriage

can generate additional conflict in the household as the new partner begins to participate in

raising the child. While mother’s marriage can have some positive and some negative conse-

quences, ordinary least squares (OLS) regressions show that mother’s marriage is positively

correlated with high school graduation for a sample of black children born to the unwed

mothers of the NLSY79.5 Relative to children whose mothers remain unmarried, children

whose mothers married were more likely to obtain a high school diploma.6 The size of the

marriage coefficient in the high school diploma equation, however, changes considerably de-

pending on the set of other covariates included in the regression. The importance of other

variables underscores how family structure and child outcomes depend on a wide range of

other factors, not all of which will be observed. The potential of unobservables correlated

with both variables of interest necessitates a different estimation approach.

In order to address the endogeneity of the mother’s transition to first marriage, I use

4In the Fragile Families and Child Wellbeing Study (FFCWS) data only 35 percent of couples who were
unmarried at the birth of the child were living together five years after the birth. Many mothers formed
new relationships and had children with the new partner. The work of Craigie et al. (2012) suggests that
transitions might be detrimental to children.

5The majority of black women in the NLSY79 chose to have a first birth prior to first marriage, if any.
For Hispanic and white respondents, however, only a small minority chose to have a first birth prior to first
marriage.

6I also use math test scores and an indicator if the child became an unwed parent as dependent variables.
OLS results show no significant difference between the two groups in test scores or children’s propensity to
become unwed parents.
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a set of instrumental variables. Previous research has found that sex ratios, the relative

availability of potential spouses, impacts women’s transitions into marriage.7 Fewer poten-

tial partners relative to potential competitors translates to a longer waiting time until first

marriage. Variation in sex ratios across marriage markets is used to predict the mother’s

entry into first marriage. However, for the NLSY79 and many other older data sets, timely

and accurate demographic data used to construct sex ratios is not available. In Chapter 1

of this dissertation, I develop and estimate a model that combines multiple sources of data

measuring the demographic characteristics of the population during the NLSY79 survey

time frame. The model estimates allow me to construct yearly measures of expected sex

ratios by marriage market. I obtain access to restricted geographic location of the NLSY79

women which allows me to connect estimated sex ratios to the women for each year they

are in the sample. The sex ratios observed every year in the mother’s marriage market are

then used as a set of instruments for the marriage status indicator in the child outcome

equation.

Using all the instrumental variables in a General Method of Moments (GMM) estimation

framework, I find that mother’s marriage has a large and positive effect on the high school

graduation status of their children. Concerns over unobservable factors that are correlated

with child outcomes and mother’s marriage markets prompt further investigation of whether

sex ratios make suitable instruments. The initial results are robust to the inclusion of state

fixed effects or unemployment rates in the outcome equation. State fixed effects are meant

to capture any time-constant variables that might drive greater imbalance in sex ratios and

educational outcomes, while unemployment rates are meant to capture time varying differ-

ences in economic climate across states. However, the marriage coefficient estimate declines

when state-specific prison rates are included in the analysis. Underlying factors generating

criminal behavior could impact high school graduation, and higher male incarceration rates

decrease the supply of unmarried men. These results suggest caution when considering the

GMM coefficient estimates. The exogeneity of the instrumental variables is undermined

by the sensitivity of coefficient estimates when other marriage-market-specific variables are

7See Freiden (1974), South and Lloyd (1992), Wood (1995), Lichter et al. (1992), and Brien (1997).
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included in the outcome equations.

I proceed by describing previous research results on the effects of family structure on

child outcomes. Next, I describe the data used, define the family structure variable, and

present the equations to be estimated. Last, I describe the OLS results and the results of

GMM estimation using sex ratios as instruments for the endogenous variables.

2.2 Literature Review

The correlation between family structure and child outcomes has been extensively explored

and documented. McLanahan and Sandefur (1994) compare outcomes between children who

experience family disruptions and children who do not. Relative to their peers who grow

up with both parents, children who experience a divorce or are born to unwed mothers

have worse outcomes. They are more likely to drop out of high school and, if they do

graduate from high school, are less likely to enroll and graduate from college. They are

also more likely to be out of school and out of work, and young women are more likely to

become teen mothers. Ginther and Pollak (2004) add nuance to these descriptive results

using the NLSY79 and PSID data sources. They show that a child-centric classification

system of family structure might mask important differences between family structures.

For instance, a family with two children, one from a previous marriage and the other a

biological offspring of both spouses, will be classified differently depending on the child.

One child will live in a household with two biological parents, while the other will live in a

household with a stepparent. Ginther and Pollak show that, in these blended families, half-

siblings (biological children of both parents) have similar educational outcomes, like years

of schooling or high school graduation status, as their step-children siblings. Both types of

children, however, have substantially worse outcomes than kids reared in traditional nuclear

families where all children share the same biological parents.

McLanahan and Sandefur (1994), and Ginther and Pollak (2004) document the corre-

lation between child outcomes and family structure measured when the child is older. For

the most part however, their work fails to consider the effect of transitions between family
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structures.8 It is likely that the number and types of transitions between family structures

will have an impact on the child. Liu and Heiland (2006) investigate the relationship be-

tween marital transitions and child outcomes for children born to unmarried parents. They

use the Fragile Families and Child Wellbeing Study (FFCWS) which collects information

about both biological parents regardless of marital or cohabitation status at the birth of the

child.9 Liu and Heiland (2006) find that child health outcomes are not observed to improve

when cohabiting parents marry within the first year of the child’s birth. However, children

whose parents continue to stay together in that first year, either in marriage, cohabitation,

or a visiting relationship, fare better than children whose mothers end the relationship with

the biological father. Craigie et al. (2012) go further and attempt to attribute differences

in outcomes to initial family structure separately from the transitions in family structure

until the child is five years old. They use the FFCWS and find small amount of correlation

between outcomes and initial family structure. Relative to children born to married par-

ents, children born to single mothers or cohabiting parents fare worse. However, they find

a strong correlation between the relationship status of the mother when the child is five

and child outcomes. Children living with married parents at age five had higher test scores

compared to children whose parents were cohabiting, the mother was single, or the mother

was with a new partner (either cohabiting or married). The results of Craigie et al. (2012)

suggest that marital transitions away from a nuclear family might be detrimental to child

outcomes.

The work of McLanahan and Sandefur (1994), Ginther and Pollak (2004), Liu and

Heiland (2006), and Craigie et al. (2012) is informative but cannot tell us the effect of family

structure or transitions on child outcomes. Unobservable characteristics, like preferences for

the amount of time spent with children and desire for a spouse, might be responsible for the

observed correlation. Manski et al. (1992) attempt to go beyond descriptive correlations and

lay out a framework to identify the effects of family structure on child outcomes. They use

8McLanahan and Sandefur do show that children of divorced parents have worse outcomes than children
of parents that stay together, suggesting transitions matter and outcomes might not depend on whether a
child starts in a two parent household.

9Many other data sets collect the information about the father only if he is a member of the household
because of marriage or cohabitation.



66

the NLSY79 data and estimate the effects of family structure under a variety of assumptions.

First, they assume that unobservables affecting the selection into family structure when the

child is 14 years old and unobservables for high school graduation status are multivariate

normal.10 Given the parametric assumption on the distribution of the unobservables, they

estimate two models. In one model they assume family status is exogenous to high school

graduation, and in the other unobservables for family status and graduation are freely

correlated.11 Estimates from both models suggest living in a non-intact family at age 14

substantially lowers the probability that the child graduates from high school. Second,

because the normality assumption on the probability distribution of the unobservables is

rather arbitrary, the authors assume no information on the joint probability distribution

but, to achieve point identification, they assume family structure is exogenous to outcomes.

Under exogeneity, the nonparametric estimates support the estimates from the parametric

models. Living in an intact family improves the probability of high school graduation for

kids but the positive effects seem to decline as the educational level of the parents increases.

The work of Manski et al. (1992) highlights the difficulty in identifying the effects of

family structure on child outcomes. Both assumptions used for point identification are

unsatisfactory. The normality assumption on the distribution of unobservables seems arbi-

trary, while the exogeneity of family structure to high school graduation seems implausible.

It is easy to suggest unobservable factors that affect family structure and the educational

outcome of the child. For instance, employment status of both parents might influence

family structure and resources available to the child. Manski et al. (1992) recognize the

difficulty in achieving identification and suggest progress can be made if researchers use

additional information on the relationship between family structure and child outcomes.

Much of subsequent work follows that suggestion. Researchers have used a variety of other

strategies, besides making distributional assumptions or relying on exogeneity, to model the

relationship and attempt to address the presence of unobservables that can generate corre-

10The unobservables are assumed to have zero mean and variances equal to one.
11In their context exogeneity implies that there is zero covariance between family status and unobservables

on outcomes. In the model that allows for correlation in unobservables, they also make cross equation
exclusion restrictions on observed covariates. For example, family structure does not depend on sex of the
child or education status of the parents.
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lation between family structure and child outcomes. One approach relies on access to a rich

set of data which measures a wide range of the relevant factors that influence both variables

of interest. Liu and Heiland (2012) use the FFCWS to estimate the impact of marriage

on children born to unmarried parents. They compare child outcomes at age three for the

group whose biological parents married each other after the child’s birth, to the group that

did not report a marriage. Unlike most data sets, the FFCWS contains information on

both biological parents, regardless of the presence of the father in the household.12 Liu and

Heiland (2010) use a propensity score approach which assumes that assignment into the

married state is random after conditioning on a rich set of observable covariates. They find

that children’s cognitive ability increased when the biological parents married. While the

FFCWS data allow researchers to control for characteristics of both parents, the propensity

score approach is invalid if some factors that influence the transition into marriage and

child outcomes remain unobserved. It is unlikely that any data set will ever collect all the

possible variables that influence child outcomes and family structure.13

Aughinbaugh et. al. (2005) do not depend on observing all relevant variables. They use

a fixed effects model to analyze the impact of mother’s marriage on children born to unwed

mothers, and the impact of divorce on children born in two-parent households. The fixed

effects approach allows researchers to control for the presence of unobserved person-specific

variables that remain constant and affect outcomes. They use the PIAT Math and Reading

test scores and the Behavioral Problems Index (BPI) scores from the CNLSY79 sample as

the outcome variables. In their model, test scores at time (t) depend on a set of indicators

for when the marital transition took place relative to the test time.14 They find that children

born to unwed mothers experience a decline in reading test scores after the marriage, decline

in math test scores before the marriage, and some evidence of worse behavior prior to the

12Many data sets include biological parent characteristics only if they both live in the same household,
regardless if they are married.

13For example, amount of effort a mother exerts in her relationships, with the child and partners, would
be very difficult to quantify and observe. In addition, the mere knowledge that behavior is observed might
induce individuals to change how they interact with others.

14The OLS specification allows test scores to also depend on an indicator if the mother transitioned to
marriage and three additional explanatory variables: child’s gender, the child’s race, and the mother’s AFQT
score. In the fixed effects specification the time-constant marital indicator and the explanatory variables
drop out due to differencing.
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mother’s marriage. The work of Aughinbaugh et. al. (2005) suggests marriage of unwed

mothers might be a disruptive event in the life of the child born out of wedlock. Gennetian

(2005) also uses panel data on PIAT test scores for the NLSY79 children to control for

time-constant unobservables possibly correlated with family structure. Family structure is

defined from the child perspective, because it is possible that two children residing in the

same household can report two different family structures.15 Gennetian (2005) models two

different fixed effects specifications, a specification with a fixed effect for each child, and

a specification with a fixed effect for each family. The outcome variable is defined as the

average of math and reading recognition scores and she finds only one precisely estimated

effect; children born to unwed mothers have lower test scores than children living in nuclear

families.16 In the child-specific fixed effect model, the single mother coefficient is identified

when an unwed mother transitions to a different marital state sometime between the first

and the last period her child takes the tests. Gennetian (2005) allows for 5 family structures,

but only a small fraction of children in her sample actually experience a transition between

these states. Overall only 7 percent of the children in her sample experience any family

structure change between the first and last test assessment.

Wagmiller et al. (2010) use a different data source, the Early Childhood Longitudinal

Study (ECLS-K), to investigate the impact of a mother’s marriage on children who were

living with an unwed mother at the time of the first interview. Their identification strategy

assumes a quadratic trend for math and reading scores for the children during the early

parts of their lives, and marriage is allowed to cause a deviation from this baseline trend.

Because test scores and family structure are observed at six points in time, the authors

are able to control for child-specific time-constant unobservables that impact the trend for

each child. They find that, when marriage occurs sometime between kindergarten and fifth

grade, the initial impact on scores is relatively small and positive but declines with the

passage of time. The authors also find that response to marriage is heterogeneous where

the benefits are much higher for whites than for minorities, are more positive for children

15For example, if one sibling is from a previous marriage, she will have a step-parent and a biological
parent family structure, while the younger sibling will report two biological parents.

16Nuclear families have two biological parents and siblings that have the same two parents.
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with higher educated mothers, and are higher among children who do not exhibit behavioral

problems. Their assumption of a quadratic trend in the growth of test scores however seems

relatively arbitrary, and the identification of marriage effects relies on a change in status

during the window that the children are assessed. Potentially only a small fraction of the

total sample might experience such a change.

The work of Gennetian (2005), Aughinbaugh et. al. (2005), and Wagmiller et. al. (2010)

suffers from shortcomings associated with the fixed effects models. Often the subsample

of children where transitions between marital states occur while the children are tested is

small. Additionally, because fixed effects models depend on observing the same outcome

over multiple periods, only the impact on educational outcomes that change over time can

be observed. The impact of family structure on whether a child is a high school dropout,

for example, cannot be estimated as the dropout status is a time-constant binary variable.

Finally, and perhaps most importantly, fixed effects models assume that marital status

can be correlated with time-constant unobservables affecting outcomes but is uncorrelated

with unobservables that change over time. This assumption is strong. For instance, a

change in geographic location and marital status can occur simultaneously, and both can

impact a child’s outcomes. In light of these limitations, other researchers have pursued an

instrumental variable strategy. With access to variables that are correlated with family

structure but independent of any unobservables that jointly influence child outcomes and

family structures, the fixed effects limitations can be avoided. Unfortunately, plausible

instrumental variables are difficult to find.

Bjorklund et al. (2007) use a change in pension benefits for spouses as an instrument

for the marriage decision. They use Swedish data to estimate the impact of a parent’s

transition to marriage on the child’s school GPA. An administrative change in the pension

system in Sweden abolished a generous lifetime pension for widows and replaced it with

a limited pension. Older cohorts of women, however, were still eligible to qualify for the

lifetime pension if they married prior to the end of 1989. The reform thus made marriage

financially beneficial to some unmarried couples. The authors observe a spike in marriages

in December of 1989, but only some of the women who got married in that month were
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actually eligible for the financial benefits from marriage.17 Their sample is restricted to

children born between 1977 and 1987, and who lived with both biological parents, whether

cohabiting or married. The children whose parents were cohabiting and eligible for the

financial benefit from marriage did not experience any changes in their GPA due to the

parents’ transition to marriage.18 Bjorklund et al. (2007) results suggest that marriage for

couples that already chose to cohabit and raise children together is unlikely to have any

effect on the children. The validity of the instrument might be undermined if other factors

that are correlated with child outcomes influenced the spike in marriages at the end of 1989.

After all, couples not directly affected by the pension reform also decided to get married at

much higher rates than usual.

Finlay and Neumark (2010) use Decennial Census data to test the relationship between

never married motherhood and the dropout decision.19 Their identification strategy de-

pends on variation in incarceration rates across states, time, age, and race as an instrument

for the never married status of the mother. Higher incarceration rates decrease the relative

supply of partners which, in turn, impacts the marriage decision. Because the Bureau of

Justice Statistics, which tracks the prison population in the United States, does not publish

data disaggregated by state and race, they use Census data to construct institutionalization

rates. Institutionalized individuals are meant to proxy for individuals that are incarcerated.

The sample is restricted to children living with their mothers at the time of the interview.

Using the institutionalized rate from the previous decade to instrument the mother’s mar-

ital status, the authors find that never married motherhood decreases the probability of

dropping out for Hispanics, but has no effect for blacks. The results of Finlay and Neumark

(2010) suggest that any transitions into marriage for Hispanic women who give birth prior

to marriage is disruptive to the children born out of wedlock.

Finlay and Neumark (2010) use the Decennial Census data and construct institutional-

17Many younger women also married, even though they would not qualify for the widow’s pension in the
event of their husband’s death.

18Interestingly, the effect on the GPA of boys from parental marriage in the sample that was not eligible
for financial benefits was positive. However, these effects are not robust to the inclusion of birth order and
presence of half-siblings in the regressions.

19Dropouts are defined as children who are not enrolled in school and have not completed grade 12.
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ized rates once every 10 years. The lack of more frequent data sources limits their ability

to describe marriage markets in intercensal years and thus limits their ability to use in-

formation on marriage timing and children’s outcomes available in older longitudinal data

sets. In this chapter, I extend the identification idea used in Finlay and Neumark (2010). I

use variation in the relative availability of spouses to instrument for the marriage decision,

and I overcome the limitation of having infrequent data on marriage markets.20 In Chapter

1, I combine multiple sources of demographic data and generate instrumental variables for

all years, not just for every 10 year interval. With more frequent instruments, I use the

NLSY79 and the CNLSY79 samples to estimate the effect of mother’s marriage on child

outcomes.

2.3 Data

I use the National Longitudinal Survey of Youth 1979 (NLSY79) and the Child and Young

Adult supplement (CNLSY79). The NLSY79 started as a nationally representative sample

of men and women. Respondents were between the ages of 14 to 22 when they were first

interviewed in 1979. The surveys were conducted on a yearly basis between 1979 and

1994, and once every two years thereafter. Starting in 1986, the NLSY79 Child and Young

Adult supplement began collecting data on the children born to the NLSY79 mothers.

Mothers were asked about their young children, while children older than 10 years old were

interviewed separately once every two years. In 1994, children 15 years and older were

asked to participate in interviews which resembled the interviews of the main NLSY79

respondents. Over time as the children mature, similar information about the education,

marital, and employment history that is available about the mothers, will become available

for their children. The NLSY79 contains identifiers allowing researchers to connect mothers

with their children.

20Incarceration rates rely on variation in criminal behavior and punishment across demographic categories.
Other measures of partner availability, sex ratios of unmarried individuals for example, rely on additional
forces generating variation in partner availability, like differences in mortality rates.
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2.3.1 Sample Selection

I start with women in the NLSY79 that reported having children.21 The initial sample

consists of 4,043 mothers. I exclude observations that were incomplete or unsuitable for the

analysis. Table 2.1 illustrates the sample restrictions and number of observations dropped.

The first set of sample selection rules in Table 2.1 relates to mothers. I exclude respondents

that were reported as deceased. Respondents that were incarcerated during the study

period or served in the military are excluded. Both groups are more likely to deviate from

the general population in the ways that they participate in marriage markets. Likewise,

individuals marked by the interviewers as deaf, blind, mentally handicapped, or physically

handicapped are excluded. Respondents who reported a marriage but for whom the date

of first marriage was unavailable are dropped. NLSY79 respondents were administered an

Armed Forces Qualification Test (AFQT). The test is often used as a measure of intelligence.

Observations for whom AFQT score could not be determined are dropped. Out of the 3,586

women remaining, only 1,122 chose to become mothers prior to any marriage. Timing of

first childbirth and marriage varies considerably between races. As illustrated in Table 2.2,

motherhood before marriage is an exception for whites and Hispanics. Only 12 percent

of white mothers, and 27 percent of Hispanic mothers have a child before first marriage.

However, birth prior to first marriage is by far the most common choice of family formation

for black women. Two-thirds of black mothers in the NLSY79 data choose to have a

child prior to marriage. Because of such large differences in the distribution of unmarried

motherhood between races, I restrict the sample to black mothers. I also exclude mothers

who reported a first marriage within 12 months of the first birth. These mothers were likely

to have stable relationships at the time of the child’s birth and were unlikely to participate

in marriage markets.

After the restrictions on mothers, the sample consists of 657 unwed mothers and 1,736

children. I exclude children that were designated by the interviewers as deaf, blind, physi-

cally, or mentally handicapped. Children born after the date of first marriage are excluded.

21The poor white and military subsamples were discontinued from the NLSY79, and I exclude those as
well.
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Out of the 1,307 children remaining, 978 report living with their mother between the ages

of 14 or 15.22 It is unlikely that mother’s marital behavior has an impact on a child who

does not live with her. I also exclude observations because of inconsistencies in the data on

child outcome variables or geographic location.23 The instrumental variable approach relies

on access to geographic location for the first 18 years of the child’s life. Out of 906 children

remaining, only 602 have geographic location every year for the first 18 years.

2.3.2 Sample Description

Summary statistics for the mothers in the sample are presented in Table 2.3. Unwed moth-

ers entered motherhood at a relatively young age; the average age at first birth is nearly

20. They had on average 2.8 children in their lifetime, 73 percent reported having gradu-

ated from high school, and 60 percent eventually married. Descriptive child statistics are

presented in Table 2.4. Around 50 percent of the children are the first-born child, implying

many of the mothers continued to have children out of wedlock after their first child. Half

of the children experienced their mother marrying at least once prior to their 18th birthday.

The majority of the children, nearly 78 percent of the sample, reported having a high school

diploma or a GED by the age of 20. Only 68 percent grew up with a mother that was a

high school graduate suggesting educational attainment has increased over the generations.

The NLSY79 Child and Young Adult Survey also asks respondents if they have ever been

convicted of any crime. While this self-reported variable is likely to suffer from measure-

ment error, nearly 21 percent of the sample reported a conviction, suggesting crime might

be commonplace in their surroundings and is likely to have an impact on child outcomes as

well.

Omitted variables are often a concern when using OLS to estimate the effect of family

structure on child outcomes. Other variables excluded from the analysis might be correlated

with child outcomes and family structure. For instance, more educated mothers might be

22Young children who were less than 14 years old at the time of their last interview are also excluded.
23I exclude observations if the data contains conflicting reports of educational attainment. I also exclude

observations for which the data on geographic location were problematic. For instance, respondents that
lived outside of the US are excluded.
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more likely to have more educated children and be more likely to marry, or preferences

for the number of children might be correlated with preferences for the quality of children

and preferences for marriage. Further analysis of the mothers in the final sample reveals

variables that are correlated with family structure. Mothers’ marital status appears to

be related to high school graduation status and lifetime fertility. Mothers who graduated

from high school are more likely to marry. Table 2.5 shows that only 35 percent of women

with a high school diploma remained unmarried, while 54 percent of women who did not

graduate from high school never married. High school status is also associated with a

lower lifetime fertility. Figure 2.1 illustrates that 70 percent of women with no high school

diploma reported three or more children, while only 48 percent of mothers with a high school

diploma reported three or more children. However, marriage appears to be correlated with

additional fertility. Table 2.6 includes summary statistics for the married subsample. On

average, the married subsample had two children before marriage and one child after the

marriage. Figure 2.2 presents further evidence that marriage is positively correlated with

lifetime fertility. Only 45 percent of women who never marry had three or more children,

while 60 percent of women that report a marital transition had three or more children.

Timing of the first birth also appears to be correlated with marriage, lifetime fertility,

and mother’s education status. Figure 2.3 illustrates the distribution of the mothers’ age

at first birth by eventual marital status. Relative to the married women, the women who

remained unmarried were more likely to give birth at age 20 or later. Women who entered

motherhood at older ages are also likely to have fewer children. As illustrated in Table

2.7, the share of women that become mothers before age 20 increases with the number of

children. Only 40 percent of women with 1 child gave birth prior to age 20, while nearly

75 percent of women with 4 children gave birth prior to age 20. Additionally, as illustrated

in Figure 2.4, lower educated women were more likely to have their first child at a younger

age.
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2.4 Definition of the Family Structure Variable

I define the family structure variable as an indicator equal to one if the mother transitions

to first marriage. The excluded category is therefore a never married mother. The division

of children into the mother never married and mother married categories might mask some

heterogeneity within the two groups. For example, the never married category includes

children that live with mothers who have no stable relationship with the children that live

in households with two parents cohabiting. Transition to first marriage might be followed by

a long and stable relationship of the couple, or it could be the first of many volatile changes in

family structure.24 Both of these groups will be classified under the same married category.

While imperfect, using the measure of first transition to marriage is both informative and

convenient. The effect of entry into first marriage should be of interest to policy makers

because promotion of marriage has been suggested as a policy tool for poverty reduction.25

Households headed by single mothers are especially prone to fall into poverty. According

to the Census Bureau, in 2011, 31 percent of households headed by a female without a

spouse present were living below the poverty level, relative to 6 percent for married couples.

Additionally, nearly 50 percent of children in households headed by a single mother were

below the poverty level. Marriage promotion policies will impact these children and their

effects should be considered prior to policy implementation.

Using transition to first marriage as the relevant family structure is also convenient.

Unlike information on cohabitation or the level of all the various resources invested in

children, marital status is more readily available in most data sources. NLSY79 contains

a detailed marital history throughout the sample period, while only some cohabitation

information is available. Prior to 2002 women were asked about cohabitation only if they

chose to report a partner on the household enumeration sheet. If they did report a partner,

information on the date cohabitation began with the current partner was asked starting in

1990. Thus, while some cohabitation information is available, it is incomplete and a full

24For instance, 16 percent of the NLSY79 mothers who reported a first marriage in my sample also reported
a second marriage.

25See Sigle-Rushton and McLanahan (2002).
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cohabitation history cannot be reconstructed.

2.5 Model

The relationship between an outcome Yi for each child (i), an indicator for the mother’s

marital status Mi, and a set of other explanatory variables Xi can be expressed using the

following linear specification

Yi = X ′iβ + αMi + ui (2.1)

where ui represents the unobservables that impact the outcomes. Given the specification

in equation (2.1), the goal is to obtain an estimate for the coefficient α. Ordinary Least

Squares (OLS) estimation will not generate a consistent estimate of the parameters because

the mother’s marriage decision Mi is likely to be correlated with the unobservables in the

outcome equation ui. However, with access to instrumental variables Zi such that the

following conditions hold,

E(X ′iui) = 0 (2.2)

E(Z ′iui) = 0

Cov(Z ′iMi) 6= 0,

α and β can be identified and estimated. A scalar Zi is sufficient for identification and

estimation because Mi is also a scalar. Whenever the number of moment conditions exceeds

the number of parameters to be estimated, the model is overidentified. For instance, if Zi

is a vector of two variables, Zi = Zi,1, Zi,2, then either E(Zi,1ui) = 0 or E(Zi,2ui) = 0,

in addition to E(X ′iui) = 0, would suffice to generate a consistent estimator for α and β.

However, a GMM estimator that combines information from all the available instruments

can derived. A consistent estimator is obtained as the result of the following minimization

problem

minc Q(c) = minc (O′u(c))′W (O′u(c)), (2.3)
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where c = {a, b}, u(c) = Y −X ′b−aM , O is a matrix of all the exogenous variables (X,Z),

and W is any positive definite matrix.26

2.6 OLS Results

The NLSY79 and CNLSY79 surveys record a variety of child outcomes. I start by using OLS

to investigate the relationship between mother’s marriage and three outcome variables: the

child’s PIAT math scores, an indicator for whether the child obtained a high school diploma

or a GED, and an indicator of whether the child became an out of wedlock parent. The

coefficient on mother’s marital status is significant only in the child’s high school graduation

status equation. The coefficient on mother’s marriage in the child’s PIAT Math test score

equation, or whether the child became an unwed parent equation, was not significant. The

results of the high school graduation outcome are discussed below.

The outcome variable is an indicator equal to one if the child graduated from high school

or obtained a GED by age 20. The marriage indicator is equal to one if the child’s mother

reported a transition to first marriage before the child was 19 years old. The OLS regression

results for equation

Yi = X ′iβ + αMi + ui

are summarized in Table 2.8. Each column corresponds to a separate regression with a

different set of explanatory variables Xi. The coefficient estimate in the first row and column

shows mother’s marriage at or before the child’s 18th birthday is positively correlated with

the child’s educational attainment. Relative to children whose mothers remain unmarried,

children whose mother marries are on average 14 percentage points more likely to have a

high school diploma or a GED by the age of 20. However, the size of the mother’s marriage

coefficient declines to 7 percentage points, as illustrated by the results in the last column,

when other explanatory variables are added to the regression. The 50 percent drop in the

magnitude of the coefficient reveals the importance of other factors that are both correlated

26An efficient GMM estimator is obtained if W is equal to the inverse of the asymptotic variance covariance
matrix of the moment equations. Greene (2003).
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with mother’s marriage and children’s educational attainment. For example, the sample

analysis in Section 2.3.2 revealed that mother’s high school graduation status and lifetime

fertility are both correlated with her marital status. The inclusion of these variables in the

child’s outcome equation accounts for more than half, nearly 4 percentage points, of the

drop in the size of the marriage coefficient. It is likely that variables not included in Xi in

Table 2.8 are also correlated with child outcomes and mother’s marriage.27 Although the

covariates included in Table 2.8 might be just a fraction of the relevant variables, it is still

instructive to explore how they are correlated with child outcomes and mother’s marriage.

Educational attainment appears to be strongly correlated through the generations. Chil-

dren whose mother graduated from high school are on average 14 percentage points more

likely to have a high school diploma or a GED by the time they are 20 years old. As dis-

cussed in Section 2.3.2, women with a high school diploma are also more likely to marry and

have fewer children. Likewise, children born to older mothers, who are less likely to marry

and have fewer children, are more likely to graduate from high school as well. First-born

children are on average 7 percent more likely to graduate from high school. The magnitude

of the first-born coefficient is comparable to the magnitude of the mother’s marriage coef-

ficient. First-born children might enjoy the benefits of being the only child for at least a

fraction of their lives, whereas any subsequent siblings do not get their mother’s undivided

attention. The first-born indicator might also pick up the differences between women who

have only one child out of wedlock and the ones with multiple children.28 However, this

seems unlikely as the size of the first-born coefficient is still positive and quite large even

after controlling for the number of children the mother had before any marital transition.

Higher fertility of the mother before the date of first marriage is negatively correlated with

educational attainment, while the number of children after the date of first marriage is

positively correlated with child outcomes. The latter might suggest that marriages which

result in children are more likely to be stable and have a positive effect on the child born

27For example, if a mother spends a lot of her time with the child she is less likely to participate in
marriage markets and more likely to have a high preforming child.

28These women might on average have a higher preference for “high quality” children and so they invest
more in each child and have fewer children.
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out of wedlock. An indicator if the child was ever convicted of a crime has a strong nega-

tive correlation with high school graduation. The conviction status is self-reported by the

CNLSY79 respondents and is likely to be measured with error. The magnitude of the coef-

ficient is very large and comparable in size with the mother’s high school graduation status.

Including the conviction status in the regressions decreases the negative correlation between

boys and graduation, suggesting that part of lower educational attainment for men is due

to higher propensity for criminal behavior. These correlations are robust to the inclusion

of state fixed effects.29

The child’s sex, mom’s high school graduation status, the first-born indicator, and child’s

conviction status are strongly correlated with the child’s educational attainment. I interact

each one with the marriage variable and repeat the OLS regressions to explore the possibility

of heterogeneous impact of mother’s marriage. As illustrated in Table 2.9, only the inter-

action with first-born appears to be statistically significant; the magnitude of the marriage

coefficient nearly doubles to 13.4 percent. Subsequent children born out of wedlock whose

mothers marry are on average more likely to graduate from high school relative to children

whose mothers remain unmarried. The positive association with marriage dissipates for

first-born children. They are no more likely to graduate from high school if their mother

marries relative to first-born children whose mothers remain unmarried.30 I investigate

the heterogeneous effects further and I repeat the OLS regression with outcome variable

defined as high school graduation by different age of the child for ages 19 to 22. Table 2.10

illustrates that correlations between first-born, marriage, and educational attainment are

less pronounced for other ages although the general pattern still holds, mother’s marriage

is far less advantageous for first-born children relative to their subsequent siblings.

Outcomes might also correlate with the age of the child at mother’s marriage. In ad-

dition, age of the child at mother’s marriage could explain the possible heterogeneity in

marriage effects by birth order. First-born children are more likely to be older than their

subsequent siblings, and if any marriage occurs it might be more disruptive to older chil-

29State of residence when the child was 18, the standard age for high school graduation, is used.
30The sum of the marriage effect is slightly negative, 0.134− 0.141 = −0.007. First born children are still

observed to have a 15 percentage points higher chance of high school graduation.
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dren outweighing any positive effects. I define two marital event indicators, one where the

mother married before the child turns 10, and another if she married when the child was

older than 10. Results in Table 2.11 indicate that marriage of the mother at younger child

ages has a positive association with the eventual high school graduation status. Children

with mothers that marry later appear to be no more likely to graduate than children of

mothers who do not marry at all. The positive association between first-born and educa-

tional attainment persists. In Table 2.12, I present OLS regression results when the two

marital indicators are interacted with the first-born indicator. The pattern of differences

in child outcomes by marriage and birth order remain, mother’s marriage when the child is

young has a positive association with educational attainment but the effect is much lower

for first-born children. Marriage when the child is older does not appear to have much effect

on the child, regardless of birth order.

The OLS results are informative. There are considerable differences in high school grad-

uation status between children whose mothers marry and the ones whose mothers remain

unmarried. These differences diminish for children who are first-born in their family and

who are older when the marriage occurs. Large changes in the magnitude of the mar-

riage coefficient when more variables are included in X also suggests a strong possibility for

correlation between mother’s marriage and unobservables affecting the child’s educational

attainment. To obtain a consistent estimate for the α coefficient in equation (2.1), I rely

on an instrumental variable approach discussed below. First, the instrumental variable is

defined and explained. Second, I discuss the appropriate specification for estimation given

the OLS results. Last, I present the estimation results and robustness checks.

2.7 Instrumental Variables: Definition and Estimation Re-

sults

2.7.1 Sex Ratios and Marriage

I use sex ratios, the ratio of unmarried men over unmarried women, to instrument for the

unwed mother’s marriage decision. When men are relatively scarce in a given marriage
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market, women have a harder time finding an adequate husband. Many researchers present

empirical evidence for the presence of these search frictions. Freiden (1974), South and

Lloyd (1992), and Wood (1993) find that higher relative availability of partners in a given

geographic location in the U.S. increases the share of married women.31 Angrist (2002)

finds that changes in the U.S. immigration policy decreased the supply of immigrant spouses

for some second generation immigrant groups and decreased the probability of marriage.

Abramitzky et al. (2011) find that women in regions of France which experienced higher

male mortality in World War I battles, and thus a lower relative supply of partners, were

less likely to marry. Lichter et al. (1992), and Brien (1997) find that an increase in the

relative availability of partners reduces the waiting time until first marriage for women in the

U.S.. Likewise, in Chapter 1 of this dissertation, I also find that an increase in the relative

availability of partners reduces the waiting time to first marriage for NLSY79 women.

Edin and Kefalas (2005) explore the marriage decision of the unwed mothers specifically.

Based on a set of interviews with 162 unwed mothers in the city of Philadelphia, the authors

provide qualitative information on the aspirations and obstacles to marriage for this specific

population. Most importantly, the vast majority of unwed mothers find marriage desirable.

In their sample 70 percent of all women, and 77 percent of the black women, wanted

to eventually marry. However, many had difficulty finding a suitable partner for marriage.

Oftentimes the potential partners available had substance abuse issues and problems keeping

steady employment. Based on the interviews, Edin and Kefalas (2005) conclude that faced

with a poor supply of marriageable men and unable to discern which men are of higher

quality, unwed mothers often decide to wait and let the trials of the relationship act as a

screening mechanism for the quality of the men. Because marriage is desirable but finding

adequate partners can be difficult, unwed mothers are also likely to respond to changes in

the relative supply of unmarried men.32

Sex ratios impact the marriage decision and it is instructive to consider why sex ratios

vary. Besides immigration policies and the tragedy of war, differences in sex ratios can

31State and Standard Metropolitan Statistical Area (SMSA) are used.
32I also find evidence that the marriage decision for the women in my sample is correlated with partner

availability measures. See Section 2.7.4.
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emerge due to a host of factors. Different mortality and incarceration rates for men and

women across demographic categories can generate different sex ratios. Sex ratios can differ

because of differential migration between the sexes across geographic units. Men might

migrate to a certain state in much higher proportion due to the presence of industries that

disproportionately hire men. The impact of any event generating an inequality between

unmarried men and women will impact the sex ratios differentially depending on the size

of the group considered. For example, consider a group of 100 men and 100 women. If 10

men move to a different geographic location, the sex ratio is 0.9. However, if there are a

1000 men and 1000 women and if 10 men move the sex ratio is 0.99. Random variation

in incarceration, mortality, and migration decisions could generate substantial variation in

sex ratios, especially for small groups. In addition, initial imbalances between the sexes are

exacerbated as absolute numbers of unmarried individuals declines with age due to marriage.

Consider a market where initially there are 900 unmarried men and 1000 unmarried women.

The initial sex ratio is 900
1000 = .9. Subsequently, over time 500 men and women marry, leaving

400 unmarried men and 500 unmarried women for a sex ratio of 400
500 = .8. As cohorts age

and many of its members exit, the marriage markets sex ratios change.

2.7.2 Instrumental Variable Definition

Sex ratios are defined to capture the variation in relative availability of potential partners

in marriage markets. For each mother observed in the NLSY79 at time (t) the marriage

market is defined by her state of residence (s), race (b), and age (a). I follow Lichter

et al. (1992) and assume that a woman of age (a), race (b), living in state (s) at time

(t), considers unmarried men between the ages (a) and (a + 10) as potential partners and

unmarried women between the ages (a−2) and (a+8) as potential competitors. Let ÛMs,b,a,t,d

and ÛFs,b,a,t,d represent the observed number of unmarried males (M) and females (F) from

data source (d), at time (t), for age (a), state (s), and race (b). Using data source (d) the



83

sex ratio at time (t) is defined as

r̂ds,b,a,t =
Σ10
k=0Û

M
s,b,a+k,t,d

Σ8
k=−2Û

F
s,b,a+k,t,d

. (2.4)

Much of the marriage market activity for NLSY79 women occurred in the 1980’s and

the 1990’s. The Current Population Survey (CPS) and the Decennial Census are the only

two data sources available from which to construct sex ratios by marriage market for those

two decades. The Census provides the most accurate estimates of population counts by

demographic category but is only available once every 10 years. On the other hand, the

CPS is available every year but, in part due to its small sample size, its population estimates

are likely to deviate significantly from the true underlying population counts. In addition,

the CPS is also most likely not to sample certain categories of individuals. For instance,

20 year old black females living in Indiana might not be sampled in 1992. Because of

measurement error in the observed population counts and the propensity not to sample

certain groups, the CPS observed sex ratios (r̂ds,b,a,t) can deviate considerably from the true

sex ratios. In turn, large measurement error in the observed sex ratios is likely to generate

attenuation bias in the estimated effect of sex ratios on the women’s marriage decision.33

Given the shortcomings of each data source, researchers often decide to use the accurate

but infrequent Decennial Census data.

I develop and estimate a model generating the observed population counts, ÛMs,b,a,t,d and

ÛFs,b,a,t,d, to address the scarcity in accurate and frequent demographic data during a large

portion of the NLSY79 time frame. The model accounts for unobserved data cells and

the presence of data source specific measurement error. I combine demographic data from

the Decennial Census, the CPS, and the American Community Survey (ACS) to estimate

the model parameters. Using the parameter estimates I construct an expectation of the

sex ratio E(r̂ds,b,a,t) for every state (s), race (b), age (a), and time period (t). I find that

expectations of sex ratios based on the model generate a higher predicted effect on the

waiting time to first marriage relative to coefficients when only the observed data ratios are

33For example see results of Chapter 1 or Brien (1997).
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used. The larger coefficient estimates are most likely the result of smaller deviations from

the true sex ratios relative to the CPS generated ratios.34

The expected sex ratios are a source of instrumental variables for the mother’s mar-

riage decision. I connect the mothers and their children to a set of marriage markets, and

in turn to the expected sex ratios, using restricted access geographic information in the

NLSY79 survey data. The model generates ratios for every year of the NLSY79 survey, so

an instrumental variable is available for each year the child is in the sample. Because the

marriage indicator is defined from the child’s perspective, the instruments for each child are

also defined based on the age perspective of the child. In other words, two children born

at the same time (t) in the same state (s) will have different ratios if their mothers were

of different age. Thus, for each child (i), of age (A), at time (t), I have Zi,1, Zi,2, . . . , Zi,A,

where Zi,A is the expected sex ratio experienced by the mother who is (a) years old when

the child is of age (A).35

2.7.3 Choosing the Appropriate Empirical Specification

The instrumental variable approach depends on the moment conditions

E(X ′iui) = 0 (2.5)

E(Z ′iui) = 0

Cov(Z ′iMi) 6= 0,

where ui = Yi − X ′iβ − αMi. Xi includes a constant, the child’s gender, and the log of

the mother’s AFQT score. The moment conditions require that after “subtracting out” the

impact on outcomes from covariates in Xi and mother’s marriage Mi, other determinants

of outcomes not controlled for explicitly are uncorrelated with sex ratios. The OLS results

discussed in Section 6 identify variables observed in the CNLSY79 that have an impact

on high school graduation but are unlikely to be exogenous so they cannot be used as

34For a further discussion of the model or the predicted effects on waiting time until first marriage see
Chapter 1.

35For example if the child is 5 when the mother is 27, I use the ratios for 27 year old women when the
child is 5, 28 year old women when the child is 6, and so on.
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instruments and are left as unobservables. If these variables are correlated with Zi, the

moment conditions no longer hold and parameter identification fails.36 Fortunately, because

I generate 18 instruments for each child in my sample, the number of moment conditions

exceeds the number of endogenous parameters. The surplus of instruments allows me to

explicitly include the endogenous variables in the outcome equation and instrument them

with the sex ratios. This approach in effect redefines the unobservable for each individual

to ui = Yi−X ′iβ−αMi−V ′i γ, where Vi are other observed endogenous variables correlated

with sex ratios.

I include the first-born indicator, mother’s age at the birth of the child, and the number

of children a mother had out of wedlock as additional endogenous explanatory variables

in the high school graduation equation. OLS regression results in Table 2.8 indicate that

each one of these is correlated with the child’s high school graduation status, and it is

possible that each one is correlated with sex ratios. A relatively low supply of men might

change the willingness of women to bear children out of wedlock, even after conditioning

on the marriage decision. The first-born indicator and mother’s age at the child’s birth are

correlated with the sex ratios because of more “mechanical” reasons. Sex ratios decrease as

mothers age. Differences in mortality and imprisonment rates between the sexes contribute

to this trend. In addition, any initial imbalances between the sexes are exacerbated as

absolute numbers of unmarried individuals decline with age due to marriage.37 First-born

children are likely to be born earlier than subsequent children and as a result will have higher

sex ratios. Table 2.14 illustrates that for each of the 18 years the sex ratios for first-born

children tend to be higher relative to subsequent children. Likewise, children born to older

women will have lower sex ratios compared to children born to younger women. Table 2.15

illustrates the result of regressing mother’s age at child’s birth on sex ratios. Results in the

first column, where mother’s age at birth is regressed on sex ratio at child’s age one, show

that younger mothers experience higher sex ratios. The regression in the second column

36Parameter estimates will not be consistent if any unobservables are correlated with sex ratios, not just
the variables that are observed in the CNLSY79 but not explicitly included in the outcome equation.

37Consider one market where initially there are 900 unmarried men and 1000 unmarried women. The
initial sex ratio is 900

1000
= .9. Subsequently over time 500 men and women marry, leaving 400 unmarried men

and 500 unmarried women for a sex ratio of 400
500

= .8.
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includes sex ratios for all 18 years. An F test rejects the null hypothesis that sex ratios are

uncorrelated with mother’s age at birth.

2.7.4 “First-stage” Results

In research that utilizes instrumental variables, besides exogeneity of the instruments, there

is a concern about weak instruments. Stock et al. (2002) point out that the asymptotic

distribution for the estimates is a poor approximation to the sampling distribution, if the

instruments and the endogenous variable are weakly correlated. They develop tests for weak

instruments and compute thresholds for the size of the F statistic in the first-stage regression

when the model is linear with homoskedastic error.38 However, according to Stock et al.

(2002), no such test is available when the errors are heteroskedastic, as is the case when

the dependent variable is an indicator for high school graduation status. Nevertheless, I

report the results of regressing the mother’s marriage indicator on sex ratios and other

explanatory variables in Table 2.13. While not a formal test for weak instruments, the

regressions allow for testing of correlation between the instruments and mother’s marriage

indicator conditional on other variables. Column 1 contains the result when only the sex

ratios and a constant are included in the regression, Column 2 contains results when all

the independent variables are included, and Column 3 contains the results when the three

additional endogenous variables discussed above are also included in the regression. While

an F test on the null hypothesis that the sex ratio coefficients are jointly equal to zero is

rejected in all three regressions, the F statistic in all three regression is below the rule-of-

thumb value of 10. These results suggest that sex ratios are correlated with the mother’s

marriage decision and make plausible instruments, but the 18 ratios could be a set of weak

instruments.

38The threshold size of the F statistic depends on the number of instruments and the test used. The
general rule-of-thumb is for the F statistic to be larger than 10. Stock et al. also provide a test statistic for
weak instruments when the errors are i.i.d. and multiple endogenous variables are present.
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2.7.5 Instrumental Variable Results

The outcome equation is modified to

Yi = X ′iβ + αMi + V ′i γ + ui (2.6)

where Xi includes a constant, the child’s gender, and the log of mother’s AFQT score.

Mi is an indicator if the mother married prior to the child’s 18th birthday, and Vi are

the additional three endogenous explanatory variables, the first-born indicator, age of the

mother at birth of the child, and number of kids the mother had out of wedlock. Yi is

an indicator variable equal to one if the child graduated from high school or obtained a

GED by a certain age. Sex ratios for all 18 years and the variables in Xi are used as

the instrumental variables. Because the number of instruments exceeds the number of

endogenous parameters I use GMM estimation described in Section 5.39 The results are

summarized in Table 2.16. Each column in the table corresponds to an estimation on the

child’s educational attainment measured at a different age. For example, the estimate of the

coefficient on mother’s marriage in column 2 indicates that children whose mothers remain

unmarried are nearly 24 percentage points less likely to obtain a high school diploma by

age 20. Overall the results in Table 2.16 indicate that the impact of mother’s marriage on

high school graduation is positive, very large, and mostly statistically significant.40

Robustness Checks

The GMM estimate of the effect of mother’s marriage on the child’s high school graduation

probability by age 20 is three times larger than the OLS coefficient. The magnitude of

the difference in the estimates can generate concerns that unobservables might still bias

the estimates. Unobserved factors that generate differences in sex ratios, like differences in

39I use a two-step estimation procedure in STATA. In the first step, consistent estimates of α, β, γ, are
obtained using inverse of the product of instrument matrix as the weights, W = (O′O)−1. In the second
step α, β, γ are reestimated for a weight matrix equal to the inverse of the estimated moment covariance
matrix. The moment covariance matrix estimate is obtained by using the first step estimates of α, β, γ.

40I also use the GMM approach to estimate the impact of mother’s marriage on PIAT math scores and
on an indicator if the child became an unwed parent. Similarly to OLS results, the coefficient estimates for
mother’s marriage were not significant.
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incarceration rates, mortality rates for men, or economic opportunities, might also impact

the educational outcomes of children. Table 2.17 summarizes the results of estimating a

specification similar to equation (2.6) with the inclusion of state fixed effects when the child

was 18 in Xi. The inclusion of state fixed effects controls for any unobservables specific to a

marriage market that affect both the sex ratios and high school graduation. The estimated

coefficient on marriage, especially for high school graduation by age 20 and older, remains

large. The standard errors, however, increase substantially.

State fixed effects are meant to capture unobservables that might affect children’s out-

comes and sex ratios. Differences in economic opportunities across states could be one such

factor. High unemployment rates might cause poor child outcomes and differential migra-

tion between state lines in search of better labor markets. I estimate a specification similar

to equation (2.6) and include unemployment rates for the child’s state of residence for all

18 years in Xi. The results are summarized in Table 2.18. The marriage coefficients remain

large and significant.

Differences in incarceration rates between states are also likely to contribute to dif-

ferences in sex ratios.41 Higher incarceration rates could indicate that in some marriage

markets crime is more prevalent which might impact high school graduation. I reestimate

equation (2.6) but also include prison rates for the child’s state of residence for all 18 years

in Xi.
42 The results, summarized in Table 2.19, show a large decrease in the estimated

marriage coefficient. For instance, in the second column the coefficient on high school

graduation by age 20 declines from 24 percent to 9 percent. The coefficient estimates for

marriage are also no longer significant. It appears that forces causing differences in prison

rates also impact mother’s sex ratios and child’s high school graduation status.

The results of this section suggest caution when considering the GMM coefficient es-

timates. The exogeneity of the instrumental variables is undermined by the sensitivity of

coefficient estimates when marriage-market-specific “environmental variables” are included

in the outcome equations.43 Forces that generate differences in sex ratios for the mother

41The sex ratio is based on the mother’s marriage markets, so if the mother is 38 when the child is 18,
based on the definition of sex ratios the incarceration of men that are between 38 and 48 matters.

42Data on prison rates and unemployment rates by state was obtained from John J. Donohue.
43The coefficient estimates are also inconsistent with OLS results when marriage is interacted with birth
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might also influence children’s educational attainment. In addition, sex ratios could poten-

tially be a weak set of instruments. As discussed in Section 2.7.4, the ratios are correlated

with the mother’s decision, but the correlation could be weak, leading to unreliable point

estimates.44

2.8 Conclusion

I use the National Longitudinal Survey of Youth 1979 (NLSY79) and the Child and Young

Adult supplement (CNLSY79) to study the effects of mother’s marriage on black children

born out of wedlock. Ordinary least squares (OLS) regressions reveal that mother’s mar-

riage is positively correlated with high school graduation status of the children. However,

the possibility that unobserved factors can be correlated with child outcomes and mother’s

marriage remains. To address the likely endogeneity of mother’s marriage decision I use

sex ratios in the mother’s marriage markets as instrumental variables. Previous research

has found that sex ratios, the relative availability of potential spouses, impacts women’s

transitions into marriage. Higher relative availability of spouses leads to shorter waiting

times until first marriage. Using estimation results of Chapter 1, I construct yearly mea-

sures of sex ratios for the period the women in the NLSY79 are observed. The General

Method of Moments (GMM) estimation framework allows me to use information from mul-

tiple measures of sex ratios to estimate the effect of mother’s marriage. I find that mother’s

marriage has a large and positive effect on the high school graduation status of their chil-

dren, although the results seem sensitive to common concerns associated with instrumental

variables. The exogeneity of the instrumental variables is undermined by the sensitivity

of coefficient estimates when other marriage-market-specific variables are included in the

outcome equations. When state-specific prison rates are included, the size of the marriage

coefficients decrease and becomes insignificant. In addition, while the sex ratios are corre-

lated with the mother’s marriage decision, the correlation might be insufficient to overcome

the weak instruments problem.

order of the child or the age of the child. For more details see Appendix 2.A.
44See Stock et al. (2002).
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2.A Appendix: Instrumental Variables and Heterogeneity in

the Marriage Effect

OLS regression results of high school graduation on a variety of explanatory variables sug-

gest that outcomes for children differ when mothers marry, and depend on the birth order

of the child and age at which marriage occurs.45 First-born children are no more likely to

graduate from high school when their mother marries, however subsequent children have

higher probability of graduating high school if their mothers marry. Heterogeneity in birth

order is not observed when first-born is interacted with mother’s marriage in the instrumen-

tal variables approach. The GMM coefficient estimates for the marriage indicator, and the

first-born and marriage interaction term are insignificant. OLS results in Table 2.11 also

indicate that younger children have a higher probability of high school graduation when

their mothers marry relative to children whose mothers remain unmarried. I reestimate

equation (2.6) but allow for two marriage indicators, if the mother married before the child

was 10 or if the child was between 10 and 18 years old, and instrument with sex ratios.

The GMM estimation results in Table 2.20 are inconsistent with the OLS results, mother’s

marriage when the child is older has a positive, large, and statistically significant effect on

child’s high school graduation status. Coefficients on marriage at younger ages are positive

but insignificant. When state fixed effects are added to the independent variables, the size

of the marriage coefficient at older ages increases, in many cases above one, and becomes

insignificant.46 The coefficients remain large and significant when unemployment rates are

added to the regressions, but decline in significance and magnitude when prison rates are

included.47 Inclusion of state fixed effects and prison rates reduce the significance of the

marriage coefficient at older ages, suggesting that unobservable factors in mother’s mar-

riage markets might be correlated with sex ratios and child outcomes. GMM coefficient

estimates in Table 2.24, for a specification that includes both state fixed effects and prison

rates, support the possibility that sex ratios might be correlated with other factors that are

45See Tables 2.10 and 2.11.
46See Table 2.21.
47See Tables 2.22 and 2.23.
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correlated with child outcomes. The coefficient estimates are still large, and in one case

above one, but they are also insignificant. The instability of estimates when prison rates

and state fixed effects are added suggests caution when considering the relevance of the

results in Section 2.7.5.
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Tables

Table 2.1: Sample Restrictions

Mothers Children

dropped remaining dropped remaining
Initial Sample 4043
Deceased 104 3939
Incarcerated, or in military 6 3933
Mother marked as deaf, blind, mentally, or physically handicapped 64 3869
Missing marriage date 95 3774
Missing AFQT score 188 3586
1st marriage before 1st birth 2464 1122
Exclude whites and Hispanics 409 713
Married within a year of 1st birth 56 657

Unwed mothers subsample 657 1736
Child marked as deaf, blind, mentally, or physically handicapped 2 655 33 1703
Child born after 1st marriage 2 653 396 1307
Do not live with mother at 14 or 15 95 558 329 978
Difficulties with respondent’s geographic location 27 531 44 934
Difficult to determine child’s HS status 9 522 28 906
Geographic location of the child not observed for all 18 years 138 384 304 602
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Table 2.2: Birth Before Marriage by Race

Number % of Total
White Black Hispanic White Black Hispanic

1st child before any marriage 218 713 191 12% 66% 27%
1st child after 1st marriage 1577 360 527 88% 34% 73%
Total 1795 1073 718 100% 100% 100%

Table 2.3: Unwed Mother Sample Descriptions

mean

mom’s age at 1st birth 19.31
# of children ever born 2.78
mom HS graduate 0.73
mom reported a marriage 0.60

N = 384

Table 2.4: Summary Statistics for Children

mean

male 0.48
log of mom’s AFQT 9.32
HS diploma or GED by age 20 0.78
mom married 0.50
mom HS graduate 0.68
first-born 0.49
child ever convicted 0.21

N = 602

Table 2.5: Marital Status and Age at 1st Marriage by Mother’s HS Status

% by HS Category
Age at 1st marriage: NO HS HS Total

never married 53.85 34.64 39.84
up to 20 2.88 1.79 2.08
20 to 24 12.50 17.86 16.41
25 to 29 10.58 18.93 16.67
30 to 34 6.73 12.14 10.68
35 or older 13.46 14.64 14.32

Total 100.00 100.00 100.00
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Table 2.6: Unwed Mothers that Eventually Married

mean

age at 1st marriage 29.14
# of children ever 2.88
# of kids out of wedlock 2.07
# of kids after 1st marriage 0.81

N = 231

Table 2.7: Mother’s Age at First Birth by Number of Children Born

% by Number of Children
Age at 1st birth: 1 2 3 4 or more Total

14 or less 0.00 0.00 5.08 4.55 2.60
15 to 19 39.29 46.72 63.56 70.45 56.25
20 to 24 44.64 41.80 28.81 22.73 33.85
25 to 29 12.50 9.84 2.54 2.27 6.25
30 to 34 3.57 1.64 0.00 0.00 1.04

Total 100.00 100.00 100.00 100.00 100.00
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Table 2.8: OLS, High School Diploma or GED by Age 20

1 2 3 4 5 6 7 8 9 10 11

Explanatory Variables:
mom married 0.140*** 0.134*** 0.117*** 0.105*** 0.115*** 0.094*** 0.101*** 0.084** 0.072* 0.080** 0.071*

(0.034) (0.034) (0.033) (0.033) (0.033) (0.033) (0.033) (0.034) (0.037) (0.038) (0.038)
male -0.125*** -0.131*** -0.128*** -0.123*** -0.129*** -0.127*** -0.127*** -0.126*** -0.128*** -0.096***

(0.034) (0.033) (0.033) (0.033) (0.032) (0.032) (0.032) (0.032) (0.033) (0.033)
log of mom’s AFQT 0.073*** 0.065*** 0.058*** 0.032** 0.033** 0.025 0.025 0.024 0.022

(0.015) (0.015) (0.015) (0.016) (0.016) (0.016) (0.016) (0.017) (0.017)
first-born 0.107*** 0.080** 0.068** 0.120** 0.102** 0.099** 0.083 0.076

(0.033) (0.034) (0.034) (0.049) (0.050) (0.050) (0.050) (0.051)
mom’s age at 1st birth 0.014*** 0.011** 0.002 -0.002 -0.001 0.004 0.003

(0.005) (0.005) (0.008) (0.008) (0.008) (0.009) (0.009)
mom HS graduate 0.164*** 0.164*** 0.146*** 0.146*** 0.141*** 0.140***

(0.045) (0.045) (0.046) (0.046) (0.048) (0.048)
mom’s age at birth 0.011 0.014* 0.014* 0.011 0.009

(0.007) (0.007) (0.007) (0.008) (0.008)
# of kids out of wedlock -0.032** -0.030** -0.026* -0.021

(0.014) (0.015) (0.016) (0.016)
# of kids after 1st marriage 0.021 0.038** 0.039**

(0.019) (0.019) (0.018)
child ever convicted -0.136***

(0.050)
State FE1 YES YES

N 592 592 592 592 592 592 592 592 592 585 585
R2 0.028 0.051 0.093 0.109 0.118 0.143 0.147 0.157 0.158 0.206 0.221

Each column represents a seperate regression. Outcome is high school graduate or GED by age 20. Every regression includes a constant.
Standard errors are in parentheses. Signifcant at: *** 1%, ** 5%, * 10%.

1 State fixed effects at the child’s age 18.
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Table 2.9: OLS, High School Diploma or GED by Age 20

1 2 3 4 5

Explanatory Variables:
mom married 0.070* 0.061 0.068 0.134** 0.051

(0.038) (0.046) (0.077) (0.052) (0.040)
male×mom married 0.020

(0.067)
mom HS graduate×mom married 0.003

(0.082)
first-born×mom married -0.141**

(0.066)
child ever convicted×mom married 0.092

(0.093)
male -0.096*** -0.106** -0.096*** -0.090*** -0.094***

(0.033) (0.051) (0.033) (0.034) (0.033)
log of mom’s AFQT 0.022 0.022 0.022 0.022 0.021

(0.017) (0.018) (0.017) (0.017) (0.017)
first-born 0.076 0.076 0.076 0.152** 0.079

(0.051) (0.051) (0.051) (0.063) (0.051)
mom’s age at 1st birth 0.003 0.003 0.003 0.001 0.003

(0.009) (0.009) (0.009) (0.009) (0.009)
mom HS graduate 0.140*** 0.140*** 0.138** 0.133*** 0.141***

(0.048) (0.048) (0.060) (0.048) (0.048)
mom’s age at birth 0.009 0.009 0.009 0.011 0.009

(0.008) (0.008) (0.008) (0.008) (0.008)
# of kids out of wedlock -0.021 -0.021 -0.021 -0.022 -0.020

(0.016) (0.016) (0.016) (0.016) (0.016)
# of kids after 1st marriage 0.039** 0.039** 0.039** 0.049*** 0.040**

(0.018) (0.018) (0.018) (0.018) (0.019)
child ever convicted -0.136*** -0.135*** -0.136*** -0.139*** -0.177***

(0.050) (0.050) (0.050) (0.049) (0.065)
State FE1 YES YES YES YES YES

N 585 585 585 585 585
R2 0.221 0.221 0.221 0.227 0.223

Each column represents a seperate regression. Outcome is high school graduate or GED by age
20. Every regression includes a constant. Standard errors are in parentheses. Signifcant at: ***
1%, ** 5%, * 10%.

1 State fixed effects at the child’s age 18.
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Table 2.10: OLS, High School Diploma or GED by Age

Graduated from HS by age:
19 20 21 22

Explanatory Variables:
mom married 0.111** 0.134*** 0.085* 0.103**

(0.053) (0.052) (0.050) (0.049)
first-born 0.088 0.152** 0.111* 0.113*

(0.067) (0.063) (0.060) (0.060)
first-born×mom married -0.093 -0.141** -0.077 -0.078

(0.071) (0.066) (0.064) (0.063)
male -0.102*** -0.090*** -0.084*** -0.075**

(0.037) (0.034) (0.032) (0.032)
log of mom’s AFQT 0.027 0.022 0.020 0.027*

(0.018) (0.017) (0.017) (0.016)
mom’s age at 1st birth 0.007 0.001 0.002 0.000

(0.009) (0.009) (0.008) (0.008)
mom HS graduate 0.139*** 0.133*** 0.163*** 0.100**

(0.051) (0.048) (0.047) (0.046)
mom’s age at birth 0.008 0.011 0.012 0.015**

(0.008) (0.008) (0.007) (0.007)
# of kids out of wedlock -0.021 -0.022 -0.020 -0.016

(0.016) (0.016) (0.015) (0.015)
# of kids after 1st marriage 0.044** 0.049*** 0.037** 0.035**

(0.020) (0.018) (0.018) (0.017)
child ever convicted -0.148*** -0.139*** -0.123*** -0.121***

(0.053) (0.049) (0.048) (0.047)
State FE1 YES YES YES YES

N 588 585 579 573
R2 0.223 0.227 0.223 0.190

Each column represents a seperate regression. Outcome is high school grad-
uate or GED by the age in the column heading. Every regression includes a
constant. Standard errors are in parentheses. Signifcant at: *** 1%, ** 5%,
* 10%.

1 State fixed effects at the child’s age 18.
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Table 2.11: OLS, High School Diploma or GED by Age

Graduated from HS by age:
19 20 21 22

Explanatory Variables:
mom married up to age 101 0.112** 0.142*** 0.094** 0.129***

(0.045) (0.041) (0.040) (0.038)
mom married after age 102 0.010 -0.029 -0.011 -0.017

(0.055) (0.052) (0.048) (0.050)
male -0.100*** -0.088*** -0.082** -0.072**

(0.037) (0.033) (0.032) (0.031)
log of mom’s AFQT 0.026 0.020 0.019 0.026

(0.019) (0.018) (0.017) (0.017)
first-born 0.052 0.099** 0.084* 0.091*

(0.054) (0.050) (0.048) (0.047)
mom’s age at 1st birth 0.007 0.001 0.002 -0.000

(0.009) (0.008) (0.008) (0.008)
mom HS graduate 0.139*** 0.134*** 0.162*** 0.099**

(0.051) (0.047) (0.046) (0.046)
mom’s age at birth 0.008 0.010 0.011 0.015**

(0.008) (0.008) (0.007) (0.007)
# of kids out of wedlock -0.020 -0.020 -0.019 -0.015

(0.016) (0.016) (0.015) (0.015)
# of kids after 1st marriage 0.022 0.014 0.016 0.008

(0.021) (0.018) (0.018) (0.017)
child ever convicted -0.149*** -0.140*** -0.124*** -0.124***

(0.053) (0.049) (0.048) (0.047)
State FE3 YES YES YES YES

N 588 585 579 573
R2 0.224 0.235 0.227 0.200

Each column represents a seperate regression. Outcome is high school graduate or GED by
the age in the column heading. Every regression includes a constant. Standard errors are in
parentheses. Signifcant at: *** 1%, ** 5%, * 10%.

1 Indicator if entered first marriage before the child’s was 10.
2 Indicator if entered first marriage when the child was between 10 and 18.
3 State fixed effects at the child’s age 18.
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Table 2.12: OLS, High School Diploma or GED by Age

Graduated from HS by age:
19 20 21 22

Explanatory Variables:
mom married up to age 101 0.148** 0.202*** 0.128** 0.164***

(0.059) (0.056) (0.054) (0.051)
mom married up to age 10×first-born -0.089 -0.148** -0.083 -0.08

(0.075) (0.067) (0.066) (0.063)
mom married after age 102 0.034 -0.017 -0.011 -0.028

(0.085) (0.085) (0.079) (0.080)
mom married after age 10×first-born -0.053 -0.040 -0.011 0.008

(0.111) (0.106) (0.098) (0.100)
male -0.098*** -0.086** -0.081** -0.071**

(0.037) (0.034) (0.032) (0.031)
log of mom’s AFQT 0.026 0.020 0.019 0.026

(0.019) (0.018) (0.017) (0.017)
first-born 0.094 0.162** 0.117* 0.122**

(0.068) (0.063) (0.060) (0.060)
mom’s age at 1st birth 0.006 -0.000 0.001 -0.001

(0.009) (0.008) (0.008) (0.008)
mom HS graduate 0.135*** 0.127*** 0.159*** 0.095**

(0.051) (0.047) (0.046) (0.046)
mom’s age at birth 0.008 0.012 0.012* 0.016**

(0.008) (0.007) (0.007) (0.007)
# of kids out of wedlock -0.021 -0.021 -0.020 -0.015

(0.016) (0.016) (0.015) (0.015)
# of kids after 1st marriage 0.031 0.028 0.024 0.016

(0.021) (0.018) (0.017) (0.017)
child ever convicted -0.150*** -0.141*** -0.125*** -0.124***

(0.053) (0.049) (0.047) (0.047)
State FE3 YES YES YES YES

N 588 585 579 573
R2 0.226 0.240 0.229 0.202

Each column represents a seperate regression. Outcome is high school graduate or GED by the age in
the column heading. Every regression includes a constant. Standard errors are in parentheses. Signifcant
at: *** 1%, ** 5%, * 10%.

1 Indicator if entered first marriage before the child’s was 10.
2 Indicator if entered first marriage when the child was between 10 and 18.
3 State fixed effects at the child’s age 18.
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Table 2.13: OLS, Mom Married by Child Age 18

1 2 3

Regression Results:

Includes sex ratios for child ages 1 to 18? YES YES YES

male -0.086** -0.076*
-0.041 (0.039)

log of mom’s AFQT 0.045*** 0.019
-0.016 (0.018)

first-born -0.057
(0.048)

mom’s age at birth -0.020**
(0.008)

# of kids out of wedlock -0.071***
(0.013)

constant -0.715** -1.163*** 0.354
(0.309) -0.321 (0.506)

N 596 596 596
R2 0.072 0.090 0.141
F statistic 4.757 5.348 7.405

Test of Joint Significance for the Sex Ratios:

F statistic 4.76 5.24 3.99
p-value 0.00 0.00 0.00

Standard errors are in parentheses. Signifcant at: *** 1%, ** 5%, * 10%.
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Table 2.14: Sex Ratios by Child’s Birth Order

mean median
sex ratio at age: 1st born Subsequent 1st born Subsequent

1 0.733 0.693 0.737 0.687
2 0.717 0.682 0.717 0.673
3 0.704 0.672 0.706 0.664
4 0.692 0.662 0.693 0.653
5 0.680 0.653 0.679 0.644
6 0.669 0.646 0.669 0.637
7 0.659 0.637 0.658 0.627
8 0.650 0.630 0.647 0.622
9 0.641 0.623 0.639 0.615
10 0.634 0.617 0.630 0.610
11 0.626 0.613 0.625 0.606
12 0.620 0.609 0.618 0.603
13 0.615 0.606 0.613 0.600
14 0.610 0.602 0.608 0.598
15 0.605 0.599 0.604 0.597
16 0.602 0.597 0.602 0.594
17 0.599 0.595 0.599 0.593
18 0.596 0.595 0.597 0.590

Table 2.15: Mother’s Age at Birth of Child Regressed on Sex
Ratios

1 2

Sex ratio age 1 -44.781*** -68.925***
(4.340) (15.160)

Includes sex ratios for ages 2 to 18? NO YES

constant 53.570*** 51.661***
(3.094) (2.341)

N 596 596
R2 0.554 0.633

F statistic 104.070 41.319

Standard errors are in parentheses. Signifcant at: *** 1%, **
5%, * 10%.
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Table 2.16: Instrumental Vairable Results, HS Graduation by Age

Graduated from HS by age:
19 20 21 22

Explanatory Variables:
mom married 0.320** 0.237* 0.257** 0.155

(0.148) (0.128) (0.120) (0.112)
male -0.113*** -0.114*** -0.101*** -0.112***

(0.039) (0.033) (0.032) (0.031)
log of mom’s AFQT 0.066 0.074** 0.052 0.066*

(0.042) (0.037) (0.036) (0.034)
first-born 0.417 0.103 0.123 -0.029

(0.257) (0.230) (0.224) (0.213)
mom’s age at birth 0.029* 0.013 0.020 0.010

(0.016) (0.014) (0.013) (0.012)
# of kids out of wedlock 0.063 0.024 -0.009 -0.005

(0.086) (0.079) (0.076) (0.077)
constant -0.989 -0.362 -0.215 0.000

(0.647) (0.600) (0.577) (0.585)

N 595 592 586 580

Each column represents GMM estimation results on indicator if child was a high school
graduate or obtained a GED by the age in the column heading. Standard errors are in
parentheses. Signifcant at: *** 1%, ** 5%, * 10%.
Instruments:

Esr4 - expected sex ratios from the model with covariance in shocks between men
and women of the same race for child ages 1 to 18, male - child’s gender, log of mom’s
AFQT score.
Endogenous variables:

mom married - indicator if mother married by when the child was 18 or younger,
first-born - indicator if child was the first-born, mom’s age at birth - mother’s age at the
birth of the child, # kids out of wedlock - number of children the mother had before date
of any marital transition.
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Table 2.17: Instrumental Vairable Results, HS Graduation by Age

Graduated from HS by age:
19 20 21 22

Explanatory Variables:
mom married 0.186 0.233 0.282* 0.198

(0.184) (0.166) (0.167) (0.155)
male -0.123*** -0.118*** -0.105*** -0.110***

(0.040) (0.035) (0.035) (0.033)
log of mom’s AFQT 0.027 0.038 0.035 0.037

(0.037) (0.033) (0.033) (0.030)
first-born 0.381 0.229 0.219 0.167

(0.259) (0.217) (0.219) (0.208)
mom’s age at birth 0.033** 0.022 0.026* 0.025**

(0.016) (0.013) (0.013) (0.013)
# of kids out of wedlock -0.040 -0.033 -0.038 -0.036

(0.078) (0.065) (0.067) (0.064)
constant -0.457 -0.147 -0.214 -0.136

(0.704) (0.592) (0.606) (0.583)

State FE YES YES YES YES

N 531 528 522 516

Each column represents GMM estimation results on indicator if child was a high school
graduate or obtained a GED by the age in the column heading. Standard errors are in
parentheses. Signifcant at: *** 1%, ** 5%, * 10%.
Instruments:

Esr4 - expected sex ratios from the model with covariance in shocks between men
and women of the same race for child ages 1 to 18, male - child’s gender, log of mom’s
AFQT score, State FE - state fixed effects when the children were 18 years old.
Endogenous variables:

mom married - indicator if mother married by when the child was 18 or younger,
first-born - indicator if child was the first-born, mom’s age at birth - mother’s age at the
birth of the child, # kids out of wedlock - number of children the mother had before date
of any marital transition.
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Table 2.18: Instrumental Vairable Results, HS graduation by Age

Graduated from HS by age:
19 20 21 22

Explanatory Variables:
mom married 0.300** 0.199 0.265** 0.201

(0.150) (0.136) (0.134) (0.127)
male -0.107*** -0.116*** -0.098*** -0.107***

(0.041) (0.036) (0.036) (0.034)
log of mom’s AFQT 0.030 0.055 0.035 0.044

(0.048) (0.043) (0.042) (0.042)
first-born 0.232 -0.041 0.032 -0.026

(0.240) (0.215) (0.222) (0.205)
mom’s age at birth 0.032** 0.012 0.022* 0.017

(0.014) (0.012) (0.012) (0.011)
# of kids out of wedlock -0.051 -0.041 -0.066 -0.047

(0.090) (0.083) (0.084) (0.085)
constant -0.637 -0.048 -0.141 0.032

(0.703) (0.643) (0.633) (0.622)

Unemp Rates YES YES YES YES

N 566 563 562 556

Each column represents GMM estimation results on indicator if child was a high school
graduate or obtained a GED by the age in the column heading. Standard errors are
in parentheses. Signifcant at: *** 1%, ** 5%, * 10%.
Instruments:

Esr4 - expected sex ratios from the model with covariance in shocks between men
and women of the same race for child ages 1 to 18, male - child’s gender, log of mom’s
AFQT score, Unemp Rates - unemployment rates for all 18 years.
Endogenous variables:

mom married - indicator if mother married by when the child was 18 or younger,
first-born - indicator if child was the first-born, mom’s age at birth - mother’s age at
the birth of the child, # kids out of wedlock - number of children the mother had
before date of any marital transition.
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Table 2.19: Instrumental Vairable Results, HS Graduation by Age

Graduated from HS by age:
19 20 21 22

Explanatory Variables:
mom married 0.152 0.094 0.226 0.094

(0.174) (0.163) (0.159) (0.151)
male -0.138*** -0.133*** -0.111*** -0.123***

(0.040) (0.035) (0.034) (0.033)
log of mom’s AFQT 0.067 0.076** 0.069* 0.075**

(0.041) (0.038) (0.038) (0.036)
first-born 0.463* 0.077 0.118 -0.009

(0.273) (0.248) (0.243) (0.227)
mom’s age at birth 0.031 0.008 0.015 0.006

(0.019) (0.017) (0.016) (0.015)
# of kids out of wedlock 0.076 0.024 0.033 0.017

(0.084) (0.077) (0.076) (0.073)
constant -1.138 -0.326 -0.502 -0.140

(0.747) (0.673) (0.660) (0.643)

Prison Rates YES YES YES YES

N 566 563 562 556

Each column represents GMM estimation results on indicator if child was a high school
graduate or obtained a GED by the age in the column heading. Standard errors are
in parentheses. Signifcant at: *** 1%, ** 5%, * 10%.
Instruments:

Esr4 - expected sex ratios from the model with covariance in shocks between men
and women of the same race for child ages 1 to 18, male - child’s gender, log of mom’s
AFQT score, Prison Rates - prison rates for all 18 years.
Endogenous variables:

mom married - indicator if mother married by when the child was 18 or younger,
first-born - indicator if child was the first-born, mom’s age at birth - mother’s age at
the birth of the child, # kids out of wedlock - number of children the mother had
before date of any marital transition.
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Table 2.20: Instrumental Vairable Results, HS Graduation by Age

Graduated from HS by age:
19 20 21 22

Explanatory Variables:
mom married up to age 10 0.162 0.100 0.155 0.062

(0.162) (0.148) (0.132) (0.128)
mom married after age 10 0.506*** 0.431** 0.377** 0.258*

(0.176) (0.183) (0.165) (0.156)
male -0.127*** -0.132*** -0.110*** -0.119****

(0.040) (0.036) (0.033) (0.033)
log of mom’s AFQT 0.054 0.070* 0.051 0.062*

(0.042) (0.039) (0.037) (0.036)
first-born 0.418 0.040 0.076 -0.065

(0.268) (0.246) (0.224) (0.221)
mom’s age at birth 0.030* 0.009 0.017 0.008

(0.017) (0.015) (0.013) (0.013)
# of kids out of wedlock 0.016 -0.010 -0.032 -0.033

(0.090) (0.086) (0.081) (0.082)
constant -0.752 -0.104 -0.043 0.196

(0.676) (0.642) (0.599) (0.614)

N 595 592 586 580

Each column represents GMM estimation results on indicator if child was a high school
graduate or obtained a GED by the age in the column heading. Standard errors are in
parentheses. Signifcant at: *** 1%, ** 5%, * 10%.
Instruments:

Esr4 - expected sex ratios from the model with covariance in shocks between men
and women of the same race for child ages 1 to 18, male - child’s gender, log of mom’s
AFQT score.
Endogenous variables:

mom married up to age 10 - indicator if entered first marriage before the child’s was
10, mom married after age 10 - indicator if entered first marriage when the child was
between 10 and 18, first-born - indicator if child was the first-born, mom’s age at birth
- mother’s age at the birth of the child, # kids out of wedlock - number of children the
mother had before date of any marital transition.
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Table 2.21: Instrumental Vairable Results, HS Graduation by Age

Graduated from HS by age:
19 20 21 22

Explanatory Variables:
mom married up to age 10 -0.092 0.037 0.035 0.060

(0.309) (0.274) (0.276) (0.227)
mom married after age 10 1.340 1.106 1.127 0.770

(0.905) (0.852) (0.828) (0.656)
male -0.192*** -0.174*** -0.152** -0.140***

(0.074) (0.064) (0.063) (0.051)
log of mom’s AFQT 0.135 0.106 0.111 0.087

(0.096) (0.078) (0.080) (0.062)
first-born -0.086 -0.158 -0.141 -0.064

(0.440) (0.388) (0.376) (0.319)
mom’s age at birth 0.005 0.001 0.005 0.014

(0.027) (0.022) (0.022) (0.018)
# of kids out of wedlock 0.023 -0.007 0.001 -0.009

(0.136) (0.108) (0.110) (0.089)
constant -0.900 -0.285 -0.496 -0.377

(1.139) (0.929) (0.955) (0.784)

State FE YES YES YES YES

N 531 528 522 516

Each column represents GMM estimation results on indicator if child was a high school
graduate or obtained a GED by the age in the column heading. Standard errors are in
parentheses. Signifcant at: *** 1%, ** 5%, * 10%.
Instruments:

Esr4 - expected sex ratios from the model with covariance in shocks between men
and women of the same race for child ages 1 to 18, male - child’s gender, log of mom’s
AFQT score, State fixed effects at child’s age 18.
Endogenous variables:

mom married up to age 10 - indicator if entered first marriage before the child’s
was 10, mom married after age 10 - indicator if entered first marriage when the child
was between 10 and 18, first-born - indicator if child was the first-born, mom’s age
at birth - mother’s age at the birth of the child, # kids out of wedlock - number of
children the mother had before date of any marital transition.
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Table 2.22: Instrumental Vairable Results, HS Graduation by Age

Graduated from HS by age:
19 20 21 22

Explanatory Variables:
mom married up to age 10 0.036 -0.043 0.054 0.058

(0.202) (0.202) (0.177) (0.158)
mom married after age 10 0.662** 0.615** 0.578** 0.405*

(0.274) (0.310) (0.275) (0.234)
male -0.146*** -0.150*** -0.126*** -0.123***

(0.050) (0.049) (0.044) (0.039)
log of mom’s AFQT 0.068 0.085 0.066 0.061

(0.058) (0.059) (0.053) (0.047)
first-born -0.011 -0.273 -0.168 -0.153

(0.298) (0.295) (0.270) (0.232)
mom’s age at birth 0.006 -0.009 0.003 0.004

(0.020) (0.020) (0.018) (0.015)
# of kids out of wedlock -0.037 -0.041 -0.053 -0.050

(0.102) (0.103) (0.097) (0.093)
constant -0.114 0.467 0.252 0.376

(0.812) (0.811) (0.734) (0.697)

Unemp Rates YES YES YES YES

N 566 563 562 556

Each column represents GMM estimation results on indicator if child was a high school
graduate or obtained a GED by the age in the column heading. Standard errors are in
parentheses. Signifcant at: *** 1%, ** 5%, * 10%.
Instruments:

Esr4 - expected sex ratios from the model with covariance in shocks between men
and women of the same race for child ages 1 to 18, male - child’s gender, log of mom’s
AFQT score, unemployment rates for all 18 years.
Endogenous variables:

mom married up to age 10 - indicator if entered first marriage before the child’s
was 10, mom married after age 10 - indicator if entered first marriage when the child
was between 10 and 18, first-born - indicator if child was the first-born, mom’s age at
birth - mother’s age at the birth of the child, # kids out of wedlock - number of children
the mother had before date of any marital transition.
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Table 2.23: Instrumental Vairable Results, HS Graduation by Age

Graduated from HS by age:
19 20 21 22

Explanatory Variables:
mom married up to age 10 -0.019 -0.081 0.064 -0.035

(0.192) (0.198) (0.181) (0.174)
mom married after age 10 0.458 0.474 0.490* 0.338

(0.282) (0.308) (0.272) (0.263)
male -0.155*** -0.155*** -0.126*** -0.135***

(0.041) (0.041) (0.037) (0.036)
log of mom’s AFQT 0.070* 0.072* 0.070* 0.071*

(0.042) (0.043) (0.040) (0.039)
first-born 0.175 -0.207 -0.100 -0.193

(0.312) (0.291) (0.276) (0.256)
mom’s age at birth 0.010 -0.014 -0.002 -0.009

(0.022) (0.020) (0.019) (0.018)
# of kids out of wedlock 0.001 -0.057 -0.029 -0.048

(0.091) (0.094) (0.088) (0.087)
constant -0.394 0.490 0.125 0.454

(0.827) (0.804) (0.755) (0.747)
Prison Rates YES YES YES YES

N 566 563 562 556

Each column represents GMM estimation results on indicator if child was a high school
graduate or obtained a GED by the age in the column heading. Standard errors are in
parentheses. Signifcant at: *** 1%, ** 5%, * 10%.
Instruments:

Esr4 - expected sex ratios from the model with covariance in shocks between men
and women of the same race for child ages 1 to 18, male - child’s gender, log of mom’s
AFQT score, Prison Rates - priosn rates for all 18 years.
Endogenous variables:

mom married up to age 10 - indicator if entered first marriage before the child’s
was 10, mom married after age 10 - indicator if entered first marriage when the child
was between 10 and 18, first-born - indicator if child was the first-born, mom’s age at
birth - mother’s age at the birth of the child, # kids out of wedlock - number of children
the mother had before date of any marital transition.
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Table 2.24: Instrumental Vairable Results, HS Graduation by Age

Graduated from HS by age:
19 20 21 22

Explanatory Variables:
mom married up to age 10 -0.116 0.003 0.072 0.102

(0.284) (0.288) (0.237) (0.194)
mom married after age 10 0.974 1.034 0.762 0.311

(0.713) (0.818) (0.677) (0.531)
male -0.189*** -0.185*** -0.149*** -0.135***

(0.061) (0.064) (0.053) (0.042)
log of mom’s AFQT 0.104 0.108 0.092 0.067

(0.090) (0.093) (0.076) (0.060)
first-born -0.029 -0.305 -0.203 -0.052

(0.412) (0.449) (0.374) (0.308)
mom’s age at birth 0.008 -0.011 0.000 0.016

(0.025) (0.026) (0.021) (0.018)
# of kids out of wedlock -0.015 -0.034 -0.038 -0.037

(0.128) (0.123) (0.100) (0.080)
constant -0.680 -0.219 -0.135 0.171

(1.207) (1.167) (0.944) (0.726)

State FE YES YES YES YES
Prison Rates YES YES YES YES

N 508 505 504 498

Each column represents GMM estimation results on indicator if child was a high school
graduate or obtained a GED by the age in the column heading. Standard errors are in
parentheses. Signifcant at: *** 1%, ** 5%, * 10%.
Instruments:

Esr4 - expected sex ratios from the model with covariance in shocks between men
and women of the same race for child ages 1 to 18, male - child’s gender, log of mom’s
AFQT score, State fixed effects at child’s age 18, Prison Rates - prison rates for all 18
years.
Endogenous variables:

mom married up to age 10 - indicator if entered first marriage before the child’s
was 10, mom married after age 10 - indicator if entered first marriage when the child
was between 10 and 18, first-born - indicator if child was the first-born, mom’s age at
birth - mother’s age at the birth of the child, # kids out of wedlock - number of children
the mother had before date of any marital transition.
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Figures

Figure 2.1: Number of Children by Mother’s HS Status
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Figure 2.2: Number of Children by Mother’s Marital Status
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Figure 2.3: Mother’s Age at 1st Birth by Marital Status

0
 

1
0

 

2
0

 

3
0

 

4
0

 

5
0

 

6
0

 

7
0

 

1
4

 o
r 

le
ss

 
1

5
 t

o
 1

9
   

2
0

 t
o

 2
4

   
2

5
 t

o
 2

9
   

3
0

 t
o

 3
4

   

% of Total 

A
ge

 a
t 

1
st

 b
ir

th
 

M
o

th
e

r'
s 

A
ge

 a
t 

1
st

 B
ir

th
 b

y 
M

ar
ri

ag
e

 S
ta

tu
s 

N
o

t 
M

ar
ri

ed
 

M
ar

ri
ed

 



117

Figure 2.4: Mother’s Age at 1st Birth by HS Status
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