
Linting roslaunch Static Transforms

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Michael Chinn

Spring, 2020

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Sebastian Elbaum, Department of Computer Science

Linting roslaunch Static Transforms
Michael Chinn

Department of Computer Science
University of Virginia
Charlottesville, USA
mec2wr@virginia.edu

I. ABSTRACT

In this research we identified and classified antipatterns in
the specification of static frame transformations in the Robot
Operating System (ROS) framework. We determined these
antipatterns using a dataset composed of static transforms from
public GitHub repositories. We built Launch-Linter, a linter
which detects the presence of these antipatterns in roslaunch
configuration files. We executed Launch-Linter on a subset
of files from GitHub repositories which were not used to
determine the antipatterns and found errors in 9.6% of files
tested.

II. INTRODUCTION

Robotics systems are becoming increasingly used in differ-
ent industries. Ensuring the reliability of the robot software is
critical, as faults may result in personal injury or expensive
crashes. In this paper we explore the space of faults that arise
due to incorrect transformations among frames of references in
robotics systems, and design automated mechanisms to detect
those faults.

A frame of reference is a coordinate system which can be
used to describe the position and orientation of objects. When
working with robotics systems, there is often a world reference
frame that is used to specify the location of the system [1].
Additionally, there may several meaningful reference frames
within a robot to specify the relative position of system
components. These frames of reference provide an abstraction
allowing software developers to more easily conceptualize and
transform the locations of the different components of a robot
as they interact.

For instance, for a robotic arm, there may be a shoulder
joint, an elbow joint, and a wrist joint. The shoulder may be
fixed relative to the world frame; the position of the elbow
relative to the ground is based upon the position of the elbow
relative to the shoulder, and the position of the wrist relative
to the ground depends on the position of the elbow relative
to the shoulder. In cases like this, developers must explicitly
convert between reference frames.

Figure 1 shows an example of how reference frames might
be setup for a robotic arm. Each set of red, green, blue
markers defines a frame of reference, where the red marker
corresponds to +X, the green marker corresponds to +Y, and
the blue marker corresponds to the +Z direction. Between
each reference frame there must be a transformation to relate
how each frame is positioned and oriented relative to the

other frames. There is a natural cascading effect where the
transform from the end of the arm to the base of the arm
can be composed by applying each intermittent transformation
between the two in series.

Fig. 1. Example Reference Frames
Taken from this GitHub repository:

https://github.com/ros-planning/moveit tutorials, released under a BSD
license.

We consider the usage of frame transformations in the
Robot Operating System (ROS), a very commonly used
framework for developing robotics software. ROS provides
several mechanisms for specifying the reference frames that
compose a robotics system, one of which involves specifying
transformations in roslaunch files, which are configuration files
structured like XML. We focused on this method of specifying
transformations in our research.

In this research we: 1) identified three kinds of antipatterns
in the definitions of these transformations that will or may
lead to faults, 2) introduce a specialized linter which pinpoints
the presence of these antipatterns in roslaunch files before
deployment, and 3) evaluated our linter on the transforms
present in immature repositories to determine how commonly
the errors occur. We found errors in 9.6% of the nearly 8500
files we used in evaluation.

III. BACKGROUND

A. Static Transformations in ROS

The Robot Operating System (ROS) is a popular framework
for developing robotics software. ROS provides the tf pack-
age for automatically handling transformations based upon
developer specifications. This package was created to make
declaring transforms simpler and less prone to errors [2].

A subset of tf transforms are static and cannot change over
time. These may be declared within roslaunch XML configu-
ration files using a static transform publisher. Displacement
and rotation parameters are taken as whitespace separated,
untyped arguments, so it is challenging for developers to
compose error-free static transforms.

Fig. 2 shows an example of a static transform publisher.
The relevant attributes are its name and its args. The name
refers to the static transform publisher and the args are a
whitespace separated list of parameters. The first three pa-
rameters are numeric and refer to the X , Y , and Z values
for the displacement of the transformation. These may be
followed by either three or four additional numeric arguments
which describe the transformation rotation. If there are three
arguments, they will be interpreted as the yaw, pitch, and roll
(YPR) values in radians. Otherwise the four arguments define
the rotation as a quaternion and are qx, qy , qz , and qw. After
the numeric arguments are two strings. The first of these is the
name of the parent frame and the second is the name of the
child frame. The transformation goes from the parent frame
to the child frame. The numerical arguments to a transform
may all be zero, in which case the transform exists to map
the child frame name to the parent frame and we refer to the
transform as a null transform. The displacement and rotation
arguments may independently be null based on the purpose
for the transform.

Fig. 2. Sample static transform publisher

We will often refer to the combination of parent and child
frame names as the signature of a transformation, and we
may also write a transformation in the form (parent name
→ child name).

roslaunch files additionally provide a mechanism for per-
forming macro expansion using arbitrary python expressions,
so the full attributes of a static transform publisher may not
be known statically. An example of this is shown using the
‘eval’ construct in Figure 3.

Fig. 3. Static Transform Using Eval

These configuration files are often shared between projects,
so errors made in the declaration of a single transform may

(a) Wrong rotation unit

(b) Duplicated name, missing integer suffix

(c) Name implication violated

Fig. 4. Motivating Examples

propagate widely. Of the approximately 500K roslaunch files
we queried from public GitHub repositories, about 55K con-
tain a static transform publisher, and we roughly estimate
that about a third of them are duplicates.

B. Motivating Examples

To concretize the kinds of errors present in roslaunch static
transforms, Figure 4 shows some motivating error examples
found in public GitHub repositories.

(a) shows a transform which consists of a 135◦ rotation.
This is a fault, as the static transform publisher interprets its
arguments in radians, not degrees.

(b) shows a set of three static transforms. Two of the
transforms are named static transform publisher1 and the
third is named static transform publisher3. The duplicated
name may lead to developer confusion as only the first
one would be instantiated, but it is also apparent that a
transformation is missing given that the integer suffixes 1
and 3 being present but not 2, so the missing name may be
static transform publisher2.

(c) shows an error of a very different variety. It shows a
collection of four static transforms which are present in a
file, one of which is named base footprint 2 base link. From
examining thousands of transforms in public repositories, we
have determined that there is a commonly followed developer
convention that when a transform with that name is present
there should also be a transform named base 2 nav link
present. As can be seen, there is no transform with that name.
This error of omission is a violation of an implicit developer
convention and may lead to challenges when collaborating or
maintaining this software.

IV. IDENTIFYING FAULTY PATTERNS IN STATIC
TRANSFORMS

The goal of this work is to ultimately develop rules that
represent antipatterns in static transforms that arise due to the
flexibility of the roslaunch configuration files, which impose
few limitations to the kinds of names and values which may
be used.

Our antipatterns are based on two sources.
First, explicit semantic specifications for the transforma-

tions. Violating these specifications render certain or likely
invalid or incorrect transformations, such a specifying a rota-
tion parameter in degrees when radians is expected.

Second, most developers encode beliefs in the labels and
values they provide in their transforms, which indicate their
expectations of how the code functions. When developers
break these shared beliefs their code may still function, but
collaboration and maintenance will both be more challenging.
Identifying such beliefs can be valuable as this information
may not actually be documented anywhere.

We consider a code pattern to be a combination of multiple
configuration properties which may occur at the scope of a
single transform or at the scope of an entire file of transforms.
A code pattern may represent a certain combination of frame
names, the correspondence of a transform name to the values
of the transform, or the existence of certain transforms within
the same file. When each property of a code pattern is met, we
consider the pattern followed. If at least one property of the
pattern is met but the condition is not followed, we consider
the pattern broken.

Code patterns may be followed purely by coincidence, but
when a pattern is followed frequently we believe it may
represent a developer’s belief that the component properties
should be followed together. In this case, violations of the
the pattern should be linted for as breaking it would violate
developer conventions and may result in a fault or otherwise
impede developer collaboration or the maintainability of the
software. When a pattern is broken in a file we think it is less
likely that the pattern represents a rule that must always be
followed, although the breaking of the pattern may itself be a
fault.

A. Rule Development Process

The development of rules followed an iterative process.
We began with hypotheses grounded in our knowledge about
static transform usage and likely faults we made or that we
found as issues or questions in ROS repositories. We then
collected data to support, refute, or refine the hypotheses, and
we employed quantitative measures to validate the hypothesis.
At each stage in this process we employed the additional
knowledge we gained to generate new hypotheses. Figure 5
is a graphical representation of this process. We will now
describe the process in more detail.

1) Bootstrapping Initial Hypotheses: We started by becom-
ing more familiar tf usage and misusage by other developers to
gain a better understanding of what kinds of beliefs are implicit
in configuration files. We searched public GitHub repositories

Fig. 5. Rule Generation Approach

for instances of developers using static transform publisher
and examined over a hundred comments, issues, and commit
histories to see how developers corrected mistakes over time.

From this examination we learned, for example, that trans-
form arguments often included uncommented constants for
both the displacements and the rotations arguments. We also
noted that while the changes were rarely documented, they
often consisted of flipping the sign of numerical arguments
or permuting their order. We also found that when files do
have many static transforms, they often took the form of
inscrutable blocks of code, as in Figure 6 which seemed
susceptible to copy-and-paste errors resulting in propagating
errors in code. Most important, we also frequently saw the
same frame names and many values appearing in different
roslaunch files, giving us the first hint that developers do
encode implicit beliefs in their configuration files. With that
in mind, we began to establish a more formal approach to
examining static transforms.

Fig. 6. Block of Static Transforms

One of our initial bootstrapped hypotheses was that certain
certain numerical arguments to transforms would appear to-
gether. In this informal process, we found that the arguments
tended to consist of magic constants which would appear with-
out comment among transforms. We were unable to relate the
values of the numerical arguments to anything else in the code
so we abandoned this hypothesis at this point. Another one
of our hypotheses was that some transform signatures always
or often correspond to null transforms. This hypothesis was
strengthened during this informal analysis, so we examined it
further when we employed a more data-driven approach.

2) Data-Driven Approach: With a better understanding of
use cases for the static transform publisher we implemented
a pipeline for building a dataset of ROS transforms. We could
then construct queries representing code conditions to count
the frequencies of the condition being satisfied and being

broken. This system allowed for much more rapid iteration
and formalization of our hypotheses and error patterns.

The pipeline included a large dataset of roslaunch files from
public GitHub repositories. Using the GitHub code search API,
we downloaded each of the 55K launch files which contained a
static transform publisher. For each of these files we used the
GitHub API to download the commit history of the repository,
and if the launch file we downloaded had been modified in a
commit, we additionally downloaded the original file version.

We began by removing files which could not be parsed
correctly. As mentioned previously, many of these files were
repeated in different repositories as they were shared. All
duplicated files were removed.

We created a MySQL database where each row represented
a single transform. The fields included each of the attributes
and arguments for the transform, in addition to a file id, a
repository id, a flag indicating if the file was the original com-
mit or a later revision, and a flag indicating if the repository
had a least 30 commits (which we deemed as more mature).

For each of the files (new and old) that we had down-
loaded, we parsed the XML specification and added its
static transform publishers into the SQL table. We skipped
transforms that employed macro expansion, as these could not
easily be separated by whitespace to determine the arguments.

In total, our dataset contained 26K static transforms defined
in 13K files. These files came from 6K different repos.

Using this dataset we were able to easily run queries using
potential error antipatterns to determine how frequently the
pattern is followed and violated.

At this stage, an example of a hypothesis we had was that
when there was a transform name that included the word
“left”, there would be a corresponding transform with the word
“right” to represent symmetries of autonomous systems. Using
the dataset we surprsingly found that transforms including the
words “left” and “right” were not as common as we expected,
so we chose not to continue focusing on this hypothesis.

An additional hypothesis we were able to better explore
using our dataset was that when a transform’s name indicated
that it corresponded to the placement of a sensor it would
not be a null transform. Using our dataset we were able to
visualize and quantify the distribution of numerical arguments
which corresponded to the displacement and rotations of
transforms which included sensor names in the frame names
or transformation name. We found evidence to support this
hypothesis, and we included an error pattern based upon it in
our final linter.

3) Quantifying the Significance of Rules: The data analysis
we performed led to some interesting questions, such as: are
transforms with certain names meant to be non-null, or does
the existence of a transform with a certain signature in a file
imply that a transform with another signature should also
be present? These kinds of questions are unlikely to have
strict documented rules which are followed, as the roslaunch
configuration system is flexible, and developers may use the
same names differently. However, when a large portion of files
do follow the same convention, despite functioning software,

it may be an antipattern to violate the convention as it will
make maintenance and collaboration more challenging and
error prone.

To quantitatively study these kinds of implications, we used
a method involving MAY beliefs and MUST beliefs, used
in testing systems code in [3]. A MUST belief is a code
pattern which always must hold and a MAY belief is any
observed code pattern that may be a condition which must not
be violated, but may also be a coincidentally observed pattern.
Any time a MAY belief pattern appears in source code this
contributes evidence that the MAY belief must hold, while any
time it is violated contributes evidence that the condition is
just a coincidence and breaking it is not harmful. Importantly
violations of the MAY belief conditions do not always mean
the MAY belief is incorrect, as the violations may themselves
be errors since they are taken from existing source code. To
then gauge how likely it that a MAY belief should be treated
as a MUST belief, researchers in [3] propose a z score:

z(n, e) = (e/n− p0)/
√
(p0 ∗ (1− p0)/n)

where n is the number of times the condition is checked, e is
the number of examples checked which satisfy the condition,
and p0 is the expected probability that the condition will be
satisfied when it is checked. They assume p0 = 0.9 and note
that z grows as n increases and n− e decreases. A threshold
value t is then applied based to the z scores, and any MAY
belief with t > z is treated as a MUST belief.

B. Validated Hypotheses: Rules We Check

We classified the error patterns we uncovered using the
dataset into three categories: MUST errors, MAY-Semantic
errors, and MAY-Implied errors. MUST patterns are those
which are never correct in practice. MAY-Semantic errors
are antipatterns which violate developer beliefs encoded in
configuration files with sufficient underpinning logic to justify
always checking for them. MAY-Implied patterns are those
which are taken entirely from encoded developer beliefs and
are determined using the z score method previously discussed.

The MUST errors are enumerated and described in Table
I. These errors were determined to always be faults via the
documentation for tf, which disallows them.

The MAY-Implied errors we considered are listed in Table
II. These correspond to the hypotheses we developed based
on the semantics of the transform arguments, and confirmed
confirmed by the collected data.

The semantics for each table entry is as follows:
1) reversed name refers to transforms with names which

suggest that they refer to the reverse of the transforma-
tion to which they actually apply. ROS static transforms
go from the parent frame to the child frame. An example
violation of this rule is a transform named map to odom
with the parent frame odom and the child frame map.

2) rot degrees refers to transforms with a YPR rotation
format with values that appear as degrees. In performing
min/max analysis of numerical parameters for trans-
forms we found YPR values as high as 135. Given that

TABLE I
STATIC TRANSFORM MUST ERRORS

Name Description Justification

self transform The same string is supplied for the parent and child frame
arguments

This transform is nonsensical. The developer likely in-
cluded the wrong parent or child so the behavior will
not match expectation

dup name The same string is supplied as the transform name for two
transforms in the same file

This will make modifying code challenging as the mean-
ing of the transforms will not be clear

dup sig The same parent, child frame pair is used for two trans-
forms in the same file

The pair of transforms may be contradictory and behav-
ior will not match expectations

TABLE II
STATIC TRANSFORM MAY-SEMANTIC ERRORS

Name Description Justification

reversed name
The transform name implies that it is from the child to the
parent, rather than from the parent to the child. [name] =
[child][| | to |2| 2][parent]

The transform may be the inverse of what it is meant to
be. The name does not reflect the code’s function and
will make modification challenging

rot degrees The value of a YPR rotation suggests it is in degrees rather
than radians The transform will not have the effect desired

int suffix If there are several frames with integer suffixes but an
intermediate suffix is missing, this may be an error The frame may have been skipped over in a list

ned transform If the child of a transform is suffixed with ned, it should
have a null displacement and a non-null rotation

This suffix is meant to be used when moving a coordinate
system into NED according to REP 103. Displacement
is not necessarily wrong, but it was not found in any
transform from a mature repo within my dataset

sensor null A sensor transform (velodyne, kinect, openni, imu) is
likely to include a small nonnull transform

Large values seem implausible for appropriate usage of
most robotic sensors. A null transform would not do very
much and it seemed uncommon to use a sensor name if
just remapping a frame name

these parameters are in radians, it was surprising to find
values greater than 2π.

3) int suffix refers to transformation names or frame names
which end with an integer suffix. In examining aggre-
gated names from the dataset, we found that it was
common to see files with similarly named and suffixed
transforms to refer to related entities or sensors. Figure 2
shows an example of this kind of transform that appeared
in a list of time-of-flight sensors on a drone.

4) ned transform refers to child frame names with the
suffix “ ned”. ROS Enhancemant Proposal (REP) 103
which contains ROS standards for units and coordinate
conventions states that ROS coordinate frames should
follow the East North Up (ENU) convention, and that
when a frame is needed to follow the North East
Down (NED) convention, as is more typical for systems
operating outdoors some frame should be transformed
to a child frame with the “ ned” suffix. From this
convention, this transformation should generally always
include a rotation and involve no displacement. From the
dataset we confirmed that these transforms very rarely
have non-null displacement and nearly always have non-
null rotations.

5) sensor null refers to transformations where the name,
parent frame name, or child frame name contains the

words velodyne, kinect, openni, or imu, all of which
refer to sensors. As mentioned previously, a transform
may be completely null, in which case it just serves to
map two names to the same frame. While this may be
used generally as a developer convention, it seemed un-
likely that sensors would have null transforms, as these
likely refer to physical devices in a robotics system. We
confirmed through our dataset that transforms with these
names were generally non-null.

Finally, MAY-Implied errors are errors which violate pat-
terns which are determined using the previously discussed z
score method. These patterns are described in Table III. Each
entry in the table encompasses a class of rules which follow
the given pattern. For each pattern in the class, we followed the
previously described quantification process to assign a z score
(using p0 = 0.9) to indicate how likely it is that violations of
the pattern are actually errors. For example, sig implication
refers to patterns of the form ∃(A → B) =⇒ ∃(A′ → B′)
where A, A′, B, and B′ are frame names. An instance of this
pattern would be ∃(base stabilized → base frame) =⇒
∃(base link → base stabilized). A transform with the
signature (base stabilized → base frame) appears in 42
files from mature repositories. In every single one of those
files there is also a transform with the signature (base link →
base stabilized). The z score is then given by z(42, 42) =

(42/42−0.9)/
√
(0.9 ∗ (1− 0.9)/42) = 2.16, which indicates

a strong likelihood that developers believe these two transform
signatures belong together, so this instance of the more general
pattern is included as a MAY-Implied pattern in our linter.

V. LINTER GENERATOR

From our dataset of static transformations we identified
three categories of transformation antipatterns. The first two
of these are the MUST errors from Table I and the MAY-
Semantic errors from Table II, and these conditions are fixed.
The third category of errors are derived from the MAY-
Implied patterns in Table III. These are heavily dependent
upon the generated dataset to determine a z score for each
rule following the pattern and the threshold values chosen to
distinguish for which instances of the MAY-Implied patterns
violations are treated as antipatterns. Given that the dataset
these beliefs are based upon is subject to change, we did not
create a fixed linter for roslaunch configuration files.

Instead we created a linter generator which takes in a set of
MySQL implication tables (of rules within the MAY-Implied
pattern classes and their z scores) along with corresponding
threshold values and uses a Jinja template to create a Python
linter based upon the selected implications. Figure 7 represents
the usage of this linter.

Fig. 7. Launch-Linter Usage

A. Applying the Launch-Linter

We executed Launch-Linter on each of the roslaunch files in
our dataset which came from repositories with fewer than 30
commits. These were deemed to be the less mature repositories
and they were excluded from the generation of the MAY-
Implied beliefs.

Launch-Liner was run on 8438 files. Our linter indicated
errors in 811 files, which corresponds to a 9.4% error rate. The
full distribution of these errors is shown in Table IV. Some of
the errors which were found are clearly incorrect; many of the
86 detected among the self transform, dup name, and dup sig
are clearly incorrect and confirmed by inspection (though
some are not faults due to macro expansion, as discussed
in the section on limitations below). Other errors matching
the rot degrees, int suffix were manually confirmed to be in-
correct configurations. Additionally the reversed name errors
were confirmed to break standard developer conventions, and

(a) MAYBE Fault Correctly Identified

(b) MAYBE Fault Incorrectly Identified

Fig. 8. Examples of MAYBE Faults Identified

while these may not be faults, they will certainly impair the
maintainability of the software and make collaboration more
challenging.

The errors which are most challenging to manually confirm
as incorrect are those which match the patterns for MAY-
Implied errors. Developers have wide latitude in their choice of
names, and though the MAY-Implied errors indicate a more
widely used convention, the roslaunch may not exhibit any
faults. Furthermore, since these selected rules are selected
based on their z score, the choice of cutoff threshold will
impact whether these errors are over or under reported.

Figure 8 shows examples from two files that the Launch-
Linter indicated exhibited MAY-Implied errors. (a) was flagged
with the message that the rule (base frame → nav) =⇒
(base link→ base stabilized) was violated. While at a glance
it appears that the code in (a) does not violate this rule,
the first transform actually has the signature (base link →
base stabilized) where the child frame has a leading under-

score. When using tf within ROS source code, frames are
referred to by string names. If in another place the developer
follows the convention of not using the leading underscore,
or if the code must interact with a library which assumes
the presence of the frame, the leading underscore will lead
to interoperability challenges. It is easy to miss the presence
of the underscore in the large body of configuration in the file
from which (a) was taken. (b) was flagged for violating the rule
Tname =stp laser =⇒ Trot = ~0. This violation is unlikely to
represent a fault, as it can be seen in the file’s comment that the
present transform with non-null rotation replaces a transform
which had a null rotation. Since the developer originally
followed the rule and consciously modified the software, it
is unlikely that this rule was incorrectly broken.

B. Linter Limitations

There were several limitations of Launch-Linter to checking
existing roslaunch files.

1) When Launch-Linter parses roslaunch files, it ignores
transforms which use runtime macros to populate argu-
ments. This may cause the linter to over report errors
which occur at the file scope, as the linter will not
account for the name or signature of the transforms
with macros. Additionally, if macros are used outside
of specific transforms to choose which are present at

TABLE III
STATIC TRANSFORM MAY-IMPLIED PATTERNS

Name Scope Description Specification

sig implication File A child, parent transform pair implies the ex-
istence of second child, parent pair ∃(C → P) =⇒ ∃(C′ → P ′)

name implication File
A transformation with a given name implies
the existence of second transformation with a
given name

∃T : Tname = N =⇒ ∃T ′ :
T ′
name = N ′

sig null disp Transform Some signatures imply that the transform
should have null displacement (C,P) =⇒ (C,P)disp = ~0

name null disp Transform Some names imply that the transform should
have null displacement Tname = N =⇒ Tdisp = ~0

sig null rot Transform Some signatures imply that the transform
should have null rotation (C,P) =⇒ (C,P)rot = ~0

name null rot Transform Some names imply that the transform should
have null rotation Tname = N =⇒ Trot = ~0

TABLE IV
RESULTS (USING z THRESHOLD OF 1.0)

Fault Number
of Faults

Number of
Files with
Fault

Percentage
of Files with
Fault

self transform 4 4 0.05
dup name 50 43 0.51
dup sig 32 28 0.33
reversed name 211 154 1.8
rot degrees 5 5 0.06
int suffix 40 25 0.30
ned transform 3 3 0.04
sensor null 397 354 4.2
sig implication 24 16 0.19
name implication 100 39 0.46
sig null disp 78 76 0.90
name null disp 33 31 0.37
sig null rot 88 78 0.92
name null rot 65 61 0.72
Total 1172 811 9.6

runtime, it is not a fault for those transforms to have
identical signatures, though our linter will report this as
an error, as it does not recognize the macros.

2) Our linter may double report certain errors. For example,
if there is a non-null transform named named sam-
ple name with the signature (sample parent → sam-
ple child), if both the name and the signature should
imply that the transform is null, this will be indicated
as two different errors. Therefore the total error counts
may appear slightly inflated, though the percentages of
files with errors are still valid metrics.

3) The linter does not examine any error patterns which
consider the relationships of numerical arguments be-
tween transforms at the file scope. As we found during
the informal study of transform issues, these arguments
are commonly magic constants, and developers com-
monly make commits to existing files to rectify their
orders or signs. However, given the limited number of

transforms present in a single file, we found examining
patterns strongly dependent on numerical values within a
file challenging. We leave this to future work on Launch-
Linter.

VI. CONCLUSION AND FUTURE WORK

In this research we determined a set of antipatterns which
are mistakenly followed in roslaunch configuration files. We
developed Launch-Linter to detect the presence of these an-
tipatterns and used this to determine the frequency these errors
are made in a public collection of ROS projects.

While we focused on tf uses within static transforms,
there are much more general ways of using tf within source
code. We recommend following a similar process to statically
determine the presence of errors in other uses of tf.

VII. ACKNOWLEDGMENTS

I would like to thank Professor Sebastian Elabum and
PhD Student Meriel Stein for their support and guidance in
completing this research, as well as their patience during the
process. I would also like to thank NSF who funded part of
this work through grant #1853374.

REFERENCES

[1] J. J. Craig, Introduction to Robotics: Mechanics and Control, 2nd ed.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989.

[2] T. Foote, “tf: The transform library,” in Technologies for Practical Robot
Applications (TePRA), 2013 IEEE International Conference on, ser. Open-
Source Software workshop, April 2013, pp. 1–6.

[3] D. Engler, D. Y. Chen, S. Hallen, A. Chou, and B. Chelf, “Bugs as deviant
behavior: A general approach to inferring errors in systems code,” in
Proc. of the eighteenth ACM symposium on Operating systems principles
(SOSP’01), Banff Alberta, Canada, Oct. 2001, pp. 57–72.

