Enabling External Physical Type Annotations for Physically
Relevant C++ Code Segments

A Technical Report
presented to the faculty of the
School of Engineering and Applied Science
University of Virginia

by

Charlie Houghton

May 6, 2021

On my honor as a University student, I have neither given nor received unauthorized aid
on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Charlie Houghton

Technical advisor: Kevin J. Sullivan, Department of Computer Science

Enabling External Physical Type Annotations for
Physically Relevant C++ Code Segments

Charlie Houghton
School of Engineering and Applied Science
University of Virginia
Charlottesville, Virginia, USA
choughton@virginia.edu

Abstract—Cyber-physical systems, such as autonomous vehi-
cles and aerospace guidance, interface software with the physical
world. Software errors can lead to expensive and catastrophic
failures, so it is valuable to formally verify software correctness.
Physical semantic errors occur when data representing physical
phenomena are used in operations in ways that are not physically
meaningful, e.g., by adding numbers that represent quantities
that, in the physical world, cannot be added. How can cyber-
physical systems engineers discover physical semantic errors in
their programs? We developed a Visual Studio Code extension
that embeds additional type information into physically relevant
segments of C++ code and checks for physical semantic errors
for time operations.

Index Terms—cyber-physical systems, physical semantics, vi-
sual studio code

I. INTRODUCTION

Cyber-physical systems (CPSs) interact with the physical
world, but they are not necessarily constrained by the physical
domain in which they operate. For example, suppose a CPS
program erroneously adds 2 seconds and 3 years together and
comes up with an answer of 5. In a CPS program devoid
of physical meaning, this would be a computable and valid
operation, however, when the intended physical meanings
of the arguments, 2 and 3, are considered, this operation
becomes physically non-sensical, as the real result is neither 5
seconds nor 5 years. Any operation where a CPS performs
a machine-computable but physically incorrect operation is
called a physical semantic error. “Major systems malfunctions
have occurred due to the machine-permitted evaluation of
expressions that have no well defined physical meanings,” [1]
one such example being NASA’s 1999 Mars Climate Orbiter
which was unsuccessful due to a failure to “convert from
English to metric” before launch [2].

The aim of UVa’s Peirce Project, led by professors Kevin
Sullivan and Sebastian Elbaum, is to avert such errors by
annotating CPS code with formal specifications of intended
meanings of code elements. My project sought to build
an interactive integrated software development environment
(IDE) extension for the Peirce Project to provide an improved
workflow for the software engineer who needs to annotate code
and understand the results of annotation-enabled semantic
analysis of CPS code.

Peirce detects physical semantic errors in C++ code and
is used as the core back-end tool for this project. We built

a Visual Studio Code (VSCode) extension that allows CPS
engineers to annotate physically relevant code segments with
appropriate physical types, and will indicate which code seg-
ments contain physical semantic errors, as identified by Peirce.
Peirce itself is a command-line tool that compiles C++ code,
generates an abstract syntax tree (AST), identifies which AST
nodes are physically relevant, and asks an oracle to provide a
physical interpretation for each node. Currently, the oracle is
the engineer him or herself.

Before the completion of this project, CPS engineers
could only interact with Peirce directly using a rudimentary
command-line interaction. This approach has some drawbacks.
An engineer first needs to identify which code segment they
wish to annotate, which involves matching code coordinates
(i.e. the starting and ending row and column indices) given
by Peirce with their code. This process is slow and can
grow frustrating for large code bases. An IDE extension that
integrates Peirce with the code to-be-annotated streamlines the
process of identifying physically relevant segments, providing
additional type information, and alerting the engineer of an
error. Second, analysis results from Peirce are provided only
in the form of plain text error outputs. It would be better
if the processes of annotating code and understanding Peirce
feedback were gracefully integrated into the IDE used for
ordinary software development.

The usability of Peirce impacts the likelihood that it will
adopted by CPS engineers. Peirce will only help engineers
find physical type errors if it easy to use. This project seeks
to lower the barrier to entry, allowing engineers to more easily
justify using Peirce for their projects.

II. RELATED WORK

Physical semantic errors encompass more than just unit
inconsistencies. Among other tools, Microsoft’s programming
language F# has a system called “Units of Measure” that
detects unit inconsistencies [3]. To explain why detecting unit
inconsistencies is insufficient, a notion of an affine frame is
necessary. An affine frame is a pairing of an origin point and
basis vectors, which can be used to create a space, relative to
which other points and vectors can be defined. Tools like F#
can catch mixed-unit operations, but Peirce can catch mixed-
frame operations, even if the units attached to those frames
were to be the same.

In December 2019, NASA launched Boeing’s CST-100
Starliner spacecraft that planned to dock with the International
Space Station but failed due to a misconfigured clock, resulting
in the Starliner’s autonomous instructions being offset by 11
hours [4]. What occurred was precisely a physical semantic
error due to both CPSs performing operations in different
affine frames, as their time origin points differed. This incident
highlights why same-frame verification is a more complete
model for judging CPS correctness than only same-unit veri-
fication.

As currently used by Peirce, affine frames only exist to
define affine coordinate spaces. For this reason, we have
combined the notion of affine frames and affine coordinate
spaces, which we refer to as coordinate spaces. Coordinate
spaces must be defined with respect to another coordinate
space, but what happens when none are defined? A notion of
a standard frame is required. The standard frame acts as back-
stop for the definition of all coordinate spaces. If a coordinate
space is defined without a parent space (implicitly containing a
frame), it is assumed to be defined with respect to the standard
frame.

III. BACKGROUND

This project is constrained by the Peirce system, so it is
important to understand Peirce’s operations and interaction
model. Peirce operates in two phases. The first phase is
identification, in which Peirce identifies physically relevant
AST nodes and their corresponding code segments for a
given C++ file. For clarity and consistency, all mentioned
code segments are assumed to be physically relevant unless
indicated otherwise for the remainder of this paper.

The second phase is annotation, in which the user creates
new coordinate spaces and annotates each code segment with
a coordinate space and value. Values correspond with literals
in the C++ file. Consider the following example:

float time_in_seconds = 0;

After Peirce has identified the literal 0 as physically rele-
vant, it could be annotated with a seconds coordinate space
and with a value of 0.

Following annotation, Peirce will output known physical
interpretations. Peirce can infer other physical interpretations
based on interpretations previously given. If Peirce identifies,
either directly or by inference, that there is a type mismatch,
Peirce will alert the user. Consider the following example:

float time_in_seconds = 2;
float time_in_years = 3;
float total =
time_in_seconds + time_in_years;

The following code would compile and the evaluation of the
addition would yield 5, but it would have no physical meaning
because of the implicit units mismatch. In other words, this
error would go uncaught. However, if the literals are annotated
with a seconds space and a years space (defined as a derived
space relative to the seconds space), respectively, Peirce would

identify a type error in the addition operation, as the values
are now marked as being expressed in the coordinate systems
of different coordinate spaces. This information can either be
used to correct annotations or indicate to the engineer that a
code revision is necessary.

IV. SYSTEM DESIGN

Recall the two phases of Peirce: identification and annota-
tion. How can we use an IDE extension to identify and allow
the annotation of code segments, and forward that provided
information to Peirce? We split this task into two parts:
the VSCode extension, and the API that interfaces with the
extension and Peirce. With this design, all extension actions
are asynchronous, allowing the user to continue working
(e.g., programming) while Peirce operates in the background,
only displaying information when finished. The API offloads
Peirce runtime dependencies and processing time to a server.
Furthermore, using an IDE extension allows for more seamless
integration with existing development workflows, no longer
requiring the user to navigate away from their IDE to use
Peirce.

A. The Extension

The extension maintains a collection of coordinate spaces,
code segments, and annotation information for each segment.
Code segments and their corresponding annotations are stored
in what we’ll refer to as the interpretation table. All in-
formation managed by the extension is external and code
independent. We will discuss this decision in a later section.

Before a user can begin to annotate code, the interpretation
table must be populated with unannotated code segments,
otherwise there is nothing to annotate. This corresponds to
Peirce’s identification phase, reached through the populate
API endpoint. Once populated, a user will be notified of all
identified code segments via code highlighting and various
information widgets. A user can subsequently provide anno-
tations, stepping through each code segment choosing either
to annotate it or not. At any time, the user can choose to
check whether their annotated interpretations have caused any
physical semantic errors via the check API endpoint. This
will not only inform the user of errors, but will also infer
interpretations for other unannotated code segments.

B. The API

The API supports two endpoints, populate and check, in-
troduced in the previous section. Populate runs Peirce on the
provided file sent as part of the request and responds with
the extracted code coordinates, which the extension uses to
populate the interpretation table with unannotated code seg-
ments. Check runs Peirce in the same way but also does input
generation. The input generation system takes the coordinate
spaces and annotations and generates a sequence of inputs to
the Peirce program such that, when given to Peirce, Peirce un-
derstands interpretations equivalent to those understood in the
extension. The inferred and erroneous interpretations are sent
back to the extension, allowing it to update the interpretation
table to reflect that information accordingly.

C. External vs. In-Code Annotations

We chose to store annotations externally, via the interpreta-
tion table, rather than storing them within the code, perhaps
embedded within C++ comments. External annotations have
a number of advantages and drawbacks compared to the in-
code alternative. A primary advantage was that the extension
could be used without making any changes to existing code.
The biggest drawback of external annotations is that, if the
underlying code is altered after being annotated, attempting
to reconcile existing annotations is difficult. This meant that
annotations must be cleared before continuing to annotate.
This places a lot of importance on getting the code correct
first, then verifying physical correctness. This decision favors
established codebases that are changed infrequently. This was
a priority for the Peirce Project as a whole, and the decision to
implement external annotations is an extension of that priority.

D. The Extension Interface

Fig. 1. A screenshot of the VSCode extension on a C++ file. The interpretation
table has been populated and checked and physical type errors are displayed.

This screenshot of the VSCode extension shows all of the
major tools and features including the information widgets on
the left-side and right-side panels and the input system at the
top. The line currently being annotated is boxed in purple. The
annotation input system is highlighted in light blue. The panel
on the right is the Peirce Infoview, displaying JSON objects
representing the annotations for all code segments on the
line being annotated. The second JSON object is highlighted
in green, indicating that it is being actively edited. The
interpretation table is on the left panel showing interpretation
information for every code segment. An example of a physical
semantic error in the interpretation table identified by Peirce
is boxed in red, the interpretation table entry for ”Checked
Interpretation” reads “Error Detected.”

V. RESULTS

The extension integrated Peirce with an IDE, simplifying
and centralizing its interaction model. A developer can more

quickly and accurately annotate their CPS code for physical
type errors, all without requiring extra dependencies or extra
resources, while remaining in their development environment.
We saw the extension saved the most amount of time when
identifying code segments. Previously, users needed to manu-
ally match code coordinates with code segments. Now, iden-
tification is done with VSCode highlighting via the extension.

We found that the process of supplying annotations via the
extension was not accelerated significantly compared to using
Peirce directly. The information required for Peirce to operate
is the same, whichever front-end is being used, so a large
change in time cost was not anticipated. In some cases, the
annotation process was less clear than when using the CLI.
Decreasing annotation time remains an outstanding challenge
for the Peirce Project.

VI. CONCLUSION

We designed and built a VSCode extension for Peirce
to enable external physical type annotations for C++ code
segments. The extension removes some otherwise necessary
installation and resource requirements for Peirce, as Peirce has
been offloaded to a server interacted with via an HTTP APL
The extension is functionally equivalent to Peirce’s CLI front-
end, capturing physical type information and forwarding errors
to the user. For some actions, the extension is measurably more
efficient compared to the CLI, but for others, less. With future
enhancements, we hope the extension will be the primary
system engineers use to interact with Peirce.

VII. FUTURE WORK

A. Information Presentation and Highlight Errors

Currently, the VSCode extension uses a combination of
information widgets and user input widgets. Annotation in-
formation and type errors, while presented to the user via a
number of these widgets, are not quickly understood. Further-
more, because there are a large number of physically relevant
code segments for a given CPS program and the interface
does not scale well for large files. Further modifications to the
information presentation parts of the extension are necessary
before the extension can be widely adopted.

Due to an existing issue with Peirce, some code coordinates
are incorrect, as can be seen in figure 1.

B. Supplying Physical Type Information and the Oracle

The process of supplying annotations has not been sim-
plified or made significantly faster with this extension and
this continues to pose a large time cost to developers that
wish to use Peirce. Front-end changes can be implemented
in the future to provide some kind of progress information
as the user steps through supplying physical type information.
Additionally, the oracle that is used to supply this information
is currently the developer or engineer him or herself. Changes
to the oracle have been proposed and any future oracle
modifications would need to be supported by the extension.

C. Optimizations and Parallel Processing

API calls to Peirce’s inference tool has approximately a
30 second time cost per call even using the small files and
annotation sets explored in this initial prototyping project.
It would be longer for more complex files and annotation
sets. For an interactive extension, this delay is significant and
problematic. While this inference delay problem is not within
the scope of the extension, it does effect its usability. Peirce
optimizations act as extension optimizations, so we anticipate
improvements in usability as Peirce itself is improved over
time.

Currently, the API only handles a single request at a time.
This is because some Peirce communication is done through
the file system with specific file names. Peirce was designed
as a single-user tool, so some modifications will be required
to allow multiple Peirce processes to run concurrently.

ACKNOWLEDGMENT

The author would like to thank Prof. Kevin Sullivan,
Andrew Elsey, Ben Ascoli, and Charlie Conneen for their
guidance and feedback for the extension and for their technical
and conceptual assistance with the Peirce Project.

REFERENCES

[1] K. Sullivan. (2019) Explicating and exploiting the physical semantics of
code. [Online]. Available: https://www.nsf.gov/awardsearch/showAward?
AWD_ID=1909414

[2] R. Hotz. (1999) Mars probe lost due to simple math
error. [Online]. Available: https://www.latimes.com/archives/
la-xpm-1999-oct-01-mn- 17288-story.html

[3] Microsoft. (2020) Units of measure. [Online]. Available: https://docs.
microsoft.com/en-us/dotnet/fsharp/language-reference/units- of-measure

[4] K. Chang. (2020) Boeing starliner lands in new mexico after clock
error prompts early return. [Online]. Available: https://www.nytimes.
com/2019/12/22/science/boeing-starliner-landing.html

