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Abstract

The Fermilab E989 Muon g-2 experiment’s goal is to measure the anomalous mag-

netic dipole moment of the muon, aµ with a precision of 140 ppb to test the prediction

of aµ in the Standard Model (SM) of subatomic physics. The Brookhaven National

Laboratory (BNL) experiment E821, the most recent previous muon g-2 measure-

ment, produced a result in 2005 with a precision of 0.54 ppm, that differed by 3.5 to

3.7 σ from the SM prediction. After more than 10 years, Fermilab E989 continued

the BNL measurement, taking the first physics data in 2018. At the time of this

writing, Run 6 is ongoing and measurements of Runs 1 through Run 5 are com-

pleted. The targeted 4-fold improvement in precision would yield an above 5 sigma

tension assuming the central values don’t change, opening the possibility of discovery

of physics beyond the Standard Model.

To reach the goal of 140 ppb, E989 aims for 100 ppb statistical and 100 ppb

systematical uncertainties. In order to measure aµ, there are two major observables

needed: ωa, the anomalous precession frequency, and ω̃1p, the average magnetic field

weighted by the muon distribution around the 14-meter diameter storage ring, de-

termined at a 70 ppb level. The field is precisely mapped using a field mapper, which

carries 17 NMR probes, running around the muon storage region every 2 or 3 days.

Calibration of these 17 NMR probes to the absolute probe, in-situ water-based cal-

ibration probe, is crucial for accurate measurements. The field’s drift between the

field maps is tracked using 378 NMR probes installed at fixed positions around the

iii



outside of the muon storage ring. The result of the Run 1 dataset was published in

April 2021 and agreed with the BNL experiment. Analysis of Run 2 and 3 data is

nearing completion as of this writing. This dissertation discusses the experiment, and

detailed methods applied in evaluating the systematic uncertainties for the magnetic

field measurement with a focus on Run 2 and 3.
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1

Introduction

Precision measurements of the subatomic particles have been used to test the Stan-

dard Model (SM) of particle physics for many decades. In particular, precision pre-

diction from a theory that can be tested experimentally provide the opportunity to

test the SM. The g-factor of fundamental particles is such an opportunity. The g-

factor of the spin-1{2 particle, g, is the quantity connecting spin, ~s, to its magnetic

moment, ~µ. ~µ connecting to ~s is expressed as [1]:

~µ “ g
q

2m
~s, (1.1)

where q is a charge of a particle and m is a mass of a particle. In particle physics,

the Dirac equation is a relativistic wave equation derived by Paul Dirac in 1928. It

describes all spin-1{2 massive particles, called Dirac particles. In the Dirac equa-

tion, the g-factor of Dirac particles equals 2. However, the g-factor of the particles is

slightly larger than 2 because there are other contributions to modifying the g-factor

such as QED, weak, hadronic, and more. In the beginning, physicists used electrons

to measure the g-factor, and the first result was published by P. Kusch and H. M.

Foley in 1948 [2]. The measurements have been continued and in the late 1900s,
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the magnetic moment of the electron was again measured as a test of the SM and

quantum electrodynamics (QED). Two electron g-2 measurements were conducted in

2006[3] and 2008[4]. The latest g-2 electron measurement[5] is published in 2023 and

the precision of the new measurement is 0.13 ppt. The experimental outcome and

QED theory calculation were in good agreement. Thus, there was no significant dis-

crepancy in electron g-2 between experimental and theoretical, therefore, physicists

tried to measure the g-2 value of other particles besides the electron.

Muons were discovered in 1936. Muons are 206.78 times heavier than an electron

(mµ “ 207 meq and have the same properties as electrons for charge and interactions

in SM. Muon’s mean lifetime is about 2.2 µs and this long lifetime allows us to prepare

beams of muons and store them which is important to get better statistics and one

of the main key ingredients for precision measurement of aµ. In addition, the parity

violation in weak decay is also important. The anomalous magnetic momentum is

defined as

a “
g ´ 2

2
. (1.2)

The SM prediction of aµ, the anomalous muon magnetic moment, is determined

from the sum of the contributions, such as QED[6], electroweak (EW)[7], the hadronic

vacuum polarization (HVP)[7], and other hadronic contributions (more detail expla-

nation in Chapter 2). QED is the leading order contribution to aµ.

The first muon g-2 experiment at CERN in 1965 was mainly motivated to test

QED. The experiment used non-relativistic muons drifting in a magnetic gradient.

Then, forward- backward decay asymmetry was measured. CERN 1 measured aµ

with a precision of 4200 ppm in 1962 [8]. CERN II used relativistic muons and was

the first muon g-2 experiment that used a storage ring, thus aµ was directly measured.

The CERN II measured aµ with a precision of 270 ppm [9]. CERN III used electric
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quadrupoles for vertical focusing, allowing a more uniform magnetic field. Electric

quadrupoles will be explained in detail in Section 3.3.3. CERN III also improved

to use the pion injection into the ring instead of proton injections to reduce the

background signal and noise in the detectors. CERN III aµ was measured with a

precision of 7.3 ppm [10].

After CERN I, II, and III, the E281 was planned at Brookhaven National Lab-

oratory (BNL) in the late 1900s. At BNL, the magnetic field was set to 1.45 T and

the NMR probes were used for field measurements to map and track the field. NMR

probes are discussed in more detail in Chapter 5. Not only did the field and field

measurements been improved, but also many parts of the experiment such as the

electric quadrupoles system and collimators system had been improved during this

time. The BNL experiment result was published in 2006 with a precision of 0.54 ppm

[11], which was a 3.5 to 3.7 σ discrepancy between the experiment and theory.

The experiment was continued at Fermilab 10 years after the BNL experiment

ended. The new muon g-2 experiment at Fermilab, E989, aims for a four-fold re-

duction in the uncertainty, with equal systematic and statistical errors, to a total

precision of 0.14 ppm. More experimental parts of the E989 will be introduced in

Chapter 3. The first physics data, Run 1, was taken in 2018 and published in 2021

[12] with a precision of 0.46 ppm. Fig 1.1 shows the result of the first experimental

run, which shows that 4.2 standard deviation discrepancy between the theoretical

and experimental values. This result confirmed the BNL experimental results after

20 years. Table 1.1 shows the summary of results of aµ in different experiments from

CERN I to Fermilab.

Focusing on the field measurement experienced by muons, ω̃1p, the core topic of this

dissertation, the Run-1 systematic uncertainties of ω̃1p is 114 ppb which exceeds the 70

ppb error budget allocated to the field analysis for the experiment. The detailed field

measurement errors for Run 1 is shown in Table 1.3. The electrostatic quadrupoles
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Figure 1.1: The result of the muon g-2 experiment first experimental run [13].

Table 1.1: Results of aµ from various experiments up to today [14]. γµ is the momen-
tum of the muon.

Experiment Magnet Injection γµ δaµ{aµ
CERN I (1965) Long dipole magnet, B = 1.6 T µ 1 0.4%
CERN II (1974) r = 2.5 m storage ring, B=1.71 T p 12 270 ppm
CERN III (1978) r = 7.1 m storage ring, B=1.47 T π 29.3 7.3 ppm
BNL (2006) r = 7.1 m storage ring, B=1.45 T µ 29.3 0.54 ppm
FNAL Run 1 (2021) r = 7.1 m storage ring, B=1.45 T µ 29.3 0.46 ppm

(ESQ) transient dominates the error which is 92 ppb. However, Run 1 is only 6%

of the data so there is no expectation for the Run 1 result to meet 70 ppb. The

collaboration is still on track to achieve the systematic goal of 70 ppb for the final

result of the full statistics of data.

There were many improvements beyond Run 1 in reducing the uncertainty to

achieve the error budget. For the field measurement, there were mainly three parts

that have improved: the in-situ calibration of the field mapper (Section 7.2), the pre-

cision frequency extraction from NMR-based magnetic field monitoring (Chapter 5),

and the magnetic field tracking between field maps. For the calibration, automatic

scripts were implemented to reduce human error and increase the precision of the

measurements. With automatic scripts, the calibration campaign had been designed
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Uncertainty Source E821 (ppb) E989 (ppb)
ωa statistical 460 100
ωa systematics 180 70

ω̃1p systematics

Absolute calibration 50 35
Trolley probe calibration 90 30
Fixed probe interpolation 50 30

Muon distribution 30 10
Time-dependent external fields - 5

Others 100 30
ω̃1p total 170 70

Total 540 140
Table 1.2: A comparison of the final uncertainties from BNL E821 [11] and the
proposed error budget for Fermilab E989 [15].

Systematic Correction (ppb) Uncertainty (ppb)

Absolute calibration 0 15
Trolley calibration 0 28

Configuration -1 23
Trolley baseline mtrp0q -13 25

Fixed probe baseline mfpp0q 0 8
Fixed probe runs mfpptq 0 1

Total -14 48
Table 1.3: The result for the field measurement errors for Run 1[13].

Average over all data sets in Run 1

Field measurement 56
ESQ Transient 92

Kicker Transient 37

Total 114
Table 1.4: The final result for ω̃

1

p of the average over all data sets in Run 1 [13].
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to produce better shimming measurements, better temperature control, and better

alignment between the trolley and plunging probe. For the NMR probes frequency

extraction methods, a new fit window optimization method was applied to improve

the bad probes (short FID probes) resolutions and upgrade DQC and production

campaigns. For interpolation, there are two blinded analyses conducted with two

teams: Purcell [16] and Bloch [17]. These analyses also improved beyond the Run 1

analysis. For example, the Bloch analysis transitioned to a python based framework

that used a different magnetic footprint removal algorithm, and more [18]. In addi-

tion, since the measurements depended highly on the temperature, we upgraded the

experimental hall cooling system to keep the temperature as constant as possible.

For the kicker transient, the kickers were upgraded to deflect the beam closer to the

ideal orbit. Lastly, the field team improved the mapping of the perturbed magnetic

field results from ESQ transient to reduce uncertainties, which is the dominant error

of field measurement uncertainties.

In the dissertation, I will briefly introduce the muon g-2 theory. Then, I will

introduce the experimental overview (Chapter 3) and how E989 is possible to measure

aµ with high precision (Chapter 3). After an overview of both the theory (Chapter

2) and experimental of muon g-2 (Chapter 3), I will mainly discuss my contributions

(Chapter 6, Chapter 7, Chapter 8, and Chapter 9) to the experiment to improve the

magnetic field measurement uncertainty for Run-2/3 and beyond Run 3 to reach the

goal of a four-fold reduction in uncertainty.
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2

Theory: The Calculation of g-2

As discussed in the previous chapter, the g-factor of the muon, gµ, is the quantity

connecting spin, ~s, to its magnetic moment, ~µ. ~µ connecting to ~s is expressed as [1]:

~µ “ gµ
q

2mµ

~s, (2.1)

where q is a charge of the muon and mµ is the mass of the muon. In the Dirac

equation, g is equal to 2 for a spin-1{2 particle. However, there are other contributions

to modifying the g-factor which ends up being slightly larger than 2. The correction

from the contributions to the Dirac equation in the Standard Model (SM) is called

the anomalous magnetic moment, aµ. The SM prediction of aµ is determined from

the sum of all sectors of the SM contributions:

aSM
µ “ aQED

µ ` aEW
µ ` aHVP

µ ` aHLBL
µ , (2.2)

where aQED
µ is quantum electrodynamics (QED) contributions, aEW

µ is electroweak

(EW) contributions, aHVP
µ is the hadronic vacuum polarization (HVP) contributions,

and aHLBL
µ is the hadronic light-by-light scattering contributions [14]. Feyman dia-

grams of each of the contributions are shown in Fig 2.1 and the value and uncertainty
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Figure 2.1: Leading Feynman diagrams of contributions by the fundamental SM
interactions to aµ. From left to right, the first one is the one-loop QED diagram.
The next one is the one-loop EW involving Z-boson exchange. The last two are the
leading order HVP diagram and HLBL diagram [14].

aµ term Value (x 1011) Uncertainty
QED 116 584 718.931 0.104
EW 153.6 1.0
HVP 6 845 40
HLBL 92 18
Total 116 591 810 43

Table 2.1: Values and uncertainties of SM contributions to aµ.

per each contribution are shown in Table 2. Hadronic contributions have the most

dominant factor on the total uncertainty because of the non-perturbative nature of

the low energy strong interaction. In this chapter, I will discuss the contributions

from equation 2.2 to aµ in the SM prediction in more detail. Moreover, I will briefly

discuss the beyond SM (BSM).

2.1 The QED contributions

The QED contributions to aµ include all contributions from leptons and photons

alone, and have been calculated up to a five-loop order. Because all contributions are

from leptons and photons alone, the QED contribution calculation can be measured

with high precision. The full five-loop QED Feynman Diagram has a total of 12,672

Feynman diagrams and a few of them are shown in Fig 2.2. All contributions up to a
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Figure 2.2: The full five-loop QED Feynman Diagram. The figure is reprinted from
[6].

four-loop have been determined and verified by different groups from both numerical

and analytical calculations [14]. The QED contribution is found to be [6]

aQED
µ “ 116 584 718.931 p104q ˆ 10´11. (2.3)

2.2 The EW Contributions

The EW contributions contain at least one EW boson (W, Z, or Higg). The EW con-

tributions to electron g-2 are enormously suppressed because of the mass of an elec-

tron. Because muons are about 207 times heavier than electrons, these contributions

affect muon g-2 calculations more than electron g-2 calculations. The contributions

have been calculated up to a two-loop, and the three-loop contributions have been
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Figure 2.3: One-loop EW Feynman Diagram. The figure is reprinted from [7].

estimated [19]. The value of the EW contributions are found [7]

aEW
µ “ 153.6p1.0q ˆ 10´11. (2.4)

2.3 The HVP Contributions

HVP is an effect of polarization by fluctuations involving stronger interacting par-

ticles in the vacuum. In general, the HVP contributions are calculated from data-

driven approaches or Lattice quantum chromodynamics (QCD). The HVP contri-

butions from data-driven approaches can be evaluated from all available e`e´ Ñ

hadrons cross-section data. The leading order (LO) HVP contribution is evaluated

by dispersion relations and from integral over QCD kernel weight function, Kpsq:

aLO, HVP
µ “

1

4π3

ż 8

m2
π2

dsKpsqσhadpsq, (2.5)

where σhadpsq is the normalized e`e´ cross-section. About 92 % of the contributions

to equation 2.5 comes from the low-energy region below
?
s = 1.84 GeV [20]. The

process at LO is shown in Fig 2.4. The e`e´ annihilation is due to the leptonic initial

state and the exchange of a highly virtual photon coupled to any charged particle.

This leads the strong interaction dynamic studies in a way as quark pairs are created

initially out of QCD vacuum [7]. The leading order (LO) and next leading order

(NLO) contributions to aµ are shown in Fig 2.6. The analysis involves combining
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Figure 2.4: The LO Feynman diagram for the annihilation processes e`e´ Ñ

hadrons (left) and e`e´ Ñ γ + hadrons with ISR (right). Reprinted from the refer-
ence [7].

Figure 2.5: Feynman diagram of the most dominant channel (more than 70 %) of
the total HVP contributions.

all available e`e´ Ñ hadrons cross-section measurements for more than 35 exclusive

hadronic channels from different experiments, as shown in Fig 2.7 [14]. The most

dominant channel, more than 70 % of the total HVP contributions, is the two pion

channel and is shown in Fig 2.5. From combinations of all different channels of data-

driven experiments, the HVP contributions include aLO,HVP
µ [7], aNLO,HVP

µ [21], and

aNNLO,HVP
µ [22] and the values of corresponding contributions are

aLO,HVP
µ “ 6931p40q ˆ 10´11,

aNLO,HVP
µ “ ´98.3p7q ˆ 10´11,

aNNLO,HVP
µ “ 12.4p1q ˆ 10´11.

(2.6)

Combining all values from values from equation 2.6, the total HVP estimation is [7]
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Figure 2.6: HVP Feynman Diagram at LO (a) and NLO (b). The grey circle rep-
resents hadronic and the white circle represents leptonic VP. The figure is reprinted
from [14].

Figure 2.7: Contributions to the total hadronic cross-section. The figure is reprinted
from [23].

aHVP
µ “ 6845p40q ˆ 10´11. (2.7)

The new CMD-3 result was published in February 2023. The cross-section of the

process e`e´ Ñ π`π´ has been measured in the center of the mass-energy that

ranges from 0.32 to 1.2 GeV with the CMD-3 detector at the electron-positron collider

VEPP- 2000 [24].
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2.4 The HLBL Contributions

One of the largest uncertainties of SM prediction of aµ comes from the HLBL scat-

tering contributions. The HLBL scattering contributions, shown in Fig 2.8 and in the

last diagram of Fig 2.1, describe the process of an external soft and on-sell photon

interactions through a hadronic blob (the shaded blob in the diagram) with three

off-shell photons that then coupled to the muon [14]. This contribution cannot be

calculated in the perturbation theory and can only be relied on either lattice QCD

or data-driven evaluations similar to calculations of HVP contributions. However,

the calculation of HLBL contributions is more complicated than those of HVP con-

tributions (the two-point function) because HLBL contributions are classified by a

four-point function. Fig 2.9 shows various contributions to the HLBL tensor. These

contributions are from single mesons (π0, η, η1, f0p980q, a0p980q), axial-vector mesons

(a1, f1), tensor mesons (a2, f2), and charged pion or kaon loops [14]. Unlike HVP

calculations, we cannot sum over all possible intermediate states at once due to the

complexity of the analytic structure of the four-point function. Thus, we consider

individual intermediate states and for each of these states, construct a relationship

between the double spectral function, physical observables, and cross-sections involv-

ing on-shell hadrons. In this framework, the unitarity relation is able to contribute

to aHLBL
µ intermediate states in direct and crossed channels shown in Fig 2.10. The

figure shows intermediate states in the direct channel for HLBL scattering of one-

particle and two-particle cuts [7]. The HLBL tensor unambiguously split the sum of

all intermediate states in direct and crossed channels as:

Πµνλσ “ Ππ0´pole
µνλσ ` Ππ´box

µνλσ ` Πππ
µνλσ ` .... (2.8)

Within this framework, aHLBL
µ can be written as:

aHLBL
µ “ aπ

0´pole
µ ` aπ´box

µ ` aππµ ` .... (2.9)
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Figure 2.8: HLBL Feynman Diagram at LO. The shaded blob represents all possible
intermediate hadronic states. The figure is reprinted from [25].

where aπ
0´pole
µ is from the exchange of aπ

0

µ in one of channels, aπ´box
µ has two-pion

discontinuities in two channels (shown in diagram (a) of Fig 2.11), and aππµ is two-

pion cut only in one of the three channels (shown in diagram (b) and (c) of Fig

2.11) [7]. aHLBL
µ is dominated by contributions below 1.5 GeV with the dominant

contribution, π0-pole, while other single-particle states (η and η1) are suppressed.

Detailed descriptions of the disperse calculations and experimental inputs of each of

the various contributions to aHLBL
µ can be found in the white paper [7]. The results

of these calculations are shown in Table 2.4. The sum of dispersive estimations for

the full HLBL scattering contributions is

aHLBL
µ “ 92p19q ˆ 10´11, (2.10)

where the overall uncertainty is from a sum of data-driven errors and model-dependent

errors.

2.5 Lattice QCD

In this section, I will briefly discuss the status of lattice QCD calculations of the

HVP contributions and the HLBL scattering contributions to the anomalous muon

magnetic moment, aµ.
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Figure 2.9: HLBL in the muon g-2 in model. The right side of the equal sign
describes the interaction of photons with hadrons. Reprinted from the reference [7].

Figure 2.10: Intermediate state in the direct channel for HLBL scattering: one-
and two-particle cuts. Reprinted from the reference [7].

Figure 2.11: Two-pion cut contributions to HLBL scattering. Solid lines represent
pions and wiggly lines represent photons. Double lines represent heavier intermediate
states. Reprinted from the reference [7].
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Contributions PdRV(09) [26] N/JN(09) [27] [28] J(17) [29] Dispersive [7]
π0, η, η1-poles 114(13) 99(16) 95.45 (12.40) 93.8(4.0)
π, K-loop/boxes -19(19) -19(13) -20(5) -16.4(2)
S-wave ππ rescattering -7(7) -7(2) -5.98(1.20) -8(1)
subtotal 88(24) 73(21) 69.5(13.4) 69.4(4.1)
axial vectors 15(10) 22(5) 7.55(2.71) 6(6)
u, d, s-loop/short-distance - 21(3) 20(4) 15(10)
c-loop 2.3 - 2.3(2) 3(1)
Total 105(26) 116(39) 100.4(28.2) 92(19)

Table 2.2: Results from various contributions to aHLBL
µ in unit of 10´11. Table is

reprinted from [14].

2.5.1 HVP from lattice QCD

HVP contribution is determined by applying Euclidean space-time discretization of

vacuum polarization tensor ΠµνpQ
2q for spacelike Q2 in finite volumes and with finite

lattice spacing. Then, it is taken to continuum and infinite-volume limits. Depending

on the individual analysis groups, the intermediate steps of these calculations can

be performed in different order and resulted in different results. The calculation

of aLO, HVP
µ at Opα2

q, according to quark-connected (conn) and quark-disconnected

(disk) contribution, is determined as,

aLO, HVP
µ pα2

q “ aLO, HVP
µ,conn ` aLO, HVP

µ,disc . (2.11)

The quark flavor-connected contribution, aLO, HVP
µ,conn , can be expressed as:

aLO, HVP
µ,conn “ aLO, HVP

µ pudq ` aLO, HVP
µ psq ` aLO, HVP

µ pcq ` aLO, HVP
µ pbq, (2.12)

where ud is the contributions of light u and d quarks, and s, c, and b are strange,

charm, and bottom quarks contributions. The recent process in lattice determination

of aLO, HVP
µ pα2q is necessary to add strong and electromagnetic isospin-breaking (IB)

corrections, δaLO, HVP
µ , because equation 2.11 do not include effects from the electric

charges of the quarks [7]. Then, the total LO of HVP contribution, aLO, HVP
µ , is given

by,

aLO, HVP
µ “ aLO, HVP

µ pα2
q ` δaLO, HVP

µ , (2.13)
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Collaboration aLO, HVP
µ pudq aLO, HVP

µ psq aLO, HVP
µ pcq aLO, HVP

µ,disc aLO, HVP
µ

LM-20 [30] 657(29) 52.8(7) 14.3(7) 11.2(4.0) 714 (30)
BMW-20 [31] 633.7(4.7) 53.4(1) 14.6(1) 18.6(2.0) 707.5 (5.5)

ETM-18/19 [32] [33] 629.1(13.7) 53.1(2.6) 14.75(56) - 692.1 (16.3)
Mainz/CLS-19 [34] 674(13) 54.5(2.5) 14.66(45) 23.2(5.0) 720.0 (15.9)
FHM-19 [35] [36] 637.8(8.8) - - 13(5) 699 (15)

PACS-19[37] 673(14) 52.1(5) 11.7(1.6) - 737
`

`15
´20

˘

RBC/UKQCD-18 [38] 649.7(15.0) 53.2(5) 14.3(7) 11.2(4.0) 717.4 (18.7)
BMW-17 [39] 647.6(19.2) 53.73(49) 14.74(16) 12.8(1.9) 711.1 (19.0)

Mainz/CLS-17 [40] 588.2(35.8) 51.1(1.7) 14.3(2) - 654
`

`38
´39

˘

HPQCD-16 [41] 599.0(12.5) - - 0(9) 667 (14)

Table 2.3: Lattice results for flavor (ud, s, c, disk) contributions and the total estima-
tion of aLO, HVP

µ . The results already include all corrections including δaLO, HVP
µ (not

stated in the table). The errors in the table are statistical and systematic combined
uncertainties in quadrature.

with

δaLO, HVP
µ “ δaLO, HVP

µ pudq ` δaLO, HVP
µ psq ` δaLO, HVP

µ pcq ` δaLO, HVP
µ,disc , (2.14)

where δaLO, HVP
µ pudq includes both the strong and the QED IB corrections to the

connected light-quark contribution, but δaLO, HVP
µ psq and δaLO, HVP

µ pcq contain only

QED effects of order of Opα3
q. Results from different groups of the different flavor

contributions and the total estimate of aLO, HVP
µ are shown in Table 2.5.1 [7]. From

the results from various lattice groups combined with using a conservative procedure

into an average of lattice, the total estimation of aLO HVP
µ is 711.6p18.4q ˆ 10´10 [14].

The major challenges in reducing the uncertainties are from these: the finite-volume

effects, the exponentially growing signal-to-noise problems at large Euclidean times,

disconnected contributions, and QED IB corrections [7].

2.5.2 HLBL from lattice QCD

In a perturbative framework for QED, the HLBL scattering contribution to aµ in

a lattice QCD calculation at the order of α3 from the diagrams are shown in Fig

2.12 and Fig 2.13. Due to the effort of the Muon g-2 Theory Initiative [7], the
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Figure 2.12: Diagrams contributing to HLBL scattering Opα3
q: quark connection

(left) and leading disconnection (right). Double lines represent heavier intermediate
states. Reprinted from the reference [7].

full aHLBL
µ has now been calculated on the lattice by two groups: RBC and the

Mainz group [42] [43]. In discretized Euclidean spacetime, aHLBL
µ has been computed

treating QED both perturbatively and non-perturbatively, in both finite (QEDL) and

infinite volumes (QED8) [14]. In general, both approaches can be tested by replacing

quark loops with lepton loops and the two groups cross-checking their results. More

detailed derivations and the methodologies of the approaches can be found in the

white paper [7]. After the infinite volume and continuum extrapolation, the RBC

calculation result is [42]

aHLBL
µ “ 78.7p30.6qstat

p17.7qsys
ˆ 10´11. (2.15)

This calculation was performed for several lattice ensembles with different lattice

spacing and volume and with all particles at their physical masses, including contri-

butions from both connected and disconnected diagrams [14]. This result was recently

available with the completed calculation of aHLBL
µ . Recently, there are more recent

calculations from the Mainz group available. We expected further improvement on

full calculations of aHLBL
µ from both groups in the near future [14].
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Figure 2.13: Sub-leading disconnected diagram contributing to HLBL scattering
Opα3

q. Double lines represent heavier intermediate states. Reprinted from the refer-
ence [7].

2.6 The SM prediction for aµ

From all contributions that I discussed in previous sections, the SM prediction for

aµ can be determined by the summation of all contributions and is measured: [7]

aSM
µ “ 116 591 810p43q ˆ 10´11

p0.37 ppmq. (2.16)

A summary of the contributions to aSM
µ is in Table 2.4.

Table 2.4: Summary of the contributions to aSM
µ from [14].

Contributions Value (10´11) Reference
HVP LO (e`e´) 6931(40) [44] [45] [46] [47] [23] [21]
HVP NLO (e`e´) -98.3(7) [21]
HVP NNLO (e`e´) 12.4(1) [22]
HVP LO (lattice, udsc) 7116(184) [25] [38] [39] [36] [35] [34] [33] [37]
HLBL (phenomenology) 92(19) [48] [49] [50] [51] [29] [52] [53] [54] [55]
HLBL NLO (phenomenology) 2(1) [56]
HLBL (lattice, uds) 79(35) [42]
HLBL (phenomenology + lattice) 90(17) [48] [49] [50] [51] [29] [52] [53] [54] [55]
QED 116 584 718.931(104) [6] [57]
EW 153.6(1.0) [7] [19]
HVP (e`e´, LO + NLO + NNLO) 6845(40) -
HLBL (phenomenology + lattice + NLO) 92(18) -
Total SM Prediction Values 116 591 810(43) -
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2.7 Beyond the Standard Model

The first result from the Fermilab E989 muon g-2 experiment resulted in 4.2 σ

discrepancy to the SM prediction, aSM
µ [12]. Assuming that both experimental de-

termination of aµ and the SM prediction calculation of aSM
µ are evaluated correctly

with accurate uncertainty estimates, new Beyond Standard Model (BSM) physics

must have existed to explain the discrepancy. In this section, an overview of several

possible BSM models will be introduced. For a more detailed discussion of BSM

constraints related to ∆aµ, the review paper can be found in [58].

BSM contributions to aµ can be expressed as

∆aBSM
µ C

m2
µ

Λ2
, (2.17)

where mµ is the mass of muon, Λ is the mass scale of new physics, and C is the

coefficient that depends on the models.

One of the possible appealing models is called Supersymmetry (SUSY), the

virtual-loop interaction of the muon with the SUSY particle. The SUSY contributions

to aµ are from smuon-neutralino, sneutrino-chargino, and potential slepton mixing.

The sample diagram is shown in Fig 2.14 [59]. In general, it was shown that the

continued lack of evidence for BSM physics from the LHC and dark matter searches

has greatly restricted the SUSY parameter space and implied mass patterns [14].

Other models that have been proposed to explain ∆aµ are Alternative Higgs

Models [61][62] and the Dark Sector, such as dark photons[63] or dark boson

[64][65]. However, all the models do not fully explain the discrepancy of ∆aµ.

The discrepancy between the experimental and theoretical outcomes of aµ strongly

motivates many scientists to explore NP and BSM. Many fascinating potential mod-

els are studied for NP and BSM up to now.
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Figure 2.14: Sample SUSY Feynman Diagram. The figure is reprinted from [60]

.
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3

E989 Experiment Overview

This chapter provides an overview of the E989 muon g-2 experiment in Fermilab.

First, I will talk about the anomalous precession frequency, ωa, and discuss the muon

decay and how muons are produced. Then, I will explain the muon injection to the

storage ring. There will be a section about the storage ring with an explanation in

detail about the components of the storage ring. Components of the storage ring are

crucial factors to shim and maintain the stable uniform magnetic field of the storage

ring. To measure the magnetic field, there are different kinds of measurement probes.

Detailed explanations of the magnetic field measurement will be in Chapter 4. Once

we measured the magnetic field, we used the detectors to measure the spin precession

of the muon from the number of positrons above the threshold decay as a function

of time.

Here are the stages of the E989 experiment:

1. Muon particles are produced in Fermilab.

2. Muon beam is sent to the muon g-2 magnetic storage ring at MC-1.

3. Muon beam is injected and circulated in the storage ring.

22



4. Muon particles precess and decay to positron.

Further details can be found in the technical design report [15].

3.1 The Anomalous Precession Frequency, ωa

In order to determine aµ, the anomalous precession frequency, ωa needs to be mea-

sured. ωa is defined as the difference between the spin precession frequency, ωs, and

the cyclotron frequency ωc. In the Dirac equation, when the g-factor is equal to 2,

ωs and ωc are the same and there will be no precession frequency. However, since

the g-factor is slightly larger than 2, ωa is not 0. As an equation, ωa relative to its

momentum in the lab frame is given

ωa “ ωS ´ ωC

“
q

mµ

r´aµ ~B ` aµ
γ

γ ` 1
p~β ¨ ~Bq~β ` paµ ´

1

γ2 ´ 1
q
~β ˆ ~E

c
s,

(3.1)

where γ is the Lorentz factor, and ~β is the velocity in speed-of-light units. In the

absence of an electric field and in the limit of planar muon orbits, ~β ¨ ~B “ 0, the

equation 3.1 is simpler,

ωa “
q

mµ

r´aµ ~B ` paµ ´
1

γ2 ´ 1
q
~β ˆ ~E

c
s. (3.2)

There is a specific momentum called the magic momentum, pmagic “ 29.3 ppµ “ 3.09

GeV/c) where the second term vanishes, and the electric field does not contribute to

the spin precession. However, realistically, not all muons can have magic momentum

and there is a correction due to off-momentum muons. The requirement of pmagic

dictates the value of 1.45 T for the storage ring magnetic field.

23



3.2 Muon Production and Beam Line

3.2.1 Muon Decay

Muons are unstable particles in nature, so muons decay with a lifetime of 2.2 µs.

The experiment uses positive muons that decay into a positron and two neutrinos

via left-handed couplings to the W-boson [66]:

µ` ÝÑ e`vev̄µ (3.3)

Muons are produced from the primary channel of charged pion decays. The pion

decays at rest into a muon and a muon neutrino [67]:

π` ÝÑ µ`vµ (3.4)

Because both of the decays proceed through the weak force, the decays are a parity

violation. Fig 3.1 illustrates the parity violation of a positive muon decay at rest.

Because pions are spin 0, µ` needs a left-handed helicity to conserve angular mo-

mentum. Therefore, parity violation provides the means for a direct measurement

of the anomalous precession frequency: the highest energy positrons from the muon

decay are emitted at the rest frame in a direction strongly correlated with the muon

spin direction. [68]

3.2.2 Muon Production and Beam Line

Fig 3.2 shows how the muons are produced and how they travel through each of the

beam lines at Fermilab. Protons are accelerated in Linac and Booster up to 8 GeV

and enter the Recycler. In the Recycler, one bunched proton beam (4ˆ1012 intensity)

is re-bunched into four bunches (1ˆ1012 intensity) in order to satisfy the limitations

of the beam for the detector DAQ systems. Then, the beam is transported to P1, P2,

and M1 to a target at AP0 target hall. Positive particles with a momentum of 3.11

GeV/c are delivered to M2 and M3 lines to capture as many muons as possible with
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Figure 3.1: Left diagram is the Feynman diagram for the decay of a positive muon.
The right diagram is a schematic helicity diagram of the muon decay at the Michel
positron energy endpoint. Orange arrows indicate spin and green arrows indicate
momentum.

Figure 3.2: The diagram is the beamline to muon g-2 campus reproduced from
[15]. Protons travel on black lines and muons travel on red lines.
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a momentum of 3.094 GeV/c from the pion decay. Then, the beam is injected into

the Delivery Ring for the remaining pion to be decayed into muons and separated

from the remaining heavier protons. Lastly, the beam goes through M4 and M5 and

finally arrives at the muon g-2 storage ring. [15]

3.3 The magnetic Storage Ring

In order to have a precise measurement of the magnetic field and the magnetic

moment of the muon, the field should be as uniform as possible with a 1.45 T magnetic

field at the center. The g-2 magnetic storage ring (SR) at Fermilab is the same SR that

was used for the E821 BNL g-2 experiment which was transported from Brookhaven

to Fermilab. Fig 3.3 shows the SR cross-section and the current and magnetic field

directions with red markers and green arrows.

The SR is one superconducting magnet that consists of 12 with approximately

14 m diameter C- shape iron yokes to return the magnetic flux generated by three

superconducting NbTi/Cu coils. There are 72 poles, 864 wedges, and 24 iron top

hats to shim the field uniformly. There are six poles, 3 on top and 3 on the bottom,

per yoke. The main poles provide a dipole component of the field. Iron top hats are

located on the top and bottom of the yoke and affect the dipole with 30°azimuthal

range. Wedges are additional shimming tools that can translate radially inwards or

outwards to affect the dipole, quadrupole, and sextupole with 10°azimuthal range.

In addition to the passive shimming tools, there is one active shimming tool. The

active shimming tool is the surface coils that can shim the azimuthal average field

during the experiment dynamically. Table 3.1 gives the values of parameters of the

magnet [15].
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Figure 3.3: Both diagrams are cross section of the g-2 magnetic storage ring. Right
diagram also shows the direction of the current and magnetic field [13].

3.3.1 Muon Injection to the Storage Ring

The muon beam is delivered to the storage ring via the inflector magnet which is

the device that cancels the magnetic field of the ring (1.45 T) for the beam to pass

without deflection. Fig 3.4 shows how the beam enters the storage ring through the

inflector. The injection beam line is set to a 1.25°angle from the tangential reference

line. The reference line is 77 mm radially outward from the muon central orbit. The

inflector has the current windings feature with a unique double-truncated cosine

theta design to minimize the flux that leaks outside the inflector volume. Fig 3.5

shows the geometry at the inflector exit [11].

3.3.2 Kicker

As the muons exit the inflector and enter the storage ring, we need to correct 77

mm radially outward from the center of the orbit. Fig 3.6 shows how the muon beam

enters the central orbit with the assistance of kicker plates. There are three separated

1.27- meter-long kicker magnets in a series which are located 90°clockwise from the
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Figure 3.4: The diagram is the view of the beam entering the storage ring repro-
duced from [15].

Figure 3.5: The inflector and storage ring geometry [15].
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Table 3.1: Magnet parameters of the storage ring

Design Magnetic Field 1.451 T
Design current 5200 A

Equilibrium orbit radius 7112 mm
Muon storage region diameter 90 mm

Inner coil radius 6691 mm
Outer coil radius 7527.5 mm
Number of turns 48

Magnetic self inductance 0.48 H
He-cooled lead resistance 6 µΩ

Yoke height 157 cm
Yoke width 139 cm
Pole width 56 cm
Iron mass 682 tons

Nominal gap between poles 18 cm

exit of the inflector [69].

3.3.3 Electrostatic Quadrupoles

The purpose of the electrostatic quadrupoles (ESQ) in the SR is to confine muons

vertically. The vertical focus helps the muon not be lost after a few revolutions.

Moreover, a procedure in the ESQ removes stored muons outside of the storage

region. Ideally, the experiment wants to have the ESQ all around the ring, but it is

not practical for technical reasons. Overall, the ESQ covers 43% of the total azimuthal

range (360°) and maintains a fourfold symmetry around the SR. Fig 3.7 shows the

locations of the kicker and the ESQ in the SR.

There are four ESQ around the ring and each ESQ consists of a short ESQ of

13°long and a long ESQ of 26°long. ESQ is installed inside a vacuum chamber to

reduce the scattering of incident decay positrons. Q1, the first ESQ, has a slightly

different design to avoid blocking the muon injection. Fig 3.8 shows the cross-section

of the SR where the ESQ is installed with equipotential lines of the electric field.
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Figure 3.6: The diagram showed how muon beam from 77 mm off the central orbit
to the ideal orbit with the assistance of kicker plates.

Figure 3.7: The diagram shows the location of inflector, kickers (K1-K3), and the
electrostatic quadrupoles (Q1-Q4)
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Figure 3.8: Left photo is the ESQ in the vacuum chamber in SR. The right diagram
is the cross-section of the SR with ESQ. The yellow lines are for equipotential lines
of the electric field and the blue circle represents the muon storage region (9 cm
diameter)

Figure 3.9: IBMS locations in inflector region.Orange is the inflector magnet on
the diagram.

3.4 Detector System

There are various detector systems used in E989. In this section, I briefly explain the

detector systems that we are using in the muon g-2 experiment at Fermilab.

3.4.1 T0 Counter and IBMS

T0 counter and the inflector beam monitoring systems (IBMS) are detectors for

monitoring the injected beam. Both detectors are installed near the location of the

inflector. Fig 3.9 shows the detailed locations of the IBMS near the inflector region.
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Figure 3.10: Sample T0 traces on monitoring system.

The T0 counter consists of a thin scintillator with 2 photomultiplier tube (PMT)

readouts. It provides a beam time profile before the beam enters the storage ring.

The sample T0 traces are shown in Fig 3.10.

The IBMS consists of 2 planes of scintillation fibers. The IBMS checks the beam

injection characteristics: measuring the beam profile before and after the inflector.

The sample IBMS monitoring plots are shown in Fig 3.11.

3.4.2 Fiber Harps

The fiber harps are strung with scintillating fibers that allow for a direct, but de-

structive, measurement of the distribution of stored muons and their associated beam

dynamics parameters. It consists of a “harp” of seven scintillating fibers of 0.5 mm

diameter, each 90 mm long, and separated from its neighbors by 13 mm [15]. Each

scintillating fiber is further attached to a standard optical fiber shown in the left

image of Fig 3.12. The right image of Fig 3.12 shows the horizontal measure in y

of the beam profile. Maximum oscillations of the beam motion are in the center

of the beam (around y =0). This is due to the vertical component of the betatron
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Figure 3.11: Sample IBMS plots on monitoring system.

oscillations [70].

3.4.3 Calorimeters and the Straw Tracker

The main detectors are calorimeters which measure the energy and time of arrival of

the positrons from the muon decay. Fig 3.13 shows the locations of the calorimeters

Figure 3.12: (Left) The image of a fiber harp; and (Right) the beam profile in y
direction measured by the fiber harp. Vertical BO means the vertical component of
the betatron oscillations [70].
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Figure 3.13: The diagram shows the locations of the calorimeters and trackers
with one of 12 vacuum chamber segments. The red line represents the positron decay
trajectory.

and trackers with one of the 12 vacuum chamber segments. Two decay positron tra-

jectories are indicated to have high and low energy events. A total of 24 calorimeters

are located that are evenly spaced around the SR. Each station contains 54 crystals

for a total of 1296 individual PbF2 crystals. Each crystal is read out by a silicon pho-

tomultiplier (SiPM). The detailed design and performance of SiPM-based readout of

PbF2 crystals can be found in reference [71].

The largest phase acceptance in Run 1 is from pileup, which refers to the overlap

of events in the calorimeter from two different muon decay. When two pulses overlap,

only one event with the sum of two pulses is detected. To minimize pileup, the

calorimeter’s response must be a few and the readout system must record information

to enable the distinction between closely occurring pulse pairs. The energy resolution

of 5% at 2 GeV is sufficient for the energy threshold.

In addition to calorimeters, there are tracking detectors called straw trackers

which are designed to measure the muon beam profile at multiple locations around

the ring as a function of time. Another physics goal of straw trackers is to understand

the systematic uncertainties of the muon precession frequency measurement from the

calorimeter data. The straw tracker stations are in front of the calorimeter stations

15, and 21 (180, and 270 degrees from the injection point respectively). Each station

consists of 8 tracker modules and 128 straws. Fig 3.14 is a single tracker module in
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Figure 3.14: this picture is a single tracker module with 128 straws. A straw with
a diameter of 5 mm is a chamber filled with Ar and Ethane, with a central anode
wire at +1.65 kV.

Figure 3.15: this diagram shows the tracker location in front of the calorimeter
detectors on the inside of SR.

E989. Fig 3.15 shows where the tracker station is in the front of the calorimeter.

Fig 3.16 shows the beam profile by using the extrapolated tracks and the decay arc

length where higher momentum tracks originate further away from the detector.
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Figure 3.16: Left plot is from the reconstructed beam profile and the right plot is
from the reconstructed decay arc length. Plots are from S. Charity [72]
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4

Magnetic Field Measurement

4.1 Overview

In a highly uniform vertical magnetic field of 1.45 T, the muons circulate in the

storage ring that has a mean radius of 7.112 m at a cyclotron frequency ωc{p2πq =

6.7 MHz. The spin precession frequency ωs{p2πq is slightly different from cyclotron

frequency, and the difference between these two frequencies is called the anomalous

precession frequency, aa. Therefore, aµ is (first introduced in Chapter 2)

ωa “ ωs ´ ωc “ ´aµ
q

mµ

B. (4.1)

This equation shows that determining aµ from ωa requires a precise magnetic field

measurement, B. The average field over the muon distribution weighted by the de-

tected decay over time is B̃. The frequency measurements determine B̃ which is

formulated [13]

B̃ “
h̄ω̃1ppT q

2µ1ppT q
“
h̄ω̃1ppT q

2

µepHq

µ1ppT q

µe
µepHq

1

µe
. (4.2)

µepHq{µ
1
ppT q is the ratio of the magnetic moments of an electron bound in hydrogen

to that of a proton shielded in a spherical water sample, measured to 10.5 ppb at
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a water temperature Tr = 34.7˝ C[73]. µepHq{µe is the magnetic moment ratio of

the electron bound in hydrogen versus a free electron and the electron magnetic

momentum, µe, is known to 0.3 ppt [74]. Combining Equation 4.1,Equation 4.2, and

µe “
g2
2

e
me

h̄
2
, aµ is expressed as,

aµ “
ωa

ω̃1ppTrq

µ1ppTrq

µepHq

µepHq

µe

mµ

me

ge
2
, (4.3)

where the ratio of the mass of the muon and electron, mµ{me, is measured to 22 ppb

[74] [75] and the g factor of an electron, ge, is measured to 0.13 ppt [5].

4.2 NMR Probes

NMR probes are used for magnetic field measurements since NMR probes can mea-

sure the absolute accuracy of tens of ppb. Protons in the NMR probes are in hy-

drocarbons in petroleum jelly that can produce and detect the free induction decay

signals (FID). I will talk about the FID in detail in Chapter 5. There are three types

of probes with different purposes in the experiment: plunging probes, trolley probes,

and fixed probes. The schematics of fixed probes and trolley probes are shown in

Figure 4.1. I will discuss each of these probes in detail in the next few sections [76].

4.2.1 Trolley Probe

17 NMR probes in the trolley are the primary system used for mapping the field

around the ring in the volume that the muons are stored when the beam is off. Fig

4.2 (a) is the photograph of a trolley that is about 50 cm long. The trolley moves

around the ring on the track (rail), which is installed inside the vacuum chamber by

two lines to facilitate clockwise and counterclockwise motion.

Inside the trolley, 17 NMR probes are arranged in a concentric circle with one

probe at the center, at the muon ideal orbit, shown in Fig 4.2 (b). There are 4
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Figure 4.1: Schematic drawing of the NMR probe for field mapping and monitoring
[13].

Figure 4.2: (a) Photograph of the trolley. (b) The schematic diagram shows 17
probe locations and there probe numbers. [15]

probes at a 1.75 cm radius and 12 probes at a 3.5 cm radius. The probes are read

out sequentially, taking roughly 0.5 seconds to collect all 17 probe full measurements.

There are two ways to determine the trolley location: the encoders and the bar-

code. Encoders on the drums determine how much the cables have been pulled but

this method has a large uncertainty because of the elasticity and the length of the

cables. To improve position determination, there is a new method called optical bar-

code readers. We marked the bottom of the interior of the vacuum chamber with

two different barcodes: the absolute barcode and the reference barcode. The abso-

lute barcode marks are at every 20 cm and are used to locate the trolley in SR.
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The reference barcode marks every 2.5 mm and it is used to interpolate positions

between the absolute marks [60]. The precision of the trolley barcode positions at all

times is more precise than 1 mm accuracy [77].

The trolley is retracted to the trolley garage at the outside of the muon orbit

during muon storage. Then, when the beam is off, the trolley is inserted into the

ring. A standard trolley run has three parts. The first part is a clockwise run from

the trolley garage to the trolley drive starting position after we take out the trolley

from the garage. This part is about 90°long. The second part is a counterclockwise

run of the full circle from the drive starting position to the drive starting position

about 360°drive. This data is usually used to analyze the field measurement since it

runs full circle. The last part is a clockwise run from the drive starting position to

the garage which is about 270°. Fig 4.3 shows the three parts of the typical standard

trolley run.

4.2.2 Fixed Probe

The purpose of the fixed probe (fxp) system is to monitor the field continuously while

the beam is on and the muons are present. A single analog multiplexer consists of

up to 20 fxp and a total of 20 multiplexers handle all 378 fxp. It takes 1.33 sec for

all the probes to be digitized and read out in E989.

378 fxp are mounted at 72 stations (locations) in the azimuth around the ring.

There are either 4 or 6 probes for each station, evenly split between the top and

bottom of the vacuum chamber. Fig 4.4 shows a geometry of 4 and 6 probe stations

with respect to the muons’ ideal orbit. In Chapter 6, I will discuss fxp analysis and

uncertainty in detail.
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Figure 4.3: Typical trolley run with three different parts. The first part is black
(clockwise), the second part is red (counter-clockwise), and the third part is blue
(clockwise). [60]

4.2.3 Absolute Probe (Plunging Probe)

The calibration is necessary for the trolley probes which generate the magnetic field

map of the storage volume because the materials (teflon, copper wire, and aluminum)

of the trolley perturb the local magnetic field seen by the onboard NMR probes. An

absolute probe with well-known perturbations is used to calibrate the trolley probes’

unknown perturbations as a reference. More detailed calibration analysis of Run 3

and beyond will be discussed in Chapter 7. Schematic drawing of the calibration

probe, or plunging probe, is shown in Fig 4.5.
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Figure 4.4: The diagram shows the standard geometry of a 6-probe station. A
standard 4- probe station does not include probes numbered 1 and 4 [60].

The plunging probe is water-based and we use the He-3 based probe for cross-

calibration in the ANL magnet. The uncertainty study for the plunging probe will

be discussed in Chapter 8.

Figure 4.5: Design drawing for the calibration probe. Tunable capacitors and a
temperature sensor are housed in the section at the far left end of the device [78].
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4.3 Data Acquisition System

The magnetic field Data Acquisition (DAQ) System server is an access point for

controlling individual field measurement systems including fixed probes, trolley con-

trol, trolley readout, calibration probe control, and more. These systems are each

managed by custom front ends that run asynchronously and communicate with a

common DAQ core. The field DAQ collects data whenever the magnet is powered

[13].

4.4 Analysis Flow

The analysis flow is shown in Fig 4.6 from the calibration chain through the data

processing. The first step is the extraction of FID parameters such as the frequency,

amplitude, and length from all NMR measurements. Data quality cuts (DQC) are

applied on these extracted parameters to discard FID waveforms that correspond to

instrument failures or severe field instabilities [13]. Then, to determine ω̃1ppTrq from

equation 4.3, we perform a sequence of measurements with proton-rich magnetome-

ters [13]:

1. The 17 NMR probes of the in-vacuum trolley are calibrated with a precision

calibration probe (plunging probe) based on a pure water sample. The calibra-

tion probe’s precise measurements are corrected for material effects, tempera-

ture, and field variations during the calibration to achieve high accuracy and

precision.

2. The magnetic field in the muon storage volume is mapped using the trolley

approximately every three days.

3. The 378 fixed NMR probes in 72 azimuthal stations are synchronized to the

trolley measurements. These fixed probes monitor the field’s drift between trol-
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Figure 4.6: A flow chart of the field analysis showing the calibration chain through
the data processing. The muon distribution is an input that is external to the field
analysis and is required to calculate the muon-weighted field average. Bold items show
input measurements to the analysis. Not shown is the NMR frequency extraction step
required for each of the field measurements [13].

ley maps.

4. The magnetic-field maps are weighted by the temporal and spatial distributions

of those muons included in the ωa measurement.

5. Corrections are applied for the presence of fast transient fields generated by

pulsed muon injection systems that are not resolved by the asynchronous

magnetic-field tracking and not present during the trolley measurements.

Due to the limited number of fixed probes in a station, we model the drift of higher-

order moments as a random walk and include its effect only as an uncertainty. The full

procedure for synchronizing and tracking the field with the fixed probes is discussed

in the reference [13]. If the trolley calibration does not change over time, we can

combine the fixed probe tracking, trolley maps, trolley calibration, and calibration

probe corrections to the field moment. Then, this field moment is weighted by the

muon distribution in space and time and an averaged over time t and azimuth φ to

determine ω̃1ppTrq [13].
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5

NMR Techniques

In the previous chapter, Chapter 4, the first step of the magnetic field determination

analysis is the extraction of FID parameters from all NMR measurements. The most

important FID parameters are frequency. Thus, the FID frequency extraction is one

of the key factors in the magnetic field measurement. In this chapter, I introduce the

NMR frequency extraction method in the experiment and discuss the basic steps of

how we extract the precession frequency of the protons in our NMR sample.

5.1 Overview

Pulsed nuclear magnetic resonance (pNMR) is widely used in high-precision magnetic

field measurements because pulsed NMR magnetometers typically have a precision

better than 1 ppm [79]. The magnetic field magnitude B is determined by measuring

the proton spin precession angular frequency, ωs “ γB, where γ is the gyro-magnetic

ratio of a proton [79]. The experiment applies a radio frequency (RF) pulse to rotate

the effective magnetization perpendicular to the external magnetic field by 90°(π{2).

Fig 5.1 shows that RF pulse flips the spin from the vertical (y-axis) to the XZ plane.

The magnetization precesses in the XZ plane (horizontal) and begins to relax to be
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pointed along the external magnetic field. The time it happens is called T1 time. Also,

the individual proton spins influence each other, called spin-spin interaction, which

causes them to dephase each other. This damps out the magnetization precessing and

a time of this decoherence is called T2 time. This oscillating signal of the rotating

magnetization is called free induction decay (FID) signal [80]. We use this FID signal

to extract the NMR frequency and other FID parameters.

There are three types of NMR probes in the experiment: trolley probe, fixed

probe, and plunging probe. I have discussed the purposes of these probes in the

previous chapter, Chapter 4. Throughout the dissertation, I will discuss individual

probe types in detail: fixed probe (Chapter 6), trolley probe (Chapter 7), and plung-

ing probe (Chapter 8).

Even though each probe has different purposes, the overall framework of NMR

frequency extraction is the same. Here is the current framework:

1. Single RF pulse flips the spins by 90 °(Shown in Fig 5.1).

2. The precessing magnetization generates an oscillating signal.

3. Free induction decay (FID) signal is filtered, amplified, and frequency-mixed

down.

4. FID signal passes the low-pass filter.

5. The phase as a function of time is extracted.

6. Polynomial fit to phase function within a certain fit window is used to extract

frequency.

7. The frequency averaged over the active volume corresponds to the slope of the

phase function at the time right after the π{2 pulse.
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Figure 5.1: RF pulse flips the spins by 90°from left diagram to right diagram [81].

5.2 NMR FID Signal Model

5.2.1 Uniform Field

After the RF pulse, in a uniform field, all proton spins process at the same angular

frequency ω. The signal amplitude decays due to energy loss (T1 time constant) and

decoherence (T2 time). The FID signal model is defined as,

fptq “ Aexpp´
t

τ
exppipωt` φ0qq,

1

τ
“

1

T1

`
1

T2

,

(5.1)

where φ0 is a constant initial phase.

5.2.2 Non-uniform Field

In a non-uniform field, protons at different positions precess at different angular

frequencies which represent Ωpx, y, zq. In addition to the angular frequencies, the

initial amplitude of the spin precession signal A(x,y,z) and the response function of

the coil ηpx, y, zq are also a function of positions. The contributions of each spin can
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be integrated, and the total signal is expressed as,

fptq “ expp´
t

τ
q

ż ż ż `8

´8

exppiΩpx, y, zqt` φ0qApx, y, zqηpx, y, zqdxdydz (5.2)

To simplify Equation 5.2, gpωq is defined and called the signal distribution function.

Equation 5.2 can be simplified as,

fptq “ Nexpp´
t

τ
q

ż `8

´8

gpωqexppipωt` φ0qqdω (5.3)

where N is a combination of normalization amplitude for gpωq.

If ω is written as ω “ ω0 ` ∆ω, where ω0 is the position of gpω)’s peak, the

non-uniform field results in the additional factor comparing it to Equation 5.1 is,
ż `8

´8

gp∆ωqexppip∆ωtqqd∆ω (5.4)

Equation 5.4 can be expressed as the inverse Fourier transform of gp∆ωq.
ż `8

´8

gp∆ωqexppip∆ωtqqd∆ω “ Cptq ` iSptq

“
a

C2ptq ` S2ptqexppi tan´1 Sptq

Cptq
q,

Sptq “

ż `8

´8

gp∆ωq sinp∆ωtqd∆ω,

Cptq “

ż `8

´8

gp∆ωq cosp∆ωtqd∆ω,

(5.5)

Sptq and Cptq are an odd and even function of t. Finally, the FID function fptq can

be rewritten as,

fptq “ Nexpp´
t

τ
qEptqexppipω0t` φptq ` φ0qq,

Eptq “
a

C2ptq ` S2ptq,

φptq “ tan´1 Sptq

Cptq
,

(5.6)
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where Eptq is the signal envelope and Φptq “ ω0t ` φptq ` φ0 is the phase function

which, in general, is not a linear function. This formalism was developed by Hong

Ran [79].

5.3 NMR Frequency Extraction Methods

The average NMR frequency ω̄ weighted by gpωq is determined by

ω̄ “

ż `8

´8

ωgpωqdω, (5.7)

which can be rewritten by calculating the derivative of the phase function at t “ 0,

ω̄ “
dΦptq

dt
|t“0, (5.8)

where t “ 0 is the time when the RF pulse starts. An example of a typical FID signal

looks like Fig 5.2 and an example of a typical phase function looks like Fig 5.3. Fig 5.3

shows the phase function of two different NMR frequency extraction methods: Hilbert

transform and zero-crossing. The Hilbert transform method is already introduced in

a previous section.

5.3.1 Zero-crossing Method

Flay David and the University of Massachusetts in Amherst (UMass) team use the

zero-crossing method to extract NMR frequency. When phase function, Φptq “ ω0 `

φptq`φ0 is equal to pn`1{2qπ, where n is an integer, fptq becomes 0. We can construct

zero-crossing time stamps whenever Φptq is equal to pn`1{2qπ. Let numbers of zero-

crossing Nzc of the FID signal within the fit window. Then FID extracted frequency

is computed according to the equation:

f “
Nzc

∆T
“

Nzc ´ 1

2ptlast ´ tfirstq
, (5.9)
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Figure 5.2: General example of FID. The plot shows the FID of fixed probe 0 and
black lines represent the fit window.

Figure 5.3: General example of phase function. The plot shows a phase function of
fixed probe 0 with two different frequency extraction methods. Black lines represent
the fit window.
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where tlast and tfirst are the last and first zero-crossing times of the data within fit

window [80].

5.3.2 Hilbert Transform Method

The average NMR frequency ω̄ is determined in Equation 5.8. When I express the

phase function in the Tayler series, the phase function is

Φptq “ φ0 ` a1t` a3t
3
` a5t

5... (5.10)

where the phase function is an odd function, so Tayler’s approximation of the phase

function only contains odd power terms of t. NMR frequency is calculated by the

derivative of phase function at t “ 0, dΦ{dt|t“0 “ a1.

5.4 Phase Template Method

Since FID frequency extraction is from the polynomial fit of the phase function,

a non-linearity in the phase function perturbs the frequency extraction. To reduce

this perturbation to minimum effects, the phase template method is used. A phase

template is made by averaging over the first 20 phase functions of 20 events per

probe. Currently, we update a fixed probe phase template per a magnet cycle and

we use one trolley phase template for the experiment. Once constructing the phase

template, ∆Φ is defined as

∆Φptq “ Φiptq ´ Φtempptq, (5.11)
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where Φi is the phase function of event i and Φtemp is the phase template. Using

Tayler series to Equation 5.11, ∆Φptq is expressed as,

Φiptq “ φ0,i ` a1,it` a3,0t
3
` a5,0t

5...

Φtempptq “ φ0,temp ` a1,tempt` a3,tempt
3
` a5,tempt

5...

∆Φptq “ Φiptq ´ Φtempptq

“ pφ0,i ´ φ0,tempq ` pa1,i ´ a1,tempqt` pa3,1 ´ a3,tempqt
3
` pa5,1 ´ a5,tempqt

5...

(5.12)

Since the higher-order terms do not variate much from event to event, higher-order

terms diminish and become negligible. At the end, the final ∆Φptq is written as

∆Φptq “ Φiptq ´ Φtempptq

“ pφ0,i ´ φ0,tempq ` pa1,i ´ a1,tempqt` pa3,1 ´ a3,tempqt
3
` pa5,1 ´ a5,tempqt

5...

« ∆φ0 `∆a1t`∆a3t
3
`∆a5t

5
` ...,

(5.13)

where ∆φ0 is φ0,i ´ φ0,temp and ∆a1 is a1,i ´ a1,temp and so on. For a fixed probe,

we use only linear fit so ∆Φptq “ ∆φ0 ` ∆a1t. For the trolley, we use up to the

fifth polynomial order to fit the phase function. The reason why we can use the

phase template method is that we are not interested in the absolute value. For a

fixed probe, the absolute value does not matter because the purpose of the fixed

probe is to monitor the field drift. For the trolley, the absolute value does not matter

because trolley measurements are calibrated by the plunging probe. The advantage of

using the phase template method is to avoid using higher-order polynomials to model

the residual shape at larger t, which means that the resolution is not sacrificed by

shortening the fit range. Fig 5.4 shows the differences in residual plots between two

phase functions: one with the phase template method and one without the phase

template method. Therefore, the template method improves the quality of the fit
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Figure 5.4: Blue Curve: The residual of fitting ∆Φptq. Yellow Curve: The residual
of fitting Φptq alone [82].

without undermining the resolutions. However, the template method assumes that

the higher-order terms do not variate from event to event. This assumption is needed

to be verified and to be discussed in the systematics.

5.5 Simulation

As mentioned in Section 5.2, the precessing magnetic spins from the RF pulse gen-

erate an oscillating flux in the pick-up coil, thus oscillating voltage inside the probe.

In the simulation, the RF pulse in the coil causes an oscillating magnetic field inside

the coil, in the sample, that flips the spin. This needs to be calculated. Then the

precession of the spin is modeled with some approximations and assumptions to sim-

plify the calculation such as spin-spin interactions and relaxation. Finally, the signals

from all spins in the NMR sample are added together to form the FID output. More

detail can be found in the reference [83].

Here is the description to generate a simulated FID:

1. Define the geometry of the probe including coil and sample dimensions and the

number of coil turns.

2. Calculate the magnetic field by the coil, ~B.
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3. Define the external field map.

4. Generate random spins in the sample volume.

5. Create a histogram of ω, ranging from minimum to maximum of NMR frequen-

cies of the generated spins.

6. Fill the bin that ωi belongs for each spin. This histogram is represented as gω.

7. Generate FID vector at the sampling frequency for each frequency bin.

8. Sum over all frequencies in the frequency histogram to obtain the generated

FID.

9. Scale the FID to the amplitude of the experimental data, add baseline, add

noise, etc.

For example, a trolley probe FID is simulated in the left plot of Fig 5.5, as a function

of time in ms, and its sensitivity function is shown in the right plot of Fig 5.5,

as a function of the coil length in mm. The sensitivity function will be discussed

in a future chapter (Chapter 9) in more detail. This simulation tool is crucial to

study the systematics of field measurements in general. We are able to estimate the

uncertainty of the FID frequency extraction from NMR probes which will discuss

further in Chapter 9 as well.
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Figure 5.5: Left plot: example trolley simulated FID: blue signal represents sim-
ulated FID and orange signal represents actual real data FID. Right plot: example
trolley sensitivity function.
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6

Fixed Probe FID Frequency Extraction and
Uncertainty

The purpose of the fixed probe system is to monitor the field continuously while

muons are present. The system consists of a set of 378 NMR probes at 72 locations in

azimuth around the ring. The number of probes at each azimuthal position alternates

between two probes at radial positions of 7112 and 7142 mm, or three probes at radial

positions of 7082, 7112, and 7142 mm, on the top and bottom surfaces of the storage

ring vacuum chambers. From this geometry shown in Fig 4.4, the fixed probes provide

a good monitor of the dipole field around the ring with some sensitivity to changes

in the skew and normal quadrupole components [15].

However, every fixed probe does not have a long FID. Strong gradients, for exam-

ple, near the inflector result in significantly shorter FIDs. A general example of FID

and phase functions were introduced in Fig 5.2 and 5.3. Fig 6.1 shows two specific

probes’ FID: probe 1 and probe 16 which have significant differences in FID lengths.

Probe 16 is located in the top-middle at the inflector region (location reference in

Fig 4.4) and it has a short FID length that ranges only about a few microseconds.
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Figure 6.1: Left FID plot is from probe 1 which is a longer FID length probe and
the right FID plot is from probe 16 which I consider a bad probe because of the
shorter FID length.

Normally, we choose a fit window of FID from the maximum amplitude to 1/e of

the maximum amplitude. However, due to the short FID length, a chosen fit window

also becomes extremely short. Since we cannot use the first few µs from the maximum

amplitude to avoid any distortions from the switching, the chosen fit window becomes

even shorter. This causes challenges when conducting a frequency extraction from

polynomial fit to phase function within an extremely short fit window.

6.1 FID Length Optimization

The fit window choice is an important component during the frequency extraction.

Under higher-order terms, the shorter fit window is less sensitive to frequency ex-

traction. However, the shorter fit window results in a worse resolution. To solve this

issue in data production, the frequency of each FID is extracted in two fit windows.

The long window is usually chosen to be from the maximal amplitude to 1/e of its

maximal amplitude. The short window is generally chosen to be 40 percent of the

long window, but for each of the different data sets, the length of the short window

can be adjusted according to the field drift during the period and the target accuracy

of the analysis.
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6.1.1 Edge Ignore Window (EIW)

Edge Ignore Window (EIW) is one of the parameters in the analysis that is chosen

according to the experiment before the optimization. EIW is defined as the point

in time a signal reaches its maximum amplitude to the point where the fit window

begins. After this short period of time, the fit window begins to take measurements

so that the filter effects on the edges decay away. EIW is set to 60 µs as a default.

The good probes have a FID fit window length that has a range of ms, so the

value of 60 µs EIW does not affect their resolution. However, the bad probes have

a FID fit window length that has a range of µs, so the EIW affects their resolutions

enormously. Fig 6.2 from probe 17 shows that its fit window with 60 µs EIW does

not include most of the long-amplitude oscillations of the FID and this results in a

worse resolution for probe 17. Fig 6.3 shows the comparison between probe 1 and

probe 17’s resolutions.

Probe 17’s frequencies shown in Fig 6.3 fluctuate much more than probe 1’s

frequencies. Therefore, the motivation of the study is to optimize the fit window

to improve probes’ resolutions, especially for the shorter FID probes. In order to

optimize the fit window, the first step is to change the EIW value from 60 µs to 5

µs so that there is only an insignificant loss of the oscillations for the shorter FID

probes. This change does not affect the longer FID probes too much because their

fit ranges are usually in millisecond ranges and the difference of 55 µs from the EIW

changing does not affect their frequency extractions and resolution.

From frequencies in Fig 6.4, the mean frequencies of 60 µs and of 5 µs EIW

settings are 51687.25 Hz and 51685.57 Hz. The difference between the two was about

2 Hz. However, these absolute values are not meaningful because the fixed probes’

purpose is to monitor the field during this period. Thus, the absolute values of the

frequencies do not matter significantly, and instead, we focus on the drift of the
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Figure 6.2: Top: FID plot is probe 17 which is one of the bad probes (shorter FID).
Bottom: The FID plot is zoomed in the fit window of the top plot. Black lines are
the range of the FID length from 60 µs after the maximal amplitude to 1/e of the
maximal amplitude.

Figure 6.3: The data is from Run 3 (Run 10220). The blue plot is probe 17’s
frequencies as a function of the event and the orange plot is probe 1’s frequencies as
a function of the event.
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Figure 6.4: Top plot is probe 1’s FID with 60 µs EIW (black line) and 5 µs EIW
(red line). The bottom plot shows probe 1’s frequencies as a function of events

data. Therefore, a 2 Hz frequency difference does not have significant importance

and instead we focus on the frequency drift and resolution. The standard deviation

of 60 µs EIW setting is 1.40 Hz and the standard deviation of 5 µs EIW setting is

1.54 Hz which is a difference of less than 0.15 Hz (2.5 ppb). In conclusion, the EIW

change does not influence the resolutions for longer FID probes.

On the other hand, shorter FID probes are significantly dependent on EIW be-

cause of their extremely short FID length in ranges of microseconds shown in Fig

6.5. In addition to different fit window lengths, the right plot in Fig 6.5 shows that

the standard deviation decreases after changing the EIW setting from 60 µs to 5 µs.

However, in a few cases, the change in the EIW distorts the resolution of the fixed

probes. For example, probe 17, the left plot in Fig 6.6, shows that the fit window

length is reduced when I change the EIW setting from 60 µs to 5 µs. Because the fit
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Figure 6.5: Top plot is probe 16’s FID with 60 µs EIW (black line) and 5 µs EIW
(red line). The bottom plot shows probe 16’s frequencies as a function of events
of two different EIW settings (Blue represents the 60 µs EIW setting and orange
represents the 5 µs EIW setting .

window length is shorter, the standard deviation of probe 17 gets worse. To fix this

problem, I need to figure out the optimized fit window length that has the smallest

standard deviation for all probes. From this motivation, I design the optimization

method.

Fit Window Optimization Method [6.1]

1. Keep the initial fit start position (5 µs EIW setting).

2. Guess the fit end position and start to increase the fit end position by a small

step (depending on the fit window length).

3. Measure the extracted frequencies’ RMS for each different fit window end po-

sition.
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Figure 6.6: Top plot is probe 17’s FID with 60 µs EIW setting (black line) and 5 µs
EIW setting (red line). The bottom plot shows probe 17’s frequencies as a function
of events of two different EIW settings (Blue represents the 60 µs EIW setting and
orange represents the 5 µs EIW setting.

4. Repeat step 2 to 3 until I get a long-enough fit range that is able to see the

curve and find the minimum RMS.

5. Define the minimum of the curve, minimum RMS, as the end position of the

optimized new fit window.

6.1.2 Finding the Optimized Fit Window

Before I start the optimization method that I describe in the previous section, I want

to figure out how many probes have shorter FIDs. I define good probes (or longer FID

probes) when their standard deviation is less than 2 Hz. For this analysis, I pick one

of the fixed probe runs, Run 10220, from the Run 3 dataset to extract fixed probes’
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Figure 6.7: Top plot is the standard deviation of all fixed probes in Run 10220.
The bottom plot is zoomed in y-axis ranges from 0 to 30 Hz from the top plot.

frequencies, and their standard deviation is shown in Fig 6.7. It shows that most of

the fixed probes’ standard deviations are less than 5 Hz. As a result, according to my

definition of a good probe, 132 out of the 378 probes were defined to be bad probes.

I apply the 5 µs EIW setting to bad probes to verify that my new EIW setting

actually decreases in bad probes’ standard deviations. Fig 6.8 shows the standard

deviations of 132 probes with two different colors: blue for 60 µs EIW setting and
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Probes Old Fit Window New Fit Window Std (before) Std (after)
15 (518, 587) (456, 544) 133.4648 18.0574
16 (498, 520) (449, 505) 414.4725 40.8931
17 (509, 530) (446, 507) 571.037 29.237
22 (499, 541) (446, 570) 169.7193 13.134

Table 6.1: Examples of the new fit windows for some fixed probes. The table contains
the original fit window [µs] as (start, end) and the new fit window as (start, end).
Also, the table includes the standard deviation [Hz] of old and new fit window lengths.
All data is from Run 10220. The full modification table is in Appendix B.

orange for 5 µs EIW setting. I find that there are 13 probes that have significantly

larger standard deviations after the change: Probe 17, 22, 27, 59, 60, 96, 141, 182,

216, 217, 287, 296, and 367. A list of bad probes and their Run 10225 RMS are shown

in Appendix B. I apply my fit optimization method 6.1.1 to these probes first.

The red lines in the left plot in Fig 6.9 represent the start and end time of the

fit window range. I fix the start time and change the end time in small steps. For

probe 17, I set the step as 5 µs and this step is different depending on a probe’s FID

length. The right plot in Fig 6.9 shows the RMS of each different end time (in a unit

of µs) for probe 17. The RMS decreases as the fit window length gets longer but at

a certain point, the RMS starts to increase. The end time of the smallest RMS (the

smallest RMS is at 507 for probe 17 in Fig 6.9) is defined as the optimized end time.

I define the optimized fit window from start time to its optimized end time and I

repeat the same steps to all the other bad probes to optimize their fit window to

have the smallest RMS.

However, the RMS of one single run is insignificant because there is a chance that

a certain probe only acts strangely in the particular run. Therefore, one single stan-

dard deviation is not enough to conclude that my new method improves resolutions

of shorter FID probes. To reiterate, the purpose of the fixed probes is to monitor

the field so that the drift of the field has a higher significant importance than the
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absolute value of the field.

6.2 Production Processing

To check multiple runs with the new fit window, the production script needs to be

modified. The production campaign is the chain of the process to produce the dataset

for analysis. There are three stages of data processing: online, nearline, and offline.

The E989 uses MIDAS [15] to collect the data from the probes. Then, it tosses to the

nearline which is used for monitoring and collecting calibration. Finally, it passes to

offline which has the requirement to process all the data since offline data is the one

used for all different analyses. The E989 experiment production team works hard to

convert online data to offline data with their framework (ART). More details of the

production processing can be found in TDR [15].

6.2.1 Implementation to Production Process

After finishing with the new fit window algorithm for Run 10220, I want to implement

this algorithm to all runs during Runs 2 and 3. An efficient way to do this is to modify

the offline script in the production campaign. We implemented these changes to the

standard production codebase and included it by default in the production chain.

Because the production processing used multiple CPUs for parallel processing, I was

able to optimize not only bad probes but also all 378 probes at one time. After a few

days, I was able to get all the production files of Run 2 and Run 3.

6.3 New Fit Window Analysis.

6.3.1 Run 2 and 3: Frequency Extraction Analysis

Run 2 Dataset is listed in Appendix A. There are more than 500 runs for Run 2. I

extract the frequencies from two different modes for all runs in Run 2: default and

new fit window. Then, I take 20 consecutive events of each run and find the RMS of
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20 events’ frequencies. RMS plots are shown in Fig 6.10. I repeat this for the Run

3 Dataset listed in Appendix A. There are 860 runs in Run 3 and the Run 3 RMS

plots are shown in Fig 6.11.

Run 2 bad probes’ average RMS difference between old and new fit window

settings is -0.64 Hz. The maximum difference is 8.87 Hz, and the minimum difference

is -14.20 Hz. A negative sign means that the old fit window setting is better than

the new fit window setting. 13 probes out of 36 (total selected probes) have a worse

RMS after changing to the new fit window settings, however, most of them improve

RMS after the change. For Run 3, the bad probes’ average RMS difference between

old and new fit window settings is 0.36 Hz. The maximum difference is 3.35 Hz,

and the minimum difference is -2.22 Hz. Run 3 has a better dataset than the Run 2

dataset since the overall Run 3 mean RMS is smaller than Run 2 mean RMS. There

is only four probes that become worse after changing to the new fit window for Run

3. Including all 378 probes, the average difference RMS from Run 2 is -0.03 Hz and

the average difference RMS from Run 3 is 0.03 Hz. Overall, both Run 2 and Run 3 do

not have a significant difference from changing fit window settings and are affected

by less than 0.5 ppb levels.

After analyzing Run 2 and Run 3 data, I question why my new fit window setting

does not improve resolutions for some specific probes such as probe 330. My new fit

window setting should include more oscillations for shorter FID probes and should

be the same for good probes. I generate new plots to visualize what probes get worse

after changing the fit window settings. The new plots are the mean frequency RMS

differences between the two fit window settings from all datasets in Run 2 and Run

3 for each probe shown in Fig 6.12

From Fig 6.12, there are a few probes in Run 2 and Run 3 that the RMS differences

are below 0. For example, RMS differences from probes 5, 35, 182, and 330 in Run 2

are worse than -50 Hz. RMS difference per probe is calculated as RMS (old setting)
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minus RMS (new setting) per probe. Therefore, the negative RMS difference implies

that the RMS gets worse after changing the fit window setting.

I select probes 5, 35, 182, and 330 because these four probes have the worst

RMS difference after changing the fit window setting in Run 2. I generate the RMS

difference plots as a function of the run numbers so that I can visualize which run

numbers are the worst in Run 2 shown in Fig 6.13. Probe 5 shows that entire datasets

get worse. We exclude probe 5 for the analysis because of poor resolution for my

analysis but further investigations are needed from other analyzers. Probe 35 seems

good besides two outliers, but I discover that these two outliers are from noise. After

applying the DQC cut, these outliers are removed. Probes 182 and 330 have two

parts: regions with approximately 0 RMS differences and regions with huge RMS

differences. These two probes also need further investigation.

The further investigation of one of the two probes, probe 330, is shown in Fig

6.14. The subplots represent frequencies as a function of events in two different runs:

run 6856 and run 7455. Run 6856 is picked in the good region, which is approximately

0 RMS differences. The left subplot shows that the bandwidths of the original and

new fit window settings are almost same widths. This explains that the two settings

have about the same RMS and the difference between them is close to zero. Run

7455, however, is the worst RMS difference run of the entire Run 2 dataset. The

right subplot shows that there is a double-band structure for the new fit window

setting which causes an extremely large RMS. I also check probe 182 and the large

RMS difference is caused by the double-band structure. I investigate the FID signal

to figure out why the double-band structure happens for some specific probes.

The FID of probe 330 is shown in Fig 6.15. The FID shape is not the typical

FID shape because it has multiple nodes. In general, FID does not have any nodes

and looks like a decay exponential function. Black vertical lines represent the old-fit

window’s start and end. The new fit windows for run 6856 and run 7455 starts in
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the same position but run 6856 ends at the red vertical line and run 7455 ends at

the green vertical line. One thing I notice is that the differences between run 6856

and run 7455 fit end positions are far from each other. Indeed, Run 7455’s fit end

position passes the first node to another node. I suspect that because Run 7455’s fit

end position passes the first node of the FID and is located in the second node, the

double band is formed. I start to investigate further to verify a fit end position in

the other nodes besides the first node causes the double band.

For probe 233, in run 8996, frequencies as a function of events are shown in the

top plot from Fig 6.16 with three different settings: old fit window, new fit window

0.4 (40% of the nominal fit window), and new fit window 0.7 (70% of the nominal fit

window). The new fit window 0.4 and the new fit window 0.7 shows that we used 0.4

and 0.7 proportion of the fit window length. For example, when the fit window length

is 100 ms, the fit window of 0.4 and 0.7 proportions is 40 ms and 70 ms. The plot

shows that the orange color graph, labeled as new setting 0.7, forms a double-band

structure whereas the other two graphs do not. In order to investigate the cause of

the double-band structure, I need to look at FID, and the bottom plot in Fig 6.16

shows that FID with all fit window ranges for each setting. Probe 233’s FID also

does not look like a typical FID and has two nodes before the signal completely

fades out. I realize that the fit window end point of the new setting 0.7 passes the

first node and is located in the second node. Meanwhile, the fit window end points

of the old setting and the new setting 0.4 lands within the first node. There are

two more probes, probe 182 and probe 221, where the RMS differences are huge.

Therefore, I look at these two probes as well. Fig 6.17 shows the FIDs of probe 182

and probe 221. In conclusion, the huge RMS differences between the old and new fit

window settings happen in probes’ FIDs that are not typical FID shapes and have

more than one node. Whenever the fit window range passes the first node, the double

band structure occurs and causes an extremely large RMS. To improve my new fit
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window optimization algorithm, the maximum fit window range setting is needed so

that it prevented the double band structure to the production stage.

6.3.2 Run 2 and 3: Sync Offset Analysis

The main handle on estimating our ability to track the field drift is called sync offset.

It is the difference between a field map tracked by the fixed probes to the times of

a second field map with respect to the ”truth” of this second field map. Sync offsets

can be calculated as a function of azimuth and an example of an azimuthally resolved

sync offset of the 3d2 trolley period is shown in Fig 6.18. All the trolley periods of

Run 2 and Run 3 are listed in Appendix A. The detailed explanations of interpolation

and sync offsets are from the Run 2 and Run 3 field paper [18].

For this thesis study, I use the Purcell framework, one of two parallel code reposi-

tories used in the field analysis. There are two sync offsets we are interested in:mixing

and mixing with m5 from trolley. Mixing represents the fixed probe’s multipoles

mixed into the dipole tracking. Mixing with m5 from trolley represents the trolley’s

normal sextupole (m5) mixed into mixing.

To use the Purcell framework, first, I need to choose the period and run the

script to generate the sync offset average values and plots. The 3o3 trolley period

sync offset plots are shown in Fig 6.19 with two different fit window settings. The

plot shows all three types of sync offsets: no mixing, mixing, and mixing with m5 from

trolley. No mixing represented the dipole tracking without any multipole mixing but

we, in general, were not interested in the no mixing values. In 3o3 trolley period,

average mixing sync offset reduces from -15.95 Hz to -15.13 Hz after changing the fit

window setting. Average mixing with m5 from trolley sync offset, however, increases

from -2.69 Hz to -2.92 Hz after changing the fit window setting. Average sync offset

values of all periods of Run 2 are shown in Table 6.3.2 and average sync offset values

of all periods of Run 3 are shown in Table 6.3.2. The histograms from the two tables,
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Dataset Mixing Avg Mixing with m5, from trolley
Run Sub Run Old [Hz] New [Hz] Old [Hz] New [Hz]
2B 1 -5.97 -4.97 -1.61 -2.06
2C 1 5.64 5.37 -1.01 -1.42

3 11.31 13.58 2.79 2.38
2D 1 4.53 5.67 -4.55 -4.79

2 -3.69 -5.07 -2.80 -2.43
3 3.03 2.93 -0.27 -0.28
4 -2.86 -2.61 -0.59 -0.65
5 2.04 1.89 -3.26 -3.28
6 2.18 2.20 1.29 1.33

2E 1 0.34 -19.63 3.59 2.65
2 -17.84 -33.28 -2.41 -2.88

2F 1 -6.48 -4.46 -4.63 -4.61
2 -5.07 -4.33 -3.68 -3.70

2G 1 7.79 11.96 -4.92 -5.04
2H 1 -5.98 -6.85 -4.56 -4.56

Table 6.2: The table is shown an average sync offset of the azimuthal of old and new
fit window settings in two different sync offset measurements: Mixing and Mixing
with the trolley’s m5.

Table 6.3.2 and Table 6.3.2, are generated and shown in Fig 6.20.

6.4 Summary

There are 378 probes mounted outside of the muon’s path around the storage ring.

Some regions, such as the inflector region, inevitably have larger gradients than other

regions that affect the FID signal lengths. In general, a nominal fit window is chosen

from the maximum amplitude to 1/e of the maximum amplitude. However, a nominal

fit window causes bad resolutions to a few specific probes with extremely short FID

lengths. Therefore, optimized fit windows per probe are needed to improve their

resolutions. While the effects on individual probes of optimized fit windows can be

significant, this study shows that the analysis can be optimized but with marginal

overall gains.
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Figure 6.8: Top plot is the standard deviation of 132 fixed probes in Run 10220.
The bottom plot is zoomed in on the y-axis ranging from 0 to 200 Hz from the top
plot. The blue line is 60 µs EIW setting and the orange line is 5 µs EIW setting.
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Figure 6.9: Top plot is probe 17’s FID. Black vertical lines represent the fit window
start and end (EIW: 60 µs). Red vertical lines represent the fit window start and end
(EIW: 5 µs). The bottom plot is the standard deviations as a function of fit window
end positions.
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Figure 6.10: The top plot is RMS from Run 2 with two different fit window settings:
default and new. The bottom plot is zoomed in on the y-axis ranging from 0 to 1 Hz
of the top plot.
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Figure 6.11: The top plot is RMS from Run 3 with two different fit window settings:
default and new. The bottom plot is zoomed in on the y-axis ranging from 0 to 1 Hz
of the top plot.
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Figure 6.12: Run 2 and Run 3 mean frequency RMS with two different fit window
settings from all datasets: default and new.
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Figure 6.13: Four graphs represent RMS differences from selected probes (probe
5, probe 35, probe 182, and probe 330 in order) as a function of the Run numbers in
Run 2.

Figure 6.14: Further investigations on Run 2 probe 330. Two subplots are the
frequencies as a function of events in two different runs: run 6856 and run 7455.
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Figure 6.15: Probe 330 FID (Same plots with different scales). Black lines represent
the old-fit window setting. Red lines represent the new fit window setting for run
6856. Green lines represent the new fit window setting for run 7455.
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Figure 6.16: Top plot: Probe 233’s frequencies as a function of events in run 8996
for three different settings: old fit window, new fit window 0.4, and new fit window
0.7. There is a jump in the middle of the plots due to the trolley’s magnetic footprint.
Bottom plot: Probe 233’s FID with corresponding fit window ranges.
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Figure 6.17: FIDs of probe 182 and probe 221

Figure 6.18: Azimuthaly resolved dipole sync offset of the 3d2 trolley period from
the Bloch analysis.
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Figure 6.19: The 3o3 period two sync offsets, mixing and mixing with m5 from
the trolley, with old and new fit windows as a function of station

Figure 6.20: The two histograms, mixing and mixing with m5 from trolley, from
Table 6.3.2 and Table 6.3.2.
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Dataset Mixing Avg Mixing with m5, from trolley
Run Sub Run Old [Hz] New [Hz] Old [Hz] New [Hz]
3B 1 14.35 3.42 -2.62 -3.16

2 -11.60 -14.58 -2.05 -2.27
3 18.97 16.40 -1.05 -1.31

3C 1 -1.44 -15.34 -6.84 -7.47
3D 1 0.96 0.57 -3.95 -3.96

2 -7.98 -7.80 -1.26 -1.07
3 -5.15 -5.18 -1.04 -0.80
4 12.31 11.90 0.10 -0.07
5 1.69 1.33 -0.56 -0.71

3E 1 11.31 11.05 1.94 1.79
2 -0.70 -0.45 -1.23 -1.28
3 -4.58 -4.99 0.16 0.02

3F 1 2.58 -2.53 -5.54 -5.87
3G 1 11.02 8.97 -2.50 -2.69

2 -5.44 -6.49 -2.23 -2.34
3J 1 3.85 1.24 -3.38 -3.51

2 -1.63 -1.38 -2.61 -2.57
3 4.98 5.41 -0.87 -0.83

3L 1 -12.26 -21.94 -8.19 -8.41
3M 1 -1.98 -6.68 -3.98 -4.48

2 -14.71 -14.56 -3.14 -2.77
3 4.68 4.36 0.64 0.52

3N 1 0.18 -0.39 -0.80 -0.88
2 -6.25 -5.68 -1.40 -1.14
3 15.09 15.47 1.76 1.72
4 -7.54 -7.31 -1.46 -1.31
5 -0.65 -1.29 -0.19 -0.14

3O 1 6.76 0.59 -5.38 -5.71
2 -4.95 -5.61 -3.57 -3.63
3 -15.13 -15.95 -2.92 -2.69

Table 6.3: The table is shown an average sync offset of the azimuthal of old and new
fit window settings in two different sync offset measurements: Mixing and Mixing
with the trolley’s m5.
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7

Trolley Probe FID Freq Extraction and Calibration

As described in Section 4.2 and 4.2.1, the trolley is the primary measurement tool

to scan the field and generate the 2D field map periodically around the SR every 3

to 5 days when the muon beam is not present. There are 17 trolley probes inside

the trolley which is made of aluminum. Because the trolley is made of aluminum,

it perturbs the magnetic field locally. To measure the magnetic field that the muon

sees when the trolley is not present, trolley probe calibration is necessary. In this

chapter, I discuss an overview of the trolley FIDs and the detailed trolley calibration

analysis.

7.1 Trolley FID Overview

The 17 NMR probes take measurements sequentially and hence the field in a helical

pattern. In each measurement, the RF (π{2) pulse is pulsed 300 µs that lasts for 14

ms, and the baseline settles around 600 µs. For the trolley FID, the signal (waveform)

from 650 µs to 12.6 ms is used. The reference frequency the trolley received is 61.74

MHz. The FIDs are mixed down to 50 kHz for a field around 1.45 T. The exact

sampling period is 62.0{61.74 “ 1.0004µs. An example of a trolley FID is shown in
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Figure 7.1: Typical Trolley FID.

Fig 7.1.

7.1.1 Optimization and Parameter Choices

Similar to the fixed probes analysis (Chapter 6), Edge Ignore Window, smoothing

parameters, frequency filter, and T0 shifts are needed to be determined to a fixed

constant for the trolley analysis. Here are the chosen empirical numbers for each

analysis parameter:

• Edge Ignore Window: 60 µs

• Smooth parameters : 3 (« 20 µs)

• Frequency filter: 0 Hz to 200 kHz

• FID truncation: 350th event to 12600th event

• T0 shifts : 350th event

The fit window is also similar to the fixed probe analysis which is from the maximum

amplitude to 1/e of the maximum amplitude. Then, 40% of a fit window is used for
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the polynomial fit. Both linear and polynomial fit results are recorded, and analyzers

choose either of them depending on the requirement of the resolution and accuracy.

The resolution and uncertainty of the trolley probes are discussed more in Chapter

9.

7.2 Calibration

There are 17 trolley probes in an aluminum shell that contains the readout electron-

ics. The materials, including the probes themselves, perturb the magnetic field. To

correct the probe measurements to ω̃1p, the plunging probe - 1 NMR probe with pure

water sample with known magnetic properties - is used for the calibration. In this

section, I present the detailed procedures and analysis to evaluate the calibration

constants.

7.2.1 Calibration Procedures and Technique

7.2.1.1 Overview

The calibration constant, CCraw, is defined as the difference in frequency measure-

ment between the plunging probe and selected trolley probe i, CCraw,i “ fpp,i ´ ftr, i

at the same position in space, as perfectly as possible, for this measurement. For

the shielded proton correction, the calibration constant is adjusted to the new cal-

ibration constant, CC34.7˝C . There are numbers of steps involved with determining

the calibration constant and one of the key steps of the calibration procedure is to

ensure that the plunging probe is aligned with the selected trolley probe, as perfectly

as possible, within 0.5mm in each direction.

Therefore, the first step of the calibration procedures is a series of ∆B measure-

ments to align the plunging probe to each selected trolley probe (see Section 7.2.1.2).

During the ∆B measurements, the surface correction coils (SCC), which generate an

imposed gradient in a single direction, are turned on and off. At the calibration
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Figure 7.2: Calibration flow chart and procedure diagram

region, there are special coils that allow not only x and y direction gradients but

also azimuthal z direction. The plunging probe and trolley probe are placed in the

storage ring to measure the two field measurements when the SCC is on and off. The

difference between these two measurements is called ∆B measurement. The plung-

ing probe’s ∆B measurement and trolley probe’s ∆B measurement are exactly the

same when the plunging probe and trolley probe measure the field at the exact same

position. After ∆B measurement, the local field needs to be shimmed (see Section

7.2.1.3) to be highly uniform by adjusting the current to the SCC. Once the local

field is uniform and stable, the rapid swap (see Section 7.2.1.4) is executed in which

the plunging probes and trolley probes swap and measure the field in the same po-

sition 10 times. Fig 7.2 shows the diagram of the calibration procedure. Each of the

steps will be discussed in later sections in more detail.

7.2.1.2 ∆B Measurement

The plunging probe must align with the selected trolley probe to evaluate a perfect

calibration constant. This is almost impossible so the ∆B measurement is able to

describe how close the two probes are in the calibration region. By adjusting the

currents of the SCC, we can generate a linear imposed gradient in either a radial

(x), vertical (y), or azimuth (z) direction. ∆B measurement defines that ∆Bij “
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Bij(SCC ON) ´ Bij(SCC OFF) where the specific probe i are from 1 to 17 and the

direction j are in either x, y, z. During the calibration campaign, there are two

toggles for the plunging probe in all directions, two toggles for the trolley probe in

the z direction, and four toggles for the trolley probe in the x and y directions. The

power supply feedback must be off or paused - which means that the current is held

during ∆B measurements - avoiding that the feedback reacts to the field changes

seen by the fixed probe.

Then, the comparison between ∆B measurements between the plunging probe

and trolley probe, ∆BpTR´ PP q “ ∆BTR ´∆BPP, is used to estimate the relative

position between them. The threshold is a 20 Hz difference, which means that the

relative position offset between the plunging and trolley probe is within 0.5 mm in

the x and y direction since gradients in the x, y directions, dBx{dx and dBy{dy, are

about -40 Hz/mm. In the z direction, the threshold is a 5 Hz difference, which is 0.5

mm offset between, since a gradient in the z direction, dBz{dz, is about - 10 Hz/mm.

7.2.1.3 Shimming the Field

The next step is shimming the field at the target position. The goal is to minimize the

local gradients along x, y, and z directions to reduce the effects of the misalignment

once ∆B measurements are done. During the calibration campaign in Run 1 and

Run 2, only cross scan at the target position in all three directions is performed.

However, for Run 3 and beyond, there are two shimming operations performed: cross

scan and cube scan.

During the cross scan, there is a nine-point field map, 5 mm away from the target

position in all directions, shown in the left diagram in Fig 7.3 and Table 7.1. The

choice of 5 mm adjustment is due to the limitation of the trolley movements in the

x,y, and z directions. Once the three-point scan is done, a second-order polynomial is

used to fit it as a function of distances from the target. The gradient of the fit is called
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Figure 7.3: [Left] Cross Scan diagram. The blue dot is the target position and
there is a nine-point field map: 3 from the x direction, 3 from the y direction, and
3 from the z direction. Each point is 5 mm apart. [Right] Cube Scan diagram. The
black dot is the target position. Blue points, green points, and brown points are in
the x, y, and z directions. There are other points that are combinations of x, y, and
z directions

Scan x y z
1 PPx+5 mm PPy PPz
2 PPx-5 mm PPy PPz
3 PPx PPy PPz
4 PPx PPy+5 mm PPz
5 PPx PPy-5 mm PPz
6 PPx PPy PPz
7 PPx PPy PPz+5 mm
8 PPx PPy PPz-5 mm
9 PPx PPy PPz

Table 7.1: Nine-point Scan. PP means Plunging Probe

the shimmed gradients. Then the SCC configuration file is adjusted for shimming the

field to high uniformity. The cross scan is repeated until the gradient is acceptable

for rapid swapping, which is less than 20 ppb/mm, in all directions.

After the cross scan, the cube scan is performed, which are multiple-point mea-

surements, about a 32-point scan, shown in Fig 2. Not only in the x, y, and z direction

scans, but also in combinations of x and y, y and z, and z and x scans that are mea-

sured to gather more information about cross terms for the uncertainty study. Detail
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scan orders can be found in Table 7.2. Once both cross and cube scans are done, the

final step is the rapid swap.

7.2.1.4 Rapid Swap

The rapid swap procedure is where the selected trolley probe and plunging probe

are swapped at the target position to measure the magnetic field. Python script

automatically operates 10 swaps that take about one and a half hours. The trolley

moves back to a 180-degree position (about azimuthally 10 degrees away from the

target position) during the plunging probe measurements and the plunging probe

extracts as the selected trolley measures the field. Each measurement takes 30 seconds

after the complete stop. The difference between the two field measurements is the

raw calibration constant without any misalignment and other corrections. The reason

for 10 swaps during the rapid swap process is to reduce any bias and obtain good

statistical uncertainty.

7.2.2 Analysis Detail

7.2.2.1 Overview of the Analysis

From rapid swapping, the raw calibration constant, without alignment and temper-

ature correction, is the difference of the field measurements between the selected

trolley probe and plunging probe which is CCraw,i “ BPP,i ´ BTR,i, where i is the

selection of probes from 1 to 17. The full calibration constant is defined as

CC34.7˝C,i “ BPP,i ´BTR,i `
ÿ

q“x,y,z

Bmis,i `Bbar,i ` tempcorr (7.1)

where
ř

q“x,y,z Bmis,i is the misalignment correction term in different directions x,

y, and z, Bbar,i is the barcode correction for trolley positions, and tempcorr is the

temperature and shielded proton correction to the reference temperature, 34.7˝C.

Temperature and shielded corrections are discussed in Section 7.2.2.6. The misalign-

88



Scan x y z
1 PPx PPy PPz
2 PPx PPy+5 mm PPz
3 PPx+5 mm PPy+5 mm PPz
4 PPx-5 mm PPy+5 mm PPz
5 PPx PPy+5 mm PPz
6 PPx PPy+2.5 mm PPz
7 PPx PPy-5 mm PPz
8 PPx+5 mm PPy-5 mm PPz
9 PPx-5 mm PPy-5 mm PPz
10 PPx PPy-2.5 mm PPz
11 PPx PPy PPz
12 PPx+5 mm PPy PPz
13 PPx+2.5 mm PPy PPz
14 PPx-5 mm PPy PPz
15 PPx-2.5 mm PPy PPz
16 PPx PPy PPz
17 PPx PPy PPz-5 mm
18 PPx PPy-5 mm PPz-5 mm
19 PPx PPy+5 mm PPz-5 mm
20 PPx PPy PPz-5 mm
21 PPx PPy PPz
22 PPx PPy PPz-5 mm
23 PPx+5 mm PPy PPz-5 mm
24 PPx-5 mm PPy PPz-5 mm
25 PPx PPy PPz-2.5 mm
26 PPx PPy PPz
27 PPx PPy PPz+2.5 mm
28 PPx PPy PPz+5 mm
29 PPx PPy-5 mm PPz+5 mm
30 PPx PPy+5 mm PPz+5 mm
31 PPx PPy PPz+5 mm
32 PPx PPy PPz
33 PPx PPy PPz+5 mm
34 PPx+5 mm PPy PPz+5 mm
35 PPx-5 mm PPy PPz+5 mm
36 PPx PPy PPz+5 mm
37 PPx PPy PPz
Table 7.2: Cube Scan. PP means Plunging Probe
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ment correction can be expressed as,

Bmis,i “
dBs

dq

ˇ

ˇ

ˇ

ˇ

q“0

¨
∆B(TR - PP)

dBimp{dq
, (7.2)

where dBs{dq is the shimmed gradient from cross and cube scans, ∆B(TR - PP) is

the difference ∆B measurements between the selected trolley probe and plunging

probe, and dBimp{dq is the imposed gradient from ∆B measurements.

7.2.2.2 Rapid Swap Analysis

During rapid swapping, the trolley probe and plunging probe measure each other

10 times at the target position. In a perfect world, the trolley would stop at the

same position 10 times, the field would always be uniform, and there would be no

oscillations and drifts. However, these conditions are not held. There are following

corrections needed to be done in the rapid swap analysis:

• Oscillation correction

• Barcode correction

• Field drift correction

• Temperature correction

Barcode and field drift corrections are done after extracting the frequencies from

each probe. Oscillation and temperature corrections must be done measurement by

measurement.

Plunging Probe

The plunging probe takes measurements when it gets triggered, so data selection is

not needed. Once the plunging probe arrives at the target position, it has 30 seconds

to measure the field. During these 30 seconds, the plunging probe takes 6 data points.
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Figure 7.4: Run 3 probe 2 calibration campaign (rapid swap): plunging probe
measurements for 10 swaps.

There is a total of 60 data points per probe for 10 swaps. Fig 7.4 shows the plunging

probe’s six measurements per swap during rapid swapping in the Run 3 probe 2

calibration campaign. I use the mean and standard deviation of the six-point scans

as swap frequencies and uncertainties.

Trolley Probe

Unlike the plunging probe, the trolley probe takes data continuously during rapid

swapping. Therefore, data selection is necessary. The field measurements need to be

selected where the trolley probe is located at the target position for 30 seconds. Fig 4

shows the probe 2 trolley measurements during rapid swapping. While the trolley is

moving, frequency measurements are changing dramatically. When the trolley stops,

the spread of the frequency measurements is less than a few Hz so that it is a

flat horizontal line on the plot without zooming in. The trolley stops either at 180

degrees during the plunging probe measurements or roughly at 189 degrees at the

target position.

The data selection procedure consists of two steps. As the first step, I look at

the Root Mean Square (RMS) of the nearest five data points to determine where

91



Figure 7.5: Run 3 probe 2 calibration campaign: (rapid swap) trolley probe mea-
surement. The y-axis is frequencies in Hz and the x-axis is events (sample) or data
points during rapid swapping. The top flat lines are when the trolley is at 180 degrees
while the plunging probe takes measurements. I want to select the data where the
trolley is at 189 degrees which is the target position.

the trolley stops. Then, I look at the length of the stopping time to determine the

trolley at the target position and finalize the data selection. While the trolley is

moving, the frequency measurements are changing dramatically so that the RMS of

the nearest five data points must be huge. I set each probe with the appropriate

threshold to determine whether the trolley is moving or not shown in Table 7.3. I

set different thresholds for each probe because of the different probe locations in

the trolley. Once I find where the trolley stops, I need to select the data where the

trolley is at the target position. Fig 7.5 shows that the stopping time of the trolley

at 180 degrees is much longer than the stopping time of the trolley at the target

position, approximately at 189 degrees, because the plunging probe needs longer

time to insert, measure, and extract while the trolley stops at 180 degrees. I set the

threshold of 200 events, approximately 90 seconds, to select the data. Then, the first

20 events are skipped to avoid any mechanical bias or uncertainty. Fig 7.6 shows that

the red marks represent the data selection for the analysis. The mean and RMS of

the selected data regions for each swap represent the trolley field measurement and

uncertainty for each swap.
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Probe Threshold [Hz]
1 1.5
2 1.5
3 1.5
4 3.0
5 3.0
6 4.0
7 3.0
8 10.0
9 3.0
10 3.0
11 4.0
12 4.0
13 3.0
14 3.0
15 3.0
16 3.0
17 7.0

Table 7.3: Rapid Swap RMS Thresholds for Trolley Probes

Figure 7.6: Run 3 probe 2 calibration campaign: (rapid swap) RMS plot from
trolley probe measurements. The y-axis is the RMS in Hz and the x-axis is events
(sample) or data points during rapid swapping. Red marks represent where I select
the data for the analysis.
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Oscillation Correction

During the calibration campaign, an oscillation with a period of two minutes can

be observed. Both the plunging probe and trolley probe measurements take about

30 seconds, which is one-quarter of the oscillation period. Therefore, the oscillation

perturbs the data measurements. To correct the perturbation, first, I generate the

oscillation signals. Then, I apply local offsets to the measurement. Here are the

detailed steps on how to generate the oscillation signals:

• Calculate the average frequency fi of the selected fixed probes for i events

• Calculate the average of the frequencies fave of fi for all events

• Define the oscillation signals as fi ´ fave

To evaluate the oscillation patterns, half of the total numbers of the fixed probes are

chosen which are from 90 to 270 degrees. However, the fixed probes that are located

in the regions where the trolley moves around must be excluded because of the field

perturbation. Therefore, fixed probes from 90 to 180 degrees and 190 to 270 degrees

are first selected, which is a total of 180 fixed probes. To remove noises and spikes,

I look at each individual 180 fixed probes and measure the resolution (RMS) of the

measurements. Then, I remove the fixed probes that are worse than 50 ppb resolution

from the selection. As a result, each probe in the calibration campaign has different

numbers of the selected fixed probe. Fig 7.7 shows the oscillation signal of probe 2.

Once the oscillation signal is generated for each probe, I apply the oscillation

correction to each trolley and plunging probe rapid swap data. Here are the steps on

how I apply the correction:

• Find the corresponding frequency of the event i at the time the event occurred

by using interpolation from the oscillation signal, fi.
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Figure 7.7: The oscillation signal for probe 2

Figure 7.8: Blue line represents the oscillation signal for probe 2. The left plot is
plunging probe data and the right plot is trolley probe data for 10th swap for probe
2 rapid swap. Red dots and black dots represent raw and correction measurements.

• Apply the offset, fi, to the frequency measurement by plunging and trolley

probe.

Comparisons between the raw and correction measurements of the last swap for both

the trolley and plunging probe of the probe 2 rapid swap measurements are shown

in Fig 7.8.

The oscillation correction does not affect the frequency and uncertainty signif-

icantly, but it helps to reduce the oscillation pattern. After the application of the

oscillation correction, the plunging probe improves by 2.6 ppb and the trolley probe

improves by 3.5 ppb in uncertainty resulting in the average of all rapid swaps of 17

probes.
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Figure 7.9: Two different barcode marks on the trolley track. (The drawing is Not
in Scale)

Barcode Correction

During rapid swapping, even running by automatic operation by a Python script,

the trolley is not able to stop at the same exact spot 10 times (or 10 swaps). The

trolley position is usually measured by the encoder, but the encoder position is not

accurate enough due to an uneven backlash and tension of the cable over time.

Therefore, the trolley position is different for each swap and the offset is needed to

evaluate with respect to the first swap. Beside the encoder position, there is another

position measurement method called the Barcode Position. There are two marks

on the trolley track: Regular mark and Absolute mark. While the trolley is moving,

there are 2 sets of LED lights and sensors equipped at the bottom of the trolley that

read the barcode on the track by collecting the light reflection (voltage) signals as the

barcode signal. When the trolley passes the white gap, the voltage is at the maximum,

and when the trolley passes the black mark, the voltage is at the minimum, so the

voltage-position plot has close to a sine function. The diagram of how the marks

look on the track is shown in Fig 7.9. The gap between the two regular marks is

about 1.95 mm and there are 30 reg marks between the two neighbor absolute mark

groups. Each absolute mark group represents a unique binary number to indicate the

position.

I am unable to use the barcode position determination in the calibration directly

to figure out where the trolley is at in the calibration region because of the trolley

motion during rapid swapping: moving back and forth. Barcode position is deter-

mined by matching the absolute/regular barcode to the database between 2 regular
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marks. However, the trolley is not able to get 2 regular marks because it stops and

does not collect the second (next barcode) mark. Therefore, there is up to 1.95 mm

offset from the last barcode mark that the trolley read, which is not able to find the

exact position of the trolley directly from the database. Here is the method to find

the trolley position without the second marker position.

• Pick one trolley dataset to create the voltage database.

• Find the extremes of the trolley measurement.

• Use the voltage database to find the unseen extreme.

• Create the template function to determine the trolley position.

The idea is to use normal trolley runs as the database to predict the trolley position

in rapid swaps during the calibration campaign. In order to use normal trolley runs

as the database, the barcode signals from normal trolley runs must be identical and

repeatable. The barcode signals from different trolley runs are shown in Fig 7.10

and plots from each of the three trolley run from the Run 3 dataset are almost

identical and verify that the barcode signal (voltage-position relationship) is highly

repeatable. I pick Run 10225 as the dataset for the Run 3 calibration analysis. Due

to the 2 sets of LED lights and sensors equipped at the bottom of the trolley, the

voltage between two extremes indicates the position of the trolley. Fig 7.11 shows

the barcode signal and V oldiff of Run 10225. From the reference [84], the voltage

difference, V oldiff, between extremes are stable within 0.01 V. By using V oldiff, the

unseen regular mark can be predicted.

Once the database is ready, the extremes are found from the measurements from

each swap of the rapid swap of the selected probe run. Because V oldiff is also highly

repeatable, I match each swap extreme data to the database shown in Fig 7.12. After

matching, based on the database, the unseen regular mark is predicted. In the last

97



Figure 7.10: Barcode signal of three Run 3 CCW: Run 10148 (blue), Run 10191
(orange), and Run 10225(green)

Figure 7.11: Left: Barcode Signal of Run 10225. Red marks represent Barcode
Position in the system. Right: V oldiff of Run 10225

step of the method, after predicting the unseen regular mark, the template function

is created to determine the final trolley position. The template function is expressed

as:

V ol “ A sin pkppos´ posregq ` bq `B

A “
|Startvol ´ endvol|

2

B “
|Startvol ` endvol|

2

k “
π

posreg ´ posunseen

b “ ´
π

2
.

(7.3)

Then, from equation 7.3, the final position is defined as:

pos “ posreg `
1

k
arcsin p

V ol ´B

A
q ´

b

k
(7.4)
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Figure 7.12: Matching probe 3 extreme data from swap 0 to 3 to the database
(Run 10225)

Figure 7.13: Left: Blue line represents the barcode signal of Run 10225 and the
orange line represents the guess position or the barcode signal from the method of
the first swap of Probe 3. Right: the linear relationship between the guess position
and the real position

The position template function for the first swap of probe 3 is shown in Fig 7.13.

The real position and guess position signals are almost matched and the linear rela-

tionship with the coefficient of the slope, 1.0000˘ 5.1415ˆ 10´5 and the correlation,

0.9999. Offsets are the difference between each swap’s final position and the first

swap position since the first swap position is the reference point because that’s the

only swap that ∆B is measured during the calibration campaign. The result is shown

in Table 7.4.
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Probe swap1 swap2 swap3 swap4 swap5 swap6 swap7 swap8 swap9 swap10
1 0.00 -0.45 -0.43 -0.37 0.20 -0.05 0.15 -0.40 0.25 -0.04
2 0.00 1.22 -0.42 -0.21 -0.17 2.94 0.09 1.05 -0.39 1.13
3 0.00 0.32 0.04 1.84 0.05 0.53 1.88 -0.03 0.69 0.82
4 0.00 -0.20 0.23 -0.98 -0.12 -0.14 0.01 0.13 0.21 -1.15
5 0.00 -0.01 -0.08 -0.01 0.14 0.63 -0.31 0.68 0.27 0.81
6 0.00 -0.08 0.00 0.11 0.08 -0.05 0.06 -0.05 -0.08 -0.03
7 0.00 -0.04 -0.17 -0.09 -0.07 -0.01 -0.19 -0.13 -0.16 -0.17
8 0.00 -1.66 0.39 0.02 -0.06 -0.44 0.26 -0.51 -0.49 -0.45
9 0.00 0.12 1.03 0.98 0.95 1.00 -0.80 1.16 -0.21 -1.80
10 0.00 0.41 1.41 0.16 0.78 0.20 0.43 1.10 1.12 0.05
11 0.00 0.00 -0.23 -0.22 -0.13 -0.21 -0.06 -0.01 -0.26 -0.08
12 0.00 -0.43 -0.01 -0.48 0.52 0.11 0.62 -2.32 0.05 0.11
13 0.00 -0.02 -0.02 -0.06 -0.03 -0.04 -0.03 -0.03 -0.01 -0.05
14 0.00 0.01 0.00 0.01 0.00 0.09 0.04 0.05 0.07 0.03
15 0.00 -0.31 -0.08 -0.87 0.00 -0.67 -0.37 -0.45 -0.09 -0.13
16 0.00 -0.09 -0.19 -0.27 0.20 0.00 -0.14 0.30 -0.27 0.33
17 0.00 0.24 0.25 -0.11 -0.01 -0.01 0.07 -0.01 0.06 -0.01

Table 7.4: Barcode Correction results. Unit: Hz

Field Drift Correction

The rapid swap measurements take about 1.5 to 2 hours. During this time, the

field is drifting and this drift perturbs the measurement significantly. To correct the

field drift over time, the ABA method is used in the analysis. Fig 7.14 shows the

scheme of the ABA method: the combination of trolley (A) - plunging (B)- trolley

(A) measurements. Let’s assume the field has a linear drift with slope c. At the time

t1, the frequency from the trolley probe is B1 “ B0 ` c ¨ t1. At the time t2, the

frequency from the plunging probe is B2 “ B0` b` c ¨ t2, where b is the perturbation

of the field because of the swapping from the trolley to the plunging probe. At the

time t3, the frequency from the trolley probe again, after retracting the plunging

probe, is B3 “ B0 ` c ¨ t3. To remove the drift and calculate the perturbation b is

used:

b “
t3 ´ t2
t3 ´ t1

pB2 ´B1q `
t2 ´ t1
t3 ´ t1

pB2 ´B3q (7.5)

The coefficient pt3´ t2q{pt3´ t1q and pt2´ t1q{pt3´ t1q are time-weighted coefficient,
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Figure 7.14: Schematic of ABA method: trolley - plunging -trolley combination

which are defined as ω1 and ω2. The uncertainty of the ABA method is expressed:

δb2
“ ω2

1δB
2
1 ` ω

2
2δB

2
3 ` p1´ 2ω1ω2qδB

2
2 (7.6)

There are 10 swaps per rapid swap. Therefore, there are 9 combinations for each

probe from the ABA method. For example, the first b is from the first swap of the

trolley and plunging and the second swap of the trolley. The second b is from the

second swap of the trolley and plunging and the third swap of the trolley and so on.

A total of nine b measurements are calculated from the ABA methods for each rapid

swap. When I average the final nine b values, the measurements become correlated

because chains of the ABA methods overlap swapping measurements. Instead of

chains of the ABA methods, to avoid the measurement correlations, I make ABA,

BAB, ABA, and so on without overlapping data. In this case, it would be easier

to alternate the uncertainty. The uncertainty δb is the square root of the quadratic

summation of alternate uncertainties. Fig 7.15 shows the ABA results for probe 6.

The blue markers are from the raw data, which is the difference between the plunging

and trolley-swapping measurements. The green markers are from ABA methods.

The green markers have smaller error bars and are flatter than the blue markers.
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Figure 7.15: ABA results for probe 6. The blue markers are for raw data and the
green markers are for the correction data.

Therefore, the field drift affects the data measurements during the rapid swapping

run and the correction improves the data quality by using the ABA method.

7.2.2.3 ∆B Measurement Analysis

∆B measurement determines the misalignment between the trolley and the plunging

probe. I first measure ∆B for both of the trolley and plunging probe. Then, I extract

the imposed gradient from ∆B measurements. The misalignment can be expressed

as:

Mis “
∆Btr ´∆Bpp

dBimp{dq
(7.7)

where ∆Btr and ∆Bpp represents ∆B measurements for the trolley and plunging

probe, dBimp{dq is the imposed gradient for q in x, y, and z directions in a local

regime where the higher orders gradients and the cross terms are small. The detailed

explanation is in Section 7.2.1.2.

Plunging Probe

The plunging probe measurement mechanism is explained in Section 7.2.2.2. It

takes 6 measurements for each SCC status and I take the mean and standard devi-

ation of these 6 measurements. Since the measurements take about 30 minutes, the
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Figure 7.16: Plunging probe ∆B measurement plot for probe 1 - x, y, and z
direction in order from top to bottom. X-axis is times and y-axis is frequencies in
units of Hz

field drift perturbs the data taking so the ABA method (see Section 7.2.2.2) is used

to correct the field drift. Fig 7.16 shows how the plunging probe data looks in the x,

y, and z directions for probe 1.

Trolley Probe

The trolley probe measurement is explained in Section 7.2.2.2. The trolley probe

is taking data continuously, so data selection is required when SCC is ON or OFF.
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Probe ∆Bx δ∆Bx ∆By δ∆By ∆Bz δ∆Bz

1 5.14 1.50 -11.68 1.49 -2.27 0.80
2 -3.82 1.05 2.99 1.32 1.95 0.81
3 5.04 1.71 -8.88 1.55 1.06 0.99
4 -19.24 1.22 -14.22 1.28 -1.86 1.94
5 -15.92 1.36 14.89 1.60 -1.34 1.50
6 -8.47 3.72 12.45 2.55 -0.60 1.91
7 7.47 2.71 8.96 1.91 2.03 2.63
8 8.69 1.69 14.43 1.69 1.94 1.46
9 -9.78 1.08 -0.53 1.19 5.15 1.61
10 6.76 2.68 -14.84 1.34 -3.17 1.55
11 15.37 3.19 -7.83 1.69 7.24 2.49
12 -19.35 2.13 -18.85 2.11 8.41 2.57
13 -18.85 2.05 27.53 2.81 0.50 1.75
14 -23.49 2.59 -0.20 1.33 4.05 1.39
15 -8.14 2.54 17.72 1.71 4.17 2.03
16 -10.49 1.38 -14.44 1.93 -3.69 1.78
17 -13.51 2.94 3.95 2.11 4.07 1.96

Table 7.5: Differences of ∆B measurement between trolley and plunging probe for
each direction and each probe in unit of Hz

For the x and y directions, there are 4 toggling, so a total of 8 selections of trolley

data are selected. I use the RMS method to select the data as the same technique

I use for extracting data on the rapid swap analysis. Then, I use the ABA method

(see Section 7.2.2.2) to correct linear drift. I use two ABA methods for the x and

y directions and average them to get the final result. For the z direction, there are

only 2 toggling, so 4 selections of trolley data are selected. I use one ABA method

to correct the field drift. Fig 7.17 shows how the trolley probe data looks in the x, y,

and z directions and red markers represent the data selections. Table 7.5 shows the

difference of ∆B measurements between the trolley and plunging probes.

Imposed Gradient

Once the ∆B measurement is done, the imposed gradient can be determined. There

are two separate parts to evaluate the imposed gradient: the transverse direction (x
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and y directions) and the azimuthal direction (z-direction). The imposed gradients of

the transverse direction can be evaluated from the ∆B measurements of the trolley

probes and the imposed gradient of the azimuthal direction can be evaluated from

the stepper run (Run 11334 for Run 3 calibration campaign) with SCC ON and OFF

in the calibration region. For the transverse direction, I can map the gradient in a

2D contour plot with 17 trolley probes ∆B measurements. The 2D contour plots of

the imposed gradient in the x and y direction are shown in Fig 7.18. To extract the

gradient, the 2D 3rd order polynomial is used around the beam center:

fpx, yq “ p0 ` p1x` p2y ` p3x
2
` p4y2

` p5xy ` p6x
3
` p7y

3
` p8x

2y ` p9xy
2. (7.8)

The derivatives of the fitting function with respect to x and y of each trolley probe

location give the imposed gradient in the x and y directions.

For the azimuthal direction (z-direction), one stepper run scans the field in six

different positions from 189.00 to 189.20 degrees with SCC ON and OFF. The stepper

run is shown in Fig 7.19. The region between each of the two red dashed lines

represents the measurements of six different positions. I use the RMS method to select

the data and the ABA method to correct the field drift of two toggle measurements

(SCC ON and OFF) for each region or each position. Then, I fit the linear function

to these 6 measurements as a function of positions. The slope of the linear function

represents the imposed gradient in the azimuthal (z) direction. Fig 7.20 shows six

measurements as a function of the trolley positions and linear fit of the function.

Table 7.6 shows the results of imposed gradients in all directions. I find dBimp{dx is

between 44 Hz/mm to -47 Hz /mm, dBimp{dy is between 32 Hz/mm and -44 Hz/mm,

and dBimp{dz is between 8 Hz/mm and -12 Hz/mm, each with uncertainties at the

0.1 Hz/mm level.
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Probe dBx{dx δdBx{dx dBy{dy δdBy{dy dBz{dz δdBz{dz
1 -45.2598 0.0004 -38.4125 0.0010 -8.1413 0.1572
2 -45.5722 0.0005 -39.4095 0.0018 -8.9784 0.1590
3 -45.2458 0.0007 -37.5200 0.0013 -8.1134 0.1568
4 -45.5267 0.0005 -39.5844 0.0018 -8.8221 0.1659
5 -45.0450 0.0007 -36.7750 0.0013 -8.1395 0.1537
6 -46.4641 0.0009 -42.5754 0.0052 -12.0092 0.1646
7 -45.4818 0.0012 -41.1548 0.0045 -10.8477 0.1648
8 -44.7305 0.0017 -36.7926 0.0031 -8.9360 0.1594
9 -45.0029 0.0019 -34.0975 0.0026 -8.0787 0.1561
10 -46.0298 0.0017 -35.9017 0.0031 -8.7614 0.1622
11 -46.7478 0.0012 -40.3919 0.0045 -10.5233 0.2355
12 -46.3730 0.0009 -42.9252 0.0052 -11.5807 0.1815
13 -45.2023 0.0012 -40.7128 0.0045 -10.6285 0.1715
14 -44.3373 0.0017 -35.6772 0.0031 -8.8468 0.1561
15 -44.6015 0.0019 -32.6076 0.0026 -8.0874 0.1528
16 -45.7277 0.0017 -34.4364 0.0031 -8.9446 0.1578
17 -46.6259 0.0012 -39.3440 0.0045 -10.8949 0.2127

Table 7.6: Imposed Gradient Result in unit of Hz/mm

7.2.2.4 Shim Gradient Analysis

Before rapid swapping is executed, the field in the calibration region must be shimmed

to be highly uniform. To shim the local gradients, cross scan and cube scan (see

Section 7.2.1.3) are performed. The cross scan only measures x, y, and z directions

so there is no information about cross-axis terms. On the other hand, the cube scan

measures a combination of the x, y, and z axis, which takes more than 30 points

per calibration campaign, so I am able to get richer information and measurements

for the cross-axis terms. Therefore, first, the cross scan is run for shimming local

gradients. Then, the cube scan is run for obtaining detailed gradient information

about the local field in the calibration region [85].

Cross Scan

The cross scan takes a nine-point scan to use to map the gradient (see Fig.7.3): 3

points measured in each direction. The second-order polynomial function is used to
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Probe dBs{dx dBs{dy dBs{dz d2Bs{dx
2 d2Bs{dy

2 d2Bs{dz
2

1 -0.12 -0.08 -0.55 -0.16 0.11 0.07
2 -0.46 0.78 -0.58 -0.30 0.25 -0.01
3 -0.29 -0.17 -0.64 -0.22 0.17 0.03
4 -0.15 -0.85 -0.52 -0.11 -0.06 0.04
5 -0.06 0.18 -0.53 -0.10 -0.07 0.00
6 1.03 -0.16 0.17 -0.75 0.92 0.15
7 0.59 -1.12 0.19 0.57 -0.70 -0.13
8 -0.09 0.57 -0.62 0.53 -0.19 -0.05
9 -0.21 0.25 -0.66 -0.60 0.52 0.05
10 0.43 -0.15 0.43 -0.20 0.31 0.12
11 0.31 0.03 1.70 -0.53 0.96 0.22
12 -0.10 -0.70 0.64 -0.25 0.31 0.31
13 0.02 -0.49 0.09 0.60 -0.88 0.04
14 0.27 0.15 -0.39 0.51 -0.58 -0.03
15 0.05 0.53 -0.34 -0.19 0.11 0.42
16 0.52 0.57 -0.20 -0.14 -0.07 0.01
17 -0.02 0.46 -0.05 -1.33 1.37 0.11

Table 7.7: Run 3 cross scan result

fit the 3-point measurements per each (x, y, z) around the probe position at (x0, y0,

z0):

Bpxq “ p0 ` p1px´ x0q ` p2px´ x0q
2,

Bpyq “ p0 ` p1py ´ y0q ` p2py ´ y0q
2,

Bpzq “ p0 ` p1pz ´ z0q ` p2pz ´ z0q
2.

(7.9)

The cross scan measurements and fit functions for each direction of probe 1 are shown

in Fig 7.21. The cross scan data is used for the active volume correction. The active

volume correction will be discussed in a later section. The cross scan result is shown

in Table 7.7.

Cube Scan

During Run 1 and Run 2 calibration campaigns, the cross scan is only performed

to shim the local gradient. However, during the cross scan, cross-axis terms do not

collect since it scans only one axis (either x, y, or z). To improve the systematic
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source, the cube scan is used during Run 3 and beyond the calibration campaign.

There are more than 30 scans during the cube scan and each scan detail is shown in

Table 7.2. After obtaining measurements from the cube scan, oscillation correction is

needed. The explanation of why oscillation correction is needed for the measurements

is in section 7.2.2.2. The effect of the oscillation correction for probe 1 is shown in

Fig. 7.22. After applying oscillation correction (orange markers on the plot), the error

of each scan reduces significantly.

Due to 30 and more scans, the cube scan takes about one hour to one and half

hours to complete. Unlike the cross scan, which is relatively short-running-time, field

drift cannot be ignored in the cube scan. To correct the field drift, during the cube

scan, the plunging probe takes several data measurements at the same position at

different times. The several data measurements on the top of a linear fit function are

shown in Fig 7.23. Using the slope of the linear fit, the field correction is applied to

each scan measurement on the top of the oscillation correction.

After both oscillation and field drift corrections, instead of using all three direc-

tions, I pick 3 planes (xy, yz, and zx) and use the 2D second-order polynomial to fit

the plane to evaluate the shim gradients.

fpq1, q2q “ a1q
2
1 ` a2q

2
2 ` a3q1q2 ` a4q1 ` a5q2 ` a6, (7.10)

where q1 and q2 are (x,y), (y,z), or (z,x). The shim gradients are derivative of the

equation 7.10:

Bfpq1, q2q

Bq1

“ 2a1q1 ` a3q2 ` a4

Bfpq1, q2q

Bq2

“ 2a2q2 ` a4q1 ` a5

(7.11)

Each plane has two shim gradients for each q1 and q2. Therefore, I can get 2 gradients

per axis, and I use the average of two gradients to finalize the shim gradient of each x,
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y, and z direction. I propagate two uncertainties to determine the final uncertainty for

each x, y, and z direction. The difference between these two results and the difference

between cross scan and cube scan is described in the next section. Here are the tables

showing two results from two planes for each direction x,y, and z from the cube scan

(Table 7.8, 7.9, and 7.10). Since the cube scan is first introduced and implemented

in the Run 3 calibration campaign, some of the cube scan results are not as clean as

they should be. Also, each cube scan measured different numbers of measurements

and positions for each probe. However, beyond pre Run 4 calibrations, the cube

scan perform much better and cleaner with uniform numbers of measurements and

positions per probe. In Table 7.8, 7.9, and 7.10, - means that the measurement is not

able to extract from the cube scan. If only one of two measurements in each probe

was marked as -, I only use the other one as the final result instead of averaging

the two results. If both of the measurements in each probe are marked as -, I use

the cross-scan measurement for that probe. The final result is shown in Table 7.11,

which contains not only the shimmed gradient, but also the second-order shimmed

gradient in x, y, and z directions.
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dBx{dx δdBx{dx d2Bx{dx
2 δd2Bx{dx

2

Probe XY XZ XY XZ XY XZ XY XZ
1 -0.08 -0.16 - 0.04 -0.11 -0.12 - 0.03
2 -0.57 -0.62 - 0.04 -0.28 -0.29 - 0.02
3 -0.18 -0.31 - 0.05 -0.08 -0.16 - 0.03
4 -0.18 -0.11 - 0.08 -0.20 -0.18 - 0.05
5 -0.09 0.00 - 0.13 -0.20 -0.11 - 0.08
6 -0.34 0.38 0.40 0.20 -0.74 -0.78 0.24 0.13
7 0.66 0.69 0.62 0.42 0.99 0.88 0.29 0.20
8 -0.20 -0.02 0.24 0.08 0.29 0.57 0.11 0.05
9 0.17 -0.21 0.18 0.19 -0.49 -0.61 0.11 0.11
10 0.35 0.28 0.20 0.12 -0.29 -0.25 0.09 0.07
11 0.44 0.48 0.18 0.17 -0.41 -0.49 0.08 0.08
12 0.13 -0.47 0.14 0.16 -0.22 -0.26 0.09 0.10
13 0.47 0.37 0.29 0.12 0.76 0.74 0.13 0.07
14 0.16 0.28 0.17 0.05 0.45 0.62 0.08 0.03
15 0.01 0.35 0.13 0.17 -0.06 -0.07 0.08 0.10
16 0.38 - 0.09 - -0.10 - 0.04 -
17 -0.32 -0.35 0.38 0.30 -1.21 -1.21 0.18 0.14

Table 7.8: Two x-direction measurements from two planes XY and XZ during cube
scan.
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Figure 7.17: Trolley probe ∆B measurement plot for probe 1 - x, y, and z direction
in order from top to bottom. Red markers represent the data selections. X-axis is
times and y-axis is frequencies in units of Hz
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Figure 7.18: The 2D contour plots of imposed gradient in transverse direction.
Left: x-direction, Right: y-direction

Figure 7.19: The stepper run with SCC ON and OFF for probe 1. The region
between two red dash-lines represents the measurements of different positions of the
trolley

Figure 7.20: ∆B of the stepper run as function of trolley positions from Fig.7.19.
Blue markers represent the mean and error for each position and the orange line
represents the linear fit. The slope (or gradient) of this linear fit is the imposed z
gradient.
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Figure 7.21: The cross scan measurements with a fit curve of probe 1 in each
direction in order of x, y, and z directions

Figure 7.22: Cube scan measurement plot for probe 1. Blue markers represent the
mean and error of 6 measurements per each scan and orange markers represent the
mean and error of 6 measurements with the oscillation correction per each scan.

Figure 7.23: Field drift measurements plot for probe 1 during the cube scan. Blue
markers represent the mean and error of 6 measurements per center point and the
orange line represents the linear fit of the center measurements.
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dBy{dy δdBy{dy d2By{dy
2 δd2By{dy

2

Probe XY YZ XY YZ XY YZ XY YZ
1 0.04 -0.01 - 0.05 0.15 0.18 - 0.04
2 0.85 0.79 - 0.04 0.28 0.34 - 0.02
3 -0.20 -0.14 - 0.07 0.24 0.14 - 0.04
4 -0.83 -0.98 - 0.06 0.09 0.04 - 0.04
5 0.30 0.30 - - 0.07 0.03 - -
6 0.26 0.32 0.38 0.17 0.93 0.90 0.24 0.10
7 -1.24 -1.08 0.27 0.09 -0.50 -0.74 0.13 0.06
8 1.90 1.82 0.50 0.08 -1.11 -0.72 0.23 0.05
9 -0.12 -0.07 0.17 0.82 0.05 0.23 0.11 0.45
10 -0.28 -0.20 0.41 - 0.05 0.33 0.19 -
11 -0.53 -0.53 0.09 0.07 0.46 0.39 0.04 0.03
12 -1.14 -0.73 0.14 0.19 0.18 0.21 0.09 0.11
13 -0.64 -0.63 0.14 0.12 -1.00 -1.14 0.06 0.05
14 0.38 - 1.18 - -0.70 - 0.49 -
15 0.77 0.72 0.12 0.31 0.42 0.34 0.07 0.15
16 0.45 - 0.19 - -0.11 - 0.09 -
17 0.31 0.31 0.19 0.18 1.58 1.61 0.08 0.08

Table 7.9: Two y-direction measurements from two planes XY and YZ during cube
scan.
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dBz{dz δdBz{dz d2Bz{dz
2 δd2Bz{dz

2

Probe YZ XZ YZ XZ YZ XZ YZ XZ
1 -0.57 -0.54 0.05 0.04 0.09 0.06 0.03 0.03
2 -0.70 -0.61 0.03 0.04 0.05 -0.03 0.02 0.02
3 -0.74 -0.59 0.07 0.05 0.01 0.05 0.04 0.03
4 -0.80 -0.63 0.06 0.08 0.03 0.11 0.04 0.05
5 - -0.93 - 0.12 - -0.07 - 0.08
6 -0.21 0.11 0.14 0.20 0.04 -0.05 0.11 0.13
7 0.01 0.17 0.09 0.21 -0.08 0.10 0.06 0.09
8 - -0.50 - 0.08 - 0.08 - 0.05
9 - -0.43 - 0.18 - 0.27 - 0.11
10 - 0.46 - 0.11 - 0.02 - 0.07
11 0.33 0.28 0.06 0.07 0.17 0.22 0.03 0.03
12 0.34 0.78 0.18 0.15 0.29 0.28 0.11 0.10
13 -0.16 -0.09 0.10 0.05 -0.03 0.05 0.05 0.03
14 -0.19 -0.14 0.03 0.05 -0.03 0.04 0.00 0.03
15 - -0.76 - 0.16 - -0.29 - 0.10
16 - -0.06 - 0.05 - 0.07 - 0.03
17 -0.36 -0.26 0.16 0.12 -0.05 -0.06 0.08 0.06

Table 7.10: Two z-direction measurements from two planes YZ and XZ during cube
scan.

115



P
ro

b
e

d
2
B
s
{
d
x
2

δd
2
B
s
{
d
x
2

d
B
s
{
d
x

δd
B
s
{
d
x

d
2
B
s
{
d
y
2

δd
2
B
s
{
d
y
2

d
B
s
{
d
y

δd
B
s
{
d
y

d
2
B
s
{
d
z
2

δd
2
B
s
{
d
z
2

d
B
s
{
d
z

δd
B
s
{
d
z

1
-0

.1
1

0.
03

-0
.1

2
0
.0

4
0
.1

6
0
.0

4
0
.0

1
0
.0

5
-0

.0
7

0
.0

2
0
.5

6
0
.0

3
2

-0
.2

9
0.

02
-0

.5
9

0
.0

4
0
.3

1
0
.0

2
0
.8

2
0
.0

4
-0

.0
1

0
.0

2
0
.6

6
0
.0

3
3

-0
.1

2
0.

03
-0

.2
4

0
.0

5
0
.1

9
0
.0

4
-0

.1
7

0
.0

7
-0

.0
3

0
.0

3
0
.6

7
0
.0

4
4

-0
.1

9
0.

05
-0

.1
5

0
.0

8
0
.0

7
0
.0

4
-0

.9
1

0
.0

6
-0

.0
7

0
.0

3
0
.7

1
0
.0

5
5

-0
.1

5
0.

08
-0

.0
5

0
.1

3
0
.0

5
0
.0

0
0
.3

0
0
.0

0
0
.0

7
0
.0

8
0
.9

3
0
.1

2
6

-0
.7

6
0.

14
0.

02
0
.2

3
0
.9

2
0
.1

3
0
.2

9
0
.2

1
0
.0

0
0
.0

8
0
.0

5
0
.1

2
7

0.
93

0.
18

0.
68

0
.3

8
-0

.6
2

0
.0

7
-1

.1
6

0
.1

4
-0

.0
1

0
.0

5
-0

.0
9

0
.1

1
8

0.
43

0.
06

-0
.1

1
0
.1

3
-0

.9
2

0
.1

2
1
.8

6
0
.2

5
-0

.0
8

0
.0

5
0
.5

0
0
.0

8
9

-0
.5

5
0.

08
-0

.0
2

0
.1

3
0
.1

4
0
.2

3
-0

.1
0

0
.4

2
-0

.2
7

0
.1

1
0
.4

3
0
.1

8
10

-0
.2

7
0.

06
0.

31
0
.1

2
0
.1

9
0
.1

9
-0

.2
4

0
.4

1
-0

.2
7

0
.0

7
-0

.4
6

0
.1

1
11

-0
.4

5
0.

06
0.

46
0
.1

2
0
.4

2
0
.0

3
-0

.5
3

0
.0

6
-0

.1
9

0
.0

2
-0

.3
1

0
.0

5
12

-0
.2

4
0.

07
-0

.1
7

0
.1

1
0
.2

0
0
.0

7
-0

.9
4

0
.1

2
-0

.2
8

0
.0

7
-0

.5
6

0
.1

2
13

0.
75

0.
07

0.
42

0
.1

6
-1

.0
7

0
.0

4
-0

.6
3

0
.0

9
-0

.0
1

0
.0

3
0
.1

3
0
.0

6
14

0.
53

0.
04

0.
22

0
.0

9
-0

.7
0

0
.4

9
0
.3

8
0
.0

0
0
.0

0
0
.0

3
0
.1

6
0
.0

3
15

-0
.0

7
0.

06
0.

18
0
.1

1
0
.3

8
0
.0

9
0
.7

4
0
.1

7
0
.2

9
0
.1

0
0
.7

6
0
.1

6
16

-0
.1

3
0.

03
0.

46
0
.0

5
-0

.1
1

0
.0

9
0
.4

5
0
.1

9
-0

.0
7

0
.0

3
0
.0

6
0
.0

5
17

-0
.6

7
0.

11
-0

.3
3

0
.2

4
0
.6

8
0
.0

6
0
.3

1
0
.1

3
0
.0

5
0
.0

5
0
.3

1
0
.1

0

T
ab

le
7.

11
:

S
h
im

m
ed

G
ra

d
ie

n
t

R
es

u
lt

in
u
n
it

of
H

z/
m
m

.

116



Probe dBs{dx dBs{dy dBs{dz d2Bs{dx
2 d2Bs{dy

2 d2Bs{dz
2

1 0.00 0.09 -0.01 0.04 0.05 0.00
2 -0.14 0.04 -0.08 0.02 0.06 0.02
3 0.05 0.00 -0.02 0.10 0.02 0.00
4 0.00 -0.06 -0.19 -0.09 0.13 0.03
5 0.01 0.12 -0.40 -0.05 0.12 -0.07
6 -1.01 0.45 -0.22 -0.01 -0.01 -0.15
7 0.09 -0.04 -0.10 0.36 0.08 0.14
8 -0.02 1.29 0.12 -0.10 -0.73 0.13
9 0.19 -0.35 0.23 0.05 -0.38 0.22
10 -0.12 -0.09 0.03 -0.07 -0.13 -0.10
11 0.15 -0.56 -1.39 0.08 -0.54 -0.03
12 -0.07 -0.24 -0.08 0.01 -0.12 -0.02
13 0.40 -0.15 -0.22 0.15 -0.19 -0.03
14 -0.05 0.22 0.23 0.02 -0.13 0.03
15 0.13 0.21 -0.43 0.13 0.27 -0.71
16 -0.15 -0.12 0.14 0.03 -0.04 0.06
17 -0.31 -0.15 -0.26 0.12 0.23 -0.16

MEAN -0.05 0.04 -0.16 0.05 -0.08 -0.04
MIN 0.40 1.29 0.23 0.36 0.27 0.22
MAX -1.01 -0.56 -1.39 -0.10 -0.73 -0.71

Table 7.12: (Run 3) Differences of the first and second orders of shimmed gradients
in Hz between cross scan and cube scan in x, y, and z directions. The last three
rows represent the mean of the differences, the maximum of the differences, and the
minimum of the differences.

Cross Scan vs Cube Scan

The differences between cross scan and cube scan in units of Hz are shown in Table

7.12. The differences in the first-order gradient were 11 ˘ 16 ppb and the differences

in the second-order gradient were -11 ˘ 11 ppb. It confirmed that the differences

between the cross scan and cube scan were within their uncertainties.

7.2.2.5 Misalignment Analysis

In this section, combining all the analyses together, I discuss how to evaluate the

misalignment between the plunging and trolley probe from the ∆B measurements,

the imposed and shimmed field gradients, and the trolley barcode correction and

how to account for it in the calibration constant.
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∆B Measurement

Here is the expression to calculate misalignment correction from ∆B measure-

ments:

Bmis,i “
ÿ dBs

dq

ˇ

ˇ

ˇ

ˇ

q“0

¨
∆B(TR - PP)

dBimp{dq

“
ÿ

Sq ¨Mq,

(7.12)

where Sq is the shim gradient, Mq misalignment, i is a selected probe and q is either

x, y, or z directions.

The uncertainty of the misalignment is expressed as:

δB2
mis,i “ ppδSqq ¨Mqq

2
` pSq ¨ pδMqqq

2, (7.13)

where δSq is the uncertainty of the shim gradient which can be found in Table 7.11

and δMq is the uncertainty of the misalignment. δMq is in unit of mm and is evaluated

by:

pδMqq
2
“ p

δr∆B(TR - PP)s

dBimp{dq
q
2
` p

∆B(TR - PP) ¨ δrdBimp{dqs

pdBimp{dqq2
q
2, (7.14)

where those uncertainties are found in Table 7.5 and 7.6.

Barcode Correction

During the calibration campaign, the ∆B measurement is only performed once.

However, during rapid swapping, the trolley moves in and out 10 times which causes

the additional possible misalignment between the target position and the real po-

sition. The encoder position is not as accurate as the barcode data. However, the

barcode data cannot be directly used. The detailed explanation is in Section 7.2.2.2.

After finding the local offset from the first swap data (reference data), the shimmed

gradient is used to calculate the offset in a unit of Hz:

Bbarcode corr “ Sq ¨misbarcode, (7.15)
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where Sq is defined in equation 7.13 and misbarcode is the local offset from the first

swap data. The result is in Table 7.4. The average offset is -0.168 Hz. The uncertainty

of the barcode correction is about 0.08 Hz.

Misalignment Correction Result

Table 7.13 shows the misalignment correction results for each probe from the Run

3 calibration campaign.
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7.2.2.6 Shielded Proton and Temperature Correction

From the note [86], the standard (reference) temperature is chosen to be T “ 34.7˝C.

Because frequency measurements depend on the temperature, the final correction is

needed from the temperature difference between the actual and standard tempera-

ture.

Plunging Probe Correction

The shielded proton frequency is the measured frequency with a pure sphere water

sample. Since the plunging probe is a cylinder shape probe with a pure water sample,

the shield proton and temperature correction are needed for the plunging probe. The

H2O calibration probe frequency ωppT q to the free proton frequency at the standard

temperature is expressed as:

ωppT q

ωpp34.7˝Cq
“ 1`

1

ωppT q

dωppT q

dT
∆T, (7.16)

where 1
ωppT q

dωppT q

dT
“ ´10.36p0.30q ˆ 10´9 and ∆T “ T ´ 34.7˝C. From this rela-

tionship, the frequency of the plunging probe decreases as temperature increases.

Temperature sensors connected to plunging probe measures in units of Ω. Therefore,

the conversion from Ω to Celsius is needed. Fig 7.24 shows the average temperatures

and uncertainties of the rapid swap of each probe. The error of each swap is the read-

out uncertainty, and it does not include 0.5˝C uncertainty that is in common with

all measurements because of the sensor accuracy. The most difference is about 2˝C

and the temperatures throughout rapid swapping remain stable since the standard

deviation is about 0.2˝C.

The plunging probe uncertainty in ppb can be expressed as,

p
δωp34.7q

ω
q
2
“ δp

dω1

dT
q
2∆T 2

` p
dω1

dT
q
2δp∆T q2, (7.17)
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Probe trolley pluning probe
run-2 run-3 mean run-2 run-3

mean std mean std mean std mean std mean std
1 34.7 0.1 33.6 0.0 34.2 0.0 25.18 0.00 22.72 0.00
2 32.8 0.1 33.7 0.0 33.3 0.1 24.99 0.00 22.51 0.00
3 27.7 0.1 31.5 0.2 29.6 0.1 24.67 0.00 22.66 0.00
4 29.6 0.3 32.9 0.1 31.2 0.2 24.73 0.00 23.16 0.00
5 27.7 0.3 33.8 0.0 30.7 0.2 24.56 0.00 23.20 0.00
6 32.7 0.2 34.4 0.0 33.5 0.1 25.63 0.00 23.77 0.00
7 30.7 0.4 34.3 0.0 32.5 0.3 26.18 0.00 23.77 0.00
8 33.2 0.2 34.7 0.0 33.9 0.1 26.71 0.00 23.89 0.00
9 31.4 0.2 35.0 0.0 33.2 0.2 25.22 0.00 23.96 0.00
10 35.0 0.3 34.8 0.0 34.9 0.2 28.53 0.00 23.94 0.00
11 37.4 0.1 34.6 0.0 36.0 0.1 28.91 0.00 24.01 0.00
12 32.3 0.1 34.8 0.0 33.5 0.1 25.28 0.00 24.10 0.00
13 34.4 0.2 34.9 0.0 34.6 0.1 28.01 0.00 24.03 0.00
14 36.8 0.1 35.4 0.0 36.1 0.1 28.48 0.00 24.25 0.00
15 28.7 0.3 29.7 0.1 29.2 0.2 24.68 0.00 23.83 0.00
16 37.6 0.1 29.1 0.2 33.4 0.2 28.71 0.00 23.84 0.00
17 33.5 0.2 33.0 0.2 33.3 0.2 27.71 0.00 24.35 0.00
tot 32.7 3.0 33.5 1.8 33.1 26.36 0.01 23.64 0.01

Table 7.14: Plunging probe and trolley’s temperatures during rapid swapping in
Run 2 and Run 3 calibration campaigns. Units of C.

where dω1{dT “ 1
ωppT q

dωppT q

dT
“ ´10.36p0.30q ppb. Table 7.14 shows the plunging

probe and trolley temperatures during rapid swapping in Run 2 and Run 3 calibration

campaigns. From Table 7.14, the statistical uncertainty of the plunging probe is 0.00

°C. However, the systematic uncertainty of the plunging probe is 0.5 °C. The result

is shown in 7.15.

The shielded proton frequency from the plunging probe is expressed as:

ω̃
1shielded
p “ ωmeasure

p {r1´ δbpH2O, T q ´ δts, (7.18)

where σpH2O, T q is the isotropic chemical shift (dimagnetic shielding), which is -

25.790p14q ˆ 10´6, δbpH20, T q is the bulk magnetic susceptibility of the water at T,

and δt is the summation of the perturbations to the field due to the probe correction
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Probe Stat Unc (PPB) Syst Unc(PPB)
1 3.6 6.3
2 3.7 6.3
3 3.6 6.3
4 3.5 6.2
5 3.5 6.2
6 3.3 6.1
7 3.3 6.1
8 3.2 6.1
9 3.2 6.1
10 3.2 6.1
11 3.2 6.1
12 3.2 6.1
13 3.2 6.1
14 3.1 6.1
15 3.3 6.1
16 3.3 6.1
17 3.1 6.0

Table 7.15: Plunging probe’s temperature statistical and systematic uncertainties in
ppb.

Figure 7.24: Plunging Probe’s average temperatures and uncertainties during rapid
swapping per probe.
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[87][88]. The bulk susceptibility δbpH2O, T q is evaluated,

δbpH2O, T q “
1

6
χpH2O, T q, (7.19)

where χpH2O, T q is the susceptibility of water at temperature T. The susceptibility

of water χpH2O, T q is described.

χpH2O, T q “ χpH2O, 20˝Cq ˆ r1` a1pT ´ 20q ` a2pT ´ 20q2 ` a3pT ´ 20q3s, (7.20)

where χpH2O, 20˝Cq “ ´9.05p3q ˆ 10´6, a1 “ 1.38810 ˆ 10´4, a2 “ ´1.2685 ˆ

10´7, and a3 “ 8.09 ˆ 10´10 [87][89]. Lastly, the perturbations δt is ´5.5 ˆ 10´9 ˘

12.9ppb{˝C. During rapid swapping, the equation 7.18 is applied to each plunging

probe measurement.

Trolley Probe Correction

Unlike the plunging probe, the trolley probe contains a petroleum jelly sample,

which has a different temperature dependence compared to water, and the tempera-

ture correction is the only one correction needed for the trolley measurements. The

temperature correction is defined as [87],

fcorr “
fmeas

1´
dδjelly
dT
pT ´ 34.7q

, (7.21)

where dδjelly{dT “ 1.775ˆ 10´9˘ 0.225 ppb{˝C. Fig 7.25 shows the average temper-

atures and uncertainties for the rapid swap of each probe. The pattern of the trolley

temperature plot is similar to that of the plunging probe, but the difference is much

larger than the plunging probe’s difference, which is about 8˝C.

Magnitude of Corrections

After evaluating all corrections for the plunging and trolley probes, corrections are

applied to the rapid swap analysis (Section 7.2.2.2). As a result, calibration constants
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Figure 7.25: Trolley’s average temperatures and uncertainties during rapid swap-
ping per probe.

shift about -5.69 Hz when temperature corrections for both plunging and trolley

probes are applied. In addition to the shielded proton correction for the plunging

probe, the calibration constants shift about -98.7 Hz.

The uncertainty for temperature correction is evaluated as (unit of ppb):

δdep “
a

p∆PP q2 ˆ p0.30q2 ` p∆TRq2 ˆ p0.255q2

δtemp “
a

pδPP q2 ˆ p10.36q2 ` pδTRq2 ˆ p1.775q2,

(7.22)

where δdep indicates the temperature dependence uncertainty and δtemp indicates the

temperature uncertainty. ∆PP and ∆TR are the difference between measured and

reference temperatures, (34.7˝C) and 0.30 and 0.225 come from the equation 7.16

and 7.21. δPP and δTR are the uncertainty of measured temperatures. The de-

tailed temperature correction can be found in the note [90]. As a result, temperature

correction gives about 3.3 ppb for each probe. The uncertainty of shielded proton

correction is the combination of the uncertainty in equation 7.18, which is about 13

ppb [89]. Therefore, the total uncertainty is about 13.3 ppb.
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7.2.2.7 Systematic Uncertainty

There are a few systematic sources in the calibration analysis: FID extraction, mis-

alignment, and temperature sensor. These systematic uncertainties shift and produce

perturbation to the calibration coefficient, so they need to be studied.

FID Extraction

To measure the magnetic field, the FID frequency extraction is needed from the

NMR signal. Run 1 analysis used the simulation to estimate the systematic uncer-

tainty from the FID frequency extraction method. In the calibration campaigns, the

local field is shimmed and well-known from the cross scan and cube scan. The dif-

ference in probe sensitivities from plunging and trolley probes can be evaluated by

the simulation tool from the known gradients. The total FID-related systematic un-

certainty, ε, is a sum of the fit uncertainty and intrinsic uncertainty [82]. Table 7.16

shows the fit and intrinsic uncertainties for the plunging and trolley probes during

rapid swapping. The last column of Table 7.16 is the systematic uncertainty of FID

extraction for the swapping run.

The calibration constant is redefined as

CC “ ωtruth ´ ωtrolley ´ εtr (7.23)

During calibration campaign, plunging probe is used for ωtruth, so equation 7.23 is

expressed as

CC “ ωpp ` εpp ` δstatic ´ ωtr ´ εtr

“ ωpp ´ ωtr ` εpp-tr ` δstatic

(7.24)

Therefore, εpp-tr directly contributes to the calibration constant. However, from Run

3 and beyond, I approached a new way to evaluate FID extraction uncertainties and

will discuss them in the later section.
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Probe PP Fit PP Intrinsic TR Fit TR Intrinsic εPP´TR
1 -0.0154 2.3689 -0.0634 1.6837 0.7332
2 -0.0010 0.2471 -0.0051 0.1489 0.1023
3 -0.0130 1.8947 -0.0693 1.2827 0.6682
4 -0.0204 1.9983 -0.1002 1.6738 0.4043
5 0.0305 -2.9331 0.1429 -2.1610 -0.8845
6 0.0021 -1.0786 0.0016 -0.8752 -0.2029
7 -0.0004 0.4509 -0.0010 0.3583 0.0931
8 -0.0083 1.3271 -0.0423 1.0926 0.2686
9 -0.4737 9.4090 -0.9501 7.2948 2.5905
10 -0.0096 2.2564 -0.0282 1.6090 0.6661
11 -0.0773 5.3233 -0.1486 3.9577 1.4370
12 -0.2320 7.6126 -0.4968 5.6536 2.2238
13 0.0048 -2.2625 0.0063 -1.4440 -0.8200
14 -0.0061 2.2746 -0.0106 1.5487 0.7305
15 0.3062 -8.1866 0.5701 -6.2478 -2.2027
16 -0.0004 0.3587 -0.0008 0.3133 0.0457
17 0.0077 -1.2021 0.0306 -1.1727 -0.0523

Table 7.16: Fit and intrinsic uncertainties for trolley probes and the plunging probe
during rapid swapping in a unit of Hz.

Active Volume Misalignment

The active volume of the plunging probe and the trolley are different due to the

different probe geometries. Most notably, the active volume of the plunging probe

has much longer tails than the active volume of the trolley, along the probe axis,

due to the larger radius of the pickup coil. Fig 7.26 shows the sensitivity functions

of the plunging probe and trolley probe. The extracted NMR frequency corresponds

to the average frequency in the active volume. When the field is linear, the active

volume difference would not affect the field measurements. However, in not com-

pletely homogeneous fields with a non-zero second-order derivative along the probe

axis, the two NMR probe geometries probe slightly different contributions due to

this difference in the active volume, even if they are perfectly aligned. Based on the

local field scans, a corresponding correction of what the plunging probe would see

if it would reassemble the trolley probe geometry is calculated. In run 1, this effect
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Figure 7.26: Active volume sensitivity functions for the trolley and plunging
probes.

was not corrected but used as an uncertainty estimate. Local second-order gradients

on the size of up to 5 ppb/mm2 lead to corrections of up to 40 ppb.

To estimate the correction, a simulation tool is used with a shimmed gradient of

each probe. First, the average frequencies of the plunging probe and trolley probe are

estimated by the simulation tool and then I find the difference between the plunging

probe and trolley’s frequencies. Table 7.17 shows the average field evaluations and

differences of the simulated evaluation between two probes. More detailed analysis

will be described in the later chapter (Section 9.2).

Systematic Uncertainty from Misalignment Correction

The misalignment uncertainties come essentially from the gradients and the ∆B

measurements. During the 3D stage in the calibration campaign, ˘5 counts are

allowed which leads to position uncertainty (or repeatability uncertainty) from the

limited position. ˘5 counts are converted to 0.1814mm. The shimmed gradient fit

function is expressed in Equation 7.10 and the shimmed gradient is the derivative of

the fit function which is expressed in Equation 7.11. The position error is evaluated
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Active Volume Difference in Hz
Probe Trolley Plunging Probe Diff

1 10000.83 10001.12 -0.29
2 9999.93 9999.86 0.06
3 10000.37 10000.49 -0.12
4 10000.36 10000.54 -0.18
5 10000.04 9999.92 0.12
6 10001.90 10002.48 -0.57
7 9998.44 9997.84 0.59
8 9999.52 9999.34 0.17
9 10000.67 10000.78 -0.12
10 10001.41 10002.04 -0.64
11 10002.70 10003.94 -1.23
12 10003.71 10005.04 -1.33
13 10000.39 10000.48 -0.09
14 9999.57 9999.48 0.09
15 10005.08 10006.76 -1.68
16 10000.05 10000.01 0.05
17 10001.30 10001.82 -0.52

Table 7.17: Trolley and plunging probe’s average frequencies over active volumes in
a unit of Hz and misalignment uncertainties in all directions due to active volume in
a unit of ppb.

from the error propagation of ˘5 counts and shimmed gradient at misalignment in

the x, y, and z directions. Position error of the selected probe i in direction q can be

found as,

δPOSq,i “ 0.1814 ¨
1

2

d

p
Bfpq, sq

Bq

ˇ

ˇ

ˇ

ˇ

q“q0,s“s0

q2 ` p
Bfpq, tq

Bq

ˇ

ˇ

ˇ

ˇ

q“q0,t“t0

q2, (7.25)

where δPOS is a position uncertainty, q includes not only 3 main directions, x, y,

or z but also cross terms, xy, yz, or zx. For cross-axis terms, the uncertainties are

not available for all probes. For example, probe 1 in xy term is not able to extract

the uncertainty because of the missing scans during the cube scan. For the missing

cross-axis terms’ uncertainties, the average values from other probes in the same

cross-axis terms are used instead. The results are shown in Table 7.18.

The final misalignment uncertainties are the addition of two misalignment un-
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Probe Misx Misy Misz Misxy Misyz Miszx
1 0.12 0.15 0.10 0.16 0.04 0.03
2 0.11 0.11 0.07 0.16 0.03 0.03
3 0.16 0.21 0.12 0.16 0.05 0.04
4 0.23 0.17 0.14 0.16 0.04 0.06
5 0.38 0.00 0.36 0.16 0.14 0.10
6 0.66 0.61 0.36 0.31 0.11 0.16
7 1.10 0.42 0.33 0.26 0.07 0.19
8 0.38 0.74 0.23 0.22 0.07 0.06
9 0.39 1.23 0.54 0.14 0.72 0.15
10 0.34 1.20 0.33 0.18 0.14 0.09
11 0.36 0.16 0.14 0.08 0.06 0.07
12 0.31 0.34 0.34 0.11 0.14 0.12
13 0.46 0.28 0.17 0.13 0.11 0.09
14 0.27 0.00 0.09 0.16 0.04 0.04
15 0.32 0.49 0.47 0.10 0.27 0.13
16 0.16 0.55 0.16 0.08 0.14 0.05
17 0.72 0.38 0.30 0.17 0.17 0.12

Table 7.18: Result of position uncertainty from misalignment in unit of PPB.

certainties: one from the misalignment equation shown in Table 7.13 and another

one from the position uncertainty shown in Table 7.18. Since there are no cross-term

misalignment corrections from Table 7.13, only x, y, and z direction uncertainties are

needed to be propagated.

Footprint Correction

From Run 3 and beyond, during the rapid swapping procedure, the trolley is

retracted 10˝ from 190˝ to 180˝ in order to keep enough distance from the plunging

probe during its measurements. The chosen distance is initially estimated in order

not to be perturbed by the trolley to the plunging probe during its measurements.

However, there is trolley perturbation at 180˝ to the plunging probe measurements.

The magnitude of the trolley perturbation is shown in Fig 7.27 from the note [88].

The plunging probe is positioned in the magnetic field at the nominal calibration

location at 190˝ aligned to the trolley probe 1 position. The plunging probe takes a
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Figure 7.27: The magnitude of the trolley perturbation as seen by the plunging
probe when the trolley is located at the azimuthal location indicated on the x-axis
[88]

field measurement where the trolley is positioned at 185˝. Then, the plunging probe

takes another field measurement where the trolley is retracted to 85˝ in azimuth. The

perturbation of the trolley, as seen by the plunging probe, is defined as the difference

between the two field measurements. The general procedure is repeated for different

trolley azimuthal locations: 33 different locations between 85˝ and 185˝. Fig 7.27

includes the studies for various conditions such as turning off the trolley electronics,

turning off power supply feedback, and positioning the plunging probe at different

trolley probe locations.

In order to estimate the footprint correction at 180˝, first, I need to find the right

function to fit the plot. The fit function is a ` b{px ´ x0q
2, where a and b are the

constant coefficients and x0 is the horizontal shift, in this case, the azimuthal distance

of the ring. Once, constant coefficients are evaluated by fitting the fit function, the

perturbation results are calculated with the fit function of the data in a region of

180˝ ˘ 1˝. The fit value result is 14.3˘ 1.5 ppb. However, the footprint correction is

8 ppb, which is a more conservative estimate of error covering the full range of the

error bars in Fig 7.27.
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FID Extraction Difference between UMass and Hilbert Method

The trolley NMR frequency extraction algorithm (Chapter 6) used in the cali-

bration analysis is identical to the one used in the field map analysis in order to

ensure that the right quantity is calibrated. The well-shimmed field during rapid

swapping and the long FIDs of the water-based NMR probe allows for a relatively

simple frequency determination. Since this is a single point of failure in the ωp analy-

sis chain, this NMR frequency extraction is not only investigated in simulations but

also cross-checked with a completely independent frequency extraction algorithm

based on zero-crossings and an adaptive baseline correction developed by University

of Massachusetts in Amherst (UMass). A more detailed description of the UMass

(Zero-crossing) method can be found in [88]. In Run 1, the UMass algorithm was used

for the calibration constant determination that was eventually used in the analysis

chain. The Hilbert transform-based algorithm was used for cross-checking. However,

in Run 2 and beyond, the Hilbert transform-based algorithm is used for the calibra-

tion constant determination, and the UMass algorithm is used for the cross-check.

Table 8.1 shows the difference between the two frequency extraction algorithms of all

plunging probe measurements during rapid swapping in the Run 3 calibration cam-

paign. More detailed investigation and study will be presented in the next chapter

8.

7.2.3 Run3 Calibration Result

After combining every analysis step together, the final Run 3 calibration constant of

the selected trolley probe i is combined as,

CCi “ Bpp,i ´Btr,i `Bmis,i `Bbar,i `Bfp,i, (7.26)

where Bpp and Btr are the plunging probe and trolley probe field measurements from

the rapid swap, Bmis is the misalignment correction, Bbar is the barcode correction,
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Probe Hilbert Method (Hz) UMass Method (Hz) Differece (Hz) Difference (PPB)
1 11101.0491 11101.2670 0.2179 3.5
2 10940.9076 10940.9450 0.0374 0.6
3 11140.0652 11140.0670 0.0018 0.0
4 11121.2655 11121.2500 -0.0155 -0.3
5 11191.5009 11191.5690 0.0681 1.1
6 10244.6310 10244.6110 -0.0200 -0.3
7 11098.2015 11098.2090 0.0075 0.1
8 10630.8019 10613.8378 0.0634 1.0
9 10800.2586 10800.2730 0.0144 0.2
10 10818.9366 10818.6120 -0.3246 -5.3
11 10730.0975 10729.8620 -0.2355 -3.8
12 10807.7843 10807.2030 -0.5813 -9.4
13 10823.7895 10823.7770 -0.0125 -0.2
14 10448.8441 10448.7820 -0.0621 -1.0
15 10653.3723 10653.3260 -0.0463 -0.7
16 10873.3268 10873.2210 -0.1058 -1.7
17 10123.8804 10101.2900 -0.0172 -0.3

Table 7.19: Results of differences between Hilbert and UMass frequency extraction
methods per each probe during rapid swapping.

and Bfp is the footprint correction. The final uncertainties are separated into two

parts: statistical and systematical uncertainties. The statistical pδstat,iq and system-

atical uncertainties pδsyst,iq per probe i can be calculated as,

δstat,i “

b

δ2
swap,i ` δ

2
mis,i ` δ

2
bar,i ` δ

2
pos,i (7.27)

δsyst,i “

b

δ2
fp,i ` δ

2
act,i ` δ

2
FID,i ` δ

2
temp,i, (7.28)

where δswap is the rapid swap uncertainty, δmis is the misalignment uncertainty, δbar

is the barcode uncertainty, δpos is the 3D position repeatability uncertainty, δfp is the

trolley footprint uncertainty, δact is the uncertainty from the active volume difference

between the trolley and plunging probe, and δFID is the NMR frequency systematic

uncertainty, and δtemp is the temperature uncertainty.

The final Run 3 calibration constant results are in Table 7.20. All calibration

constants are applied to the blind constant, which is within the 50 ppb levels. There

are three different calibration constant results: calibration constant raw, calibration
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Run 3 Calibration Constant [Hz]
Probe Raw Stat Syst PP Temp Shielded Stat Syst

1 190.76 0.15 0.21 183.12 90.41 0.22 0.52
2 181.36 0.13 0.21 173.58 80.87 0.21 0.53
3 193.58 0.19 0.26 185.91 93.20 0.25 0.54
4 184.31 0.40 0.27 176.95 84.23 0.43 0.54
5 192.21 0.37 0.26 184.89 92.18 0.40 0.54
6 205.35 0.32 0.32 198.35 105.62 0.35 0.56
7 219.38 0.36 0.30 212.37 119.65 0.38 0.55
8 174.73 0.39 0.19 167.84 75.11 0.42 0.49
9 184.95 0.37 0.42 178.09 85.36 0.40 0.62
10 124.24 0.37 0.61 117.31 24.59 0.39 0.76
11 275.20 0.42 0.68 268.34 175.61 0.45 0.82
12 207.23 0.36 1.05 200.41 107.68 0.38 1.14
13 222.50 0.30 0.31 215.67 122.94 0.33 0.55
14 176.78 0.43 0.43 170.09 77.36 0.45 0.62
15 174.21 0.56 0.60 167.29 74.57 0.58 0.76
16 118.42 0.64 0.30 111.47 18.74 0.66 0.55
17 267.06 0.41 0.69 260.42 167.69 0.43 0.83

Table 7.20: Final results of Run 3 calibration constant with plunging probe temper-
ature corrections and shield proton corrections.

constant with only plunging probe temperature correction, and calibration constant

with both Plunging Probe and shielded proton corrections.

7.2.4 Comparison Between Different Analyzer

The primary analyzer for the Run 3 calibration analysis, Yi Bingzhi, uses different

fixed probe selections for the oscillation correction. Besides that, most of the analysis

steps are identically the same. However, the primary analyzer uses C/C++ macro

scripts and I use Python-based GM2 library packages for data-driven analysis. For

systemic uncertainty, the primary analyzer uses my FID extraction uncertainty for

the final result. The temperature correction comparisons between two analyzers are

shown in Table 7.21. The shielded correction comparisons are shown in Table 7.22.

The final Run 3 calibration constant comparisons are shown in Fig 7.28.
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Temperature Correction [Hz]
Probe Yi Chris Difference

1 -7.67 7.67 0.00
2 -7.80 7.81 0.01
3 -7.71 7.71 0.00
4 -7.39 7.40 0.01
5 -7.36 7.37 0.01
6 -6.99 7.00 0.01
7 -7.00 7.00 0.01
8 -6.92 6.92 0.00
9 -6.88 6.89 0.01
10 -6.89 6.90 0.01
11 -6.84 6.85 0.01
12 -6.79 6.80 0.01
13 -6.83 6.84 0.01
14 -6.69 6.70 0.01
15 -6.96 6.96 0.00
16 -6.95 6.95 0.00
17 -6.62 6.62 0.00

Table 7.21: Temperature dependency of the diamagnetic shielding of water compar-
ison between Yi and I.

7.2.5 Summary

Compared to the Run 2 calibration campaign, many new features for analysis are

added such as an automatic rapid swapping script and cube scan. Automatic script

reduces human error and cube scan helps to understand the uncertainty of cross

terms.

There are two different analyzers with silently different approaches and tools for

the Run 3 calibration study. Two parallel studies are a good way to cross-check the

results. In conclusion, there are no main differences between the final results, which

are expected.

The uncertainty in total (statistic and systemic uncertainty) is about 10.2 ppb

on average, which achieves the 30 ppb goals of the experiment.
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Shielded Proton Correction [Hz]
Probe Yi Chris Difference

1 100.67 100.38 0.29
2 100.80 100.52 0.28
3 100.71 100.42 0.29
4 100.40 100.12 0.28
5 100.37 100.09 0.29
6 100.01 99.73 0.29
7 100.01 99.73 0.28
8 99.94 99.65 0.29
9 99.90 99.61 0.28
10 99.91 99.62 0.28
11 99.86 99.57 0.29
12 99.81 99.52 0.28
13 99.85 99.57 0.28
14 99.71 99.43 0.29
15 99.98 99.69 0.29
16 99.97 99.68 0.29
17 99.65 99.36 0.29

Table 7.22: Shielded proton correction due to the bulk magnetic susceptibility and
comparison between Yi and I.

7.2.6 Preliminary Result: Pre-Run 4 Calibration Analysis

After finishing the Run 3 calibration analysis, I start to look at pre-Run 4 calibration

data. Pre-Run 4 analysis steps and studies are almost identical to Run 3 calibration

analysis with minor tuning on a few fitting parameters. Table 7.23 shows the prelim-

inary pre-Run 4 calibration constant result with the plunging probe, shielded proton

correction, corresponding statistic, and systematic uncertainties. Both Run 3 and

pre-Run 4 raw calibration constants and the differences between the two are shown

in Fig 7.29. The mean difference is 0.38 ˘ 0.96 Hz, which is 6.1 ppb.
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Figure 7.28: Top Plot: Run 3 calibration constant raw result with blinded constant.
Bottom Plot: The difference between the two results.
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Run 4 Calibration Constant [Hz]
Probe Raw Stat Syst PP Temp Shielded Stat Syst

1 188.77 0.31 0.24 183.10 90.06 0.35 0.54
2 181.79 0.37 0.18 175.87 82.83 0.43 0.52
3 192.64 0.29 0.26 186.85 93.81 0.34 0.55
4 183.48 0.35 0.43 177.54 84.50 0.40 0.65
5 193.22 0.47 0.33 187.16 94.12 0.50 0.60
6 205.72 0.47 0.35 199.81 106.77 0.52 0.61
7 218.34 0.69 0.39 212.45 119.41 0.72 0.62
8 173.81 0.76 0.47 167.84 74.80 0.78 0.68
9 185.83 0.42 0.55 179.62 86.59 0.48 0.74
10 124.04 0.48 0.39 118.28 25.23 0.52 0.63
11 274.75 0.46 1.09 268.88 175.84 0.50 1.19
12 206.39 0.58 1.42 200.33 107.30 0.61 1.50
13 222.58 0.42 0.60 216.69 123.65 0.46 0.77
14 178.06 0.72 0.86 171.89 78.86 0.74 0.99
15 173.17 0.29 1.41 167.41 74.37 0.35 1.49
16 117.84 0.40 0.53 111.86 18.83 0.44 0.72
17 267.41 1.15 1.41 261.52 168.48 1.17 1.49

Table 7.23: Pre-Run 4 preliminary calibration constant with statistic and systematic
uncertainties. PP Temp is plunging probe temperature correction and Shielded is
shielded proton correction.
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Figure 7.29: Top: blue is for Run 3 raw calibration constants and orange is for
pre-Run 4 raw calibration constants. Bottom: the differences between Run 3 and
pre-Run 4 calibration constants.
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8

Plunging Probe FID Freq Extraction and
Uncertainty

8.1 Plunging Probe FID Overview

The plunging probe is used to calibrate the trolley probe during the calibration

campaign (Section 7.2). The local oscillator (LO) for the plunging probe system is

detuned from the expected NMR frequency by ∼10 kHz. The FID is sampled at 10

MHz for 500 ms. The constant baseline of the signal is determined at a long-time

region of the signal where the FID signal decays away [83].

During the calibration campaign, the plunging probe is at the calibration target

where the field is shimmed to high uniformity or applied a high linear gradient. The

shimmed uniformity field is used for the rapid swap (Section 7.2.1.4) and the applied

high linear field is used for the ∆ B measurements (Section 7.2.1.2) for determining

the relative position between the plunging probe and the selected trolley probe.

8.1.1 Shimmed Field

Due to the highly uniform field, the plunging probe FIDs have long signals. One of

the plunging probe FIDs is shown in the top plot from Fig 8.1. The plunging probe

140



Figure 8.1: Plunging probe FID at the center of the trolley during rapid swapping.
Rest of probes FID is at Appendix C.3.

FID is typically around 100 ms long. The phase function, which is shown in the

second plot from Fig 8.1, is calculated exactly as described in Chapter 5. Then the

polynomial fit of φptq, the orange and red lines on the phase function in the second

plot from Fig 8.1, is performed in the half of the range from the maximum amplitude

to 1{e of its maximum amplitude and a 1 ms veto window is applied to the beginning

and end of the fit window to avoid artifacts. The frequency is the fit value of φptq{dt

in the polynomial fits. The residuals are shown in the bottom plot of Fig 8.1. One

shows the residuals from a linear fit and the other from a polynomial with odd terms

up to the 5th order.
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For the calibration analysis, there are at least two different approaches to cross-

checking the result at the end. One uses the Hilbert transform method and another

uses the zero-crossing method to extract its frequencies during the rapid swap. De-

tailed studies of comparison between the two methods are discussed in the next

section.

8.2 Plunging Probe FID Extraction Method

8.2.1 Overview

The plunging probe NMR frequency extraction algorithm (Section 7.1) used in the

calibration analysis is identical to the one used in the field map analysis in order to

ensure that the right quantity is calibrated. The frequency extraction used for the

plunging probe uses the same library and package and follows the same scheme.

1. A Hilbert transform is used to extract the phase function.

2. The phase function is smoothed in two iterations before it is fitted with a 5th

order polynomial in the first 50% of the FID length.

3. The FID length is defined from the maximal amplitude of the envelope to 1/e

of its maximal amplitude.

8.2.2 Two Methods: Hilbert vs UMass

As described in Section 7.2.2.7, in Run 1, the UMass algorithm was used for the

calibration constant determination that was eventually used in the analysis chain.

The Hilbert transform-based algorithm was used for cross-checking. However, in Run

2 and beyond, the Hilbert transform-based algorithm is used for the calibration con-

stant determination, and the UMass algorithm is used for cross-checking. Table 8.1

shows the difference between the two frequency extraction algorithms of all the plung-

ing probe measurements during rapid swapping in the Run3 calibration campaign.
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Probe Hilbert Method (Hz) UMass Method (Hz) Differece (Hz) Difference (PPB)
1 11101.0491 11101.2670 0.2179 3.5
2 10940.9076 10940.9450 0.0374 0.6
3 11140.0652 11140.0670 0.0018 0.0
4 11121.2655 11121.2500 -0.0155 -0.3
5 11191.5009 11191.5690 0.0681 1.1
6 10244.6310 10244.6110 -0.0200 -0.3
7 11098.2015 11098.2090 0.0075 0.1
8 10630.8019 10613.8378 0.0634 1.0
9 10800.2586 10800.2730 0.0144 0.2
10 10818.9366 10818.6120 -0.3246 -5.3
11 10730.0975 10729.8620 -0.2355 -3.8
12 10807.7843 10807.2030 -0.5813 -9.4
13 10823.7895 10823.7770 -0.0125 -0.2
14 10448.8441 10448.7820 -0.0621 -1.0
15 10653.3723 10653.3260 -0.0463 -0.7
16 10873.3268 10873.2210 -0.1058 -1.7
17 10123.8804 10101.2900 -0.0172 -0.3

Table 8.1: Results of difference between Hilbert and UMass frequency extraction
methods per each probe during rapid swapping.

I decided to investigate the plunging probe study after I found out that there are

unexpected large deviations for probes 1, 10, 11, and 12. For the detailed plots, Run

3 plunging probe FID for each rapid swap is shown in Appendix C.3. Run 3 plunging

probe frequency extraction as a function of fit lengths and the frequency extraction

as a function of polynomial orders is shown in Appendix C.3.

8.2.3 Uncertainty Studies

The differences in frequency extractions for probes 3 and 12 are 0.0 and 9.4 ppb.

Fig 8.2 shows the plunging probe FID plots for probes 3 and 12. The FIDs of both

probes look fine. However, the shapes of phase residual plots in Fig 8.2 are different

between probes 3 and 12. Probe 12’s residual plot has more curves while probe 3’s

residual plot is almost flat. Moreover, the fit window of probe 12 is longer than

the fit window of probe 3. Because of the residual plot’s curvature shape, the fit is

more sensitive to polynomial orders and fit window lengths. For example, the phase

residual plots with different polynomial order fit are shown in Fig 8.3. Depending
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Figure 8.2: Left plot is plunging probe FID for probe 3 and the right plot is
plunging probe FID for probe 12

Figure 8.3: The phase residual plot for probe 12 with different polynomial orders
fitting: Red(linear), Orange(5th order), and Brown(7th order)

on the polynomial order, Fig 8.3 shows different residual shapes. Because of the

different residual shapes, the plunging probe frequency extraction can be different.

Fig 8.4 shows relative frequencies as a function of different polynomial orders of

probes 12 and 17. The plot shows that probe 12’s relative frequencies are highly

dependent on the polynomial order. Fig 8.5 shows the frequencies as a function of

different fit window lengths of probes 12 and 17.

In order to compare how much the analysis choices of the frequency extraction
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Figure 8.4: Relative frequencies of probe 12 and 17 with different polynomial
orders. X-axis shows the different polynomial orders and the y-axis shows the rel-
ative frequencies in Hz. The error bars represent uncertainties from events at each
parameter setting.

Figure 8.5: The frequencies of probes 12 and 17 with different fit window lengths
with the same polynomial order of 5. The x-axis shows the different fit window
lengths and the y-axis shows the relative frequencies in Hz.
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Figure 8.6: The left plot shows the difference between the maximum and minimum
values of the fit window lengths from the selected parameter, ranging from 0.4 to 0.7
per probe number. The right plot shows the difference between the maximum and
minimum values of the polynomial order from the selected parameter, ranging from
3 to 6 per probe number.

algorithm affect actual frequency extraction, the difference between the maximum

and minimum values on selected parameter ranges is calculated and plotted as a

function of probe numbers. The selected ranges for fit window length are from 0.4 to

0.7, where 0.5 is the default setting. The selected ranges for the polynomial order fit

parameters are from 3rd order to 9th order, where 5textth order is the default setting

shown in Fig 8.6. From Fig 8.6, the pattern of the left and right plots are similar:

there are peaks at probes 10, 11, and 12 which is matched with the three probes that

are the largest differences between Hilbert and UMass among all probes. I decide to

look at other Run data: the current analysis is based on Run 3. Fig 8.7 shows the

differences between the maximum and minimum frequencies of the fit window lengths

from the selected parameter, ranging from 0.4 to 0.7 per probe number of each Run’s

calibration campaign. At the moment, Run 4, Run 5, and Run 6 calibration analyses

are not completed so only Run 2 and Run 3 analyses are ready to be investigated

on what causes the large frequency difference depending on the analysis choices (fit

length window and polynomial orders) of the frequency extraction algorithm. For

investigations, I choose the selected variables such as amplitude, time, and azimuth

146



Figure 8.7: The left plot shows the difference between the maximum and minimum
values of the fit window lengths from the selected parameter, ranging from 0.4 to
0.7 per probe number of each Run. The right plot shows the difference between the
maximum and minimum values of the polynomial order from the selected parameter,
ranging from 3 to 6 per probe number of each Run.

second-order gradient to find out any correlations.

Fig 8.8 shows the FID length as a function of the difference in frequency extraction

with different calibration campaigns (from Run 2 to Run 6). I am not sure about Run

3 because the Run 3 plot is not similar to other plots. My hypothesis is that there

are huge outliers that cause huge differences between the maximum and minimum

extracted frequencies. Besides Run 3, all other Runs behave the same in that longer

FID lengths tend to be less sensitive to analysis choices. This makes sense because

longer FID lengths have less sensitivity to higher order polynomial terms.

8.3 Summary

The standard plunging probe frequency extraction uses the Hilbert transform as

same as the trolley probe frequency extraction. The plunging probe phase function

is smoothed in two iterations before it is fitted with a 5th order polynomial in the

first 50 % of the FID length. During rapid swapping in the calibration campaigns,

the local field is well-shimmed and the resulting long FIDs of the water-based NMR

probe of multiple 100 ms allow for a relatively simple frequency determination. There

is a completely independent frequency extraction algorithm based on zero-crossing
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Figure 8.8: The plots represent the FID length as a function of the difference in
extracted frequencies. From top to bottom, it starts with Run 2, Run 3, Pre Run 5,
Post Run 5, and Run 6.
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δfreq [ppb] dipole NQ SQ N6
run2 ă1 ă1 2 1
run3 ă1 1 2 2

combined ă1 1 2 2

Table 8.2: Uncertainty from frequency extraction (δfreq) on the calibration constant
propagated to multipoles.

and an adaptive baseline correction developed by UMass to cross-check the standard

NMR frequency extraction results.

Analysis choices of the frequency extraction algorithm, such as the fit window

length and polynomial order, are expected to have a minimal effect on the extracted

frequencies in a very well-shimmed field. In order to quantify the effect these degrees

of freedom of analysis choices have, the parameters for the plunging probe frequency

extraction are varied, and the effect on the calibration constants is evaluated. This

yield an uncertainty from frequency extraction.

For the study, the fit length is varied between 0.4 to 0.7 (nominal 0.5) of the

FID length. Polynomial orders with 3 to 6 degrees of freedom (nominal 4) are used.

I decided on the range of analysis choices because we consider a reasonable, yet

conservative range of the FID frequency extraction settings. The effect is quantified

by the maximal range of difference with respect to the nominal. Plots and detailed

study methods are explained in the previous section.

Since these effects are mostly uncorrelated between the different probes, the effect

on the dipole is suppressed. Fig 8.9 shows an overview of the effect on the dipole

and higher multipoles. Table 8.2 summarizes the uncertainty associated with the

plunging probe frequency extraction. This is a sub-ppb effect for the dipole and a

max 2 ppb effect for higher-order moments.
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Figure 8.9: The plots represent the multipole subtract with multipole value at the
default setting (fit length fraction = 0.5) as a function of fit length fraction - 0.5.
From top to bottom, it starts with a dipole, norm quadrupole, skew quadrupole, and
norm sextupole.
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9

Field Measurement Systematics

FID frequency extraction has a crucial role in the magnetic field measurement. The

collaboration developed the FID models and built the fundamental framework for

the experiment [83]. They studied noise, baseline, and distortion. With these NMR

FID analyses, they also applied it to the trolley calibration to make sure the trolley

probes were well-tuned. Run 1 field analysis was based on their work, simulation,

and framework. There are two papers that can be found in DocDB (Muon g-2 Inter-

nal), Muon g-2 NMR Frequency Extraction [83], and Muon g-2 Trolley Calibration

[82]. Both papers explain the detail of NMR probes’ FID and how FID models and

frameworks are constructed.

It is important to study the same effects also for beyond Run 1. In this chapter, I

will review Run 1 uncertainty analysis and I will introduce my reinterpretation and

a new approach to the systematic uncertainty for Run 2 and beyond.

9.1 Run 1 Uncertainty Analysis

Chapter 5 introduced NMR techniques such as FID frequency extraction and simula-

tion. After the RF pulse, the proton spins precess and the magnetic field induces EMF
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Type Sample L (mm) Sample R (mm) Coil L (mm) Coil R (mm) Coil N
Plunging Probe 40 2.12 11 7.5 5

Trolley Probe (Short) 33.5 1.25 7 2.3 Layer 1: 9
Layer 2: 8

Trolley Probe (Long) 33.5 1.25 15 2.3 Layer 1: 28
Layer 2: 2 at each end

Fixed Probe 33.5 1.25 15 2.3 Layer 1: 28
Layer 2: 2 at each end

Table 9.1: List of probe geometries [83].

in the pick-up coil. Then, this signal is read out by electronics. Equation 5.2 shows

that the response function of coil ηpx, y, zq contributes to the FID signal. There are

three NMR probes used in the experiment: trolley, fixed probe, and plunging probe.

Each probe has a different probe geometry and coil lengths, so each probe’s FID looks

different. Therefore, it is important to study the NMR measurement systematics from

different NMR probe geometry by using simulation.

9.1.1 NMR Probe geometry and sensitivity center

The sample dimensions and coil dimensions are significantly important variables to

understand the probe geometry in the simulation. Table 9.1 shows the details of the

probe geometry variables.

In the simulation, there are a few assumptions to generate the spin precession and

the signal in the pick-up coil. The external magnetic field is in the y direction and the

coil axis is in the z-direction. Due to the non-uniform field, the spin precession is in

the XZ plane. Then, the signal strength generated by a spin precession is proportional

to µXZBZX and the initial spin magnetic moment, µXZ is proportional to sinpkBZXq.

In the simulation, k is tuned to be kBxz “ π{2 at the center of the coil due to the RF

pulse. Therefore, the signal strength, or the sensitivity, of the probe to a precessing

spin at a position is defined,

Spx, y, zq “ C ¨BXZsinpkBXZq, (9.1)

where C is a normalization constant in the sample volume:
ş ş ş

V
Spx, y, zqdxdydz “
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Figure 9.1: Sensitivity functions for trolley and plunging probes.

1.

According to Equation 5.2, the contributions to the signal are Ωpx, y, zq,Apx, y, zq,

and ηpx, y, zq. In simulation, A “ CsinpkBXZq and η “ BXZ. Then, the signal

strength average frequency ω can be expressed as

ω “

ż ż ż

Ωpx, y, zqSpx, y, zqdxdydz (9.2)

Fig 9.1 shows how the probe sensitivity functions look like for the trolley probe long

and the plunging probes.

9.1.2 Fit Accuracy and Probe Accuracy

9.1.2.1 Fit Accuracy

The fit accuracy δ is defined as the difference between the extracted ω from the FID

analysis and the true ω calculated based on the average frequency and the probe

sensitivity function [83].

δ “ ωextracted ´ ω (9.3)
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Figure 9.2: Probe Accuracy (Intrinsic Uncertainty) ε as a function of the second
order field gradient a

9.1.2.2 Probe Accuracy (Intrinsic Uncertainty)

The probe accuracy (intrinsic uncertainty) ε is defined as the difference between ω

and the field at the probe sensitivity center, ωC [83]:

ε “ ω ´ ωC . (9.4)

ωtruth and ωC are different in non-linear gradient and the relationship between ε and

non-linear field can be addressed through simulation. Let the external magnetic field

be as Ωpzq “ az2 ` bz ` Ω0. To illustrate the dependence of ε on the second order

gradient is to fix the coefficient b to be 10 Hz/mm while a is scanned from 0 to 2

Hz/mm2. As shown in Fig 9.2, the probe accuracy (intrinsic uncertainty) ε has a

strong correlation to the second-order field gradient [83].

9.1.3 Run 1 Calibration

Three independent analyzers had done blinded studies for Run 1 calibration analyses

by using independent methods. At the end, everyone’s results are within less than 5

ppb. The detailed notes of the Run 1 calibration analyses can be found here: E989

Note 191: Magnetic Field Calibration Analysis for Run 1 [88] and E989 Note 230:
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Probe ID PP FIT (HZ) PP Intrinsic (Hz) TRLY Fit (Hz) TRLY Intrinsic (Hz)
1 -0.001 1.573 -0.022 1.191
2 0.000 1.798 -0.016 1.361
3 -0.001 1.616 -0.022 1.223
4 0.000 0.057 -0.019 0.043
5 0.000 0.200 -0.018 0.151
6 -0.159 5.553 -0.019 4.146
7 -0.258 6.396 -0.021 4.146
8 0.231 -5.024 -0.023 -3.802
9 -0.004 2.126 -0.022 1.610
10 -0.011 2.919 -0.019 2.209
11 -0.311 6.409 -0.022 4.449
12 -0.124 5.772 -0.018 4.222
13 -0.187 6.395 -0.019 4.439
14 -0.150 6.281 -0.019 4.399
15 -0.204 5.369 -0.020 4.063
16 -0.186 5.939 -0.019 4.280
17 -0.159 6.396 -0.019 4.439

Table 9.2: Fit and intrinsic uncertainties for trolley probes and the plunging probes
during Run 1 rapid swap [83].

Trolley Calibration Analysis for Run1 [89].

During the calibration campaign, the local field at the calibration region is shimmed

so that the higher-order gradient of the local field is reduced significantly, and the

local field shape is well-known. Then, simulated FIDs can be generated from the

known field shape and the intrinsic uncertainties can be evaluated from these simu-

lated FIDs.

9.1.3.1 Trolley Probe and Plunging Probe

Table 9.2 shows the result of the fit and intrinsic uncertainties of each trolley probe

and plunging probe in the calibration region and intrinsic uncertainty dominates the

total error. The trolley probe’s intrinsic uncertainty εt is important in the calibration

and more details can be found in chapter 7.
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9.1.4 Systematic Uncertainty for the Azimuthally Averaged Field

9.1.4.1 Systematic Uncertainty Evaluation for a Field Scan

The systematic uncertainty, both fit and intrinsic uncertainties, can be evaluated

from the simulated FID using the local field derived from the measurement because

the truth of the field at the probe center and the average frequency weighted by the

probe sensitivity function are given by the simulation.

First, the field non-uniformity in this example field scan is investigated. As shown

in Fig 9.3, the dB{dz (top) and d2B{dz2 (bottom) as a function of the azimuthal

position for probe 1, 5, 9, and 12. The reason why these probes are selected is that

they are located at the center of the trolley (probe 1), in the middle layer (probe 5),

the closest to the inflector (probe 9) and the closest to the pole surface (probe 12).

Normally, the dB{dz and d2B{dz2 are up to 40 Hz/mm and 0.5 Hz/mm2. However,

in the worst case, on the inflector region (probe 9), the dB{dz and d2B{dz2 can be

up to 200 Hz/mm and 5 Hz/mm2, respectively.

For the events in the normal field, dB{dz and d2B{dz2 are scanned in ranges from

1 to 40 Hz/mm and from 0 to 0.5 Hz/mm2 with 10 steps each. For the events in the

extreme field, dB{dz and d2B{dz2 are scanned from 1 to 200 Hz/mm and from 0 to

5 Hz/mm2 with 10 steps each. The fit accuracy scan results for normal and extreme

events are shown in Fig 9.4 [83].

9.1.4.2 Systematic Uncertainty Evaluation for the azimuthally averaged field

When calculating the azimuthally averaged field, these uncertainties for all events are

completely correlated [83]. Therefore, the total fit and intrinsic uncertainties of the

azimuthally averaged frequency for a given probe can be calculated by the average

of uncertainties, summing the uncertainties of all the events divided by the total

number of events. The fit uncertainty (top) and intrinsic uncertainty (bottom) as a

function of azimuthal position for probes 1, 5, 9, and 12 are shown in Figure 9.5.
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Probe ID Fit Unc (δ) Intrinsic Unc (ε)
1 0.033 0.0017
2 0.048 0.0014
3 0.034 -0.0015
4 0.029 -0.0025
5 0.020 -0.0026
6 0.029 -0.0187
7 0.079 -0.0164
8 0.039 -0.0090
9 0.098 -0.0052
10 0.036 -0.0028
11 0.043 0.0185
12 0.051 -0.0191
13 0.037 -0.0217
14 0.025 -0.0156
15 0.021 -0.0077
16 0.048 -0.0083
17 0.031 0.0005

mean 0.041 -0.0064
std 0.0196 0.0097

Table 9.3: Fit and intrinsic uncertainties for the azimuthally averaged frequencies
of trolley probes in a unit of Hz [83].

The uncertainties of each trolley probe are shown in Table 9.3.

9.2 Calibration: Active Volume Analysis

The active volume analysis was briefly discussed in the previous section (see Section

7.2.2.7). In this section, I will look at the active volume difference between the trolley

and plunging probe in more detail, specifically on Run 2 and Run 3 calibration rapid

swap datasets. This study is motivated by the active volume of the plunging probe

and the trolley being different due to the different probe geometries, so there should

be a correction between measurements of the two probes because the extracted NMR

frequency corresponds to the average frequency in the active volume throughout the

non-homogeneous fields with the non-zero second order gradients.

For the analysis, I use Run 2 and Run 3 online cross scan measurements. The
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Probe ID dBx{dx dBy{dy dBz{dz d2Bx{dx
2 d2By{dy

2 d2Bz{dz
2

1 -0.88 0.02 0.95 -0.02 0.07 0.25
2 -0.20 0.11 1.44 -0.19 0.07 0.24
3 0.22 -0.13 -0.23 -0.05 0.22 -0.03
4 -0.02 0.78 -0.09 -0.07 -0.05 -0.18
5 0.67 0.39 3.53 -0.03 0.07 0.63
6 -0.75 1.11 -0.20 -0.45 0.64 0.09
7 0.00 0.00 0.00 0.00 0.00 0.01
8 0.00 0.00 0.00 0.00 0.00 0.01
9 0.52 -0.87 6.60 -0.36 0.19 0.92
10 0.28 0.03 -1.15 -0.03 0.01 -0.06
11 -1.79 -0.93 -0.15 -0.16 0.00 0.15
12 0.12 0.22 2.02 -0.21 0.14 0.36
13 -0.18 -0.55 -1.25 0.41 -0.29 -0.23
14 -0.63 -0.75 0.47 0.28 -0.34 0.08
15 0.17 0.68 -1.03 -0.07 0.07 -0.21
16 0.86 0.73 0.05 0.00 -0.07 -0.01
17 0.78 -0.59 -0.17 -0.63 0.62 0.00

Table 9.4: Run 2 online cross scan results per probe: the first shimmed gradient of
x, y, and z in a unit of Hz/mm and the second order shimmed gradient of x, y, and
z in a unit of Hz/mm2.

Run 2 online cross scan results per probe are shown in Table 9.4 and the Run 3

online cross scan results per probe are shown in Table 9.5.

Once I obtained shim gradients from an online cross-scan dataset of Run 2 and

Run 3, I use the simulation tools to generate the average frequencies over the active

volume of each probe. The result is shown in Table 9.6 and it shows the trolley and

plunging probe simulated frequencies and the differences between the two frequencies.

As a result, the Run 3 active volume difference is smaller than the Run 2 ac-

tive volume difference because Run 3 has smaller second-order gradients. Uncertain-

ties can be addressed from shim gradient uncertainty, repeatability uncertainty, and

coil length uncertainty. First, shim gradient uncertainty is the uncertainty from the

second-order gradients in the z-direction. Since the second-order gradients in the

z-direction are the dominant factors, I only considered the second-order azimuthal
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Probe ID dBx{dx dBy{dy dBz{dz d2Bx{dx
2 d2By{dy

2 d2Bz{dz
2

1 -0.12 -0.08 -0.55 -0.08 0.06 0.03
2 -0.46 0.78 -0.58 -0.15 0.13 0.00
3 -0.29 -0.17 -0.64 -0.11 0.09 0.02
4 -0.15 -0.85 -0.52 -0.05 -0.03 0.02
5 -0.06 0.18 -0.53 -0.05 -0.03 0.00
6 1.03 -0.16 0.17 -0.38 0.46 0.07
7 0.59 -1.12 0.19 0.29 -0.35 -0.06
8 -0.09 0.57 -0.62 0.27 -0.09 -0.02
9 -0.21 0.25 -0.66 -0.30 0.26 0.03
10 0.43 -0.15 0.43 -0.10 0.16 0.06
11 0.31 0.03 1.70 -0.27 0.48 0.11
12 -0.10 -0.70 0.64 -0.12 0.16 0.15
13 0.02 -0.49 0.09 0.30 -0.44 0.02
14 0.27 0.15 -0.39 0.25 -0.29 -0.02
15 0.05 0.53 -0.34 -0.10 0.06 0.21
16 0.52 0.57 -0.20 -0.07 -0.03 0.00
17 -0.02 0.46 -0.05 -0.67 0.68 0.05

Table 9.5: Run 3 online cross scan results per probe: the first shimmed gradient of
x, y, and z in a unit of Hz/mm and the second order shimmed gradient of x, y, and
z in a unit of Hz/mm2.

(z-direction) gradients’ uncertainties as the shim gradient uncertainty. Second, the

repeatability uncertainty is the uncertainty from the repeated trials with simulation

tools using the same gradients. Lastly, coil length uncertainty is the uncertainty from

the coil length measurement systematic errors. Coil lengths of each probe are shown

in Table 9.1. I change the coil length in the simulation tool by 15 percent to see

how much of a difference that makes. The results are shown in Table 9.7. The total

uncertainties are calculated as

σtotal “
a

pδgradientq2 ` pδrepeatabilityq2 ` pδcoil-lengthq2. (9.5)

9.3 New Approach: Intrinsic Uncertainty Analysis

I will introduce the new approach to the intrinsic uncertainty of the azimuthally

averaged field in this section.
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Run 2 [Hz] Run 3 [Hz]
Probe ID Trolley PP Diff Trolley PP Diff

1 10005.972 10008.159 -2.19 10000.830 10001.116 -0.29
2 10005.893 10007.602 -1.71 9999.929 9999.865 0.06
3 9999.246 9999.107 0.14 10000.372 10000.494 -0.12
4 9995.439 9993.694 1.74 10000.360 10000.540 -0.18
5 10015.327 10020.847 -5.52 10000.040 9999.923 0.12
6 10002.168 10003.023 -0.86 10001.905 10002.479 -0.57
7 10000.119 10000.165 -0.05 9998.437 9997.842 0.59
8 10000.122 10000.167 -0.05 9999.520 9999.345 0.17
9 10022.050 10029.875 -7.83 10000.668 10000.784 -0.12
10 9998.597 9998.098 0.50 10001.406 10002.041 -0.64
11 10003.665 10004.866 -1.20 10002.703 10003.936 -1.23
12 10008.942 10012.116 -3.17 10003.705 10005.039 -1.33
13 9994.476 9992.779 1.70 10000.394 10000.483 -0.09
14 10001.954 10002.671 -0.72 9999.574 9999.484 0.09
15 9994.993 9993.006 1.99 10005.078 10006.762 -1.68
16 9999.753 9999.596 0.16 10000.054 10000.006 0.05
17 10000.134 10000.172 -0.04 10001.300 10001.818 -0.52

Table 9.6: Run 2 and Run 3 Active volume difference results between the trolley
and plunging probe.

9.3.1 Oversampling

There are about 9000 events in one trolley measurement. The length of the SR is

about 45 m long, so each sample is 5 mm apart. Because the trolley extent is 15

mm, the trolley probe measures the same region multiple times. Fig 9.6 shows the

visualization of the oversampling during trolley measurements. 1/weight means how

many times the probe measures at the azimuthal position.

Intrinsic uncertainty ε “ ω ´ ωC is defined to be probe accuracy for an event.

However, in terms of the azimuthally averaged field in the whole ring region, the

intrinsic uncertainty can not explain the systematic difference from the oversampling.

In a sense, intrinsic uncertainty for the azimuthally averaged field should be the

systematic difference from the oversampling.
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∆d2B{dz2 Repeatability [Hz] Coil Length [Hz] Total
Probe ID [Hz] Trolley PP Trolley PP Uncertainty

1 0.09 0.04 0.04 0.06 0.02 0.12
2 0.14 0.03 0.04 0.01 0.03 0.15
3 0.17 0.04 0.03 0.05 0.01 0.19
4 0.25 0.03 0.04 0.01 0.02 0.25
5 0.18 0.03 0.03 0.03 0.05 0.19
6 0.24 0.04 0.06 0.05 0.10 0.28
7 0.26 0.03 0.05 0.03 0.11 0.29
8 0.16 0.04 0.05 0.04 0.03 0.18
9 0.24 0.04 0.06 0.05 0.03 0.26
10 0.20 0.05 0.05 0.04 0.03 0.21
11 0.49 0.11 0.13 0.16 0.26 0.60
12 0.74 0.11 0.15 0.03 0.15 0.78
13 0.30 0.01 0.03 0.02 0.02 0.30
14 0.42 0.03 0.02 0.03 0.04 0.43
15 0.53 0.12 0.20 0.06 0.14 0.60
16 0.29 0.01 0.02 0.02 0.02 0.29
17 0.68 0.04 0.04 0.01 0.07 0.69

Table 9.7: The table included shim gradient uncertainty, repeatability uncertainty,
and coil length systematic uncertainty in units of Hz.

9.3.2 Intrinsic Uncertainty for the averaged field of the ring

The azimuthally averaged field is defined as

xfy “
1

2π

ż 2π

0

fpϕqdϕ. (9.6)

The measurement of one event i is the average field of the probe extent is driven

from Equation 9.2 and is expressed as

ωi “

ż 2π

0

fpϕqSipϕqdϕ. (9.7)

Because there is oversampling, the average of all events is not the correct way to

express it. Indeed, the azimuthal average around the ring is as:

xωmeasy “

n
ÿ

i

ωi ¨Ψi “

n
ÿ

i

ż 2π

0

fpϕqSipϕqdϕ ¨Ψi, (9.8)
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where Ψi is the weight of event i and n is approximately 9000. The averaging bias

η is the difference between the azimuthal averaged field and the azimuthal averaged

field of measurements which is

η “ xfy ´ xωmeasy “
1

2π

ż 2π

0

fpϕqdϕ´
n
ÿ

0

ωi ¨Ψi. (9.9)

In the standard ωp analysis chain, 2Ψi is defined as ∆ϕi where the distance is apart

between the two nearest samples.

9.3.2.1 Framework Verification with Data

It is extremely crucial to verify the framework with real trolley measurements so that

there are no numerical and other possible errors. Equation 9.7 can be rewritten as

fmeas
ϕi

“

ż 2π

0

fpϕi`ϑq ωpϑq dϑ “

ż 2π

0

fpϕq ωpϕ´ϕiq dϕ “

ż 2π

0

fpϕq ωipϕq dϕ, (9.10)

assuming ωpϑq is anyways 0 outside ϑprobe{2 and ωipϕq “ ωpϕ ´ ϕiq. Then, in this

case, Equation 9.6 can be rewritten as

xfyazi “
1

2π

ż 2π

0

fpϕq

„ř

i ωipϕq
ř

i ωipϕq



dϕ

“
1

2π

ż 2π

0

„ř

i fpϕqωipϕq
ř

i ωipϕq



dϕ

“
1

2π

ż 2π

0

ÿ

i

fpϕqωipϕqΩpϕq dϕ

“
1

2π

ÿ

i

ż 2π

0

fpϕqωipϕqΩpϕq dϕ,

(9.11)

where Ωpϕq “ 1{
ř

i ωipϕq. Assigning a weight Ψi to each measurement (traditionally

we use Ψi “ ∆ϕi{p2πq) allows us to relate
ř

fmeas
ϕi

Ψi to xfyazi. We can enforce
ř

fmeas
ϕi

Ψi “ xfyazi for each measurement i and calculate the corresponding weights
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Run Number Naive (HZ) Ψi “ ∆ϕi (Hz) Ψ1
ipHzq

7215 15.134 0.012 0.000
7293 91.970 0.003 0.000
7468 35.739 0.016 0.000
7608 62.514 0.005 0.000
7638 40.779 0.005 0.000
7842 7.753 -0.005 0.000

Table 9.8: Verification of the Framework. Naive results do not use any weight. Ψi is
the traditional weight that is used for production. Ψ1

i is the new weight for the test.

Ψi that helps us to fulfill this:

Ψi “

ş2π

0
fpϕqωipϕqΩpϕqdϕ
ş2π

0
fpϕqωipϕqdϕ

“

ş2π

0
fpϕqωipϕqΩpϕqdϕ

fmeas
ϕi

. (9.12)

In order to verify that the framework is valid, η should be zero value when new

weight Ψ1
i is used to Equation 9.9.

I use the Fourier Fit to a real field map as a truth field, fpϕq. Fig 9.7 shows

both raw and Fourier fit plots of Run 7070. Using the truth field, fpϕq, and different

weights, we can evaluate different η for each weight. The new weight Ψi expects η to

be zero. The result is shown in table 9.8.

I use multiple trolley runs from the Run 2 Dataset in Appendix A, Table A.1.

Naive results mean that there is no weight used for the test and treat it as the

constant is uniform. Ψi is the traditional weight that is used for production. Finally,

Ψ1
i is a new weight that I want to test the software framework. As shown in Table

9.8, for every run, η is zero when I use a new weight, Ψ1
i. It shows that the framework

has no numerical errors.

9.3.2.2 Result

The result and comparison between Run 1 and the new proposed intrinsic uncertainty

are shown in Table 9.9. For intrinsic uncertainty, ε, the mean and standard deviation

are evaluated from Table 9.3. For intrinsic uncertainty, η, the mean and standard
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Previous Intrinsic Unc (ε) [Hz] New Intrinsic Unc (η) [Hz]
mean -0.0064 0.0032
std 0.0097 0.0092

Table 9.9: Mean and standard deviation of the previous and new intrinsic uncer-
tainties in a unit of Hz.

deviation are calculated from the Purcell Dataset of the whole Run 2 trolley runs,

which is 28 runs. Purcell Interpolation details can be found in the document [91].

The difference between the two intrinsic uncertainty is small, 0.0032 Hz or 0.05 ppb,

which is expected because intrinsic uncertainty is such a small systematic difference.

9.3.3 Comparison between Two Intrinsic Uncertainty

Run 1 intrinsic uncertainty, ε, is evaluated from the simulation with a known local

gradient for each event. It means that we cannot evaluate ε if we do not know the

local gradient. Unfortunately, finding the precise local gradients of 17 probes is not

easy from trolley measurements. However, new intrinsic uncertainty does not need

local gradients for each sample because we use a global gradient as a whole ring.

The simulation takes about 30 seconds per sample. There are 9000 events with 17

probes in general for one trolley run. Then, it will take about 1280 hours per trolley

run. There are 28 trolley runs in the Run 2 Dataset, which needs 35840 hours or

1494 days to complete the simulation. The computing time is not realistic. On the

other hand, the oversampling method only takes a few minutes for one run, so it will

take about 30 minutes to 1 hour to complete all Run 2 Dataset.

9.4 Conclusion

Prior to the work described in this dissertation, the collaborator had constructed an

outstanding and effective NMR FID analysis framework. He focused on two system-

atic uncertainties: one related to the fit, the other being intrinsic. The fit uncertainty

is a systematic difference from the true value arising in the FID frequency extrac-
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tion. The intrinsic uncertainty reflects a systematic difference arising from the probe

geometry and field map. These uncertainties explain the systematic difference on a

single-event basis. However, the experiment’s overall analysis requires the systematic

uncertainty of the azimuthally averaged field around the entire ring. As the event or

sample spacing is smaller than the probe’s extent in length, there are regions where

the trolley measures multiple times, leading to oversampling. Because each event

spaces differently, each event has different numbers of overlaps, which are defined to

be weight.

Because of the oversampling, there is a systematic shift, and the intrinsic uncer-

tainty must reflect this shift. The result of the new approach of intrinsic uncertainty

for the Run 2 Dataset is a 0.05 ppb difference from Run 1 intrinsic uncertainty of

Run 1. The difference is indeed small, as expected.
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Figure 9.3: Top: First gradient dB{dz as function of trolley position; x-axis unit
is degree and y-axis unit is Hz/mm. Bottom: Second gradient d2B{dz2 as a function
of trolley position; x-axis unit is degree and y-axis unit is Hz/mm2. Plots are from
the reference Figure 39 and 40 [83]

166



Figure 9.4: Scan of the fit accuracy in a different field from the note [83].
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Figure 9.5: Top: fit uncertainty δ as a function of trolley position: x-axis is az-
imuthal positions in a unit of degrees and y-axis is fit uncertainties in a unit of
Hz/mm. Bottom: intrinsic uncertainty ε as a function of trolley position: x-axis is
azimuthal positions in a unit of degrees and y-axis is fit uncertainties in a unit of
Hz/mm2. Plots are reproduced from the note [83].
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Figure 9.6: visualization of the oversampling during real measurement.
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Figure 9.7: : Trolley Run [7070]. Blue is the raw data plot and orange is the Fourier
Fit of the blue plot (order of 500).
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10

Conclusion and Outlook

10.1 Conclusion

The BNL E821 Muon g-2 experiment measured the anomalous magnetic moment of

the muon, aµ, to a relative uncertainty of 0.54 ppm. The measured value corresponds

to a discrepancy of between 3.5 and 3.7 standard deviations from the SM theoret-

ical prediction. For the effect to be reliably established, a minimum of 5 or more

standard deviation discrepancy is needed. To prove this premise, a new experiment

based on the same approach as the BNL E821 has been undertaken with a greater

precision goal. The Fermilab E989 muon g-2 experiment aims to measure aµ with a

precision of 140 ppb. I joined the E989 experiment field team in 2018 and mainly

focused on studying the systematics of NMR techniques and probes. The objective

of this work is to implement my studies of the NMR techniques and probes and to

demonstrate the advancement and improvement of the field measurements, which

are directly connected to the calculation of aµ. Several methods and data-driven

computational models are produced to analyze the FID frequency extractions using

all of the relevant NMR probes in the experiment: fixed probes, trolley probes, and
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plunging probes. The method presented here focuses on the optimization of parame-

ters, calibration of the field measurements, and steps necessary to reduce the related

systematic uncertainties in a holistic approach.

Chapter 2 covered the theoretical efforts aimed to calculate the value of aµ to

extreme precision. Chapter 3 introduced the overview of the E989 experiment. The

experiment was done by counting the number of decay positrons observed in the

electromagnetic caloimeters above an energy threshold, while the NMR probes in

and around the muon SR measured the magnetic field of the muon storage region.

Straw trackers assisted both measurements by measuring the muon beam dynam-

ics that directly impact both the precession frequency measurement, ωa, and the

distribution of muons within the measured magnetic field. Chapter 4 and Chapter

5 described the magnetic field measurement system and the NMR techniques that

the field team used to measure the magnetic field of the SR. More mechanisms and

methods details of each probe (fixed probes, trolley probes, plunging probes in order)

are introduced in Chapter 6, Chapter 7, and Chapter 8. Lastly, Chapter 9 described

the field measurement systematics.

My contributions to the experiment are on the magnetic field measurement anal-

ysis. The first step of the magnetic field measurement analysis is to calibrate trolley

NMR probes with a dedicated calibration probe, the plunging probe. One of the pri-

mary goals of my work was the calibration analysis. I performed a careful cross-check

of the Run 2 and 3 calibrations[89] with my own independently developed analysis

approach. I introduced certain new uncertainty studies that were not included in the

previous calibration analysis, such as new FID extraction uncertainty, active volume

correction, and 3D repeatability position uncertainty. I will be the primary ana-

lyzer for Run 4 and beyond calibration analysis and another collaborator will be the

secondary analyzer to cross-check my results. My pre-Run 4 calibration results are

shown in Section 7.2.6 and the difference between pre-Run 4 and Run 3 calibration
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results is 6.1 ppb.

Besides working on the trolley calibration analysis, I have also analyzed the plung-

ing probe FID extraction. There are two major methods to extract the plunging

probe FID: the Hilbert method and UMass (zero-crossing) method. I studied the

differences between the two methods. In addition, I studied how much effect the ex-

tracted frequencies are in a very well-shimmed field depending on analysis choices of

the frequency extraction algorithm, such as fit window length and polynomial order.

The uncertainty associated with the plunging probe frequency extraction result is

shown in Table 8.2. This is a sub-ppb effect for the dipole and a max 2 ppb effect

for higher-order moments.

The analysis step following the trolley calibration is the fixed probe mapping. The

fixed probe field moments are synchronized to the trolley field moments. There are a

total of 378 fixed probes mounted around the ring to monitor the field drift. However,

not all fixed probes have good FIDs. I came out with a new algorithm to improve

the fixed probe measurement resolutions, especially for probes with short FIDs. I

implemented the new algorithm to the production campaign, so each production file

contains new extracted fixed probe frequencies.

Lastly, I worked on field measurement systematics. I introduced a new approach

called oversampling to find the systematic uncertainty of the azimuthally averaged

field of the ring. The uncertainty from the new approach is shown in Table 9.9, which

is 0.05 ppb difference from Run 1 intrinsic uncertainty.

10.2 Outlook

At the time of this writing, the Muon g-2 collaboration is finalizing Run 2 and

Run 3 publications which aim to be completed in summer 2023. Five data-taking

periods, Run 1, Run 2, Run 3, Run 4, and Run 5 have been completed, while Run-6

data-taking is currently underway. Including Run 5 data, the total recorded dataset
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Figure 10.1: The fraction of BNL statistics recorded overtime during the run 6.

contains 17.5 times the number of events compared to BNL E821; with the data

collected in Run 6 to date, the stated E989 goal of 21 times BNL E821 has been

exceeded. The plot of the BNL fraction statistics was recorded over time during the

run shown in Fig 10.1. The first result is only 6 % of the total expected data so

there is much more data to analyze. With the data acquired since Run 1, given the

improvements and upgrades of the ω̃
1

p measurement hardware and software, and with

my contributions, such as the precise analysis of calibration constant, NMR frequency

extraction uncertainties for NMR probes, and field measurement systematics, the

uncertainties in the determination of the magnetic field are being further reduced.

This is an integral contribution, one of many needed to achieve the error budget of

70 ppb in the final result.
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Appendix A

Dataset Definitions
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Table A.1: Run 2 Dataset Overview [Run numbers] 2018 2019

Run 2 Sub-Run Trolley Pair Fixed Probe Runs Template Run
2A 1 (6627, 6676) 6630 6672 6651

1 (6777, 6843) 6780 6837
2B

2 (6843, 6880) 6845 6877
1 (6880, 6937) 6883 6934
2 (6937, 6988+6989) 6946 6985
3 (6988+6989, 7032) 6992 7029

2C

4 (7032, 7070) 7036 7065

6965

1 (7078, 7107) 7082 7104
2 (7107, 7152) 7124 7149
3 (7152, 7188) 7155 7185
4 (7188, 7215) 7191 7212
5 (7215, 7251+7253) 7218 7248

2D

6 (7251+7253, 7293) 7256 7290

7168

1 (7392, 7432) 7396 7427
2E

2 (7432, 7468) 7435 7465
7420

1 (7477, 7514) 7480 7511
2F

2 (7514, 7549) 7521 7546
7530

2G 1 (7608, 7638) 7611 7635 7623
2H 1 (7675, 7699) 7678 7696 7687
2I 1 (7842, 7876) 7845 7873 7859

176



Table A.2: Run 3 Dataset Overview [Run numbers] 2019 2020

Run 3 Sub-Run Trolley Pair Fixed Probe Runs Template Run
1 (8711, 8747) 8715 8741

3B 2 (8747, 8796) 8750 8793 8771
3 (8796, 8846) 8799 8826

3C 1 (8908, 8948) 8911 8945 8928
1 (8955, 8996) 8959 8993
2 (8996, 9030) 8999 9027

3D 3 (9030, 9070) 9033 9067
4 (9070, 9091) 9073 9088
5 (9163, 9200) 9166 9197
1 (9200, 9235) 9203 9232

3E 2 (9235, 9271) 9238 9269
3 (9271, 9314) 9274 9311

9080

3F 1 (9321, 9359) 9324 - 9356 9340
1 (9368, 9407) 9372 9404

3G
2 (9407, 9453) 9410 9450

9412

1 (9631, 9656) 9634 9653
3J 2 (9656, 9680) 9659 9677 9668

3 (9680, 9702) 9683 9699
3L 1 (9769, 9800) 9772 9797 9784

1 (9811, 9847) 9815 9843
3M 2 (9847, 9886) 9850 9883

3 (9886, 9928) 9889 9925
1 (9928, 9963) 9931 9960
2 (9963, 10005) 9966 10001

3N 3 (10005, 10036) 10008 10033
4 (10036, 10072) 10039 10069
5 (10072, 10096) 10075 10093

10020

1 (10106, 10148) 10110 10144
3O 2 (10148, 10191) 10153 10188 10171

3 (10191, 10225) 10194 10222
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Appendix B

New Fit Window for Fixed Probe
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Table B.1: The new fit windows for all bad fixed probes. The table contains the
original fit window [µs] as (start, end) and the new fit window as (start, end). Also,
the table includes the standard deviation [Hz] of the old and new fit windows of Run
10220.

Probe Old fit window New fit window Std (Hz, before) New Std(Hz, after)
3 ( 511 , 576 ) ( 576 , 605 ) 72.76 8.06
4 ( 508 , 577 ) ( 577 , 560 ) 45.11 10.14
5 ( 504 , 555 ) ( 555 , 550 ) 72.47 9.99
9 ( 506 , 580 ) ( 580 , 540 ) 18.83 8.82
15 ( 518 , 608 ) ( 608 , 620 ) 120.65 12.65
16 ( 498 , 520 ) ( 520 , 505 ) 407.72 25.34
17 ( 509 , 530 ) ( 530 , 510 ) 569.01 23.04
21 ( 495 , 549 ) ( 549 , 520 ) 73.94 32.25
22 ( 499 , 559 ) ( 559 , 565 ) 175.08 12.50
23 ( 508 , 593 ) ( 593 , 605 ) 107.12 9.40
27 ( 495 , 569 ) ( 569 , 565 ) 31.19 3.77
28 ( 499 , 557 ) ( 557 , 539 ) 21.69 5.26
33 ( 505 , 541 ) ( 541 , 515 ) 116.43 12.94
34 ( 507 , 575 ) ( 575 , 544 ) 28.76 8.80
35 ( 509 , 562 ) ( 562 , 535 ) 258.82 9.63
43 ( 509 , 709 ) ( 709 , 620 ) 29.76 12.83
71 ( 514 , 642 ) ( 642 , 642 ) 11.98 3.92
74 ( 510 , 693 ) ( 693 , 695 ) 27.03 2.96
75 ( 510 , 534 ) ( 534 , 540 ) 76.16 9.80
91 ( 505 , 738 ) ( 738 , 719 ) 25.95 4.32
124 ( 503 , 562 ) ( 562 , 544 ) 21.03 4.73
181 ( 501 , 894 ) ( 894 , 894 ) 11.51 9.84
182 ( 513 , 544 ) ( 544 , 520 ) 54.35 5.16
192 ( 505 , 812 ) ( 812 , 812 ) 16.49 4.30
194 ( 513 , 682 ) ( 682 , 682 ) 10.74 2.45
217 ( 502 , 1014 ) ( 1014 , 915 ) 26.00 0.73
221 ( 507 , 687 ) ( 687 , 700 ) 17.19 4.90
232 ( 516 , 585 ) ( 585 , 563 ) 19.50 4.75
257 ( 512 , 569 ) ( 569 , 530 ) 36.93 7.73
328 ( 516 , 889 ) ( 889 , 871 ) 12.06 7.98
329 ( 518 , 792 ) ( 792 , 774 ) 17.39 7.96
330 ( 503 , 563 ) ( 563 , 544 ) 15.60 5.28
341 ( 504 , 939 ) ( 939 , 635 ) 15.03 3.68
342 ( 506 , 624 ) ( 624 , 540 ) 17.54 4.56
371 ( 511 , 780 ) ( 780 , 780 ) 10.44 7.81
372 ( 505 , 566 ) ( 566 , 548 ) 13.18 4.28
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Appendix C

Run 3 Plunging Probe FID and Frequency
Extraction Plots

C.1 Run 3 Plunging Probe FID Plots during Rapid Swapping

C.2 Run 3 Plunging Probe Plot: Frequency Extraction as Function
of Fit Length

C.3 Run 3 Plunging Probe Plot: Frequency Extraction as Function
of Polynomial Order

Figure C.1: Rapid Swap: probe 1, 2, 3
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Figure C.2: Rapid Swap: probe 4, 5, 6

Figure C.3: Rapid Swap: probe 7, 8, 9

Figure C.4: Rapid Swap: probe 10, 11, 12
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Figure C.5: Rapid Swap: probe 13, 14, 15

Figure C.6: Rapid Swap: probe 16, 17

Figure C.7: Rapid Swap: probe 1, 2, 3
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Figure C.8: Rapid Swap: probe 4, 5, 6

Figure C.9: Rapid Swap: probe 7, 8, 9

Figure C.10: Rapid Swap: probe 10, 11, 12

Figure C.11: Rapid Swap: probe 13, 14, 15
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Figure C.12: Rapid Swap: probe 16, 17

Figure C.13: Rapid Swap: probe 1, 2, 3

Figure C.14: Rapid Swap: probe 4, 5, 6

Figure C.15: Rapid Swap: probe 7, 8, 9
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Figure C.16: Rapid Swap: probe 10, 11, 12

Figure C.17: Rapid Swap: probe 13, 14, 15

Figure C.18: Rapid Swap: probe 16, 17
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