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ABSTRACT

The Automata Processor is a novel hardware accelerator that can per-
form pattern matching in parallel. To date, this pattern matching has been
limited to one-dimensional problems that can be implemented as flexible
string-matching methods such as those found in genomics. In this thesis, we
present a novel process of implementing image retrieval using a multinary
representation for deployment on an automata framework. Images are en-
coded into discriminative and unique regular expression descriptors in such
a way that can be used for classification purposes. The regular expression
descriptors are streamed through sets of non-deterministic finite automata
(NFA).

To improve performance of this multi-dimensional classification problem,
we transform discriminative feature descriptors using a cumulative distribu-
tion transform. The transformed features are encoded into regular expressions
which can be executed on the automata processor.

The thesis also highlights methods of evaluating the similarity between
images using these regular expressions in the automata processor. Our image
retrieval and classification method improves on classification accuracy and
achieves a run-time of less than one one-hundredth of a second per image
which represents a three-fold improvement over competing architectures.
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1
INTRODUCTION

Current image retrieval problems involve massive datasets particularly
in object detection and medical related applications. However, image
retrieval is still a challenging problem in the field of image processing

along two fundamental avenues – feature extraction and classification. One of
the major challenges of large scale image retrieval is that it requires searching
through large databases where images specific to an object category may have
significant content variations. To accurately classify images, it is necessary
to extract discriminant features that capture the intra-category variation
while making the discrimination between categories more prominent. This
specificity typically leads to generating high dimensional feature descriptors.
Additionally, the problem necessitates the design of an efficacious classifier or
similarity-based measure to accurately classify images. Both classifier design
and similarity based image search for large scale retrieval are computation-
ally expensive and consequently, online image retrieval applications require
considerable parallelism.

The Automata Processor (AP) is a scalable hardware accelerator that
can perform highly complex pattern matching applications [3]. It executes
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CHAPTER 1. INTRODUCTION

parallel processing of thousands of non-deterministic finite automata state
machines that represent different regular expression patterns. This is ideal
for pattern matching applications with large datasets, including Brill tagging,
bioinformatics, and machine learning [4–6]. In [5], Roy et al. designed a
method on the automata to solve the DNA motif search problem and found
speed-ups compared to conventional methods. This automata framework has
the potential to provide acceleration on many image retrieval applications,
particularly those with massive datasets that may require parallelism.

1.1 Overall Methodology and Challenges

In order to take advantage of the automata framework, images need to
be converted into strings. We developed a methodology to apply image clas-
sification on this processor that determines a unique pattern of character
symbols for every image class, as shown in Figure 1.1. First, features are
extracted from the image to attain a discriminative descriptor. The descriptor
values from every image are then encoded into regular expression characters.
Unique regular expression patterns of an image class can be represented as
automata symbols. Thus, a regular expression descriptor from any image can
be classified using this automata image classifier.

There are still a few challenges using this methodology. Applications are
limited by the current AP architecture, including the number of counter ele-
ments allowed per automata and the lack of mathematical operator elements
(i.e. addition, subtraction, multiplication, etc.). Therefore, popular similarity
metrics and classifiers, such as Kullback-Leibler (KL) divergence [7], k-means,
minimum distance and maximum likelihood, would be difficult to directly
use on this framework. Thus, these limitations demand more discriminative
feature descriptors for symbol matching classification.

2



1.2. FEATURE EXTRACTION

Figure 1.1: Overview of image classification on the automata.

1.2 Feature Extraction

One of the key contributions of this work is finding an appropriate feature
representation for classification on an automata framework. A number of
methods extract image characteristics, such as color intensity, shape, and
texture etc. [8], and encode them into histograms. Other methods compute
local features by exploiting neighborhood information, such as histogram of
oriented gradients [9], local morphology [10, 11], or blob-based SIFT features
[12]. Some works have employed encoding techniques, as with the bag of words
[13], where the local features from each image in a dataset are accumulated
as histograms. In [14], the authors exploited spatial relationships among
local features to compute image representation. These mentioned descrip-
tors are extensively used in object detection and classification. However, to
increase precision and retain more information, they tend to become very
high-dimensional descriptors.

Dimensionality reduction techniques aim to keep significant information
such as applying principle component analysis (PCA) [15], Fisher vectors,
Gaussian mixture model [16] etc. However, the descriptors are still signifi-
cantly large and need appropriate similarity measures to compare features of
images or learn a classifier using class labels associated with the images.

3



CHAPTER 1. INTRODUCTION

1.3 Feature transforms

Transforms can be beneficial for image classification to further separate
feature descriptors that belong to different classes. These transformations,
such as PCA [17], use transformations to convert data to linearly separated
data. The cumulative distribution transform is a non-linear transformation
that has been successfully used to improve linear separability of patterns and
increase classification accuracy [18, 19]. Constructing feature representations
that are distinct and more separable between classes is advantageous for
image classification, particularly on an automata framework.

1.4 Thesis summary

The goal is to determine an efficient methodology of applying image re-
trieval problems on an automata framework. This project also seeks to deter-
mine whether this framework is appropriate for image processing applications.
Chapter 2 provides an overview of the Automata Processor and the necessities
required to apply image retrieval on this framework. The structure of the
automata provides some limitations on image representation and classification.
Chapter 3 proposes a method of encoding an image into regular expressions
for classification on the automata. Chapter 4 uses the cumulative distribu-
tion transform to improve separation of features between classes to increase
classification accuracy. It also suggests another novel method of image classifi-
cation using the automata. Chapter 5 summarizes the findings and provide
suggestions for future work.

4
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2
BACKGROUND OF THE AUTOMATA PROCESSOR

AND APPLICATION TO IMAGE PROCESSING

2.1 Automata Processor

The AP is a scalable hardware that is specific to accelerating pattern match-
ing application. The processor can compute thousands of non-deterministic
finite automata in parallel by finding regular expression patterns in an input
data stream. Users can program automata structures and load them onto the
hardware.

Automata on the AP are made up of state transitions elements (STE) that
can be programmed to match a set of symbols or arbitrary characters classes.
A single STE can be programmed to implement combinations of 0 to 255. A
start STE of an automaton is activated when symbols in the input data stream
matches with a symbol in the STE. There are two types of start STEs. The
start-of-data STE is only activated by the first input symbol. The all-input-
start STE can be activated by any symbol in the input string. The AP board also
contains Boolean elements and counter elements, which broaden functionality.

5



CHAPTER 2. BACKGROUND OF THE AUTOMATA PROCESSOR AND
APPLICATION TO IMAGE PROCESSING

Figure 2.1: The Automata Processor PCIe board.

Boolean elements can be single input, such as an inverter, or multi-input, i.e.
AND, OR, NAND, NOR, sum-of-product and product-of-sum. Counter elements
can be programmed to a target value which, once reached, determines the
set behavior. These elements are activated by a routing network of matching
STEs. An automaton reports to post processors on the board when the final
reporting state is activated.

STEs on the AP can be programmed using the AP Software Development
Kit (SDK). It uses a graphical tool, the AP Workbench, that allows users to
design and visualize the non-finite state machines (ANML-NFA). The ANML-
NFAs are routed and optimized to be compiled into Finite State Machines
(AP-FSM) which are then loaded onto the AP hardware [20, 21].

Figure 2.1 shows the Automata Processor PCIe board which is plugged into
a server. The AP has two half cores with three output regions. These regions
consist of local memory storage which each contain 1024 output event vectors,
or report vectors (when an automata reports). So the maximum number of
reporting events allowed per symbol cycle on an AP is 6144 events/cycle. This
means that a design cannot have more than 6144 reporting elements. Once all
symbol processing is complete, these output event vectors are transferred to
the output buffer, which it can then be read by external hardware.

The first generation AP is a PCI-Express board mediated by a driver, but
can also be programmed to raise interrupts when report bits are set. A chip
holds 49K STEs, and the first generation AP contains 32 chips, so a single AP

6



2.1. AUTOMATA PROCESSOR

Figure 2.2: Example of pattern matching on the AP Workbench. This automata
[Dd](o||ough)nut is found five times and the input data stream is an even number.
The input data stream is shown at the top of the figure.

board holds up to 1,536K STEs. All active STEs receive a new input symbol
on every clock cycle. This means that thousands of state machines can be
executed in parallel [3].

2.1.1 Example of Pattern Matching on the automata

Figure 2.2 gives an example on the AP Workbench which uses Automata
Network Markup Language (ANML). The example reports when the word
"donut" or "doughnut" is found five times and the input symbol is an even
number character in the data stream. The input data stream is also a set of
regular expression or numerical characters. The counter is set to five and is
activated once both of its inputs are triggered. The [§] is essentially a "don’t
care," which is a special AP character that can match with any symbol. The
AND element is set as the reporting element which reports once both the
counter reaches five and the second [*] is matched.

7



CHAPTER 2. BACKGROUND OF THE AUTOMATA PROCESSOR AND
APPLICATION TO IMAGE PROCESSING

2.2 Applications on the Automata Processor

There are a number of applications that have been explored on this proces-
sor, including machine learning [6], natural language processing [4], bioinfor-
matics [5, 22], high energy physics [20], and data analytics [23–25]. Many of
these applications are string based searches. In [23], Bo et al. looked at Entity
Resolution (ER) which searches through a social network database or multiple
databases for common entities, or variations of a name. Compared to other
text searching methods, they found that their AP-accelerated method found
400£ speedup and better accuracy due to the AP’s ability to handle flexible
matching. Sequential pattern mining is another data analytics application
tested on the AP that searches for frequencies of hierarchical patterns or
itemsets in a database [24]. Searching for DNA motifs is another text-based
application that found potential speed up in the AP [5, 22].

The AP accelerates string-based pattern matching but it does not neces-
sarily limit usage to text-based pattern applications. [20] showed a proof of
concept of applying pattern matching in high energy physics onto the automata
framework. They detect patterns in the trajectory of particles by encoding
the possible trajectories into four pixel addresses. Another application that
was tested on the AP and more similar to image processing application is
machine learning for classification. In [6], a random forest algorithm was
implemented on the AP where binary decision trees was used for classification.
They extracted features from a MNIST handwritten dataset and a Twitter
dataset. These features were assembled into STEs on the AP to create decision
trees.

The implementations of vast applications on the AP have found massive
speedups due to high parallelism of pattern searches. This motivates us to
design an automata classifier that could potentially speed up image classifi-
cation particularly on large dataset. The automata structure does limit us
from using typical similarity metrics in image retrieval. However, there are
resemblances between image retrieval and these applications that allow the

8



2.2. APPLICATIONS ON THE AUTOMATA PROCESSOR

manipulation of an automata framework to design a novel image classifier.
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3
FEATURE EXTRACTION FOR AUTOMATA

CLASSIFICATION

In this section, we provide a method of encoding feature descriptors that
can be used on an automata framework. Two feature extraction methods are
presented to generate feature descriptors that are then converted into regular
expression patterns. These descriptors are represented on the automata for
image classification.

3.1 Image Similarity using Multinary
Representation

The AP has potential speed up on image retrieval applications with mas-
sive datasets by performing a massive number of image matching operations
in parallel. To take advantage of this framework, images/image features need
to be encoded into regular expressions or loaded onto the AP of its other pro-
gramming modalities [26, 27]. These strings of characters which represent
an image or a particular category of images are ultimately encoded as state

11



CHAPTER 3. FEATURE EXTRACTION FOR AUTOMATA CLASSIFICATION

machines on the automata. Test images are streamed as input and classi-
fied to an image category. Instead of using a similarity measure to classify
feature descriptors, this image retrieval method uses exact matching of state
machines. However, in Section 3.5, we propose a method to relax the need for
exact matching, but in both scenarios the image descriptors must be highly
distinctive. Figure 1.1 shows the overview of our method of implementing
image retrieval on the automata structures. The two crucial steps for image
retrieval on the automata are to extract discriminant features and mapping
the features as regular expressions. Once different image categories have
unique regular expression patterns, they can be represented as automata.

3.2 Feature Extraction

In the literature, both global and local image features have been employed
for the task of image classification. Features extracted from local image regions
are often aggregated in some manner to obtain a global feature [7], [8]. The
features extracted form the images can be used for both supervised and un-
supervised image classification. For unsupervised image classification, along
with extracting discriminant feature descriptor, a robust similarity measure is
also necessary. Based on the type of feature being used, or the type of feature
encoding used, different similarity measures may be preferred. For example
in [8], a histogram matching kernel was implemented on spatial pyramid fea-
tures. Whereas in [14], sparse codes are compared using a compression-based
similarity measure. For supervised classification, a robust classifier needs
to be designed, which again demands modeling of proper classifier functions.
Implementing the retrieval on AP can be an advantage in this context. Since
the AP only allows for matching based on regular expressions, once the feature
descriptors of the images are extracted, a robust mapping of the features to
regular expressions is the only requisite, in contrast to designing case-specific
similarity measures or classifiers.

12



3.2. FEATURE EXTRACTION

3.2.1 Superpixel generation

Superpixels are clusters of pixels grouped together by distance and local
similarity. Superpixels have been used to improve image applications including
image segmentation and classification [28]. They can be attained using many
different algorithms, including graph-based, which treats each pixel as a node
and assigns each a weight [29], gradient-ascent-based [30], and simple linear
iterative clustering (SLIC) [1, 31, 32].

We used the SLIC method by [1, 31] to generate superpixels by clustering
based on the CIELAB color space and pixel position. This method was chosen
because the number of superpixels can be chosen by the user, are smooth and
approximately equal in size. The superpixel generation algorithm is fairly
inexpensive. It takes into account the color similarity and spatial proximity
of pixels within each superpixels which are regulated using a normalized
Euclidean distance measurement.

The SLIC algorithm starts by initializing cluster centers based on the
number of superpixels, K , and image size, N, to get the grid interval S =

p
N/K .

Pixels are assigned to each cluster centers, Ck = [lk,ak,bk, xk, yk]T , based on a
distance measurement, Equation 3.1, which takes color and spatial location
in consideration. Once pixels are reassigned to cluster centers, the cluster
centers are recomputed until it reaches convergence.

dlab =
q

(lk ° l i)2 + (ak °ai)2 + (bk °bi)2

dxy =
q

(xk ° xi)2 + (yk ° yi)2

(3.1) DS = dlab +
m
S

dxy

In the distance equation, m controls how compact a superpixel is, and ranges
from [1,20].

Compared to other superpixel generation methods, SLIC is much faster,
even for larger images [1, 31].From Figure 3.1, which shows an example of an
image that uses the SLIC algorithm with roughly 1200 superpixels, we can

13



CHAPTER 3. FEATURE EXTRACTION FOR AUTOMATA CLASSIFICATION

Figure 3.1: An example of superpixel generation of an image using SLIC [1].

see that the superpixels have a high boundary recall and are approximately
equal in size.

3.2.2 Gabor features on Superpixels

Gabor filters are typically used for edge detection which is useful for gath-
ering texture information from images [33]. To extract Gabor features, an
image is convolved with a 2D Gabor filter.

(3.2) g∏,µ,¡,(x, y)= exp
x02 +∞2 y02

2æ2 cos(2º
º0

∏
+¡)

(3.3) x0 = xcosµ+ ysinµ

(3.4) y0 =°xcosµ+ ysinµ

∞ is the spatial aspect ratio which stays constant. The æ is the standard
deviation which controls the size of the Gaussian. ∏ is the wavelength that

14



3.2. FEATURE EXTRACTION

Figure 3.2: The original lung image, the superpixel generation of the original, and
the magnitude response of Gabor filter of the original image with µ=0, ∏= 4.

controls the frequency, so
æ

∏
is the spatial frequency bandwidth of the filter. µ

is the orientation of the Gabor filters.
In our experiments, we change the orientation and wavelength to extract

Gabor features from an image, as shown in Figure 3.2. Prior to taking the
Gabor features from an image, N number of superpixels are generated for each
image, as shown in Figure 3.2. After an image is convolved with a X Gabor
filters, we take the mean magnitude from each superpixel to get a matrix size
RX£N . This matrix is used as the feature descriptor for each image.

3.2.3 Histogram of Oriented Gradients on Superpixels

Histogram of Oriented Gradients (HOG) has provided reliable performance
for human and object detection [9, 34]. HOG feature descriptors also have an
ideal representation for our application because it can be easily represented
as vectors of patterns. Therefore, we use the HOG applied on superpixels to
attain local feature descriptors.

Classically, HOG computes edge orientations of uniformly spaced cells or
"blocks". As in [34], HOG is found by computing the image gradient of blocks
of an image, then creating a histogram of gradient magnitudes divided into
bins of orientations 0°°180° or 0°°360° for each block.

Rather than using uniform blocks, our method builds HOG descriptors on
superpixels of the image. The image gradient of an image is computed as usual
but superpixels are generated as explained in Section 3.2.1. A HOG descriptor

15



CHAPTER 3. FEATURE EXTRACTION FOR AUTOMATA CLASSIFICATION

Figure 3.3: The histogram of oriented gradients is created for every superpixel in the
image.

is created for every superpixel in the image, as depicted in Figure 3.3. To
get more discriminative features, our histograms use 60 bins of orientations
0°°180°. The HOG descriptor for a single image would be a matrix of size
R60£N , where N is the number of superpixels generated in that image.

3.3 Descriptor Dimension Reduction

After extracting features from images, we use dimension reduction tech-
niques that attain more discriminant feature descriptors and allow patterns
to be detected more efficiently.

3.3.1 K-means clustering

K-means clustering is a popular unsupervised learning technique for pat-
tern recognition that groups data by iteratively measuring its likelihood to
the group [35]. For a set of points, the K-means algorithm needs to initialize
the k centers of each cluster, usually by placing them far away from each
other. Then, each point in the data is assigned to a center. The k centroids are
iteratively set by minimizing the objective function, Equation 3.5, which is the
sum of squared errors.

(3.5) JK =
KX

i=1

X

i2Ck

kxi °mkk2
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3.3. DESCRIPTOR DIMENSION REDUCTION

where K is the number of cluster centers, Ck are the data points in each cluster,
and mk =

P
i2Ck xi/nk, where nk is the number of points in Ck [35].

The Gabor feature descriptors attained RX xN , as explained in Section
3.2.2, are reduced using k-means clustering. From the training images of the
dataset, a dictionary is learned from k-centers which gives a matrix D 2RX xK .
A histogram is attained for the training images by computing the Euclidean
distance between the dictionary, D, and the feature descriptor. A histogram
descriptor is attained for the test images by similarly computing the Euclidean
distance between the same dictionary and the feature descriptor of the test
images. The histogram descriptor, R1xK , is used as the final descriptor for
classification.

3.3.2 K-SVD Dictionary learning

For the HOG descriptors attained, as explained above, we use dictionary
learning to compute more discriminative patterns. Dictionary learning seeks
to approximate a signal by finding a linear combination of atoms from a
dictionary. K-SVD dictionary learning [36] is an algorithm that learns an
overcomplete dictionary. Overcompleteness means that the number of basis
vectors is greater than the dimension of the input signal. This typically gives
a better approximation of the distribution than a complete unique solution or
no solution. K-SVD method for dictionary learning has been successfully used
for image recognition and image denoising [37–40].

Forming a dictionary for a large database of images can result in a high
dimensional dictionary. Thus, dictionary learning via sparse coding seeks to
approximate a signal using the fewest number of basis vectors, or atoms, as
possible.. In Equation 3.6, an input signal, Y , is approximated by the linear
combination DX , where X is sparse if most values are zero, and minimizes
the number of non-zero elements.

(3.6) argmin
x

kxk0 s.t. Y = DX
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A matching pursuit algorithm searches for the best sparse approximation of a
signal. It is a greedy algorithm which searches for the locally optimal choice
at each stage to get the global optimum. The orthogonal matching pursuit
(OMP) iteratively finds an atom in the dictionary that best matches the input
signal, updates all the coefficients by computing the orthogonal projection of
the signal onto the atoms found, then finds the next atom that matches the
remaining signal. This continues until the hard threshold condition is reached.
This is shown by Equation 3.8 which is K-SVD dictionary learning using OMP.

(3.7) < D, X >= argmin
D,x

kY °DXk2
2 s.t.8i, ∏kxk0 ∑T

Y = [y1...yp] 2RNxP is the input signal, D 2RNxK is the dictionary matrix
with K atoms, and X 2RK xP is the sparse representation. The algorithm finds
the representation given the dictionary while updating the dictionary atoms
after each iteration [41]. The dictionary update is similar to SVD as it solves
the eigen values and updates the K atoms to get a new dictionary.

(3.8) < D, X >= argmin
d,g

kE°dgTk2
F s.t.∏kdk2 = 1

We use the K-SVD algorithm to learn a dictionary for the HoG descrip-
tor found for all the images. Typically, image classification with dictionary
learning uses the similarity measure between the sparse codes to classify an
image. However, we use the patterns of the dictionary atoms to classify on the
automata.

3.4 Encoding Feature Descriptors to Regular
Expressions

Once a discriminative feature descriptor is attained for every image, the
descriptors are encoded into regular expressions before compiling them into
state machines. Since the automata does not take in floating point numbers,
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the descriptor values are binned to 8-bit characters using this equation. The
range of the bins are divided equally and correspond to the minimum and
maximum feature descriptor ranges. The regular expression descriptor is
derived by

(3.9) Ri = char(yi(Ø/k))

where i is the length of the descriptor, y is the image descriptor, k is the range
of descriptor values for that method, and Ø is the number of characters used.

3.5 Image Retrieval on the AP

Automata are created for each category within a dataset from the regular
expression descriptor of the training images, and these are loaded onto the
AP board. The regular expression descriptors of the test images are then
computed as a pre-processing step, and then sent as an input data stream to
be matched in parallel with each candidate descriptor on the AP board. The
test image is classified to the category with the most automata matches. Since
the AP requires exact STE matching, a threshold can be applied on the regular
expression patterns on the automata to allow for more lenient matching. Each
STE can allow for up to 8-bit characters. In the AP, an STE with * symbol
means that any character will match with the activated STE. Here, we set a
threshold by comparing the characters at every index of the regular expression
descriptor of the training dataset. If there is greater than a percentage of
mismatches at that index then the symbol is hard-coded as * symbol, as shown
in Figure 3.4. The threshold gives more flexibility in exact pattern matching
without losing significant information. In the figure, each automata represents
a pattern of an image in the training dataset that is to be matched by the
input data stream.
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Figure 3.4: An example of automata with regular expression patterns. The [*] symbol
matches with any input symbol.
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3.6 Experiments

We evaluate our results with two datasets: the ADL dataset [42], and
the vehicle dataset using two different feature extraction and representation
methods. We compare our results with SHIRC [42].

3.6.1 Evaluation for ADL datasets

The ADL database contains kidney, lung and spleen tissue datasets with
healthy and inflamed tissues. Each dataset contained about 330 images.
Figure 3.5, 3.6, 3.7 exhibit the major challenge for each dataset is the slight
dissimilarity between healthy and inflamed tissues. For each organ, 115
images per class are used for training and 40 images per class are used for
testing.

Healthy Kidney

Inflammed Kidney

Figure 3.5: Samples of spleen ADL organ tissue dataset.

For this dataset, we use a Gabor bag-of-words method to represent the
feature descriptor. 32 Gabor features were extracted from 1910 generated
superpixels of every tissue image. A codebook was trained via k-means cluster-
ing with k=500 centers to then attain a histogram descriptor for every image,
size R1£500. The regular expression descriptors of all the training images are
concatenated. If there are X images in the training dataset, then there would
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Healthy Lung

Inflammed Lung

Figure 3.6: Samples of lung ADL organ tissue dataset.

Healthy Spleen

Inflammed Spleen

Figure 3.7: Samples of spleen ADL organ tissue dataset.

be X automata of length 500.The descriptor values for the first dataset range
from [0,1]. These descriptors have an unknown nonlinear distribution where
most of the values lie close to 0 and a few values have large arbitrary values.
This is a challenge when matching with the automata because it requires pat-
tern matching, rather than using a similarity measure between the descriptors.
To aid this, a threshold is set for the allowable mismatches at each index of
the descriptor using 250 randomly chosen training images. Figure 3.8 shows
the effect of the threshold for allowable mismatches on classification accuracy
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with T=10%, 20%, and 30%. For every dataset, a threshold of T=10% reported
the best accuracy.

Table 3.1 shows a confusion matrix using our method at a 10% threshold
in comparison with the simultaneous sparsity model for histopathological
image representation and classification (SHIRC), which is a sparsity model
that learns a dictionary for RGB color channels [42]. There are three confusion
matrices for each of the organ datasets. The bold numbers are the true
positives attained using our retrieval method. The method deployed on the
automata framework does not do better in most cases. However, the lower
performance was largely due to unclassified images since our method uses
exact pattern matching.

Table 3.1: Confusion Matrix for ADL Dataset
Kidney Lung Spleen

Class Healthy Inflamed Healthy Inflamed Healthy Inflamed
Gabor w/ Superpixels Healthy 61.3 38.7 63.6 36.4 64.6 35.4

Inflamed 32.5 67.5 47.3 52.6 24.4 75.6
SHIRC [42] Healthy 92.0 8.0 91.0 9.0 90.8 9.2

Inflamed 16.3 83.7 28.6 71.4 30.6 69.4

Figure 3.8: Performance for the kidney, spleen, and lung datasets when the threshold
for allowable mismatches is set to T= 10, 20 and 30 %.
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3.6.2 Evaluation for Vehicle dataset

The vehicle dataset contain four categories-airplane, car, motorbike, and
ships with 70, 50, 70, and 36 images, respectively. The images were obtained
partly from Google, Caltech-101 dataset [43] and the Inria GRAZ02 dataset
[44]. The sample images are shown in Figure 3.9 and depicts a few challenges
with this dataset. Within each category, the objects are variable in rotation,
color, size and type. The car images have varying frequency of objects in a
single image. Some images also have low contrast between foreground and
background which makes it difficult to extract objects features. Superpixels
were generated on every image to mitigate this challenge by grouping the
image into segments based on spatial and color information. For each image, a
dictionary was learned from the HOG descriptors using the minimization in
Section 3.3.2.

The HOG descriptor represents the input signal, Y 2 R60£1200, which is
represented as linear combination of dictionary, D 2R60£500, while minimizing
the reconstruction error. X are the sparse codes for the signal Y, and e is the
sparsity constraint [40]. The values of the atoms range from [-1,1] and are
encoded into regular expression patterns without a threshold. Each dictionary
atom in the training dataset are represented as automata on the AP. The
dictionary atoms of the test images are sent through the input data stream to
be matched. Thus the learned dictionary atoms are used as image features
for this dataset. A test image is classified using an automata framework as
explained in Section 3.5.

The retrieval accuracy results using an automata framework for both
datasets are given in Table 3.2 and are compared with state-of-the-art methods
implemented on similar datasets. Image retrieval on an automata framework
performed significantly better when using dictionary atoms as descriptors
than when using Gabor bag of words descriptors. Retrieval using regular
expressions still did slightly worse than the SLIDE method for the vehicle
dataset.
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Airplane

Motorbike

Car

Ship
Figure 3.9: Vehicle dataset with four categories: (a) airplane (b) motorbike (c) car
and (d) ship.

Table 3.2: Overall retrieval performance

Method Acc. (%) Runtime (s)
Gabor w/ Superpixels on ADL dataset using AP 63.2 2.967e-5

SHIRC [42] on ADL dataset 80.5 .55
HOG w/ Superpixels on Vehicle dataset using AP 79.5 .06

3.6.3 Run-time Comparison

The computational cost of image classification on an automata framework
was computed using a run-time estimation as explained by the authors in [21].
The AP processes a new, 8-bit input symbol every clock cycle and is stalled
by 40 nanoseconds in an output buffer every time it reports. The run-time
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estimation for the AP is calculated to take [(16+40p+ l)]§7.5 nanoseconds
to run, where 16 is the inital setup latency, p is the number of output vectors
per cycle, l is the number of STEs reported in that cycle, and 7.5 ns is the
clock cycle. The computational cost for both datasets deployed on the AP are
compared to the runtime of comparison methods, as shown in Table 3.2. The
comparison only reports the time it takes to classify the descriptors. The
SHIRC method takes .55s to classify one image running in Matlab on a 64-bit
Windows 7 system equipped with Intel Core i7°2600 3.4-GHz processor and
8 GB RAM [42]. We compute the classification run-time in each method for
one image and see a significant speedup.

3.7 Discussion

There were several notable discoveries and challenges in our work that can
be improved on in future work. Overall, our experiments show that multiple
feature extraction methods can be encoded into regular expressions and used
to implement image retrieval on an automata framework. However, because
the AP methods do not yet achieve state-of-the-art accuracy, our results sug-
gest a trade-off between speed and accuracy. The reduced accuracy may be
acceptable in applications requiring significant speedup. However, this work is
just the first step in exploring potential feature descriptors and mappings for
automata processing. While the accuracy of image classification with regular
expressions has not reached the current state-of-the-art accuracy, there is clear
room for future work to achieve improvement.
Feature Extraction. The second experiment shows that more discriminative
descriptors are simpler to implement on exact matching automata and attain
better retrieval accuracy. Future work includes combining feature extraction
methods and reducing to a discriminative representation.
Mapping distributions. As in the first experiment, the feature descriptor
may not have a known distribution which is a challenge when encoding the
descriptor to regular expressions. The experiment demonstrated manipulation
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of automata STE symbols to aid this challenge. There are other potential
methods to encode these descriptors such that information is not lost and thus
improve performance. Non-linear feature descriptors may be more efficiently
encoded to regular expressions by using kernel mapping methods.
Image Matching on the AP. We showed a method of matching on an au-
tomata framework where images are classified based on how many automata
they match. The automata structure limits our image classsification methodol-
ogy. For example, classification using dictionary learning typically measures
the similarity between sparse codes. However, our method of classification
on the automata uses the dictionary atoms to represent an image in order to
take advantage of automata pattern matching. Further manipulation of AP
elements and re-configuring automata structures that do not require exact
descriptor matching can be applied. This could improve accuracy and reduce
run-time of image retrieval applications [21].
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4
IMPROVING THE AUTOMATA CLASSIFIER

In the previous chapter, we found that some feature descriptors have
patterns that are non-linear or have an unknown distribution. This can be
a problem when deciding how to encode an image descriptor into regular
expression patterns. Further, improving the image classification method on
the automata could increase classification accuracy.

4.1 Image representation

In this section, two feature representations are explored on multiple
datasets. For both, Gabor features are extracted from the images to attain
texture information.

4.1.1 Bag of Words

The bag-of-words model is widely used for feature extraction for image
retrieval applications including scene detection, object recognition and content-
based classification [45–47]. The bag of features method is a locally orderless

29



CHAPTER 4. IMPROVING THE AUTOMATA CLASSIFIER

representation that gathers the frequencies of visual words, or codebook [48].
In our case, Gabor features are extracted from training images to cluster and
generate into a frequency of codes that make up the codebook. Each feature
of the test image is assigned to the nearest code in the codebook to attain a
histogram. Computing the nearest code can be done by a nearest neighbor
calculation as explained in 3. The representation is refered to as a "bag"
because the local features are orderless and do not keep spatial information.

4.1.2 Spatial Pyramid

Spatial pyramid is a feature encoding technique that exploits the spatial
relationship between local features to compute an image representation. It
attains a descriptor by getting the bag of features at different pyramid levels.
At each pyramid level, an image is divided into an increasing number of blocks.
The bag of features are again represented as histograms and are concatenated
into a vector [14].

4.2 Cumulative Distribution Transform

Classification on the automata relies heavily on distinguishing patterns,
which means the feature descriptors between classes should be unique and
discriminative. However, separating and mapping descriptors with non-linear
distributions can be difficult to encode and classify directly on the AP. The
automata architecture is inherently a processor of 1-D strings that can be
manipulated and analyzed via regular expressions. Hence, we need a multi-
dimensional to 1-D transformation from which we can generate regular expres-
sions. Transforming our feature descriptors with the cumulative distribution
transformation can accomplish the M-D to 1-D mapping and ensure linear
separability between our classes even if the class distributions are non-linear.

Further, we want our automata classifier to be able to classify similar
images even with variations within the image such as rotation, translation
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and scaling. The cumulative distribution transform achieves this invariance
by taking in account the location of signal intensities with respect to a chosen
reference [18, 19].

The cumulative distribution transform (CDT) requires two probability
density functions, one as the input pdf to be transformed and projected with
respect to the second pdf. The pdf for each image, represented as I1, is
transformed in reference to a chosen template pdf, I0, which, for ease of
implementation, should be uniform density. X and Y are connected sets in R.
Then the cumulative distribution function of I1 is mapped into Î1 , X !Y by a
set of unique continuous functions, f1 [18, 19], given by the following equation.

(4.1) Î1 = ( f1(x)° x)
p

I0(x) , x 2 X

Where f1(x) must satisfy the following equation.

(4.2)
Zx

inf (X )
I0(ø)dø=

Z f1(x)

inf (Y )
I1(ø)dø

For continuous functions of I0 and I1, f1 is also continuous. If f1 is also
differentiable then the inverse CDT can be found.

We use the cumulative distribution function [18, 19] to make our feature
descriptors more linearly separable. Once feature descriptors are extracted
from every image, they are represented as normalized histograms which rep-
resent I1 and can be transformed using the CDT. The transformed histograms,
Î1, are quantized and used as feature descriptors for classification.

4.2.1 Multinary representation of Images

After the transformation, explained in Section 4.2, is performed on the
feature descriptors of all images in the dataset, we encode them into string
descriptors. The STEs are designed to hold up to 8-bit set of symbols or
an arbitrary set of character classes–single character, regular expression
characters, or numerical characters. The values within feature descriptors
vary depending on the method of extracting data from your image. Mapping
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these values into string descriptors can become a problem when the descriptors
are non-linearly separable. Encoding data into string representation without
losing information can be difficult. Thus, when the descriptors are mapped to
strings, we also want to maintain the pattern information that distinguishes
one class from another. As explained in the previous section, the CDT eased
this problem by linearly separating the image descriptors.

Each value of the image descriptor is encoded to characters using the
following equations.

(4.3) yi = l+ ¡

Ø
x

where y is the value of the image descriptor, i is length of each vector in the
image descriptor, l is the lower bound of the global image descriptor and Ø is
the maximum bits the user chooses to encode to. x corresponds to the distance
of the character value from the lower bound on the string space. The character
values are defined as follows:

(4.4) Ri = L+ x

where Ri is the character value and L is the lower bound of the character
space. Finally, we obtain the encoding equation by using the following:

(4.5) Ri = L+ (yi ° l)
Ø

¡

Eq. 4.5 encodes every value of the feature descriptor to a set of character
symbols, which is used for classification on the automata.

4.2.2 Automata Classifier Design

Typically, images are classified by computing the similarity or dissimilarity
of an image to a class. In our method of classification, we employ pattern
matching on the automata using the string descriptors. Once all images have
been encoded into strings, the dataset is split into testing and training images.
The training images are used to represent the patterns on the automata.
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Figure 4.1: Example of the automata classifier design with mismatches and counter.

Every value, i, from each training image’s string descriptor represent an STE
creating a pattern for each class. The string descriptor of every image in the
testing set is loaded into the input data stream to be matched on the automata.
Essentially, every test image is matched against every training image from all
classes.

A test image is classified in the class for which the most matches occur. This
classifier on the AP would have a state machine of length one STE connected
to a counter element. Fig. 4.1 depicts a STE of one image in a class. There
is one automaton for every training image for all classes in the dataset. The
length of the automaton corresponds to the length of the image descriptor.
This design allows for mismatches. A counter is connected to each STE and
increments by one every time an STE is activated. The string descriptor of the
test image is matched with the automata and is classified to the class with
most STE matches.
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4.3 Experimental results and Analysis

We evaluate our retrieval results for a two-class and multi-class problem on
a colorectal cancer tissue dataset [2]. Our experiments simulate the automata
design mentioned in Section 4.2.2.

4.3.1 Colorectal Cancer Dataset

Both experiments used histological images of human colorectal cancer [2]
which includes seven different types if tissues, shown in Figure 4.4. Up until
Kather’s et al. work [2], in terms of colorectal histological images, there have
only been published studies on the classification of two types of tissues- tumor
and stroma.

In histopathological imaging, tumor tissues are recognized as having ab-
normal growth of tissues from cells not dying when they should or divide
excessively. The stroma tissue is a vital supportive tissue of the organ [49?
]. The stroma monitors and regulates through cellular pathways growth in
the bottom layer of the skin. Since any misregulation of growth factors in
the stromal tissue layer can lead to cancer, it would be useful to identify the
mass of simple stroma and complex stroma(containing single tumor and/or
immune cells) tissues, not solely the binary case. In these terms, it would also
be beneficial to identify the other layers of the skin cross section, immune,
mucosal gland, adipose (fat layer) and debris (dead skin), since the stroma also
regulates skin growth and death. The morphological and density changes in
each tissue may be beneficial in diagnosis of colorectal cancer.

Figure 4.4 shows the challenges there may be in differentiating between
the classes considering some types of tissues contain cells from other images.
The complex stroma is stroma tissue that contains single tumor cells or single
immune cells. The immune cells are made up of immune cell conglomerate
and sub-mucosal lymphoid follicles. The debris image includes necrosis, hem-
orrhage and mucus. The overlap in some of the classes may create difficulty in
separating features.
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4.3.2 Feature Extraction and Representation

Gabor features: In our experiments we employ local Gabor features [50, 51]
to represent the superpixels. In the literature, it has been shown that Gabor
filters can approximate the characteristics of certain cells in the mammalian
visual cortex and can be exploited in getting the texture information of an
image. 2D Gabor filters are obtained by combining Gaussian kernel with sinu-
soidal functions of different frequency and orientation. The Gabor filters are
regulated by the standard deviation of the Gaussian filters and the orientation
of the sinusoidal functions. An image is convolved with different combinations
of the standard deviation and the frequency to get the Gabor filter response.
The mean response of each filter bank can be used as a global texture feature
of the image. For a local region, we first convolve the image with 32 Gabor
kernels, for 8 orientations and 4 different Gaussian scales. We then compute
the mean response within a superpixel for each of the 32 filters and thus obtain
a 32 dimensional Gabor feature for each region. To account for the variation
in intensity, we also include local color features in our descriptor. For each
super-pixel, we compute the mean color of the region in CIE L§a§b color space
along each channel. We concatenate the color and Gabor feature of a region to
get the final local descriptor.

We compare our results with SLIDE [52] and spatial pyramid matching
(SPM) [14]. SLIDE [52] is a saliency guided dictionary learning method which
uses compressibility of sparse codes to design a similarity measure between
images.

Spatial pyramid matching (SPM) is described in [14]. SPM combines local
image features while retaining the spatial correspondence. In this method an
image is partitioned into subregions, and for each subregion a histogram of
local features is computed. Finally the histograms from each subregion are con-
catenated to obtaining the final feature representation. For our experiments
we use the same local image features as described above and two pyramid
levels. We compare the spatial pyramid histograms using KL divergence, such
that if p and q are the spatial pyramid histograms of two images, then the
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Tumor

Simple Stroma
Figure 4.2: Two-class dataset: tumor versus stroma tissue. Shows sample images
from the two classes

symmetric KL divergence is given as:

(4.6) KL(p||q)=
X

i
p(i) log

p(i)
q(i)

+
X

i
q(i) log

q(i)
p(i)

where p is the histogram of a training image and q is the histogram descriptor
of a query image. The query image is classified to the class with the lowest KL
divergence value. This classification method was used to compare against our
methods on an automata framework.

4.3.3 Evaluation for two-class classification

The first experiment for image retrieval using the cumulative distribution
transform and an automata classifier is tested on a two-class classification of
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No. of Gabor fea. Tumor Stroma Tumor Stroma Tumor Stroma Tumor Stroma
16 Tumor 81.5 18.5 83.4 16.6 82.7 17.3 87.3 12.7

Stroma 12.1 87.9 9.6 90.4 10.2 89.8 24.2 75.8
24 Tumor 79.6 20.4 78.3 21.7 75.8 24.2 68.2 31.8

Stroma 26.1 73.9 17.8 82.2 17.8 82.2 26.8 73.2
32 Tumor 80.3 19.7 77.1 22.9 70.7 29.3 76.4 23.6

Stroma 15.3 84.7 16.6 83.4 22.9 77.1 26.1 73.9
40 Tumor 80.0 20.0 71.3 28.7 76.4 23.6 77.7 22.3

Stroma 14 86.0 18.5 81.5 24.2 75.8 24.8 75.2
50 100 200 500

No. of Clusters in BoW

Table 4.1: Confusion Matrix for Two-Class CRC Dataset. Confusion matrix for
the two class CRC dataset with varying parameters. We use 16, 24, 32, and
40 Gabor features and 50, 100, 200, and 500 BoW clusters for each. The bold
values are the true positives.

malignant and benign cells from a colorectal cancer colon tissue dataset [2]
as shown in Fig. 4.2. We see that the tumor and stroma tissue images can be
particularly difficult to distinguish because they are similar in texture and
intensity.

The first dataset is split into 468 training images and 157 testing images
per class. Prior to classification, Gabor features were extracted from all
of the images using 16 features (two wavelengths and eight orientations).
Two feature representation methods are used to test the transformation and
classification. We used the bag-of-words model to represent the Gabor features
as histogram descriptors. We transform the normalized descriptors with the
CDT used in [18, 19] for every image with respect to a template signal. We
use a template I0 = 1, a uniform probability density with zero mean and unit
variance, for all of our experiments. The descriptor length for the images using
BoW representation is R1x100 and using spatial pyramid is R1x500. The size
of state machine for every class is dependent on this vector and the number
of training images. Since there are two classes in this dataset, there are 936
automata utilized for this implementation.
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As stated in the previous chapter, feature extraction has significant impact
on classification accuracy, particularly using pattern matching on an automata
framework. Therefore, it is advantageous to analyze the parameters of our
method, which may also effect the run-time evaluation and classifier design
implementation. We use 16, 24, 32, and 40 Gabor features (by changing the
wavelength) and use 50, 100, 200, and 500 clusters in the bag-of-words model.

Table 4.1 shows the confusion matrix with the varied parameters. For
nearly all the experiments, using 50 clusters in the Bag-of-Words model result
with better accuracy. The accuracy slightly decreased as we increased the
number of clusters, as more bags will lead to sparsity and less variation
in features within the histograms. We further test the sensitivity of Gabor
features is keeping a constant number of clusters (k = 50) for the Bag of Words
model. Figure 4.3 shows that accuracy slightly decreases as the number of
Gabor features increase with the maximum accuracy using 16 Gabor features
(tumor: 81.5%, stroma: 87.9%).

Additionally, the stability of this automata classifier is tested by varying
the number of training images. Table 4.2 shows that our classifier is stable in
terms of changing the number of training images.

Table 4.2: Stability test

Ratio of Training Images Acc. (%)
3:1 82.5
4:1 82.4
5:1 81.3
9:1 81.7

4.3.4 Evaluation for the multi-class classification

The second experiment for image retrieval using cumulative distribution
transform and an automata classifier was tested on colon cancer tissue dataset
[2]. The dataset contains seven classes of colon tissues, as shown in Fig.
4.4. Each class contains 625 images, which was split into 468 images for
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Figure 4.3: Accuracy with varying number of Gabor features.

training and 157 images for testing. From Fig. 4.4, we see that the multi-class
classification problem can also be quite difficult since these classes have a
combination of intensity and texture similarities.

The feature descriptors are attained using the same methods as the two-
class problem with 16 Gabor features and 50 clusters in the BoW model. Since
there are seven classes in this dataset there are 3276 automata represented
on the AP, which is one-fifth of the STEs available on the current hardware.

The retrieval results for this dataset are compared to those of in [2], which
is the first published result on a multi-class texture separation, shown in Table
4.3. From the overall accuracy, we can see that this multi-class classification
is particularly difficult to classify. It is important to note that the classes
with similar features and overlapping characteristics perform worse for all
classifiers. As mentioned in Section 4.3.1, the makeup of the tumor, simple
stroma and complex stroma tissues and debris and mucosa tissues contain
corresponding cells which make differentiating their features and classification
more difficult. Our retrieval method using the AP classifier surpasses standard
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(a) Tumor

(b) Simple Stroma

(c) Complex Stroma

(d) Immune cells

(e) Debris (including mucus)

(f) Mucosal glands

(g) Adipose tissue
Figure 4.4: Seven classes of colon tissue dataset [2]. (a) tumor epithelium. (b) simple
stroma (c) complex stroma (stroma that contains single tumor cells and/or single
immune cells). (d) immune cell. (e) debris and mucus. (f) mucosal glands. (g) adipose
tissue.
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4.3. EXPERIMENTAL RESULTS AND ANALYSIS

Table 4.3: Overall retrieval performance for the multi-class dataset

Method Accuracy (%)
BoW w/ CDT using AP 58.6 8.92 58.6 20.4 38.9 45.9 100

Sppyr w/ CDT using AP 37.6 38.2 23.6 48.4 32.4 24.9 91.7
SLIDE [52] 38.9 31.8 2.5 37.6 20.4 6.4 60.1
SPM [14] 42.6 58.6 35.6 68.7 42.6 40.7 100

Class Tumor Stroma Complex Lympho Debris Mucosa Adipose

similarity measures for some classes. The classification results are comparable
to SPM, as they exceed results for two classes. As explained in [18, 19], the
cumulative distribution function can create more separable data depending on
the given input signal. Determining a feature representation method that is
suitable for a given image dataset may improve the accuracy.

4.3.5 Classification Run-time Computation

The computational cost of classification on the automata is computed using
the run-time estimation that is explained in [21]. The AP processes a new
8-bit input symbol every clock cycle and is by 40 nanoseconds on every report.
The initial setup latency is 16 nanoseconds, p is the number of output vectors
per cycle, l is the number of STEs that is reported in that cycle, and 7.5 ns is
the clock cycle. The run-time estimation for the AP is calculated from

(4.7) [(16+40p+ l)]£7.5ns

The computational cost for the multi-class problem is .024 s for BoW represen-
tation and .124 s for the spatial pyramid representation. The computational
cost for the two-class problem is .0073 s for BoW representation and .0366 s
for the spatial pyramid representation. The classification for the multi-class
dataset using SPM and KL-divergence took 11.09 s to classify each image.
The multi-class classification using BoW method on the automata found a 462
£ speedup, while the classification using the spatial pyramid method on the
automata found a 303 £ speedup. The classification run-time is limited by
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the input stream which, in this application, corresponds to the number of test
images and descriptor length.
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5
CONCLUSION AND FUTURE WORK

The main goal of the project was to apply image processing on the Automata
Processor and determine if image classification performance found improve-
ments compared to state-of-the-art methods. The Automata Processor provides
significant acceleration for pattern matching on non-finite automata appli-
cations. Therefore, we are implementing a multi-dimensional classification
problem onto a string-matching processor.

In this thesis, we proposed a process for encoding an image to regular
expressions for implementation of image retrieval on an automata framework.
The process requires acquiring discriminate feature descriptors and encod-
ing them into regular expressions. Experiments showed that our method
successfully classified images on our automata design with some accuracies
comparable to state-of-the-art methods.

However, classification on the automata needed further discrimination of
features. To increase accuracy, feature descriptors were linearly separated
by applying the cumulative distribution transformation. Neither classifier
designs on an automata framework surpassed state-of-the-art methods for
image classification. However, to increase classification accuracy we can
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CHAPTER 5. CONCLUSION AND FUTURE WORK

improve the linear separability of the data in the CDT space. This can be done
in a few ways including choosing a reference signal that is more similar to
the data, using larger datasets, and using a representation method with more
order.

While the accuracy for image classification deployed on the AP has not
reached that of state-of-the-art methods, we find a large run-time speed-up,
up to three-fold. This may motivate further work to identify feature extraction
and encoding methods that provide more separable feature descriptors to
increase classification accuracy. Since different feature extraction methods
measure different aspects of image information, merging different methods
have been proven to improve accuracy [2]. Additionally, manipulations of AP
elements and structure can be added to the automata image classifier design
to improve performance. This work could also be extended to multimodal
classification and online learning.

5.1 Concluding Analysis of Image
Classification on the AP

The scope of this thesis was to determine the capability and practicality of
implementing image processing on the AP. The current experimental accuracy
of image classification on an automata framework is comparable to state-of-the-
art methods with room for improvement. The next evident step for improving
feature extraction would be to implement deep learning for training.

Deep learning architectures have has consistently seen high accuracy in
image retrieval applications. These networks have achieved high classifica-
tion accuracy due to the hidden multi-layers. Current state-of-the-art CNN
architectures have roughly up to 152 layers before diminishing performance
[53–56]. However, having a large number of training images is a sufficient
condition in order to prevent overfitting, which is alleviated by data augmen-
tation, such as cropping, rotating, flipping, and rescaling the training images.
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In general, CNN frameworks find improved accuracy with the larger amount
of training data. Furthermore, the deep convolutional layers (for training and
testing) and backpropagation steps to learn the features have a substantial
computation complexity, thus requiring high performance hardware. Recent
CNN frameworks run on multiple GPUs or a powerful GPU which can take
over one week to train [57].

From this analysis, we should consider situations in which image classifica-
tion on the AP be advantageous over state-of-the-art processors, such as GPUs.
The current AP hardware is not capable of directly performing convolution,
which is one of the advantages of GPUs over other processors. It would be
beneficial to further explore applications in which the AP would be advanta-
geous over such processors. In real world applications, it is difficult to perform
deep learning on smart phones or other devices with low computational power.
Estava et al. [58], proposed a skin cancer detection smartphone application
using deep neural networks. The classifier is pretrained with labels provided
by medical practitioners and images taken through the smartphone are sent
to a cloud-based data storage. From this perspective, the AP could be advanta-
geous in image applications where a cloud based data storage is unnecessary
or cannot be used, such as cases where data security is a concern.

Another stance to explore in which the AP may be advantageous are cases
where there is a limited amount of image data. For example, in histopathologi-
cal datasets, there is not typically benchmark datasets because phenotypical
cancer detection varies (between cancers, people and the images taken). Thus,
training a deep learning framework would be done on different datasets and
would result in high computation complexity. Furthermore, there may be
an insufficient amount of data in histopathological images to achieve high
accuracy with a deep learning method. It would be valuable to investigate the
effect of varying number of training data on classification accuracy with the
AP and deep learning frameworks.
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6
APPENDIX A

6.1 Preliminary Experiments

A few preliminary experiments were done to apply image classification on
an automata framework. These experiments provided an understanding of
how to design our classifier while showing the limitations and complications
that come from encoding regular expression patterns and classifying on the
automata.

6.1.1 Finding patterns for different objects in an Image

The first experiment done was to understand how to encode an image or
objects within an into regular expressions. The first experiment was to prove
that individual objects within an image can have its own unique pattern. We
used simple images that had one object with a clear foreground and background
then took the object boundary, as shown in Figure 6.1. One way to encode
these images into strings is to extract feature descriptor value. The contour
of each of these objects were parametrized with the distance values from the
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Figure 6.1: Contour of four images.

center point starting at angle 0deg°360deg, as shown in Figure ??. These
values were encoded into 26 lower case letters of the alphabet using "n" as the
midpoint, as seen on below each graph of the corresponding object. We can
see that each object contour has a very unique and distinguishable pattern.
However, there are some limitations and design questions that we observed.

The string pattern of the circle in Fig. ?? depicts quantization errors when
encoding from values to strings. The quantization errors can be accounted for
using regular expression depiction. For the circle, "[m-o]37" finds a pattern
of either "m", "n", or "o" repeated 37 times. The circle and ellipse also have
repeating patterns but more complex shapes, such as the duck, evidently will
not have such patterns. This feature extraction and encoding method could
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6.1. PRELIMINARY EXPERIMENTS

Figure 6.2: The graphs show parametrization of the contour for each object. Below
the graph shows the string pattern encoded from these values. The bolded strings are
regular expression representations.

account for rotation invariance by repeating the entire string twice. However,
this method will not account for uniform or non-uniform scaling.

This preliminary experiment depicted the complications faced when ex-
tracting features and encoding them into regular expressions. While regular
expressions could account for some quantization errors, a better method of
encoding values could provide a more robust descriptor. Further, we want to
explore the best fitting length of a regular expression descriptor to attain a
descriptor that would distinguish between more objects or images. Finally, as
the dataset become more detailed with more objects, color and background
variations a more relevant and robust feature detection method could be used.
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Figure 6.3: Salient objects of the four classes: airplane, daisy, windflower and
motorbike.

6.1.2 Exploring more methods for object classification
on the AP

In a following experiment we used multiple feature extraction methods to
test object classification on an automata framework.

In one experiments we used a dataset that contained four classes of objects-
airplane, daisy, windflower, and motorcycle. Each class had 100-200 images.
As a preprocessing step, superpixels were computed using SLIC [31] in order
to attain salient images, as shown in Figure 6.3. HOG descriptors were taken
for each 1200 superpixels of each salient image, as explained in Chapter 3.
These histograms were max pooled to get one vector of size mathbbR1£60,
where 60 is the number of bin orientations. A histogram is attained for every
image in the training and testing class.

The mean of all the histograms of the training class was calculated to
attain one histogram of length R1£60. Thus, one histogram vector represents
each class. This vector is normalized from [0,1] and encoded into regular
expression strings. Each regular expression pattern for each class can then
be represented as a state machine on the automata. The histogram vector of
each test image is also similarly encoded into regular expression patterns. The
test image is classified to the class with matching patterns. The classification
results are shown in Table 6.1.2.

Table 6.1.2 does not show a confusion matrix because this classifier can
classify an image to more than one class. This is helpful to note for future
classification designs on an automata framework. The table does show that
the patterns extracted using HOG descriptors are discriminative enough to
differentiate some classes. However, similar looking objects, such as the daisy
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Airplane Daisy Windflower Spleen
Airplane .72 .006 .009 .28

Daisy 0 .77 .75 .04
Windflower 0 .61 .74 .04
Motorbike .17 .17 .17 .83

Table 6.1: The table shows the percent of images classified to each class. The
values in bold are the true positives. This is not a confusion matrix because an
image can be classified to more than one class.

and windflower, are more difficult to distinguish. Table 6.2 shows the hamming
distance between these four classes. The hamming distance calculates the
number of positions between two strings at which the symbols are different.
Therefore, these values represent, on average, the dissimilarities in the string
patterns intra-class and between classes. The hamming distances tell us that
the string patterns between the classes need to be more distinct than the
string patterns within a class.

Table 6.2: Hamming Distance

Airplane Daisy Windflower Spleen
Airplane 1.5 40.2 41.8 12.3

Daisy 47.7 4.5 4.5 21.9
Windflower 48.2 7.7 6.1 26.2
Motorbike 22.2 11.5 16.3 3.1

Table 6.3: The hamming distance between the four classes with the maximum
value possible as 60. The bolded values represent the hamming distance
between strings of the same class.

This experiment illustrates a need for extracting discriminant features,
particularly when images of different classes are similar. Further, a few para-
meters, including the number of superpixels, length of histogram vector, and
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number of character symbols, were tested in this experiment to optimize clas-
sification accuracy. These parameters were implemented in the experiments
mentioned in this thesis.
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