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Abstract 

Brain Metastases are a serious complication for cancer patients, with incidence rates up to 40% for some 

primary cancers. Gamma Knife Radiosurgery (GKS) is a procedure that allows for precise targeting of 

radiation treatment within the brain without exposing untargeted locations to high levels of radiation. 

Currently, GKS treatment plans are developed by physicians based on an array of magnetic resonance 

imaging (MRI) including contrast-enhanced T1 images, T2 images, and in some cases diffusion and 

perfusion MRIs. Treatment plans are designed based on the human examination of the brain and 

identification of lesions. This process is susceptible to inter-observer variation, planning and targeting 

experience, and is limited in the ability to detect regions of new cancer growth. This work investigates 

novel machine learning algorithm applications to improve these processes. Specifically, we evaluate a 

transfer learning of image-based deep convolutional networks for the purpose of predicting brain 

metastases formation. The trained network demonstrated the ability to discriminate between healthy and 

pre-tumor tissue with up to 68% accuracy. Identified modifications and improvements may increase the 

predictive power of the algorithm and offer potential areas for future investigation. 
 

 

Keywords:   Brain Metastases, Gamma Knife Surgery (GKS), Machine Learning, MRI

Introduction 

Brain metastasis is a significant consideration and 

complication in developing cancer treatment plans. 

Estimates for the percentage of cancer patients who 

develop brain metastasis has been reported as ranging from 

20-40% depending on the type of data reviewed1. This 

range, however, likely understates the actual incidence 

rate. The majority of these estimates are based on sets of 

historical data in which metastasis may not have been 

accurately documented, especially in the case of discovery 

in terminally ill patients and asymptomatic metastasis2. 

Additionally, as identification and treatment of primary 

cancers continue to increase patient survival time, the 

incidence rates for brain metastasis also increase3. One of 

the main factors contributing to brain metastasis incidence 

is the histology of the primary cancer. Lung cancer is the 

most common primary cancer to develop brain metastasis 

with incidences up to 65%. Other high incidence cancers 

include breast cancer and melanoma4. Brain metastases 

contribute unique neurological clinical manifestations that 

can further decrease the quality of life of cancer patients. 

The most common presenting symptom for brain 

metastases is headaches (50%), followed by focal 

weakness (27%) and change in mental status (31%). 

Seizures are a less common presenting symptom (10%) but 

occur in a significant amount (40%) of patients over the 

course of the illness5. For some patients, neurological 

symptoms are so debilitating, that the brain metastases are 

identified by MRI before a primary cancer is discovered6. 

The prognosis for brain metastases is not favorable with a 

median survival of 3.4 months and a 2-year survival 

percentage of only 4%7. Lagerwaard et al. show that 

patient prognosis has a significant dependence on 

treatment method.  

 

Gamma Knife Radiosurgery (GKS) has become 

increasingly used to target the aforementioned metastases 

and is performed on approximately 35,000 patients a 

year8,9,10. Gamma knife utilizes cobalt 60 to create 201 

focused gamma rays which lesion the area of 

interest8.  GKS is noninvasive and has been found to have 
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an accuracy within than 3mm when focused on a single-

isocenter11,12. Treatment can be delivered within a single 

session with limited patient exposure to radiation, and 

complications from the treatment are uncommon13,14. 

These factors along with the treatments greater than 90% 

success rate for controlling tumor growth contribute to its 

large appeal as a treatment option8,14. GKS is an especially 

effective tool for the treatment of brain metastasis10 in 

which multiple recurring tumors are common. Clinically 

treatment plans are constructed using guidelines set forth 

by the Radiation Therapy Oncology group corresponding 

to conformation index and target coverage15. Conformation 

index is an indicator of how well the dose conforms to the 

shape of the tumor, while target coverage allows us to 

analyze the portion of the tumor covered by the dosage. 

Existing protocol states treatment plans should achieve a 

minimum of 80% target coverage and a conformity index 

of .8, with ideal values being above 95% and .9 

respectively16.  
 

Many applications of machine learning in the medical field 

are being heavily explored and show promising results. 

Within radiology, machine learning has been used to 

optimize assessment of tumor treatment areas and dosage 

calculations to prevent unnecessary patient exposure to 

radiation17. Machine learning has also been implemented 

in the automation of differentiation between benign and 

malignant breast cancer tumors using MRI data18. The 

model was able to differentiate with a sensitivity of 99.5% 

and recommended 9.6% fewer biopsies, indicating 

implementation would improve patient care. Additionally, 

machine learning has proved a useful tool in the study of 

proteomics, genomics, and drug delivery19,20,21.  Due to its 

prevalence and utility in the medical field, a machine 

learning approach was used in order to determine areas of 

interest to monitor for future tumor formation.  
 

Results 

Creating a Tumor Dataset 

Tumor Capturing Pipeline 

A pipeline was created that collects uniform images of 

locations in all the patient MR images that at some 

timepoint, throughout the time of care, contained a tumor. 

Figure 1 shows a graphical workflow of the pipeline. IN 

the first step, patient data is separated by its treatment 

index and labeled sequentially. The dataset consisted of 15 

patients of which nine had two treatments, three had three 

treatments, two had four treatments, and one had five 

treatments. In total the study consisted of 40 individual 

treatments. Within each treatment, the MRI positioning 

and size was standardized such that a specific pixel 

coordinate set corresponds to the same brain geometry 

across all treatments for a patient. To facilitate this, every 

treatment MRI was registered to a 1x1x1 mm reference 

MR.  

 

After the registration of the individual treatment MR 

images to the reference MR, the individual tumors present 

at the time of treatment were also registered to the 

reference MR. The registration of the tumors was carried 

out using a binary masking method based off the doses 

applied during the GKS treatment.  

 

With the registration of the treatment MR and all the 

tumors onto the reference complete, a uniformly sized 2D 

square image was captured at the tumor centroid for each 

tumor across all treatment reference MR images within 

each patient set. This allowed for the capture of brain 

tissue areas from treatment 1 MR images that were later 

shown to include tumors in treatment 2. Using this 

methodology, the pipeline identified areas of pretumor 

tissue, and developed a data set that would be used to train 

the network.  

 

Quality Control 

Tumor images underwent manual quality control by the 

team to check for two known cases that may corrupt the 

tumor image data. The first error occurred when the 

treatment MR images were not properly registered to the 

reference MR. This error resulted in images with obvious 

blurring or shifted brain geometry. Additionally, in some 

cases tumors were identified but deemed by the treatment 

planner no to undergo GKS at that particular time-point. In 

these cases, identifiable tumors are included in the dataset 

as unidentified pretumor areas. To mitigate the effect of 

these areas, both these sets of images were removed when 

they were discovered.  

Creating a Healthy Dataset 

The healthy image dataset was created utilizing the 

reference MR after the treatment MR and tumors were 

registered. The reference MR for each treatment within a 

single patient was overlaid representing every tumor the 

patient developed across all treatments. Uniformly sized 

2D square healthy images were pulled from the area of the 

brain across all treatments which had no registered tumors.  
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Preparing Images for Classification 

Before ingestion into the classification network the patient 

MR images need to move through a processing pipeline 

(Figure 2). First, 3D volumes are separated into 2D 

horizontal slices, the same orientation used for the training 

dataset.  

 

After the MRI is separated into individual slices, the brain 

tissue is isolated using a segmentation algorithm we 

developed. This algorithm works through a series of image 

processing operations to form a binary map of the brain 

tissue region, excluding surrounding air and skull data.  

 

 After segmentation, a sliding window algorithm was 

designed to capture uniform images of the brain similar to 

those captured for the training dataset. These individual 

images are entered into the network for classification. 

Designing a Classification Network 

A supervised transfer learning approach was utilized to 

create our classification algorithm. The existing network 

that was adapted for this work was AlexNet22. AlexNet 

was chosen because it has shown to be a successful 

architecture for classification in brain MRI studies23,24. The 

final two layers of the network architecture were replaced 

such that the network outputs a binary classification, 

“tumor” or “healthy.” A random 90/10% jackknife method 

was used to designate training and testing data.  

Fig. 1. Workflow for Tumor Training data Pipeline. Workflow shows the steps in processing the raw MRI data into uniform 

images of tumor tissue for the training dataset.  
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Classifier Performance 

Over a set of 20 training runs, the accuracy of the classifier 

ranged from 58-68% with an average of 64%. For these 

tests, the network was tested with equal amounts of 

“tumor” and “healthy” data such that an accuracy of 50% 

would indicate zero predictive power, similar to flipping a 

coin. The output from one of these trainings is displayed in 

figure 3. In the figure, the blue line indicates the accuracy 

of the training data over the duration of training while the 

black dots indicate the validation accuracy over the 

duration of the training. The validation data is randomly 

pulled from training dataset every three training cycles, 

representing how the algorithm would perform on the 

whole set of data at any given time. The variation in 

accuracy comes from the random jackknife of training and 

testing data. With a relatively small sample of tumor and 

healthy images, the random variation in the images 

selected to train the network can cause considerable 

differences in the final accuracy. The difference between 

the training and validation curves represent overfitting. 

Overfitting occurs when the network is identifying 

distinguishable features of the training images that do not 

hold true for the validation, or testing, data. This 

overfitting may also be a function of the limited dataset 

and the variation created by randomly selecting training 

data from it.  

 

Discussion 

Implications and Significance 

The innovation behind the algorithm design is driven by 

the assertion that early identification expands treatment 

options, thereby potentially increasing long term 

survivability and standard of living. There is a large body 

of prior research attempting to predict brain metastases 

incidence based on genomic, clinical, and biological 

markers25. The major difference in the aim of these papers 

compared to this approach is incidence versus location. 

Specifically, this study sought to identify where future 

brain metastases will grow based on the image data from 

MRI, regardless of whether or not prior metastatic brain 

tumors have been identified. Additionally, since the 

approach is purely based on image information, it is 

independent of the histology of the primary cancer, which 

is unknown in some patients. This capability would be 

very beneficial for patients who have multiple recurrent 

brain metastases and are currently required to undergo 

consistent MRI appointments followed by GKS. 

Identifying, and potentially treating, cancerous locations in 

the brain before a tumor is visually present may increase 

patient survivability, as well as save patient and hospital 

resources. Additionally, for patients with primary cancers 

associated with high incident rates of brain metastases, 

such as lung and breast cancer26, this capability may prove 

especially useful. In this instance the algorithm could be 

used as a preventative tool to identify pretumor locations. 

This would allow physicians to locate tumors prior to the 

presentation of the associated neurological symptoms that 

can significantly decrease quality of life. While the results 

did not represent especially high predictive power, they do 

represent evidence that machine learning approaches may 

be able to detect brain metastases formation from imaging 

data before the tumors are discernable to the trained eye.  

Fig. 2. Workflow of the Classification Algorithm. Workflow 
shows the steps in the classification algorithm. Major steps 
include 2D separation, brain segmentation, uniform image 
capture, and injection into the neural network. The 

convolutional neural network uses the AlexNet architecture. 
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Further work 

There are multiple potential avenues for future 

investigation stemming from the work presented in this 

paper. A portion of the opportunities for future work arise 

from sources of error in our methodology. First, a new 

source could be identified for the “healthy” training data. 

In this study, healthy tissue was extracted from the patient 

dataset and defined as any area in which no tumors were 

observed across any treatment for that particular patient. 

This method is inherently flawed because the hypothesis 

assumes that tumors are constantly forming in the brain, so 

even though there was no tumor in a specific location at 

the time that patient care ended, this does not mean that a 

tumor was not going to form there in the future. Due to 

this, further investigation that uses a separate and unique 

source for T1-weighted MRI data may provide better 

results. Potential sources that we looked into include MRI 

data captured for use in cognition and psychology studies 

which evaluated test subjects with no known brain 

pathology. Additionally, further improvement of the 

algorithm could be achieved through quality control of the 

treatment MR and tumor registration algorithm. As 

described in the results, there were multiple incidences of 

poor registration that required manual correction. This 

manual correction had downstream ramifications in that 

this area was now not being counted as “tumor” and was 

potentially being captured in “healthy” images.   

 

Further work was also identified that could expand upon 

the findings. Primarily, acquiring a significantly larger set 

of training data would likely provide more consistency to 

the results. Using larger datasets, in which a single image 

of small set of images will not significantly skew the 

learning of the network, may result in less variation in the 

accuracy and less overfitting. Another potential expansion 

on the work would be implementing the methods described 

with other CNN architectures. AlexNet is a popular choice 

within diagnostic imaging, but other architectures may 

provide advantages in accuracy for this problem set. 

Finally, evaluating the impact of edge images on the 

network may prove useful in increasing the accuracy of the 

algorithm. These images capture the edge of the brain 

tissue and inherently some of the empty space around the 

brain. This is a result of the removal of the skull and air 

data that occurs in the image processing segmentation 

algorithm. With deep learning networks it is difficult to 

pinpoint what features about the images the network is 

using to guide its learning, and we want to minimize the 

potential for features not relevant to our question to 

influence the classifier.   
 

CNN Training Progress 

Fig. 3. Example of Convolutional Neural Network Training Progress. This is representative of the shape of all the training 
iterations completed in MATLAB. The dark blue line is a smoothed curve showing the accuracy of the training data. The black dots 
are the validation accuracy which occurred every third iteration. 
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Materials and Methods 

Patient MRI Collection 

Patient MRI data was collected from 15 patients who were 
treated at the University of Virginia Gamma Knife Center. 
All MR images used in this design were T1-weighted 
images. A single patient set was used as a validation set 
while designing the registration, segmentation, and 
network algorithms. This dataset was appropriately 
stripped of all identifying information and included 
randomized noise to anonymize the image data. The full 
set of MRI data used for training and testing were 
anonymized using a naming system developed by the 
team that referenced the patient number (1-15), the 
treatment number, and the tumor number. With 
consultation from the IRB the final dataset has been 
deemed a “Limited Dataset,” which does not require 
HIPAA authorization or waiver and is intended only for 
research purposes.  

 

Registration of MR to Reference 

Every MR image was registered to a reference MR in 
MATLAB. First, a three-component registration scaling 
factor (rs) was calculated, according to equation 1, in 
which mrx, mry, and mrz correspond to the size of the MR 

𝑟𝑠 = [
1

𝑚𝑟𝑥
,
1

𝑚𝑟𝑦
,
1

𝑚𝑟𝑧
] 

 

[1] 

image in each dimension. The numerator 1 comes from 
the size of the reference MR which is 1 mm x 1 mm x 
1mm. This was then used to resize the 3D volume 
according to the dimension specific value. A one plus one 
evolutionary optimizer was then calculated for the 
registration operation. The algorithm works by iterating 
through a set of perturbations to find an optimized set of 
registration parameters27. A Mattes mutual information 
algorithm was then used to find the configuration metric for 
the image registration. The Mattes algorithm uses a single 
set of pixel locations to compute probability estimates and 
uncertainty, or entropy, of similarity between two images28. 
Next, a geometric transformation was estimated for the 
registration using the calculated optimizer and 
configuration metric. The geometric transformation is an 
object that maps the MR to the reference MR. Finally, an 
inverse mapping algorithm was used to complete the 
registration of the MR onto the reference MR using the 
geometric transformation object.   

 

Registration of Tumors to Reference 

For each MR, the tumor dosages were registered to a 
reference MR in MATLAB. First, a three-component 
registration scaling factor (rs) was calculated according to 
equation 1. Next, a dose mask was created by extracting 
the volume dimensions for each of the resized tumors. A 
one plus one evolutionary optimizer was then calculated 
for the registration operation. The algorithm works by 
iterating through a set of perturbations to find an optimized 
set of registration parameters27. A Mattes mutual 
information algorithm was then used to find the 
configuration metric for the image registration. The Mattes 

algorithm uses a single set of pixel locations to compute 
probability estimates and uncertainty, or entropy, of 
similarity between two images28. Next, a geometric 
transformation was estimated for the registration using the 
calculated optimizer and configuration metric. The 
geometric transformation is an object that maps the dose 
mask to the reference MR. Finally, an inverse mapping 
algorithm was used to complete the registration of the 
dose mask onto the reference MR using the geometric 
transformation object.  

 

Collecting Tumor Images 

Compilation of the tumor image data was completed in 
MATLAB. After all the tumors for a single patient were 
registered onto the reference MR, the area around the 
tumor was captured for all previous time points. The tumor 
dataset contained 127 images. 

 

Collecting Healthy Images 

Compilation of the healthy image data was completed in 
MATLAB. After all the tumors for a single patient were 
registered onto the reference, the sets of continuous area 
without a tumor were selected as healthy regions. Within 
these regions, every complete square image that was 
possible within the healthy region was captured. The 
healthy dataset contained 467 images.  

 

Segmentation Algorithm 

Normalization 

MR images were normalized in MATLAB. All pixel values 
were scaled from 0 to 1, such that any value greater than 
the average of the top 80% of pixel values was equal to 1. 
This method was chosen to limit the influence of extremely 
high pixel values on normalization.  

 

Thresholding 

MR images underwent thresholding in MATLAB to target 
the unwanted air and bone. Intensity values for air and 
bone were experimentally chosen to be values below 0.15 
and above 0.42, respectively. Any pixels in either of these 
ranges were set to 0. Pixels between 0.15 and 0.42 were 
all set to 100.  

 

Binary Erosion 

MR images were eroded in MATLAB to disconnect the 
brain tissue from the surrounding bone. Binary erosion is a 
set operation where an image A is eroded by B, denoted A 
ɵ B, in a location z according to equation 2.  

𝐴𝜃𝐵 = {𝑧|𝐵𝑧 ⊆ 𝐴} [2] 

The erosion factor B, is an unweighted 10-by-10 square 
matrix. 

 

Region Isolation 

Region isolation was performed on eroded MR images in 
MATLAB. First, all image pixels were scanned and labels 
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were assigned to nonzero pixels and recorded in a union-
find matrix. Then equivalence classes were resolved using 
the union-find algorithm29. This algorithm treats the union-
find matrix like a graph and finds all the sets of nodes with 
continuous edges. Finally, all pixels were relabeled based 
on their resolved equivalence classes. The pixel locations 
for the largest continuous area set, presumed to be brain 
tissue, were set to 1, while all other pixels were set to 0. 
The resulting matrix was a binary map of the isolated 
eroded brain tissue.  

 

Binary Dilation 

The brain tissue binary map was dilated in MATLAB to 
recover the edges that were lost in the erosion process. 
Binary dilation of A by B is denoted 𝐴⊕ 𝐵 according to 
equation 3, in which �̂� is the reflection of the 

𝐴⊕ 𝐵 = {𝑧|(�̂�)
𝑧
∩ 𝐴 ≠ ∅} [3] 

 structuring element B, and z is the set of pixel locations. 
The dilation factor B, is an unweighted 10-by-10 square 
matrix. 

 
Image Fill 

The brain tissue binary map was filled to recover any 
internal information loss in MATLAB. Image filling was 
completed using a morphological reconstruction 
algorithm30.  

 

Convolutional Neural Network 

Convolutional neural network (CNN) design, training, and 
testing was completed in MATLAB. The set of ‘Tumor’ and 
‘Healthy’ images were each split into training and testing 
sets using a random 90/10 jackknife method. The transfer 
learning approach utilized the architecture from AlexNet22. 
All images were resized to the necessary 227x227 pixel 
input size for AlexNet, since the images were already 
square, no proportionality was disrupted. The final fully 
connected layer and classification layers were manually 
replaced for binary classification. The training was done 
over 20 epochs with validation from the testing set data  

 

Solver Optimizers 

Three separate optimizers were tested to maximize the 
performance of the algorithm: stochastic gradient descent 
(SGD), is root mean square propagation (RMSProp), and 
adaptive moment estimation (Adam). For all three 
optimizers, an initial learning rate of 0.001 was used. 

 

Stochastic Gradient Descent 

SGD updates network parameters by taking small steps in 
the direction of the negative gradient of loss according to 
equation 4, where l is the  

𝜃𝑙+1 = 𝜃𝑙 − 𝑎𝛻𝐸(𝜃𝑙) [4] 

iteration number α is the learning rate, θ is the parameter 
vector, and E(θ) is the loss function. 

 

Root Mean Square Propagation 

RMSProp differs from SGD in that it allows learning rates 
that vary by parameter according to equation 5. In the 
equation, β2 is the decay rate of 

𝑣𝑙 = 𝛽2𝑣𝑙−1 + (1 − 𝛽2)[𝛻𝐸(𝜃𝑙)]
2 [5] 

 the added moving average. 

 

Adaptive Moment Estimation 

Adam is similar to RMSProp but adds a momentum term 
according to equation 6. In the equation, β1 is a separate 
decay rate specific to the 

𝑚𝑙 = 𝛽1𝑚𝑙−1 + (1 − 𝛽1)𝛻𝐸(𝜃𝑙) [6] 

 new momentum term.  

End Matter 
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