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Abstract
Numerous mishaps involving cyber-physical systems have occurred due to divergences
between software representations of the physical world and the actual phenomena be-
ing represented. An example is the failure of the Mars Polar Orbiter mission due to
the fact that a physical impulse was calculated in two different unit systems: impe-
rial and metric[1]. This error manifested the problem that a complete and explicit
representation of physical quantities is often stripped from code. The problem in
such cases is that software is over-abstracted and thus becomes under-constrained in
its behavior. Such systems can perform operations without type errors that have no
physical meaning, leading to the production of values that can cause major malfunc-
tions. Modern compilers provide type-checking, but physical type errors, by which
we mean operations that are inconsistent in the world represented by the software,
elude ordinary type checking. This thesis contributes to recent work on imbuing soft-
ware with physical semantics through the provision of separate, formal, computable
interpretations that map terms in code to enriched entities in the language of mathe-
matical physics. Unique to our approach is the use of a higher-order constructive logic
proof assistant to formally represent the physical domain. We present an initial proof
of concept system that mostly automatically constructs interpretations by mapping
terms in C++ code that represent physical quantities to enriched terms expressed in
the language of the Lean Prover. Type checking in this domain then reveals physical
type errors. A human analyst provides information needed to complete this mapping.
In our work to date, this information specifies distinct vector spaces to which differ-
ent vectors represented in the code are assumed to belong. Lean’s type checker then
detects undefined operations involving vectors in different spaces. By augmenting
cyber-physical systems code with physical semantics, we show that it is possible to
detect physical type errors that cannot be detected by ordinary type checking. To
help develop and to evaluate our concepts we developed a prototype system that finds
and constructs interpretations of vector values and operations in C++ code.

Thesis Supervisor: Kevin J. Sullivan
Title: Associate Professor
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Chapter 1

Introduction

IoT and cyber-physical systems (CPS) software controls the behavior of physical

objects in the world. Software embedded in such objects is often written with no

guarantee of the absence of physical type errors, by which we mean computations that

are inconsistent with the mathematical physics of the domain. An example would be

the addition of quantities in the code that represent physically incompatible quantities

in the real world. Therefore, it will be valuable to develop what we call a physical

semantics of code so that software that can be checked mechanically for consistency

with respect to the mathematical physics of the physical domain.

Multiple projects have addressed special cases of this issue with different mindsets

and methodologies. We briefly outline related approaches here, and briefly summarize

our approach in relation to earlier work.

Type System-Based. One approach to ensuring consistency of computation with

the physics of the world is to use the type systems provided by production program-

ming languages to more fully represent physical types in code. So, for example, as

DeRose[2] showed, one can provide an abstract data type that fully represents all rel-

evant aspects of multiple vector, affine, or Euclidean spaces, leaving it to the native

type system to detect inconsistent operations, such as attempts to add two points

in an affine space. One relies on the programming language type checker to prevent

physical type errors.
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This is a sensible approach, but in practice, it is often not used and a great deal

of important code does not use such an approach. The Robot Operating Systems,

ROS [3], for example, until recently, represented vectors as simple 3-tuples of floating

point numbers. Now it also provides a way to represent frames of reference in terms

of which coordinates are expressed, but it still has still no way to represent different

vector spaces altogether. And while it also provides a way to represent points, it

provides no fully developed representation of affine or Euclidean spaces, including

points, vectors, frames, inner products, and all their relevant objects and operations.

Language-Based. A second approach to enforcing the physical consistency of code

is to embed physical concepts, such as physical units (meters, feet, kilograms, etc),

into the programming languages that developers use to program hardware systems.

For example, the F# programming language allows one to associate physical units

with unsigned integer and floating point scalar values and variables. A problem with

this approach is that the types of objects relevant to the physics of the domain are

much richer than just units for scalar values, and it does not seem reasonable or

practical to fold rich abstractions, such as those for vector, affine, Euclidean, and

others spaces directly into the programming language. Yet, to describe the flying

behavior of a plane, one must represent such quantities as locations, velocities, and

angles in different 3-D coordinate systems. This will require much more than 1-D

physical units annotations.

External Checkers. A third approach to enforcing physical consistency of code is

to design additional pieces of software, ones that run outside of the main compiler,

to checks all the entities used for describing and computing states within a program.

Much work has been done on pluggable type systems[4], for example, to enable stronger

type checking than a native type system supports. Such work, however, has not

focused heavily on checking with respect to the intended real-world interpretations of

terms in the code, but has rather focuses on lower-level issues internal to the code,

such as properties of pointers being non-null, for example.
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Physical Annotation Methods. The final approach we discuss here involves the

annotation of code with information about physical interpretations, combined with

the use of external checkers to detect inconsistencies. Much work on annotating

code with physical units is of this kind, including recent work by Elbaum et al., for

example [5].

In human subjects studies, Elbaum et. al. demonstrated the difficulty of accurate,

cost-effective, human annotation of code with physical units. They addressed that

problem with an annotation inference mechanism that propagated annotations using

program flow analysis techniques. But that work did not generalize to the rich physics

of Euclidean and other spaces.

Xiang, Knight, and Sullivan [6] showed that it was possible to associate an ex-

plicit interpretations with code, linking terms in code to so-called real world types,

thereby enabling physical type checking with respect to frames of reference and other

physically important quantities. However, that work took a simple, ad hoc approach

to represent physical types.

Our Approach. Given the design constraints and the goal we aim to achieve, we

propose a different approach: one that, at its core, formalizes rich mathematical

models of physical domains embedded in the constructive logic of a modern proof

assistant, and that then maps terms in code to meanings in such domains. We are

currently using the logic of the Lean Prover [7], but Coq [8] or another such system

would serve just as well.

The higher-order logics these languages are of deep interest not only to soft-

ware engineers and programming language designers and implementors but to math-

ematicians. These logics are expressive enough to represent rich structures in many

branches of mathematics, and they promise to enable the mechanized checking of

theorems in many fields. Libraries in Lean have been written, for example, for topol-

ogy, field theory, category theory, etc. These are mathematical realms in which it is

feasible to abstractly and concisely represent rich, diverse concepts in mathematical

physics.

13



Outline. In Chapter 2, we present a survey of the research state of the art in the

broader field of real-world type checking and the physical consistency of code. We

discuss how each of the related projects and design philosophies influenced our work.

In Chapter 3, we define the boundary and the scope of the problem we are trying

to tackle and the kind of solution we could expect using the approach proposed

in this work. In Chapter 4, we discuss our proposed approach in greater detail,

from the architecture of our demonstration system to detailed design preferences and

implementation strategies. In Chapter 5, we present an initial proof of concept system

and show how specific pieces of C++ code that manipulate a robot can be given a

physical semantics and can be checked for consistency with the mathematical physics

of the domain. In Chapter 6, we discuss design tradeoffs, our conclusions, and future

work.
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Chapter 2

Prior Work and Status Quo

In this chapter, we survey the relevant work in this field and report on research

directions that have previously been explored. Each piece of work has inspired our

work from a different perspective.

2.1 External Checkers: Real-World Types

The paper, Synthesis of Logic Interpretations, by Xiang et al. [9], pointed out that an

explicit structure for documenting real-world interpretations of the code is essential.

It also pointed out that there is a gap between the semantics of high-level languages

and the interpretation of programs built on top of the high-level languages, where

the latter attempt to model and ultimately control the behaviors of objects in the

real world. Finally, Xiang et al. note that an intended interpretation of a software

system is always present, at least in the minds of the developers, but it is not always

either well conceived or documented in a manner that would allow it to be used for

systematic consistency checking of code.

Often, these intended interpretations reside in descriptive comments, variable

names, in other relevant identifiers, or in other documentation. Such information

is of great importance. When software systems control objects in the real world,

the scenario is often continuous and demanding in terms of control. Therefore, it is

crucial for programmers to be clear about the laws that program executions must
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obey. However, when the intended real-world interpretations of code elements are

not precisely and completely documented in ways that can be mechanically analyzed,

it is challenging for the programmer to ensure that such constraints are always sat-

isfied. This is where additional computations could help the programmer to ensure

the satisfaction of such additional physical world constraints.

The work of Xiang et al. supports programmer-assisted construction of inter-

pretations for cyber-physical systems code. The idea is to add information about

physical types represented by machine types and values to enable mechanical check-

ing of machine-level operations for real-world consistency. A key question is who or

what provides the required additional information?

Xiang et al. provided two answers. Their first demonstration system design sup-

ported interactive human annotation of code by linking variables and values in code to

records representing corresponding real-world types. These types came with verysim-

ple type signatures for the real-world operations that they support. An analyzer

performs limited type inference to propagate real-world type annotations through the

code, e.g., through assignment operations. It then determines whether certain opera-

tions in the code are unsupported at the level of the corresponding real-world types.

If so, it issues a real-world type error. The work supports physical unit annotations

as well as annotation of variables with limited richer types, including value ranges

and coordinate frames of reference.

In follow-on work [6], Xiang et al. presented a method for easing the human code

annotation burden by heuristically inferring candidate real-world types from identifier

names. The system then presented the human analyst with possible interpretations

of each relevant piece of code, leaving it to the human to decide which, if any, to use.

Xiang et al. carried out experimental work [6], using the Kelpie Flight Planner

software [10] to test the proposition that the real-world type checking approach could

find subtle real-world type errors in real cyber-physical systems code. They obtained

positive empirical results. Information from this work provided a nice introduction

to and overview of current progress in this field, and it inspired many of the concepts

and design decisions in this work.
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The overall thesis of the work of Xiang et al. is that software for cyber-physical

systems comes today without checkable interpretations and is thus prone to contain

physical type errors with potentially catastrophic implications. In their paper, [6],

they propose that the lack of such interpretations is a fundamental shortcoming in

the engineering of software for cyber-physical systems and that, in the future, what

software engineers must deliver are pairs: ordinary programs, but now accompanied

by explicit, checkable interpretations.

2.2 Type-System Approach

There are many packages and libraries designed for specific fields of physical compu-

tation. One library that influenced our thinking was a C++ library by Mann and

DeRose et al.[2] developed for coordinate-free affine geometry for use in the design

and implementation of computer graphics code.

The problem that they addressed was substantially similar to that which we are

addressing. The issue was that programmers often wrote their code in terms of types

over-abstracted from the mathematical geometry of the domain of physical space in

which objects exist. They gave a simple example that showed there could be three

distinct interpretations of a two-dimensional array: a transformation of a space, a

change of coordinates for a space without a transformation, or as a mapping between

spaces. Similarly, one-dimensional arrays represent either points or vectors but the

distinction was often not explicit in the code. The lack of sufficient type information

in the code made it too easy to make what we now call physical type errors.

This phenomenon entails the same problem discussed earlier in the programming

world. Not all of the operations that are valid, as far as the machine-level type

systems is concerned, have valid meanings in the domain of affine and Euclidean

spaces. Often, it is the case that the links or connections from code to intended

meanings are completely missing from the code.

To address this problem Mann and DeRose et al. proposed a geometric abstract

data type (ADT) providing a complete abstraction of mutiple affine and Euclidean
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spaces. An affine space is a pair, (P , V), in which P is a set of points and V is a set of

vectors, along with certain operations on these objects that satisfy certain axioms. A

Euclidean space is an affine space with an inner product that establishes a measure for

distances and angles. Vectors can be understood as translations between points. The

operations defined for affine spaces include standard vector space operations as well

as subtraction of one point from another yielding a vector, and addition of a vector

to a point yielding a new, translated point. All of these abstractions were defined

in a coordinate-free, or abstract, form. For the purpose of computing, numerical

coordinates for objects were maintained in an encapsulated form.

The library incorporated the concept of multiple spaces, and of multiple coordinate

systems on any given space. A coordinate system on an affine space is defined by an

affine frame. A frame comprises a point in P , the origin of the frame, and a set of

basis vectors in V , in terms of which coordinates for any other point or vector can

be expressed. Objects in the same space can be assigned coordinates with respect

to different frames. These coordinates are coefficients of linear combinations of basis

vectors. Euclidean geometry is defined as affine geometry plus an inner product that

gives rise to absolute distances, lengths, and angles, which are not available in affine

spaces.

Using this approach, each object has a specific geometric meaning so as to prevent

ambiguous computations later on. This approach was effective because, in addition

to defining fields or attributes of concrete representations of geometric objects, it

also defined and enforced abstract, geometric, meanings. The interpretations of the

concrete representations were thus made clear and enforceable. This library ensured

that every object that it could compute represents a valid object in a Euclidean geo-

metric space. It prevented execution of geometrically invalid operations on concrete,

floating-point tuples that concretely represent different geometric objects.

This approach brought the mathematical rules of the domain into the program

using the mechanism of user-defined types and the native type checking facilities of

the C++ language. This approach resolved the problem they had identified. It also

provided inspiration for this thesis. In particular, the concept of coordinate-free, or
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abstract, representations of the mathematical physics domain is one that we intend to

pursue aggressively. In the case of DeRose’s work, there are of course coordinates, but

they are hidden behind abstract interfaces. The interface presented to the program-

mer is abstract in the mathematical sense that one can operate on points, vectors,

measures, transformations, and spaces, as abstract objects without having to see or

thing about their underlying concrete, coordinate-based representations. The objects

of an affine space are points and vectors, not tuples of coordinates. Coordinate free

is the style in which mathematicians and physicists generally prefer to reason except

when implementing computations.

While the approach of Mann and DeRose was sound, the fact is that much code

is written without such care for representing mathematical abstractions in their full

richness in code.

2.3 Units and Dimensional Analysis

Units and dimensional analysis can be viewed as a special case of physical type cor-

rectness. Decades of work have addressed the problem of the lack of physical units

annotations in code, and the consequent ease with which physically erroneous code

can be written. Elbaum et al. [11] studied this problem particularly in the context of

robotics software. They examined code written against the Robot Operating System

(ROS) libraries[12]. In their work, they found that the inconsistency type ‘Assigning

multiple units to a variable’ accounts for 75% of inconsistencies in ROS code. Their

work and previous work was done for representing one-dimensional SI units. While

Xiang et al. did annotate code with richer abstractions (namely frames of reference),

the approach was ad hoc and did not use or seek to enable the definition of mathemat-

ical spaces (geometric, algebraic) in terms of which proper physical interpretations

of code could be defined. Richer abstractions, such as those of complete Euclidean

spaces, are needed for current and future cyber-physical systems. And these spaces go

beyond the geometric and temporal to include mathematical spaces for representing

thermodynamics, electrodynamics, gravity, and so on.
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Chapter 3

The Problem Redefined

As discussed in Chapter 2, much work has been done to regularize the use of the

Standard International Units in programs. However, there is inadequate support for

the much richer physical types that will be needed for the engineering of software-

driven cyber-physical systems, including robotic systems. In this thesis, we generalize

the idea and explore the possibilities that leverages coordinate-free approaches that

transcend the realm of one-dimensional physical units so that the consistency of

code with much richer abstractions of the mathematics of the physical world can

be mechanically checked.

While compilers for modern computer languages often have rich type systems,

they cannot do type checking based on information that is not in the code. That

information often includes the intended physical interpretations of well typed terms

in the code. Often one can not ascertain from the code whether operations in the

code are valid with respect to what they are to represent in the intended physical

domain of discourse. The work we discuss in this thesis builds on earlier work to

connect concrete terms in programming code with physical interpretations by linking

them to abstract algebraic structures in the language of the mathematical physics of

the real world.

We decompose the task into subsections. There are many key questions that need

to be answered to develop and evaluate a proof of this concept. Below are 4 essential

aspects.
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1. For which code elements do we want to establish interpretations? How might

we best detect code elements of interest?

2. To what mathematical physics abstractions do we want to link such code ele-

ments, and how can we do this efficiently?

3. How should we represent the required abstractions derived from the mathemat-

ical structure and the physical world?

4. How might we best compose the essential components to assure the consistency

of software with the physics of the domain?

3.1 Understanding Physical Abstractions in ROS

As a study case, we investigated the ROS code base to understand current practices

for representing physical quantities in code written against this widely used library.

3.1.1 Observations of Over-Abstracted Code in ROS

We investigated the ROS common_msg stack[12]. According to the documentation on

ROS wiki[12], Common_msgs contains messages that are widely used by other ROS

packages. These include messages for actions (actionlib_msgs), diagnostics (diagnos-

tic_msgs), geometric primitives (geometry_msgs), robot navigation (nav_msgs), and

common sensors (sensor_msgs), such as laser range finders, cameras, point clouds. In

fact, not all robotic system incorporated sensors, therefore that package will not be

used as much as the geometric primitives stack, as every system needs to locate and

control the motions of robots. We now present our observations, especially for the

geometric primitives, and the deficiencies of over-abstracted, thus under-constrained,

representations.

Initially, ROS designed the common_msg stack to isolate the messages for com-

municating between stacks in a shared dependency. This allows nodes in separate

stacks to communicate without direct dependencies upon each other. This stack has
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been designed to contain the most common messages passed between other stacks.

This shared dependency eliminates problematic circular dependencies[12]. Represen-

tations of many physical quantities, such as acceleration, position, velocity, inertia,

and other often used physical quantities are defined in this library.

Consider the following example: the ROS code that defines that ROS representa-

tions of Intertia and Point abstractions[13].

Inertia representation

# Mass [kg]

float64 m

# Center of mass [m]

geometry_msgs/Vector3 com

# Inertia Tensor [kg-m^2]

# | ixx ixy ixz |

# I = | ixy iyy iyz |

# | ixz iyz izz |

float64 ixx

float64 ixy

float64 ixz

float64 iyy

float64 iyz

float64 izz

The code snippet above defines a representation for the concept of inertia. Inertia

is a concept well established in physics. It is vital to consider when exerting fine

control over objects with mass. In this specific example, the mass is represented

using a float64 value. It is a sufficient representation in the sense that it can express

the possible scalar values of mass. However, we know that the mass is always greater

than or equal to zero. The type, float64, is over-abstracted from the concept it is used
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to represent, and is thus under-constrained in the sense that it can take on values

that have no physical meaning (except in exotic versions of physics).

The center of mass is similarly represented by an array of 3 float64 value. In

fact, many physical quantities are represented in this way, including Point (posi-

tion), Vector (translation), etc. The mapping from physical types to machine types

is non-injective (many to one), and thus lossy. The intended interpretations of the

representations are ambiguous unless specified by additional information external to

these representations. Moreover, programming language type-correct operations can

now be performed on the representations that have no physical meaning. An example

would be like adding a position to another position, or a mass to temperature, or sub-

tracting two masses to obtain a negative mass. Considering the ROS representations

of Points and Vectors. Here are the relevant definitions in the ROS code.

Point representation

# This contains the position of a point in free space

float64 x

float64 y

float64 z

Vector representation

# This represents a vector in free space.

# It is only meant to represent a direction. Therefore, it does not

# make sense to apply a translation to it (e.g., when applying a

# generic rigid transformation to a Vector3, tf2 will only apply the

# rotation). If you want your data to be translatable too, use the

# geometry_msgs/Point message instead.

float64 x

float64 y

float64 z
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While ROS does have lightweight abstractions for physical locations, directions, and

other such quantities, the information required to ensure physical consistency of op-

erations involving such objects is not fully represented in the code. The concrete

representations do not support the semantics imposed by their intended interpreta-

tions. The mathematical physical constraints expressed in the comments cannot be

fully checked by machine because there is no formal representation.

3.1.2 Potential Deficiencies

While these message types do impose a degree of abstraction, in the sense that there

are different Vector and Point messages types, they are not sufficiently rich abstrac-

tions to enforce consistency of code with the physics of the domain. For example,

these represetations provide no way to record what space a given vector belongs to,

and it was only very recently that it became possible to record coordiante frames of

reference for points and vectors in ROS.

Such under-constrained representations require programmers to do mental book-

keeping to keep track of the details of the physical quantities and properties that the

code is meant to represent. Programmers themselves then enforce the mathematical

abstractions that the concrete data are meant to encode. Either those constraints

remaining in programmers’ minds or are documented in the comments or by giving

the variable meaningful names, but in either case, it is not possible to mechanically

check that they are enforced. There is no way for the programming type system to

detect the physically meaningless operations because the mathematical and physical

abstractions that the code is meant to represent are not represented in a machine-

checkable form.

Concrete cases where things could go wrong Before discussing the abstrac-

tions derived from mathematics and physical world, in cases where the spatial dimen-

sion of the world has the structure of a Euclidean space, we want to demonstrate the

concept in the weaker abstraction of affine space. One can summarise the valid set

of operations for scalars, points, and vectors as follows:
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• point - point = vector

• vector + vector = vector

• vector * scalar = vector

• point + vector = point

Operations other than the ones listed above are simply not part of the algebra

of affine space. There is no operation for adding points to points, for example. Of

course, if points are represented only by arrays of float64 values, then it becomes

possible in the code to do so.

VectorA = VectorB + VectorC It is definitely feasible to do so in the code be-

cause the C++ compiler will not complain about this operation applied on the object

VectorB and VectorC and assign it to VectorA. Since they are all represented

using 3 tuple floating numbers, the C++ compiler will not detect any abstract type

errors like this. However, this is definitely considered an ERROR of the program

logic, the program that does the simulation of the real-world scenarios, the program

that controls the system that interacts in reality. However, this is just a simple exam-

ple of how the constraints derived from the mathematical abstractions and physical

world can be easily violated when mechanized checkable procedures are missing.

Such physical type errors are easy to introduce into systems and hard to detect

due to the absence of mechanisms for enforcing the physical abstractions that the

concrete code is meant to represent. There are other cases. One is the case of two

vectors reside in different spaces. Another is of two vectors in the same space but

where the coordinates are expressed in terms of a different frame of reference. We

note that different physical units for the same physical quantity (such as the distance

of mass) are simply a special case of mismatched coordinate frames. Meter and foot

are different basis vectors for a vector space of spatial displacements. More generally,

the origin points of different frames for an affine space can differ, as can the basis

vectors of the underlying vector space.
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Figure 3-1: The code augmented with richer abstractions that provide more con-
straints

Operations on vectors represented in the same space but expressed in coordinates

with respect to different frames should either be prevented, or change of basis opera-

tions must be applied so that coordinate-wise operations are valid. A problem related

to different frames occurred during an attempt to dock Orbital’s Cygnus spacecraft

with the International Space Station (ISS)[14]. The two vehicles both represented

GPS time in units of weeks plus seconds. Unfortunately, there were two standard

frames for GPS time, with different origins, one in 1980, and one in 1999. The er-

ror was caught when the ISS checked time values transmitted by Cygnus. Unable

to make sense of the data, the ISS aborted the docking attempt. The problem was

not one of units inconsistency (weeks plus seconds). That is, the problem was not

in mismatched bases for the vector space component of the affine space in which the

vehicles were docking. It was in the fact that the two frames had inconsistent origins.

While the units were the same, the coordinates were nevertheless not compatible.

Clearly, units consistency checking alone is an insufficient safeguard.

3.2 Problem Generalized

As shown in Figure3-1, the code is simply the pure symbolic logic that lacks reliable

mechanisms for abstract, or physical, type checking of the code. Therefore, physical

type errors are easy to make and will go undetected by the compiler chance. Such

an error occurs when operations are performed on data in ways that are inconsis-
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tent with their intended physical interpretations. Clearly, even in so-called type-safe

languages, such errors can easily occur and they will be impossible to detect mechan-

ically. The type checker within the language is not specialized to check the validity of

the operations applied, thus has no such capacity to capture the abstract errors. Crit-

ical machinery is missing in the current practice in which the code for cyber-physical

systems is written.

Our aim is to provide software engineering concepts, tools, and methods for de-

veloping robotic application code with infrastructure to assist in constructing, repre-

senting, and exploiting physical interpretations of typical over-abstracted code. The

abstractions to be checked come from the domain of discourse. An interpretation

maps concrete code elements with their intended mathematical-physical meanings in

the domain. An interpretation is the crucial missing ingredient needed to establish

a checkable physical semantics for code. In the next Chapter, we will demonstrate

the architecture of a system that implements such infrastructure that supports the

mechanized abstract type checking with respect to such abstractions.
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Chapter 4

System Architecture

We named this project after the American Logician, Charles Saunders Peirce (pro-

nounced purse)1. Peirce studied and contributed to many fields. One was the field of

semiotics, a general theory of signs and their meanings. We consider this name proper

because, besides logic and philosophy, Peirce wrote voluminously on a wide range of

other topics, as well, ranging from mathematics and mathematical logic to physics,

geodesy, spectroscopy, and astronomy. Computer programs inhabit the realm of log-

ical symbols, while all these other fields exist in the real-world. Peirce had the idea

of connecting these worlds. Our project similarly aims to connect the symbols of the

logical world of software to the physical world in which those symbols have their in-

tended meanings. Making such connections explicit, precise, and computable is a key

to ensuring that software logic and the behavior it specifies is true to real-world facts

and laws. An interesting fact is that the initials of Charles Saunders Peirce (CSP)

is the reverse of the abbreviation of the title of this thesis, the Physical Semantics

of Code (PSC). In this section, we present the overall software architecture of our

system for making such connections.

1https://plato.stanford.edu/entries/peirce/
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Figure 4-1: Peirce connects the over-abstracted code with the logic in the domain
with information from the oracle. Peirce also provides service to the outside world.

4.1 Technical Documentation of Peirce

This section is designated to discuss the technical details of the Peirce System on

how several important concepts that we introduced are implemented and why certain

tools are selected to achieving the goal.

Figure 4-1 provides a blueprint illustrating how Peirce connects concepts expressed

in concrete source code written in C++ with corresponding concepts in a domain of

discourse, expressed in terms of domain abstractions embedded in the constructive

logic of the Lean prover. We take terms in such a domain language to be mathemat-

ically complete representations corresponding directly to quantities in the physical

world. For example, while a vector that represents an acceleration in with respect to

a given frame of reference might be represented as little more than a three-tuple of

floating point numbers in C++ code, it’s corresponding representation in the domain

language could represent the Euclidean space in which it is defined, the affine space

in terms of which the Euclidean space is defined, with a frame on that space com-

prising a designated origin point and a basis for the corresponding vector space. The

coordinates of the origin point and of the basis vectors could, in turn, be defined in

terms of a different frame on the same space. In fact, a stack of frames corresponding
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to a composition of change of basis functions is typical in such representations. The

point is that what is represented efficiently but incompletely in code now has its full

physical semantics expressed in the corresponding domain.

As should now be clear, critical information about the mathematical physics of

physical quantities is often stripped in the translation from the world to code. To spec-

ify a physical semantics for such code, it is necessary to construct an interpretation

and one that restores this missing information. Peirce must obtain this additional

information from somewhere. There are many possible sources. To abstract from

any particular choice, so as to allow a broad range of alternative future mechanisms,

Pierce obtains it by calling an abstract Oracle module, from which it simply requests

the missing information for any given code element. Peirce translates the code into

expressions in the domain language, augmented with the additional information, and

links the code element to its interpretation.

The main data structure that Peirce constructs for establishing such links is what

we call an interpretation. In the current instantiation of the tool, it links each relevant

term in the code (constant, variable, expression) to a corresponding term in the

domain language. How Peirce builds this computable interpretation is by iteratively

binding at different levels of an abstract syntax tree for the program source code based

on a set of binding rules. Concretely, the parsing of C++ code and identification

and dispatching of relevant code elements is done using functional programming-

like pattern matching rules implemented using the Clang Tooling compiler-extension-

building framework [15].

Once an interpretation is constructed, the checking phase of the process checks

the interpretation for physical type errors. This phase depends on the definition of a

set of types in the domain of mathematical physics and of operations involving these

types, to which terms in the code are lifted, in such a way that the type checker of

the Lean Prover will detect the errors of interest.

We assume that the programs to be checked have been developed carefully and

that it is, therefore, feasible to determine which aspects of the code are intended to

represent objects and operations in the real-world. In other words, we assume the
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static analysis of the source code can determine which code elements require physical

interpretations. This idea actually inspired the topic of this thesis. Since the set of

assumed physical objects types and operations (e.g., point of vector in an affine space,

and point-vector addition operations) are stable for a given application, therefore it

is natural to formalize those types and the corresponding legal set of operations at

the level of abstract geometry and in terms of laws derived from the physics of the

control of flying objects or other physical systems.

A representation of the selected and augmented code is then rendered into a set of

corresponding expressions in Lean in which the additional information is used to do

stronger type checking, specifically to detect physical type errors in the code. Beyond

just type checking, we also have short term plans to leverage Lean’s type inference

mechanism to minimize the number of queries to the human analyst that will be

required to enable physical type checking. In future work, in order to make this

process smarter, it is worthwhile to consider leveraging machine learning and related

techniques ascertain appropriate interpretations without imposing an undue burden

on the human developer, e.g., to find patterns that share high similarity and apply

annotation propagation rules to the clusters found by machine learning algorithms.

The abstractOracle component of our architecture can be implemented in many

different ways, affording options to explore and adopt such alternative approaches.

Eventually, we anticipate implementations that take advance of many sources of infor-

mation, including programming source text, naming conventions within that domain,

type inference mechanisms, analysis of reference materials, documentation, Artificial

Intelligence, and many other related approaches. Such a structure could be used for

synthesizing candidate real-world types, inferring real-world type bindings for pro-

gram variables as well as synthesizing candidate type rules from verified or trusted

programs.

Inside Peirce, there are several phases when the code element gets extracted,

augmented, linked and transformed down to the logic expressed in Lean. For each of

the phases, there exists a component designated to handle the transformation. Below

is a detailed description of what each of the components is and what technique is
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Figure 4-2: Caption

used and how they work together to achieve the goal of providing physical type error

checking.

Code Finder In cyber-physical systems, the controlling software is often complex.

Not all of the code represents or performs computations about the physical quantities

that the system monitors, such as the velocity, location, acceleration and etc. We

leverage the Clang / LLVM toolchain to find the code elements that require physical

interpretation for a particular purpose. We used Clang libtooling as a library to

develop our own tool to do static analysis on the source code that runs on cyber-

physical systems.

Building a tool on a parsing mechanism other than that used by the compiler

that will actually be used to compile the code could lead to some inaccuracies in the

handling of the code. By contrast, Clang, on which we’ve built our implementation,

is the same parser as that used by the LLVM compiler that we use to compile the

C++ source code. This means there will be no false positives.

One of the main challenges we faced when developing our tool was to provide com-

plete information to Clang to parse the source code for our purposes. Clang recently

introduced its so-called ASTMatcher library to provide a simple, powerful, and con-

cise way to describe specific patterns in the AST that should trigger actions by a tool

such as ours. Implemented as a DSL and powered by macros and templates, match-

ers offer the feel of pattern matching with algebraic data types common to functional
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programming languages[16]. Matcher expressions allow you to specify which parts of

the AST are interesting for a certain task. In order to capture the code elements of

interests, we designed ASTMatching patterns in that DSL to extract them precisely

from the Abstract Syntax Tree parsed by Clang. In Chapter 5, we will give several

concrete examples that demonstrate the power of the ASTMatcher in extracting both

top-level and nested terms, the latter of which can require recursive matching and

handling. Once an AST node of interest is found based on given matching patterns,

a corresponding handler is called to perform the next phase. It can, in turn, execute

pattern matching operations on subtrees of a given node.

In the current version of what Peirce is capable of, we define the following BNF

grammar to describe the terms that Peirce can process. The experimental code that

we test Peirce on is a simple vector library that contains the definition of Vector and

one valid vector operation, which is ’vec_add’ for adding two vectors.

_____________________________

Vector_Def := VecIdent = VecExpr

VecIdent := VecVarExpr

VecVarExpr := string.

VecExpr := VecLitExpr | VecVarExpr | VecOpExpr | ParenExpr

Scalar := float

VecLitExpr := (Scalar, Scalar, Scalar)

ParenExpr := ( ParenExpr )

VecOpExpr := VecExpr.VecOp(VecExpr)

VecOp := "vec_add"

_____________________________

At the high level, there exists the point when a new Vector is introduced into the

system, then a definition of that Vector is formed. A vector definition is defined as

the a vector identifier VecIdent assigned by a vector expression VecExpr and this vec-

tor identifier is a VecVarExpr and VecVarExpr is expressed as String. VecEpxr has

several forms, such as the VecLitExpr, VecVarExpr, VecVecAddExpr and ParenExpr.
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VecLitExpr is in the form of an array of 3 floats that represent the actual values.

A VecVarEpxr represents the use of a variable, such as v1 or v2, in an expression.

VecOpExpr is defined as the binary operation of addition for vectors. It is expressed

as two VecExprs connected by the VecOp operation. In the current version of Peirce,

we only support the add function, and we leave it in the future work to provide a full-

fledged domain of discourse with complete, coordinate-free vector space operations

(scalar multiplication is missing here), affine space concepts and operations (points,

and point-vector operations are missing, as are representations of frames), and Eu-

clidean geometry abstractions (we do not currently have ways to interpret terms in

code as representing distances or angles; vectors are properly understood to represent

differences between points).

Once the entities mentioned in the BNF grammar above were found, they are

handled by the Interpretation module that fires up a sequence of actions to create

the corresponding objects at different phases and build the connections between them

that serve for searching and indexing purpose. More details will be included in the

Interpretation section.

AST Once a node specified by our matching patterns is found, the Abstract Syntax

Tree node is considered raw, as we only have the node in the representation in Clang

AST hierarchy style. Moreover, additional relevant information about the node is

stored in a separate Clang ASTContext data object. Information here includes vari-

able names and source file, line, and column number locations. We need to use this

additional information to provide the human analyst who will serve as an oracle with

such information so that they know which code elements they are annotating. There

is other information in the ASTContext node that is less relevant such as getting

the value of refersToBitField(Returns true if this expression is a gl-value that poten-

tially refers to a bit-field.) So we emitted that kind of information and coerced the

ASTContext node only to provide information relevant to this project.

AST.h defines the alias for the AST node types in Clang naming convention to the

naming in the domain of discourse, which are the terms that we used for describing
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the BNF grammar. One concrete example for the alias of the VecIdent is given below.

using VecIdent = const clang::VarDecl;

Accordingly, we defined such alias out of engineering consideration and it is proven

that such alias kept the Peirce system easy to maintain when it evolves along the way.

Code Coordinates This module wraps AST objects to abstract from the details of

Clang’s representation and to provide added behavior necessary and appropriate for

each referenced code object. For example, code coordinate objects provide a uniform

interface for obtaining source file names and line, and begin and end column numbers,

for any code elements, along with a method for rendering any AST into a string

suitable for presentation to a human analyst. Code coordinates objects also abstract

from Clang. They provide for ontology translation, between the concrete Clang types

used to represent pertinent code elements in a given programming language, and

the abstract terms of a domain language, on which the rest of the interpretation

pipeline is based. Here the code language is C++ as used to map applications built

on our simple vector class (Vec). The domain language is one of simple vector space

expressions and objects, albeit with gaps, as described above. We named it this way

because this object provides enough information so it is easy to locate and identify

the code element when needed.

We followed the Object Oriented Programming design principle to layout the

structure of the Code Coordinate Objects. We define a superclass Coords that con-

tains virtual functions to be implemented in each of its derived class to have different

behaviors based on its own type. This superclass provides basic interfaces like de-

ciding if two objects are equal or not base on the value of the given pointers, as the

coords serves as the key in a two-way mapping from AST nodes to Code Coordi-

nate objects. Coords class also provides interfaces for printing the current object

to string(method toString) as well as getting the location where it appeared in the

source location(method getSourceLoc). Both of these two methods are defined as
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virtual functions as the derived classes require different implementations.

Interpretation This module is at the center location of the whole process. It

coordinates between the entities in source code representation and how those entities

are represented in the domain of discourse. It essentially builds mappings between

Coords objects, element-wise Interp objects, and Domain Objects. Each Interp object

is associated with a code Coords object on one hand, and with a Domain object, on

the other. Interp objects link code and domain objects at the level of individual AST

nodes. Because they have visibility to both (abstracted) code and the domain, they

are able to perform functions such as rendering objects as strings that include both

code and domain information.

Once all the entities in the source code get lifted to the domain of discourse, the

Lean type checker will check the consistency of physical types. If there exists such

physical type error detected by Lean, then it will be helpful to be able to trace back

to the original code. This requires the transformation phases to be fully connected

and maintained in both directions. We created additional auxiliary modules that

serves for this purpose, including ast2coords, coords2interp, interp2domain. Taking

interp2domain module as an example, it maintains the unordered map that contains

pair whose key is the interpretation (Interp)object, and the value is the object in the

domain. It also maintains a corresponding unordered map structure that contains

the pairs whose key is the object in the domain, and the value is the interpretation

object. For each of the auxiliary module, it maintains such connection for all relevant

terms mentioned in the BNF grammar, including the VecIdent, VecExpr, Vector,

Vector_Def.

How does the Interpretation module build the connection from end to end when

a node in the AST is found based on the matching pattern provided? Once the

AST node is retrieved from the top-level AST node, handlers call the mk_Entity

functions of the Interpretation module. Entity, here, refers to the specific kind of

entity found in the code. These syntactic entities include VecIdent, VecExpr, Vector,

and Vector_Def. For each of the mk_Entity functions, it contains the following
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actions to build the interpretation. We use one of the most representative function

to explain what happens under the hood.

When the AST Matcher finds a VecVecAddExpr, it will trigger the following se-

quence of actions.

• The Interpretation module first gets the Coord objects from the the ast2coords

module for both left and right operands, which are expressed as VecExpr

terms. It is a pre-condition for constructing the top-level VecVecAddExpr that

both the left and right operands already exists in the system.

• ast2coords module constructs theVecVecAddExpr via the functionmkVecVecAd-

dExpr to construct the coords object forVecVecAddExpr. The CoordsVecVecAd-

dExpr object gets constructed and stored.

• Interpretation module gets the space of the top-level VecVecAddExpr from the

Oracle module.

• coords2dom module contains the mapping from coords objects to domain ob-

jects. By passing the coords object pointers of both left and right operand

expressions, we get the corresponding domain object pointers.

• After obtaining the space of the top-level node, and both of the domain objects

of the left and right operands, the mkVecVecAddExpr function in the domain

module will construct the domain objects of the top-level VecVecAddExpr ob-

ject.

• Once that’s constructed, we store the pair (coords, domain) in the coords2dom

module.

• Then we get teh Interp object from the coords2interpmodule for both the left

and right operands expressions, together with the coords object and the dom

object that we just constructed to create the VecVecAddExpr object in the

Interp module.
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• Now we finished constructing the corresponding objects of all phases, from ast

to dom, for VecVecAddExpr, we then construct the mapping by adding the pair

(coords,interp) and the pair (interp, dom) separately into coords2interp and the

interp2domain module.

The example on how to construct the VecVecAddExpr demonstrated the workflow.

It applies for constructing the interpretation for other terms as well, such as the

VecVarExpr, VecExpr, VecLitExpr, VecParenExpr,VecDef.

Domain AST and Domain of Discourse We created the library in Lean that

formalizes the construction of certain objects, in our case, the spaces, vectors, vector

expressions, vector variables and the set of legal operations. Lean has a powerful

mechanism to support abstract data type construction and type checking. Therefore,

after extraction and augmentation of the code with the additional information from

the Oracle module, the source code gets lifted to Lean. The code and the logic in

terms of mathematical physics logic are no longer stripped away and Peirce provided

a way for those code elements to carry the physical type with them.

How it actually gets done inside Peirce After the Interpretation module meth-

ods mk_Entity are triggered, the corresponding domain objects are constructed as

well. Therefore, the domain object maintains all the available spaces, vector vari-

ables, vector expressions including vector literal expression, variable expressions and

add expressions. These entities are isomorphic to the domain objects sets, but yet not

exactly the term that we use in the logic formalized in Lean, therefore, we consider

them more like a domain AST that could be rendered easily to the domain logic.

The library in Lean mentioned above is supposed to be the canonical description

of the objects that inhabit in the specific domain of discourse. It requires engineering

effort to build and implement the libraries. However, the good thing is that it is built

once-and-for-all effort that will not be wasted. Because it is stable with respect to

the algebra and mathematical properties that they carry intrinsically.
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Main Clang Coords AST Interp domain
Space

VecExpr union mkVecExpr VecExpr
VecLitExpr VecLitExpr (uses mkVector) VecLitExpr

HandlerForCXXConstructLitExpr CXXConstructExpr VecIdent VecIdent mkVecIdent VecIdent
HandlerForCXXMemberCallExprRight_DeclRefExpr DeclRefExpr VecVarExpr VecVarExpr mkVecVarExpr VecVarExpr
HandlerForCXXAddMemberCall, handleMemberCallExpr CXXMemberCallExpr VecVecAddExpr VecVecAddExpr mkVecVecAddExpr VecVecAddExpr
HandlerForCXXConstructAddExpr(recursive) CXXConstructExpr Vector Vector mkVector Vector
VectorDeclStmtHandler, handleCXXDeclStmt (rec) CXXConstructExpr Vector_Def Vector_Def mkVector_Def Vector_Def
CXXMemberCallExprArg0Matcher
handle_arg0_of_add_call (recurse)
CXXMemberCallExprMemberExprMatcher(paren)
handle_member_expr_of_add_call
CXXConstructExprMatcher (|lit | add)

4.2 modularity design

Initially when we define Peirce, we not only care about enabling Peirce with the

capability to analyze th complex code. As a software system that might evolve into

a complex system itself, we designed Peirce in a principled manner. It needs to be

flexible to change and evolve, modularized and easy to maintain.

A larger print of this diagram can be found in Appendix A.
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Chapter 5

Case Study on Concrete code

Why we have application code like that? The aim of the work carried out

and reported on in this thesis was to build a proof of concept for an interpretation

builder, a software system that, when aided by an oracle, can mostly automatically

construct interpretations for the kind of code now widely used to program robotic

and other cyber-physical systems. In this chapter, we show such a system. While

it is incomplete in ways that we have already discussed, it fully demonstrates the

feasibility of establishing end-to-end interpretations, starting from source code and

ending in a domain of physical abstractions formalized in a logic suitable for hosting

the abstract languages of mathematical physics.

In this chapter, we present what our current demonstration prototype system can

do and we argue that it establishes a path forward for an extensive research program

in the physical semantics of the code and in code checking for practical robotic and

other cyber-physical systems.

In a nutshell, we designed a concise library in Lean serving as a proxy for a com-

plete Euclidean geometry library. Ours is currently limited to handling vectors that

belong to distinct vector spaces, and for performing vector add and assignment oper-

ations, and the interpretation of vector literal, variable, add, and binding expressions

in C++ code. We see no impediments to extending this work to full affine and Eu-

clidean space abstractions, including support for interpretations of matrices, e.g., as

representing transformations of drone locations and orientations in space.
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It is a fact that most of the projects where the system interacts with the real-world

or provides control to the entities of the real-world needs to have an accurate mapping

of the objects and their physics properties, such as location, velocity, momentum, and

time. The mathematics that supports such computations in non-relativistic settings

is that of affine and Euclidean geometry and of Newtonian physics. Our simplified

affine space library serves the purpose of enabling exploration and experimentation

with our approach.

To date, we have applied it to hand-crafted C++ code. That said, we have

designed the development platform for our system to enable its easy extension to

thet handling of C++ code written against the ROS libraries. We have a focus of

applying the Peirce system to analyze real ROS code and assist in checking of ROS

code for physical type errors in the near future. Our choice of C++ as a source

language for this project was driven by our aim to analyze ROS code in particular in

the short term.

Introducing the library We built a very simple C++ library with a lightweight

abstraction for representing vectors and vector addition operations. Here is the code.

It provides a simple definition of the Vector class (Vec) with one primary operation:

vec_add, taking 2 Vec arguments and returning a Vec as a result.

class Vec {

public:

Vec(float i= 0.0, float j= 0.0, float k = 0.0):_x (i),_y (j),_z (k){};

void set(float x, float y, float z)

{

_x = x;

_y = y;

_z = z;

}

float get_x() const{return _x;}
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float get_y() const{return _y;}

float get_z() const{return _z;}

Vec& vec_add(Vec& v)

{

set(v._x + _x, v._y + _y, v._z + _z);

return *this;

}

~Vec(){};

private:

float _x;

float _y;

float _z;

};

Simple Vector library Since Vector is an essential element in affine and Euclidean

geometry, we have to module these mathematical concepts and for brevity, we use

a tuple of floats to represent it. In the current experimenting code, the Vector only

has one method, which is the "vec_add" function. We leave it in the future work

to support the full-fledged Vector computation. We note that our Vec class imposes

about the same amount of abstraction as ROS. It does not use completely bare floating

point three-tuples, but neither does it representing the information needed for physical

type checking (such as space to which a vector belongs or the coordinate frame in

terms of which its underlying coordinates are represented).

Simple Application Our test cases are built on this library. A typical test case

is simply a main routine in which we instantiate several vector objects—e.g., v1 and

v2–and use them in expressions to initialize the values of other new vector objects,
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such as v3 and v4. When running Peirce on such a piece of code, it asks additional

information from the Oracle for each and every relevant term, including vector lit-

eral expressions, constructor expressions, identifiers, operator (add) expressions, and

binding (assignment) commands. In the current version, it interactively asks the pro-

grammer to indicate the particular space that the associated vector is assumed to

inhabit.

Here is one of our test cases. We elide the inclusion of the Vec class library above.

// A simple case

Vec v1(1.0,1.0,1.0);

Vec v2(2.0,2.0,2.0);

Vec v3 = v1.vec_add(v1);

Vec v4 = v1.vec_add(v2);

The code snippet above in C++ declared 2 vector instances, namely v1 and v2

by calling the constructor and provide it with the initial values. It is clear in the AST

dump, easily obtained from Clang, that, at the top level, line Vec v1(1.0,1.0,1.0); is

rendered as an AST node of type, DeclStmt, in Clang. The Vector variable name v1

is a node of type VarDecl, and a constructor node CXXConstructorExpr has as its

children the elements of a vector literal expression, (1.0, 1.0, 1.0). The CXXConstruct-

Expr has 3 children. Essentially they are FloatingLiteral objects, which correspond to

the numerical values passed to the Vec constructor. How we mapped this structure to

the definition in the domain is that the DeclStmt is considered to be a Vec_Def with

two essential components, VecIdent and VecExpr. VarDecl from the Clang represen-

tation gets mapped to the VecIdent. The CXXConstructExpr in Clang gets mapped

to the Vector class in the domain.

Similar logic applies to the line V ecv3 = v1.vec_add(v1), in this case, the CXXCon-

structExpr is a bit more complicated than the previous one. ImplicitCastExpr is an

auxiliary Object from the Clang hierarchy design and it has no corresponding code

elements, and therefore it can be ignored. Inside this CXXConstructExpr, it is a
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CXXMemberCallExpr, this object corresponds to the expression v1.vec_add(v1). It

has two children, namely MemberExpr and DeclRefExpr, the MemberExpr is the

vec_add operation and the DeclRefExpr is the right operand v1 and the child of

MemberExpr, DeclRefExpr is the left operand of vec_add.

The CXXConstructExpr can get complicated when there are nested terms in the

VecExpr. However, at the top level, it is always consistent that a Vec_Def is defined

by a VarIdent assigned by a VarExpr. In Clang terms, DeclStmt is defined by a

VarDecl assigned by a CXXConstructExpr.

Based on the AST dump file, we first define the matching pattern to match the

DeclStmts from the entire AST dump file. Once those nodes are captured, we use

those nodes as the top level nodes to do further matching on inner nodes that have

corresponding code elements. From the examples above, there are different kinds of

CXXConstructExpr expressions, some of them contains FloatingLiteralExpr and oth-

ers contains CXXMemberCallExpr expressions. Therefore it is meaningful to dispatch

base on different constructions.

`-CompoundStmt 0x55719bce64e0 <col:32, line:47:1>

|-DeclStmt 0x55719bce3d68 <line:39:3, col:22>

| `-VarDecl 0x55719bce3a08 <col:3, col:21> col:7 used v1 'class Vec' callinit

| `-CXXConstructExpr 0x55719bce3d20 <col:7, col:21> 'class Vec'

'void (float, float, float)'

| |-ImplicitCastExpr 0x55719bce3cd8 <col:10> 'float' <FloatingCast>

| | `-FloatingLiteral 0x55719bce3a68 <col:10> 'double' 1.000000e+00

| |-ImplicitCastExpr 0x55719bce3cf0 <col:14> 'float' <FloatingCast>

| | `-FloatingLiteral 0x55719bce3a88 <col:14> 'double' 1.000000e+00

| `-ImplicitCastExpr 0x55719bce3d08 <col:18> 'float' <FloatingCast>

| `-FloatingLiteral 0x55719bce3aa8 <col:18> 'double' 1.000000e+00

|-DeclStmt 0x55719bce5920 <line:40:3, col:22>

| `-VarDecl 0x55719bce3d90 <col:3, col:21> col:7 used v2 'class Vec' callinit

| `-CXXConstructExpr 0x55719bce58d8 <col:7, col:21> 'class Vec'

'void (float, float, float)'

| |-ImplicitCastExpr 0x55719bce5890 <col:10> 'float' <FloatingCast>

| | `-FloatingLiteral 0x55719bce3df0 <col:10> 'double' 2.000000e+00
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| |-ImplicitCastExpr 0x55719bce58a8 <col:14> 'float' <FloatingCast>

| | `-FloatingLiteral 0x55719bce3e10 <col:14> 'double' 2.000000e+00

| `-ImplicitCastExpr 0x55719bce58c0 <col:18> 'float' <FloatingCast>

| `-FloatingLiteral 0x55719bce3e30 <col:18> 'double' 2.000000e+00

Complicated situations: Handling the recursion The simple definition above

does not account for all the possible ways of defining a Vector. There are cases where

the VecExpr are nested. Based on the BNF grammar, it is absolutely valid to define

a VecExpr in the following manner.

Vec v5 = (v1.vec_add(v1)).vec_add(v1);

Vec v6 = (v1.vec_add(v1)).vec_add(v1.vec_add(v2));

It requires careful design to match on the right node at a different level to recur-

sively construct the interpretation for certain code elements. Based on the AST View

of the Clang Parsing result, we designed the following algorithm to recursively match

on the code elements that require to establish the interpretation.

Consider rephrase the following pseudo-code using algorithm representation.

Expression& handleCXXMemberCallExpr(CXXMemberCallExpr& root)

{

// handle root.left cases

// left case 1: DeclRefExpr

if(root.left.type == DeclRefExpr)

{

VecVarExpr& left_expr = handleDeclRefExpr(root.left);

return left_expr;

}

// left case 2: CXXMembercallExpr

else
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Figure 5-1: AST View in graphics
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{

Expression& left_expr = handleCXXMemberCallExpr(root.left);

}

// handle root.right cases

// right case 1: MemberExpr

if(root.right.type == MemberExpr)

{

Expression& right_expr = handleMemberExpr(root.right);

}

// glue right together

VecAddExpr& vae = addVecAddExpr(space, root, left_expr, right_expr);

return vae;

}

VecVarExpr& handleDeclRefExpr(DeclRefExpr& leaf)

{

return lookUpInDomain(leaf);

}

DeclRefExpr& handleDeclRefExpr(CXXMemberCallExpr& root)

{

if(root.type == DeclRefExpr)

return root;

}

VecAddExpr& handleMemberExpr(MemberExpr& root)

{
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// MemberExpr only has one child

// case 1

if(root.right.type == DeclRefExpr)

{

VecVarExpr& child_expr = handleDeclRefExpr(child);

return child_expr;

}

// case 2

else

{

// ignore the cast

const Expr* implicit = root->IgnoreImplicit();

const CXXMemberCallExpr * child =

static_cast<const CXXMemberCallExpr *>(implicit);

return handleCXXMemberCallExpr(child)

}

}

Figure 5-1 made the hierarchy of the AST explicit. The transformation at different

phases that we described in Chapter 4 happens by sequence once a code element is

found in the AST based on the matching patterns that we specified to the entity

in the domain of discourse. To put it together, we use Fig5-2 to demonstrate how

Peirce process the concrete example including both flat and nested definitions using

expressions.

Currently, we host this project on Github and we configure the virtual environment

to set up the infrastructure to run this project. Please contact the authors if you have

any thoughts or questions.
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Figure 5-2: Peirce transforms the pure symbolic code to domain AST
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Chapter 6

Discussion and Future Work

6.1 Discussion

About our work In this thesis, we demonstrated the inadequacy of prevailing

approaches to representing physical objects in terms of programming-language-level

types, objects, and operations. While much information about physical types can

in principle be representing in the types definable in such languages, in practice,

software developers tend to favor representations that are over-abstracted from the

mathematical physics of the real-world. We have shown that it is feasible, with

the assistance of an oracle, to construct interpretations of that now carry complete

information about the physics that is being represented for a checker to decide if

consistency is preserved across a system. Code that in its raw state is over-abstracted

and therefore augmented with an explicit physical semantics, is now checkable for

what we call abstract, or physical, type errors.

6.1.1 A Physical Semantics of Code

The concept of a physical semantics of code that we introduced in this work draws

from the corresponding concept of the semantics of predicate logic, rooted in the

notions of a denotation function and a valuation function.

A denotation associates logical terms, analogous to code elements, with meanings
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in some other domain of discourse, which in our work would be a domain of math-

ematical physics. Our system builds a denotation in the domain of mathematical

physics for selected elements in C++ code and then assigns a consistency value to

these elements by checking the corresponding domain elements for type inconsisten-

cies. The elements of interest in C++ can, at least so far, be recognized based on

the code, but constructing a denotation requires extra information, which we obtain

from an oracle.

An oracle is any source of the extra information required to construct a complete

physical denotation. In our current realization, we ask a human analyst for the

required information for each and every relevant code element, including expressions,

sub-expressions, identifiers. Clearly, this approach is not ideal for the human analyst.

Rather, it is a demonstration of the principle. We are confident that the approach

can be greatly improved with modest additional investment.

The analogy with the denotational semantics of predicate logic is worth further

discussion. In predicate logic, there exists the notion of a model. A model in predicate

logic consists of a set of objects in the domain of discourse and an interpretation, I.

Firstly, we will discuss the interpretation. In predicate logic, an interpretation

associates constant values and predicates with meanings in a domain of discourse.

It associates each constant to a unique entity in the domain and it associates each

predicate to a unique, fixed set of entities in the domain. Our interpretation construct

does this and more. In particular, it associated vector literal expressions in code with

corresponding objects of type vector in our Lean representation of vector spaces.

The second component of denotational semantics for expression in predicate logic

is called a variable assignment function. In the same way that an interpretation maps

constants to their meanings, the variable assignment function maps variables in the

logic to corresponding meanings. In the lexicon of this thesis, our interpretation im-

plements both concepts in a uniform manner, mapping both vector-valued constants

and variables, to their corresponding meanings in physical vector spaces.

The third component of denotational semantics for predicate logic is a denotation

function. It is just a compound function that when applied to constants or predicates
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reduces to the interpretation function and when applied to variables reduces to the

variable assignment function. Defining it makes it easier and cleaner to define the

last and crucial element of semantics, the valuation function. What we have called

an interpretation, which handles the mapping of constants, variables, and larger ex-

pressions to physical meanings, is thus what logicians would call a denotation.

Finally, a valuation function in predicate logic associates truth values to logical

formulas in such a way that the value true is assigned if the expression corresponds

to the actual state of affairs in the domain of discourse, and false otherwise. For

example, a logical expression that asserts that Mary is friends with Tom would be

assigned the value true if the human being corresponding to the symbol Mary really

is real-world friends with the human being corresponding to the symbol, Tom. Our

physical type checker performs an analogous function by signaling physical type errors

(like false values) when logical expressions in the code do not correspond to meaningful

situations in the physical domain represented by corresponding expressions in Lean.

There are elements in the semantics of predicate logic that we do not have to

consider. Because C++ code has no notion of quantifiers, for example, there is no

need to deal with the complications they introduce in the definition of a semantics

for predicate logic. Conversely, there are aspects of C++ for which we would like to

have semantics that have no analogs in the semantics of predicate logic, most notably

the computational semantics of C++. Our work to date provides what might be

called a structural physical semantics of code, but not a behavioral physical semantics.

We make no attempt at this time to explain what vectors are computed by given

expressions, for example, and we have no way to check such meanings for richer

constraints on the physics of the domain, such as limits on permissible magnitudes of

computed vectors.

6.1.2 Design Trade-offs

In terms of implementation details, we represent a denotation, a physical semantics,

for elements of C++ code by a composition of bijective mappings: from code ele-

ment to code AST node, then to code coordinates objects, onto interp object, to
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domain AST nodes, and finally to concrete syntax in the logic of the Lean prover.

With this denotation in hand, our physical type checker then assigns consistency val-

ues by detecting and flagging inconsistencies in the C++ code given a constructed

denotation/interpretation.

For architectural and engineering purposes, we designed it to be two-way, which

means that all the states of those entities from Clang AST to domain AST and back

are fully connected. One reason that we adopted such a design is for the purpose of

tracing back to source code when physical type errors occur. Once such an error is

detected in Lean code, via the connection from domain AST to Clang AST, we can

trace back to the source code to point out precisely where the physical type error

is. Another use for this back-mapping is to eventually enable the annotation and

transformation of the actual C++ source code based on the results of the analysis

done on the constructive logic representation of the full physical semantics. Among

other things, this would allow for the introduction of run-time assertion checks in the

source code to detect invariant-violation errors in code that cannot readily be detected

statically. Many potential clients could be built out of this mechanism, including but

not limited to capabilities for programming understanding, test case generation, etc.

Secondly, we will discuss the entities in the domain. Those entities are usually

constants as all the terms and expression has to be evaluated down to a value, which

is the entity in the domain. We constructed entities parameterized with spaces in the

domain model to provide a way to be flexible to cater to the complexity in the code

base, which is done with the assistant of the Oracle model.

Overall, the interpretation module in our work function as such a mapping from

the code elements of interest to the corresponding augmented entities in the domain

to create such isomorphism between two worlds. We model the behaviors of the

entities with respect to the mathematical and physical laws and operations, which

are the predicated constants in the conventional sense and the augmented domain

AST objects are the constants in the domain of discourse.
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6.2 Future Work

6.2.1 Design to be refined

By following principled design concepts, we believe Peirce could evolve into a powerful

tool that could assist the analysis of large code bases existed in the current cyber-

physical or robotic systems or assist in developing software for future applications.

Yet, there are many aspects to be refined before it can provide actual service on

genuine codes that runs on robotic systems. For the near future work, we believe the

following aspects are worthy directions to head into.

On the theoretic model In order to enforce physical abstractions to the extent

that no failures are caused by the kinds of inconsistencies described in this thesis,

dynamic methods need to be incorporated to further check the code at run time.

As a concrete example, our Lean-based vector space abstraction makes the space in

which a vector lives part of its static type, but in another version of the library that

will replace the current minimal version, the affine frame in terms of which under-

lying coordinates are expressed is not. The reason is that run-time change of basis

operations can be used to enable the application of operations to vectors expressed

in different frames. We do not want to statically prohibit such operations. Rather,

we hope to annotate code with assertions and coercion operators to ensure that no

operations are ever applied to objects in the same spaces but with incompatible coor-

dinates. Clearly, another important aspect that needs to be explored is the extension

of available physical abstractions, i.e., domains of discourse, to which code elements

can be mapped.

On refining the Interpretation Our interpretation mapping table is the core

component that links the code entities to data values formalized in Lean as derived

from the physical domain of discourse. It requires certain performance optimization

technique to construct the interpretation table efficiently. Currently, we index code

objects by the pointer addresses of their AST nodes in memory. This will become a
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concern when the code base that Peirce analyses extends beyond a single compilation

unit. First, we need durable representations of code elements. Second, our approach

will have to scale to code bases that can’t all be parsed simultaneously into main

memory.

On the abstract algebraic structure Cyber-physical systems work in many dif-

ferent physical domains. There are many physical quantities to be represented, in

general, with corresponding algebraic structures. Most terrestrial robotics system will

operate in Euclidean geometric spaces, but they might also have to be checked for

software consistency with respect to such quantities as temperature, mass, time, elec-

trical current (to rotors), luminous intensities, and so forth. Satellite or other space

systems might encounter relativistic effects and thus require non-Euclidean physical

semantics. Our proof of concept, system, Peirce only tackled the vector space com-

ponent of affine and Euclidean geometry, and only incompletely. There are many

more structures to be modeled. A complete vector space abstraction required the

addition of a scalar multiplication operation, for example. To extend to affine spaces,

we need to add representations of points and operations involving points and vectors.

To extend it to the domain of Euclidean spaces, in which distances and angles are

defined, the standard inner product needs to be defined. Moreover, complex transfor-

mations, such as rigid body motions (translations, rotations) will need to be modeled

and denotation-building-mechanisms will have to be designed and implemented.

On the clients In the diagram4-1, Peirce was designed not only to provide type

checking for the code base but also to eventually be extended to support a broad

array of other uses. These include aiding software developers in understanding the

physical meanings of their code; tailored test cases generation constrained by physics;

optimization of simulations in light of physical constraints that can be inferred from

the denotations of semantically impoverished code; and more.
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6.3 Conclusion

This work begins to provide a stronger theoretical foundation for work on physi-

cal units checking and real-world types carried out previously by Elbaum, Sullivan,

Knight, Xiang, and many others. It suggests a new direction for fundamental com-

puter science research, on the semantics of programming in cases where the code itself

is insufficient to ascertain its own meanings. Rather, additional information from out-

side is needed to construct a proper denotation for the purely symbolic terms of the

programming logic. This work provides additional evidence for the view initially

proposed by Knight, Xiang, and Sullivan that, in addition to the traditional code,

software for cyber-physical (or perhaps any kind of) systems should now be accom-

panied by a separate, explicit, computable interpretations. We hope this work will

open new lines of inquiry into the (physical) semantics of software.
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Appendix A

The API design across system
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Figure A-1: System modular design layout

60



Appendix B

Sample Concrete Code

class Vec {

public:

Vec(float i= 0.0, float j= 0.0, float k = 0.0):_x (i),_y (j),_z (k){};

void set(float x, float y, float z)

{

_x = x;

_y = y;

_z = z;

}

float get_x() const{return _x;}

float get_y() const{return _y;}

float get_z() const{return _z;}

Vec& vec_add(Vec& v)

{

set(v._x + _x, v._y + _y, v._z + _z);

return *this;
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}

~Vec(){};

private:

float _x;

float _y;

float _z;

};

#include <iostream>

using namespace std;

int main(int argc, char **argv){

Vec v1(1.0,1.0,1.0); // as in frame 1; def v1 := mkVec(...)

Vec v2(2.0,2.0,2.0); // as in frame 2;

Vec v3 = v1.vec_add(v1); // as in the same frame as v1 -- frame 1

Vec v4 = v1.vec_add(v2); // should be rejected;

return 0;

}
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