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Abstract—Mobile sensing and analysis of data streams col-
lected from personal devices such as smartphones and fitness
trackers have become useful tools to help health professionals
monitor and treat patients outside of clinics. Research in mobile
health has largely focused on feasibility studies to detect or
predict a health status. Despite the development of tools for
collection and processing of mobile data streams, such approaches
remain ad hoc and offline. This paper presents an automated
machine learning pipeline for continuous collection, processing,
and analysis of mobile health data. We test this pipeline in an
application for monitoring and predicting adolescents’ mental
health. The paper presents system engineering considerations
based on an exploratory machine learning analysis followed by
the pipeline implementation.

I. INTRODUCTION

Technology advances and widespread use of smartphones
and fitness trackers have made these devices targets for mobile
health applications. Passive sensing capabilities embedded in
smart devices provide the opportunity to track and monitor
behavioral cues related to health and wellbeing.

Mobile health approaches using passive sensing have fo-
cused on two main processes, namely representation or model-
ing of data. Representation refers to the reporting or recording
of mental health data in applications, many of which are
web or mobile based. Users typically interact with such
applications to either record health states or receive treatment
for illness (e.g., [1], [2]). Modeling is the act of utilizing
data or features to produce insights on a user’s mental health
via passive sensing. Specifically, modeling approaches focus
on the application of machine learning algorithms and their
potential role in predicting health outcomes such as depression
or anxiety (e.g., [3]–[5]).

However, there is a dearth of work that integrates both
the modeling and representation paradigms in an end-to-end
product through processing and modeling raw sensor data and
communicating the insights to the stakeholders continuously.
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The focus of this work is on creating such a data pipeline, an
automated suite, that will allow for raw mobile device data to
predict health outcomes such as depression.

In the following section we describe the essential compo-
nents of the pipeline and discuss existing tools and approaches
to build each component. We then present an exploratory
machine learning analysis that informs the implementation.
We demonstrate the practicality of the pipeline with a use
case on data from a group of adolescents facing depression.

II. AUTOMATED PROCESSING AND PREDICTION PIPELINE

This section outlines the engineering design considerations
for an automated processing and prediction pipeline for mobile
health data. In the first part, we describe the architectural
components of such a system including:

1) strategies for collection of subjective and objective be-
havioral data

2) methods for processing and preparing data for modeling
3) machine learning and analysis methods suited for mod-

eling passive time series data
4) strategies for communicating results and insights back

to the stakeholders (e.g., patients or clinicians)
In the second part, we demonstrate the feasibility of the

automated pipeline through a case study using data from
adolescents with depression.

A. Data Collection

1) Passive Sensing: Different mobile data collection frame-
works have been developed over the past few years includ-
ing AWARE Framework [6], Intellicare [7], MindLamp [8],
RADAR [9], Sensus [10], CARP [11] and Beiwe [12]. These
tools can use both active and passive sensing to collect social,
behavioral, and cognitive data from users. The sensor data and
derived behaviors from the user’s phone and wearable trackers
are utilized via a mobile application. Example data sources
including GPS, accelerometer, call logs, screen status, wifi,
and bluetooth allow inferences on movement patterns, physical
activities, social communications, and phone usage. The data
is then stored in a database or cloud storage where further
analysis can be performed. In this work, we use the AWARE



Framework, an open-source platform with both Android and
iOS clients that has been used in numerous studies to inves-
tigate health conditions e.g., [13]–[17]. AWARE Framework
also integrates a study module to allow for monitoring of
data streams which reduces the implementation efforts of
researchers and mobile health developers.

2) Self-reports: Mobile health applications often employ
regular subjective assessments from users in form of di-
aries or surveys. The frequency of self-reports depend on
the application and can range from several times a day to
once every few months. Many applications use Ecological
Momentary Assessment (EMA) [18] to trigger short surveys
to collect information from users in certain situations. There
are also a number of different software options that allow
for online self reporting including survey platforms such as
Qualtrics and REDCap. Ideally, mobile applications should be
able to objectively assess the state of individuals from sensor
data alone without relying on the subjective assessments that
are prone to diverge from reality. However, for the purpose
of feasibility demonstration, our pipeline allows flexibility
for collection of self-report data from different sources. In
our implementation, we use data from REDCap, a platform
implemented in alignment with most human-subjects research
privacy standards, such as HIPAA.

B. Data Processing

Raw data from mobile devices is often noisy and incomplete
and needs to be cleaned. Additionally, the raw data is rarely in
a usable format for direct interpretation. As such, the pipeline
should include mechanisms for cleaning and aggregating the
data. Mobile feature engineering [19], [20] has been useful
in drawing important insights from data. A few tools, in-
cluding Digital Biomarker Discovery Pipeline (DBDP) [21],
Health Outcomes through Positive Engagement and Self-
Empowerment (HOPES) [22], and Reproducible Analysis
Pipeline for Data Streams (RAPIDS) [19] have been developed
to process mobile data streams. We implement RAPIDS in
our pipeline because of its distinct advantages compared to
other alternatives. RAPIDS offers an open source modular
feature extraction platform originally tailored for data collected
with AWARE and Fitness trackers. It also allows for flexible
segmentation of time series and supports extraction of over 300
combined features related to movement, physical activities,
social communications, phone usage, and sleep, most of which
are listed in [20].

C. Modeling

1) Machine Learning: Machine learning models can be
applied to behavioral features to predict a health outcome,
e.g., [3], [23], [24]. Most machine learning methods are
supervised and use patients’ self-reported status or the clinical
assessment to train algorithms and build models for future
prediction of health status. A wide variety of machine learning
algorithms can be applied to mobile data for health prediction.
In their review of smartphone-based passive sensing appli-
cations, Cornet and Holden [23] stated that support vector

machines, Bayes classifiers, decision trees, random forests,
and linear regression were the most popular machine learning
models used for predicting the status of a patient. Meta algo-
rithms such as random forests and gradient boosting combine
bagging and boosting to improve the machine learning results.
Ghandeharioun et al. [3] demonstrated that such ensemble
based methods generalized better on the test set than non-
ensemble based methods. For this reason, we choose to try a
variety of these algorithms including XGBoost, XGBoostRF,
Random Forests, ExtraTrees, Gradient Boosting, Adaboost,
Light GBM, and Catboost to determine the best fit.

In addition to learning algorithms, the pipeline should
support continuous model building and refinement as new
data is added to the streams. Current approaches in this
domain aim to automatically produce test set predictions for
a new dataset, e.g., AutoML [25], Auto-Weka [26], and Auto
sklearn [27]. The training set and testing strategy, however,
can have a major impact on the outcome and affect the
generalizability of a machine learning model. Doryab et al.
[24] discussed two kinds of validation approaches: individual
patient models and unified patient models. Individual patient
models use only the patient’s data to predict their health state,
while unified patient models learn from the entire sample of
patients to make health predictions. In our implementation,
we first run an exploratory analysis of the target dataset (as
described in section III-C) to evaluate the training and testing
methods and the corresponding machine learning outcomes.
This analysis informs the optimal strategies to be implemented
in the pipeline.

D. Communication and Visualization

Previous efforts in communicating health data have revealed
the importance of evaluating the needs of multiple stakeholder
groups and designing to fit those needs. For example, Abdullah
et al. [28] uses patients’ smartphones to both actively and
passively track daily rhythms and to provide effective feedback
that can help patients maintain a regular daily rhythm. It also
feeds this clinically valuable information back to patients’
physicians so that the physician knows how the patient is
doing. In the development of Monarca, Frost et al [29]
handled the disparate needs of stakeholder groups through
the development of separate platforms for communication.
A mobile application was developed for patient use, which
allowed patients to view their mood level as predicted by the
machine learning algorithm, as well as the factors contributing
to their mood. A mobile application provides a convenient
way for users to view the information that they value quickly,
demonstrated in the MoodRhythm application [28]. In the
development of Monarca, a web portal was created for use by
care providers and researchers which displayed data of multi-
ple patients. This web portal also allowed for care providers
to see which patients were most at risk and possibly in need
of immediate intervention. For our pipeline, we also designed
a mobile application and web portal to inform clinicians and
researchers about behavioral features selected by the machine
learning algorithm as well as the actual and predicted health



outcome (see figure 2). We evaluated the wireframe designs
for the mobile application through usability studies with the
actual patients. The usability discussion is out of the scope of
this paper and is reported elsewhere.

III. PIPELINE IMPLEMENTATION FOR REAL-TIME
ASSESSMENT OF MENTAL HEALTH IN ADOLESCENTS

This section details the pipeline components as described in
the previous section. We present the implemented architecture
(Fig. 1) and modeling informed by the exploratory analysis of
a sample dataset from adolescents with depression. The spe-
cific components of the implemented pipeline are as follows:

1) Data Collection:
• Passive raw sensor data collected on a daily basis

via AWARE and Fitbit are stored in an InfluxDB
database.

• Self-reports PHQ-9 survey for assessing depression
are collected once a week through REDCap.

2) Data Processing: AWARE data is cleaned and fed
into the RAPIDS framework along with a configuration
file that specifies the processing settings for feature
extraction.

3) Machine Learning: Models of depression states are
built from extracted features using PHQ-9 scores as
ground truth for comparison.

4) Web Portal and Mobile Client: The machine learning
results including predicted depression score and impor-
tant features included in the model are communicated
on the web portal and mobile clients.

The pipeline is designed to run once a week to align with
the frequency of the REDCap surveys. We use Python libraries
including pandas, scikit-learn, PyYAML, and SQLAlchemy
for development and host the pipeline on an Amazon EC2
instance to promote automation and scalability.

A. Data Collection

AWARE data was originally stored in an InfluxDB database.
InfluxDB is based on InfluxQL, a database dialect designed
for time series data. Since new data is added to InfluxDB
on an ongoing basis, performing further processing task on
this database would slow down both data storage and query.
As such, we created a secondary database for processing
and added the data to this database on a weekly basis. We
used a MySQL database in this implementation because of
the RAPIDS incompatibility with the InfluxDB format. The
duplication of data was done in three steps: copying the
schema, copying the data, and verifying the data schema.

In the first step, the schema was copied from the InfluxDB
database to the MySQL database. This was done by querying
both the InfluxDB ’fields’ and ’tags’, similar to traditional
SQL ’columns’ and ’primary keys’ respectfully, for all tables
in the InfluxDB. The fields and tags were then used to create
the respective columns in the MySQL database for each table.
This was done to ensure the schema stayed in-tact during the
data copying process.

In the second step, the data itself was inserted on a weekly
rolling basis. To prevent the overload of the InfluxDB server,
queries were sent on a regular basis via Python’s ’influxdb’
package. Queries were sent by table, by user, and by single
day.

In the final step, the schema of the query result was verified.
An artifact of InfluxDB is that if all the data for a column
is null, the column will be excluded from the query result.
To correct this, using the copied schema, we populated any
missing columns in our query result with null values. Each
query result was then written to the MySQL database via
pandas SQLAlchemy and pandas libraries.

For the mental health monitoring of adolescents, the PHQ-9
(Patient Health Questionnaire) [30] survey was implemented
on REDCap. PHQ-9 includes nine questions and the scores
range from 1 (no depression) to 27 (severe depression). To
assess the level of depression, the scores are categorized as
minimal depression (1-4), mild depression (5-9), moderate
depression (10-14), moderately severe depression (15-19), and
severe depression (20-27). The collection of this data was
facilitated by the UPMC Children’s Hospital of Pittsburgh. As
described later, we used both PHQ-9 scores and depression
categories in our exploratory machine learning to assess the
feasibility of classification vs. regression for our pipeline
implementation.

B. Data Processing

The data processing is outlined in the following steps:
1) Data preparation: To prepare the raw mobile data for

feature extraction, we first removed redundant columns to
match table schemes appropriate for RAPIDS. The modified
tables were stored in a separate MySQL database.

2) Create master participant file: We used information
from our prepared AWARE MySQL data to generate a master
participant file that consolidates information on all participants
in the study. This file serves as a reference for RAPIDS. It
contains date, participant unique identifier, and device (cell
phone) unique identifier information 1.

3) Run RAPIDS to extract features from individual users:
RAPIDS is designed to process an entire dataset in one run.
Our implementation required ongoing processing and feature
extraction for each individual user. As such, we adjusted the
settings of RAPIDS to process data from individual users.
Our script modifies a centralized configuration file based on
data present for each user. To verify a given feature can be
extracted, the script queries relevant data tables. The RAPIDS
script is then executed to extract weekly features from the
prepared AWARE data, and the extracted features for each
user are sent to a database for storage and compiling.

4) Obtain PHQ-9 scores: The PHQ-9 scores were calcu-
lated and stored in a file on a regular basis. Ideally, the self-
report measures are read through the API. However, an issue in
matching the timestamp of the survey data prevented us from

1We used RAPIDS version 0.4.3. Further information on the current version
of RAPIDS, its configuration, and the behavioral features available can be
found at https://www.rapids.science/latest/



Fig. 1. Data Pipeline Implementation

using the REDCap API. Due to the lack of automation of this
step, it has not been included in any of the figures. We matched
the PHQ-9 scores and extracted features for each participants
through a script on a weekly basis. Any extracted feature or
survey result that did not have a match were dropped.

C. Machine Learning

With the data processing steps completed, the data was
passed through a machine learning script to output depression
predictions. RAPIDS outputs a large number of columns,
many of which do not contain any data if patients turn off
various sensors on their phones. In order to preserve useful
information, all empty columns and rows, rows or columns
with 50% or more missing data, and redundant columns with a
correlation of over 0.95 were dropped to reduce multicollinear-
ity. Median imputation was performed in the remaining dataset
as many of the features were very skewed. The numerical
columns were then scaled between 0 and 1 before training
began.

To choose the final algorithms and validation strategy for
implementation, we ran an exploratory analysis on data from
40 adolescents using different regression algorithms as listed
in Table I using root mean square error (RMSE) as the
performance measure.We chose XGBoostRF for the imple-
mentation as it provided the lowest RMSE. XGBoostRF stands
for Extreme Gradient Boosting Random Forests and combines
gradient boosting with an ensemble of decision trees to output
a numerical prediction for depression score.

TABLE I
AVERAGE RMSE OF VARIOUS MACHINE LEARNING MODELS ON

PATIENT DATA

Algorithm Average RMSE
XGBoost 5.8
XGBoostRF 5.3
Random Forests 5.6
ExtraTrees 5.6
Gradient Boosting 5.8
Adaboost 5.4
Light GBM 6.0
Catboost 5.7

1) Validation Strategy and Performance Measures: Our
approach used data aggregated on a weekly basis. Following
the method in [24], we evaluated four validation strategies,
two based on individual patient data and two based on
the population data. The individual models include leave-
one-patient-one-week-out (Lopowo) and leave-accumulated-
weeks-out (Lawo). The former uses each patient’s data alone
to predict that patient’s mental state for a given week. The
latter uses a patient’s data from weeks prior to the current
week to predict the patient’s mental state for that week. We
also evaluated two unified patient model validation approaches
namely leave-one-patient-out (Lopo) and leave-one-week-out
(Lowo). Lopo uses all other patients’ data to predict a given
patient’s mental state whereas Lowo uses all other weeks of
data from all patients to predict a patient’s mental state for
that week.

To evaluate the automated modeling with continuous new
data, we ran regression and classification experiments with
the four validation strategies stated above. We first divided
the data into nine sections each corresponding to one month
of data. Each section added more recent data to the previous
section, mimicking the increase in patient data collected by
the app over time. The cross validation methods were tested
across the nine increasing sections. Table II shows the results
of each method using the XGBoostRF regressor and indicates
that the Lawo strategy was the best validation approach for
the data as it had the lowest RMSE on the final iteration.
We therefore, chose to run the machine learning script on the
accumulated patients’ data on a weekly basis to train a model
and to predict the depression score of the current week. The
output of this model including the predicted depression score
and the important features involved in modeling are stored in
another database to be used on the web portal.

As previously mentioned, we also designed a mobile ap-
plication for patients to monitor their mental health sta-
tus. The design uses categories of depression (minimal to
severe) instead of the actual PHQ-9 score. Therefore, we
ran a classification test to choose the algorithm and the
validation strategy. We initially converted the PHQ-9 scores
into minimal, mild, moderate, moderately severe and severe.



Fig. 2. Moodring App Preview

However, because of the sparsity in some categories and
to balance the classes, we merged the categories to create
labels ”Minimal or Mild” (scores 0-9), ”Moderate” (scores
10-14), and ”Moderately Severe or Severe” (scores 15-27). We
applied the classification version of XGBoostRF to predict the
patient depression category. Each cross validation approach
was tested using the classifier to see how they performed
on iterations with increasing amounts of patient data (Table
II). Consistent with the regression approach, the individual
patient approaches show higher accuracy across all iterations
than the unified patient validation approaches. This indicates
that using personalized models for predicting patient PHQ-9 is
more accurate than using models that pool data from a group
of individuals.

TABLE II
XGBOOSTRF PREDICTION EVALUATION OVER INCREASING DATA

Lopo Lowo Lopowo Lawo

Iter. C
Acc

R
RMSE

C
Acc

R
RMSE

C
Acc

R
RMSE

C
Acc

R
RMSE

1 11% 3.8 50% 3.4 88% 2.7 86% 2.6
2 38% 4.6 70% 3.6 73% 3.1 77% 2.6
3 44% 5.6 70% 4.2 74% 3.5 74% 3.2
4 47% 6.3 67% 4.6 80% 3.5 80% 3.3
5 47% 5.9 64% 4.7 75% 3.5 75% 3.3
6 41% 5.7 62% 4.8 73% 3.3 73% 3.2
7 40% 5.7 60% 4.8 70% 3.4 71% 3.3
8 41% 5.7 59% 4.8 72% 3.5 73% 3.5
9 42% 5.8 59% 4.7 73% 3.4 73% 3.4

D. Visualization

The final step in the data pipeline was to automatically
display and visualize the extracted features and machine
learning predictions for further analysis by clinicians and
researchers. A final product of the system would involve
separate views and usability for members of the primary user
classes of adolescents, parents, and care providers. Our current
implementation is a dynamic web portal developed primarily
for use as a developer and research portal seen in Fig. 2
D, but this implementation is also useful for clinicians to
interpret the machine learning outputs. The front end is a
Django-based application that is hosted on an Amazon Elastic

Beanstalk system. The Django application accesses a database
holding selected features and user PHQ-9 predictions and
communicates these to the user by dynamically creating pages
displaying line plots of normalized RAPIDS data for each
feature used in the machine learning script separated by sensor.
The features displayed are read from a generic configuration
file that is updated based on the results of the machine learning
The user has the ability to turn on and off each features in order
to investigate specific trends as well as overlay the predicted
and ground truth PHQ-9. In addition to the functional web
portal, we also developed wireframes for a phone based
application for adolescent users shown in Fig. 2 A, B and
C. The design was refined through interviews with users and
non-users. The mobile application utilizes feature importance
from the machine learning algorithm and the classified PHQ-
9 scores to display the predicted depression category as well
behavioral features that contributed most to the prediction of
that category. This gives users insights into what behavioral
factors correspond to their depressive symptoms. The feature
importance, direction, and intensity are presented using color,
shade, and numerical labels.

IV. CONCLUSION AND FUTURE WORK

We presented an automated machine learning pipeline for
continuous processing and analysis of mobile health data and
communicating the results back to the stakeholders including
clinicians, patients, and researchers. We implemented the
pipeline for the real-time assessment of mental health in
adolescents. Although we only used depression as a case for
evaluation, the design and implementation can be extended to
other health and behavioral outcomes with more biobehavioral
data e.g., heart rate variability and skin temperature.

Future steps include allowing for simultaneous prediction of
multiple outcomes, e.g., anxiety, stress, depression, and sleep
quality. The pipeline can further be expanded to allow users to
choose which combination of mental state forecasts they want
to receive.

We plan to add functionality to allow clinicians and re-
searchers to specify the analysis settings including selection



of the machine learning algorithm, identifying the prediction
outcome, specifying the length of data to be used in the
analysis, etc. This step will add more flexibility and value to
the automated pipeline and help both clinicians and researchers
draw insights in a ongoing basis.

We also plan on more in depth HCI research on the
stakeholder interactions with the application to further identify
key functionalities of the system. For example, an essential
functionality for clinicians might be to give them an overview
of patients at risk. This step will help the full implementation
of the mobile application and web portal with added function-
ality and visualizations for all stakeholders.
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