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Abstract

There has been a significant increase in multi-agent reinforcement learning (MARL) systems

over the last several years for exciting applications. Yet, when functioning as black boxes, these

systems can cause user misunderstanding and misuse since users do not always know when or why

agents perform certain actions. Generating explanations regarding agent decisions is crucial as it

improves system transparency, increases user satisfaction, and facilitates human-agent collabora-

tion. Yet, the current work on explainable reinforcement learning (xRL) focuses mostly on the

single-agent setting. So, there is a general need to generate methods for policy summarization to

explain agents’ global behaviors under a given MARL policy, as well as language explanations to

answer user queries about agents’ local decisions.

This dissertation will focus on generating summarizations and explanations for MARL. It

explores two main questions. First, how do we generate summarizations and explanations for cen-

tralized MARL? We will generate explanations for centralized multi-agent reinforcement learning,

treating all agents’ actions as a single joint action. We will create global summaries and query-

based explanations to address questions like when, why, and what actions are taken in specific

states or conditions. Additionally, temporal explanations will clarify the feasibility of plans over

time. Finally, we will assess the effectiveness of all methods through computational evaluations

and user studies.

Secondly, how do we generate summarizations and explanations for decentralized MARL? We

will produce explainable methods for decentralized reinforcement learning, where agents are given

their own individual policies. We will provide both global policy summaries and query-based

insights. Additionally, we will assess the effectiveness of all methods through computational

evaluations and user studies.

First, chapter 2 discusses the existing work surrounding explainable MARL. Then, chapters 3

and 4 present the main contributions of the work regarding centralized MARL. Chapter 3 provides

information on the developed summarization and explanation methods. While chapter 4 presents

work to generate contrastive temporal explanations. The contributions of the work regarding

decentralized MARL are presented in chapters 5 and 6. These chapters show the methods de-

veloped for summarizations and explanations, respectively. Finally, chapter 7 summarizes those

contributions and broader impacts.
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Chapter 1

Introduction

1.1 Motivation

Imagine a search and rescue mission where multiple cooperative robots are executing a multi-agent

reinforcement learning policy. A human operator in the field receives decision-making support via

an explainer providing policy summaries and query-based explanations using real-time data from

these robots. The summarizations help the human operator understand the robots’ general behaviors

(task completion, agent cooperation, task order), while the explanations provide specific answers in

response to the operator’s queries (when?, why not?, what?). Using this information, the human

operator can make informed decisions, such as assisting with urgent tasks or requesting additional

resources, improving overall mission performance.

There has been a significant increase in multi-agent reinforcement learning (MARL) systems over

the last several years for exciting applications such as cooperative AI [1] and autonomous driving [2].

Yet, these systems can cause user misunderstanding and misuse when functioning as black boxes

since users do not always know when or why agents perform certain actions. Generating explanations

regarding agent decisions is crucial as it improves system transparency, increases user satisfaction,

and facilitates human-agent collaboration [3], [4]. Yet, the current work on explainable reinforce-

ment learning (xRL) focuses mostly on the single-agent setting, making the situation described above

currently impossible [5]–[7].

So, there is a general need to generate methods for policy summarization to explain agents’ global

behaviors under a given MARL policy, as well as language explanations to answer user queries about

agents’ local decisions. The generated policy summarizations can help users to have a general view of

agent decisions and support human-agent collaboration (e.g., users may adjust their workflow based

on agents’ task sequence). Furthermore, answered queries can be basic such as “Why don’t [agents] do

[actions] in [states]?” to provide answers to specific agent decisions, debug faulty agent behavior, and

refine user mental models. However, existing methods obviously cannot handle even more advanced

temporal queries involving a sequence of MARL agents’ decisions, for example, “Why don’t [agents]

complete [task 1 ], followed by [task 2 ], and eventually [task 3 ]?” These more advanced explanations

1



help to reconcile discrepancies between anticipated agent behaviors and actual behaviors improving

user understanding of possible agent actions [8].

1.2 Challenges

MARL algorithms can be categorized based on their training and execution frameworks. Centralized

training and execution (CTCE) algorithms, leverage centrally shared information and train a single

central policy over joint actions and observations of all agents [9]. Centralized training with decen-

tralized execution (CTDE) algorithms, such as Shared Experience Actor-Critic (SEAC) [10], leverage

shared information during training to update policies, but uses each agent’s local observations for de-

centralized execution across independent agent policies. Decentralized training and execution (DTDE)

algorithms, typified by independent learning [11], operate with agents treating each other as a part

of the environmental dynamics and training individual policies in a completely local way. So, there

are two general types of multi-agent reinforcement learning: centralized (execution) and decentralized

(execution). Each algorithm type provides its own issues and benefits regarding agent performance,

but also poses unique challenges when generating explanations.

1.2.1 Challenges of Centralized MARL

Centralized multi-agent reinforcement learning, or centralized MARL is characterized by its joint

agent states and actions. Thus, when generating summarizations and explanations the combinatorial

nature of MARL (i.e., the joint state/action space grows exponentially with the number of agents)

leads to scalability issues. Furthermore, explanations should provide adequate information about agent

behavior, including the interaction (e.g., cooperation) among multiple agents, for user understanding.

Yet, explanations should avoid redundant information that may overwhelm or confuse users, thus

decreasing user satisfaction and trust. Finally, we need a better representation of user queries, as

asking the user to provide concrete information about agents’ joint states and joint actions, which

grow exponentially with the increasing number of agents, is tedious if not impractical [12], [13].

1.2.2 Challenges of Decentralized MARL

Decentralized multi-agent reinforcement learning, or decentralized MARL, enables agents to make

sequential decisions collaboratively by using individual components of a larger joint policy. So, each

agent has its own individual policy with individual states and actions. Summarizations and explana-

tions for decentralized MARL policies suffer from the same challenges as centralized MARL such as

scalability.
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However, users may struggle with understanding the given policies due to the large number of

disconnected agents and the complexity of the cooperative tasks. Furthermore, decentralized MARL

also suffers from partial visibility, resulting in agents being aware of their direct surroundings, but not

the actions of other distant agents. Thus, no one agent can provide a full picture of the environment

or joint policy. This leads to an inherent uncertainty in the order of agent actions, which user must

be made aware of. So, specific interest must be paid to how agent information is processed and

aggregated as an ineffective method may not produce a total picture of the policy or may produce

behaviors that can not exist. Additionally, this can affect the presentation of explanations since the

information from disparate agents regarding uncertain actions can overwhelm users.

1.3 Dissertation Overview and Contributions

This dissertation will focus on generating summarizations and explanations for multi-agent reinforce-

ment learning. It explores two main questions. First, how do we generate summarizations and expla-

nations for centralized MARL? We will generate explainable methods for centralized reinforcement

learning, treating all agents’ actions as a single joint action. We will create global summaries and

query-based explanations to address questions like when, why, and what actions are taken in specific

states or conditions. Additionally, temporal explanations will clarify the feasibility of plans over time.

Finally, we will assess the effectiveness of all methods through computational evaluations and user

studies.

Secondly, how do we generate summarizations and explanations for decentralized MARL? We will

produce explainable methods for decentralized reinforcement learning, where agents are given their

own independent policies. We will provide both global policy summaries and query-based insights.

Additionally, we will assess the effectiveness of all methods through computational evaluations and

user studies.

1.4 Dissertation Structure

First, chapter 2 discusses the existing work surrounding explainable MARL. Then, chapters 3 and 4

present the main contributions of the work regarding centralized MARL. Chapter 3 provides infor-

mation on the developed summarization and explanation methods. While, chapter 4 presents work

to generate contrastive temporal explanations. The contributions of the work regarding decentralized

MARL are presented in chapters 5 and 6. These chapters show the methods developed for summariza-

tions and explanations, respectively. Finally, chapter 7 summarizes those contributions and broader

impacts. Figure 1.1 shows the overall structure of the contributions of this dissertation.
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Figure 1.1: Dissertation Overview

1.5 Credits and Other Publications

Some of this work was developed with other researchers and has been published as such. Yet, I am

the main contributor for all of the research presented in the dissertation. I credit my colleagues below

for their contributions.

The work in chapter 3 was developed under the guidance of Dr. Lu Feng and Dr. Sarit Kraus.

However, I am solely responsible for the development of both the summarization and explanation

generation algorithms. I also designed and ran the presented computational experiments and user

study. This work is published in IJCAI 2022 [12].

Chapter 4 also presents work that was developed under the guidance of Dr. Lu Feng and Dr. Sarit

Kraus. Yet, I am still solely responsible for the developed contrastive temporal explanation algorithm,

computational experiments, and user study. This work is published in IJCAI 2023 [13].

Chapter 5 was developed with the help of Dr. Lu Feng, Dr. Sarit Kraus, Dr. Seongkook Heo,

and Erzhen Hu. I am responsible for the development of the summarization algorithm and implemen-

tation for computational experiments. Furthermore, I am solely responsible for designing, running,

and analyzing the summarization effectiveness study. I designed the augmented reality user study.

However, Erzhen Hu generated the virtual reality interface where the study took place and assisted

in running the in-person study. Dr. Lu Feng, Dr. Sarit Kraus, and Dr. Seongkook Heo all provided

guidance on this work. This work has not yet been published.

Chapter 6, which contains still unpublished work, was developed under the guidance of Dr. Lu Feng

and Dr. Sarit Kraus. I am solely responsible for the developed explanation algorithm, computational
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experiments, and user study.

Finally, I have published several other works that are not present in this dissertation. In [14], I

helped develop a method, inspired by social sciences, to formalize contrastive (Why action 1 and not

action 2?) explanations within Markov decision processes (MDPs) using selectiveness, constrictiveness,

and responsibility. Additionally, I helped formalize the notion of uncertain human preferences and

present a novel approach that accounts for this uncertainty in the context of multi-objective controller

synthesis for MDPs in [15]. [16] advocates for a new computational approach to establish foreseeability

of autonomous systems based on the legal “BPL” formula, providing research challenges. Whereas,

[17] contains a high-level overview of the work discussed in this dissertation as part of the AAAI

doctoral consortium.
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Chapter 2

Related Work

2.1 Explainable RL

Explaining agent decision making has recently emerged as a focus area within the explainable AI

paradigm. [4] provides a survey about this emerging landscape of explainable decision making. While,

[3] proposes Explainable Decisions in Multi-Agent Environments (xMASE) as a new research direction,

emphasizing many challenges of generating multi-agent explanations, such as accounting for agent

interactions and user satisfaction. Furthermore, explainable RL has been attracting increasing interest,

as shown in several recent surveys [5]–[7], [18]. In particular, [5] points out the lack of user studies as

a major limitation across existing works.

Explaining Single-Agent RL. Moreover, current approaches mostly focus on the single-agent set-

ting, while generating summarizations and explanations for MARL has received scant attention so

far. For example, [19] develops Abstracted Policy Graphs (i.e., Markov chains of abstract states) for

summarizing and explaining RL, [20] summarizes agent behavior by extracting trajectories from agent

simulations and visualizes them as videos, and [21] generates RL policy descriptions to answer queries.

As stated, all three works focus on the single-agent setting which can cause significant issues when

applied naively to multi-agent domains.

Explaining Multi-Agent RL. Several works do focus on the multi-agent setting but have significant

limitations. [22] derives intrinsically interpretable decision trees and [23] extracts the MARL model as

abstract argumentations. However, neither explicitly considers agent cooperation on the same tasks.

[24] estimates the contribution of each agent for a group plan, but only as a general explanation of

a model and not for a specific instance given by a user. Furthermore, [25] displays the actions each

agent performs in a joint plan and [26] describes an architecture for parsimonious explanations for

multiple BDI agents. Yet, both of these works assume that tasks can be completed without agent

cooperation and naively aggregate information from multiple agents to produce an explanation. We

assume cooperation between agents and apply effective methods to properly combine information.
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2.2 Types of Explanations

Existing works can be categorized according to different axes (e.g., timing, scope, form). We position

our proposed approach based on these categorizations as follows.

Timing. First, there are intrinsic and post-hoc methods depending on the timing when the ex-

planation is generated. The former (e.g., [27], [28]) builds intrinsically interpretable policies (e.g.,

represented as decision trees) at the time of training, while the latter (e.g., [21], [29]) generates post-

hoc explanations after a policy has been trained. All our proposed approaches belong to the latter.

Scope. Second, existing works can be distinguished by the scope of explanations. Some methods

provide explanations about policy-level behaviors (e.g., [19], [20]), while others explain specific, local

decisions (e.g., [30], [31]). Our work focuses on explaining both global behavior via summarizations

and local behavior via query-based explanations.

Form. Additionally, current approaches generate explanations in diverse forms, including natural

language [21], saliency maps [32], reward decomposition [33], finite-state machines [34], and others.

Our proposed approaches generate summarization tables, Hasse diagrams, and natural language ex-

planations using both language templates and large-language models.

2.3 Contrastive Explanations

[35] identifies being contrastive (“Why A but not B?”) as one of the key desired properties of an expla-

nation as it greatly improves user understanding. The research thread on contrastive explanations for

RL has been drawing increasing attention since then. For example, [31] generates contrastive expla-

nations for “why action” and “why not action” queries via counterfactual analysis of a structural causal

model; [36] develops a deep RL architecture with an embedded self-prediction model to explain why

a learned agent prefers one action over another; and [30] computes counterfactual state explanations

(i.e., minimal changes needed for an alternative action).

By contrast, several recent works [29], [37] generate policy-level contrastive explanations in the

single-agent setting. However, these approaches have limited scalability in multi-agent environments

due to computational complexity. [29] requires a large number of samples generated via a random walk

to find missing preconditions. [37] computes a sequence of MDP transforms (e.g., mapping the entire

state/action space) and retrains the agent policy in each transformed MDP. Moreover, the generated

explanations for all single-agent contrastive methods may not capture agent cooperation requirements

that are essential for understanding multi-agent behaviors. So, none of these methods are suitable for

MARL.

Our proposed approach for basic (“why not?") local contrastive explanations for centralized MARL
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can be found in chapter 3, and basic local contrastive explanations for decentralized MARL can be

found in chapter 6. Our contrastive temporal explanations found in chapter 4 advance the state of

the art by developing approaches for generating contrastive explanations about MARL agents’ global

behaviors.

2.4 Explanation Presentation

How the explanation is presented is just as important as the method to generate it, as the presentation

of information can increase user understanding, satisfaction, and confidence, while decreasing cognitive

load [38]. As stated previously, current approaches generate explanations in diverse forms.

Augmented reality (AR) is commonly used to provide interactions with multi-modal information in

a 3D environment [39]. Given the benefits of reducing cognitive load and improving task performance

using augmented overlays [40], [41], AR has been increasingly used in human-robot interaction for en-

hanced decision support [42]. A recent work [43] demonstrates an AR-based XAI approach, providing

context-aware explanations like route suggestions for jogging. However, most AR-based XAI studies

focus on single-agent settings and do not address the challenges of presenting complex multi-agent

explanations. [44] shows an example of an augmented reality system for providing action summaries

for a single reinforcement learning agent to promote human-agent collaboration. We explore the use

of AR for explainable MARL in chapter 5.

Furthermore, other novel technologies such as large language models (LLMs) can allow for ex-

planations that can be condensed or adapted to meet a user’s needs [45]. We plan to utilize these

techniques for multi-agent explanations in chapter 6.
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Chapter 3

Policy Explanations for Centralized MARL

3.1 Overview

In this chapter, we develop novel methods to generate two types of policy explanations for MARL: (i)

policy summarization, and (ii) query-based language explanations. Our methods rely on first building

an abstract representation of a MARL policy as a multi-agent Markov decision process (MMDP),

which can be obtained by abstracting samples observed during the MARL policy evaluation.

The proposed summarization method generates a summarization about the most probable sequence

of agent behavior under a given MARL policy, by finding the most probable path through the MMDP

abstraction and extracting information about agent cooperation and task sequence. Additionally, the

developed methods for generating language explanations answer three types of queries about agent

behavior, including “When do [agents] do [actions]?”, “Why don’t [agents] do [actions] in [states]?”,

“What do [agents] do in [conditions]?”

Our work is inspired by the method proposed in [21], which computes a minimal Boolean logic

expression covering states satisfying the query criteria, and converts the Boolean expression to expla-

nations via language templates. However, we find that a naive adaptation of this method for MARL

generates explanations with redundant information and has limited scalability. Further, the gener-

ated explanations do not necessarily capture agent cooperation, which is imperative for explaining

MARL. We proposed improved methods that address these limitations by leveraging MARL domain

knowledge (e.g., agent cooperation requirements) to filter relevant agent states and actions.

We applied a prototype implementation of the proposed methods to three benchmark MARL do-

mains: (i) multi-robot search and rescue, (ii) multi-robot warehouse, and (iii) level-based foraging [11].

Experimental results demonstrate that the proposed methods can generate policy summarizations and

query-based explanations for large MARL environments with up to 19 agents.

Finally, we conducted a user study to evaluate the quality of generated explanations. We measured

user performance on correctly answering questions based on explanations, to test user understanding

of agent behavior. We also collected user subjective ratings on explanation goodness metrics [46].

The results show that the generated explanations significantly improve user performance and increase
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subjective ratings on various metrics including user satisfaction.

3.2 Policy Abstraction

In the context of MARL, a group of N agents interact with each other in a common environment and

make decisions influenced by the joint states of all agents. Agent decisions can be captured by a joint

policy π : X → ∆(A), which is a function mapping the set of joint states X = {(x1, . . . , xN )} to a

probabilistic distribution over the set of joint actions A = {(a1, . . . , aN )}, where xi (resp. ai) denotes

the state (resp. action) of agent i. Once a policy is trained, agents can act upon it in any given

state. But there is a lack of a global view of the entire policy. Further, the size of the policy grows

exponentially with the number of agents and state variables. To address these issues, we propose to

build an abstract representation of the policy as the basis for generating explanations about agent

behavior.

We use the multi-agent Markov decision process (MMDP) framework to represent MARL policy

abstraction. Formally, an MMDP is a tuple (S,A, T ), where S = {(s1, . . . , sN )} is the joint (abstract)

state space, A is the joint action space, and T is the transition function. Let F be a set of Boolean

predicates indicating features of the MARL domain. We denote by f(xi) = 1 if an agent state xi

satisfies a feature predicate f ∈ F . An abstract state si is then given by the satisfaction of all feature

predicates f ∈ F , where each bit of the binary encoding of si ∈ N corresponds to the satisfaction of a

predicate f(xi). Thus, the choice of features affects the abstraction level and should include adequate

information for explanations. In this work, we assume that users specify a set of feature predicates

for a given MARL domain.

Once an MARL policy is trained, we build an MMDP during the policy evaluation stage. For each

sample (x, a, x′), determine an MMDP transition s
a−→ s′ by finding the abstract state s (resp. s′)

corresponding to x (resp. x′). When policy evaluation terminates (e.g., converging to the expected

reward), compute the transition probability T (s, a, s′) via frequency counting.

Properties. The resulting MMDP is a sound abstraction of the MARL policy because, by construc-

tion, every MMDP transition with non-zero probability corresponds to at least one sampled policy

decision. The state space size |S| is bounded by O(2|F|N ), depending on the number of agents N and

feature predicates |F|. In practice, a trained MARL policy may only induce a small set of reachable

states.

Example 1. Figure 3.1(a) shows an example MARL domain where three robotic agents cooperate

to complete search and rescue tasks. Rescuing the victim requires the cooperation of an unmanned

aerial vehicle (UAV) and an unmanned ground vehicle (UGV). Any agent can fight the fire, which

is blocked by the wall and obstacle. Removing the obstacle requires the cooperation of two UGVs.
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Figure 3.1: Example MARL domain of multi-robot search and rescue.

Algorithm 1 Generating Policy Summarization
Input: policy abstraction M = (S,A, T ), task completion predicates Fc ⊆ F
Output: policy summarization Z
1: Z ← {}
2: Compute the most probable path ρ throughM
3: for 0 ≤ t ≤ |ρ| do
4: y ← new array
5: for 1 ≤ i ≤ N do
6: y[i]← {}
7: for f ∈ Fc do
8: if agent state sit in the path ρ satisfies f then
9: insert f to y[i]

10: insert non-empty array y to Z
11: return Z

Given a trained MARL policy, we build an MMDP abstraction with 6 feature predicates indicating

whether each task is detected or completed (e.g., victim_detect, victim_complete). An agent can only

detect a task in a neighboring grid (e.g., UAV detects the victim in Figure 3.1(a)). The resulting

MMDP has 63 (reachable) states and 577 transitions.

3.3 Policy Summarization

A policy abstraction containing hundreds of states and transitions is too complex for humans to

understand. An alternative way of communicating agent behavior is to show execution traces; however,

a lengthy trace may be burdensome for users to review. To overcome these limitations, we develop

a method to generate policy summarization, illustrating the agent cooperation and task sequence for

the most probable sequence of agent behavior under a given MARL policy.

Algorithm 1 shows the proposed method, which takes the input of a policy abstraction M and a
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set of predicates Fc representing the completion of tasks (subgoals) in a given MARL domain. The

first step is to compute the most probable path ρ = s0
a0−→ s1

a1−→ · · · from the initial state to a goal

state in the MMDP M, which represents the most probable sequence of agent decisions under the

policy. This problem can be solved by converting the MMDP to a directed weighted graph with edge

weight e(s, a, s′) = − log T (s, a, s′) for each transition, and then applying the Dijkstra’s algorithm [47]

to find the shortest path.

Next, the algorithm loops through every joint state st in the path ρ to extract the agent cooperation

and task sequence. At each step t, the algorithm checks if an agent state sit satisfies any task completion

predicate f ∈ Fc and inserts completed task f into the array element y[i] (line 4-9). An agent only

satisfies a task completion predicate at step t when it finishes the task and receives a reward. We

assume that if a task is completed via the cooperation of multiple agents, they must satisfy the task

predicate f at the same step t and each receive a portion of the reward. Thus, the agent cooperation

is represented as multiple elements of the array y sharing the same task. Only non-empty arrays

containing completed tasks are inserted into the summarization Z. When the algorithm terminates,

the generated summarization is visualized as a chart, with each column corresponding to a non-empty

y-array and each row representing an agent’s task sequence.

Properties. The generated policy summarization Z is sound, because it is derived from the most

probable path of a sound policy abstraction (see Section 3.2). The complexity of computing the

most probable path is bounded by O(|S|2), following the complexity of the Dijkstra’s algorithm and

depending on the MMDP state space size. The rest of Algorithm 1 is bounded by O(|ρ| · N · |Fc|),

depending on the path length and the number of agents and tasks.

Example 2. We apply Algorithm 1 using the policy abstraction and task predicates from Example

1. There are 8 states in the most probable path from the initial state (i.e., all agents starting in the

green grid) to a goal state (i.e., all tasks have been completed). Figure 3.1(b) visualizes the generated

summarization, with column names (i.e., T1, T2, T3) indicating the sequence of task completions:

UGV2 and UAV cooperate to rescue the victim; next, UGV1 and UGV2 cooperate to remove the

obstacle; and lastly, UAV fights the fire.

3.4 Policy Explanation

While policy summarization provides a global view of the agent behavior under a MARL policy, users

may also query about specific agent decisions. In this section, we develop methods for generating

language explanations to answer the following three types of queries:

• “When do [agents] do [actions]?” for identifying conditions for action(s) of a single or multiple

agent(s) .
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• “Why don’t [agents] do [actions] in [states]?” for understanding differences in expected and

observed behaviors of a single or multiple agent(s).

• “What do [agents] do in [predicates]?” for revealing agent behavior under specific conditions

described by the given predicates.

Our work is inspired by a method developed in [21] to generate query-based explanations for single-

agent RL. In the following, we propose new methods to tackle limitations posed by adapting this

baseline method to multi-agent environments.

3.4.1 Explanations for When Query

Algorithm 2 presents both the baseline and proposed methods for answering “When do agents Gq

do actions Aq?”, where Gq and Aq are sets of agents and actions, respectively. The text in blue

highlights changes about relevancy filters (RF) for the proposed method (called WithRF) compared

to the baseline (called NoRF).

WithRF starts the algorithm (line 1-5) by identifying relevant agents G, features F , and action

sets A based on domain knowledge (e.g., agent cooperation requirements). For example, consider

a query “When does UAV rescue the victim?”. The domain knowledge is that rescuing the victim

requires the cooperation of a UAV and a UGV (Example 1). Thus, the relevant agent set G is

{UVA,UGV_1,UGV_2}. The relevant feature set F is {victim_detect, victim_complete}, while predi-

cates about the fire and obstacle are irrelevant. The relevant action sets A is an array with each element

representing one possible set of agent actions required for cooperation: [{UAV_rescue,UGV1_rescue},

{UAV_rescue,UGV2_rescue}], which can be generated based on the aforementioned domain knowledge

about agent cooperation requirements.

Both NoRF and WithRF loop through all the joint states s ∈ S of the policy abstraction MMDP

and check all the enabled (i.e., with non-zero transition probability) joint actions a in state s. In

line 9 of Algorithm 2, NoRF checks if a is compatible with Aq; that is, every agent action a ∈ Aq is

contained in the joint action a = (a1, . . . , aN ). By contrast, WithRF checks if a is compatible with

at least one set of relevant actions contained in the array A. Following the previous example, NoRF

checks if a contains UAV_rescue, while WithRF checks if a contains {UAV_rescue,UGV1_rescue} or

{UAV_rescue,UGV2_rescue}. Since each element of A is a super-set of Aq, the WithRF check is more

restrictive.

If a state s has at least one enabled action a passing the aforementioned checks, s is inserted to the

target states set V ; and to the non-target states set V̄ otherwise. The intuition is that the generated

explanations should describe target states satisfying the query criteria and exclude conditions of non-

target states. WithRF poses further restrictions that target states need to satisfy criteria captured by
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Algorithm 2 Generating Query-Based Explanations
Input: policy abstraction (S,A, T ), query “when do agents Gq do actions Aq?”
Output: explanations E
1: G← {}; F ← {}; A← [{}]
2: for all agent action ai ∈ Aq do
3: insert all relevant agents of ai to G
4: insert all relevant features of ai to F
5: insert all relevant action sets of ai to A
6: V ← {}; V̄ ← {}
7: for all joint state s ∈ S do
8: for all joint action a enabled in s do
9: if a is compatible with Aq [replace Aq with A] then

10: insert s to V
11: else
12: insert s to V̄
13: B1 ← States2Boolean(V ); B0 ← States2Boolean(V̄ )
14: ϕ← Quine-McCluskey(ones=B1, zeros=B0)
15: translate ϕ to explanations E via language templates
16: return E
17: function State2Boolean(W )
18: B ← {}
19: for all s = (s1, . . . , sN ) ∈W do
20: for 1 ≤ i ≤ N [replace with i ∈ G] do
21: C ← feature predicate valuations of state si

22: for f ∈ F [replace with f ∈ F ] do
23: insert C(f) to B

24: return B

relevant actions A, such as agent cooperation requirements. Thus, explanations generated by WithRF

can provide information about agent cooperation, which may be missed by NoRF explanations.

Next, the algorithm converts the states set V (resp. V̄ ) to a list of Boolean formulas B1 (resp. B0)

via the function described in line 17-24. Given a joint state s = (s1, . . . , sN ), NoRF finds valuations of

every feature predicates f ∈ F for all agent state si and insert them to the list B. By contrast, WithRF

only inserts to B the valuations of relevant features f ∈ F in relevant agent states si for all i ∈ G.

Following the previous example, WithRF only considers Boolean formulas related to relevant feature

predicates {victim_detect, victim_complete}, filtering out features related to the fire and obstacle.

Lastly, the algorithm supplies Boolean formulas B1 and B0 to the Quine-McCluskey algorithm [48]

and obtains a minimized Boolean formula, which can be translated into language explanations follow-

ing [21]. The runtime of Quine-McCluskey grows exponentially with the number of variables. Thus,

WithRF is more efficient than NoRF, due to the decreased number of Boolean variables. Moreover,

filtering out irrelevant agents and features helps WithRF to prevent redundant information in the

generated explanations.

Properties. Following the Quine-McCluskey, the complexity of NoRF is bounded by O
(
3N ·|F|/ ln(N ·
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Query Explanations generated by NoRF
(baseline)

Explanations generated by
WithRF (proposed)

When does
UAV rescue the
victim?

UAV rescues the victim when UAV
detects the victim and UGV1 does not
detect the fire, or UAV detects the
victim and UGV1 does not detect the
obstacle.

UAV rescues the victim when UAV
detects the victim and UGV1

detects the victim, or UAV detects
the victim and UGV2 detects the
victim.

Why don’t
UGV1 and
UGV2 remove
the obstacle in
this state?

UGV1 and UGV2 don’t remove the
obstacle in this state because UGV1

does not detect the obstacle.

UGV1 and UGV2 don’t remove the
obstacle in this state because UGV1

does not detect the obstacle and
UGV2 does not detect the obstacle.

What does
UAV do when
it detects the
victim?

UAV can rescue the victim, move, or
wait when it detects the victim.

UAV is most likely to rescue the
victim when it detects the victim.

Table 3.1: Examples of query-based explanations

|F|)
)
. The complexity of WithRF is reduced to O

(
3|G|·|F |/ ln(|G| · |F |)

)
.

Example 3. Table 3.1 (first row) shows the explanations generated by NoRF and WithRF for a when

query. The NoRF explanation contains redundant information about the fire and obstacle that are

irrelevant to the query. The WithRF explanation completely captures the required agent cooperation

for the query, which is missed by the NoRF explanation.

3.4.2 Explanations for Why Not Query

The query “Why don’t agents Gq do actions Aq in the joint State sq?” can be answered by modifying

Algorithm 2 as follows. In line 10, adding s to V̄ instead of V . Remove line 11-12 and add a new line

for inserting the query state sq to V . The modified algorithm is shown below.

Algorithm 3 generates an explanation describing the differences between the observed behavior in

the target query state sq and the expected behavior of states with actions compatible with the query

actions Aq (NoRF) or relevant action sets A (WithRF). The complexity of the modified algorithm

follows Algorithm 2.

Example 4. Table 3.1 (second row) shows the explanations generated by NoRF and WithRF for a

why not query about the behavior of two agents UGV1 and UGV2 in the state shown in Figure 3.1(a).

The WithRF explanation captures the required agent cooperation for removing the obstacle, while

the NoRF explanation fails to provide such information.
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Algorithm 3 Answering “why not” query
Input: policy abstraction M = (S,A, T ), query “why don’t agents Gq do actions Aq in the joint
State sq”
Output: language explanations E
1: G← {}; F ← {}; A← [{}]
2: for all agent action ai ∈ Aq do
3: insert all relevant agents of ai to G
4: insert all relevant features of ai to F
5: insert all relevant action sets of ai to A
6: V ← {}; V̄ ← {}
7: insert sq to V
8: for all joint state s ∈ S do
9: for all joint action a enabled in s do

10: if a is compatible with Aq [replace Aq with A] then
11: insert s to V̄
12: B1 ← States2Boolean(V ); B0 ← States2Boolean(V̄ )
13: ϕ← Quine-McCluskey(ones=B1, zeros=B0)
14: translate ϕ to explanations E via language templates
15: return E
16: function State2Boolean(W )
17: B ← {}
18: for all s = (s1, . . . , sN ) ∈W do
19: for 1 ≤ i ≤ N [replace with i ∈ G] do
20: C ← feature predicate valuations of state si

21: for f ∈ F [replace with f ∈ F ] do
22: insert C(f) to B

23: return B

3.4.3 Explanations for What Query

Algorithm 4 answers the query “What do agents Gq do when satisfying predicates Fq?”. We first

identify all the satisfying joint states s = (s1, . . . , sN ); that is, for all i ∈ Gq, agent state si satisfies

predicates Fq. The baseline NoRF method is to generate a list of all possible enabled actions for

agents Gq in these states. The proposed WithRF method improves the baseline by filtering agent

actions that are relevant to predicates Fq and finding the most likely relevant agent actions from the

list via frequency counting. Since the proposed methods do not need to call the Quine-McCluskey,

the complexity of both NoRF and WithRF are only bounded by O(|Gq| · |S| · |A|), depending on the

number of query agents, joint state space, and joint action space of the policy abstraction.

Example 5. Table 3.1 (third row) shows the explanations generated by NoRF and WithRF for a

what query. The WithRF explanation is more concise than the NoRF explanation and only contains

relevant action for the query predicate.
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Algorithm 4 Answering “what” query
Input: policy abstraction M = (S,A, T ), query “what do agents Gq do when satisfying predicates
Fq”
Output: language explanations E
1: Aq ← {}
2: α← find all relevant actions of predicates Fq

3: for all joint state s = (s1, . . . , sN ) ∈ S do
4: if si satisfies Fq for all i ∈ Gq then
5: for all a = (a1, . . . , aN ) enabled in s do
6: for all i ∈ Gq do
7: insert ai to Aq [only if ai ∈ α]
8: Aq ← the most frequent action for each agent in Aq

9: generate explanations E with Aq via language templates
10: return E

3.5 Computational Experiments

We implemented and applied the proposed methods to three MARL domains. The first domain

is multi-robot search and rescue (SR) similar to Example 1. The second and third domains are

benchmarks taken from [11]. Multi-robot warehouse (RWARE) considers multiple robotic agents

cooperatively delivering requested items. Level-based foraging (LBF) considers a mixed cooperative-

competitive game where agents must navigate a grid world to collect randomly scattered food. Our

implementation used the Shared Experience Actor-Critic [10] for MARL policy training and evaluation.

To simulate a centralized policy, each agent views the entire global state and has access to the actions

of other agents. All models were trained and evaluated to 10,000 steps, or until converging to the

expected reward, whichever occurred first. The experiments were run on a laptop with a 1.4 GHz

Quad-Core Intel i5 processor and 8 GB RAM.

Table 3.2 shows experimental results. For each domain, we report the number of agents N and the

number of states |S| and transitions |T | of generated policy abstraction MMDP. It is unsurprising that

the MMDP size grows exponentially with the number of agents. We report the most probable path

length |ρ| and the chart size |Z| of generated policy summarizations, which are more compact and

easier to interpret than complex MMDP abstractions. All summarizations were generated within 1

second (thus not shown in the table). Additionally, we compare NoRF and WithRF methods in terms

of the number of clauses in the generated query-based explanations and runtime. The results show

that WithRF is more succinct in general and has better scalability than NoRF. In particular, NoRF

failed to generate explanations for “when” and “why not” queries within an hour for large cases with

more than 4 agents, while WithRF generated explanations for all cases within seconds. Both methods

generate explanations for “what” queries efficiently, thanks to the lower complexity than other queries.

In summary, experimental results demonstrate that the proposed methods can generate policy
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Case Study MMDP Summarization When Query

Path Chart NoRF WithRF

Domain N |S| |T | |ρ| |Z| |E| Time (ms) |E| Time (ms)

3 63 577 8 3x2 4 72.4 4 1.2
SR 4 732 5,048 23 4x4 - timeout 6 31.4

5 839 4,985 24 5x4 - timeout 10 73.6

2 8 62 5 2x2 4 2.6 4 2.7
RWARE 4 16 387 5 4x1 12 3,321.0 5 82.7

19 114 1,500 15 19x2 - timeout 7 3,890.6

2 5 13 4 2x2 2 0.7 2 0.7
LBF 4 15 355 5 4x1 10 3,598.5 2 1.4

9 482 5,841 13 9x2 - timeout 2 200.2

Case Study Why Not Query What Query

NoRF WithRF NoRF WithRF

Domain N |E| Time (ms) |E| Time (ms) |E| Time (ms) |E| Time (ms)

3 1 86.8 2 0.8 3 1.7 1 1.3
SR 4 - timeout 3 14.9 3 15.7 1 14.5

5 - timeout 4 23.4 6 24.6 1 19.8

2 4 2.0 2 0.4 3 0.1 1 0.1
RWARE 4 6 23.0 3 1.3 3 0.1 1 0.1

19 - timeout 4 56.5 3 21.7 1 20.1

2 3 0.4 2 0.3 2 0.1 1 0.1
LBF 4 8 3,695.0 2 1.6 3 0.6 1 0.6

9 - timeout 2 101.3 2 24.9 1 19.8

Table 3.2: Experimental results on three MARL domains (timeout set as one hour).

summarizations and query-based explanations for large MARL domains (e.g., RWARE with 19 agents,

which is the largest number of possible agents in the provided environments).

3.6 User Study

We conducted a user study 1 via the Qualtrics to evaluate the quality of generated explanations. We

describe the study design in Section 3.6.1 and analyze results in Section 3.6.2.

3.6.1 Study Design

Participants. We recruited 116 eligible participants (i.e., fluent English speakers over the age of

18) through university mailing lists. 62.1% of participants self-identified as male, 37.1% as female,

and 0.8% preferred not to say. The age distribution is 76(18-24), 31(25-34), 7(35-49), 2(50-64).

Participants were instructed to answer multiple-choice questions about agent behavior for multi-robot

search and rescue tasks. They were incentivized with bonus payments to answer questions correctly
1This study was approved by University of Virginia Institutional Review Boards IRB-SBS #4701.
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based on the provided explanations. To ensure data quality, attention checks were injected during the

study. Figures 3.2 through 3.6 show examples of the user interface. The gif associated with Figure

3.6 can be found at https://github.com/kjboggess/IJCAI2022/blob/main/MissionGifExample.gif.

Figure 3.2: Question based on explanations for a “when” query.

Figure 3.3: Question based on explanations for a “why not” query.

Independent variables. We employed a within-subject study design with the explanation generation

methods as independent variables. Participants were asked to complete two trials for evaluating policy

summarizations. They were presented with charts generated by Algorithm 1 in one trial, and GIF

animations illustrating the most probable sequence of agent behavior (i.e., visualization of the most

probable path in the policy abstraction) in the other trial. For each trial, there were two questions

about agent behavior in various environments (i.e., 3×6 and 6×6 grid world). Questions used in

the two trials are different but had similar difficulty. All participants were presented with the same
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Figure 3.4: Question based on explanations for a “what” query.

set of four randomly generated questions for summarization trials. To counterbalance the ordering

confound effect, they were randomly assigned to answer the first two questions based on either charts

or GIF, and the other two questions based on the remaining method. Additionally, participants were

asked to complete two trials for evaluating query-based explanations generated by NoRF and WithRF

methods, with 6 questions (2 environments × 3 query types) in each trial. Participants answered the

same set of 12 randomly generated questions for query-based trials, and were randomly assigned to

different groups similarly to summarization trials.

Dependent measures. We measured user performance by counting the number of correctly an-

swered questions in each trial. In addition, at the end of each trial, participants were asked to rate

in a 5-point Likert scale (1 - strongly disagree, 5 - strongly agree) about explanation goodness met-

rics (i.e., understanding, satisfaction, detail, completeness, actionability, reliability, trust) adapted

from [46]. The questions asked are as follows:

• The explanations help me understand how the team of robots completes the search and rescue

mission.

• The explanations are satisfying.

• The explanations are sufficiently detailed.

• The explanations are sufficiently complete, that is, they provide me with all the needed infor-

mation to answer the questions.

20



Figure 3.5: Question based on policy summarization (sequence chart).

• The explanations are actionable, that is, they help me know how to answer the questions.

• The explanations let me know how reliable the robot team is for completing the mission.

• The explanations let me know how trustworthy the robot team is for completing the mission.

Hypotheses. We make the following hypotheses in this study.

• H1: Chart-based summarizations lead to better user performance than GIF-based.

• H2: Chart-based summarizations yield higher user ratings on explanation goodness metrics

than GIF-based.

• H3: Query-based explanations generated by WithRF lead to better user performance than those

by NoRF.
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Figure 3.6: Question based on a policy summarization (GIF animation)

• H4: Query-based explanations generated by WithRF yield higher user ratings on explanation

goodness metrics than those by NoRF.

3.6.2 Results Analysis

We used a paired t-test to evaluate hypotheses H1 and H3, and used the Wilcoxon Signed-rank test

to evaluate hypotheses H2 and H4. We set the significant level as α = 0.05.

Evaluating policy summarizations. Participants answered more questions correctly with chart-

based summarizations (M=1.8 out of 2, SD=0.6) than GIF-based (M=0.9 out of 2, SD=0.4), with

statistical significance (t(462)=-15.8, p ≤0.01, d=1.5). Thus, the data supports H1.

Figure 3.7 shows average participant ratings about summarizations. Chart-based summariza-

tions yield higher ratings on the perceived completeness than GIF-based with statistical significance

(W=371.5, Z=-2.4, p ≤0.02, r=-0.2). But no significant difference was found regarding the other
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Figure 3.7: Mean and SD of participant ratings about policy summarizations (“*” indicates statistically
significant difference).

metrics. Thus, the data partially supports H2.

Evaluating query-based explanations. Participants answered more questions correctly with ex-

planations generated by WithRF (M=5.2 out of 6, SD=1.7) than NoRF (M=2.3 out of 6, SD=1.0),

with statistical significance (t(1390)=-21.1, p ≤0.01,d=2.0). Thus, the data supports H3.

Figure 3.8 shows that participants gave higher average ratings to WithRF explanations than NoRF

explanations. The Wilcoxon test found significant differences on all metrics: understanding (W=319.5,

Z=-4.9, p ≤0.01, r=-0.3), satisfaction (W=266.0, Z=-7.0, p ≤0.01, r=-0.5), detail (W=484.0, Z=-3.7,

p ≤0.01, r=-0.2), completeness (W=494.5, Z=-6.4, p ≤0.01, r=-0.4), actionability (W=167.0, Z=-

6.9, p ≤0.01, r=-0.5), reliability (W=382.5, Z=-3.6, p ≤0.01, r=-0.2), and trust (W=217.0, Z=-3.4,

p ≤0.01, r=-0.2). Thus, the data supports H4.

Summary. We accept all hypotheses except H2 based on the statistical analysis. The user study

shows that our proposed approaches, both query-based and summarizations, are able to improve task

performance when trying to determine agent behavior in multi-agent situations. Additionally, partici-

pants find our proposed query-based explanations subjectively better in goodness than those produced

by the query baseline. However, based on participant preference, we find little to no subjective differ-

ence between our proposed summarizations explanations and the summary baseline.

Discussion. In summary, the data supports all hypotheses, while H2 is only partially supported

because the statistical test found no significant differences between chart-based and GIF-based sum-
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Figure 3.8: Mean and SD of participant ratings about query-based explanations (“*” indicates statis-
tically significant difference).

marizations on most metrics. However, Figure 3.7 shows that participants rated chart-based sum-

marizations close to 4 (agree) on all metrics, and above GIF-based ratings on all metrics except

understanding, reliability, and trust. This may be because users showed a strong preference to-

ward the moving nature of GIF animations and the visualized effects of agents completing tasks.

But watching a GIF can be more time-consuming and less informative than a quick glance at the

chart. This is supported by the results that participants were able to answer more questions correctly

with chart-based summarizations, and they rated this method significantly higher on completeness

(i.e., providing needed information). Meanwhile, query-based explanations generated by the proposed

WithRF method led to significantly better user performance and higher user ratings on all metrics,

because users prefer succinct WithRF explanations with adequate information about agent behavior

and cooperation. By contrast, NoRF explanations do not necessarily provide essential information

about agent cooperation for correctly answering questions, and may contain redundant information

that decreases user satisfaction.

3.7 Summary

In this chapter, we developed methods to generate policy summarizations and query-based explana-

tions for MARL. Experimental results on three MARL domains demonstrate the scalability of our

methods. Evaluation via a user study shows that our generated MARL policy explanations can im-
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prove user understanding about agent behavior and enable them to answer more questions correctly,

while maintaining very positive ratings on explanation goodness metrics.
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Chapter 4

Temporal Queries for Centralized MARL

4.1 Overview

Although we provide a method to generate explanations for basic queries in chapter 3, existing ex-

plainable methods cannot handle more advanced temporal queries either. These queries involve a

sequence of MARL agents’ decisions, for example, “Why don’t [agents] complete [task 1 ], followed

by [task 2 ], and eventually [task 3 ]?” Explanations to answer such a temporal user query can help

reconcile discrepancies between the actual and anticipated agent behaviors.

Recently, there has been increasing interest in generating policy-level contrastive temporal expla-

nations for RL in the single-agent setting. [29] considers a problem setting where the agent comes up

with a plan to achieve a certain goal, and the user responds by raising a foil (represented as a sequence

of agent states and actions). To show why the agent’s plan is preferred over the foil (e.g., the foil

leads to an invalid state), explanations are generated by finding missing preconditions of the failing

foil action on a symbolic model through sample-based trials. [37] considers a similar problem setting,

where the user queries about an alternative policy specifying actions that the agent should take in

certain states. Explanations are defined as a sequence of Markov decision process (MDP) transforms,

such that the RL agent’s optimal policy (i.e., seeking to maximize its accumulated reward) in the

transformed environment aligns with the user queried policy.

However, [29] requires a large number of samples generated via a random walk to find missing

preconditions. [37] computes a sequence of MDP transforms (e.g., mapping the entire state/action

space) and retrains the agent policy in each transformed MDP. Moreover, the generated explanations

may not capture agent cooperation requirements that are essential for understanding multi-agent

behaviors.

In this chapter, we develop an approach to generate policy-level contrastive explanations for

MARL. Our proposed approach takes the input of a temporal user query specifying which tasks

should be completed by which agents in what order. Any unspecified tasks are allowed to be com-

pleted by the agents at any point in time. The user query is then encoded as a PCTL∗ logic formula,

which is checked against a multi-agent Markov decision process (MMDP) representing an abstraction
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of a given MARL policy via probabilistic model checking [49]. If the MMDP satisfies the PCTL∗

formula, then the user query is feasible under the given policy (i.e., there exists at least one policy

execution that conforms with the user query). Otherwise, our approach deploys a guided rollout

procedure to sample more of the MARL agents’ behaviors and update the MMDP with new samples.

If the updated MMDP still does not satisfy the PCTL∗ formula, the proposed approach generates

correct and complete explanations that pinpoint the causes of all failures in the user query.

Computational experiments on four benchmark MARL domains demonstrate the scalability of our

approach (up to 9 agents in one domain). It only took seconds to check the feasibility of a user query

and generate explanations when needed.

Additionally, we conducted a user study to evaluate the quality of generated explanations, where

we adapted [29] to generate baseline explanations. The study results show that, compared with the

baseline, explanations generated using our approach significantly improve user performance (measured

by the number of correctly answered questions) and yield higher average user ratings on explanation

goodness metrics (e.g., understanding, satisfaction) [46].

4.2 Problem Formulation

We consider a problem setting where a MARL policy has been trained over N agents, denoted by

π : X → ∆(A), which is a function mapping a set of joint states X = {x = (x1, . . . , xN )} to a

distribution over a set of joint actions A = {a = (a1, . . . , aN )}. Execution of policy π yields a

sequence of joint states and joint actions x0
a0−→ x1

a1−→ · · · where at ∼ π(·|xt) at each step t. Suppose

that the goal of the agents is to jointly complete a set G of tasks (sub-goals). Let Ri : X ×A×X → R

denote the reward function that determines the immediate reward received by agent i. A positive

reward Ri(xt, at, xt+1) > 0 is only received when a task g ∈ G is completed by agent i at step t. We

assume that each agent can complete at most one task at a step and, if multiple agents cooperate to

complete a task, each of them would receive a positive reward at the same step.

To start with, the user is presented with a high-level plan that summarizes one possible execution

of the given MARL policy π. For example, consider a MARL domain where three robotic agents are

trained to complete search and rescue tasks shown in Figure 4.1(a). We can compute a high-level plan

by applying the policy summarization method proposed in [12]. Figure 4.1(b) illustrates an example

plan, where columns indicate the order of tasks completed by agents and each row corresponds to an

agent’s task sequence. Agent cooperation is represented by multiple agents sharing the same task in

the same column. In this example, robots II and III first cooperate to fight the fire, followed by robots

I and II jointly removing the obstacle, and finally robots I and III rescue the victim together.

The user may not desire the presented plan and raise an alternative query. The user query does not
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Figure 4.1: Example MARL domain and a high-level plan.

have to be a complete plan involving all agents and tasks. Instead, the user can query about a partial

plan such as “Why don’t robots I and II remove the obstacle before robot II fights the fire alone?” We

define a temporal user query as a list of atomic propositions specifying an order of tasks completed by

some agents, denoted by ρ = ⟨τ1, τ2, · · · ⟩, where each τ specifies a task g ∈ G and designated agents.

Tasks not specified in the query can be completed in any order (e.g., before τ1, between τ1 and τ2, or

after τ2). The aforementioned example query is denoted by ⟨obstacle_robotI_robotII, fire_robotII⟩.

A temporal user query ρ is feasible under a MARL policy π if there exists at least one execution

of π that conforms with the queried plan ρ. When ρ is infeasible under π, explanations are generated

to reconcile discrepancies between the actual and anticipated multi-agent behaviors. We say that an

explanation is correct if it pinpoints the causes of one or more failures in ρ (e.g., unsatisfied task

preconditions or agent cooperation requirements). A correct explanation is complete if it identifies

the reasons behind all failures of a user query ρ.

This work aims to solve the following problem: Given a temporal user query ρ and a trained

MARL policy π, check if ρ is feasible under policy π. If ρ is infeasible, generate correct and complete

explanations to reconcile discrepancies between the actual and anticipated multi-agent behaviors.

To tackle this problem, we present an approach as illustrated in Algorithm 5. We describe the

construction of a policy abstraction (line 1) in Section 4.3, the encoding and checking of the user

query (lines 2-5) in Section 4.4, guided rollout (lines 6-9) in Section 4.5, and explanation generation

(lines 10-11) in Section 4.6. Additionally, we analyze the correctness and complexity of the approach

in Section 4.7.

4.3 Policy Abstraction

Given a trained MARL policy π, we construct a multi-agent Markov decision process (MMDP) ab-

straction following the policy abstraction method described in 3.2. We denote an MMDP as a tuple
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Algorithm 5 Checking the feasibility of a user query
Input: a temporal user query ρ, a trained MARL policy π
Output: YES, or explanations E
1: construct a policy abstraction MMDP M given π
2: encode the temporal query ρ as a PCTL∗ formula φ
3: if M satisfies φ then
4: return YES
5: else
6: M′ ← updateM via guided rollout (Algorithm 6)
7: if M′ satisfies φ then
8: return YES
9: else

10: generate explanations E (Algorithm 7)
11: return E

M = (S, s0,A, T ,L) with a set of joint abstract states S, an initial state s0 ∈ S, a set of joint actions

A, a transition function T : S × A → ∆(S), and a labeling function L : S → 2AP that assigns a set

of atomic propositions AP to states. A path throughM is a sequence s0
a0−→ s1

a1−→ · · · starting from

the initial state s0.

The state space S = {s = (s1, . . . , sN )} is defined over a set of Boolean predicates indicating

whether a task g ∈ G has been completed by agent i. The initial state s0 represents that none

of the tasks has been completed. In the example MMDP shown in Figure 4.2, the initial state is

s0 = (000, 000, 000). State s1 = (000, 100, 100) represents that the fire task has been completed

by robotic agents II and III, which is labeled with L(s1) = {fire_robotII_robotIII}. The next state

s2 = (010, 110, 100) is labeled with L(s2) = {obstacle_robotI_robotII}, which only contains the newly

completed obstacle task.

The MMDP transition function T is built by finding corresponding abstract transitions (s, a, s′)

of each sample (x, a, x′) observed during the MARL policy evaluation, and transition probabilities are

computed via frequency counting. Given a joint state x = (x1, . . . , xN ), we determine a corresponding

joint abstract state s = (s1, . . . , sN ) by checking if agent i receives a reward Ri(x, a, x′) > 0 for

completing a task g ∈ G. For each MMDP state s ∈ S, we keep track of a set of corresponding

sampled joint states, denoted by X(s) = {x}, and count the total number of observed MARL samples,

denoted by C(s).

4.4 Query Checking with Temporal Logic

We encode a temporal user query ρ = ⟨τ1, τ2, · · · ⟩ as a PCTL∗ logic [50] formula φ with a “sequencing”

specification template as follows.

φ = P>0[♢(τ1 ∧ ♢(τ2 ∧ ♢ · · · ))]
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Figure 4.2: Fragment of an example MMDP.

where P>0 means that the specification should be satisfied with non-zero probability, and ♢ denotes

the logical operator “eventually”. The PCTL∗ formula φ is satisfied in an MMDPM if there exists a

path throughM such that τ1 eventually becomes true at some point along the path, and τ2 eventually

holds at some point afterward. For example, the MMDP shown in Figure 4.2 satisfies a PCTL∗ formula

P>0[♢(fire_robotII_robotIII ∧ ♢victim_robotI_robotIII)].

To check ifM satisfies φ, we apply probabilistic model checking [49] which offers efficient techniques

for the exhaustive exploration of M to determine if φ holds in any path. If M satisfies φ, then

Algorithm 5 returns YES, indicating that the user query is feasible under the given MARL policy.

Otherwise, there does not exist any path through M that conforms with the user query. Since the

MMDPM is constructed based on samples observed during the MARL policy evaluation, it does not

necessarily capture all possible agent behaviors under the given policy π. Thus,M not satisfying φ is

not a sufficient condition for claiming that the user query is infeasible under the given MARL policy.

To address this issue, we develop a guided rollout procedure to update the MMDP M via drawing

more samples from the MARL policy π.

4.5 Guided Rollout

Algorithm 6 illustrates the guided rollout procedure, which starts by unfolding paths of the MMDP

M as a search tree. The root node of the tree is the initial state s0 of M. As the search tree

unfolds, we assign a U value to each node representing the degree to which the path from the root

node to the current node conforms with the user query. Consider an example user query ⟨τ1 =
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Algorithm 6 Guided rollout
Input: a trained MARL policy π, a policy abstraction MMDPM
Output: an updated MMDPM′

1: unfold M as a search tree and assign a U value to each node
2: N ← tree nodes ordered by U values and sample counts
3: for (k = 0; k < RolloutNum; k++) do
4: s← N .pop(0)
5: x← pick a corresponding joint state from X(s)
6: δ ← a rollout execution of π from x with DepthLimit

7: update the MMDP with samples in δ

8: return the updated MMDP M′

fire_robotII_robotIII, τ2 = obstacle_robotII⟩, unfolding the MMDP in Figure 4.2 yields U(s0) = 0,

U(s1) = 1 for conforming with τ1, and U(s2) = −∞ for violating τ2. The search tree stops expanding

a node with U = −∞ since the user query is already violated along the path.

Let N be a queue of tree nodes ordered by decreasing U values and, for nodes with the same U

value, increasing counts of MARL samples C(s). This ordering prioritizes the exploration of states

with a higher degree of user query conformance (i.e., U values) and less sampling. Given a joint

abstract state s ∈ N , we (randomly) pick a corresponding joint state x ∈ X(s) and generate a rollout

execution δ = x
a−→ x′ a′

−→ · · · of the policy π starting from x. The rollout depth |δ| is bounded

by a predefined parameter DepthLimit. We update the MMDP with samples observed in δ. Then,

we consider the next node in N and repeat the above process (lines 4-7 of Algorithm 6). When the

number of rollout executions hits a predefined parameter RolloutNum, Algorithm 6 terminates with

an updated MMDP, denoted by M′.

We check ifM′ satisfies a PCTL∗ formula φ encoding the user query ρ (line 7 of Algorithm 5) as

described in Section 4.4. If M′ satisfies φ, then the user query ρ is feasible under the given MARL

policy π. WhenM′ does not satisfy φ, the user query is infeasible in the MMDPM′. Given sufficiently

large RolloutNum and DepthLimit, the MMDPM′ provides a good approximation of MARL agents’

behaviors under the given policy π. Thus, we can claim that the user query ρ is infeasible under π

with high probability. In this case, we generate explanations to reconcile discrepancies between the

actual and anticipated multi-agent behaviors.

4.6 Explanation Generation

Algorithm 7 shows the explanation generation procedure. Given the updated MMDP M′ resulting

from Algorithm 6, we unfoldM′ as a search tree and assign a U value to each tree node following Sec-

tion 4.5. Let Umax denote the maximum U value in the tree. Then, τj with j = Umax+1 is a failed task

making the query ρ infeasible. For example, consider a user query ⟨τ1 = obstacle_robotI_robotII, τ2 =
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Algorithm 7 Generating reconciliation explanations
Input: a user query ρ = ⟨τ1, τ2, · · · ⟩, the updated MMDPM′

Output: explanations E
1: E ← {}
2: while ρ is infeasible inM′ do
3: Umax ← the maximum U value in the search tree of M′

4: find a failure τj where j = Umax + 1
5: V ← target MMDP states that complete the task in τj
6: V̄ ← non-target MMDP states
7: if V ≠ ∅ then
8: ϕ← Quine-McCluskey(1=binary(V), 0=binary(V̄))
9: ϵ← select a minterm in ϕ that is closest to ρ

10: E ← insert language explanations
11: update ρ to fix the failure τj

12: return E

victim_robotI, τ3 = fire_robotII_robotIII⟩, which yields Umax = 0 indicating that τ1 fails. To pinpoint

the cause of this failure, we find a set of target MMDP states V where the failed task is completed

by some agents (not necessarily by the queried agents). All other possible states (including those not

sampled) are placed in a non-target set V.

When V is non-empty, we obtain a minimized Boolean formula ϕ by applying the Quine-McCluskey

algorithm [48], which represents the minimal description of the states in the target set V compared to

those in the non-target set V. We select a minterm ϵ in ϕ that is closest to ρ (e.g., involving queried

agents) and convert ϵ into an explanation using language templates. For example, the MMDP state

s2 in Figure 4.2 is a target state for τ1 based on its state label, which indicates that the obstacle

task is completed by robots I and II in this state. Applying Quine-McCluskey yields a single-minterm

formula ϕ = fire_robotII∧ fire_robotIII∧ obstacle_robotI∧ obstacle_robotII. Recall our assumption in

Section 4.2 that each agent can complete at most one task at a step. Thus, the fire task must have

been completed by robots II and III in some previous state. We obtain an explanation: “The robots

cannot remove the obstacle because fighting the fire must be completed before removing the obstacle.”

To generate correct and complete explanations for all possible failures in a user query, we up-

date ρ based on the minterm ϵ to fix the failure τj . Since ϵ is the closest minterm to ρ, the applied

changes are minimal. We check whether the updated ρ is feasible in M′ via probabilistic model

checking as described in Section 4.4. If the model checker yields YES, then Algorithm 7 terminates

because all failures of the (original) user query have been explained and fixed. Otherwise, the algo-

rithm repeats lines 3-11 for the updated ρ. Following the previous example, we update the query

as ⟨τ1 = fire_robotII_robotIII, τ2 = obstacle_robotI_robotII, τ3 = victim_robotI⟩, which results in

Umax = 2, indicating that the updated query still has a failure τ3 = victim_robotI. The MMDP state

s3 in Figure 4.2 is a target state where the victim task is completed. Applying Quine-McCluskey

32



yields ϕ = victim_robotI∧ victim_robotIII, which only contains one minterm and is translated into an

explanation: “The robots cannot rescue the victim because Robot I needs Robot III to help rescue the vic-

tim.” We further update the query as ⟨τ1 = fire_robotII_robotIII, τ2 = obstacle_robotI_robotII, τ3 =

victim_robotI_robotIII⟩, which is feasible because the MMDP path s0 → s1 → s2 → s3 in Figure 4.2

conforms with this query. The algorithm terminates and returns the generated explanations of all

failures.

Note that in the special case where the target states set V is empty, we skip the Quine-McCluskey

and generate an explanation to indicate that the queried task has not been completed in any observed

sample. Then, we update the user query by removing the failed task and continue with Algorithm 7.

4.7 Correctness and Complexity

Correctness. The correctness of our proposed approach, with respect to the problem formulated in

Section 4.2, is proved below.

Proposition 6. Given a temporal user query ρ and a trained MARL policy π, if Algorithm 5 returns

YES, then the query ρ must be feasible under the policy π; otherwise, Algorithm 5 generates correct

and complete explanations E.

Proof. We prove the following two cases.

Case 1: When Algorithm 5 returns YES, the policy abstraction MMDP M or the updated MMDP

M′ satisfies the PCTL∗ formula φ encoding the user query ρ, indicating that there must exist a path

through M or M′ that conforms with ρ. By construction, every abstract MMDP transition (s, a, s′)

in M or M′ with non-zero probability maps to at least one sampled decision (x, a, x′) of the given

MARL policy π. Thus, there must exist an execution of policy π that conforms with the user query

ρ. By definition, the user query ρ is feasible under the given MARL policy π.

Case 2: Algorithm 5 returns explanations E generated via Algorithm 7. As described in Section 4.6,

Algorithm 7 terminates when all failures in the user query ρ have been explained and fixed. Given

a finite-length temporal query ρ, there is a finite number of failures. For any failure in the query,

if the target states set V is non-empty, then the failure must be fixable using a Quine-McCluskey

minterm that represents a target state where the failed task is completed. If V is empty, then the

failure is removed from the query. Thus, the termination of Algorithm 7 is guaranteed. By definition,

the generated explanations are correct (i.e., identifying the causes of one or more failures in ρ) and

complete (i.e., finding the reasons behind all failures in ρ).

Complexity. We analyze the complexity of the following key steps in the proposed approach.
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• The time complexity of checking an MMDP against a PCTL∗ formula φ defined in Section 4.4

via probabilistic model checking is double exponential in |φ| (i.e., equal to the length of the

user query |ρ|) and polynomial in the size of the MMDP [51]. The MMDP state space size |S|

is bounded by O(2|G|N ), depending on the number of agents N and tasks |G|. However, only

a small set of reachable states is usually induced in practice (as shown in Table 3.2), given a

well-trained MARL policy.

• The time complexity of guided rollout (Algorithm 6) is given by O
(
RolloutNum · DepthLimit).

As discussed above, the larger the parameter values of RolloutNum and DepthLimit, the better

approximation of MARL policy behaviors captured by the updated MMDPM′.

• The time complexity of explanation generation (Algorithm 7) is given byO
(
λ·(3N ·|G|/

√
N · |G|)

)
,

where λ is the number of failures in the user query, and O
(
3N ·|G|/

√
N · |G|

)
is the time com-

plexity of Quine-McClusky [52].

Even though the complexity is high, in practice it is possible to check query feasibility and generate

explanations in reasonable times as shown in the next section.

4.8 Computational Experiments

To demonstrate the scalability of our approach, we developed a prototype implementation and applied

it to four benchmark MARL domains 2.

(1) Search and Rescue (SR), where multiple robotic agents cooperate to complete tasks such as

fighting fires and rescuing victims [12].

(2) Level-Based Foraging (LBF), where agents play a mixed cooperative-competitive game to collect

food scattered in a gridworld [11].

(3) Multi-Robot Warehouse (RWARE), where robots collaboratively move and deliver requested

goods [11].

(4) PressurePlate (PLATE), where agents are required to cooperate during the traversal of a grid-

world, with some agents staying on pressure plates to open the doorway for others to proceed [53].

Our prototype implementation used the Shared Experience Actor-Critic [10] for MARL policy

training and evaluation. To simulate a centralized policy, each agent views the entire global state

and has access to the actions of other agents. All models were trained and evaluated until converging

to the expected reward, or up to 10,000 steps, whichever occurred first. The PRISM probabilistic
2Code available at github.com/kjboggess/ijcai23
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Case Study MMDP M Feasible Infeasible

Domain N |G| |ρ| |S| |T | Time (s) λ Time (s)

3 3 3 28 127 0.8 1 2.2
SR 4 4 4 163 674 1.5 2 5.3

5 5 5 445 1,504 24.4 3 89.8

3 3 3 67 344 0.9 1 2.9
LBF 4 4 4 211 781 2.1 2 7.6

5 5 5 152 454 4.5 3 20.5

2 4 3 98 268 0.8 1 15.5
RWARE 3 6 5 442 1,260 3.7 2 42.2

4 8 8 1,089 2,751 21.7 3 85.2

5 3 3 87 181 0.8 1 3.0
PLATE 7 4 4 85 175 0.9 2 25.7

9 5 5 132 266 1.4 3 126.8

Table 4.1: Experimental results on four benchmark MARL domains.

model checker [54] was applied for checking the feasibility of user queries. We set the guided rollout

parameters as RolloutNum = 10 and DepthLimit = 50. The experiments were run on a machine with

2.1 GHz Intel CPU, 132 GB of memory, and CentOS 7 operating system.

Table 4.1 shows experimental results. For each case study, we report the number of agents N ,

the number of tasks |G|, and the length of user queries |ρ|. Additionally, we report the size of policy

abstraction MMDPsM in terms of the number of (reachable) states |S| and the number of transitions

|T |. In general, the MMDP size increases with a growing number of agents and tasks. However, an

unequal distribution of agent actions under the MARL policy π can lead to a smaller MMDPM (e.g.,

LBF-5) as agents take the same trajectories more often leading to less exploration.

We consider two temporal queries (i.e., a feasible query and an infeasible query with the same length

|ρ|) in each case study and report the runtime of Algorithm 5. For infeasible queries, we also report

the number of failures λ, which were controlled to grow with the environment size as the longer the

query length |ρ|, the larger number of task failures it may contain. The size of generated explanations

is equal to the number of failures (i.e., one for each task failure in the user query). Experimental

results show that all queries were solved efficiently within seconds. Checking an infeasible query is

generally slower than checking a feasible query in the same case study, due to the extra time needed

for guided rollout and generating explanations.

In summary, computational experiments demonstrate that our approach can be successfully applied
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to various benchmark MARL domains with a large number of agents (e.g., up to 9 agents in the

PLATE domain), for checking the feasibility of temporal user queries and generating explanations

when needed.

4.9 User Study

We evaluate the quality of generated reconciliation explanations via a user study. 3 Section 4.9.1

describes the study design and Section 4.9.2 analyzes the results.

4.9.1 Study Design

User interface. The study was conducted via the Qualtrics survey platform. Instead of allowing

participants to raise queries in real-time, we generated explanations for a selected set of temporal

queries a priori, which enables us to present the same set of explanations to different participants.

Figure 4.3 shows an example of the user interface. Participants were shown the agents’ original plan

(Plan A) and an alternate plan representing a temporal query (Plan B). An explanation was presented

to explain why Plan B was infeasible. Participants were then asked to use the provided explanation

to decide if a new query (Plan C) was feasible. Participants were incentivized with bonus payments

to answer the question correctly.

Figure 4.3: Example of the user study interface displaying explanations generated by the proposed
approach.

3This study was approved by University of Virginia Institutional Review Boards IRB-SBS #5226.
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Participants. We recruited 88 participants (i.e., fluent English speakers over the age of 18) through

university mailing lists (52% male, 45.5% female, 2.3% non-binary). They had an average age of 23.9

(SD = 6.1). To ensure data quality, a demonstration was given, attention checks were injected, and

the time to complete the survey was tracked.

Baseline. We adapted the explanation generation method in [29], which was initially proposed for

the single-agent setting, as a baseline for comparison. We extended the method for joint states and

actions and limited its sampling to the given policy instead of the larger environment. Furthermore,

we use the same user interface as shown in Figure 4.3 to avoid any confounding variables regarding

presentation in the study. The baseline method takes the input of a user query expressed as a sequence

of agent states and actions, for which we converted a high-level plan (e.g., Plan B in Figure 4.3) into

a low-level execution of joint states and joint actions. Explanations generated using the baseline

method could fail to capture agent cooperation requirements in multi-agent environments. Moreover,

the baseline method only provides explanations for the first point of failure rather than all failures

in a user query. For example, the baseline explanations for Plan B in Figure 4.3 changes the second

sentence in the explanation to “The first failed task would be: remove obstacle.” and only contains

E1. Participants would not be able to answer the bonus question correctly without knowing E2.

Independent variables. We employed a within-subject study design where participants were asked

to complete two trials for evaluating explanations generated using the baseline method and our pro-

posed approach, respectively. There were 4 sets of temporal queries (i.e., two single-failure queries

and two with multiple failures) and bonus questions in each trial. The queried plans and questions

used in the two trials were different but had a similar difficulty level. Participants were presented

with the same set of plans and questions and were randomly assigned to two groups (i.e., evaluating

the baseline explanations before or after the proposed explanations) to counterbalance the ordering

confound effect.

Dependent measures. We counted the number of questions correctly answered by participants as

a performance measure. Additionally, at the end of each trial, participants were instructed to rate

on a 5-point Likert scale (1 - strongly disagree, 5 - strongly agree) the following statements regarding

explanations good metrics adapted from [46].

• The explanations help me understand how the robots complete the mission.

• The explanations are satisfying.

• The explanations are sufficiently detailed.

• The explanations are sufficiently complete, that is, they provide me with all the needed infor-

mation to answer the questions.
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• The explanations are actionable, that is, they help me know how to answer the questions.

• The explanations let me know how reliable the robots are for completing the mission.

• The explanations let me know how trustworthy the robots are for completing the mission.

Hypotheses. We tested two hypotheses stated below.

• H1: Explanations generated by our proposed approach enable participants to answer more

questions correctly than the baseline explanations.

• H2: Explanations generated by our proposed approach lead to higher ratings on explanation

goodness metrics than the baseline explanations.

4.9.2 Results Analysis

Question-answering performance. Participants were able to answer more questions correctly

based on explanations generated by our proposed approach (M=3.1 out of 4, SD=1.0) than those

generated with the baseline method (M=0.6 out of 4, SD=0.8). A paired t-test (α = 0.05) shows a

statistically significant difference (t(87)=-17.0, p ≤0.01, d=1.8). Thus, the data supports H1.

Recall that the baseline method only provides explanations for the first point of failure in a user

query and could not always correctly identify agent cooperation requirements. By contrast, our

approach generates correct and complete explanations for all failures in a user query, which help

participants to better understand agent behaviors under a given policy, and thus, leads to better

question-answering performance.

Explanation goodness ratings. Figure 4.4 shows that participants gave higher subjective ratings to

the proposed explanations than the baseline explanations on average, with respect to all explanation

goodness metrics.

We used the Wilcoxon signed-rank test (α = 0.05) to evaluate hypothesis H2. Statistically signifi-

cant differences were found for the following four metrics: understanding (W=315.0, Z=-1.6, p ≤0.05,

r=-0.1), satisfaction (W=236.0, Z=-2.2, p ≤0.01, r=-0.2), detail (W=255.0, Z=-1.6, p ≤0.01, r=-

0.1), and actionability (W=105.5, Z=-2.0, p ≤0.02, r=-0.1). But no significant difference was found

on other metrics: completeness (W=389.5, Z=-1.2, p ≤ 0.1, r=-0.1), reliability (W=255.5, Z=-0.5,

p ≤0.4, r=-0.04), and trust (W=181.5, Z=-1.0, p ≤0.07, r=-0.1). Thus, the data partially supports

H2.

Participants’ superior question-answering performance is consistent with their statistically signifi-

cant higher subjective ratings on understanding, detail, and actionability (i.e., the proposed explana-

tions provide detailed and actionable information for answering questions). Furthermore, the baseline
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Figure 4.4: Mean and SD of participant ratings on explanation goodness metrics (“*” indicates statis-
tically significant difference with the significant level set as α = 0.05).

explanations were rated significantly less satisfying, because they may miss essential information (e.g.,

agent cooperation) for answering questions. Participants may misjudge the explanations’ complete-

ness as they were unaware of the total number of failures in a queried plan. Finally, the generated

explanations are mostly about missing task preconditions, which are less useful for participants to

judge how reliable and trustworthy the robots are for completing the mission.

Summary. Results of the user study show that, compared with the baseline, explanations gener-

ated by our proposed approach significantly improve participants’ performance in correctly answering

questions, and lead to higher average ratings on explanation goodness metrics such as understanding

and satisfaction.

4.10 Summary

This work presents an approach for generating policy-level contrastive explanations for MARL to an-

swer a temporal user query, which specifies a sequence of tasks to be completed by agents with possible

cooperation. The proposed approach checks if the user query is feasible under the given MARL policy

and, if not, generates correct and complete explanations to pinpoint reasons that make a user query

infeasible. A prototype implementation of the proposed approach was successfully applied to four

benchmark MARL domains with a large number of agents (e.g., up to 9 agents in one domain). In
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all the experiments, it only took seconds to check the feasibility of a user query and generate expla-

nations when needed. Additionally, a user study was conducted to evaluate the quality of generated

explanations. The study results show that explanations generated using the proposed approach can

help improve user performance, understanding, and satisfaction.

40



Chapter 5

Policy Summarizations for Decentralized MARL

5.1 Overview

Now that we have discussed how to generate summarizations and explanations for centralized MARL,

in this chapter we present how to generate summarizations for decentralized MARL, which is sig-

nificantly more challenging. To tackle this challenge, we develop a novel approach that generates a

Hasse diagram as a policy summarization from a set of agents’ trajectories resulting from executing

decentralized MARL policies. We show that our approach can generate correct and complete policy

summarizations. Correctness means that the generated policy summarization does not include spu-

rious behaviors (e.g., tasks, agent cooperation) not present in the actual agents’ trajectories, while

completeness means that the policy summarization captures every agent’s execution.

We evaluate the scalability and efficiency of our proposed approach through computational ex-

periments across a variety of benchmark MARL domains, involving different numbers of agents and

tasks in gridworlds. We also employ two distinct decentralized MARL algorithms to demonstrate the

compatibility of our approach.

Finally, we assess the the generated policy summarizations through several user studies. First, we

evaluate the effectiveness of the generated policy summarizations, citing improved user performance.

Then, we specifically explore using an AR technique called position overlay to enhance the presen-

tation of policy summarizations in complex, multi-agent environments. The study results highlight

benefits such as improved question-answering performance, reduced cognitive load, and enhanced user

satisfaction.

5.2 Problem Formulation

Decentralized MARL policies. Consider a group of N MARL agents, each with a trained pol-

icy πi : si → ∆(ai) mapping local states si to a distribution over actions ai for agent i ∈ [1, N ].

Decentralized execution of these policies for an episode yields a set of trajectories {ωi}Ni=1, where

ωi = si0, a
i
0, r

i
0, s

i
1, · · · is a trajectory for agent i. Starting from an initial state si0, agent i samples an

action ait ∼ πi(·|sit) from its policy at time t, receives a reward rit, and observes a new state sit+1 from
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the environment which could be influenced by other agents’ executions. A trajectory ends when the

terminal criterion of an episode is satisfied (e.g., all tasks have been completed, or after a maximum

number of allowed time steps).

Based on an agent’s execution trajectory ωi, we can extract a sequence of tasks completed by agent

i, denoted by trace(ωi) = τ i1, τ
i
2, · · · where τ ik is the k-th task completed by agent i. For example,

agent i receives a positive reward rit > 0 after an action ait = remove_obstacle, and observes that the

obstacle has been removed through the transition from state sit to state sit+1, then we say that agent

i completes the task of removing the obstacle at time t.

Different agents’ trajectories may be asynchronous due to their decentralized execution and lack

of global clock, which introduces nondeterminism into the ordering of tasks completed by different

agents. We assume that if a task is completed through the cooperation of multiple agents, they must

complete it simultaneously, and each agent receives a portion of the reward, but they only observe

their own portion of that reward.

Policy summarization via Hasse diagrams. To help users understand complex agents’ behav-

iors under decentralized MARL policies, we propose to generate a policy summarization as a Hasse

diagram [55]. Formally, a Hasse diagram is a directed acyclic graph D = (V,E) with vertices V and

edges E, representing a finite partially ordered set, in the form of a drawing of its transitive reduction

(i.e., with the minimal number of edges). Each vertex v ∈ V is defined as a hash table mapping

tasks to agents who cooperate to complete them. Tasks completed simultaneously are grouped within

the same vertex. Each edge (v, v′) ∈ E represents a preorder relation v ≺ v′, indicating that tasks

in vertex v are completed before tasks in vertex v′. A path through the Hasse diagram is a finite

sequence of edges starting from the initial vertex v0, which represents an empty set indicating that

no task has been completed yet.

Figure 5.1(e) shows an example Hasse diagram with seven vertices, representing a policy summa-

rization of four agents completing six tasks together. Each vertex in the diagram, excluding the initial

vertex v0, contains one task and agents that cooperate to complete the task. Each edge represents

a preorder relation of task completion time. For example, the edge v1 → v2 indicates that task A is

completed before task B. The branching of edges in the Hasse diagram illustrates the nondetermin-

ism of task orders resulting from agents’ decentralized execution of policies. For example, there are

nondeterministic choices of successor vertices at v1, indicating that both tasks B and C should occur

after Task A. However, the order between tasks B and C, which are completed by different groups of

agents, is uncertain.

Given a path ρ = v0 → v1 → · · · through the Hasse diagram, we define its projection onto an

agent i, denoted by ρi, as a sequence of tasks obtained by iterating through each vertex in the path ρ

42



and retaining only the tasks completed by agent i. A path projection ρi conforms to the task sequence

trace(ωi) for agent i, denoted by ρi ⊑ trace(ωi), if and only if every task τ ∈ ρi is present in trace(ωi)

and the preorder relations between the completion times of tasks in ρi are preserved in trace(ωi). For

example, consider the path ρ = v0 → v1 → v2 → v4 → v6 shown in Figure 5.1(e). Its projection onto

agent 1 yields ρ1 = A,B, F , which exactly matches the task sequence for agent 1. The projection of

this path onto agent 2 yields ρ2 = A,D, which conforms to the task sequence trace(ω2) = A,C,D for

agent 2, that is, ρ2 ⊑ trace(ω2).

Problem. Given a set of trajectories {ωi}Ni=1 yielded by an episode execution of decentralized MARL

policies {πi}Ni=1, we say that a Hasse diagram D = (V,E) is a correct policy summarization if, for

every path ρ through the Hasse diagram, when its projection ρi onto an agent i is non-empty, ρi

conforms to the task sequence trace(ωi) for agent i, that is, ρi ⊑ trace(ωi). On the other hand, we

say that a Hasse diagram D = (V,E) is a complete policy summarization if, for every agent trajectory

ωi, there exists at least one path ρ through D such that its projection ρi matches the task sequence

trace(ωi), that is, ρi = trace(ωi). This work aims to solve the problem of generating correct and

complete policy summarization for decentralized MARL policies.

5.3 Approach

We present an approach, as illustrated in Algorithm 8, for generating a Hasse diagram D = (V,E) as a

correct and complete policy summarization, given a set of trajectories {ωi}Ni=1 produced by an episode

execution of decentralized MARL policies {πi}Ni=1. These policies can be learned using either CTDE

or DTDE algorithms. Algorithm 8 is agnostic to the underlying decentralized MARL algorithms,

provided that a set of agent execution trajectories {ωi}Ni=1 is available.

First, the algorithm initializes the Hasse diagram with an initial vertex v0 (line 1). Then, it loops

through every trajectory ωi (line 2) and extracts a task sequence trace(ωi) = τ i1, τ
i
2, · · · for agent i

(line 3), as described previously. For each task τ ik ∈ trace(ωi), if that task is already included in

some vertex v ∈ V in the Hasse diagram, then agent i is added to the list of cooperative agents for

completing the task in v (lines 4-6). When k > 1 and no edge exists connecting a vertex v̄ ∈ V

containing the previous task τ ik−1 completed by agent i to the current vertex v, a new edge v̄ → v is

inserted into E (lines 7-10). If task τ ik is not included in any existing vertices in V , a new vertex v′

containing task τ ik and agent i is created (lines 11-12). When k = 1, a new edge connecting the initial

vertex v0 to v′ is inserted into E (line 13); and when k > 1, a new edge v̄ → v′ is created to connect

v′ from a vertex v̄ ∈ V containing the previous task τ ik−1 (lines 15-17).

The algorithm yields a directed acyclic graph (DAG) D = (V,E) once all trajectories {ωi}Ni=1

have been processed. Next, the algorithm continues with a procedure of transitive reduction on the
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Algorithm 8 HDS - Hasse diagram-based summaries
Input: Trajectories {ωi}Ni=1 yielded by an episode execution of decentralized MARL policies {πi}Ni=1

Output: Hasse diagram D = (V,E)

1: v0 ← ∅; V ← {v0}; E ← ∅
2: for (i = 1; i < N ; i++) do
3: trace(ωi)← extract task sequence from ωi

4: for (k = 1; k < |trace(ωi)|; k++) do
5: if task τ ik is contained in a vertex v ∈ V then
6: Append i to the list of agents in v[τ ik]
7: if k > 1 then
8: Find a vertex v̄ ∈ V containing task τ ik−1

9: if (v̄, v) /∈ E then
10: Insert to E a new edge v̄ → v

11: else
12: Insert to V a new vertex v′ with v′[τ ik] = {i}
13: if k = 1 then
14: Insert to E a new edge v0 → v′

15: else
16: Find a vertex v̄ ∈ V containing task τ ik−1

17: Insert to E a new edge v̄ → v′

18: for all (v, v′) ∈ E do
19: if there is a path v → v′ excluding edge (v, v′) then
20: E = E − (v, v′)

return D = (V,E)

DAG [56], ensuring the resulting Hasse diagram has the minimal number of edges. For every edge

(v, v′) ∈ E, if there is a path from v to v′ in the (updated) DAG D = (V,E) that does not use

the edge, then this edge is removed from E (lines 18-20). The aforementioned “if” condition can be

checked via any linear time graph traversal algorithm like breadth-first search or depth-first search.

There also exist faster procedures to compute the transitive reduction of a DAG, such as leveraging

the topological ordering of vertices. We skip the details here and refer readers to [57].

Example. Now we describe a running example to show how Algorithm 8 works. Consider four agents

with decentralized MARL policies {πi}4i=1, each having a trajectory ωi from one episode of policy

execution. Looping through lines 2-17 of Algorithm 8, we first consider agent i = 1. Figure 5.1(a)

shows the resulting DAG after processing the task sequence trace(ω1) = A,B, F for agent 1, where a

chain of new vertices is created. Next, consider agent i = 2 whose task sequence is trace(ω2) = A,C,D.

Figure 5.1(b) shows the resulting DAG after processing trace(ω2). Since there is an existing vertex

containing task A, agent 2 is appended to that vertex’s list of cooperative agents. A new vertex

is created for task C, and an edge is added to connect it to the vertex containing the previous

task A completed by agent 2. Similarly, a new vertex is created for task D and connected to the

vertex containing task C. Repeating the above process for agents 3 and 4 yields the DAGs shown in

Figure 5.1(c-d). Next, the algorithm continues with a transitive reduction on the final DAG shown
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Figure 5.1: Running example for Algorithm 8.

in Figure 5.1(d). Consequently, the dashed edge v2 → v6 is removed from the DAG since there is

another path, v2 → v4 → v6, connecting these two vertices. The algorithm terminates and outputs a

Hasse diagram as shown in Figure 5.1(e).

Complexity. The worst case time complexity of Algorithm 8 is given by O(N · T 4), where N is the

number of agents and T is the number of tasks given by the environment.

Correctness and Completeness. The correctness and completeness of our proposed approach,

with respect to the problem formulated in Section 4.2, is stated below.

Proposition 7. Given a set of trajectories {ωi}Ni=1 yielded by an episode execution of decentralized

MARL policies {πi}Ni=1, the Hasse diagram D = (V,E) generated by Algorithm 8 is a correct and

complete policy summarization.

Proof. (Correctness) Suppose for the sake of contradiction that the Hasse diagram D = (V,E) gen-

erated by Algorithm 8 is not a correct policy summarization. Then, by definition, there must exist

a path ρ through the Hasse diagram whose projection ρi onto some agent i does not conform to the

task sequence trace(ωi). Suppose the non-conformance arises from a path fragment from a vertex v

containing task τ ik to a vertex v′ with task τ ik′ , where k > k′, indicating that task τ ik is completed

after task τ ik′ . By the construction of the Hasse diagram, there is a preorder relation v ≺ v′ such that

tasks contained in v are completed before those in v′. Thus, k should be smaller than k′, which is a

contradiction.

(Completeness) By construction, Algorithm 8 loops through every task sequence trace(ωi) ex-

tracted from all trajectories {ωi}Ni=1, and there exists an edge in the original DAG D = (V,E)

connecting each pair of consecutive tasks in trace(ωi). When the transitive reduction occurs, an edge

(v, v′) is only removed if there is a path connecting v to v′. Thus, for every trajectory ωi, there exists
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at least one path ρ through D such that its projection ρi matches trace(ωi). By definition, the Hasse

diagram D = (V,E) generated by Algorithm 8 is a complete policy summarization.

Remark. When there are many agents and tasks, the generated policy summarization can overwhelm

the user. In real-world applications like the search and rescue example described in the introduction,

the human operator may only be interested in a subset of agents and tasks (e.g., nearby robots). Our

approach can be easily adapted to generate policy summarizations for a selected group of agents and

tasks as follows: The input to Algorithm 8 would only include trajectories of selected agents, and

when extracting the task sequence from a trajectory (line 3), a filter can be applied to preserve only

the relevant tasks.

Moreover, as our experiments will show, multiple episodes of policy execution can result in different

Hasse diagrams. To summarize tasks already completed by agents, we can use the actual execution

trajectories. For summarizing possible future behaviors, we can simulate several episodes of policy

execution and report one of the resulting Hasse diagrams, such as the most frequent.

5.4 Computational Experiments

CTDE

HDS Baseline

Domain |N |,|T | |V | |E| |{D}| Time (s) |V | |E| Time (s)

SR 2,3 4.0±0.0 3.0±0.0 3 0.02 7.0±2.0 6.0±2.0 0.007
9,7 8.0±0.0 7.88±0.78 100 0.1 59.33±10.21 58.33±10.12 0.05

LBF 5,5 6.0±0.0 5.54±0.67 98 0.09 67.2±5.49 66.2±5.49 0.04
9,9 10.0±0.0 10.83±0.97 100 0.12 80.33±28.01 79.33±28.01 0.09

RW 3,4 5.0±0.0 4.0±0.0 35 0.04 23.0±5.66 22.0±5.66 0.01
4,19 20.0±0.0 19.0±0.0 100 0.2 318.5±32.66 317.5±32.66 0.2

PP 4,4 5.0±0.0 4.0±0.0 64 0.07 19.0±4.47 18.0±4.47 0.01
7,6 7.0±0.0 6.0±0.0 99 0.1 37.86±5.25 36.86±5.25 0.03

DTDE

HDS Baseline

Domain |N |,|T | |V | |E| |{D}| Time (s) |V | |E| Time (s)

SR 2,3 4.0±0.0 3.0±0.0 3 0.01 7.0±2.0 6.0±2.0 0.007
9,7 8.0±0.0 7.79±0.77 100 0.1 38.89±18.80 37.89±18.89 0.05

LBF 5,5 6.0±0.0 5.62±0.64 71 0.07 30.2±11.16 29.2±11.16 0.03

RW 3,4 5.0±0.0 4.0±0.0 28 0.04 23.0±10.71 22.0±10.71 0.01

PP 4,4 5.0±0.0 4.0±0.0 37 0.04 16.5±8.67 15.5±8.67 0.01
7,6 7.0±0.0 6.0±0.0 40 0.06 15.29±17.88 14.29±17.88 0.02

Table 5.1: Results of computational experiments on HDS summarization method
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MARL domains. We evaluate the proposed approach through computational experiments on four

benchmark MARL domains: (1) Search and Rescue (SR), where multiple agents cooperate to com-

plete assigned search and rescue tasks [12]; (2) Level-Based Foraging (LBF), a mixed cooperative-

competitive game where agents collect food [11]; (3) Multi-Robot Warehouse (RW), where multiple

agents cooperate to collect and deliver items [11]; and (4) Pressure Plate (PP), where some agents

press switches to open doorways in a maze, enabling other agents to navigate to a goal [53]. All these

domains are based on gridworld. To highlight the need for decentralized execution, we assume agents

can observe only one neighboring grid cell in each cardinal direction for the first three domains and

up to four grid cells in any direction in the Pressure Plate domain.

Baseline. Since there are currently no summarization or explanation methods for decentralized

MARL policies, we extend [58] (a single-policy summarization method) as our baseline summarization

method. To do so, we generate one abstract policy graph per given agent policy and aggregate them

together as suggested in the multi-agent framework in [26].

Setup. To demonstrate the proposed approaches’ agnosticism to decentralized MARL algorithms,

we utilized two MARL algorithms: Shared Experience Actor-Critic (SEAC) [10] for the CTDE type

and Independent Advantage Actor-Critic (IA2C) [11] for the DTDE type. All models were trained

until converging to the expected return or up to 400 million steps. The experiments were run on a

machine with a 2.1 GHz Intel CPU, 132 GB of memory, and Ubuntu 22.04 operating system. Due

to the lack of quality policies (policies did not converge) learned by the IA2C algorithm in the larger

environments, LBF(9,9) and RW(4,19), results for these cases are absent.

Summarization results analysis. We execute each trained policy for 100 episodes, generating 100

Hasse diagrams. Table 5.1 shows the total run time in seconds for generating those policy summa-

rizations using the proposed approach and the baseline. Additionally, we report the average (and

standard deviation) number of vertices and edges produced in both the Hasse diagrams generated by

our method and abstract policy graphs generated by the baseline. Finally, we show the number of

unique Hasse diagrams generated among the 100 summarizations, for different MARL environments

with varying numbers of agents N and tasks T .

The results illustrate the efficiency and scalability of the proposed approach. Although the baseline

is slightly faster than our proposed method, this increase in run time is expected due to the generation

of combined agent information which is not present in the baseline. However, it takes less than 1 second

to generate 100 summarizations in all cases, even for the largest environment, RW(4,19), with 4 agents

and 19 tasks. So, the increase in run time is not overly problematic. Furthermore, the DTDE policies

take less or equal time to summarize compared to the CTDE policies because the DTDE policies have

less possible combinations of agent assignment and task order, as these policies can’t share information
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between agents during training.

Additionally, we find that the average number of nodes and edges in the single agent diagrams

of the baseline are significantly greater than the average number of nodes and edges shown in each

Hasse diagram. This suggests that the summarization produced by the baseline method is significantly

larger, which may cause undue cognitive burden when the user must combine the given information

from multiple agents themselves.

Figure 5.2: Types of generated Hasse diagrams for SR(9,7), LBF(5,5), RW(3,4), and PP(7,6).

Finally, the number of unique Hasse diagrams often increases with the environment size, likely

due to more possible combinations of agent cooperation and task completion in larger environments

with more agents and tasks. We also observe that more unique diagrams are generated for CTDE

policies compared to DTDE policies. In some cases, like SR(9,7), every generated Hasse diagram for
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each episode of policy execution is unique. However, as shown in Figure 5.2, out of 100 unique Hasse

diagrams generated for SR(9,7), there are only 6 types of diagrams categorized by the number of edges

(all diagrams have the same number of nodes determined by the number of tasks) for both CTDE and

DTDE policy summarizations. This is because each edge in the Hasse diagram represents a pre-order

relation between task completion times. For a Hasse diagram with 7 nodes, each representing a task,

there is a limited number of ways to connect these nodes via edges. We observe similar patterns for

other domains: for example, only 4 types for LBF(5,5) and 2 types for RW(3,4). Detailed pie charts

for these domains are available in Figure 5.2.

In summary, the proposed summarization approach can be efficiently applied to various benchmark

MARL domains, scaled for environments with many agents and tasks, and is compatible with policies

learned via either CTDE or DTDE algorithms.

5.5 Summarization Effectiveness User Study

We conducted a user study4 to evaluate the effectiveness of generated policy summarizations with

real-world users.

5.5.1 Study Design

User interface. Users were presented with a survey via Qualtrics to evaluate the effectiveness of

summarizations. Figures 5.3 and 5.4 show examples of the user interface participants were shown with

a generated summarization on top and a question regarding it below.

Participants. We recruited 20 participants (10 males, 9 females, 1 other) via university mailing lists.

Those eligible included fluent English speakers over 18 years old. The average age was 22.55 years

(SD = 2.89). Participants were incentivized with bonus payments to answer questions correctly based

on the provided summarizations.

Baseline. Since there are no summarization methods specifically for decentralized MARL, we adapted

the summarization generation method found in [58], which was originally intended for a single agent

domain, as a baseline. We extended the method (using suggestions from [26]) to the multi-agent by

generating one abstract policy graph for each independent agent policy, showing all of them to the

user. We then highlight the most common states (or most likely agent behavior) per graph for the

user in red. The abstract features (task completion, agent assignment) chosen are the same for both

methods so that the summarizations can be compared one-to-one.

Summarizations generated by the baseline do not portray any agent cooperation on tasks, just tasks

(and their order) completed by a single agent. So, users must combine information from multiple
4This study was approved by the UVA Institutional Review Board with IRB-SBS #7237.

49



Figure 5.3: Example of user interface with HDS summarization method.

agents themselves to understand cooperation on the same tasks which may not always be clear.

Furthermore, the baseline may not accurately portray the most likely set of agent behaviors, as the

most likely behaviors for a single agent may not be its most likely set of behaviors when cooperating

with all agents. Finally, the baseline makes it difficult to tell the true order of tasks since users are

shown the task order by agent. Overall, users may not be aware of the order of tasks (or lack thereof)

completed by two separate agents.

Independent variables. For the summarization study, the single independent variable was summa-

rization type: HDS (shown in Figure 5.3) or baseline (shown in Figure 5.4). The baseline summariza-

tion is displayed as described in the selected baseline [58]. The Hasse diagram-based summarization

displays the partial order represented by the Hasse diagram as a set of natural language rules and

the agent-task assignment from the nodes in a simple table. One summarization is generated for each

unique Hasse diagram produced by Algorithm 8 and the frequency of the diagram is shown below it

as the behavior likelihood. The most likely summarization is highlighted in red for the user.

Procedures. We began each study trial (aggregation, Hasse diagram) by demonstrating how to utilize

the summarization. To ensure data quality, the participant answered several attention-check questions
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Figure 5.4: Example of user interface with baseline summarization method.

after the demonstration. During the within-subject summarization study, the participants completed

two trials (one for each method), each consisting of two summarizations with three questions each

(four summarizations and 12 questions in total). Participants were randomly assigned to two groups

(aggregation first or Hasse diagram first) to counterbalance any ordering effects. All questions within

the trials were also randomized. A demonstration was given, attention checks were injected, bonus

payments were offered, and the time to complete the survey was tracked to ensure data quality.

Dependent variables. Users were asked three different types of questions regarding the given

summarization: assignment (Can [robot(s)] complete [task]?), likelihood (What are the most likely

robot(s) to complete [task]?), and order (Must [task 1] always be completed before [task 2]?). Since

all three aspects must be understood to utilize the summarization, we counted the total number of
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questions correctly answered by a participant as a performance measure. However, we also report the

performance by question type. We also tracked the time to submit an answer to each question as the

response time.

At the end of each trial, participants were instructed to rate the summarization on several goodness

metrics on a 5-point Likert scale [46]. Participants were informed of the number of questions they

answered correctly before rating the summaries. The questions presented are as follows:

• The summarizations help me understand how the robots complete the mission.

• The summarizations are satisfying.

• The summarizations are sufficiently detailed.

• The summarizations are sufficiently complete, that is, they provide me with all the needed

information to answer the questions.

• The summarizations are actionable, that is, they help me know how to answer the questions.

• The summarizations let me know how reliable the robots are for completing the mission.

• The summarizations let me know how trustworthy the robots are for completing the mission.

Hypotheses. We tested three hypotheses stated below:

• H1: HDS summaries lead to better user performance than the baseline summaries.

• H2: HDS summaries have an equal response time compared to the baseline summaries.

• H3: HDS summaries lead to higher ratings on summarization goodness metrics than the baseline

summaries.

5.5.2 Study Results

Question-Answering Performance. Users were able to answer more questions correctly using the

HDS method (M=4.25 out of 6, SD=0.83) compared to the baseline one (M=3.1 out of 6, SD=1.04).

A paired t-test (α = 0.05) shows a statistically significant difference (t(19)=4.2, p ≤ 0.01, d=0.96).

Regarding each individual question type, we find no significant difference in user performance for

assignment (HDS: M=1.15 out of 2, SD=0.36, Baseline: M=1.2 out of 2, SD=0.75) and order (HDS:

M=1.6 out of 2, SD=0.58, Baseline: M=1.5 out of 2, SD=0.5) questions. For likelihood questions

(HDS: M=1.5 out of 2, SD=0.59, Baseline: M=0.4 out of 2, SD=0.49), the HDS method leads to

better performance than the baseline. A paired t-test (α = 0.05) shows these findings for assignment
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(t(19)=-0.27, p ≤ 0.79, d=0.06, not significant), likelihood (t(19)=6.85, p ≤ 0.01, d=1.57, significant),

and order (t(19)=0.7, p ≤ 0.49, d=0.16, not significant) questions. Thus, the data supports H1.

Response Time. Participants spend an equal amount of time responding to questions for both the

HDS (M=25.69 seconds, SD=12.47) and baseline methods (M=25.33 seconds, SD=7.88). A paired

t-test (α = 0.05) shows no statistically significant difference (t(16)=0.12, p ≤ 0.9, d=0.03) in the

recorded response times.

Regarding each individual question type, we also find no significant difference in response time

for assignment (HDS: M= 22.79 seconds, SD=10.77, Baseline: M= 19.6 seconds, SD=4.14) and

order (HDS: M= 23.77 seconds, SD=13.76, Baseline: M= 24.84 seconds, SD=7.48) questions. For

likelihood questions (HDS: M= 17.06 seconds, SD=4.75, Baseline: M= 25.45 seconds, SD=9.25), the

HDS method is significantly faster than the baseline. A paired t-test (α = 0.05) shows these findings

for assignment (t(15)=1.17, p ≤ 0.26, d=0.03, not significant), likelihood (t(14)=-3.07, p ≤ 0.01,

d=0.82, significant), and order (t(15)=-0.38, p ≤ 0.71, d=0.1, not significant) questions. We removed

any outliers using the inter-quartile range method before the paired t-tests were performed. Thus, the

data supports H2.

Figure 5.5: Mean and SD of participant ratings about policy summarizations (“*” indicates statistically
significant difference).

Summarization Goodness Rating. Regarding summarization goodness ratings, participants only

find the proposed HDS method as slightly more complete, as shown in Figure 5.5. We used the

Wilcoxon signed-rank test (α = 0.05) to evaluate hypothesis H3. As stated, there is a statistically

53



significant different regarding completeness (W=16.0, Z=-2.07, p ≤ 0.04, r=-0.33), but not under-

standing (W=18.0, Z=-1.12, p ≤ 0.26, r=-0.18), satisfaction (W=40.0, Z=-0.38, p ≤ 0.7, r=-0.06),

detail (W=30.5, Z=-1.15, p ≤ 0.25, r=-0.18), actionability (W=28.0, Z=-0.6, p ≤ 0.55, r=-0.09),

reliability (W=36.5, Z=0.27, p ≤ 0.79, r=0.04), or trust (W=22.5, Z=0.73, p ≤ 0.47, r=0.12). Thus,

the data rejects H3.

Discussion. In summary, the data supports two of the three provided hypotheses. The HDS method

can increase user performance without increasing response time. However, regarding summarization

goodness ratings, users do not prefer the HDS method compared to the baseline.

The increased overall user performance using the HDS method is most likely due to the focus on

agent cooperation and multi-agent task order that is not present in the baseline method. However,

users are still able to retrieve the needed information from the baseline method as shown by the

comparable performance on assignment and order questions. Yet, our data suggests that the HDS

method excels at providing information about task likelihood as this is the most difficult information

for users to glean on their own from disparate agent information.

Furthermore, the increased complexity of combining information from multiple agents, thus intro-

ducing possible uncertainty in the task order, does not increase response time. Our method actually

may decrease user response time when cooperative information is needed as suggested by the response

time shown for likelihood questions. So, users do not have increased difficulty understanding the

partial order of tasks or agent assignments present in the HDS summarizations.

Finally, users show no strong preference regarding summarization goodness ratings between the

two methods, only finding the HDS method as slightly more complete. This suggests that users are

aware our method is more complete (containing both certain and uncertain information) compared

to the baseline. Furthermore, users may also have a preference for the ease of the flowchart-based

presentation of the aggregation method, influencing the subjective evaluation of goodness ratings.

However, the presented information is disparate and requires users to combine information from

multiple agents on their own, which may not always be accurate.

5.6 Summarization Presentation User Study

We also conducted a user study5 to evaluate the use of augmented reality (AR) in the presentation of

generated policy summarizations. We describe the study design in Section 5.6.1, present the results

in Section 5.6.2, and discuss the findings in Section 5.6.3.
5This study was approved by the UVA Institutional Review Board with IRB-SBS #6292.
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5.6.1 Study Design

User interface. The user was placed into a virtual reality (VR) environment, which simulates a

real-world search and rescue environment with four simulated robotic agents following decentralized

MARL policies. The user acted as a field operator who was provided a policy summarization generated

by the proposed approach, helping them understand how robots cooperate to complete search and

rescue tasks (e.g., rescuing victims, fighting fires).

Figure 5.6(a) shows an example of the user’s first-person view through the VR headset (Meta Quest

2). For simplicity, policy summarizations used in the study were Hasse diagrams with a single path

(i.e., the task order is deterministic), visualized as a chart with columns indicating the order of tasks

and rows representing the agents’ task sequences. It could be difficult for the user to locate agents

and tasks mentioned in the policy summarization, especially in environments with a large number

of agents and tasks. To address this issue, we apply an augmented reality technique called position

overlay (PO), which overlays connecting lines between the actual locations of agents (or tasks) and

their names in the policy summarization, as shown in Figure 5.6(b).

Additionally, the user can choose to see a static 2D blueprint of the environment through the VR

headset. However, the static 2D blueprint may be inaccurate and outdated due to the complex and

dynamic nature of the search and rescue environment.

Independent variables. For this study, the single independent variable was the policy summariza-

tion presentation condition: with position overlay (called WithPO) or without (called NoPO).

Participants. We recruited 23 participants (12 males, 11 females) via university mailing lists. Eligi-

bility included fluent English speakers over 18 years old with clear vision and no history of motion or

VR sickness. The average age was 24.4 years (SD = 4.6).

Procedures. We began the study by demonstrating the user interface for both NoPO and WithPO

conditions. To ensure data quality, the participant answered several attention-check questions after the

demonstration. During the within-subject study, the participant completed two trials, each consisting

of three maps (six maps in total). One trial used the NoPO condition, and the other used the

WithPO condition. Both trials used the same three maps but with different agent locations and

policy summarizations to ensure similar difficulty. Maps were selected randomly for each trial, and

participants were randomly assigned to two groups (NoPO first or WithPO first) to counterbalance

any ordering effects.

Dependent variables. For each map, we first asked the participant to orient themselves to the

environment (e.g., identifying their location and the robots’ locations). The participant then answered

the following four questions via multiple choices, based on the provided policy summarization and

static 2D blueprint of the environment.
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Figure 5.6: Examples of the user’s first-person view through the VR headset, without or with position
overlay.

• Q1: What is the next task agent x will complete?

• Q2: Can agents x and y complete task τ?

• Q3: Why can’t agents x and y complete task τ?

• Q4: Is agent x or y physically closer to task τ?

where x, y, and τ were instantiated with the names of various agents and tasks for different maps. To

track a participant’s performance, we measured the time taken to orient themselves, the time taken to

answer each question, the correctness of their answers, and their confidence ratings on a seven-point

scale.

At the end of each trial, the participant was asked to complete an unweighted NASA TLX [59]

on a seven-point scale to measure cognitive load. Additionally, the participant rated several state-

ments about the policy summarization based on explanation goodness metrics (e.g., user satisfaction)

adapted from [46]. The questions presented are as follows:
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• The summarizations help me understand how the robots complete the mission.

• The summarizations are satisfying.

• The summarizations are sufficiently detailed.

• The summarizations are sufficiently complete, that is, they provide me with all the needed

information to answer the questions.

• The summarizations are actionable, that is, they help me know how to answer the questions.

• The summarizations let me know how reliable the robots are for completing the mission.

• The summarizations let me know how trustworthy the robots are for completing the mission.

Hypotheses. Utilizing position overlay to support the presentation of policy summarization leads

to:

• H1: reduced response time;

• H2: more correctly answered questions;

• H3: lower cognitive load;

• H4: higher summarization goodness ratings.

5.6.2 Study Results

Response time. Participants were able to orient themselves more quickly under the WithPO con-

dition than with NoPO. A paired T-test (α = 0.05) showed a statistically significant difference

(t(22)=2.4, p≤0.03, d=0.5). Moreover, as shown in Figure 5.7(a), there is a significant difference

in the question response time between the WithPO and NoPO conditions: Q1 (t(22)=4.2, p≤0.01,

d=0.9), Q2 (t(22)=5.3, p≤0.01, d=1.1), Q3 (t(22)=2.5, p≤0.03, d=0.5), and Q4 (t(22)=2.4, p≤0.03,

d=0.5). Thus, the data supports H1.

Correct answers. Figure 5.7(b) shows the number of correct answers for each question type given

unlimited time. A paired T-test (α = 0.05) revealed no significant difference between the WithPO

and NoPO conditions: Q1 (t(22)=-1.4, p≤0.2, d=0.3), Q2 (t(22)=-1.6, p≤0.2, d=0.3), Q3 (t(22)=-1.7,

p≤0.1, d=0.4), and Q4 (t(22)=2.1, p≤0.06, d=0.4). Thus, the data rejects H2.

However, participants gave higher confidence ratings for WithPO: an average of 6.2 (SD=0.6)

compared to NoPO: 5.6 (SD=0.7). A Wilcoxon signed-rank test (α = 0.05) showed a significant

difference (W=14.5, Z=-2.4, p≤0.02, r=-0.4).
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Figure 5.7: Mean and SD of question-answering performance (* indicates statistically significant
difference).

Cognitive load. Participants reported an average cognitive load index of 17.8 (SD=4.8) when

utilizing WithPO, compared to 22.8 (SD=7.1) with NoPO. The reduced cognitive load under the

WithPO condition may be attributed to the ease of locating agents and tasks. A Wilcoxon signed-

rank test (α = 0.05) showed a significant difference (W=0.0, Z=2.6, p≤0.01, r=0.4). Thus, the data

supports H3.

Summarization goodness. Figure 5.8 shows the percentage of participant ratings on each sum-

marization goodness statement. We found a significant difference using a Wilcoxon signed-rank test

(α = 0.05) in user understanding (W=0.0, Z=-2.3, p≤0.03, r=-0.3), satisfaction (W=0.0, Z=-2.4,

p≤0.02, r=-0.3), detail (W=4.0, Z=-2.7, p≤0.01, r=-0.4), completeness (W=4.0, Z=-2.5, p≤0.02,

r=-0.4), and actionability (W=0.0, Z=-2.8, p≤0.01, r=-0.4) when using the WithPO condition. No

significant difference was found in reliability (W=18.0, Z=-1.7, p≤0.09, r=-0.3) and trust (W=14.5,

Z=-1.6, p≤0.11, r=-0.2). Thus, the data partially supports H4.

5.6.3 Discussion

The results show that participants responded faster in both orienting themselves and answering ques-

tions under the WithPO condition compared to the NoPO condition. This is likely due to the ease of

locating agents and processing their surroundings with position overlay.

As expected, with unlimited time, participants could figure out the correct answers in both con-

ditions. However, it took significantly longer under the NoPO condition, and participants were more

confident in their responses under the WithPO condition due to reduced uncertainty about the agents’

positions and environmental effects.

Since unlimited time is not always available in fast-paced, high-pressure search and rescue missions,

we tracked the number of questions participants correctly answered in under five seconds. We found
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Figure 5.8: Distribution of participant ratings on summarization goodness metrics (* indicates statis-
tically significant difference).

that participants answered significantly fewer questions correctly with NoPO compared to WithPO.

However, more testing is needed, as participants were not originally given this time limit in the study,

which could affect their behavior.

The majority of summarization goodness metrics were rated higher under the WithPO condition.

However, because participants did not actually observe task completion, metrics like reliability and

trust showed no statistically significant difference between WithPO and NoPO conditions.

In summary, the user study results suggest that the generated policy summarizations are effective

on their own but are more effective when presented with position overlay.

5.7 Summary

This chapter presents a novel approach for summarizing decentralized MARL policies. Computational

experiments on four MARL domains show that our approach is scalable and compatible with vari-

ous decentralized MARL algorithms. Our user studies demonstrate the effectiveness of the generated

policy summarizations, improving user performance. Additionally, we highlight the benefits of sum-

mary presentation with position overlay such as improved question-answering performance, reduced

cognitive load, and enhanced user satisfaction.
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Chapter 6

Policy Explanations for Decentralized MARL

6.1 Overview

In addition to the decentralized summarization method found in the previous chapter, we develop

query-based explanations for decentralized MARL. We focus on three types of user queries: “When

do [agents] do [task]?”, “Why don’t [agents] do [task] under [conditions]?”, and “What do the agents

do after [task]? inspired by those found in [21]. Drawing information from the generated Hasse

diagram-based summarizations found in Chapter 5, we compute abstract states representing features

such as agent cooperation and completed tasks. A minimal Boolean logic expression that covers all

states matching the given user query is then determined, similar to the work found in Chapter 3.

We convert the boolean expression into a natural language explanation using Large Language Models

(LLMs) and present it to the user in response to their query.

Using two distinct MARL algorithms, we show the scalability of our proposed approach for all three

query types across four MARL domains. Our method can be applied to large MARL domains with a

significant number of agents and tasks, producing reasonable explanations quickly and effectively.

Additionally, we assess the effectiveness of the generated explanations through a user study, mea-

suring user performance, completion time, and goodness metrics [46]. Results show that our proposed

approach significantly improves user performance and increases subjective ratings without needing

significantly more time than the more naive baseline.

6.2 Query-based Explanations

A policy summarization cannot provide a local view of agent behavior, limiting user understanding of

specific actions. Thus, we also develop Hasse diagram-based methods (HDE) to generate explanations

for three user queries:

• “When do [agents] do [task]?”

• “Why don’t [agents] do [task] under [conditions]?”

• “What do the agents do after [task]?
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Algorithm 9 HDE-When - Hasse diagram-based explanations for “when" queries
Input: user query “When do agents Gq do task Tq?”, Hasse diagrams D from simulations, abstract
features F
Output: Explanation E

1: F ← insert all relevant features for Tq from F
2: U ← {}
3: for (j = 1; j < |simulations|; j++) do
4: if Dj contains task Tq completed by agents Gq then
5: for v ∈ Vj do
6: if BFS(v,Tq) = False & BFS(Tq,v) = False then
7: U [Dj ]← f ∈ F related to v

8: for (j = 1; j < |simulations|; j++) do
9: for v ∈ Vj do

10: if v contains task Tq completed by agents Gq then
11: V← v
12: else
13: V ← v
14: B1 ← NodeToBoolean(V,Dj ,U)
15: B0 ← NodeToBoolean(V,Dj ,U)
16: ϕ← Quine-McCluskey(ones = B1,zeros = B0)
17: Translate ϕ into explanation E via LLM
18: return E
19: function NODETOBOOLEAN(V ,Dj ,U)
20: B ← [ ]
21: for v ∈ V do
22: C ← feature predicate valuations of v with Dj , U [Dj ]
23: for f ∈ F do
24: Insert C(v, f) to B

return B

With these queries, our goal is to generate a set of conditions for, isolate missing conditions of,

and generate a list of behaviors after task completion by one or multiple agents.

6.2.1 Explanations for When Queries

Algorithm 9 shows the steps for answering the query “When do [agents] do [task]?” The variables

Gq and Tq represent the user-selected agents and task, respectively. We also receive a set of Hasse

diagrams produced from Algorithm 8 and a set of abstract features F .

Using domain knowledge, the algorithm begins by isolating the relevant features F for task Tq

from the total set of abstract features F . We follow the method described in [12], shown in Chapter

3, to isolate relevant features via domain knowledge. For our method, these abstract features contain

information regarding the MARL domain selected by experts such as agent actions (i.e. agent 1

completes task A) and task completion (i.e. task A is completed) (line 1).

Example 8. For example, the user may ask “When do agents 2 and 4 do task C?" We will assume
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that our total abstract features include agent actions (agent 2 completes task C) and task completions

(task A complete) for all agents and tasks. From domain knowledge, we know that only agents 2 and

4 have the ability to complete task C and that completing task C is not a precondition for any other

task. So, the relevant features are agent 2 completing task C, agent 4 completing task C, and the

completion of any other task (A, B, D, E, F).

Since all the Hasse diagrams from Algorithm 8 are generated by simulations of the same underlying

decentralized policies, which are also trained in the same environment, all the diagrams have the same

underlying conditions for the execution of task Tq. So, we combine the information from all the

diagrams together to generate a set of conditions for Tq (line 3).

If a diagram contains the selected task Tq, completed by the selected agents Gq, we generate

a partial comparability graph [60] focused on the node containing task Tq. A compatibility graph

indicates the nodes in a Hasse diagram that have a total ordering. For a full comparability graph,

a search algorithm is run between all pairs of nodes to determine if a path exists between them in

the Hasse diagram, indicating a known ordering. However, our interest is only in nodes (and their

contained tasks) connected to the node containing task Tq. So, we run a breath-first search from the

node containing task Tq to all other nodes and vice versa, generating a partial graph (lines 4-6).

If a node v is not connected to the node containing task Tq in the comparability graph, we connect

any features in F related to v to diagram Dj in our dictionary tracking uncertain features (lines 2,

7). As an unconnected node v indicates an unknown ordering of that node in relation to the node

containing Tq. So, it is uncertain if the task contained in v occurred previously and is required for the

execution of task Tq.

Example 9. Figure 6.1 contains an example of a diagram and its resulting comparability graph. The

given task (task C) is marked in blue. Connected tasks (certain ordering) are marked in gray and

unconnected tasks (uncertain ordering) are marked in green. Due to node containing task B being

unconnected, we insert the feature “task B complete" into our uncertainty dictionary.

We now isolate the features needed for task Tq to be completed by agents Gq. For each diagram

Dj , we view each node v (lines 8-9). If a node v contains the completion of the selected task Tq by

agents Gq, the node is inserted into the set of target nodes V. Otherwise, it is inserted into V, a set

of non-target nodes (lines 9-12).

Example 10. In Figure 6.1, the nodes in blue (given task) are target nodes and all other nodes are

non-target nodes based on our given query. We do this for all received diagrams.

Once our sets of nodes are generated, we convert each node into a boolean formula, such that each

bit of the formula corresponds to a relevant feature contained in F (lines 14-15). This conversion is
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Figure 6.1: Hasse diagram and resulting partial comparability graph

adapted from the one found in [12], shown in Chapter 3. For each node v, if a feature f is true in the

given Hasse diagram, the value of the corresponding bit is set to one, C(v, f) = 1. An abstract feature

f is said to be true for a node v ∈ Dj , if there exists a path p ∈ Dj satisfying f such that v ∈ p. For

example, the feature “task A complete" is true if task A precedes node v in the Hasse diagram. If the

value of the feature f is false, the value of the bit is set to zero, C(v, f) = 0.

Since each agent is only aware of its own internal state, we may not see all underlying conditions

for task Tq in all diagrams. So, a feature f for a node v containing Tq in Dj is uncertain if f is

contained in U in relation to Dj . The value of the bit representing f is set to one to ensure the feature

is not discounted, C(v, f) = 1. For example, the bit for the feature “task B complete" is set to one for

the node containing task Tq since the feature is contained in the uncertainty dictionary for the given

diagram.

We then generate a minimized boolean formula representing the difference between the two sets

(target vs. non-target) via the Quine-McCluskey algorithm [48] (line 16). However, due to uncertain

features, we generate a super-set of underlying conditions. Yet, uncertain conditions are still tracked

via U to ensure they are reported to the user, indicating which features of the formula may not be a

part of the original set of conditions (lines 19-25).
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Example 11. For example, the blue node in the diagram shown in Figure 6.1 is converted into

the boolean formula [1111000] since agent 2 completes task C, agent 4 completes task C, task A is

completed, task B is present in the uncertainty dictionary for this diagram, and tasks D, E, and F

are not completed. We convert all nodes across all diagrams using this method and run the Quine-

McCluskey algorithm to receive a minimized boolean formula covering all target states.

Finally, we use a large language model to convert the returned minimized boolean expression from

Quine-McCluskey into a natural language explanation (line 17). Specifically, we use a template such

that certain features are explained with the phrases “must" (true) and “must not" (false) based on their

value. However, if a feature is an uncertain feature in any generated diagram (in dictionary U), it is

explained with the phrases “may" (true) or “may not" (false). We present the resulting explanation to

the user (line 18). The LLM prompts can be found below and resulting natural language explanations

can be seen in Table 6.1.

“When" Query LLM Prompt. An example of the prompt given to the LLM to produce a query

in the form “When do [agents] do [task]?" is given below:

Here is a sentence: "For agents 1 and 2 to do task A, agent 1 must complete task A, agent 2 must

complete task A, and task B needs to be completed. Additionally, task C may need to be completed

and agent 3 may need to complete task A. This sentence is generated from the following information:

agents:[1,2], task: [complete task A], certain features:[agent 1 completes task A, agent 2 completes

task A, task B completed], uncertain features:[task C completed, agent 3 completes task A]. Generate

a sentence like the one above with the following information: agents:[2,4], task: [complete task C],

certain features:[agent 2 completes task C, agent 4 completes task C, task A completed], uncertain

features:[task B complete]. Remove any reference to the information.

6.2.2 Explanations for Why Not Queries

To answer the query “Why don’t [agents] do [task] under [conditions]?”, we alter Algorithm 9 to capture

the minimal missing features for agents Gq to complete task Tq in a node with given conditions. First,

we update lines 9-12, so that if node v contains the completion of task Tq by agents Gq it is inserted

into the non-target set V. Furthermore, the target set V, will now only contain a boolean formula

representing the conditions Γq given by the query. The new algorithm can be seen in Algorithm 10.

Example 12. For example, the user may ask “Why don’t agents 2 and 4 do task C in the state where

agents 2 and 4 are trying to complete task C and only task A is completed?" In Figure 6.1, the nodes

in blue are non-target nodes and the target node has the following boolean formula [1110000] since

agents 2 and 4 could complete task C and only task A is completed in the given conditions. The LLM

prompts can be seen below and the resulting natural language explanation can be seen in Table 6.1.
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Algorithm 10 HDE-WhyNot - Hasse diagram-based explanations for “why not" queries
Input: user query “Why don’t do agents Gq do task Tq under conditions Γq?", Hasse diagrams D
from simulations, abstract features F
Output: Explanation E

1: F ← insert all relevant features for Tq from F
2: U ← {}
3: for (j = 1; j < |simulations|; j++) do
4: if Dj contains task Tq completed by agents Gq then
5: for v ∈ Vj do
6: if BFS(v,Tq) = False & BFS(Tq,v) = False then
7: U [Dj ]← f ∈ F related to v

8: for (j = 1; j < |simulations|; j++) do
9: for v ∈ Vj do

10: if v contains task Tq completed by agents Gq then
11: V ← v
12: B1 ← Convert Γq to boolean expression
13: B0 ← NodeToBoolean(V,Dj ,U)
14: ϕ← Quine-Mccluskey(ones = B1,zeros = B0)
15: Translate ϕ into explanation E via LLM
16: return E
17: function NODETOBOOLEAN(V ,Dj ,U)
18: B ← [ ]
19: for v ∈ V do
20: C ← feature predicate valuations of v with Dj , U [Dj ]
21: for f ∈ F do
22: Insert C(v, f) to B

return B

“Why Not" Query LLM Prompt. An example of the prompt given to the LLM to produce a

query in the form “Why don’t [agents] do [task] under [conditions]?" is given below:

Here is a sentence: "For agents 1 and 2 to do task A, agent 1 must complete task A, agent 2 must

complete task A, and task B needs to be completed. Additionally, task C may need to be completed

and agent 3 may need to complete task A. This sentence is generated from the following information:

agents:[1,2], task: [complete task A], certain features:[agent 1 completes task A, agent 2 completes

task A, task B completed], uncertain features:[task C completed, agent 3 completes task A]. Generate

a sentence like the one above with the following information: agents:[2,4], task: [complete task C],

certain features:[none], uncertain features:[task B complete]. Remove any reference to the information.

6.2.3 Explanations for What Queries

The query “What do the agents do after [task]?" can be answered using a simple set of steps, shown in

Algorithm 11. After generating our set of Hasse diagrams using Algorithm 8 for each simulation, we

isolate any nodes where task Tq is completed. For those nodes, we generate a list of children, counting

the number of times each task appears in a node in that list. This gives us the frequency of the next

65



possible tasks that are certain. For each node containing Tq, we also generate a partial comparability

graph focused on it. We then count the number of times each task occurs in an unconnected node. This

gives us the frequency of possible next tasks that are uncertain. We then present the user with a list of

certain and uncertain next tasks in order of frequency in a natural language template containing both

certain and uncertain tasks: After the [task] is completed, [certain tasks] are completed. Additionally,

[uncertain tasks] may be completed.

Algorithm 11 HDE-What - Hasse diagram-based explanations for “what" queries
Input: user query “What do agents do after task Tq?", Hasse diagrams D from simulations
Output: Explanation E

1: C, U = []
2: for (j = 1; j < |simulations|; j++) do
3: for v ∈ Vj do
4: if v contains task Tq completed by agents Gq then
5: C ← children of v
6: for v′ ∈ Vj do
7: if BFS(v,v′) = False & BFS(v′,v) = False then
8: U .append(v′)
9: Translate C and U into explanation E via templates

10: return E

Example 13. For example, the user may ask “What do agents do after task C is completed?" The

resulting natural language explanation can be seen in Table 6.1.

Query Explanations Generated by HDE Explanations Generated by
Baseline

When do agents 2
and 4 do task C?

For agents 2 and 4 to complete task C,
agent 2 must complete task C, agent 4
must complete task C, and task A must be
completed. Additionally, task B may need
to be completed.

For agents 2 and 4 to complete
task C, agent 2 must complete
task C, agent 4 must complete
task C, and task A must be
completed.

Why don’t agents
2 and 4 do task C
in state where
only task A is
completed?

For agents 2 and 4 to complete task C,
task B may need to be completed.

Agents can complete task C.

What do the
agents do after
task A is
completed?

After task C is completed, tasks D and E
are completed. Additionally, task B may
be completed.

After task C is completed,
tasks D and E are completed.

Table 6.1: Examples of query-based explanations

66



6.2.4 Properties

When Queries. The time complexity of HDE-When follows the exponential time complexity of

Quine-McCluskey and is bounded by O(3N ·|F|/ln(N · |F|)). It relies on the number of agents and the

number of relevant features.

Why Not Queries. Since the Algorithm 10 is a modified version of Algorithm 9, it follows the same

time complexity.

What Queries. The time complexity of Algorithm 11 is significantly smaller, bounded byO(4DV 2(V+

E)) since the algorithm does not call Quine-McCluskey. It relies on the number of diagrams as well

as the number of tasks (nodes) and the number of pre-order rules (edges) in each Hasse diagram.

6.3 Computational Experiments

CTDE DTDE

HDE-When Baseline HDE-When Baseline

Domain |N |,|T | |ϕ ̸U | |ϕU | Time (s) |ϕ ̸U | |ϕU | Time (s) |ϕ ̸U | |ϕU | Time (s) |ϕ ̸U | |ϕU | Time (s)

SR 2,3 6 1 0.02 15 0 0.02 7 1 0.03 16 0 0.03
9,7 9 2 0.06 54 0 0.04 5 5 0.07 45 0 0.04

LBF 5,5 15 1 0.04 58 0 0.03 14 4 0.04 41 0 0.03
9,9 13 11 0.1 104 0 0.06 - - - - - -

RW 3,4 0 3 0.02 4 0 0.01 0 2 0.02 2 0 0.01
4,19 0 153 0.29 267 0 0.07 - - - - - -

PP 4,4 5 3 0.03 14 0 0.01 5 3 0.03 13 0 0.01
7,6 8 3 0.04 20 0 0.01 8 3 0.05 19 0 0.03

Table 6.2: Results of computational experiments on HDE explanation method for “when" queries

CTDE DTDE

HDE-WhyNot Baseline HDE-WhyNot Baseline

Domain |N |,|T | |ϕ ̸U | |ϕU | Time (s) |ϕ ̸U | |ϕU | Time (s) |ϕ ̸U | |ϕU | Time (s) |ϕ ̸U | |ϕU | Time (s)

SR 2,3 1 0 0.04 2 0 0.07 1 0 0.05 2 0 0.08
9,7 1 0 1 2 0 1.8 1 0 1.12 2 0 1.9

LBF 5,5 1 0 0.29 2 0 0.56 1 0 0.3 2 0 0.56
9,9 1 0 12.07 2 0 27 - - - - - -

RW 3,4 1 0 0.01 2 0 0.01 1 0 0.01 1 0 0.01
4,19 1 0 461.09 1 0 449.65 - - - - - -

PP 4,4 1 0 0.05 2 0 0.04 1 0 0.05 3 0 0.04
7,6 1 0 1.01 2 0 0.94 1 0 1 1 0 0.95

Table 6.3: Results of computational experiments on HDE explanation method for “why not" queries

MARL domains. We evaluate the proposed approach through computational experiments on four

benchmark MARL domains:

• Search and Rescue (SR) - A gridworld environment where agents cooperate to complete assigned
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CTDE DTDE

HDE-What Baseline HDE-What Baseline

Domain |N |,|T | |C| |U | Time (s) |C| |U | Time (s) |C| |U | Time (s) |C| |U | Time (s)

SR 2,3 2 1 0.01 2 0 0.01 1 1 0.01 1 0 0.01
9,7 3 0 0.02 2 0 0.02 1 7 0.02 3 0 0.02

LBF 5,5 4 0 0.02 4 0 0.01 4 0 0.02 3 0 0.01
9,9 8 0 0.02 6 0 0.02 - - - - - -

RW 3,4 1 3 0.01 1 0 0.01 1 3 0.01 2 0 0.004
4,19 9 11 0.04 10 0 0.01 - - - - - -

PP 4,4 1 3 0.02 1 0 0.01 1 3 0.02 1 0 0.01
7,6 1 5 0.02 2 0 0.01 2 3 0.02 2 0 0.01

Table 6.4: Resultsof computational experiments on HDE explanation method for “what" queries

search and rescue tasks.

• Level-Based Foraging (LBF) - A mixed cooperative-competitive game in a gridworld environment

where agents collect food [11];

• Multi-Robot Warehouse (RW) - A gridworld environment where multiple agents cooperate to

collect and deliver items [11];

• Pressure Plate (PP) - A gridworld environment where agents press switches to open doorways

in a maze, enabling other agents to navigate to a goal [53].

To highlight decentralized execution, we set each environment so agents can observe only one neigh-

boring grid cell in each cardinal direction for the first three domains and up to four grid cells in any

direction in the Pressure Plate domain.

Baseline. We adapt a single-agent explanation method and suggestions from [26] to create an

aggregation-based method as a possible baseline. After generating an abstract policy graph for each

agent policy, we produce an explanation for each agent by selecting target and non-target states and

generating a minimized boolean formula [21], adapting this method to contain only relevant features

like our own. Then, following suggestions in [26] we combine the returned information from each agent

through simple aggregation.

Setup. The experiments were run on a machine with a 2.1 GHz Intel CPU, 132 GB of memory, and

Ubuntu 22.04 operating system. All models were trained until converging to the expected return or up

to 400 million steps. We utilized two MARL algorithms, Shared Experience Actor-Critic (SEAC) [10]

for the CTDE type and Independent Advantage Actor-Critic (IA2C) [11] for the DTDE type, to

demonstrate the proposed approaches’ agnosticism to decentralized MARL algorithms. Due to the lack

of quality policies (policies did not converge) learned by the IA2C algorithm in the larger environments,

LBF(9,9) and RW(4,19), results for these cases are absent.
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Explanation results analysis. To generate explanations for our experiments, we execute each

trained policy for 100 episodes to generate 100 Hasse diagrams, then we generate an explanation.

Tables 6.2 and 6.3 show the total run time in seconds and feature amount (number of certain, uncertain

features) for both CTDE and DTDE policies, respectively. Table 6.4 reports the run time and the

number of both certain and uncertain subsequent tasks.

First, run times to generate all three types of queries are comparable across both our proposed

method and the baseline. This suggests that there is no additional time needed to produce the extra

uncertain features for “when" queries and “why not" queries or uncertain tasks for “what" queries,

which can add to the user’s understanding of the decentralized policy.

The baseline method produces larger abstract policy graphs compared to our proposed method’s

Hasse diagrams and naively aggregates information from multiple agents through the simple addition

of generated single-agent explanations. So, we find that for “when queries" and “why not" queries

significantly more features are produced. This increase in features can cause a significant cognitive

burden on users as they must sort through, combine, and reduce features themselves to understand

agent actions. Furthermore, as expected, there are no uncertain features produced by the baseline

leaving the resulting explanations incomplete.

Regarding “what" queries our method can isolate more tasks compared to the baseline, as it

considers both certain and uncertain tasks, giving the user a more complete set of subsequent tasks.

Additionally, the combined information from multiple agents results in fewer certain tasks, as the

combined information is able to limit what tasks are certain to happen and what tasks are uncertain.

The naive aggregation of subsequent tasks often leads to a long list of subsequent tasks that may

not be accurate. Thus, the HDE method is more accurate and complete. It allows users to better

understand all possible options for subsequent agent actions.

In summary, the proposed explanation approach shows efficient run times and more effective

explanations compared to the baseline. These explanations can be scaled for large environments with

a significant number of agents and tasks for both CTDE and DTDE algorithms.

6.4 User Study

Additionally, we conducted a user study6 to evaluate the effectiveness of generated policy explanations

for three types of queries (when?, why not?, what?).
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Figure 6.2: Question based on explanations for a “when” query.

6.4.1 Study Design

User interface. To evaluate the produced explanations, users were presented with a survey via

Qualtrics. Users were first presented with a map of a search and rescue mission containing four agents

and four tasks. They were then given an explanation containing the requirements for when a task

occurs, the violated requirements causing a task to not occur, or what tasks could occur based on

the given query (when?, why not?, what?) for the question. Participants were then asked to predict

if the task would occur in the given map or what tasks could happen next. Figure 6.2 shows an

example of the basic user interface for a question based on an explanation for a“when" query. Figures

6.3 and 6.4 show the user interface for a “why not" and “what" query, respectively. Our method is
6This study was approved by the UVA Institutional Review Board with IRB-SBS #7237.
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Figure 6.3: Question based on explanations for a “why not” query.

able to produce both certain features (Requirements) and uncertain features (Possible requirements)

since our method is built specifically for decentralized policies. However, the baseline is only able to

produce certain features (Requirements), so any uncertain features (Possible requirements) are listed

as unknown. This is also true for certain and uncertain tasks in the “what" query.

Participants. We recruited 21 participants (14 males, 6 females, 1 other) via university mailing lists.

Those eligible included fluent English speakers over 18 years old. The average age was 24 years (SD

= 3.95). Participants were incentivized with bonus payments to answer questions correctly based on

the provided explanations.

Baseline. Since there are no explanation methods specifically for decentralized MARL, we generate a

baseline utilizing a common single agent method found in [21] combined with multi-agent suggestions

from [26]. Overall, we generate an explanation for each agent given in the user query using an abstract

policy graph from that agent’s policy as presented in [21], then we aggregate the generated features
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Figure 6.4: Question based on explanations for a “what” query.

(Requirements) together as suggested in [26].

By naively aggregating explanations from each agent, explanations do not provide information

regarding agent cooperation on tasks or tasks completed by other agents outside of the given query.

So, agents may miss task requirements regarding agent-task assignment or preconditions (i.e. fire

must be fought before the victim is rescued) that could be provided by other agents. Furthermore,

the produced single agent explanation may add additional information always observed by one agent

that could be discounted by another.

Independent variables. For the explanation study, the single independent variable was explanation

type: HDE or baseline.

Procedures. We began the study by demonstrating how to utilize the explanations. To ensure data

quality, the participant answered several attention-check questions after the demonstration. During

the within-subject summarization study, the participant completed two trials (one for each method),

each consisting of two questions for each query type (12 questions in total). Participants were randomly

assigned to two groups (aggregation first or Hasse diagram first) to counterbalance any ordering effects.

All questions within the trials were also randomized. A demonstration was given, attention checks

were injected, bonus payments were offered, and the time to complete the survey was tracked to ensure

data quality.

Dependent variables. We counted the total number of prediction questions correctly answered by a
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participant for each query type as a performance measure. The user’s response time for each question

was also recorded.

At the end of each trial, participants were instructed to rate the explanations on several goodness

metrics on a 5-point Likert scale [46]. Participants were informed of the number of prediction questions

they answered correctly before rating the explanations. The questions presented are as follows:

• The explanations help me understand how the robots complete the mission.

• The explanations are satisfying.

• The explanations are sufficiently detailed.

• The explanations are sufficiently complete, that is, they provide me with all the needed infor-

mation to answer the questions.

• The explanations are actionable, that is, they help me know how to answer the questions.

• The explanations let me know how reliable the robots are for completing the mission.

• The explanations let me know how trustworthy the robots are for completing the mission.

Hypotheses. We tested three hypotheses stated below:

• H1: HDE explanations lead to better user performance than the baseline explanations across

all three query types.

• H2: HDE explanations have an equal question response time compared to the baseline expla-

nations across all three query types.

• H3: HDE explanations lead to higher ratings on summarization goodness metrics than the

baseline explanations across all three query types.

6.4.2 Study Results

Question-Answering Performance. As shown in Figure 6.5, users were able to answer more

questions correctly using the HDE method compared to the baseline one for all three query types.

A paired t-test (α = 0.05) shows a statistically significant difference for all three queries: when

(t(20)=9.65, p ≤ 0.01, d=2.16), why not (t(20)=13.23, p ≤ 0.01, d=2.96), and what (t(20)=12.05, p

≤ 0.01, d=2.69). Thus, the data supports H1.

Response Time. Figure 6.6 shows that participants spend an equal amount of time responding

to all three types of questions for both the HDE and baseline methods. A paired t-test (α = 0.05)

shows no statistically significant difference for all three queries: when (t(20)=0.57, p ≤ 0.58, d=0.13),
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Figure 6.5: Mean and SD of participant performance about policy explanations (“*” indicates statis-
tically significant difference).

Figure 6.6: Mean and SD of participant response time about policy explanations (“*” indicates sta-
tistically significant difference).

why not (t(20)=0.7, p ≤ 0.49, d=0.17), and what (t(20)=0.91, p ≤ 0.38, d=0.21). We removed any

outliers using the inter-quartile range method before the paired t-tests were performed. Thus, the

data supports H2.

Summarization Goodness Rating. Participants find the proposed HDE method better than the

baseline method in all reported explanation goodness metrics, shown in Figure 6.7. We used the

Wilcoxon signed-rank test (α = 0.05) to show the statistically significant difference in understand-

ing (W=3.5, Z=-3.02, p ≤ 0.01, r=-0.47), satisfaction (W=5.0, Z=-3.01, p ≤ 0.01, r=-0.46), detail

(W=4.5, Z=-3.02, p ≤ 0.01, r=-0.47), completeness (W=0.0, Z=-3.21, p ≤ 0.01, r=-0.49), actionabil-

ity (W=4.0, Z=-2.53, p ≤ 0.02, r=-0.39), reliability (W=3.0, Z=-2.78, p ≤ 0.01, r=-0.43), and trust

(W=0.0, Z=-2.68, p ≤ 0.01, r=0.41). Thus, the data supports H3.

Discussion. In summary, the data supports all three hypotheses. This is most likely because our

proposed HDE method presents the user not just with certain features (Requirements), but also

uncertain features (Possible Requirements). So, participants can better predict if and what tasks will

occur. Furthermore, there was no increase in response time when these extra uncertain features were

added, indicating that users do not have increased difficulty understanding the uncertain features or
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Figure 6.7: Mean and SD of participant ratings about policy explanations (“*” indicates statistically
significant difference).

applying the often larger number of features quickly to predict outcomes. Finally, participants find

the HDE explanations as better across all goodness metrics, indicating that the participants prefer

the method focused on providing indications of decentralized information, even if it is more complex.

6.5 Summary

This chapter presents a novel approach to explain decentralized MARL policies. Computational

experiments show that our method can be applied to large MARL domains with a significant number

of agents and tasks, producing reasonable explanations quickly and effectively across two different

decentralized algorithms and four MARL domains. Results of our user study show that our proposed

approach significantly improves user performance and increases subjective ratings without needing

significantly more time than the more naive baseline.
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Chapter 7

Conclusion

In conclusion, this dissertation focuses on generating summarizations and explanations for multi-

agent reinforcement learning. First, in Chapter 3 we provide policy summarizations and query-based

explanations for centralized MARL. This allows users to understand both global agent behaviors

and local agent actions for policies with joint agent states and actions. Not only are our methods

effective, showing significant scalability across several MARL domains, but they also show improved

user performance and increased goodness ratings.

Then, we present contrastive temporal explanations for centralized MARL in Chapter 4, allowing

for more advanced queries that compare expected and actual agent behavior. The produced method

is not only scalable and efficient for both feasible and infeasible queries but also improves user perfor-

mance, understanding, and satisfaction.

Finally, we produce policy summarizations and query-based explanations for decentralized MARL

in Chapters 5 and 6, respectively. These methods utilize Hasse-diagrams to represent the uncertainty

and non-determinism of decentralized MARL policies to users in an accurate and understandable way.

Furthermore, we demonstrate the effectiveness of augmented reality techniques like position overlay

to represent decentralized summarizations. Much like their centralized counterparts, the produced

methods provide effective and efficient ways to increase user performance and other goodness metrics.

In summary, this dissertation produces novel approaches to generate summarizations and expla-

nations for both centralized and decentralized multi-agent reinforcement learning, improving user

understanding, satisfaction, and performance.

7.1 Limitations and Future Directions

The work presented in this dissertation has several limitations. First, this work has only been tested

on grid world examples utilizing simulations. So, we cannot comment on any real-world deployment

with users. Future work includes applying the proposed methods to a broader range of MARL domains

and environments. Specifically, domains and environments with a huge number of agents or real-world

environments containing uncertainty and time constraints.

Second, more advanced queries may be needed to fully understand agent decisions and fill user
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needs. For example, users may provide abstract references to agents or objects (Why do those agents

not do that task?), inquire about broader categories of agents or tasks (e.g., Why do those agents

perform any task except task y?), ask the agent to explain any uncertainty in its policy (Why might the

agent try to do task y, but not succeed?), or consider subjective measures of the agent’s decision (Why

was the decision fair?). Future work would explore the possible development of these explanations as

our work currently provides only the most basic summarizations and explanations.

Moreover, our system does not provide subjective explanations, which consider the perspectives

of both the user and other agents to deliver the most relevant and accurate information. Future work

should gather insights from agents with heterogeneous capabilities and reward systems while filtering

out information the user is likely already familiar with to produce these more advanced explanations.

Finally, all the presented methods utilize abstract features to improve human understanding of

explanations. However, these features are manually selected by domain experts which could produce

an incomplete, biased, poorly defined, or ambiguous set of features. To improve this, we need to

develop methods for automatically selecting a minimal, yet complete and human-understandable set

of abstract features, while minimizing bias and uncertainty.

7.2 Social and Technological Impact

However, the proposed methods have the potential for significant technological advancement to ensure

safety and satisfaction with MARL systems in complex situations. Furthermore, these summarizations

and explanations offer decision support for human-agent cooperation, allowing users to make more

informed decisions, faster in safety-critical situations while deterring the potential misuse of the system

by mistake. Finally, this work can be applied to many different MARL fields as the produced methods

are generalizable and not tied to any one MARL algorithm or policy type. This work provides a

significant base of summarization and explanation methods that can be applied to fields such as

search and rescue, transportation, health care, and manufacturing, allowing our work to significantly

impact the lives of everyday users.
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