
Explainable Deep Generative Models, Ancestral Fragments, and Murky Regions of

the Protein Structure Universe: Datasets, Models, and Analyses of Fold Space

Eli Jacob Draizen

Charlottesville, VA

A Dissertation submitted to the Graduate Faculty

of the University of Virginia in Candidacy for the Degree of

Doctor of Philosophy

Department of Biomedical Engineering

University of Virginia

December 8th 2022

Kristen M. Naegle, Chair

Philip E. Bourne, Advisor

Jason A. Papin

Aidong Zhang

Stephen Baek

Cameron Mura

ii

This work is licensed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0).

https://creativecommons.org/licenses/by/4.0

iii

Explainable Deep Generative Models, Ancestral Fragments, and
Murky Regions of the Protein Structure Universe: Datasets,
Models, and Analyses of Fold Space

Eli Jacob Draizen

(ABSTRACT)

Modern proteins did not arise abruptly, as singular events, but rather over the course

of at least 3.5 billion years of evolution. Can machine learning teach us how this

occurred? The molecular evolutionary processes that yielded the intricate three-

dimensional (3D) structures of proteins involve duplication, recombination and mu-

tation of genetic elements, corresponding to short peptide fragments. Identifying and

elucidating these ancestral fragments is crucial to deciphering the interrelationships

amongst proteins, as well as how evolution acts upon protein sequences, structures

& functions. Traditionally, structural fragments have been found using comparative

approaches such as sequence alignment and 3D structural superposition, but that be-

comes challenging when proteins have undergone extensive permutations—allowing

two proteins to share a common architecture, though their topologies may drastically

differ (a phenomenon we term the Urfold). In my thesis, I develop several tools and

datasets, leveraging decades worth of structural biology knowledge in light of the Ur-

fold model of protein structure, in order to decipher the underlying molecular bases

for protein structural relationships.

iv

• For my first aim, I developed a community resource to create and share protein

properties–structural, biophysical and evolutionary—for utilization in struc-

tural bioinformatics pipelines that involve machine learning. These properties

can be used as feature-sets in any machine learning model; besides reusability

and efficiency, such a resource would also facilitate more reproducible work-

flows, by ensuring analyses are performed with standardized data. This project,

termed ‘Prop3D’, is described in Chapter 2. The work, which has been written-

up for submission to a journal in December 2022.

• In my second aim, I designed a sequence-independent, alignment-free, rotationally-

invariant similarity metric of protein inter-relationships based on Deep Gen-

erative Models and 3D structures. Motivated by the Urfold view of protein

structure, this framework leverages similarities in latent-spaces rather than

the 3D structures directly, and it encodes biophysical properties; this capa-

bility, in turn, allows higher orders of similarity to be detected among proteins

that are presumed to be only distantly related. I used this new similarity

metric to detect clusters, or ‘communities’, of similar protein structures using

Stochastic Block Models. This method takes a rather different approach to

traditional clustering, allowing for proteins to span multiple clusters, thereby

more explicitly allowing for the continuous nature of fold space. This project,

termed ‘DeepUrfold’, is described in Chapter 3. The work, which was sub-

mitted to Bioinformatics in November 2022, is also available as a preprint at

https://doi.org/10.1101/2022.07.29.501943.

• Finally, for my last aim, I sought to discover if particular residues/peptide

fragments from a given domain might be responsible for conferring the simi-

larity/linkage to other domains—including those relationships which may be

https://doi.org/10.1101/2022.07.29.501943

v

exceedingly remote—using Layer-wise Relevance Propagation, an Explainable

AI technique. This in turn creates an automatable/systematic and reproducible

framework to identify new urfolds across the protein structure universe. This

project, termed ‘DeepUrfold-explain’, is described in Chapter 4. Though some-

what nascent, the project has been accepted to the peer-reviewed Machine

Learning in Structural Biology (MLSB) workshop at the Neural Information

Processing Systems (NeurIPS) conference held in December 2022, and is also

currently available as a preprint at https://doi.org/10.1101/2022.11.16.

516787.

https://doi.org/10.1101/2022.11.16.516787
https://doi.org/10.1101/2022.11.16.516787

vi

Dedication

I dedicate my dissertation to my mom, dad, and sister for supporting me and

encouraging me all of the way through.

vii

Acknowledgments

I would like to thank my advisors Phil Bourne and Cam Mura for supporting during

this entire process — I would not have been able to finish my dissertation without their

guidance, feedback and encouragement — and I would like to thank my committee

for giving invaluable advice. I would also like to thank David Landsman & Anna

Panchenko for support and motivation before I started my PhD, up until I transferred

to UVA. Dietlind Gerloff was my academic advisor starting from my time at UC Santa

Cruz and I have always valued her advice, input and support; I would also like to

thank her for support early on during my PhD.

I would also like to thank all of my friends from Boston, DC, Charlottesville,

and around the world. From the NIH Graduate Student Underground, to my friends

and housemates in Charlottesville, to ISMB Conferences where I met lifelong friends.

The United Campus Workers Virginia union also played an important role during my

PhD, so I would like to thank all of the other PhD student and employees for their

solidarity.

Music has been my primary way to get through the PhD. I would like to thank

all of my friends in the bands I have played with and those who helped me run DIY

music venues:

• Aly Gorey (Band in Boston 2015-2016 w/ Ethan Hoffman; https://alygoreyjd.

bandcamp.com)

• Dothraki Decepetion &Marble House (Band and venue respectively in DC 2016-

2018 w/ friends from the NCBI: Alexander Goncearenco, Guilhem Faure, Nico-

las Fiorini and Sergey Shmakov; https://soundcloud.com/dothrakideception)

https://alygoreyjd.bandcamp.com
https://alygoreyjd.bandcamp.com
https://soundcloud.com/dothrakideception

viii

• The Ducklettes (Band in DC 2017-2018 w/ friends from NIH: Kristoffer Jo-

hansen, Dan Konzman, Anna-Leigh Brown and Mike Tisza)

• Orange Folder (Band in Charlottesville 2018-2020 w/ Max Hoffman, Jack Richard-

son, Corrine James and Thomas Dean; https://orangefolder.bandcamp.

com)

• Chinchilla Cafe (Venue in Charlottesville w/ Robin Brown, Lane Rasberry,

Fabian Garcia, Gabriela Toledo and Laura Fontenas; https://commons.wikimedia.

org/wiki/Category:Chinchilla_Caf%C3%A9)

https://orangefolder.bandcamp.com
https://orangefolder.bandcamp.com
https://commons.wikimedia.org/wiki/Category:Chinchilla_Caf%C3%A9
https://commons.wikimedia.org/wiki/Category:Chinchilla_Caf%C3%A9

ix

Contents

1 Introduction 1

1.1 Background on proteins and evolution 3

1.1.1 Primary structure . 3

1.1.2 Secondary structure . 4

1.1.3 Tertiary Structure . 4

1.1.4 Quaternary Structure . 5

1.1.5 Protein Folding Problem . 5

1.1.6 Protein Structure Prediction 6

1.1.7 Molecular Evolution at 1000 feet 7

1.2 Domains as the unit of evolution . 8

1.3 Nature of the protein universe and issues with hierarchical classifica-

tion: discrete vs continuous . 12

1.4 Short peptide fragments as unit of evolution 18

1.5 Protein Comparison . 23

1.5.1 Sequence Comparison . 24

1.5.2 Structure Comparison . 29

1.6 Overall Problem . 32

x

1.7 Revisit the question of fold space in light of new deep learning methods 37

1.8 Thesis Outline . 39

2 Prop3D: A flexible, Python-based platform for protein structural

properties and biophysical data in machine learning 60

2.1 Introduction . 62

2.2 Motivating factors: Data leakage, biophysical properties, and protein

representations . 65

2.2.1 Evolutionary data leakage . 65

2.2.2 Biophysical properties . 67

2.2.3 Protein representations . 68

2.2.4 Outline of this work . 72

2.3 Overview of the software & dataset 72

2.3.1 Architecture and design . 72

2.3.2 Meadowlark: An extensible, Dockerized toolkit for reproducible,

cross-platform structural bioinformatics workflows 74

2.3.3 AtomicToil: Mapping structural info to sets of massively paral-

lel tasks . 75

2.3.4 Capabilities and Features . 76

2.3.5 Dataset Design and Data Format 78

2.4 Summary and Future Outlook . 81

xi

2.5 Data Availability . 82

3 DeepUrfold: Deep Generative Models of Protein Structure Uncover

Distant Relationships Across a Continuous Fold Space 100

3.1 Introduction . 102

3.1.1 Fold Space, Structural Transitions & Fragments 104

3.1.2 Limitations of Hierarchical Systems, The Urfold 106

3.1.3 DeepUrfold: Motivation & Overview 108

3.2 Results . 109

3.2.1 The DeepUrfold Computational Framework: Deep Generative

Models . 109

3.2.2 DeepUrfold Models Can Detect Similarities among Topologi-

cally -distinct, Architecturally-similar Proteins 111

3.2.3 Latent Spaces Capture Gross Structural Properties Across Many

Superfamilies, and Reveal a Highly Continuous Nature of Fold

Space . 114

3.2.4 Protein Interrelationships Defy Discrete Clusterings 116

3.3 Discussion, Further Outlook . 121

3.4 Computational Methodology . 124

3.4.1 Datasets . 124

3.4.2 Protein Structure Representation 125

3.4.3 VAE Model Design and Training 126

xii

3.4.4 Evaluation of Model Performance 128

3.4.5 Assess the Urfold Model by Subjecting Proteins with Permuted

Secondary Structures to Superfamily-specific VAEs 128

3.4.6 Latent-space Organization . 129

3.4.7 Mixed-membership Community Detection 129

3.4.8 Comparisons to CATH . 131

3.5 Data Availability . 132

3.6 Supplemental Matrial . 147

3.6.1 Superfamilies used in this paper 147

3.6.2 Voxelization & Featurization 148

3.6.3 Immunoglobulin (2.60.40.10) Model Metrics 149

3.6.4 Multiple Loop Permutations 153

3.6.5 Latent Space . 155

3.6.6 Stochastic Block Modelling 158

3.6.7 Comparison to Other metrics 166

3.6.8 Model Architecture . 167

4 DeepUrfold-explain: Explainable Deep Generative Models, Ancestral

Fragments, and Murky Regions of the Protein Structure Universe 173

4.1 Introduction . 175

4.2 Results . 179

xiii

4.2.1 Small β-barrels . 179

4.2.2 Phosphate-binding Loop (PBL)–Containing Proteins 181

4.3 Methods . 181

4.3.1 DeepUrfold-Explain and VAE Model 181

4.3.2 Layer-wise Relevance Propagation 183

4.3.3 Cross-Model Fragment Identification 184

4.4 Conclusion . 185

4.5 Appendix . 190

4.5.1 Variational Autoencoders . 190

5 Epilogue 191

5.1 Data Acquisition . 193

5.2 Data Engineering ↔ Chapter 2 (Prop3D) 194

5.3 Data Analytics ↔ Chapter 3 (DeepUrfold) 195

5.4 Visualization & Dissemination ↔ Chapter 4 (DeepUrfold-explain) . . . 197

5.5 Ethics . 198

5.6 Future Directions . 199

5.6.1 Method Development . 199

5.6.2 Application . 200

xiv

List of Figures

1.1 Chapter Outline . 2

1.2 Secondary Structure Elements from PDB 1kq2 4

1.3 Tertiary Structure . 5

1.4 CATH Hierarchy highlighting the OB and SH3 relationships 10

1.5 SCOP Hierarchy highlighting the OB and SH3 relationships 11

1.6 ECOD Hierarchy highlighting the OB and SH3 relationships 12

1.7 Hierarchical Organization of The Library of Babel 14

1.8 Different Views of Continuous Fold Space showing protein domains

from ‘All α’ and ‘All β’ classes flanked by protein domains from the

‘α/β’ classes from different comparison metrics six years apart 17

1.9 Example short peptide fragments . 22

1.10 Hierarchical clustering of fold space example with CATH cut levels . 33

1.11 SH3 and OB Comparison in 2◦ and 3◦ structure 34

1.12 Possible Evolutionary Relationship of the OB and SH3 fold 35

1.13 Thesis and DeepUrfold Overview . 41

2.1 Uneven distribution of protein superfamiles 66

2.2 Data leakage and multi-domain proteins 67

xv

2.3 Overview of Prop3D Components . 73

2.4 Protein Preparation . 76

2.5 Biophysical Property Calculation . 78

2.6 Hierarchical structure of Prop3D . 84

2.7 Cloud-based access to the Prop3D dataset with HSDS 85

2.8 Improved training runtime when using HSDS 86

3.1 Overview of the Urfold model and DeepUrfold approach to identify

domains that might reflect the phenomenon of ‘architectural similarity

despite topological variability.’ . 103

3.2 Likelihood values can be used to quantify similarities among multi-loop

permuted structures . 112

3.3 Dominant variables of DeepUrfold’s latent-space models capture gross

structural properties and indicate a highly continuous fold space . . . 134

3.4 Protein interrelationships defy discrete clusterings: Stochastic block

modeling of an all-vs-all comparison of domain structures and super-

family models . 135

3.5 DeepUrfold does not recapitulate CATH 136

3.6 Voxelization & Featurization Method 148

3.7 The 2.60.40.10 model was trained for 30 epochs using a 80% / 10 %

split from CATH’s S35 clusters (test [10 %] not shown). 149

xvi

3.8 Classification Metrics for 7 Different Groups of Features Including

Residue Type . 150

3.9 Classification Metrics for 7 Different Groups of Features Removing

Residue Type . 151

3.10 Classification metrics for separated features in the Secondary Structure

feature group. 152

3.11 Classification metrics for separated features in the Atom Type feature

group. 152

3.12 Multiple Loop Permutations Example 153

3.13 Class Imbalance Studied for SH3 and OB VAE models 154

3.14 Latent Space from UMAP . 155

3.15 Latent Space from T-SNE . 156

3.16 Latent Space from PCA . 157

3.17 SBM Communities Colored by Electrostatic Potential 159

3.18 SBM Communities Colored by Partial Charge 160

3.19 SBM Communities Colored by Secondary Structure 161

3.20 SBM Communities Colored by GO MF enrichment 162

3.21 SBM Communities Colored by GO BP enrichment 163

3.22 SBM Communities Colored by GO CC enrichment 164

3.23 Class Imbalance Studies during Stochastic Block Modelling 165

xvii

4.1 The Urfold Represents Architectural Similarity Despite Topological

Variability . 177

4.2 LRP Identifies Conserved and Structurally Important Regions in SH3

Domains . 180

4.3 Important atoms in the Phosphate Binding Loop Urfold Identified via

LRP . 182

4.4 DeepUrfold-Explain Identifies Important Atoms in Input Structures

via LRP of Superfamily-specific VAEs 183

5.1 Five Pillars of Data Science Mapped to Thesis Chapters 193

xviii

List of Tables

1.1 A historical perspective on short peptide fragments 19

2.1 Protein Feature Datasets for Machine Learning 69

2.2 Protein structure representation . 70

2.3 Sequence-based bioinformatics tools available in Prop3D 96

2.4 Structural bioinformatics software available in Prop3D 96

2.5 Other mentioned software . 97

2.6 All calculated and extracted features 99

2.7 Boolean Features converted from continuous values 99

3.1 CATH Superfamilies used in this study. 147

3.2 Clustering metrics of DeepUrfold SBM vs CATH 158

3.3 Comparison of Stochastic Block Modelling of a Bipartite graph of

CATH Domains and Superfamilies with scores based on similar al-

gorithms to DeepUrfold . 166

1

Chapter 1

Introduction

Proteins are key biological macromolecules that perform most of the physiological

functions of cellular life. Each protein has a specific 3D structure, which generally

defines the protein’s function. Such functions can include transcription of DNA,

breaking down chemicals, and passing signals throughout the cell by interacting with

other proteins. The diversity of these 3D shapes and functions make all life possible.

Protein function arises from sequence, structure, and evolution. Proteins with sim-

ilar amino acid sequences, 3D shapes, and evolutionary histories often share many

functional properties, such as protein-protein interactions and small-molecule (drug)

interactions; at that scale, the entire protein structure, or even just small segments,

can be similar even between proteins that are only distantly related. Understanding

protein function is important in all realms of biology. For example, in drug discov-

ery knowing a protein’s structure and function helps in identifying drug targets and

off-target drug interactions, and understanding how a drug will affect a metabolic

system by binding to its protein target, potentially disrupting important biological

pathways. If we know the structure and function of one protein, such as the binding

properties of a specific drug compound, we may be able to accurately ‘transfer’ the

annotation to a new protein of interest, given sufficient similarity.

Most biomedical questions concern present-day proteins, so-called ‘extant’ proteins

that are encoded in the genomes of modern living organisms (e.g. humans) with

2

specific functions occurring at this point in time. However, peering into the past

to understand how extant proteins have evolved gives clues as to both biochemical

functions and mechanistic properties. The ability to successfully transfer functional

annotations hinges on the fact that all proteins are related throughout evolution.

High-throughput methods to transfer function annotation across the set of all possible

proteins, called the “protein universe”, involves organizing proteins into groups of

related proteins.

The precise historical trajectory of the protein universe, in terms of primordial pep-

tides, protein domains, and multi-domain proteins remain unknown. We know very

little about what life was like before the Last Universal Common Ancestor (LUCA) [1].

This thesis considers patterns of similarity and interrelationships across the protein

universe with an emphasis on protein structure to give clues about times pre-LUCA.

Protein structure provides the natural bridge between sequence and function and will

be the primary source of data in this thesis. Overall, my thesis can be seen as an

attempt to further understand the origin of life.

Figure 1.1: Chapter Outline.

This chapter supplies background information on (1) protein structure and evolu-

tion, (2) different ways to view and organize the protein universe, and (3) several

3

approaches to sequence and structure comparison (Fig. 1). Finally, I will present a

new way to organize the protein universe, allowing for a different approach to think

about relationships amongst proteins. Ultimately, the general model and approach

described in this dissertation aims to develop a novel approach to find common frag-

ments between distantly related proteins; these structural units may correspond to

the precursors of modern proteins.

1.1 Background on proteins and evolution

Every protein, also known as a ‘polypeptide’, is chemically built from the same 20

peptide building blocks called amino acids. Each amino acid has different geometric

and biophysical properties such as hydrophobicity, steric volume, aromaticity, and

polarity, giving a seemingly infinite number of ways to create different proteins via

different combinations of strings of amino acids. For example, for a protein of 200

amino acids, the number of possible sequences would be 20200, which is larger than

the number of atoms in the universe [2]. A single protein polypeptide chain is created

by translating mRNA in the protein-synthesizing machinery (the ribosome) from

transcribed DNA.

1.1.1 Primary structure

The linear, one-dimensional sequence of amino acids that defines a unique protein;

generally written as a string of characters from the N’- to C’-terminus [3].

4

(a) α-helices in red formed by
H-bonds every fourth residue

(b) β-sheets in red formed by
H-bonds every second residue
in a single strand to adjacent
strand

Figure 1.2: Secondary Structure Elements from PDB 1kq2

1.1.2 Secondary structure

Local folding of the backbone to create α-helices and β-strands, the latter of which

can assemble laterally into β-sheets. Helices are formed by hydrogen bonds between

backbone atoms of every fourth residue in the sequence (i to i+4) to create the helical

shape. Sheets are formed via hydrogen bonds between backbone atoms, typically

alternating every other residue in a strand to a neighboring strand [3].

1.1.3 Tertiary Structure

Global folding of the protein by arranging the secondary structures in 3D space.

Residues that are far apart in sequence are brought into physical proximity via many

factors, most notably the role of hydrophobic packing, where hydrophobic residues

are packed in the center and hydrogen bonds are formed between them [3]. When

we mention protein ‘structures’, ‘folds’, and ‘domains,’ this is generally the level to

which we refer.

5

Figure 1.3: Tertiary Structure. Hydrophobic residues (red) are pushed inward,
while polar residues face outward to interact with solvent (PDB ID 1KQ2)

1.1.4 Quaternary Structure

Two or more tertiary structures interacting with each other on different protein chains.

Proteins of the same type can form homo-oligamers while proteins of different types

for hetero-oligermers. Such associations are also called protein-protein interactions

(PPIs). While this dissertation will not go into detail about PPIs, protein structure

and PPI are inherently linked, and many of the same principles governing PPI also

go into protein folding [4].

1.1.5 Protein Folding Problem

This is the problem of understanding the actual physicochemical process, in molecular

and mechanistic detail, by which a given protein forms its 3D structure. Given that

there are a colossal number of folds of a single protein could theoretically adopt, a

protein cannot sample every possible fold; one hypothesis is that there are multiple

routes to get to the 3D structure, often called the energy-landscape funnel [5]. Pro-

teins are generally thought to begin forming secondary structures inside the ribosomal

exit tunnel [6], but the detailed process remains unclear. There are several proposed

models for small proteins on how each secondary comes together and folds on itself

6

[3]. While some physics-based protein structure prediction algorithms try to learn

folding pathways, protein structure prediction is an inherently quite simpler problem,

as its central challenge is to accurately map sequence → structure, without concern

as to the mechanistic pathway leading to adoption of the predicted 3D structure

1.1.6 Protein Structure Prediction

This is the problem of predicting the 3D shape of a protein given only its sequence, and

sequences of related proteins from the same protein family. This goal is simpler than

the protein folding problem, as it neglects the biophysical mechanisms of folding. Until

2020, the most accurate structure predictors were in the form of homology modeling

(such as MODELLER [7]), using known related structures from a common ancestor as

a structural template, followed by threading, which uses proteins with a similar fold,

but not necessarily from a common ancestor (such as I-TASSER [8]). However, if no

known templates are available, these methods cannot be applied. Small proteins can

be predicted from physics-based approaches, such as molecular dynamics simulations

[9]. The next stage in the evolution of structure prediction approaches involved

finding correlated mutations in deep multiple sequence alignments, as exemplified

by the EVfold method [10]. If two residue positions mutate in similar, statistically

correlated ways, then that likely reflects a pressure to maintain homeostasis and keep

the hydrophobic core intact; this, in turn, implies that the positions are likely to be

close—or at least somehow physicochemically coupled—in 3D space. The most recent

and highly successful structure prediction approach is AlphaFold2, which predicts

structures using deep learning [11]. EVfold and AlphaFold2 are further discussed in

the protein comparison section.

7

1.1.7 Molecular Evolution at 1000 feet

All of the different shapes and functions proteins can perform are the result of over

3.8 billion years of evolution. While there are many open questions regarding molec-

ular evolution, some of which will be described in the subsequent chapters, a few

fundamental concepts will be explained here. Each protein is coded for by a gene in

the DNA sequence. Slight changes to the genomic DNA, due to insertions, deletions,

and mutations from an error in the translation machinery, radiation, or exposure to

chemicals (mutagens), can have a downstream impact on a protein’s 3D shape and

function. These mutations can be ‘silent’ (unchanged amino acid), ‘nonsense’ (ter-

minates the protein prematurely), or ‘missense’ (the amino acid is changed to a new

one from the original, ‘wild-type’ sequence) [12].

The changes in protein sequence may be neutral, thus propagate through a population

randomly via a stochastic process known as ‘neutral drift’, or can be actively selected

for or against. If the change increases the organism’s likelihood of reproducing, it

can be viewed as beneficial and likely will be maintained in the species (‘positive’ or

‘balancing’ selection) [13]. If the change is deleterious (‘negative selection’), it will

be removed from the species lineage. Different versions of a gene can occur when

the gene is duplicated in the genome (paralogs), which can change the 3D shape and

possibly confer new functionality to the protein (neofunctionalization). Indeed, gene

duplication followed by drift and diversification is hypothesized to be one of the most

important means of molecular evolution. The basic rationale is that it is simpler to

re-use existing parts in order to elaborate new functions rather than create new parts

and functions de novo [1].

8

1.2 Domains as the unit of evolution

Each protein can have, depending on its size, one or more independently folding units,

which we call a ‘domain’ [14, 15]. The protein domain is traditionally considered to be

the unit of function and evolution. Domains from different proteins that share similar

sequence and structure usually perform at least roughly similar functions: indeed, this

is molecular biology’s foundational sequence/structure/function paradigm. In terms

of evolution, new functions can emerge for a single domain (not the entire protein),

and various domains can be duplicated and mixed to form larger, multi-domains

proteins; entire domains can be copied into new hosts (and species) via horizontal

gene transfer. All of the evolutionary aspects described above could occur at the

domain level rather than the whole protein; in this way, domains can be viewed

as modular units of sequence/structure/function. For all these reasons, organizing,

clustering, classifying, and labeling at the domain level has been the primary approach

to understanding the protein universe.

Hierarchical classification schemes based on 3D structure have become the most pop-

ular approach to identify domains that share similar functions, shapes, and evolution-

ary histories. The most common resources for protein structure organization are three

independent databases: the Class, Architecture, Topology, Homologous Superfamily

database (CATH; [16]); the Structural Classification of Proteins (SCOP; [17, 18])

database; and the Evolutionary Classification of Domains (ECOD; [19]) database.

At the sequence level, there also exist resources of similar domains, such as Pfam

[20]; however, since they are purely sequenced-based, we will not cover them in this

section. Note that each of these domain-based resources have different definitions of

strict domain boundaries—i.e., where a domain starts and ends in the sequence (and

9

structure), due to varying thresholds of inter- and intra-domain contact densities. A

‘domain’ to an evolutionary biologist might differ significantly for a structural biolo-

gist or a systems biologist, where a domain could be a recurring unit in many proteins,

have a conserved core, or be functionally similar, respectively [21]. Understanding

differences between structural hierarchies such as CATH, SCOP, and ECOD will give

insights into multiple views of the protein universe.

The most widely used classification scheme is called CATH [22], which is based on

four main hierarchical levels:

1. Class: predominant type of secondary structural element (SSE) content (all-α,

all-β, mixed α/β, and small proteins);

2. Architecture: global arrangement (relative positions and orientations) of the

main SSEs in 3D space;

3. Topology: the pattern of connectivities (one-dimensional orderings) of the

SSEs; and

4. Homologous Superfamily: a collection of domains that share at least 20%

sequence identity and are thought to have a common ancestor [22].

The CATH database has seen massive growth going from 53 million protein domains

classified into 2737 homologous superfamilies in 2016 to a current 95 million protein

domains classified into 6,119 superfamilies.

SCOP [17] organizes domains across the following four hierarchical levels:

1. Structural Class: types of secondary structure elements (all-α, all-β, α/β,

α+β, and small proteins); SCOP further separates ‘α/β’ into ‘α/β,’ and ‘α+β’

10

Mostly β

Rolls SandwichBarrels

2.40.50.702.30.30.100 2.60.40.10

OB

α/βMostly α

... Ig-like...SH3
SM

...

Few SS

...

C

A

T

H

Figure 4. CATH Hierachy.

Figure 1.4: CATH Hierarchy highlighting the OB and SH3 relationships.

to represent the difference between proteins alternating α helices and β strands

and those with all α helices separated from all-β strands.

2. Fold: Groups of 3D structures that have similar global layout (architecture)

and topology of SSEs; note that this level corresponds most closely to the ‘T’

level in CATH.

3. Superfamily: Groups of distantly related domains with conserved 3D struc-

tures. These domains may have a common ancestor, but it’s not required.

4. Family: Groups of domains with a clear evolutionary origin.

There are currently 5,860 Families, 2,785 Superfamilies, 1,550 Folds, and 5 classes in

SCOP.

ECOD [19] is the most recent of the three protein classification databases, and it

organizes each domain using five hierarchical levels:

1. Architecture: Groups of domains with shared SSEs in specific 3D shapes and

locations.

11

SCOP

all-α all-β

OB-fold

Nucleic acid- binding proteins

RecO N-terminal domain-like

SH3-like barrel

SH3-domain

SH3-domain

α/β α + β Structural Class

Fold

Superfamily

Family

Figure 1.5: SCOP Hierarchy highlighting the OB and SH3 relationships.
Superfamily and Family levels (red) are based on evolutionary relationships, while
Structural Class and Fold are not.

2. X-group: Groups of domains that share structural similarity and may be ho-

mologous albeit without strong evidence.

3. H-group: Groups of domains that are homologous based on sequence- and

structure-alignment, functions, and literature searches.

4. T-group: Groups of homologous domains with similar connection between

their secondary structure, e.g. topology.

5. F-group: Groups of homologous domains with the same topology with signif-

icant sequence similarity.

ECOD has 16,176 F-groups, 3,715 H-Groups, and 2,460 X-Groups [19]. Each of these

hierarchies differ from one another in systematic ways. Not only do the predicted

domain boundaries differ between the different methods, the underlying algorithms

of each method are quite different as well, each with their own strengths. ECOD and

12

Figure 1.6: ECOD Hierarchy highlighting the OB and SH3 relationships.
Copied from [19] figure 2, which is under the CC-by 4.0 license.

SCOP have the most similar domain boundaries, which are different from CATH.

In a recent comparison of the three hierarchical classification schemes, it was found

that CATH tends to favor more compact domains, while ECOD enriches for distant

evolutionary relationships and SCOP performs well at identifying non-redundant rep-

resentatives [23].

1.3 Nature of the protein universe and issues with

hierarchical classification: discrete vs continu-

ous

Despite being perhaps the most comprehensive resources available, CATH, SCOP,

and ECOD have intrinsic limitations in their design and structuring–reflecting as-

13

sumptions and constraints that are inherent to any hierarchical classification system.

Their specific hierarchical schemes implicitly (and strongly) influence how we per-

ceive the protein universe, or protein fold space. The protein structure universe is

the collection of all possible structures that proteins can adopt. This includes all

possible mutations and fold variants that have not been thought of yet, or sampled

during evolution. The organization of this fold space could give clues about protein

interrelationships and protein evolution. Understanding which regions in fold space

are populated and how densely those regions are packed, is likely to implicitly harbor

deep information about protein interrelationships over a vast multitude of protein

evolutionary timescales, ranging from ancient, primordial motifs that have persisted

in modern proteins, to more recently-arisen folds and structures.

When dealing only with protein sequences, we call it. ‘protein sequence space,’ which

is a somewhat more intuitive concept than fold space. Protein sequence space is the

collection of all possible protein sequences, that is to say every possible ordering of n

amino acids for a protein of length n residues. Assuming all proteins are 200 amino

acids long, protein sequence space would have 20200 possible sequences – a seemingly

infinite amount. One way to comprehend these seemingly infinite possibilities has

been explored by Jorge Luis Borges, an Argentinian author, in his short story ‘The

Library of Babel’ [24]. Borges describes a library containing every possible book that

has or ever will be written, each 410 pages long with a standard alphabet in the same

format. As you can imagine, most of the books are filled with nonsense, but others

may have intelligible stories. For example, this completely written thesis is already

in the library even if it is not finished yet. Travelers spend their entire lives exploring

the library in the hopes of finding meaningful phrases.

The Library of Babel is a sphere and ‘organized’ into hexagonal rooms with 4 walls of

14

(a) Entire Library (b) Single Room (c) Single Bookshelf

Figure 1.7: Hierarchical Organization of The Library of Babel. A) The
entire library of every possible book ever written is a representation of a perhaps
infinite ‘space’ or ‘universe.’ This would be equivalent to all of fold space. If viewing
the fold space from the CATH lens, each hexagon could a different class. B) Each
hexagonal room represents an entity in the first level of the hierarchy, in this case a
single class such as ‘all β.’ C) One wall of the hexagon is the next level of the hierarchy,
which would represent ‘architecture.’ The third level of the hierarchy is shelf, which
could be ‘topology,’ each book could represent ‘superfamily,’ and each page could
represent a single domain in the superfamily. Bookshelf image from (C) are copied
with permission, courtesy of Jonathan Basile via his site https://libraryofbabel.
info/, which is under a Creative Commons license.

books, 5 shelves per wall and 32 books per shelf. The two remaining walls are doors

to other rooms. The hexagonal organization is similar to the hierarchical nature of

fold space, yet is still meaningless. Imagining a different organizational scheme would

allow library goers—travelers—to find their books more easily.

Most of the library is filled with nonsensical books, which can be seen as protein

sequence space containing nonsensical proteins that will not fold. As a protein’s se-

quence and its structure are inherently linked—Anfinsen first showed that a protein’s

1D sequence encodes its ability to spontaneous fold to a native 3D structure [25]—

there exists a relationship or ‘mapping’ between protein sequence space and protein

fold space; that complicated relationship has not been fully explored and is beyond

the scope of this dissertation.

https://libraryofbabel.info/
https://libraryofbabel.info/

15

Before proceeding, we must define what a mathematical ‘space’ or ‘universe’ means.

This is important conceptually (for logical clarity and consistency), as well as prag-

matically (for precisely defining what we mean by computed properties, statistics,

etc.). There are many types of mathematical spaces, and the ones that are most

relevant here are ‘Euclidean space’, ‘metric space’ and ‘vector space’. In Euclidean

space, there exists a single origin and the positions of each object (in this case, a single

protein) can be described by a vector; in 3D, this could be the (x, y, z) coordinates

of each entity comprising the object (e.g., atoms in a protein, or entire proteins in a

‘protein structure space’). In a metric space, all objects in the set have a ‘distance’

or ‘similarity’ function that can be computed to give a distance between them; how-

ever, that function does not necessarily have to be the straight line (Euclidean), and

the metric space does not necessarily have a zero (the origin). In a vector space,

there is a clear origin, all objects are defined by a vector from the origin, and linear

combinations of vectors allow converting objects into other objects.

Do individual proteins populate a generalized protein structure space in a discrete

or (essentially) continuous manner? At this time, we see protein domain structures

from different non-extinct organisms with the same fold all with different functions

per fold, that seem to cluster in their own independent ‘islands’—i.e., a discrete or-

ganization, which might be amenable to hierarchical classification. When we think of

these different islands, it implies that protein fold space is discrete, wherein we cannot

traverse space island to island, or cluster to cluster, because the folds are so different

and there are no well-defined or discernable relationships between them. Because

there exist quantities that can be readily computed (e.g., the RMSD, see section on

protein structure comparison) in order to ‘measure’ the distance or similarity between

protein domains, people usually think of fold space as a metric space; however, the

16

similarity metric becomes ambiguous for distantly related proteins having random

similarity. By binning proteins into discrete, mutually exclusive, categories, CATH,

SCOP, and ECOD all assume a discrete underlying representation of protein fold

space. However, viewing fold space as purely discrete may lead us to miss remote

connections and disregard the role of evolution. An open question in biology concerns

the mechanisms by which domain structures arose—it is unlikely that folds arose/e-

volved independently, suggesting a more continuous nature of fold space, wherein

evolutionary transitions can occur between folds A → C via some intermediate, say

B. In this sense, the discrete versus continuous duality of protein fold space can be

viewed largely as semantics–i.e., a matter of thresholding [26].

An alternate view of protein fold space regards transitions within it as a continuous

process. All protein structures are related through evolution, so it should be possible

to traverse fold space by combining short secondary structure segments, or mutat-

ing a structure to get to different possible folds, akin to a ‘vector space.’ Network

representations have been a powerful way to describe a continuous fold space. Each

node in the network is a domain and edges are drawn between them if they have

a similarity score larger than a given threshold, usually determined via all vs. all

domain structure alignment. These networks are nearly connected and each domain

can be traversed to and from different domains in around 4-8 steps [27]. It has been

noted that many of the folds that are connected share similar small peptide frag-

ments, which will be discussed in the next section [28, 29, 30]. Another method to

visualize a continuous fold space is to convert the similarity scores from all vs. all

domain structure alignments into pairwise similarity matrices where each domain has

attributes of scores to every other domain. The matrix can be reduced to two or three

dimensions using Principal Components Analysis (PCA) or Multidimensional Scaling

17

(MDS) in order to visualize the most significant degrees of freedom. The resulting

graphs, shown in Figure 8, display protein domains in the ‘all-α’ and ‘all-β’ classes

as being furthest apart, separated by protein domains in the ‘α/β’ class. Protein

domains in the ‘α/β’ class form a diverse core, and the further away from the core,

structures become less diverse [31, 32].

Figure 1.8: Different Views of Continuous Fold Space showing protein do-
mains from ‘All α’ and ‘All β’ classes flanked by protein domains from the
‘α/β’ classes from different comparison metrics six years apart. A) Each
distribution consists of points that represent one protein and a point’s feature vector
contains the distance to every other protein in the dataset (a distance matrix), clus-
tered with Multi Dimensional Scaling (Recreated from a similar image from [31]). B)
Each distribution consists of points that represent one protein and a point’s feature
vector is the presence of specific fragments from FragBag (a bag of words represen-
tation), clustered using PCA (Recreated from a similar image from [32]).

The discrete vs continuous duality of fold space has been an unresolved question in

molecular evolution and structural bioinformatics. It has also been observed that

protein space is more discrete at high similarity thresholds and continuous at lower

similarity thresholds, which does not answer the question and leaves many questions

about how proteins evolve [26, 27].

18

1.4 Short peptide fragments as unit of evolution

In light of these issues described above, an alternate way to describe proteins is

through short contiguous peptide fragments that make up each domain, rather than

viewing the full domain itself as the elementary/modular unit of evolution. Presum-

ably, the protein universe did not spontaneously arise with intact, full-sized domains

from the start, so there must have been a precursor to a complete protein domain

[1, 33, 34]. From the earliest days of protein structure determination and analysis,

common structural motifs have been noted and investigated [35, 36]. Small fragments

were first used to understand the protein folding problem – not for general evolution-

ary analysis. While there have been many approaches to investigate the use of short

peptide fragments, I will focus on a few that I think are most relevant.

The first wave of automated fragment identification methods involved splitting pro-

teins into short segments of 4-10 amino acids and clustering the fragments into smaller

sets using unsupervised machine learning methods [39, 45, 37]. The next wave of small

fragments came about while studying all vs all relationships of the available protein

structures at the full domain level. In a landmark study, Holm & Sander [28] created

an all-by-all similarity matrix from structural alignments, reducing its dimensional-

ity with multi dimensional scaling. In this new 2D similarity space, they found 5

‘attractors’ or short peptide fragments common to all of the structures [28]. In an-

other study [55], Harrison et al. developed a new similarity metric through a fully

connected graph representation of secondary structures. Each node was a single SSE

that was connected by an edge to every other SSE. Edges were weighted by distance,

angle, dihedral angle, and chirality. To compare two proteins, they created a product

graph of both protein’s graphs and found maximal common cliques taking into ac-

19

Name Data
source

Contiguous Fragment
length

Parser Library Search Evolution

Building Blocks
(1989) [37]

Struc x 6 x 60

Motifs (1995) [38] Seq x - x 3400 x

Patterns (1996) [39] Seq x 3-15 x 13,151 x

Attractors (1996)
[28]

Struct x 16 / 5 x

Spacial Motifs
(1999) [40]

Struct x x x x

Common Substruc-
tures (2000) [41]

Struct 75-281 x >75

Protein Blocks
(2001) [42, 43]

Struct x 5 x 12 x

FragBag (2002) [44,
45, 32]

Struct x 5-12 x x x x

Fragnostic (2005)
[46]

Seq x 5-20 x x x

Structural foot-
prints (2007) [47]

Struct x 32 x x x -

SISYPHUS (2007)
[48]

Struct x 20–50 x x

Smotifs (2010) [49] Struct x 2 SSE x 324

Elementary Func-
tional Loops (2010)
[50]

Seq x 6-41 x 37 x

Primordial Pep-
tides (2015) [1]

Seq x 9-38 x 20 x

Themes (2017) [29,
34]

Seq x 35-65 x 2195 x x

DeepFold (2018)
[51]

Struct x - x 400 x

Protodomains
(2019) [52]

Struct x manual manual -

Structural Motifs
(2020) [53]

Struct - x x

Shapemers (Ge-
omtricus; 2020)
[54]

Struct 10-15 x x x

Structural Motifs
(Sahle; 2022) [33]

Struct x 7-68 x 6 x x

Table 1.1: A historical perspective on short peptide fragments. Con-
tiguous=The algorithm requires fragments to be adjacent in the sequence.
Parser=Describes how fragments were identified. Library=If the method produces
a library of fragments (clustered and/or unclustered), the number of fragments in the
library is shown. Search=the paper used those fragments to identify other proteins in
the PDB. Evolution=The paper took an evolutionary perspective, rather than being
limited to just structure analysis,prediction or engineering/design.

20

count the edge weights. They found that 80% of folds shared common cliques, which

represent short structural fragments, with other folds, which they call ‘gregarious’

[55]. These two approaches pushed the thinking that short fragments are possible

units of evolution as well as general building blocks for full protein domains.

An algorithm known as ‘Fragnostic’ was one of the first to treat structure space as a

graph of domains connected by an edge if they shared any fragment, rather than if

above a certain threshold of a similarity score derived from a full structure alignment

[46]. They found a few folds with many connections and lots of folds without many

connections, consistent with a power law distribution [46].

The next generation of approaches were to describe a single protein by a vector of

fragments. In [47], Structural footprints identified short fragments using 14 shape

descriptors based on a writhing number––i.e., how often two SSEs cross each other’s

path in 3D–which are then clustered using k-means. Structural similarity is calculated

by taking the Pearson correlation of the fragments. Next came FragBag [44], where

fragments from [45] were clustered to form a new smaller library. A protein could

then be described as a feature vector that is the length of the new smaller library,

with vector elements being the number of occurrences of each fragment. FragBag is

able to identify structural neighbors faster than doing all vs all structural comparisons

[44].

Many databases of short peptide fragments followed. SISYPHUS was developed using

methods described above [48]. Another database called Smotif [49] was developed us-

ing two consecutive SSE to find fragments, which were then used to search the PDB

to find novel folds. While all of the methods described above were developed for

proteins in general, the next wave of fragment identification approaches came about

while studying specific classes of proteins, such as enzymes and metal-binding pro-

21

teins. Evolutionary implications of short peptide fragments became more apparent

after combining the short fragments with sequence comparison tools that use statis-

tical frameworks for protein evolution. In [50], Goncearenco & Berezovsky identified

common loop fragments flanked by SSEs, or Elementary Functional Loops (EFL),

that join together in 3D space to become specialized to perform enzymatic activity.

EFLs are found by tiling a set of non-redundant sequences into overlapping fragments

and searching a library of proteins for each fragment iteratively using position-specific

scoring matrices (PSSM) to create profiles for each fragment, similar to PSI-BLAST

[56] (see protein comparison section). Profiles below an E-value of 1 were kept as

potential EFLs.

Some methods use an altogether different way to identify common fragments across

different proteins. Instead of using pre-cut fragments, [1] and [34] start with a set

of non-redundant complete protein domains, from SCOP and ECOD respectively. A

profile is created for each protein using HHsearch. In [1], Alva et al. saved matches

from HHSearch if the match had a probability ≥ 70%, a structural alignment score

(TM-score) of ≥ 0.5 (see protein structure comparison section), and were assigned

to a different SCOP fold. A set of 40 fragments were kept by finding matches that

have ≥ 80% overlapping regions of number residues, clustering, and were present in

the Smotif dataset. Through duplication, recombination, and drift, they hypothesize

that these short peptide fragments, called ‘primordial peptides,’ combined to create

all known protein structures. These fragments have all been found bound to RNA,

suggesting they could have arisen during the RNA world. However, they found no

domains that had two different primordial peptides [1].

In [34], Nepomnyachiy et al. defined a new scoring function to save a match from

HHsearch based on BLOSUM62 scores of the alignment. A dynamic programming al-

22

(a) β-Hammerhead. Primor-
dial Peptide 12 (d2je6i2).

(b) Helix-Hairpin-Helix.
Primordial Peptide 2 (d1ixra1).

(c) β-α-β. Theme 2939
(e4e4tB7). (d) β-β-β. Theme 16416

(e2v5A1).

Figure 1.9: Example short peptide fragments. From ‘themes’ [34] and ‘ances-
tral peptides’ [1].

gorithm was used to find an optimal set of non-overlapping fragments, called ‘themes’,

with a maximal score using different fragment lengths. Two themes from different

folds are considered the same if they have ≥ 85% sequence similarity, and similar

themes are clustered based on a structural alignment distance (RMSD, explained be-

low in the structure comparison section) to obtain 2195 total themes [34]. The sizes

of libraries created by these approaches [1, 34] vary greatly, reflecting different strin-

gencies of thresholds and ultimately different goals. However, both the ‘primordial

peptides’ in [1] and the ‘themes’ in [34] are currently the state-of-the-art fragment

libraries with examples shown in Fig 1.9.

Another recent approach of finding short peptide fragments has been through visual

inspection of symmetry in protein domains. According to [52], ‘proto-domains’ often

23

assemble with the same proto-domain in C2 symmetry. Youkharibache’s method is

completely manual, but offers important insights on why these peptide fragments

might associate to form complete domains. Self-assembly, often via a symmetric

organization, is a key physical driving force in evolving and maintaining domains,

and is especially notable at the quaternary structural level. However, just as with

Alva et al [1], no domain was found to have two or more different proto-domains

[52]. Youkharibache’s hypothesis is compelling, particularly at explaining why cer-

tain fragments are retained throughout evolution (versus the evolutionary mechanism

itself).

All of the previously described methods make the assumption that these short peptide

fragments are contiguous in sequence. One of the more recent approaches, Geometri-

cus [54], can find peptide fragments that are not contiguous using moment invariants

on residues that are within a given radius in 3D space. Contiguous fragments are also

obtained and combined with the radius approach to create fragment embeddings for

each protein of interest. Discontiguous protein fragments that are shared between

proteins may be the next piece to create connected linkages through more of fold

space.

1.5 Protein Comparison

In all of the methods described above to understand fold space, similarity measure-

ments had to be defined between proteins. Ideally, this metric would identify a com-

mon ancestry and accurately quantify how much two proteins diverged if they are

homologous. A natural approach would be to compare sequences, typically through

an alignment. Sequence alignments work well especially due to a strong statistical

24

framework. If a sequence has significant non-random similarity, it is likely that the

two proteins are homologous. However, these approaches cannot detect distantly

related proteins, below a so-called ‘twilight zone’ of similarity (20-30% pairwise se-

quence similarity) [57, 58].

Structure similarity through a structural alignment can be used to find relationships

in the twilight zone of sequence similarity because 3D structure is typically more

deeply conserved than is sequence. Determining homology via structure, however, is

much more difficult because there is not a strong statistical theory—two structures

could randomly be similar or the similarity may have been the result of convergent

evolution; there is no probabilistic model to supply a ‘null hypothesis’ for structure

comparison, unlike, for instance, a well-defined random sequence model (which is

readily constructed and compared against). In this section, I will give a brief historical

note about sequence and structure comparison ending with current best practices in

the field.

1.5.1 Sequence Comparison

One of the first methods to compare protein sequences did so via ‘global alignment.’

Two protein sequences were aligned from N’ to C’-termini, finding the optimal match

between each residue allowing for matches and insertions/deletions (i.e. ‘indels’, ac-

counted for via ‘gaps’ in the alignment). The Needleman-Wunsch (N-W) algorithm

[59] was developed to find the optimal alignment through dynamic programming

by scoring every possible alignment as a matrix of the two sequences being com-

pared. Each cell in the matrix contains the score for a match, insertion, or dele-

tion in relation to the previous cells, starting with simple scores such as match=1,

25

insertion=deletion=-1. Once the scores have been calculated for each cell, an optimal

path backwards can be obtained by finding the max scores from the lower-right to

upper-left via a traceback procedure [59].

However, global alignment does not always produce adequate alignments for distantly

related proteins, and local segments that were more similar (than their flanking re-

gions) were often missed by the algorithm. The Smith-Waterman (S-W) algorithm

[60] was developed to find similar local regions of sequence via a ‘local alignment.’

Using a similar dynamic programming algorithm to N-W, they set negative scores to

zero, start their traceback procedure at the highest score, and add score penalties for

expanding gaps [60].

Both the N-W and S-W algorithms were further improved by the addition of substi-

tution matrices accounting for the probabilities of changing from one amino acid to

another based on alignments for conserved protein families. The most notable similar-

ity matrices (often called ‘scoring matrices’) were the Dahoff frequency tables (Percent

Accepted Mutations; PAM) or BLOSUM. Dayhoff matrices were constructed using

the observed frequencies of each substitution where each substitution is independent

in sequences with greater or equal to 85% sequence identity. BLOSUM matrices clus-

tered proteins at different similarity thresholds (most common being BLOSUM62 for

62% sequence identity) using a log-odds probability for observed mutations [61].

The methods described above were still too slow to search large databases, so the

next improvements to sequence alignments were the use of k-mers, short stretches

of k amino acids. The FASTA algorithm was one of the first methods to k-merize

the sequence [62]. The next improvements came by removing low-complexity regions

to increase speed and applying a solid statistical theory to predict the probability

of seeing a sequence by chance in a database of a certain size, implemented as the

26

well-known Basic Local Alignment Search Tool or BLAST [63, 56]. BLAST was

further improved by adding multiple iterations, while updating a PSSM [56]. Further

speedups can be attained, for example, by pre-filtering large databases using a reverse

k-mer index (MMSeqs2 [64]).

Hidden Markov models (HMMs) were the next major breakthrough in the field of

sequence alignment and comparison. HMMs are probabilistic graphical models with

transition probabilities from one state to another: various amino acids can be viewed

as being ‘emitted’ (probabilistically) from the discrete ‘states’ of the HMM, and tran-

sitions from state i → i+1 thus build-up a one-dimensional string of characters (i.e.,

the protein sequence). The first HMMs in biology modeled sequences as transmis-

sions between states corresponding to matches, insertions, and deletions. An HMM

can then generate new sequences by ‘walking’ through the model by following the

trajectory of probabilistically-determined state transitions. The first approach was to

use known alignments to train each model and learn the transition probabilities. An

alternate approach is to learn the transition probabilities from unaligned sequences

using the maximum expectation algorithm to maximize the log likelihood each se-

quence came from the model [65, 66]. Once you have a trained model, you can obtain

the probability any sequence arose from the model, resulting in fast database searches.

Common HMM implementations in biology are Sequence Alignment and Modelling

(SAM [67]) and HMMER [68] to create a ‘profile’ of a given multiple sequence align-

ment. Improvements include HMM to HMM comparisons (e.g. in HH-suite [69]) and

iterative approaches of creating a model (profile) for a single sequence, searching for

other sequences in a database that fit the model, adjusting the transition probabilities

in the position-specific profile, and searching the database again with the updated

model (e.g. jackhmmer [70]). Iterative approaches are now the de facto method to

27

build large, diverse, deep multiple sequence alignments (MSA) used to train newer

machine learning models. Most HMMs are built for single sequence families, from

prebuilt multiple sequence alignments, often structure-based alignments.

The next wave of sequence comparison methods came in the form of Potts models.

Having originated as generalized Ising (lattice) models in statistical mechanics, Potts

models can also be derived from the maximum-entropy principle and are used to find

global correlations (hence their utility in protein sequence comparison). Potts models

are used to find correlated mutations in the columns of a deep MSA of a protein

family, often used to predict the structure of a single protein from the same protein

family [10, 71]. These models were then used to compare a sequence from the same

family (in the same MSA) to understand how well they tolerate mutations [72].

Finally, Deep Learning (DL) and Natural Language Processing (NLP) have been the

latest machine learning approaches to be used for sequence comparison and analysis

[73]. With extremely large databases of protein sequences (e.g. Uniprot [74] and BDF

[75, 76]) and hardware advancements (GPU computing), deep learning on proteins

has now become extremely popular. The first approaches of DL and biology were

for function prediction using supervised learning on known positive examples, where

comparisons were used to identify similar functions [73]. One important aspect of

the new DL methods is that comparisons do not require alignments, also known as

‘alignment-free.’

DL architectures for protein sequence began by chunking the sequence into many

fragments; in Deep Learning, this approach is considered a Convolutional Neural

Networks (CNN) in one dimension. However, CNNs were not as good at capturing

long range dependencies. More advanced models now take into account the previous

position in sequence, rather than tiling into fragments, e.g. in Recurrent Neural

28

Networks (RNN). An example of an RNN is the Long Short-Term Memory (LSTM).

Bi-directional LSTMs were invented to account for next and previous positions in a

sequence [77]. Another approach has been using autoregressive models [78], where

each position takes in all of the preceding positions as opposed to Potts-based model,

EVcouplings and DCA, which only compare pairwise columns of a multiple sequence

alignment [79, 80]. Masked language models have also been used to delete amino

acids at certain positions and have the model correct the missing residues. The most

recent wave of DL approaches has involved “attention,” where all positions in a given

sequence can ‘attend to’ every other position in the sequence, allowing the model to

learn which residues are most important/informative [77].

One of the most important deep learning methods has been the Autoencoder, which

compresses an input, such as a protein sequence, into new, lower-dimensional rep-

resentation, also called an embedding, vector known, or latent space, which is then

used to reconstruct the original input. Later, autoencoders were used for variational

inference, in a model called the Variational Autoencoder (VAE), that learns the dis-

tribution of the input, eg. the mean and variance of a normal distribution as its

embeddings. VAEs then sample from that distribution to create a similar, yet differ-

ent, embedding, which is then reconstructed to resemble the original input. The mean

square error of the actual input versus the reconstructed version, with the entropy

between learned and true distributions, called Evidence-lower Bound (ELBO), are

used as the VAE loss function to improve the learned distribution [79]; this topic will

be discussed more thoroughly in Chapter 3. VAEs are considered a ‘deep generative

model’ because they are able to generate ‘new’ or unseen examples that are similar

to the input.

The first studies for DL methods were superfamily specific and compared differences

29

between sequences in the same superfamily. DeepSequence used VAEs and compared

ELBO scores to see how well aligned sequences in the same superfamily tolerated

mutations [79]. SeqDesign uses cross entropy loss to compare (unaligned) sequences

in the same superfamily using autoregressive models [78].

Next, larger language models were built using larger sequence databases such as

Uniprot [74] and BFD [75, 76], allowing for the comparison across the entire sequence

space, removing the need to only compare proteins in the same family. The output of

these language models, called an embedding or latent space, is what is used to com-

pare to proteins. The Manhattan distance or Euclidean distance between the embed-

dings measures semantic similarity. The language models have been used for contact

prediction, sequence alignment, variant prediction, and general function prediction.

Examples of current language language models include UniRep [81], TAPE [82], Prot-

Trans [83], ProGen [84], ESM [85], and MT-LSTM [77]. Language models have also

been used for sequence alignment and deep homology searching [86, 87, 88, 89]

1.5.2 Structure Comparison

Structure comparison approaches have lagged behind sequence comparison methods.

This is partly because it is much more difficult to make claims of homology using

structure–at least with well-principled statistical confidence bounds–as there is no

statistical theory that is as well-grounded as for sequence comparison. The first

approach to compare structures (dating to the 1970-80s) was via structural alignment,

or ‘superimposition,’ using rigid-body least-squares fitting, e.g. via the classic Kabsch

algorithm to compute the rotation matrix that minimizes the RMSD between the 3D

coordinate sets of two proteins [90]; an equivalent (yet more general) way of viewing

30

the problem is as a singular value decomposition on a cross-covariance matrix of both

sets of atomic coordinates [91]. However, while this produces meaningful results for

nearly identical proteins; proteins with many insertions and deletions caused many

problems, motivating the next generation of structure alignment algorithms.

The next generation of structure aligners, pioneered largely in the 1990s, focused on

aligning smaller fragments, usually single secondary structures or super secondary

structure elements, and optimizing the alignments based on different distant mea-

surements, often using dynamic programming or Monte Carlo-based approaches. Ex-

amples of this family of methods include Sequential Structure Alignment Program

(SSAP [92]), Distance-matrix Alignment method (DALI [93]), Combinatorial Exten-

sion (CE [94]), and Vector Alignment Search Tool (VAST [95]).

All of these methods rely on relatively crude definitions or measurements of pairwise

3-D ‘similarity’. The most common distant measurement is the Root Mean Square

Deviation (RMSD) of the aligned Cα atoms, where two identical point-sets give a

value of 0 and anything larger than that means greater dissimilarity. Dissimilar

proteins without many aligned residues are usually assigned an RMSD of 1000 and

outliers highly influence the score. Another similarity gauge is the Global Distance

Test (GD-TS) [96], which compares the number of Cα atoms aligned at different

thresholds (0.5-10 , with 20 steps, and the GD score is averaged for each step). The

best possible GDT_TS is 100 and the worst is 0. A GDT_TS score ≥ 50 represents a

similar architecture, a GDT_TS ≥ 70 represents a similar topology (roughly, ‘fold’),

and two proteins with a GDT_TS score ≥ 80 likely belong in the same family.

Improving distance scoring functions to create a more robust statistical theory was the

next step in improving structure alignment. One of the most common aligners, TM-

Align [97], uses the Template Modeling score (TM-score [98]); this method produces

31

alignments of higher quality because it normalizes alignment errors using a length-

dependent scale, ignoring bias of random similarity [98].

Most of the recent developments in protein structure alignment have focused on creat-

ing all-vs-all pairwise structural alignments and multiple protein structure alignments,

exemplified by programs such as mTM-align, MATT, and foldseek [99, 100, 101, 102,

103]. A recent algorithm, Caretta [104], takes a different approach to alignment.

Caretta uses the Geometricus [54] algorithm to fragment the structure using different

moment invariants, similar to the FragBag [44] approach. Aligning similar fragments

computed across different proteins results in a multiple structure alignment.

Deep learning approaches have also transformed 3D structure comparison [105, 106].

3D Convolutional Neural Networks (3DCNNs) were first applied to 3D structure

for enzyme prediction [107], ligand binding [108, 109], and interaction prediction

[110, 111, 112]. Protein structures are converted to a 3D volume by discretizing the

Cartesian coordinates into 3D volume elements (voxels). Graph-based approaches

have also been widely used, where atoms or residues are nodes that are joined by an

edge if they are nearby (≤ 5) in 3D space [113, 114, 115]. These methods employ

fundamentally different types of representations, or encodings, of a 3D structure.

Equivariant graph neural networks [116, 117] have been addressed to fill the gaps

between 3D CNNs and graph based approaches. However, most of these methods are

for function prediction/annotation or discrete structural class prediction in general,

and not necessarily about directly comparing two proteins.

AlphaFold2 [11] was the first structure prediction method to achieve a GDT_TS

score > 80, indicating it can map protein sequences → structures with family-level

accuracy. The approach they used combined sequence-based approaches (such as

described above) to create deep MSAs for the family that structure of interest is

32

from, and then used 3D Equivariant Neural Networks to predict the final structure

[11]. While AlphaFold2 has been used thus far only for structure prediction, new

studies of the latent space it produces should give clues to protein structure evolution

and comparison methods to understand how two proteins are related.

Structure comparison and alignment remain difficult. There is still room for improve-

ment. For example, most comparison tools still require alignments and still operate in

3D (‘real’) space. Also, most existing methods are topology-dependent, by which we

mean that architecturally similar proteins—even at the level of identical folds (were

we to neglect the pattern of links between SSEs)—would not be detected as such.

ML-based methods are amenable to being naturally topology-independent because

they use different representations of 3D structure, free of the constraints of identi-

cal connection patterns between SSEs. It makes more sense now to use compressed

structure representations from an embedding or latent space. Current aligners also

usually only take into account raw Cartesian coordinates. Because protein function-

ality evolves not solely dependent on atomic coordinates/geometry alone, we believe

it more optimal to include biophysical and evolutionary information directly into the

model.

1.6 Overall Problem

If fold space is indeed a continuous vector space, there are likely to be many remote

connections between different superfamilies that are currently missed in current hier-

archical representations of fold space. Importantly, we emphasize that this limitation

is intrinsic to the hierarchical nature of modern classification schemes: a specific

protein is discretely binned into one of several mutually exclusive categories (at all

33

granularities of representation levels, from class to architecture on down), and doing

so then precludes possible (remote) connections from being captured and represented.

In addition to small peptide fragments bridging fold space, the Bourne lab recently

proposed an ‘Urfold’ model to bridge the gaps in our view/understanding of fold

space, by allowing for the recognition of connections between superfamilies that have

the same 3D architecture but with permuted SSEs [118, 119]. If viewing fold space

through the CATH lens, it might represent an intermediate level of structural gran-

ularity that lies between the CATH hierarchy’s architecture (A) and topology (T)

strata. The Urfold representational level is thought to capture the phenomenon of

‘architectural similarity despite topological variability,’ depicted in Fig. 1.10 [118].

Figure 1.10: Hierarchical clustering of fold space example with CATH cut
levels. Each point in fold space is a protein and all proteins in the same homologous
superfamily (H; yellow) are ‘nearby.’ If the fold space is compressed to 1 dimension,
densities could be seen as similar to this depiction. Finding the correct cut levels is
a major challenge of hierarchical clustering. Normal CATH clustering can be seen
with cut levels for Topology (blue), Architecture (green), and Class (red). However,
if superfamilies 1 and 2 have similar architectures, but different topologies, they
could be clustered together, in a new Urfold level, represented by a cut in between
Architecture and Topology.

An example of the Urfold phenomenon can be seen in the small beta barrels: Src ho-

34

mology 3 (SH3) and Oligonucleotide Binding (OB) Homologous Superfamilies. Both

SH3 and OB superfamilies have a similar fold and share many of the same func-

tions, yet these similarities are obscured (or at least unacknowledged) by their being

classified differently in the CATH, SCOP, and ECOD hierarchies. They both act

as scaffolds in large complexes and bind other proteins on the same regions of their

respective 3D structures (edge strands). While they have the same architecture, the

loops between the beta strands have been permuted, resulting in different topologies.

The only difference between the superfamilies at the sequence level is a shifted α helix

from the N-termini to before the 4th beta strand. Because this fold can tolerate large

scale mutations, such as the α helix shifting, it is extremely robust because it can fold

back into the same shape [119]. The architecture has been found to be held together

by a conserved hydrophobic core, which is present in both the SH3 and OB folds (see

Fig. 1.11).

N’

N’ C’

C’

β1 β2 β3 β4 β5

β4 β1 β2 β3 β5

β1 β2 β3 β4 β5

β5β1 β2 β3 β4

SH3
(1KQ2)

OB
(1C4Q)

SH3 ↔ OB
Superposition

RMSD: 3.7 Å

A. B. C.

D.

SH3

OB

E.

SH3

OB
Figure 11: SH3 and OB Comparison in 2° and 3° structure. SH3 (A) and OB (B) structures
colored by 2° structure, starting from violet to red; large loops (orange) differ between them. The
superposition between SH3 and OB (D) was creating in CE/PyMOL. D) The order of 2° elements
from N- to C-terminus; The only difference is shifted helix; E) The aligned 2° structures from (C).

Figure 1.11: SH3 and OB Comparison in 2◦ and 3◦ structure. SH3 (A)
and OB (B) structures colored by 2◦ structure, starting from violet to red; large
loops (orange) differ between them. The superposition between SH3 and OB (C) was
creating in CE/PyMOL. D) The order of 2◦ elements from N- to C-terminus; The
only difference is shifted helix; E) The aligned 2◦ structures from (C).

35

A recent study proposed that a four stranded ancestor could have evolved into both

the OB and SH3 folds by duplication followed by strand removal on the N- or C-

termini respectively [120]. If this ancestor existed and was stable, it also exists within

fold space. Is fold space time-resolved, where protein domains are connected via

branch points in a phylogenetic network? Or is it one universal collection of all

proteins, irrespective of evolutionary time. In these schemes, should the OB and

SH3 folds (or, rather, ‘superfolds’) be connected directly (to give, e.g., an SBB as

this particular urfold), or only connected at the level of their common four-stranded

ancestor to give a ‘proto-SBB’ urfold? Most studies have only been using extant

proteins, which are available from the Protein Data Bank (PDB). Ancestral state

reconstructions [121, 122] will play a pivotal role in filling in the gaps of fold space,

however that is extremely time consuming.

They should be
connected!

Tandem duplication:
Ancestral protein with

two domains?

Current view of fold space

Figure 12. Possible Evolutionary Relationship of the OB and SH3 fold. Modified from Alvarez-Carreño C, Penev PI, Petrov AS,
Williams LD. Fold Evolution before LUCA: Common Ancestry of SH3 Domains and OB Domains. Mol Biol Evol. 2021;38: 5134–5143.
doi:10.1093/molbev/msab240

Figure 1.12: Possible Evolutionary Relationship of the OB and SH3 fold.
According to [120], an ancestral OB peptide could have: (i) duplicated and (ii) re-
moved its terminal SSE via two different, but plausible fold nuclei, (iii) creating both
the SH3 and OB folds. Image modified from [120], which is under the CC-by-4.0
licence.

Through visual analysis and manual searches of the PDB, Mura et al. [118] have

discovered more examples of the Urfold phenomenon, particularly in P-Loop NTPases

and KH domains. Each of these examples have a common architecture and conserved

36

hydrophobic cores, but different topologies. Do they also share common ancestors

that can be duplicated and rearranged to give the permutations found in extant

proteins?

In my dissertation, I will start with the hypothesis that protein fold space is contin-

uous. I have introduced two ideas that can allow for connections between distantly

related proteins in fold space: (1) common short peptide fragments (contiguous);

and (2) domains with similar architectures, yet different topologies and a common

hydrophobic core (non-contiguous). The reconciliation of both ideas will provide a

robust common ‘unit of evolution’ and provide methods to bridge more remaining

gaps in fold space. We hypothesize that this new ‘unit of evolution’ will be a struc-

tural/geometric motif (either contiguous or non-contiguous in sequence), composed

of a set of residues with similar biophysical properties in some 3D/spatially conserved

pattern of locations. This, in turn, will provide a new approach to identify archetypal

precursors for all domain structures, and a closer understanding of the origin of life.

While we can’t actually obtain full evolutionary histories for every protein, finding

these new evolutionary units will enable us to target distant protein families and shine

light on previously unseen connections in fold space. Any new representations of the

protein universe will allow us to reimagine it, identifying patterns that we have not

seen before.

37

1.7 Revisit the question of fold space in light of

new deep learning methods

In light of new deep learning methods and latent space embeddings, the continuous

vs discrete dichotomy of protein structure space must be revisited. Understanding

inter-protein relationships can now be done in lower dimensional spaces, called latent

space or embeddings, which can now be compared; we claim that such comparisons

are more meaningful, efficacious, and–perhaps counterintuitively–more direct than

are comparisons using the original input structures. Traditional all-vs-all alignments

in sequence or structure space operate on the original input, making it difficult to

find remote homologies. In sequence space, it is difficult to identify relationships

between proteins in the ‘twilight zone’ with less than 25% sequence identity. New

deep learning approaches overcome these challenges and can find even more distant

homologies allowing us to understand protein evolution in new ways.

While the inputs will be different—sequences can be represented by strings of amino

acids, and structure can be represented as contact maps, graphs, or 3D images—

the output representation of the latent space remains the same. Each protein is

converted to it’s latent representation, a single data point, by running it through

a trained model; this is commonly referred to as the ‘inference’ stage in ML work-

flows. If the dimensionality of the latent space is larger than two or three, it can be

reduced for visualization purposes to 2D or 3D using either a dimensionality reduc-

tion method such as principal component analysis (PCA), an embedding approach

such as t-distributed stochastic neighbor embedding (t-SNE), or the more modern

uniform manifold approximation and projection (UMAP) technique. Some studies

have begun to analyze the latent space, but it still remains unexplored. Typically

38

it is colored by kingdom [83, 79], secondary structure class (all-α, all-β, and α/β)

[83], discrete fold classifications (CATH, SCOP, or ECOD) [77, 87], discrete sequence

families [123, 54], or discrete orthologous groups [85]. There are brief experiments

of manipulating proteins in their latent/lower-dimensional representations by adding

the difference of latent spaces to convert one protein into another [124, 77, 85]. One

study clustered the latent space to try to reconstruct phylogenies with reasonable

success [125]. However, examining latent spaces is usually more of an afterthought

when analyzing models – not the end product. Downstream analysis of these new

embeddings will be affected if protein structure space is considered as being discrete.

A typical next task is transfer learning, where one uses the previously trained protein

model (unsupervised) to predict properties at the whole protein level or residue level

(supervised). Such a task is often predicting which discrete fold a protein belongs to

[77, 83]. As expected, the models do not predict each discrete hierarchy well (accuracy

<80%) [77, 87].

In another sense, however, the protein sequence-based community is also scrapping

the discrete view in favor of a continuous view. ML algorithms used to be trained on

single protein families and multiple sequence alignments obtained through iterative

searches. New NLP algorithms such as Language Transformers are now using the

entire Uniprot Database – where protein family sequence alignments are not needed,

and there is an implicit continuity in the distribution of proteins/features. The diffi-

cult remaining issue becomes how to map results back to a discrete framework during

transfer learning.

39

1.8 Thesis Outline

The main goal of my thesis is to explore a new representation of the protein universe

to give clues about protein interrelationships, protein evolution, and the origins of

life in a protein world. The proposed “Urfold” model is an innovative approach to

visualize and understand patterns of similarities in the protein universe. More dis-

tant evolutionary and functional relationships can be identified when the traditional

hierarchical classification scheme is thought of in this new way. Specific innovations

of this thesis include algorithm and database development, such as:

• A community resource that I develop in order to enable the creation and sharing

of biophysical properties and protein structures. These biophysical properties

can be used as features in any machine learning model, and its use ensures that

analyses are performed with standardized data rather than creating it every

time.

• A novel sequence-independent, alignment-free, rotation-invariant similarity met-

ric of proteins based on Deep Generative Models and 3D structures. This

framework leverages similarities in latent-spaces rather than the 3D structures

directly and encodes biophysical properties, thereby allowing higher orders of

similarity to be detected (e.g. functional similarities, such as from ligand-

binding pockets).

• A new approach to detect clusters, or communities, of similar protein structures

using Stochastic Block Models. This method takes a different approach to

clustering, allowing for proteins to span multiple clusters, thereby allowing for

the continuous nature of fold space to be accounted for (rather than precluded).

40

The remaining 4 chapters will follow my thesis aims:

• Chapter 2 – Aim 1: Create a database of biophysical atomic proper-

ties in 3D for the known protein universe

1. Develop a reproducible computational workflow to calculate biophysical

and evolutionary properties for all protein domains with known experi-

mental structures.

2. Implement a highly distributed data service to load all proteins and bio-

physical properties quickly in an easily accessible API for use in any ma-

chine learning model

• Chapter 3 – Aim 2: Build and interrogate Deep Generative Models

to learn superfamily-specific geometries and properties

1. Train and validate Superfamily (SF) specific Variational Autoencoders

(VAEs) to learn the defining geometries and biophysical properties for

20 SFs including OB, SH3, and other SFs of particular interest to our lab

discovered via manual study of the literature and PDB.

2. Explore the latent space of the 20 SF-specific VAEs to see if they capture

gross structural properties such as patterns, trends, and a preference for a

discrete or continuous nature of fold space.

3. Assess the Urfold model by subjecting proteins with permuted secondary

structures to the superfamily-specific VAEs.

• Chapter 4 – Aim 3: Identify distant evolutionary relationships that

bridge protein architectures and topologies that define an Urfold

41

1. Identify communities of domain structures and SFs with Stochastic Block

Models (SBM) when subjecting domain representatives to all 20 SF-specific

models.

2. Determine the most relevant atoms while subjecting domains to SF-specific

models using Layerwise-Relevance Propagation (LRP).

3. Create a tangible definition of an ‘Urfold’ by investigating the atomic

relevance scores for domains in each SBM community to find common

themes and specific examples.

• A final conclusion on the outlook of this project and where we could

go next

CATH Hierarchy
Manager

Prep+Feats

Prep+Feats

Prep+Feats

Superfamily 1

Superfamily N

...

Learn
Embeddings

Learn
Embeddings

Analyze
Superfamilies

● Cluster
● Explainable AI
● Explore common

structural
fragments

Aim 1 Aim 2 Aim 3

Figure 13. Thesis and DeepUrfold Overview. How all chapters and aims connect to each other. A dataset
is first created in Aim by running multiple jobs in parallel for each CATH Homologous Superfamily and
another job for each domain to Prepare Structure and Create Features (Prep+Feats). Next, the datasets
created for each superfamily are used to learn embeddings for each superfamily. Finally, in Aim 3, we will
analyze the embeddings from each superfamily to identify common discontiguous structural fragments with
similar geometry and biophysical properties.

Figure 1.13: Thesis and DeepUrfold Overview. How all chapters and aims
connect to each other. A dataset is first created in Aim by running multiple jobs in
parallel for each CATH Homologous Superfamily and another job for each domain
to Prepare Structure and Create Features (Prep+Feats). Next, the datasets created
for each superfamily are used to learn embeddings for each superfamily. Finally, in
Aim 3, we will analyze the embeddings from each superfamily to identify common
discontiguous structural fragments with similar geometry and biophysical properties.

42

Bibliography

[1] Vikram Alva, Johannes Soding, and Andrei N Lupas. A vocabulary of ancient

peptides at the origin of folded proteins. eLife, 4:e09410, Dec 2015.

[2] Eugene V Koonin, Yuri I Wolf, and Georgy P Karev. The structure of the

protein universe and genome evolution. Nature, 420(6912):218–223, Nov 2002.

[3] J S Richardson. The anatomy and taxonomy of protein structure. Advances in

protein chemistry, 34:167–339, 1981.

[4] Sebastian E Ahnert, Joseph A Marsh, Helena Hernández, Carol V Robinson,

and Sarah A Teichmann. Principles of assembly reveal a periodic table of protein

complexes. Science, 350(6266):aaa2245, Dec 2015.

[5] K A Dill and H S Chan. From levinthal to pathways to funnels. Nature Struc-

tural Biology, 4(1):10–19, Jan 1997.

[6] Guilhem Faure, Aleksey Y Ogurtsov, Svetlana A Shabalina, and Eugene V

Koonin. Role of mrna structure in the control of protein folding. Nucleic Acids

Research, 44(22):10898–10911, Dec 2016.

[7] Narayanan Eswar, Ben Webb, Marc A Marti-Renom, M S Madhusudhan, David

Eramian, Min-Yi Shen, Ursula Pieper, and Andrej Sali. Comparative protein

structure modeling using modeller. Current Protocols in Bioinformatics, Chap-

ter 5:Unit 5.6, Oct 2006.

43

[8] Jianyi Yang, Renxiang Yan, Ambrish Roy, Dong Xu, Jonathan Poisson, and

Yang Zhang. The i-tasser suite: protein structure and function prediction.

Nature Methods, 12(1):7–8, Jan 2015.

[9] David E Shaw, Paul Maragakis, Kresten Lindorff-Larsen, Stefano Piana, Ron O

Dror, Michael P Eastwood, Joseph A Bank, John M Jumper, John K Salmon,

Yibing Shan, and Willy Wriggers. Atomic-level characterization of the struc-

tural dynamics of proteins. Science, 330(6002):341–346, Oct 2010.

[10] Debora S Marks, Lucy J Colwell, Robert Sheridan, Thomas A Hopf, Andrea

Pagnani, Riccardo Zecchina, and Chris Sander. Protein 3d structure computed

from evolutionary sequence variation. Plos One, 6(12):e28766, Dec 2011.

[11] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,

Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek,

Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A A Kohl, Andrew J

Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub

Jain, Jonas Adler, Trevor Back, and Demis Hassabis. Highly accurate protein

structure prediction with alphafold. Nature, 596(7873):583–589, Aug 2021.

[12] Anna-Leigh Brown, Minghui Li, Alexander Goncearenco, and Anna R

Panchenko. Finding driver mutations in cancer: Elucidating the role of back-

ground mutational processes. PLoS Computational Biology, 15(4):e1006981,

Apr 2019.

[13] David A Liberles, Sarah A Teichmann, Ivet Bahar, Ugo Bastolla, Jesse Bloom,

Erich Bornberg-Bauer, Lucy J Colwell, A P Jason de Koning, Nikolay V

Dokholyan, Julian Echave, Arne Elofsson, Dietlind L Gerloff, Richard A Gold-

stein, Johan A Grahnen, Mark T Holder, Clemens Lakner, Nicholas Lartillot,

44

Simon C Lovell, Gavin Naylor, Tina Perica, and Simon Whelan. The inter-

face of protein structure, protein biophysics, and molecular evolution. Protein

Science, 21(6):769–785, Jun 2012.

[14] G Apic, J Gough, and S A Teichmann. Domain combinations in archaeal, eubac-

terial and eukaryotic proteomes. Journal of Molecular Biology, 310(2):311–325,

Jul 2001.

[15] Jung-Hoon Han, Sarah Batey, Adrian A Nickson, Sarah A Teichmann, and Jane

Clarke. The folding and evolution of multidomain proteins. Nature Reviews

Molecular Cell Biology, 8(4):319–330, Mar 2007.

[16] Lesley H Greene, Tony E Lewis, Sarah Addou, Alison Cuff, Tim Dallman,

Mark Dibley, Oliver Redfern, Frances Pearl, Rekha Nambudiry, Adam Reid,

Ian Sillitoe, Corin Yeats, Janet M Thornton, and Christine A Orengo. The

cath domain structure database: new protocols and classification levels give a

more comprehensive resource for exploring evolution. Nucleic Acids Research,

35(Database issue):D291–7, Jan 2007.

[17] Antonina Andreeva, Dave Howorth, Cyrus Chothia, Eugene Kulesha, and

Alexey G Murzin. Scop2 prototype: a new approach to protein structure min-

ing. Nucleic Acids Research, 42(Database issue):D310–4, Jan 2014.

[18] Naomi K Fox, Steven E Brenner, and John-Marc Chandonia. Scope: Structural

classification of proteins–extended, integrating scop and astral data and classi-

fication of new structures. Nucleic Acids Research, 42(Database issue):D304–9,

Jan 2014.

[19] Hua Cheng, R Dustin Schaeffer, Yuxing Liao, Lisa N Kinch, Jimin Pei, Shuoy-

ong Shi, Bong-Hyun Kim, and Nick V Grishin. Ecod: an evolutionary classifi-

45

cation of protein domains. PLoS Computational Biology, 10(12):e1003926, Dec

2014.

[20] Robert D Finn, Alex Bateman, Jody Clements, Penelope Coggill, Ruth Y Eber-

hardt, Sean R Eddy, Andreas Heger, Kirstie Hetherington, Liisa Holm, Jaina

Mistry, Erik L L Sonnhammer, John Tate, and Marco Punta. Pfam: the pro-

tein families database. Nucleic Acids Research, 42(Database issue):D222–30,

Jan 2014.

[21] Timothy A Holland, Stella Veretnik, Ilya N Shindyalov, and Philip E Bourne.

Partitioning protein structures into domains: why is it so difficult? Journal of

Molecular Biology, 361(3):562–590, Aug 2006.

[22] Ian Sillitoe, Natalie Dawson, Tony E Lewis, Sayoni Das, Jonathan G Lees, Paul

Ashford, Adeyelu Tolulope, Harry M Scholes, Ilya Senatorov, Andra Bujan,

Fatima Ceballos Rodriguez-Conde, Benjamin Dowling, Janet Thornton, and

Christine A Orengo. Cath: expanding the horizons of structure-based functional

annotations for genome sequences. Nucleic Acids Research, 47(D1):D280–D284,

Jan 2019.

[23] R Dustin Schaeffer, Lisa N Kinch, Jimin Pei, Kirill E Medvedev, and Nick V

Grishin. Completeness and consistency in structural domain classifications.

ACS omega, 6(24):15698–15707, Jun 2021.

[24] Jorge Luis Borges. The Library of Babel. David R Godine Pub, 2000.

[25] C B Anfinsen. Principles that govern the folding of protein chains. Science,

181(4096):223–230, Jul 1973.

46

[26] Ruslan I Sadreyev, Bong-Hyun Kim, and Nick V Grishin. Discrete-continuous

duality of protein structure space. Current Opinion in Structural Biology,

19(3):321–328, Jun 2009.

[27] Jeffrey Skolnick, Adrian K Arakaki, Seung Yup Lee, and Michal Brylinski.

The continuity of protein structure space is an intrinsic property of proteins.

Proceedings of the National Academy of Sciences of the United States of America,

106(37):15690–15695, Sep 2009.

[28] L Holm and C Sander. Mapping the protein universe. Science, 273(5275):595–

603, Aug 1996.

[29] Rachel Kolodny, Sergey Nepomnyachiy, Dan S Tawfik, and Nir Ben-Tal. Bridg-

ing themes: short protein segments found in different architectures. Molecular

Biology and Evolution, 38(6):2191–2208, May 2021.

[30] Sergey Nepomnyachiy, Nir Ben-Tal, and Rachel Kolodny. Global view of the

protein universe. Proceedings of the National Academy of Sciences of the United

States of America, 111(32):11691–11696, Aug 2014.

[31] Jingtong Hou, Se-Ran Jun, Chao Zhang, and Sung-Hou Kim. Global mapping

of the protein structure space and application in structure-based inference of

protein function. Proceedings of the National Academy of Sciences of the United

States of America, 102(10):3651–3656, Mar 2005.

[32] Margarita Osadchy and Rachel Kolodny. Maps of protein structure space reveal

a fundamental relationship between protein structure and function. Proceed-

ings of the National Academy of Sciences of the United States of America,

108(30):12301–12306, Jul 2011.

47

[33] Yana Bromberg, Ariel A. Aptekmann, Yannick Mahlich, Linda Cook, Ste-

fan Senn, Maximillian Miller, Vikas Nanda, Diego U. Ferreiro, and Paul G.

Falkowski. Quantifying structural relationships of metal-binding sites suggests

origins of biological electron transfer. Science Advances, 8(2), Jan 2022.

[34] Sergey Nepomnyachiy, Nir Ben-Tal, and Rachel Kolodny. Complex evolutionary

footprints revealed in an analysis of reused protein segments of diverse lengths.

Proceedings of the National Academy of Sciences of the United States of America,

114(44):11703–11708, Oct 2017.

[35] B L Sibanda and J M Thornton. Beta-hairpin families in globular proteins.

Nature, 316(6024):170–174, Jul 1985.

[36] M J E Sternberg and J M Thornton. On the conformation of proteins: The

handedness of the β-strand-α-helix-β-strand unit. Journal of Molecular Biology,

105(3):367–382, Aug 1976.

[37] R Unger, D Harel, S Wherland, and J L Sussman. A 3d building blocks approach

to analyzing and predicting structure of proteins. Proteins, 5(4):355–373, 1989.

[38] Philipp Bucher, Kevin Karplus, Nicolas Moeri, and Kay Hofmann. A flexible

motif search technique based on generalized profiles. Computers & Chemistry,

20(1):3–23, Mar 1996.

[39] K F Han and D Baker. Global properties of the mapping between local amino

acid sequence and local structure in proteins. Proceedings of the National

Academy of Sciences of the United States of America, 93(12):5814–5818, Jun

1996.

48

[40] G J Kleywegt. Recognition of spatial motifs in protein structures. Journal of

Molecular Biology, 285(4):1887–1897, Jan 1999.

[41] I N Shindyalov and P E Bourne. An alternative view of protein fold space.

Proteins, 38(3):247–260, Feb 2000.

[42] Alexandre De Brevern, Anne-Claude Camproux, Serge Hazout, Catherine

Etchebest, and Pierre Tufféry. Protein structural alphabets: beyond the sec-

ondary structure description. Recent research developments in protein engineer-

ing, Jan 2001.

[43] Agnel Praveen Joseph, Garima Agarwal, Swapnil Mahajan, Jean-Christophe

Gelly, Lakshmipuram S Swapna, Bernard Offmann, Frédéric Cadet, Aurélie

Bornot, Manoj Tyagi, Hélène Valadié, Bohdan Schneider, Catherine Etchebest,

Narayanaswamy Srinivasan, and Alexandre G De Brevern. A short survey on

protein blocks. Biophysical reviews, 2(3):137–147, Aug 2010.

[44] Inbal Budowski-Tal, Yuval Nov, and Rachel Kolodny. Fragbag, an accurate rep-

resentation of protein structure, retrieves structural neighbors from the entire

pdb quickly and accurately. Proceedings of the National Academy of Sciences

of the United States of America, 107(8):3481–3486, Feb 2010.

[45] Rachel Kolodny, Patrice Koehl, Leonidas Guibas, and Michael Levitt. Small li-

braries of protein fragments model native protein structures accurately. Journal

of Molecular Biology, 323(2):297–307, Oct 2002.

[46] Iddo Friedberg and Adam Godzik. Connecting the protein structure universe

by using sparse recurring fragments. Structure, 13(8):1213–1224, Aug 2005.

49

[47] Elena Zotenko, Rezarta Islamaj Dogan, W John Wilbur, Dianne P O’Leary, and

Teresa M Przytycka. Structural footprinting in protein structure comparison:

the impact of structural fragments. BMC Structural Biology, 7:53, Aug 2007.

[48] Antonina Andreeva, Andreas Prlić, Tim J P Hubbard, and Alexey G Murzin.

Sisyphus–structural alignments for proteins with non-trivial relationships. Nu-

cleic Acids Research, 35(Database issue):D253–9, Jan 2007.

[49] Narcis Fernandez-Fuentes, Joseph M Dybas, and Andras Fiser. Structural char-

acteristics of novel protein folds. PLoS Computational Biology, 6(4):e1000750,

Apr 2010.

[50] Alexander Goncearenco and Igor N Berezovsky. Prototypes of elementary func-

tional loops unravel evolutionary connections between protein functions. Bioin-

formatics, 26(18):i497–503, Sep 2010.

[51] Yang Liu, Qing Ye, Liwei Wang, and Jian Peng. Learning structural motif rep-

resentations for efficient protein structure search. Bioinformatics, 34(17):i773–

i780, Sep 2018.

[52] Philippe Youkharibache. Protodomains: Symmetry-related supersecondary

structures in proteins and self-complementarity. Methods in Molecular Biol-

ogy, 1958:187–219, 2019.

[53] Sebastian Bittrich, Stephen K Burley, and Alexander S Rose. Real-time struc-

tural motif searching in proteins using an inverted index strategy. PLoS Com-

putational Biology, 16(12):e1008502, Dec 2020.

50

[54] Janani Durairaj, Mehmet Akdel, Dick de Ridder, and Aalt D J van Dijk. Ge-

ometricus represents protein structures as shape-mers derived from moment

invariants. Bioinformatics, 36(Suppl2) : i718–i725, Dec2020.

[55] Andrew Harrison, Frances Pearl, Richard Mott, Janet Thornton, and Christine

Orengo. Quantifying the similarities within fold space. Journal of Molecular Bi-

ology, 323(5):909–926, Nov 2002.

[56] S F Altschul, T L Madden, A A Schäffer, J Zhang, Z Zhang, W Miller, and D J

Lipman. Gapped blast and psi-blast: a new generation of protein database search

programs. Nucleic Acids Research, 25(17):3389–3402, Sep 1997.

[57] Russell Doolittle. Of Urfs and Orfs: A Primer on How to Analyze Derived Amino

Acid Sequences. University Science Books, 1986.

[58] B Rost. Twilight zone of protein sequence alignments. Protein Engineering Design

and Selection, 12(2):85–94, Feb 1999.

[59] S B Needleman and C D Wunsch. A general method applicable to the search for

similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,

48(3):443–453, Mar 1970.

[60] T F Smith and M S Waterman. Identification of common molecular subsequences.

Journal of Molecular Biology, 147(1):195–197, Mar 1981.

[61] S Henikoff and J G Henikoff. Amino acid substitution matrices from protein blocks.

Proceedings of the National Academy of Sciences of the United States of America,

89(22):10915–10919, Nov 1992.

[62] D J Lipman and W R Pearson. Rapid and sensitive protein similarity searches.

Science, 227(4693):1435–1441, Mar 1985.

51

[63] S F Altschul, W Gish, W Miller, E W Myers, and D J Lipman. Basic local alignment

search tool. Journal of Molecular Biology, 215(3):403–410, Oct 1990.

[64] Martin Steinegger and Johannes Soding. Mmseqs2 enables sensitive protein sequence

searching for the analysis of massive data sets. Nature Biotechnology, 35(11):1026–

1028, Nov 2017.

[65] K Karplus, C Barrett, and R Hughey. Hidden markov models for detecting remote

protein homologies. Bioinformatics, 14(10):846–856, 1998.

[66] A Krogh, M Brown, I S Mian, K Sjolander, and D Haussler. Hidden markov models

in computational biology. applications to protein modeling. Journal of Molecular

Biology, 235(5):1501–1531, Feb 1994.

[67] R Hughey and A Krogh. Hidden markov models for sequence analysis: extension and

analysis of the basic method. Computer applications in the biosciences: CABIOS,

12(2):95–107, Apr 1996.

[68] Sean R Eddy. Accelerated profile hmm searches. PLoS Computational Biology,

7(10):e1002195, Oct 2011.

[69] Martin Steinegger, Markus Meier, Milot Mirdita, Harald Vohringer, Stephan J Hauns-

berger, and Johannes Soding. Hh-suite3 for fast remote homology detection and deep

protein annotation. BMC Bioinformatics, 20(1):473, Sep 2019.

[70] L Steven Johnson, Sean R Eddy, and Elon Portugaly. Hidden markov model speed

heuristic and iterative hmm search procedure. BMC Bioinformatics, 11:431, Aug

2010.

[71] Faruck Morcos, Andrea Pagnani, Bryan Lunt, Arianna Bertolino, Debora S Marks,

Chris Sander, Riccardo Zecchina, José N Onuchic, Terence Hwa, and Martin Weigt.

52

Direct-coupling analysis of residue coevolution captures native contacts across many

protein families. Proceedings of the National Academy of Sciences of the United States

of America, 108(49):E1293–301, Dec 2011.

[72] Thomas A Hopf, John B Ingraham, Frank J Poelwijk, Charlotta P I Schärfe, Michael

Springer, Chris Sander, and Debora S Marks. Mutation effects predicted from se-

quence co-variation. Nature Biotechnology, 35(2):128–135, Feb 2017.

[73] Travers Ching, Daniel S Himmelstein, Brett K Beaulieu-Jones, Alexandr A Kalinin,

Brian T Do, Gregory P Way, Enrico Ferrero, Paul-Michael Agapow, Michael Zietz,

Michael M Hoffman, Wei Xie, Gail L Rosen, Benjamin J Lengerich, Johnny Israeli,

Jack Lanchantin, Stephen Woloszynek, Anne E Carpenter, Avanti Shrikumar, Jinbo

Xu, Evan M Cofer, and Casey S Greene. Opportunities and obstacles for deep learning

in biology and medicine. Journal of the Royal Society, Interface, 15(141), Apr 2018.

[74] UniProt Consortium. Uniprot: the universal protein knowledgebase in 2021. Nucleic

Acids Research, 49(D1):D480–D489, Jan 2021.

[75] Martin Steinegger, Milot Mirdita, and Johannes Soding. Protein-level assembly in-

creases protein sequence recovery from metagenomic samples manyfold. Nature Meth-

ods, 16(7):603–606, Jul 2019.

[76] Martin Steinegger and Johannes Soding. Clustering huge protein sequence sets in

linear time. Nature Communications, 9(1):2542, Jun 2018.

[77] Tristan Bepler and Bonnie Berger. Learning the protein language: Evolution, struc-

ture, and function. Cell Systems, 12(6):654–669.e3, Jun 2021.

[78] Jung-Eun Shin, Adam J Riesselman, Aaron W Kollasch, Conor McMahon, Elana

Simon, Chris Sander, Aashish Manglik, Andrew C Kruse, and Debora S Marks. Pro-

53

tein design and variant prediction using autoregressive generative models. Nature

Communications, 12(1):2403, Apr 2021.

[79] Adam J Riesselman, John B Ingraham, and Debora S Marks. Deep generative models

of genetic variation capture the effects of mutations. Nature Methods, 15(10):816–822,

Oct 2018.

[80] Jeanne Trinquier, Guido Uguzzoni, Andrea Pagnani, Francesco Zamponi, and Martin

Weigt. Efficient generative modeling of protein sequences using simple autoregressive

models. Nature Communications, 12(1):5800, Oct 2021.

[81] Ethan C Alley, Grigory Khimulya, Surojit Biswas, Mohammed AlQuraishi, and

George M Church. Unified rational protein engineering with sequence-based deep

representation learning. Nature Methods, 16(12):1315–1322, Dec 2019.

[82] Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Xi Chen, John Canny,

Pieter Abbeel, and Yun S. Song. Evaluating protein transfer learning with tape.

BioRxiv, Jun 2019.

[83] Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rihawi, Yu Wang,

Llion Jones, Tom Gibbs, Tamas Feher, Christoph Angerer, DEBSINDHU Bhowmik,

and Burkhard Rost. Prottrans: Towards cracking the language of life’s code through

self-supervised deep learning and high performance computing. BioRxiv, Jul 2020.

[84] Ali Madani, Bryan McCann, Nikhil Naik, Nitish Shirish Keskar, Namrata Anand,

Raphael R. Eguchi, Po-Ssu Huang, and Richard Socher. Progen: language modeling

for protein generation. BioRxiv, Mar 2020.

[85] Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu,

Demi Guo, Myle Ott, C Lawrence Zitnick, Jerry Ma, and Rob Fergus. Biological

54

structure and function emerge from scaling unsupervised learning to 250 million pro-

tein sequences. Proceedings of the National Academy of Sciences of the United States

of America, 118(15), Apr 2021.

[86] Tymor Hamamsy, James T. Morton, Daniel Berenberg, Nicholas Carriero, Vladimir

Gligorijevic, Robert Blackwell, Charlie E. M. Strauss, Julia Koehler Leman,

Kyunghyun Cho, and Richard Bonneau. Tm-vec: template modeling vectors for

fast homology detection and alignment. BioRxiv, Jul 2022.

[87] Michael Heinzinger, Maria Littmann, Ian Sillitoe, Nicola Bordin, Christine Orengo,

and Burkhard Rost. Contrastive learning on protein embeddings enlightens midnight

zone at lightning speed. BioRxiv, Nov 2021.

[88] Jamie Morton, Charlie Strauss, Robert Blackwell, Daniel Berenberg, Vladimir Glig-

orijevic, and Richard Bonneau. Protein structural alignments from sequence. BioRxiv,

Nov 2020.

[89] Vamsi Nallapareddy, Nicola Bordin, Ian Sillitoe, Michael Heinzinger, Maria Littmann,

Vaishali Waman, Neeladri Sen, Burkhard Rost, and Christine Orengo. Cathe: De-

tection of remote homologues for cath superfamilies using embeddings from protein

language models. BioRxiv, Mar 2022.

[90] W Kabsch. A solution for the best rotation to relate two sets of vectors. Acta

Crystallographica Section A, 32(5):922–923, Sep 1976.

[91] W Kabsch. A discussion of the solution for the best rotation to relate two sets of

vectors. Acta Crystallographica Section A, 34(5):827–828, Sep 1978.

55

[92] Christine A. Orengo and William R. Taylor. [36] SSAP: Sequential structure align-

ment program for protein structure comparison, volume 266 of Methods in Enzymology,

page 617–635. Elsevier, 1996.

[93] L Holm and C Sander. Dali: a network tool for protein structure comparison. Trends

in Biochemical Sciences, 20(11):478–480, Nov 1995.

[94] I N Shindyalov and P E Bourne. Protein structure alignment by incremental combi-

natorial extension (ce) of the optimal path. Protein Engineering Design and Selection,

11(9):739–747, Sep 1998.

[95] J F Gibrat, T Madej, and S H Bryant. Surprising similarities in structure comparison.

Current Opinion in Structural Biology, 6(3):377–385, Jun 1996.

[96] Adam Zemla. Lga: A method for finding 3d similarities in protein structures. Nucleic

Acids Research, 31(13):3370–3374, Jul 2003.

[97] Yang Zhang and Jeffrey Skolnick. Tm-align: a protein structure alignment algorithm

based on the tm-score. Nucleic Acids Research, 33(7):2302–2309, Apr 2005.

[98] Yang Zhang and Jeffrey Skolnick. Scoring function for automated assessment of

protein structure template quality. Proteins, 57(4):702–710, Dec 2004.

[99] Mathilde Carpentier and Jacques Chomilier. Protein multiple alignments: sequence-

based versus structure-based programs. Bioinformatics, 35(20):3970–3980, Oct 2019.

[100] Runze Dong, Zhenling Peng, Yang Zhang, and Jianyi Yang. mtm-align: an algo-

rithm for fast and accurate multiple protein structure alignment. Bioinformatics,

34(10):1719–1725, May 2018.

56

[101] Michel van Kempen, Stephanie Kim, Charlotte Tumescheit, Milot Mirdita, Johannes

Soeding, and Martin Steinegger. Foldseek: fast and accurate protein structure search.

BioRxiv, Feb 2022.

[102] Matthew Menke, Bonnie Berger, and Lenore Cowen. Matt: local flexibility aids

protein multiple structure alignment. PLoS Computational Biology, 4(1):e10, Jan

2008.

[103] Maksim V Shegay, Dmitry A Suplatov, Nina N Popova, Vytas K Švedas, and

Vladimir V Voevodin. parmatt: parallel multiple alignment of protein 3d-structures

with translations and twists for distributed-memory systems. Bioinformatics,

35(21):4456–4458, Nov 2019.

[104] Mehmet Akdel, Janani Durairaj, Dick de Ridder, and Aalt D J van Dijk. Caretta -

a multiple protein structure alignment and feature extraction suite. Computational

and structural biotechnology journal, 18:981–992, Apr 2020.

[105] Cameron Mura, Eli J Draizen, and Philip E Bourne. Structural biology meets data

science: does anything change? Current Opinion in Structural Biology, 52:95–102,

Oct 2018.

[106] Raphael J. L. Townshend, Martin Vogele, Patricia Suriana, Alexander Derry, Alexan-

der Powers, Yianni Laloudakis, Sidhika Balachandar, Bowen Jing, Brandon Ander-

son, Stephan Eismann, Risi Kondor, Russ B. Altman, and Ron O. Dror. Atom3d:

Tasks on molecules in three dimensions. arXiv, Dec 2020.

[107] Afshine Amidi, Shervine Amidi, Dimitrios Vlachakis, Vasileios Megalooikonomou,

Nikos Paragios, and Evangelia I Zacharaki. Enzynet: enzyme classification using 3d

convolutional neural networks on spatial representation. PeerJ, 6:e4750, May 2018.

57

[108] Joshua Hochuli, Alec Helbling, Tamar Skaist, Matthew Ragoza, and David Ryan

Koes. Visualizing convolutional neural network protein-ligand scoring. Journal of

molecular graphics & modelling, 84:96–108, Sep 2018.

[109] J Jiménez, S Doerr, G Martínez-Rosell, A S Rose, and G De Fabritiis. Deepsite:

protein-binding site predictor using 3d-convolutional neural networks. Bioinformatics,

33(19):3036–3042, Oct 2017.

[110] Ali Tugrul Balci, Can Gumeli, Asma Hakouz, Deniz Yuret, Ozlem Keskin, and Attila

Gursoy. Deepinterface: Protein-protein interface validation using 3d convolutional

neural networks. BioRxiv, Apr 2019.

[111] Nicolas Renaud, Cunliang Geng, Sonja Georgievska, Francesco Ambrosetti, Lars Rid-

der, Dario F Marzella, Manon F Réau, Alexandre M J J Bonvin, and Li C Xue.

Deeprank: a deep learning framework for data mining 3d protein-protein interfaces.

Nature Communications, 12(1):7068, Dec 2021.

[112] Raphael J. L. Townshend, Rishi Bedi, and Ron O. Dror. Transferrable end-to-end

learning for protein interface prediction. arXiv, Jul 2018.

[113] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface predic-

tion using graph convolutional networks. Advances in Neural Information Processing

Systems, 2017.

[114] John Ingraham, Vikas Garg, Regina Barzilay, and Tommi Jaakkola. Generative

models for graph-based protein design. Advances in Neural Information Processing

Systems, 2019.

58

[115] Manon Réau, Nicolas Renaud, Li C. Xue, and Alexandre M.J.J Bonvin. Deeprank-

gnn: A graph neural network framework to learn patterns in protein-protein inter-

faces. BioRxiv, Dec 2021.

[116] Bowen Jing, Stephan Eismann, Pratham N. Soni, and Ron O. Dror. Equivariant

graph neural networks for 3d macromolecular structure. arXiv, Jun 2021.

[117] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph

neural networks. arXiv, Feb 2021.

[118] Cameron Mura, Stella Veretnik, and Philip E Bourne. The urfold: Structural simi-

larity just above the superfold level? Protein Science, 28(12):2119–2126, Nov 2019.

[119] Philippe Youkharibache, Stella Veretnik, Qingliang Li, Kimberly A Stanek, Cameron

Mura, and Philip E Bourne. The small β-barrel domain: A survey-based structural

analysis. Structure, 27(1):6–26, Jan 2019.

[120] Claudia Alvarez-Carreño, Petar I Penev, Anton S Petrov, and Loren Dean Williams.

Fold evolution before luca: Common ancestry of sh3 domains and ob domains. Molec-

ular Biology and Evolution, 38(11):5134–5143, Oct 2021.

[121] Georg K A Hochberg and Joseph W Thornton. Reconstructing ancient proteins to

understand the causes of structure and function. Annual review of biophysics, 46:247–

269, May 2017.

[122] Avery G A Selberg, Eric A Gaucher, and David A Liberles. Ancestral sequence

reconstruction: from chemical paleogenetics to maximum likelihood algorithms and

beyond. Journal of Molecular Evolution, 89(3):157–164, Apr 2021.

[123] Mehmet Akdel, Douglas EV Pires, Eduard Porta-Pardo, Jurgen Janes, Arthur O

Zalevsky, Balint Meszaros, Patrick Bryant, Lydia L Good, Roman A Laskowski,

59

Gabriele Pozzati, Aditi Shenoy, Wensi Zhu, Petras Kundrotas, Victoria Ruiz-Serra,

Carlos HM Rodrigues, Alistair S Dunham, David Burke, Neera Borkakoti, Sameer Ve-

lankar, Adam Frost, and Pedro Beltrao. A structural biology community assessment

of alphafold 2 applications. BioRxiv, Sep 2021.

[124] Tristan Bepler and Bonnie Berger. Learning protein sequence embeddings using in-

formation from structure. arXiv, Feb 2019.

[125] Xinqiang Ding, Zhengting Zou, and Charles L Brooks III. Deciphering protein evo-

lution and fitness landscapes with latent space models. Nature Communications,

10(1):5644, Dec 2019.

60

Chapter 2

Prop3D: A flexible, Python-based

platform for protein structural

properties and biophysical data in

machine learning

Eli J. Draizen1,2*, Luis Felipe R. Murillo3, John Readey4, Cameron Mura2*, Philip

E. Bourne1,2*

1 Department of Biomedical Engineering; University of Virginia; Charlottesville,

VA; USA

2 School of Data Science; University of Virginia; Charlottesville, VA; USA

3 Department of Anthropology; University of Notre Dame; South Bend, IN; USA

4 The HDF Group; Champaign, IL; USA

*Correspondence: ed4bu@virginia.edu, cmura@virginia.edu, peb6a@virginia.edu

61

Abstract

Machine learning has a rich history in structural bioinformatics, and modern ap-

proaches, such as deep learning, are revolutionizing our knowledge of the subtle re-

lationships between biomolecular sequence, structure, function, dynamics and evolu-

tion. As with any advance that rests upon statistical learning approaches, the recent

progress in biomolecular sciences is enabled by the availability of vast volumes of

sufficiently-variable data. To be of utility, such datasets must be well-structured,

intelligible/manipulable, machine-parseable, and so on; these and related challenges

become especially acute at scale. In structural bioinformatics, such data generally

relate to protein three-dimensional (3D) structures. A significant and often recurring

challenge concerns the creation of large, high-quality, openly-accessible datasets that

can be used for specific training/benchmarking tasks in machine learning pipelines

and predictive modeling projects, along with reproducible splits for training and test-

ing. Here, we report Prop3D, a protein biophysical and evolutionary featurization and

data-processing pipeline that we developed and deployed (both in the cloud and on lo-

cal HPC resources) in order to systematically and reproducibly create comprehensive

datasets, using the Highly Scalable Data Service (HSDS). Prop3D can be of broader

utility for other structure-related workflows as a community-wide resource, particu-

larly for tasks that arise at the intersection of deep learning and classical structural

bioinformatics.

62

Author summary

We have developed a ‘Prop3D’ platform, and associated ‘Prop3D-20sf’ protein dataset,

to allow the creation, sharing, and reuse of atomically-resolved biophysical properties

for any library of protein domains, e.g. all of those found in CATH. Our workflow can

be deployed on various computational platforms (cloud-based or local high/perfor-

mance compute clusters), and scalability is achieved largely by saving the results to

distributed HDF5 files using the Highly Scalable Data Storage (HSDS) service. The

datasets and data-splits that we provide (using HSDS) can be freely accessed via a

standard representational state transfer (ReST) application programming interface

(API), along with accompanying Python wrappers for NumPy and the popular ML

framework PyTorch.

2.1 Introduction

The advent of AlphaFold2 [1] and related deep learning approaches now enables us

to access the 3D structure of virtually any protein sequence. As was the case for

sequence-level data in the 1980s-2000s (enabled by technologies such as PCR and,

ultimately, genome sequencing), 3D structural data has now been transformed into a

readily available commodity. How might such a wealth of structural data inform our

understanding of biology’s central sequence ↔ structure ↔ function paradigm? Two

new, post-AlphaFold2 challenges can be identified: (i) elucidating the relationships

between all structures in the protein universe, and (ii) armed with millions of new

protein structures [2], exploring the limits of protein function prediction. Arguably,

structural bioinformatics approaches should now be an even more powerful tool in

63

analyzing and accurately predicting protein function.

In structural bioinformatics, the ‘data’ center around protein 3D structures. In this

work, we take such ‘data’ to mean the geometric structures themselves, augmented

by a multitude of other properties. These other properties can be (i) at potentially

varying length-scales (atomic, residue-level, domains, etc.), and (ii) of numerous

types, both biological (e.g., phylogenetic conservation at a site) and physicochemi-

cal (e.g., hydrophobicity or partial charge of an atom, concavity of a patch of surface

residues, etc.). A significant and persistent challenge in developing and deploying ML

workflows in structural bioinformatics concerns the availability of large, high-quality,

openly-accessible datasets that can be (easily) used in large-scale ML and predictive

modeling projects. Here, ‘high-quality’ implies that specific training/benchmarking

tasks can be performed reproducibly and without undue effort, and that the data

splits for model training/testing/validation are reproducible. (A stronger require-

ment is that the split method also be at least semi-plausible, or not nonsensical, in

terms of the underlying biology of a system—e.g., taking into account evolutionary

relationships that muddle the assumed [statistical] independence of the splits; we

discuss this below.)

In classical bioinformatics, transferring functional annotations from a protein with a

common evolutionary history to a protein of interest is a frequent task. A conventional

approach to this task typically applies sequence or structure comparison (e.g., via

BLAST [3] or TM-Align [4], respectively) of a protein of interest to a database of all

known proteins, followed by a somewhat manual process of ‘copying’ the previously

annotated function into a new database record for the protein of interest. However, in

the era of ML, we can now try to go automatically from sequence or structure directly

to functional annotations; the ML models can ‘learn’ these evolutionary relationships

64

between proteins as part of the model, removing the more manual/alignment-related

steps.

However, ML workflows working with proteins—and, in particular, protein 3D structures—

are far more challenging, from a technological and data-engineering perspective, than

are many of the standard and more routine ML workflows that have been designed

to work with inputs in other domains (a text corpus in natural language processing,

image data for classification tasks, etc.). Proteins are more difficult to work with,

from both a basic and applied ML perspective, for several types of reasons, includ-

ing: (i) all proteins are related through evolution, thereby causing ‘data leakage’ [5];

(ii) raw/unprocessed protein structures are not always biophysically and chemically

well-formed (e.g., atoms or entire residues may be missing) [6, 7]; (iii) somewhat re-

lated, some protein structures may ‘stress-test’ existing data structures by having,

for instance, multiple rotamers/conformers at some sites; (iv) biophysical properties,

which aren’t always included/learned, are just as critical (if not more so) as the 3D

geometry itself; and (v) there are many different possible representational approach-

es/models of protein structures (volumetric data, graphs, etc.) that can yield different

results. In short, protein data must be carefully inspected/processed before they can

be successfully used and split in precise ways to create robust ML models.

In this paper we present Prop3D, a new protein domain structure dataset with

cleaned/prepared structures, pre-calculated biophysical and evolutionary properties,

and different protein representations, along with train/test splits. We also include

methods to recreate the dataset in a distributed manner and read in Prop3D for

use in machine learning models. We describe this new software and its associated

dataset (Prop3D-20sf), after first delineating some of the specific considerations that

motivated and shaped Prop3D’s design.

65

2.2 Motivating factors: Data leakage, biophysical

properties, and protein representations

2.2.1 Evolutionary data leakage

ML with proteins is uniquely challenging because all naturally occurring proteins

are interrelated via the biological processes of molecular evolution [8]. Therefore,

randomly chosen train/test splits are meaningless, as there is bound to be crossover,

ultimately leading to overfitting of the model. Moreover, the available datasets are

biased—they sample the protein universe in a highly non-uniform (or, rather, non-

representative) manner (Figure 2.1)—which leads to biased models. For example,

there are simply more 3D structures available in the Protein Data Bank (PDB [9])

for certain protein superfamilies because, for instance, some of those families were

of specific (historical) interest to specific laboratories, certain types of proteins are

more intrinsically amenable to crystallization (e.g., lysozyme), some might have been

disproportionately more studied and structurally characterized because they are drug

targets (e.g., kinases), certain protein families were preferentially selected for during

evolution [10], and so on.

A common approach to handle this type of bias is to create training and validating

splits that ensure that no protein with ≥ 20% sequence identify is on the same side

of the split[11].

In training ML models at the level of full (intact) protein chains, another source

of bias in constructing training and validation sets stems from the phenomenon of

domain re-use. This is an issue because many full protein chains are multi-domain

(particularly true for proteins ⪆ 120-150 residues), and many of those individual

66

Figure 2.1: Uneven distribution of protein superfamiles. We show 20 su-
perfamilies of interest to show how the number of known domains structures varies
between superfamilies. The CATH hierarchy is shown as a circle packing chart.

domains can share similar 3D structures (and functions) and be grouped, themselves,

into distinct superfamilies. Some multi-domain proteins contain multiples of a given

protein domain and so on; in other words, full-length proteins generally evolved so

as to utilize individual domains in a highly modular manner (Figure 2.2). While

splitting based on 20% sequence identity does limit this problem to some extent

(if two domains have less than that level of similarity but are still from the same

superfamily), a simple, straight-ahead split at a 20% (or whatever threshold) might

negatively impact an ML algorithm at the very fundamental level of model training

. In principle, note that this problem could also hold at the finer scale of shared

(sub-domain–level) structural fragments, too (giving an even more difficult problem).

A possible approach to mitigate this type bias is to (i) create ‘one-class’ superfamily-

specific models; or (ii) create multi-superfamily models, making sure to (a) over-

sample proteins from under-represented classes; and (b) under-sample proteins from

67

Figure 2.2: Data leakage and multi-domain proteins: A prime example of
evolution-induced data leakage stems from the modular anatomy of many proteins,
wherein multiple copies (which often only slightly vary—i.e., paralogous) of a partic-
ular domain are stitched together as part of the overall protein. This phenomenon
is particularly prevalent among protein homologs from more phylogenetically recent
species (e.g., eukaryotes like human or yeast, versus archaea or bacterial lineages).
For example, many proteins that contain SH3, OB and Ig domains are found to
include multiple copies of those domains.

over-represented classes [12, 5].

2.2.2 Biophysical properties

In many ML problems on proteins, is it useful to include biophysical properties

mapped onto 3D locations of atoms and residues. However, sometime they are ig-

nored as in sequence-based methods, which ignore the structure entirely, often only

using a one-hot encoding of the sequence and maybe some evolutionary information.

In other cases, 3D structures are used and only the geometry is used as input, ne-

glecting the crucial biophysical properties that help define a protein’s physiological

function. There is also a trend in ML wherein one lets the model create its own

embeddings, using only a small amount of hand-curated data (e.g., only atom type).

Such approaches are generally taken because (i) it is expensive to calculate a full

suite of biophysical properties for every atom, say on the scale of the entire PDB

(≈200K structures); and (ii) the available models, theories and computational for-

malisms used to describe the biophysical properties of proteins (e.g., approximate

68

electrostatics models, such as the generalized Born) may be insufficiently accurate,

thereby adversely influencing the resultant ML models.

Irrespective of the specific details of one use-case or set of tasks versus another, it

remains useful to have available a database of pre-calculated biophysical properties.

Such a database would enable one to: (i) save time during the ML training process,

by avoiding repetition of calculations that many others in the community may have

already performed on exactly the same proteins (note that this also speaks to the

key issue of reproducibility of an ML workflow or bioinformatics pipeline); and (ii)

compare the predicted embeddings of the ML model to known biophysical properties,

thereby providing a way to assess the accuracy and veracity of the ML model under

development.

Several available databases offer biophysical properties of proteins at different ‘levels’

(atomic, residue, etc.) of structure, as shown in Table 2.1.

2.2.3 Protein representations

There are many different ways to represent a protein for use in ML, each with its own

strengths and weaknesses. Many protein structure & feature databases are ‘hard-

wired’ so as to include data that can populate only one type of representation; how-

ever, to be flexible and agile (and therefore more usable), new databases need to allow

easy methods to switch between various alternate representations of proteins. The

remainder of this section describes approaches that have been used, wherein a protein

is represented as a simple sequence, as a graph-based model (residue-residue contact

networks), or as a 3D volumetric dataset. We now briefly consider each of these in

turn.

69

D
at

as
et

W
ik

id
at

a

Dom
ain

Lev
el

Resi
dueLev

el

Atom
Lev

el
Resi

due-R
esi

dueGrap
h

2◦
Stru

ctu
re

Elec
tro

sta
tic

s&
Charg

e

Surfa
ce

&
Curva

tu
re

Pro
tei

nIn
ter

ac
tio

nSite
s

Trai
n/V

ali
dati

on
Split

s

Cluste
rs Evo

lutio
nary

In
fo

Fi
le

fo
rm

at
PD

B
[9
]

Q
76

61
95

✓
✓

†
✓

✓
✓

W
eb
,P

D
B

&
M
M
T
F

Un
iP

ro
t[
13

]
Q
90

56
95

✓
✓

✓
W
eb

&
R
eS
T

CA
TH

[1
4]

Q
50

08
89

7
✓

✓
✓

†
✓

✓
PD

B
&

R
eS
T

FE
AT

UR
E
[1
5]

Q
11

48
78

64
8

✓
✓

✓
✓

✓
A
SC

II
Pr

ed
ict

Pr
ot

ein
[1
6]

Q
72

39
68

1
✓

✓
✓

✓
✓

W
eb
,R

eS
T

&
JS

O
N

De
sc

rib
eP

RO
T

[1
7]

Q
11

12
88

73
9

✓
✓

✓
✓

W
eb

&
JS

O
N

AT
OM

3D
/D

IP
S
[1
8]

Q
11

48
78

67
3

✓
✓

†
✓

✓
✓

JS
O
N

&
Py

To
rc
h

Pr
ot

ein
Ne

t[
19

]
Q
11

48
78

71
7

✓
✓

†
✓

✓
✓

✓
Te

ns
or
Fl
ow

Si
de

ch
ain

Ne
t[
20

]
Q
11

48
78

82
2

✓
✓

†
✓

✓
✓

✓
Py

To
rc
h
&

Pi
ck
le

Pr
op

3D
[th

is
wo

rk
]

Q
10

80
40

54
2"

"
"

"
"

"
"

"
"

"
H

D
F,

H
SD

S
&

P
yT

or
ch

Ta
bl

e
2.

1:
P

ro
te

in
Fe

at
ur

e
D

at
as

et
s

fo
r

M
ac

hi
ne

Le
ar

ni
ng

.
M
an

y
di
ffe

re
nt

da
ta
se
ts

of
se
qu

en
ce
s,

st
ru
ct
ur
es
,

an
d
bi
op

hy
sic

al
pr
op

er
tie

s
ex
ist

,b
ut

al
lc

on
ta
in

di
ffe

re
nt

am
ou

nt
s
da

ta
,d

iff
er
en
t
le
ve
ls

of
da

ta
(c
ha

in
,d

om
ai
n,

re
sid

ue
,

at
om

),
an

d
so
m
e
co
nt
ai
n
bi
op

hy
sic

al
pr
op

er
tie

s
at
ta
ch
ed

to
ea
ch

at
om

an
d/

or
re
sid

ue
.
T
he

†
de
no

te
s
a
da

ta
ba

se
th
at

us
es

at
om

ic
co
or
di
na

te
s,

bu
t
w
ith

no
bi
op

hy
sic

al
pr
op

er
tie

s
as
so
ci
at
ed

w
ith

th
os
e
co
or
di
na

te
s.

https://www.wikidata.org/wiki/Q766195
https://www.wikidata.org/wiki/Q905695
https://www.wikidata.org/wiki/Q5008897
https://www.wikidata.org/wiki/Q114878648
https://www.wikidata.org/wiki/Q7239681
https://www.wikidata.org/wiki/Q111288739
https://www.wikidata.org/wiki/Q114878673
https://www.wikidata.org/wiki/Q114878717
https://www.wikidata.org/wiki/Q114878822
https://www.wikidata.org/wiki/Q108040542

70

Dimensionality Representation Example
1D Protein Sequence MIANE...

2D Residue-Residue
Graph

3D Protein Structure
3D Volume

Table 2.2: Protein Structure Representations

Protein Sequences

The simplest approach to represent a protein is to treat it as a sequence of amino

acids, ignoring all structural information. In ML workflows, the sequence is generally

”one-hot encoded”, meaning that each individual character(/residue) in the sequence

is attributed with a 20-element vector; in that vector, all elements are set to zero

except for the index of the amino acid type that matches the current position, which

is set to one. Biophysical properties can also be appended to this representation,

giving a feature vector.

Residue-Residue Graph

A conceptually straightforward method to capture a 3D protein structure is to build

a graph, using the amino acid residues as vertices and contacts between those residues

(near in 3D space) as edges. Individual nodes can be attributed with the ‘one-hot’

encoding of the residue along with biophysical properties, and to each edge can be

attributed geometric properties such as a simple Euclidean distance (e.g., between

the two residues/nodes), an angle of interest (defined by three atoms), any dihedral

angles that one likes (defined by four atoms), and so on. These graphs can be fully

71

connected, e.g. all residues are connected to one another, or they may include edges

only between residues that lie within a certain cutoff distance of one another (e.g. 5

).

Protein Structures as 3D Volumetric Data

Another approach to handle protein structures in ML is to treat them as spatially

discretized 3D images, wherein volumetric elements (‘voxels’) that intersect with an

atom are attributed with biophysical properties of the overlapping atom. Here, note

that one must define ‘an atom’ precisely, e.g. as a sphere of a given van der Waals

radius, centered at a specific point in space (the atom’s coordinates), such that the

notion of “intersection with a specific voxel” is well-defined. Early work in deep neural

nets used these types of structural representations, though the volumetric approaches

have been less prevalent recently for reasons that include: (i) size constraints (large

proteins consume much memory, scaling with the cube of protein size, in terms of

number of residues); (ii) mathematical considerations, such as this representation’s

lack of rotational invariance (e.g., structures are manually rotated); (iii) fixed-grid

volumetric models are inherently less flexible than graph representations (e.g. 3D

images are static and cannot easily incorporate fluctuations, imparting a ‘brittleness’

to these types of data structures); and (iv) related to the issue of brittleness, there

exists a rich and versatile family of graph-based algorithms, versus more limited (and

less easily implemented) approaches for volumetric data.

A common approach to voxelize a protein structure into a dense grid is to calculate

the distance of every atom to every voxel, then use the Lennard-Jones potential to

map a scaled biophysical properties to each voxel [21, 22]. This works well for small

proteins, but can take a long time for larger structures because of the O(n2) run-

72

time. A faster voxelization approach is to create a sparse grid, where only voxels that

overlap a van der Waals volume around each atom. This can be done using kD-trees,

which scale as O(n logn) [12].

When treating proteins as 3D images, one must take into account the importance of

rotational invariance. All structures must be rotated to achieve (ideally) uniform ran-

dom sampling, which can be achieved via the 3D rotation group (SO(3)), formulated

as a Haar distribution over unit quaternions; however, those numerical steps add sig-

nificant computational overhead unless the model is already rotationally invariant,

such as with equivariant neural networks [23].

2.2.4 Outline of this work

The remainder of this work presents Prop3D, a new protein domain structure dataset

that includes (i) corrected/sanitized protein structures, (ii) biophysical properties for

each atom and residue, to allow for multiple representation modes, as well as (iii)

train, test & validation splits that have been specifically formulated for use in ML of

proteins (to mitigate evolutionary data leakage).

2.3 Overview of the software & dataset

2.3.1 Architecture and design

The Prop3D-20sf dataset is created using two other frameworks we developed: (i)

‘Meadowlark’, for processing and interrogating individual protein structures and (ii)

‘AtomicToil’, for creation of massively parallel workflows of many thousands of struc-

73

tures. While each of these pieces of code are intricately woven together (in practice),

giving Prop3D, it helps to consider them separately when examining their utility/ca-

pabilities and their respective roles in an overall Prop3D-based ML pipeline.

Figure 2.3: Overview of Prop3D Components. We developed Prop3D as frame-
work to create and share biophysical properties. We do this by creating two separate
packages within the framework: (i) ‘Meadowlark’ to prepare structures, calculate fea-
tures, and run ??-ized tools; and (ii) ‘AtomicToil’ to run these calculations in parallel
and on the cloud using Toil. The data from Prop3D is available as a publicly-available
HSDS endpoint

74

2.3.2 Meadowlark: An extensible, Dockerized toolkit for re-

producible, cross-platform structural bioinformatics work-

flows

In bioinformatics and computational biology more broadly, many tools and codes

can be less than straightforward to install and operate locally: they each require

various combinations of operating system configurations, specific versions of different

languages and libraries (which may or may not be cross-compatible), have various

interdependencies for installation/compilation (and for run-time execution), and so

on. Moreover, considered across the community as a whole, researchers spend many

hours installing (and perhaps even performance-tuning) these tools themselves, only

to find that they are conducting similar development and upkeep of this computa-

tional infrastructure as are numerous other individuals; all the while, the data, results,

and technical/methodological details underpinning the execution of a computational

pipeline are typically never shared, at least not before the point of eventual publica-

tion (i.e., months to even years after the point at which it would have been most useful

to others). Following the examples of the UC Santa Cruz Computational Genomics

Laboratory (UCSC-CGL) and Global Alliance for Genomics & Health (GA4GH) [24],

we Docker-ize common structural bioinformatics tools to make them easily deployable

and executable on any machine, along with parsers to handle their outputs, all with-

out leaving a top-level Python workflow. New software can be added into meadowlark

if it exists as a Docker or Singularity container [?, 25]. For a list of codes and software

tools that we have thus far made available, see Tables 2.3 & 2.4 or visit our Docker

Hub.

https://hub.docker.com/u/edraizen
https://hub.docker.com/u/edraizen

75

2.3.3 AtomicToil: Mapping structural info to sets of massively

parallel tasks

To construct and automate the deployment of massively parallel workflows in the

cloud, we use a Python-based workflow management system (WMS) known as Toil

[26]. Each top-level Toil job has child jobs and follow-on jobs, enabling the construc-

tion of complex MapReduce-like pipelines. A Toil workflow can be controlled locally,

on the cloud (e.g., AWS, Kubernetes), or on a compute farm or a high-performance

computing platform such as a Linux-based cluster (with a scheduler such as SLURM,

Oracle Grid Engine, or the like). Background information on the data-flow paradigm,

flow-based programming, task-oriented toolkits (like Toil), and related WMS concepts

as they pertain to bioinformatics can be found in [27].

Within Prop3D, we specifically created multiple ways to instantiate a workflow:

1. Based on PDB files (can contain multiple chains or a single domain) to system-

ically map PDB files to jobs to run a given function.

2. Based on the CATH Hierarchy, where one job is created for each entry in the

CATH hierarchy, with child jobs spawned for subsidiary levels in the hierarchy.

Once the workflow reaches a job for each individual domain (or specified level),

it will run a given, user-provisioned function.

New functions can be added into the workflow by creating new Toil job functions,

which can be as simple as standalone Python functions with given, well-formed inputs.

76

2.3.4 Capabilities and Features

In this section we provide two examples of Prop3D usage, from relatively simple

to more advanced: (i) protein structure preparation; and (ii) biophysical property

calculations (and annotation).

Protein Structure Preparation

We ‘clean’ or ‘sanitize’ a starting protein structure by selecting the first model (from

among multiple possible models in a PDB file), the correct chain, and the first alter-

nate location (if multiple conformers are present for an atom/residue), and removing

hetero-atoms (water or buffer molecules, other crystallization reagents, etc.); these

steps are achieved via pdb-tools [28]. We then modify each domain structure via

the following stages: (i) Build/model any missing residues with MODELLER [29]; (ii)

Correct rotamers with SCWRL4 [30], e.g. if there are any missing atoms; and (3) Add

hydrogens and perform a rough potential energy minimization with the PDB2PQR

toolkit [31]. Note that this general workflow, schematized in Figure 2.4, was applied

in constructing the Prop3D-20sf dataset.

Figure 2.4: Protein Preparation. Every domain is ‘corrected’ by adding missing
atoms and residues, protonating, and energy minimizing the structure.

77

Biophysical Property Calculaton

The Prop3D toolkit enables one to rapidly and efficiently compute biophysical prop-

erties for all atoms and residues in a dataset of 3D structures (e.g., from the PDB or

CATH).

For atom-level features, we create ‘one-hot’ encodings for 23 AutoDock atom names,

16 element names, and 21 amino acid residue types. We also include van der Waals

radii, charges from PDB2PQR [31], electrostatic potentials computed via APBS [32],

concavity measures from CX [33], various hydrophobicity features of the residue that

an atom belongs to (Kyte-Doolite [34], Biological [35] and Octanol [36]), accessible

surface area (per-atom, via FreeSASA [37], and per-residue via DSSP [38]). We also

include different types of secondary structure information: ‘one-hot’ encodings for

DSSP [38] 3- and 7- secondary structure classifications, as well as the backbone tor-

sion angles (ϕ, ψ; along with embedded sine and cosine transformations of each).

We also annotate aromaticity, and hydrogen bond acceptors and donors, based on

AutoDock atom-name types. As a gauge of phylogenetic conservation, we include

sequence entropy scores from EPPIC [39]. These biophysical, physicochemical, struc-

tural, and phylogenetic features are summarized in Figure 2.5 and are exhaustively

enumerated in Table 2.6. Finally, we also provide functionality to create Boolean-

valued descriptors from the corresponding continuous-valued quantities of a given

feature via simple numerical thresholding (Table 2.7).

Some of the above properties are computed at the residue level and mapped to each

atom in the residue (e.g., hydrophobicity is one such property); that is, the ‘child’

atom inherits the value of the given feature from its ‘parent’ residue. For other

features, residue-level values are calculated by combining atomic quantities, via var-

78

Figure 2.5: Biophysical Property Calculation. For each domain, we annotate
every atom with following the features: atom type, element type, residue type, partial
charge & electrostatics, concavity, hydrophobicity, accessible surface area, secondary
structure type, and evolutionary conservation. For a full list of features, see Tables
2.6 & 2.7.

ious summation or averaging operations applied to the properties’ numerical values

(described in Table 2.6).

2.3.5 Dataset Design and Data Format

We employ the Hierarchical Data Format (HDF5 [40]), along with the Highly Scalable

Data Service (HSDS), to handle the large amount of protein data in our massively

parallel workflows. The HDF5 file format is a useful way to store and access large

protein datasets because it allows us to chunk and compresses the CATH protein

structure hierarchy in a scalable and efficient manner. Using this approach, instead

of creating many individual files spread across multiple directories, we combine them

into a ‘single’ file that is easily shareable and can be accessed via a hierarchical

structure of groups and datasets, each with attached metadata. Moreover, the HSDS

extension to this file-format system allows multiple readers and writers which, in

combination with Toil, makes it extremely fast to create new datasets.

79

We note that many computational biologists are migrating to HDF5 [41, 42, 43] and

HSDS [44] because it is fast to read binary data, easily shareable, and provides in-

tegrated metadata and other beneficial organization features (thus, e.g., facilitating

data provenancing). Before HDF5 and HSDS and other binary formats came around,

biological data formats for protein structure relied on human-readable ASCII files.

Legacy PDB files have been the de facto format to store protein structures. Origi-

nally developed in 1976 to work with punch cards, legacy PDB files are ASCII files

that have a fixed-column width and a max of 80 characters per line [45]. Only one

biophysical property could be added into the B-factor column as a poorly designed

workaround. Due to inflexibility of legacy PDB file format, the macromolecular Crys-

tallographic Information Framework (mmCIF) file format was developed to be more

structured and allowed for a plethora of biophysical properties [46]. Most recently due

to the slow nature of reading ASCII files, the Macromolecular Transmission Format

(MMTF) was developed to store protein structures in a compact binary format based

on MessagePack format (version 5) [47, 48]. While the MMTF is almost ideal for

machine learning, it still relies on individual files in a file system with no efficient,

distributed mechanism to read in all files, no way to include metadata higher than

residue level, and no ability to combine train/test splits directly into the schema,

which were some of our motivating factors to use HDF5 and HSDS.

The Prop3D HDF5 file starts with the CATH database, which provides a hierar-

chical ‘structure’ that is naturally amenable to parallelization and efficient data

traversal—namely, Class ⊃ Architecture ⊃ Topology ⊃ Homologous Superfamily—

as shown in Figure 2.6. A superfamily can be accessed by its CATH code as the

group key (e.g., ‘2/60/40/10’ for Immunoglobulin). Each superfamily is then split

into two groups: ‘domains’ (containing groups for each domain inside that super-

80

family) and ‘data_splits’ (containing pre-computed train (80%), validation (10%),

and test (10%) data splits for use in machine learning models, where each domain in

each split is hard linked to the group for that domain). Each domain group contains

datasets for different types of features: ‘atoms’, ‘residues’ and ‘edges.’ The ‘Atoms’

dataset contains information from the PDB ATOM field as well all of the biophysical

properties calculated for each atom. ‘Residues’ contain biophysical properties of each

residue and position (average of all of its atoms), for use in coarse-grained models.

‘Edges’ contains properties for each residue ↔ residue interaction, thereby enabling

the construction and annotation of contact maps.

In terms of the computational pipeline, HSDS allows HDF5 files to be stored in S3-like

buckets, e.g. from AWS or MinIO, remotely and accessible via a REST API. HSDS

data nodes and service nodes are controlled via a load balancer in Kubernetes too

enable efficient, distributed mechanism to query of HDF5 file as well write data into

the HDF5 also in a quick, efficient, distributed mechanism allowing. HSDS allows for

multiple readers and multiple writers to read or write to the same file simultaneously,

using the ‘distributed’ HDF5 multi-reader/multi-writer python library, h5pyd (See

Fig. 2.7). We set up a local k3s instance, which is an easy-to-install lightweight

distribution of Kubernetes that can run on a single machine along with MinIO S3

buckets.

When we created the Prop3D-20sf dataset, HSDS, in combination with a Toil-enabled

workflow, allows for each parallel task to write to the same HDF5 file simultaneously.

The Prop3D-20sf dataset can then be read in parallel as well, e.g. in PyTorch. We

provide PyTorch Data Loaders to read the Prop3D dataset from the HSDS endpoint

using multiple processes, available in our related DeepUrfold Python package [12].

When HSDS was used for training instead of raw ASCII files, we saw a speedup of 8

81

hours (from 24 hours to 16 hours of wallclock time) for training an immunoglobulin-

specific variational autoencoder model with 25,524 featurized immunoglobulin domain

structures (See Fig 2.8). Therefore, we found it clearly advantageous to utilize the

parallelizable data-handler capacity provided by a system like HSDS.

2.4 Summary and Future Outlook

This work has presented ‘Prop3D’, a protein properties featurization and data-processing

pipeline that we have developed and deployed. The Prop3D platform is extensible and

scalable, can be used with local HPC resources as well as in the cloud, and allows one

to systematically and reproducibly create comprehensive datasets using the Highly

Scalable Data Service (HSDS). We have used Prop3D to create (and share) a new

‘Prop3D-20sf’ resource; this protein dataset, available as an HSDS endpoint, com-

bines 3D coordinates with biophysical and evolutionary properties (for each atom),

in each structural domain for the 20 most-highly populated homologous superfam-

ilies (SF) in the CATH database. These 3D domains are sanitized via numerous

steps, including clean-up of the covalent structure (e.g., adding missing atoms and

residues) and physicochemical properties (protonation and energy minimization). Our

database schema follows CATH’s hierarchy, mapped to a system based on HDF5 files

and including atomic-level features, residue-level features, residue-residue contacts,

and pre-calculated train/test/validate splits (in ratios of 80/10/10) for each SF de-

rived from CATH’s sequence-identity–based clusters (e.g., ‘S35’ for groups of proteins

culled at 35% sequence identity). We believe that Prop3D-20sf, and its underlying

Prop3D framework, may be useful as a community resource in developing workflows

that entail processing protein 3D structural information—particularly for pipelines

82

that arise at the intersection of machine learning and structural bioinformatics.

This dataset can be used to compare sequence-based (1D), residue:residue graphs

(2D), and structure-based (3D) methods. For example, one could train a supervised

model with input being a protein sequence to predict a specific residue-based bio-

physical property. Similarly, unsupervised models can be trained using one or all of

the biophysical properties to learn protein embeddings.

We built AtomicToil to enable the facile creation of reproducible workflows, starting

with PDB files or by traversing the CATH hierarchy, as well as the Meadowlark toolkit

to run Docker-ized structural bioinformatics software. While we primarily developed

the tools described here in order to create the Prop3D-20sf dataset, we envision that

the toolkit can be integrated into a feature-rich, standalone structural bioinformatics

toolkit such as BioPython or Biotite.

2.5 Data Availability

Our code to run predefined workflows exists in our GitHub repository (https://

github.com/bouralab/Prop3D) with scripts to set up HSDS and Kubernetes if run-

ning on your local system through k3s.

The pre-calculated features and data splits for 20 superfamlies exist in our HSDS

endpoint at the University of Virginia (hdf5://uvaarc01.virgnia.edu/bournelab/

Prop3D.h5) with the raw HDF5 on Zenodo (https://doi.org/10.5281/zenodo.6873024).

These features can be read into a python program using h5pyd, our Prop3D li-

brary (https://github.com/bouralab/Prop3D), or through custom PyTorch data load-

ers available in our DeepUrfold (https://github.com/bouralab/DeepUrfold) GitHub

https://github.com/bouralab/Prop3D
https://github.com/bouralab/Prop3D
hdf5://uvaarc01.virgnia.edu/bournelab/Prop3D.h5
hdf5://uvaarc01.virgnia.edu/bournelab/Prop3D.h5
https://doi.org/10.5281/zenodo.6873024
https://github.com/bouralab/Prop3D
https://github.com/bouralab/DeepUrfold

83

repository. Finally, all of our Docker-ized tools can also be obtained from our Docker

Hub at https://hub.docker.com/u/edraizen

We use Wikidata to cite the software we use as well create links to our code and data

repositories (Q108040542).

Acknowledgements

We would like to thank Lane Rasberry for help editing the manuscript and providing

support for Wikidata. We also thank Menuka Jaiswal, Saad Saleem, and Yonghyeon

Kweon for early efforts on this project. Portions of this work were supported by the

University of Virginia and NSF CAREER award MCB-1350957. EJD was supported

by a University of Virginia Presidential Fellowship in Data Science.

https://hub.docker.com/u/edraizen
https://www.wikidata.org/wiki/Q108040542

84

Figure 2.6: Hierarchical structure of Prop3D. The inherently hierarchical struc-
ture of CATH (A) is mirrored in the design schema underlying the Prop3D dataset
(B), as illustrated here. Prop3D can be accessed as an HDF5 file seeded with the
CATH hierarchy for all available superfamilies. For clarity, an example of one such
superfamily is the individual H-group 2.60.40.10 (Immunoglobulins) shown here as
the orange sector (denoted by an asterisk near 4 o’clock). Each such superfamily
is further split into (i) the domain groups, with datasets provided for each domain
(atomic features, residue features, and edge features), as delineated in the upper-half
of (B), and (ii) pre-calculated data splits, shown in the lower-half of (B), which exist
as hard-links (denoted as dashed green lines) to domain groups. (The ‘sunburst’ style
CATH diagram, from cathdb.info, is under the Creative Commons Attribution 4.0
International License.

85

Figure 2.7: Cloud-based access to the Prop3D dataset with HSDS. HSDS
creates Service Nodes, which are containers that handle query requests from the
clients, and Data Nodes, which are containers that access the object storage in an
efficient distributed manner. The Prop3D dataset can be used as input to train a
machine learning model by either accessing the data through the python library h5pyd
or though the DeepUrfold Python package that contains PyTorch data loaders [12].
accessed using Figure modified from the HSDS webpage available under an Apache
2.0 licenese (compatible with CC-by-4.0).

86

Figure 2.8: Improved training runtime when using HSDS. We trained an
Immuniglobulic specific variational autoencoder with ≈25K domain structures using
64 cpus to process data and 4 gpus for 30 epochs [12]. A. Before we implemented
HSDS, we stored domain structures as PDB files (parsed with BioPython) along with
biophysical properties for all atoms in these PDB in separate PDB files as CSV files
(parsed with Pandas). This took ≈24 hours to read ≈50K ASCII files. B. After we
streamlined our process with HSDS, we improved our training runtime by ≈8 hours
(total ≈16 hours) and more efficient CPU usage while reading all of the data. Images
exported from our Weights and Biases training dashboard.

87

Bibliography

[1] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,

Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek,

Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J.

Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub

Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy,

Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer,

Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray

Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein

structure prediction with AlphaFold. Nature, 596(7873):583–589, July 2021.

[2] Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy

Natassia, Galabina Yordanova, David Yuan, Oana Stroe, Gemma Wood, Agata

Laydon, Augustin Žídek, Tim Green, Kathryn Tunyasuvunakool, Stig Petersen,

John Jumper, Ellen Clancy, Richard Green, Ankur Vora, Mira Lutfi, Michael

Figurnov, Andrew Cowie, Nicole Hobbs, Pushmeet Kohli, Gerard Kleywegt,

Ewan Birney, Demis Hassabis, and Sameer Velankar. AlphaFold protein struc-

ture database: massively expanding the structural coverage of protein-sequence

space with high-accuracy models. Nucleic Acids Research, 50(D1):D439–D444,

November 2021.

[3] S F Altschul, T L Madden, A A Schäffer, J Zhang, Z Zhang, W Miller, and

D J Lipman. Gapped blast and psi-blast: a new generation of protein database

search programs. Nucleic Acids Research, 25(17):3389–3402, Sep 1997.

88

[4] Yang Zhang and Jeffrey Skolnick. Tm-align: a protein structure alignment al-

gorithm based on the tm-score. Nucleic Acids Research, 33(7):2302–2309, Apr

2005.

[5] Sean Whalen, Jacob Schreiber, William S. Noble, and Katherine S. Pollard.

Navigating the pitfalls of applying machine learning in genomics. Nature Reviews

Genetics, 23(3):169–181, November 2021.

[6] Robbie P. Joosten, Fei Long, Garib N. Murshudov, and Anastassis Perrakis. The

PDB_REDO server for macromolecular structure model optimization. IUCrJ,

1(4):213–220, May 2014.

[7] Peter Eastman, Jason Swails, John D. Chodera, Robert T. McGibbon, Yutong

Zhao, Kyle A. Beauchamp, Lee-Ping Wang, Andrew C. Simmonett, Matthew P.

Harrigan, Chaya D. Stern, Rafal P. Wiewiora, Bernard R. Brooks, and Vijay S.

Pande. OpenMM 7: Rapid development of high performance algorithms for

molecular dynamics. PLOS Computational Biology, 13(7):e1005659, July 2017.

[8] Dan Graur and Wen-Hsiung Li. Fundamentals of molecular evolution. Oxford

University Press, New York, NY, 2 edition, October 1999.

[9] Stephen K Burley, Charmi Bhikadiya, Chunxiao Bi, Sebastian Bittrich, Li Chen,

Gregg V Crichlow, Cole H Christie, Kenneth Dalenberg, Luigi Di Costanzo,

Jose M Duarte, Shuchismita Dutta, Zukang Feng, Sai Ganesan, David S

Goodsell, Sutapa Ghosh, Rachel Kramer Green, Vladimir Guranović, Dmytro

Guzenko, Brian P Hudson, Catherine L Lawson, Yuhe Liang, Robert Lowe,

Harry Namkoong, Ezra Peisach, Irina Persikova, Chris Randle, Alexander Rose,

Yana Rose, Andrej Sali, Joan Segura, Monica Sekharan, Chenghua Shao, Yi-Ping

Tao, Maria Voigt, John D Westbrook, Jasmine Y Young, Christine Zardecki, and

89

Marina Zhuravleva. RCSB protein data bank: powerful new tools for exploring

3d structures of biological macromolecules for basic and applied research and ed-

ucation in fundamental biology, biomedicine, biotechnology, bioengineering and

energy sciences. Nucleic Acids Research, 49(D1):D437–D451, November 2020.

[10] Adam J. Riesselman, John B. Ingraham, and Debora S. Marks. Deep generative

models of genetic variation capture the effects of mutations. Nature Methods,

15(10):816–822, September 2018.

[11] Ian Walsh, Gianluca Pollastri, and Silvio C E Tosatto. Correct machine learning

on protein sequences: a peer-reviewing perspective. Brief. Bioinform., 17(5):831–

840, September 2016.

[12] Eli J. Draizen, Stella Veretnik, Cameron Mura, and Philip E. Bourne. Deep

generative models of protein structure uncover distant relationships across a

continuous fold space. bioRxiv, 2022.

[13] The UniProt Consortium. UniProt: The universal protein knowledgebase in

2021. Nucleic Acids Research, 49(D1):D480–D489, November 2020.

[14] Ian Sillitoe, Nicola Bordin, Natalie Dawson, Vaishali P Waman, Paul Ash-

ford, Harry M Scholes, Camilla S M Pang, Laurel Woodridge, Clemens Rauer,

Neeladri Sen, Mahnaz Abbasian, Sean Le Cornu, Su Datt Lam, Karel Berka,

Ivana Hutařová Varekova, Radka Svobodova, Jon Lees, and Christine A Orengo.

CATH: increased structural coverage of functional space. Nucleic Acids Research,

49(D1):D266–D273, November 2020.

[15] Inbal Halperin, Dariya S Glazer, Shirley Wu, and Russ B Altman. The FEA-

TURE framework for protein function annotation: modeling new functions, im-

90

proving performance, and extending to novel applications. BMC Genomics,

9(S2), September 2008.

[16] Michael Bernhofer, Christian Dallago, Tim Karl, Venkata Satagopam, Michael

Heinzinger, Maria Littmann, Tobias Olenyi, Jiajun Qiu, Konstantin Schütze,

Guy Yachdav, Haim Ashkenazy, Nir Ben-Tal, Yana Bromberg, Tatyana Gold-

berg, Laszlo Kajan, Sean O’Donoghue, Chris Sander, Andrea Schafferhans, Avner

Schlessinger, Gerrit Vriend, Milot Mirdita, Piotr Gawron, Wei Gu, Yohan Jarosz,

Christophe Trefois, Martin Steinegger, Reinhard Schneider, and Burkhard Rost.

PredictProtein - Predicting Protein Structure and Function for 29 Years. Nucleic

Acids Research, 49(W1):W535–W540, 05 2021.

[17] Bi Zhao, Akila Katuwawala, Christopher J Oldfield, A Keith Dunker, Eshel

Faraggi, Jörg Gsponer, Andrzej Kloczkowski, Nawar Malhis, Milot Mirdita, Zo-

ran Obradovic, Johannes Söding, Martin Steinegger, Yaoqi Zhou, and Lukasz

Kurgan. DescribePROT: database of amino acid-level protein structure and

function predictions. Nucleic Acids Research, 49(D1):D298–D308, October 2020.

[18] Raphael J. L. Townshend, Martin Vögele, Patricia Suriana, Alexander Derry,

Alexander Powers, Yianni Laloudakis, Sidhika Balachandar, Bowen Jing, Bran-

don Anderson, Stephan Eismann, Risi Kondor, Russ B. Altman, and Ron O.

Dror. Atom3d: Tasks on molecules in three dimensions. arXiv, 2020.

[19] Mohammed AlQuraishi. ProteinNet: a standardized data set for machine learn-

ing of protein structure. BMC Bioinformatics, 20(1), June 2019.

[20] Jonathan E. King and David Ryan Koes. Sidechainnet: An all-atom protein

structure dataset for machine learning, 2020.

91

[21] J Jiménez, S Doerr, G Martínez-Rosell, A S Rose, and G De Fabritiis. DeepSite:

protein-binding site predictor using 3d-convolutional neural networks. Bioinfor-

matics, 33(19):3036–3042, May 2017.

[22] Martin Simonovsky and Joshua Meyers. DeeplyTough: Learning structural com-

parison of protein binding sites. Journal of Chemical Information and Modeling,

60(4):2356–2366, February 2020.

[23] Fabian B. Fuchs, Daniel E. Worrall, Volker Fischer, and Max Welling. Se(3)-

transformers: 3d roto-translation equivariant attention networks. CoRR,

abs/2006.10503, 2020.

[24] Denis Yuen, Louise Cabansay, Andrew Duncan, Gary Luu, Gregory Hogue,

Charles Overbeck, Natalie Perez, Walt Shands, David Steinberg, Chaz Reid,

Nneka Olunwa, Richard Hansen, Elizabeth Sheets, Ash O’Farrell, Kim Cullion,

Brian D O’Connor, Benedict Paten, and Lincoln Stein. The dockstore: enhanc-

ing a community platform for sharing reproducible and accessible computational

protocols. Nucleic Acids Research, 49(W1):W624–W632, May 2021.

[25] Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. Singularity: Sci-

entific containers for mobility of compute. PLOS ONE, 12(5):e0177459, May

2017.

[26] John Vivian, Arjun Arkal Rao, Frank Austin Nothaft, Christopher Ketchum,

Joel Armstrong, Adam Novak, Jacob Pfeil, Jake Narkizian, Alden D Deran,

Audrey Musselman-Brown, Hannes Schmidt, Peter Amstutz, Brian Craft, Mary

Goldman, Kate Rosenbloom, Melissa Cline, Brian O'Connor, Megan Hanna,

Chet Birger, W James Kent, David A Patterson, Anthony D Joseph, Jingchun

Zhu, Sasha Zaranek, Gad Getz, David Haussler, and Benedict Paten. Toil enables

92

reproducible, open source, big biomedical data analyses. Nature Biotechnology,

35(4):314–316, April 2017.

[27] Marcin Cieślik and Cameron Mura. A lightweight, flow-based toolkit for parallel

and distributed bioinformatics pipelines. BMC Bioinformatics, 12:61, February

2011.

[28] JPGLM Rodrigues, JMC Teixeira, M Trellet, and AMJJ Bonvin. pdb-tools: a

swiss army knife for molecular structures. F1000Research, 7(1961), 2018.

[29] Benjamin Webb and Andrej Sali. Comparative protein structure modeling using

MODELLER. Current Protocols in Bioinformatics, 54(1), June 2016.

[30] Georgii G. Krivov, Maxim V. Shapovalov, and Roland L. Dunbrack. Improved

prediction of protein side-chain conformations with SCWRL4. Proteins: Struc-

ture, Function, and Bioinformatics, 77(4):778–795, May 2009.

[31] T. J. Dolinsky, P. Czodrowski, H. Li, J. E. Nielsen, J. H. Jensen, G. Klebe,

and N. A. Baker. PDB2pqr: expanding and upgrading automated preparation

of biomolecular structures for molecular simulations. Nucleic Acids Research,

35(Web Server):W522–W525, May 2007.

[32] Elizabeth Jurrus, Dave Engel, Keith Star, Kyle Monson, Juan Brandi, Lisa E.

Felberg, David H. Brookes, Leighton Wilson, Jiahui Chen, Karina Liles, Minju

Chun, Peter Li, David W. Gohara, Todd Dolinsky, Robert Konecny, David R.

Koes, Jens Erik Nielsen, Teresa Head-Gordon, Weihua Geng, Robert Krasny,

Guo-Wei Wei, Michael J. Holst, J. Andrew McCammon, and Nathan A. Baker.

Improvements to the scpAPBS/scp biomolecular solvation software suite. Protein

Science, 27(1):112–128, October 2017.

93

[33] A. Pintar, O. Carugo, and S. Pongor. CX, an algorithm that identifies protruding

atoms in proteins. Bioinformatics, 18(7):980–984, July 2002.

[34] Jack Kyte and Russell F. Doolittle. A simple method for displaying the hydro-

pathic character of a protein. Journal of Molecular Biology, 157(1):105–132, May

1982.

[35] Tara Hessa, Hyun Kim, Karl Bihlmaier, Carolina Lundin, Jorrit Boekel, He-

lena Andersson, IngMarie Nilsson, Stephen H. White, and Gunnar von Heijne.

Recognition of transmembrane helices by the endoplasmic reticulum translocon.

Nature, 433(7024):377–381, January 2005.

[36] William C. Wimley and Stephen H. White. Experimentally determined hy-

drophobicity scale for proteins at membrane interfaces. Nature Structural &

Molecular Biology, 3(10):842–848, October 1996.

[37] Simon Mitternacht. FreeSASA: An open source c library for solvent accessible

surface area calculations. F1000Research, 5:189, February 2016.

[38] Wolfgang Kabsch and Christian Sander. Dictionary of protein secondary struc-

ture: Pattern recognition of hydrogen-bonded and geometrical features. Biopoly-

mers, 22(12):2577–2637, December 1983.

[39] Spencer Bliven, Aleix Lafita, Althea Parker, Guido Capitani, and Jose M.

Duarte. Automated evaluation of quaternary structures from protein crystals.

PLOS Computational Biology, 14(4):e1006104, April 2018.

[40] The HDF Group. Hierarchical Data Format, version 5, 1997-NNNN.

https://www.hdfgroup.org/HDF5/.

94

[41] Bilal Shaikh, Gnaneswara Marupilla, Mike Wilson, Michael L Blinov, Ion I

Moraru, and Jonathan R Karr. RunBioSimulations: an extensible web appli-

cation that simulates a wide range of computational modeling frameworks, algo-

rithms, and formats. Nucleic Acids Research, 49(W1):W597–W602, May 2021.

[42] Nicolas Renaud, Cunliang Geng, Sonja Georgievska, Francesco Ambrosetti, Lars

Ridder, Dario F. Marzella, Manon F. Réau, Alexandre M. J. J. Bonvin, and Li C.

Xue. DeepRank: a deep learning framework for data mining 3d protein-protein

interfaces. Nature Communications, 12(1), December 2021.

[43] M. Réau, N. Renaud, L. C. Xue, and A. M. J. J. Bonvin. Deeprank-gnn: A

graph neural network framework to learn patterns in protein-protein interfaces.

bioRxiv, dec 2021.

[44] Andrew Freiburger, Bilal Shaikh, and Jonathan Karr. Biosimulations: a platform

for sharing and reusing biological simulations, Feb 2022.

[45] Helen M. Berman. The protein data bank: a historical perspective. Acta Crys-

tallographica Section A Foundations of Crystallography, 64(1):88–95, December

2007.

[46] Philip E. Bourne, Helen M. Berman, Brian McMahon, Keith D. Watenpaugh,

John D. Westbrook, and Paula M.D. Fitzgerald. [30] macromolecular crystal-

lographic information file. In Methods in Enzymology, pages 571–590. Elsevier,

1997.

[47] Anthony R. Bradley, Alexander S. Rose, Antonín Pavelka, Yana Valasatava,

Jose M. Duarte, Andreas Prlić, and Peter W. Rose. MMTF—an efficient file

format for the transmission, visualization, and analysis of macromolecular struc-

tures. PLOS Computational Biology, 13(6):e1005575, June 2017.

95

[48] Yana Valasatava, Anthony R. Bradley, Alexander S. Rose, Jose M. Duarte, An-

dreas Prlić, and Peter W. Rose. Towards an efficient compression of 3d coordi-

nates of macromolecular structures. PLOS ONE, 12(3):e0174846, March 2017.

[49] A. Bondi. van der waals volumes and radii. The Journal of Physical Chemistry,

68(3):441–451, March 1964.

96

Supplemental Information

Name Description Wikidata entry

BLAST search sequences (or groups of sequences) against the NR database or
custom database

Q286820

DeepSequence A generative latent variable model for biological sequence families Q114841036
ESM Pretrained language models for proteins Q114841163

EVcouplings Evolutionary couplings from protein and RNA sequence alignments Q114841016
HMMER build hmmer models with a group of sequences or at a given level of

the CATH hierarchy, search a a group of sequences with a pretrained
model, or use jackhmmer starting from a single sequence

Q5631078

MMSeqs2 ultra fast and sensitive search and clustering suite Q114840759
MUSCLE Multiple Sequence Aligner Q6719088

SeqDesign Protein design and variant prediction using autoregressive generative
models

Q114841058

USEARCH High-throughput sequence search and clustering analysis tool Q114841186

Table 2.3: Sequence-based bioinformatics tools available in Prop3D.
Most of these tools have been dockerized, available at our Docker Hub
(https://hub.docker.com/u/edraizen)

Name Description/purpose (in this context) Wikidata entry

APBS Adaptive Poisson-Boltzmann Solver, used here to calculate the electro-
static potential for each atom in a given protein

Q65072984

Consurf Get pre-calculated conservation scores Q112888886
CNS Energy minimize a given structure Q5191443

CX Get curvature for each atom in a given protein Q114841750
DSSP calculate secondary structure and accessibility for each residue in a

given structure
Q5206192

EPPIC Calculate sequence conservation scores for a given protein and obtain
biologically relevant protein interactions (i.e., not resulting from crystal
packing)

Q114841783

foldseek Fast searching and clustering of protein structure databases Q114840749
FreeSASA Get solvent accessibility of each atom in a given protein Q114841793

Geometricus A structure-based, alignment-free embedding approach for proteins, uti-
lizing moment invariants

Q114840743

HADDOCK Dock two proteins or refine the conformation of two docked proteins Q114841798
MaxCluster Cluster very similar structures Q114840623

MGLTools Convert atom names to Autodock names and PDBQT Q114840701
MM-Align Align two protein complexes Q114841843

mTM-Align Multiple structure alignment Q114841813
MODELLER Create full atom structures from Cα only models, mutate structures

with different amino acids, ‘remodel structure’ to energy minimize, and
model loops

Q3859815

MSMS Calculate molecular surfaces and create meshes Q114841806
Multivalue Merge electrostatic values from multiple atoms. on a protein surface Q114840933
OpenBabel Convert to PDBQT format for AutoDock atom naming Q612752
PDB2PQR Protonate, debump hydrogens, and standardise naming in a given pro-

tein
Q62856803

pdb-tools Swiss army knife of tools to manipulate PDB files Q114840802
PRODIGY Predict binding affinties (Kd) and Fraction of Common contacts in

complexes
Q114840854

REDUCE Protonate and de-protonate structures Q114840896
SCWRL4 Correct side-chains using the Dunbrack rotamer library Q114840881
TM-Align Align two or more protein 3D structures Q114840775

Table 2.4: Structural bioinformatics software available in Prop3D.
Most of these tools have been dockerized, available at our Docker Hub
(https://hub.docker.com/u/edraizen)

https://www.wikidata.org/wiki/Q286820
https://www.wikidata.org/wiki/Q114841036
https://www.wikidata.org/wiki/Q114841163
https://www.wikidata.org/wiki/Q114841016
https://www.wikidata.org/wiki/Q5631078
https://www.wikidata.org/wiki/Q114840759
https://www.wikidata.org/wiki/Q6719088
https://www.wikidata.org/wiki/Q114841058
https://www.wikidata.org/wiki/Q114841186
https://hub.docker.com/u/edraizen
https://www.wikidata.org/wiki/Q65072984
https://www.wikidata.org/wiki/Q112888886
https://www.wikidata.org/wiki/Q5191443
https://www.wikidata.org/wiki/Q114841750
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q114841783
https://www.wikidata.org/wiki/Q114840749
https://www.wikidata.org/wiki/Q114841793
https://www.wikidata.org/wiki/Q114840743
https://www.wikidata.org/wiki/Q114841798
https://www.wikidata.org/wiki/Q114840623
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114841843
https://www.wikidata.org/wiki/Q114841813
https://www.wikidata.org/wiki/Q3859815
https://www.wikidata.org/wiki/Q114841806
https://www.wikidata.org/wiki/Q114840933
https://www.wikidata.org/wiki/Q612752
https://www.wikidata.org/wiki/Q62856803
https://www.wikidata.org/wiki/Q114840802
https://www.wikidata.org/wiki/Q114840854
https://www.wikidata.org/wiki/Q114840896
https://www.wikidata.org/wiki/Q114840881
https://www.wikidata.org/wiki/Q114840775
https://hub.docker.com/u/edraizen

97

Name Description/purpose (in this context) Wikidata entry

AlphaFold2 Deep learning-based code for high-accuracy protein 3D structure pre-
diction

Q107711739

AutoDock A suite of automated protein docking tools Q4826062
AWS Amazon Web Services, on-demand cloud computing platforms Q456157

BioPython General-purpose collection of open-source tools for computational biol-
ogy

Q4118434

Biotite A comprehensive library for computational molecular biology Q114859551
Docker Open-source software for deploying containerized applications Q15206305
HDF5 Hierarchical Data Format, version 5 Q1069215
HSDS Cloud-native, service based access to HDF data Q114859023
h5pyd Python client library for HDF5 REST interface Q114859536

Kubernetes Software to manage containers on a server-cluster Q22661306
k3s A light-weight Kubernetes distribution for small servers Q114860267

MinIO Cloud storage server compatible with Amazon S3 Q28956397
NumPy Numerical programming package for the Python programming language Q197520
Pandas Python library for data manipulation and analysis Q15967387

PyTorch Open-source, Python-based machine learning library Q47509047
Toil Enables creation and deployment of massively parallel workflows in

Python
Q114858329

Singularity Open-source container software for scientific environments Q51294208
SLURM Free and open-source job scheduler for Linux and similar computers to

create a compute cluster
Q3459703

Oracle Grid Engine Supercomputer batch-queuing system Q2708256
Weights and Biases (wandb) Python library to track machine learning experiments, version data and

manage models
Q107382092

Table 2.5: Other mentioned software.

Feature Voxel Ag-

gregation

Rule

Residue

Aggre-

gation

Rule

Source Software or

Database

Wikidata entry

H max MGLTools Q114840701

HD max MGLTools Q114840701

HS max MGLTools Q114840701

C max MGLTools Q114840701

A max MGLTools Q114840701

N max MGLTools Q114840701

NA max MGLTools Q114840701

NS max MGLTools Q114840701

OA max MGLTools Q114840701

OS max MGLTools Q114840701

F max MGLTools Q114840701

MG max MGLTools Q114840701

P max MGLTools Q114840701

SA max MGLTools Q114840701

S max MGLTools Q114840701

CL max MGLTools Q114840701

CA max MGLTools Q114840701

MN max MGLTools Q114840701

FE max MGLTools Q114840701

ZN max MGLTools Q114840701

BR max MGLTools Q114840701

I max MGLTools Q114840701

Unk_atom max MGLTools Q114840701

C_elem max PDB File

N_elem max PDB File

O_elem max PDB File

Continued on next page

https://www.wikidata.org/wiki/Q107711739
https://www.wikidata.org/wiki/Q4826062
https://www.wikidata.org/wiki/Q456157
https://www.wikidata.org/wiki/Q4118434
https://www.wikidata.org/wiki/Q114859551
https://www.wikidata.org/wiki/Q15206305
https://www.wikidata.org/wiki/Q1069215
https://www.wikidata.org/wiki/Q114859023
https://www.wikidata.org/wiki/Q114859536
https://www.wikidata.org/wiki/Q22661306
https://www.wikidata.org/wiki/Q114860267
https://www.wikidata.org/wiki/Q28956397
https://www.wikidata.org/wiki/Q197520
https://www.wikidata.org/wiki/Q15967387
https://www.wikidata.org/wiki/Q47509047
https://www.wikidata.org/wiki/Q114858329
https://www.wikidata.org/wiki/Q51294208
https://www.wikidata.org/wiki/Q3459703
https://www.wikidata.org/wiki/Q2708256
https://www.wikidata.org/wiki/Q107382092
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701

98

Feature Voxel Ag-

gregation

Rule

Residue

Aggre-

gation

Rule

Source Software or

Database

Wikidata entry

S_elem max PDB File

H_elem max PDB File

F_elem max PDB File

MG_elem max PDB File

P_elem max PDB File

CL_elem max PDB File

CA_elem max PDB File

MN_elem max PDB File

FE_elem max PDB File

ZN_elem max PDB File

BR_elem max PDB File

I_elem max PDB File

Unk_elem max PDB File

vdw mean ✓ [49]

partial charge (charge) mean sum Pdb2Pqr Q62856803

electrostatic_potential mean sum APBS Q65072984

concavity (cx) mean mean CX Q114841750

hydrophobicity mean ✓ Kyte-Doolittle [34]

biological_hydrophobicity mean ✓ [35]

octanal_hydrophobicity mean ✓ Wimley-White [36]

atom_asa mean FreeSASA Q114841793

residue_rasa mean ✓ DSSP Q5206192

ALA max ✓ PDB File

CYS max ✓ PDB File

ASP max ✓ PDB File

GLU max ✓ PDB File

PHE max ✓ PDB File

GLY max ✓ PDB File

HIS max ✓ PDB File

ILE max ✓ PDB File

LYS max ✓ PDB File

LEU max ✓ PDB File

MET max ✓ PDB File

ASN max ✓ PDB File

PRO max ✓ PDB File

GLN max ✓ PDB File

ARG max ✓ PDB File

SER max ✓ PDB File

THR max ✓ PDB File

VAL max ✓ PDB File

TRP max ✓ PDB File

TYR max ✓ PDB File

Unk_residue max ✓ PDB File

phi mean ✓ BioPython Q4118434

phi_sin mean ✓ NumPy

phi_cos mean ✓ NumPy

psi mean ✓ BioPython Q4118434.

Continued on next page

https://www.wikidata.org/wiki/Q62856803
https://www.wikidata.org/wiki/Q65072984
https://www.wikidata.org/wiki/Q114841750
https://www.wikidata.org/wiki/Q114841793
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q4118434
https://www.wikidata.org/wiki/Q4118434

99

Feature Voxel Ag-

gregation

Rule

Residue

Aggre-

gation

Rule

Source Software or

Database

Wikidata entry

psi_sin mean ✓ NumPy

psi_cos mean ✓ NumPy

is_helix max ✓ DSSP Q5206192

is_sheet max ✓ DSSP Q5206192

Unk_SS max ✓ DSSP Q5206192

is_regular_helix max ✓ DSSP Q5206192

is_beta_bridge max ✓ DSSP Q5206192

is_extended_strand max ✓ DSSP Q5206192

is_310_helix max ✓ DSSP Q5206192

is_pi_helix max ✓ DSSP Q5206192

is_hbond_turn max ✓ DSSP Q5206192

is_bend max ✓ DSSP Q5206192

no_ss max ✓ DSSP Q5206192

hydrophobic_atom max MGLTools Q114840701

aromatic_atom max MGLTools Q114840701

hbond_acceptor max MGLTools Q114840701

hbond_donor max MGLTools Q114840701

metal max MGLTools Q114840701

eppic_entropy min ✓ EPPIC Q114841783

Table 2.6: All calculated and extracted features. Voxel aggregation method is
used to combine two or more atom features if they occupy the same voxels after van
der walls sphere volume voxelation. Residue Aggregation Rule is how the feature is
aggregated from atom to residue if present in the residue feature. A ✓ indicates if
the feature was calculated at the residue level and mapped down to the atom level.

Continued on next page

Boolean Feature Source Feature Equality Threshold

neg_charge charge < 0.
pos_charge charge > 0

is_electronegative electrostatic_potential < 0.
is_concave cx ≤ 2

is_hydrophobic hydrophobicity > 0
residue_buried residue_rasa < 0.2

is_conserved eppic_entropy < 0.5

Table 2.7: Boolean Features converted from continuous values.

https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q5206192
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114840701
https://www.wikidata.org/wiki/Q114841783

100

Chapter 3

DeepUrfold: Deep Generative

Models of Protein Structure

Uncover Distant Relationships

Across a Continuous Fold Space

Eli J. Draizen1,2∗, Stella Veretnik2, Cameron Mura1,2∗, and Philip E. Bourne1,2

1Department of Biomedical Engineering, University of Virginia, Charlottesville, VA,

USA
2School of Data Science, University of Virginia, Charlottesville, VA, USA

∗To whom correspondence should be addressed.

Available on bioRxiv as https://doi.org/10.1101/2022.07.29.501943. Will sub-

mit to Bioinformatics.

https://doi.org/10.1101/2022.07.29.501943

101

Abstract

Motivation: Our views of fold space implicitly rest upon many assumptions that

impact how we analyze, interpret and understand biological systems—from protein

structure comparison and classification to function prediction and evolutionary anal-

yses. For instance, is there an optimal granularity at which to view protein structural

similarities (e.g., architecture, topology or some other level)? Similarly, the dis-

crete/continuous dichotomy of fold space is central in structural bioinformatics, but

remains unresolved. Discrete views of fold space bin ‘similar’ folds into distinct, non-

overlapping groups; unfortunately, such binning may inherently miss many remote

relationships. While hierarchical databases like CATH, SCOP and ECOD repre-

sent major steps forward in protein classification, a scalable, objective and conceptu-

ally flexible method, with less reliance on assumptions and heuristics, could enable

a more systematic and nuanced exploration of fold space, particularly as regards

evolutionarily-distant relationships.

Results: Building upon a recent ‘Urfold’ model of protein structure, we have devel-

oped a new approach to analyze protein structure relationships. Termed ‘DeepUrfold’,

the method is rooted in deep generative modeling, and we find it to be useful for com-

parative analysis across the protein universe. Critically, DeepUrfold leverages its deep

generative model’s embeddings, which represent a distilled, lower-dimensional space

of a given protein and its amalgamation of sequence, structure and biophysical prop-

erties. Notably, DeepUrfold is structure-guided, versus being purely structure-based,

and its architecture allows each trained model to learn protein features (structural

and otherwise) that, in a sense, ‘define’ different superfamilies. Deploying DeepUr-

fold with CATH suggests a new, mostly-continuous view of fold space—a view that

extends beyond simple 3D structural/geometric similarity, towards the realm of inte-

102

grated sequence↔structure↔function properties. We find that such an approach can

quantitatively represent and detect evolutionarily-remote relationships that evade ex-

isting methods.

Availability: Our results can be explored at https://bournelab.org/research/DeepUrfold/;

code is available at http://www.github.com/bouralab/DeepUrfold and data are at

https://doi.org/10.5281/zenodo.6916524.

Contact: e.draizen@gmail.com and cmura@virginia.edu

Supplementary information: Supplementary data are available at Bioinformatics

online.

3.1 Introduction

The precise historical trajectory of the protein universe [1] remains quite murky, and

likely corresponds to an evolution from (proto-)peptides, to protein domains, to multi-

domain proteins [2]. Presumably, the protein universe—by which we mean the set of

all proteins (known or unknown, ancestral or extent)—did not spontaneously arise

with intact, full-sized domains. Rather, smaller, sub-domain–sized protein fragments

likely preceded more modern domains; the genomic elements encoding these primitive

fragments were subject to natural evolutionary processes of duplication, mutation

and recombination to give rise to extant domains found in contemporary proteins

[2, 3, 4, 5, 6]. Our ability to detect common polypeptide fragments, shared amongst

at least two domains (in terms of either sequence or structure), relies upon (i) having

an accurate similarity metric and (ii) a suitable random/background distribution

(i.e., null model) for distances under this metric; historically, such metrics have been

rooted in the comparison of either amino acid sequences or three-dimensional (3D)

https://bournelab.org/research/DeepUrfold/
http://www.github.com/bouralab/DeepUrfold
https://doi.org/10.5281/zenodo.6916524
e.draizen@gmail.com
cmura@virginia.edu

103

structures, often for purposes of exploring protein fold space.

Figure 3.1: Overview of the Urfold model and DeepUrfold approach to
identify domains that might reflect the phenomenon of ‘architectural sim-
ilarity despite topological variability.’ (A) The SH3 and OB domains are pro-
totypical members of the small β-barrel (SBB) urfold because they have the same
barrel architecture, yet different strand topologies: they have strikingly similar 3D
structures and share extensive functional similarities (e.g. PPI binding on the same
edge-strand, involvement in nucleic acid–binding and processing pathways [7, 8]), yet
these similarities are obscured by the SH3 and OB superfolds having been classified
differently. In the case of the SBB urfold, the loops linking the strands are permuted
in the SH3 and OB, yielding the different topologies seen in their 3D superposition.
(B) If the Urfold phenomenon is viewed in terms of CATH, it is hypothesized to be
a discrete structural entity that lies between the Architecture and Topology strata,
as schematized here. (C) DeepUrfold, which applies deep learning to the Urfold con-
ceptualization of protein structure, identifies new potential urfolds by creating 20
SF-specific VAE neural network models and comparing output scores from all rep-
resentative domains from those superfamilies (numbering 3,654) to every other SF
model. As the first-computed metric, we can imagine comparing the latent variables
from domain representatives using models trained on the same SF (colored lines; see
Fig. 3.3); then, we also perform an all-vs-all comparison to begin mapping fold space,
which we (non-hierarchically) cluster via stochastic block models (SBMs; Fig. 3.4).

104

3.1.1 Fold Space, Structural Transitions & Fragments

Fold space1, as the collection of all unique protein folds, is a many-to-one mapping:

vast swaths of sequence space map to fold A, another vast swath maps to fold B,

a narrower range might map to fold C, and so on. Two proteins that are closely

related (evolutionarily) might adopt quite similar folds (A, A′), leading to their prox-

imity in this high-dimensional space. Traditionally, fold space has been examined

by hierarchically clustering domains based upon 3D structure comparison; in such

approaches, whatever metric is used for the comparison can be viewed as structuring

the space. The transition of a protein sequence from one fold to another, whether it

be nearby (A → A′) or more distant (A → B), and be it naturally (via evolution)

or artificially (via design/engineering), likely occurs over multiple intermediate steps.

These mechanistic steps include processes such as combining or permuting short sec-

ondary structural segments or longer segments (such as whole secondary structural

elements [SSEs]), or mutating individual residues via nonsynonymous substitutions

[10, 11, 12, 13, 5]. In general, each such step may yield a new 3D structure, and that

structure may correspond to the same or a different fold. Similarities across these

transitional states blur the boundaries that delineate distinct groups—increasing or

decreasing a relatively arbitrary and heuristic quantity (such as an RMSD or other

similarity threshold) can change which structures belong to which groups. In this

sense, the discrete versus continuous duality of fold space can be viewed largely as

a matter of semantics or thresholding, versus any ‘real’ (intrinsic or fundamental)

feature of the space itself [14].

Despite their limitations, it was pairwise similarity metrics in structure space that

1The term ”protein structure space” means the set of all protein 3D structures, known and
unknown; the term ”fold space” refers to the set of all protein folds. Though not strictly equivalent
[9], we treat these terms interchangeably here.

105

first indicated remote connections in a continuous fold space via shared fragments

[15] and references therein). In an early landmark study, [16] created an all-by-all

similarity matrix from 3D structural alignments and discovered that the protein uni-

verse harbors five peptide ‘attractors’, representing frequently-adopted folding motifs

(e.g., the β-meander). Later, similar pairwise analyses across protein structure space

showed that ‘all-α’ and ‘all-β’ proteins are separated by ‘α/β’ proteins [17]. All-by-all

similarity metrics for full domains (or fragments thereof) can be equivalently viewed

as a graph-theoretic adjacency matrix, thus enabling the creation of a network rep-

resentation of fold space. Such networks have been found to be nearly connected,

linking domains in 4-8 hops [18, 19, 20].

Graph-based representations of individual proteins have also motivated the study of

common short (sub-domain) fragments. In pioneering studies, [21, 22] found maximal

common cliques of connected SSEs in a graph-based protein representation; their

model took SSEs (helices, strands) as vertices and mapped the pairwise geometric

relationships between SSEs (distances, angles, etc.) to the graph’s edges. In that

work, 80% of folds shared common cliques with other folds, and these were quantified

by a new term called ‘gregariousness’.

Although short, sub-domain–sized peptide fragments have been thoroughly studied,

relatively few approaches have taken an evolutionary perspective, in the context of a

continuous fold space. [23] identified common loop fragments flanked by SSEs, called

Elementary Functional Loops (EFL), that couple in 3D space to perform enzymatic

activity. [6] noticed that peptide fragments, called ‘protodomains’, are often com-

posed (with C2 internal symmetry) to give a larger, full-sized domain. Most recently,

[4] identified common fragments between metal-binding proteins using ‘sahle’, a new

length-dependent structural alignment similarity metric.

106

The two state-of-the-art, evolution-based fragment libraries that are currently avail-

able, namely ‘primordial peptides’ [2] and ‘themes’ [24], involved creation of a set

of common short peptide fragments based on HHsearch [25] profiles for proteins

in SCOP and ECOD, respectively. The sizes of the libraries created by these two

sequence-driven approaches (40 primordial peptides, 2195 themes) vary greatly, re-

flecting different stringencies of thresholds (and, ultimately, their different goals).

Another approach to study shared, commonly-occurring fragments is to represent

a protein domain as a vector of fragments. For example, the FragBag method [26]

describes a protein by the occurrence of fragments in a clustered fragment library [27].

A recent and rather unique approach, Geometricus [28], creates protein embeddings

by taking two parallel approaches to fragmentation: (i) a k-mer based fragmentation

runs along the sequence (yielding contiguous segments), while (ii) a radius-based

fragmentation uses the method of spatial moment invariants to compute (potentially

non-contiguous) geometric ‘fragments’ for each residue position and its neighborhood

within a given radius, which are then mapped to ‘shape-mers’. Conceptually, this

allowance for discontinuous fragments is a key step in allowing an algorithm to bridge

more of fold space, as similarities between such non-contiguous fragments can imply

an ancestral (contiguous) polypeptide that duplicated and lost one or more N - or

C-terminal SSEs in a ”creative destruction” process that yields two different folds

(i.e., different topologies) but similar architectures [13, 5].

3.1.2 Limitations of Hierarchical Systems, The Urfold

The conventional view of fold space as the constellation of all folds, grouped by their

similarities to one another, largely rests upon pioneering work in hierarchically clus-

107

tering domains based upon 3D structure comparison, as exemplified in databases

such as CATH [29], SCOP [30, 31], and ECOD [32]. Despite being some of the

most comprehensive resources available in protein science, these databases have in-

trinsic limitations that stem from their fundamental structuring scheme, reflecting

assumptions and constraints of any hierarchical system (e.g., assigning a given pro-

tein sequence to one mutually exclusive bin versus others); in this design schema,

domains with the same fold or superfamily (SF) cluster discretely into their own in-

dependent ‘islands’. The difficulty in smoothly traversing fold space as represented by

these databases—e.g., hop from island-to-island or create ‘bridges’ between islands in

fold space—implies that some folds have no well-defined or discernible relationships

to others. That is, we miss the weak or more indeterminate (but nevertheless bona

fide) signals of remote relationships that link distantly-related folds. In addition to

the constraints of mutually exclusive clustering, the 3D structural comparisons used

in building these databases generally rely upon fairly rigid spatial criteria, such as

requiring identical topologies for two entities to group together at the finer (more

homologous) classification levels. What relationships might be detectable if we relax

the constraints of strict topological identity? As described below, this question is

addressed by a recently proposed ‘Urfold’ model of protein structure [7, 9], which

allows for sub–domain-level similarity.

Motivated by striking structure/function similarities across disparate superfamilies,

we recently identified relationships between several SFs that exhibit architectural

similarity despite topological variability, in a new level of structural granularity that

allows for discontinuous fragments and that we termed the ‘Urfold’ (Fig. 3.1B; [7, 9]).

Urfolds2 were first described in small β-barrel (SBB) domains (Fig. 3.1A) based on

2We use the capitalized term ‘Urfold’ to refer to the concept/theory/model, as a general idea;
the lowercase ‘urfold’ is used when we intend for that specific instance of the word to be limited to

108

patterns of structure/function similarity (as well as sequence signatures in MSAs,

albeit more weakly) in deeply-divergent collections of proteins that adopted either

the SH3/Sm or OB superfolds [7]. Notably, the SH3 and OB are two of the most

ancient protein folds, and their antiquity is reflected in the fact that they permeate

much of information storage and processing pathways—i.e., the transcription and

translation apparatus—throughout all domains of life [13, 33].

3.1.3 DeepUrfold: Motivation & Overview

The advent of deep learning, including the application of such approaches to protein

sequence and structure representations, affords new opportunities to study protein

interrelationships in a wholly different manner—namely, via quantitative comparison

of ‘latent space’ representations of a protein in terms of its lower-dimensional ‘embed-

ding’; such embeddings can be at arbitrary levels of granularity (e.g., atomic), and can

subsume virtually any types of properties (such as amino acid type, physicochemical

features such as electronegatitivty, and phylogenetic conservation of the site). Two

powerful features of such approaches are that (i) models can be developed in statisti-

cally well-principled manner (or at least strive to be clear about their assumptions),

and (ii) models have the capacity to be integrative, by virtue of the encoding (or

(‘featurization’) of structural properties alongside phylogenetic, chemical, etc. char-

acteristics of the data (in this case, a protein 3D structure). The present work explores

the idea that viewing protein fold space in terms of latent spaces (what regions are

populated, with what densities, etc.)—and performing comparative analysis via such

spaces (versus in direct or ‘real’ 3D/geometric space)—is likely to implicitly harbor

a specific case (e.g., ”the SBB urfold”). Our goal is not to be dogmatic, but rather to be clear and
precise as this new concept is being developed.

109

deep information about protein interrelationships, over a vast multitude of protein

evolutionary timescales.

Here, we present a deep learning–based algorithm to systematically identify urfolds,

using a new alignment-free, biochemically-aware similarity metric of domain struc-

tures based on deep generative models and mixed-membership community detec-

tion. We leverage similarities in latent-spaces rather than simple/purely-geometric

3D structures directly, and we can encode any sort of biophysical or other types of

properties, thereby allowing more subtle similarities to be detected—such as may cor-

respond to architectural similarities among (dis-)contiguous fragments from different

folds or even superfolds (Fig. 3.1C).

3.2 Results

3.2.1 The DeepUrfold Computational Framework: Deep Gen-

erative Models

Conventionally, two protein structures that have similar architectures but varying

topologies (i.e., folds) are often thought of as resulting from convergent evolution.

However, as in the case with the SH3 and OB superfolds, the structure/function sim-

ilarities [7], and even sequence/structure/function similarities [13], can prove to be

quite striking, suggesting that these domain architectures did not arise independently

[6, 13] but rather are echoes of a (deep) homology. To study what may be even quite

weak 3D similarities, in DeepUrfold we model the evolutionary process giving rise to

proteins as an integrated 3D structure/properties ‘generator’. In so doing, we seek

to learn probability distributions, p(x|θ), that describe the specific geometries and

110

physicochemical properties of different folds (i.e., features that largely define protein

function), where the random variable x denotes a single structure drawn from (x ∈ x)

a set of structures labelled as having the same fold (x), and θ denotes the collection

of parameters describing the variational distribution over the background (i.e., la-

tent) parameters. We posit that folds with similar probabilistic distributions—which

can be loosely construed as ”structure↔function mappings”, under our feature-set—

likely have similar geometries/architectures and biophysical properties, regardless of

potentially differing topologies (i.e., they comprise an urfold), and that, in turn, may

imply a common evolutionary history.

Using the principles of variational inference, DeepUrfold learns the background dis-

tribution parameters θi for superfamily distributions, pi(xij|θi), by constructing and

training variational autoencoders (VAE) for each superfamily i and domain structure

j (in this work, DeepUrfold is developed using 20 highly-populated SFs from CATH;

see Fig 3.1C). The original/underlying posterior distribution, pi(xij|θi), is unknown

and intractable, but it can be approximated by modeling it as an easier-to-learn dis-

tribution, qi(zij|xi); in our case, the approximating distribution q(z|x) is taken as

sampling from a Gaussian. To ensure that qi(zij|xi) optimally describes pi(xij|θi),

we seek to maximize the evidence lower bound (ELBO) quantity, which is the lower

bound of the marginal likelihood of a single structure, ln[pi(xij)]. The ELBO inequal-

ity can be written as:

ln pi(xij) ≥ Eqi(zij |xi)[ln pi(xij|zij)] −

DKL[qi(zij|xij) || p(zij)]
(3.1)

where pi(xij) is the likelihood, E is the expectation value of q in terms of p, and

DKL[q||p] is the Kullback-Leibler divergence, or relative entropy, between the two

111

probability distributions q and p. In other words, maximizing the ELBO maximizes

the log-likelihood of our learned model, which corresponds to minimizing the entropy

or ‘distance’ (KL divergence) between (i) the true underlying distribution, p(x|θ), and

(ii) our learned/inferred posterior distribution of latent parameters given the data,

q(z|x). In a similar manner, part of DeepUrfold’s testing and development involved

training ”joint models” using a bag of SFs with different topologies, e.g. a mixed SH3

∪ OB set, while accounting for the class imbalance [34, 35] that stems from there

being vastly different numbers of available 3D structural data for different protein

SFs (e.g., disproportionately abundant immunoglobulin structures).

As input to the VAE, we encode the 3D structure of each protein domain by repre-

senting it as a 3D volumetric object, akin to the input used in 3D convolutional neural

networks (CNNs); indeed, DeepUrfold’s neural network architecture can be viewed as

a hybrid 3D CNN-based VAE. In our discretization, atoms are binned into voxels, each

of which can be tagged or labeled, atom-wise, with arbitrary properties (biophysical,

phylogenetic, etc.). This representation is agnostic of polypeptide chain topology,

as the covalent bonding information between residues, and the order of SSEs, is not

explicitly retained; note, however, that no information is lost by this representation,

as such information is implicit in the proximity of atom-occupied voxels in the model

(and can be used to unambiguously reconstruct the 3D structure).

3.2.2 DeepUrfold Models Can Detect Similarities among Topo-

logically -distinct, Architecturally-similar Proteins

To initially assess our SH3, OB and joint SH3/OB DeepUrfold models—and to exam-

ine the properties of the Urfold model more broadly—we directly tested the Urfold’s

112

Figure 3.2: Likelihood values can be used to quantify similarities among
multi-loop permuted structures. To gauge the sensitivity of our DeepUrfold
metric to loop orderings (topology) via generation of fictitious folds, we implemented
a multi-loop permutation algorithm ([36]) in order to systematically ‘scramble’ the
SSEs found in an SH3 domain (1k2A00) and an OB domain (1uebA03); in these loop
‘rewiring’ calculations, we stitched together the SSEs and energetically relaxed the
resultant 3D structures using the MODELLER suite. While 96 unique permutations
are theoretically possible for a 4-stranded β-sheet [7], only 55 SH3 and 274 OB per-
muted domains were able to be modeled, presumably because their geometries lie
within the radius of convergence of MODELLER (e.g., the loop-creation algorithm
did not have to span excessive distances in those cases). Each novel permuted struc-
ture was subjected to a DeepUrfold model that had been trained on all other domains
from either the (A) SH3, (B) OB, or (C) joint SH3/OB models. Fits to the model
were approximated by the ELBO score, which can be viewed as a similarity metric
or a measure of ‘goodness-of-fit’. In reference to a given model, a given permutant
query structure having an ELBO score less than its wild-type structure for that model
can be considered as structurally more similar (a better fit) to the model, and thus
perhaps more thermodynamically or structurally stable. As reference points, we also
include the ELBO scores for ancestrally-reconstructed progenitors of the OB (uL2)
and SH3 (uL24) superfolds, based on recent work by [13].

core concept of ”architectural similarity despite topological variability”. This was per-

formed by considering artificial protein domains that have identical architectures but

with specifically introduced loop permutations: we obtained these systematic pertur-

bations of a 3D structure’s topology by ‘rewiring’ the SSEs (scrambling the loops),

while retaining the overall 3D structure (i.e., architecture). Specifically, (i) we sys-

tematically created permuted (fictitious) 3D structures starting with representative

113

SH3 and representative OB domains (Supp. Fig. 7A) via structural modeling (in-

cluding energetic relaxation), and (ii) we then subjected these rewired structures, in

turn, to each of the SH3, OB and joint SH3/OB DeepUrfold models. Because SBBs

typically have six SSEs (five strands and a helix), including four ‘core’ β-strands,

the β-sheet core of an SBB can theoretically adopt one of at least 96 distinct loop

permutations [7]; note that, based on the operational definitions/usage of the terms

‘topology’ and ‘fold’ in systems such as SCOP, CATH, etc., such engineered per-

mutants almost certainly would be annotated as being from different homologous

superfamilies, implying no evolutionary relatedness. Thus, the approach described

here is a way to gauge DeepUrfold’s ability to discern similarities at the levels of

architecture and topology, in a manner agnostic of preexisting classification schemes

such as CATH.

In general, we find that the synthetic/permuted domain structures have similar ELBO

scores as the corresponding wild-type domains (Fig. 3.2). Those permuted domain

structures with ELBO scores less than the wild-type domains can be interpreted as

being more similar (structurally, biophysically, etc.) to the DeepUrfold variational

model, and thus perhaps more thermodynamically stable or structurally robust were

they to exist in reality—an interesting possibility as regards protein design and engi-

neering. In terms of more conventional structural similarity metrics, the TM-scores

[37] for permuted domain structures against the corresponding wild-type typically

lied in the range ≈ 0.3−0.5—values which would indicate that the permutants and

wild-type are not from identical folds, yet are more than just randomly similar (Supp.

Fig. 7B).

These findings show that the DeepUrfold model is well-suited to our task because

our encoding is agnostic to topological ‘connectivity’ information and rather is only

114

sensitive to 3D spatial architecture/shape. Even though polypeptide connectivity is

implicitly captured in our discretization, our DeepUrfold model intentionally does

not consider if two residues are linked by a peptide bond or if two SSEs are con-

tiguous in sequence-space. This approach is useful in finding similarities amongst

sets of seemingly dissimilar 3D structures—and thereby identifying specific candi-

date urfolds—because two sub-domain portions from otherwise rather (structurally)

different domains may be quite similar to each other, even if the domains which they

are a part of have different (domain-level) topologies but identical overall architec-

tures. This concept can be represented symbolically: for a subset of SSEs, d, drawn

from a full domain D, the Urfold model permits relations (denoted by the ‘∼’ symbol)

to be detected between two different ‘folds’, i and j (i.e. di ∼ dj), without requir-

ing that the relation also be preserved with the stringency of matched topologies at

the higher ‘level’ of the full domain. That is, di ∼ dj ⇏ Di ∼ Dj, even though

di ⊂ Di and dj ⊂ Dj (in contrast to how patterns of protein structural similarity

are traditionally conceived, at the domain level). Here, we can view the characteris-

tic stringency or ‘threshold’ level of the urfold ‘d’ as being near that of Architecture,

while D reflects both Architecture and Topology (corresponding to the classical usage

of the term ‘fold’).

3.2.3 Latent Spaces Capture Gross Structural Properties Across

Many Superfamilies, and Reveal a Highly Continuous

Nature of Fold Space

The latent space of each superfamily-level DeepUrfold model provides a new view

of that SF, and examining the patterns of similarities among such models may of-

115

fer a uniquely informative view of fold space. Each SF model captures the different

3D geometries and physicochemical properties that characterize that individual SF

as a single ‘compressed’ data point; in this way, the latent space representation (or

‘distillation’) is more comprehensible than is a full 3D domain structure (or superim-

positions thereof). In a sense, the DeepUrfold approach—and its inherent latent space

representational model of protein SFs—can reconcile the dichotomy of a continuous

versus discrete fold space because the Urfold model (i) begins with no assumptions

about the nature of fold space (i.e., patterns of protein interrelationships), and (ii)

does not restrictively enforce full topological ordering as a requirement for a relation

to be detected between two otherwise seemingly unrelated domains (e.g., d SH3
i ∼ d OB

j

is not forbidden, using the terminology introduced above).

As a first view of fold space through the lens of the Urfold, we use DeepUrfold to

compute/represent and analyze the latent spaces of representative domains for highly

populated SFs, including mapping the latent spaces into two dimensions (Fig 3.3).

Proteins that share similar geometries and biophysical properties will have similar

embeddings and should lie close together in this latent-space representation, regardless

of the annotated ‘true’ SF. Though this initial picture of the protein universe is limited

to 20 highly populated CATH SFs (in this work), already we can see that these SF

domains appear to be grouped and ordered by secondary structure composition (Fig

3.3), consistent with past analyses that used approaches such as multidimensional

scaling to probe the overall layout of fold space (e.g., [17]). Compellingly—with

respect to the Urfold—variable degrees of intermixing between SFs can be seen in

UMAP projections such as illustrated in Fig. 3.3. In addition to this mixing, the

latent space projection is not punctate: rather, it is fairly ‘compact’ (in a loose

mathematical sense) and well-connected, with only a few disjoint outlier regions.

116

Manual inspection of these outlier domain structures shows that many of them are

incomplete sub-domains or, intriguingly, a single portion of a larger domain-swapped

region [38]. Together, these findings support a rather continuous view of fold space,

at least for these 20 exemplary superfamilies.

While each superfamily model is trained independently, with different domain struc-

tures (SH3, OB, etc.), we find that the distributions that the VAE-based SF models

each learn—again, as ‘good’ approximations to the true posterior, pi(xij|θi)—are

similar, in terms of the dominant features of their latent spaces. In other words,

the multiple VAE models (across each unique SF) each learn a structurally low-level,

‘coarse-grained’ similarity that then yields the extensive overlap seen in Fig. 3.3.

When colored by a score that measures secondary structure content, there are clear

directions along which the latent-space can be seen to follow, as a gradient from

‘all-α’ domains to ‘all-β’ domains, separated by ‘α/β’ domains. These findings are

reassuring with respect to previous studies of protein fold space (e.g., [17]), as well

as the geometric intuition that the similarity between two domains would track with

their secondary structural content (e.g., two arbitrary all-β proteins are more likely

to share geometric similarity than would an all-β and an all-α).

3.2.4 Protein Interrelationships Defy Discrete Clusterings

Our initial finding that protein fold space is rather continuous implies that there

are, on average, webs of interconnections (similarities, relationships) between a pro-

tein fold A and its neighbors in fold space (A′, A′′, B, ...). Therefore, we believe

that an optimally realistic view of fold space will not entail hierarchically clustering

proteins into mutually exclusive bins. Alternatives to discrete clustering could be

117

such approaches as fuzzy clustering, multi-label classification, or mixed-membership

community detection algorithms. DeepUrfold’s strategy is to detect communities of

similar protein domains, at various levels of stringency, based on the quantifiable

similarities of their latent-space representations (versus, e.g., hierarchical clustering

based on RMSD or other purely-geometric measures). In DeepUrfold, we formulate

this labeling/classification/grouping problem by fitting an edge-weighted [39], mixed-

membership [40, 41], hierarchical [42] stochastic block model (SBM; [43]) to a fully

connected bipartite graph that is built from the similarity scores between (i) the

VAE-based SF-level models (one part of the bipartite graph), and (ii) representative

structural domains from the representative SFs (the other part of the bipartite graph).

In our case, we weight each edge by the quantity −log(ELBO) (see Fig 3.1, Eq 3.1).

Such a bipartite graph can be represented as an adjacency matrix Ad×sfam and co-

variate edge weights x (between vertices in the two ‘parts’ of the bipartite graph),

where sfam ∈ 20 representative SFs and d ∈ 3654 representative domains from

20 representative SFs. The likelihood of such a bipartite graph/network occurring by

chance—with the same nodes connected by the same edges with the same weights—is

defined by:

P (A, x, γ,G, k, e, b) =

P (A|G)P (x|G, γ)P (γ|e, b)P (G|k, e, b)P (k|e, b)P (e|b)P (b)

(3.2)

where b is the overlapping partition, e is the matrix of edge counts between groups,

k is the labelled degree sequence, and G is a tensor representing half-edges (each

edge end-point r, s) to account for mixed-membership, satisfying Aij =
∑

rsG
rs
ij .

Edge covariates x are sampled from a microcanonical distribution, P (x|G, γ), where

γ adds a hard constraint such that
∑

ij G
rs
ij xij = γrs ([44] Sec. VIIC and personal

communication with T. Peixoto).

118

The parameters for a given SBM are found using Markov chain Monte Carlo (MCMC)

methods. Several different models are created for different b and e in order to find

the optimal number of blocks with overlapping edges between them, and these are

evaluated using a posterior odds-ratio test [40, 41].

Armed with the above SBM methodology, we can now summarize DeepUrfold’s over-

all approach as follows: (i) dataset construction, e.g. via the aforementioned dis-

cretization of the 3D structures and biophysical properties into voxelized representa-

tions (Draizen et al., in prep); (ii) training of SF-specific models, using VAE-based

deep networks; (iii) in an inference stage, calculation of ELBO-based scores for ‘fits’

obtained by subjecting SF representative i to the VAE model of another SF, j(̸=i);

(iv) to detect any patterns amongst these scores, utilization of SBM-based analysis

of ‘community structure’ among the full set of score similarities from the VAE-based

SF-level models.

Application of this DeepUrfold methodology to the 20 most highly-populated CATH

superfamilies leads us to identify many potential communities of domain structures

and SFs (Fig. 3.4). Subjecting all domain representatives to all 20 SF-specific models,

in an exhaustive allSF-models×allSF-reps analysis, reveals the overall community struc-

ture shown in Fig. 3.4. We argue that two proteins drawn from vastly different SFs

(in the sense of their classification in databases such as CATH or SCOP) can share

other, more generalized regions of geometric/structural and biophysical properties,

beyond simple permutations of secondary structural elements. And, we believe that

the minimally-heuristic manner in which the DeepUrfold model is constructed allows

it to capture such ‘distant’ linkages. In particular, these linkages can be identified

and quantitatively described as patterns of similarity in the DeepUrfold model’s la-

tent space. Clustering domains and superfamilies based on this new similarity metric

119

provides a new view of protein interrelationships—a view that extends beyond simple

structural/geometric similarity, towards the realm of integrated structure/function

properties.

We find that domains that have similar ELBO scores against various superfamily

models (differing from the SF against which they were trained) are more likely to

contain important biophysical properties at particular—and, presumably, functionally

important—locations in 3D space; these consensus regions/properties can be thought

of as ‘defining’ the domain. Furthermore, if two domains map into the same SBM

community, it is likely that both domains share the same scores when run through

each SF model (i.e., an inference calculation), so we hypothesize it might contain an

urfold that subsumes those two domains (again, agnostic of whatever SFs they are

labeled as belonging to in CATH or other databases). We also expect that some

domains may be in multiple communities, which may reflect the phenomenon of

a protein being constructed of several ‘urfold’ or sub-domain elements. However,

because of the complexities of analyzing, visualizing and otherwise representing such

high-dimensional data, in the present work we show only the most likely cluster each

domain belongs to.

Given the stochastic nature of the SBM calculation, we ran six different replicates.

While each replica produced slightly different hierarchies and numbers of clusters

(ranging from 19-23), the communities at the lowest level remained consistent, ex-

hibiting varying degrees of intermixing. In each of the replicates, the SH3 and OB

clustered into the same communities as well as Rossman-like and P-loop NTPases,

instead of their own individual clusters—consistent with the Urfold view of these

particular SFs, as predicted based on manual/visual analysis [9]. In Fig. 3.4, we

chose to display the replica with 20 superfamilies and highest overlap score com-

120

pared to CATH in order to enable easy comparison with CATH. Most notably, each

community contains domains from different superfamilies, consistent with the Urfold

model (Fig. 3.4A). In the particular subset of proteins treated here, the domains

from ‘mainly α’ and ‘α/β’ are preferentially associated, while domains from ‘mainly

β’ and ‘α/β’ group together (Fig. 3.4B) and SH3 and OB cluster together in the

same communities (Fig. 3.4A).

In addition to coloring each domain node by CATH superfamily in the circle-packing

diagrams, we also explored coloring domain nodes by other types of properties, in-

cluding (i) secondary structure, (ii) average electrostatic potential, (iii) average par-

tial charge, and (iv) enriched GO terms (Supp. Fig. 12-17); a navigable, web-

based interface for exploring these initial DeepUrfold results is freely available at

https://bournelab.org/research/DeepUrfold/. Interestingly, domains with sim-

ilar average electrostatic potentials (Supp. Fig. 12) and partial charges (Supp. Fig.

13) can be found to cluster into similar groups, whereas the CATH-based circle-

packing diagrams, colored by those same features, have no discernable order or struc-

turing; whether or not this phenomenon stems from any underlying, functionally-

relevant ‘signal’ is a question of interest in further work.

In order to assess how ‘well’ our DeepUrfold model does, we compare our clustering

results to CATH. However, we emphasize that there is no reliable, objective ground

truth for a map of fold space, as there is no universally-accepted, ‘correct’ description

of fold space (and, it can be argued, even ‘fold’). Therefore, we compare our DeepUr-

fold results to a well-established system (e.g., CATH) with the awareness that these

are two fundamentally different approaches to representing and describing the protein

universe. Indeed, because our model uses a different input representation of proteins

that intentionally ignores all topological/connectivity information, we expect that

https://bournelab.org/research/DeepUrfold/

121

our model will be least similar to CATH in terms of SBM-related measures such as

partition overlap, homogeneity, and completeness [41]. Given all this, models that

differ from CATH—versus matching or recapitulating it—can be considered as repre-

senting an alternative view of the protein universe. Somewhat counterintuitively, we

deem poorer comparison metrics (e.g., less similarity to CATH) as providing stronger

support for the Urfold model of protein structure. Simultaneously, we compare how

well other, independently-developed sequence- and structure-based models can re-

construct CATH (Fig. 3.5). Among all these methods, our DeepUrfold approach

produces results are the most divergent from CATH, consistent with DeepUrfold’s

approach of taking a wholly new view of the protein universe and the domain-level

structural similarities that shape it. We also show that many other algorithms have

difficulty reconstructing CATH, possibly due to the extensive manual curation of

CATH, but much more closely reproduce CATH than does our method—we suspect

that this is due, in large part, to DeepUrfold’s incorporation and integration of more

types of information than purely 3D geometry.

3.3 Discussion, Further Outlook

This work has presented a new deep learning-based approach, termed ‘DeepUrfold’,

aimed at systematically identifying putative new urfolds. Notably, the DeepUrfold

framework (i) is sensitive to 3D structure and structural similarity between pairs of

proteins, but is minimally heuristic (e.g., it does not rely upon pre-set RMSD thresh-

olds or the like) and, most notably, is alignment-free (as it leverages latent-space

embeddings of structure, versus direct 3D coordinates, for comparison purposes); (ii)

beyond the residue-level geometric information defining a 3D structure (i.e. coordi-

122

nates), DeepUrfold is an extensible model insofar as it can incorporate any types

of properties of interest (so long as they can be encoded in a deep model), e.g.

biophysical and physicochemical characteristics (electrostatic charge, solvent expo-

sure, etc.), site-by-site phylogenetic conservation, and so on; (iii) the method pro-

vides a quantitative metric, in the form of the deep neural network’s loss function

(at the inference stage), that is amenable to approaches that are more generalized

than brute-force hierarchical clustering (e.g., using loss function scores in stochas-

tic block modeling to construct mixed-membership communities of proteins). In

the above ways, DeepUrfold can be viewed as an integrative approach that, while

motivated by structural (dis)similarities across fold space, is also cognizant of se-

quence↔structure↔function interrelationships. This is intentional: molecular evolu-

tion acts on the sequence/structure/function triad as its base ‘entity’, not on purely

geometric/3D structure alone. We believe that any purely geometric/structure-based

approach will be similarly constrained in its ability to accurately represent fold space.

We demonstrate (i) the general utility of this new type of similarity metric for repre-

senting and comparing protein domain structures, based on deep generative models,

and (ii) that a mixed-membership community detection algorithm can identify what

we previously found, via manual/visual analysis [9], to be putative urfolds. Finally,

we emphasize that because DeepUrfold is agnostic of precise protein topology (i.e.,

order of SSEs in 3-space), higher levels of similarity can be readily detected (above

CATH’s ‘T’ level, below its ‘A’ level), including the potential of non-contiguous frag-

ments. We believe that such such spatially-compact groups of frequently recurring

sub-domain fragments, sharing similar architectures (independent of topology) within

a given group—which, again, we term an ‘urfold’—could correspond to primitive ‘de-

sign elements’ in the early evolution of protein domains [19]. We note that [45] has

123

made similar points.

Overall, the DeepUrfold framework provides a sensitive approach to detect and thus

explore distant protein inter-relationships, which we suspect correspond to weak phy-

logenetic signals (perhaps as echoes of remote/deep homology). Also notable, the

embeddings produced by our VAE models and ELBO similarity scores provide new

methods to visualize and interpret protein interrelationships on the scale of a full

fold space. From these models, it is clear that there is a fair degree of continuity

between proteins in fold space, and intermixing between what has previously been

labeled as separate superfamilies; a corollary of this finding is that discretely clus-

tering protein embeddings is ill-advised from this perspective of a densely-populated,

smoother-than-expected fold space. An open question is the degree to which the ex-

tent of overlap between individual proteins (or groups of proteins, as an urfold) in

this fold space is reflective of underlying evolutionary processes, e.g. akin to [18]’s

finding that ”evolutionary information is encoded along these structural bridges [in

fold space]”.

An informative next step would be to use DeepUrfold to identify structural fragments

that contain similar patterns of geometry and biophysical properties between proteins

from very different superfamilies. Notably, these fragments may be continuous or

discontinuous, and pursuing this goal might help unify the ‘primordial peptides’ [2]

and ‘themes’ [24] concepts with the Urfold hypothesis, allowing connections between

unexplored (or at least under-explored) regions of fold space. We suspect that ‘Ex-

plainable AI’ techniques, such as Layer-wise Relevance Propagation (LRP; [46, 47]),

can be used to elucidate which atoms/residues, along with their 3D locations and

biophysical properties, are deemed most important in defining the various classifica-

tion groups (i.e., into urfold A versus urfold B). This goal can be pursued within

124

the DeepUrfold framework because we discretize full domain structures into voxels:

thus, we can probe the neural network to learn about specific voxels, or groups of

specific voxels (e.g., amino acid residues), that contribute as sub-domain structural

elements. Doing so would, in turn, be useful in finding common sub-domain seg-

ments from different superfamilies. We hypothesize that the most ‘relevant’ (in the

sense of LRP) voxels would highlight important sub-structures; most promisingly,

that we know the position, physicochemical and biophysical properties, and so on

about the residues would greatly illuminate the physical basis for the deep learning-

based classification. In addition, this would enable us to explore in more detail the

mechanistic/structural basis for the mixed-membership features of the SBM-based

protein communities. Such communities—beyond helping to detect and define new

urfolds—may offer a novel perspective on remote protein homology.

3.4 Computational Methodology

3.4.1 Datasets

Using Prop3D, a computational toolkit that we have been developing for handling pro-

tein properties in machine learning and structural bioinformatics pipelines (Draizen

et al., in prep), we have now created a ‘Prop3D-20sf’ dataset. This dataset uses 20

CATH superfamilies of interest (Fig. 3.1C; Supp. Table 1). Domain structures from

each of the 20 SFs are ‘cleaned’ by adding missing residues with MODELLER [48],

missing atoms with SCWRL4 [49], and protonating and energy minimizing (simple

de-bump) with PDB2PQR [50]. Next, we compute a host of derived properties for

each domain in CATH (Draizen et al., in prep)–including (i) purely geometric/struc-

125

tural quantities, e.g. secondary structure [51], solvent accessibility, (ii) physicochem-

ical properties, e.g. hydrophobicity, partial charges, electrostatic potentials, and

(iii) basic chemical descriptors (atom and residue types). The computation was per-

formed using the Toil workflow engine [52] and data was stored using the Hierarchical

Data Format (version 5) in the Highly Scalable Data Service (HSDS). The domains

from each superfamily were split such that all members of a S35 35% sequence iden-

tity cluster (pre-calculated by CATH) were on the same side of the split. We split

them roughly 80% training, 10% validation, and 10% test (Draizen et al., in prep;

https://doi.org/10.5281/zenodo.6873024).

In Prop3D-20sf, each atom is attributed with the following seven groups of features

that are one-hot (Boolean) encoded: (1) Atom Type (C,CA,N,O,OH,Unknown); (2)

Residue Type (ALA, CYS, ASP, GLU, PHE, GLY, HIS, ILE, LYS, LEU, MET, ASN,

PRO, GLN, ARG, SER, THR, VAL, TRP, TYR, Unknown); (3) Secondary Structure

(Helix, Sheet, Loop/Unknown); (4) Hydrophobic (or not); (5) Electronegative (or

not); (6) Positively Charged (or not); and (7) Solvent-exposed (or not). However, for

all final production models reported here, the ”residue type” feature was omitted as

it was found to be uninformative, at least for this type of representation (Supp. Fig.

3).

3.4.2 Protein Structure Representation

We represent protein domains as voxels, or 3D volumetric pixels. Briefly, our method

centers protein domains in a 2563 3 cubic volume to allow for large domains, and each

atom is mapped to 1 3 voxels using a kD-tree data structure, with a query ball radius

set to the van der Waals radius of the atom. If two atoms share the space in a given

126

voxel, the maximum between their feature vectors is used (justifiable because they

are all binary-valued). Because a significant fraction of voxels in our representation

domain do not contain any atoms, protein domain structures can be encoded via

a sparse representation; this substantially mitigates the computational costs of our

deep learning workflow using MinkowskiEngine [53].

Because there is no unique or ‘correct’ orientation of a protein structure, we applied

random rotations to each protein domain structure; these rotations were in the form

of orthogonal transformation matrices randomly drawn from the Haar distribution,

which is the uniform distribution on the 3D rotation group (i.e., SO(3); [54]).

3.4.3 VAE Model Design and Training

A sparse 3D-CNN variational autoencoder was adapted from MinkowskiEngine ([53,

55]). In the Encoder, there are 7 blocks consisting of Convolution (n->2n), Batch-

Norm, ELU, Convolution (2n->2n), BatchNorm, and ELU, where n=[16,32,64,128,256,512,1024],

doubling at each block. Finally, the tensors are pooled using Global pooling, and the

model outputs both a normal distribution’s mean and log variance. Next, the learned

distribution is sampled from and used as input into the Decoder. In the decoder,

there are also 7 blocks, where each block consists of ConvolutionTranspose(2n->n),

BatchNorm, ELU, Convolution(n->n), BatchNorm, and ELU. Finally, one more con-

volution is used to output a reconstructed domain structure in a 26433 volume.

In VAEs, a ‘reparameterization trick’ allows for backpropagation through random

variables by making only the mean (µ) and variance (σ) differentiable, with a random

variable that is normally distributed (N (0, I)). That is, the latent variable posterior z

is given by z = µ + σ
⊙

N (0, I), where
⊙

denotes the Hadamard (element-wise)

127

matrix product and N is the ‘auxiliary noise’ term ([56]).

We optimize against the Evidence Lower BOund (ELBO) described in equation 3.1,

which combines (i) the mean squared error (MSE) of the reconstructed domain and

(ii) the difference between the learned distribution and the true distribution of the

SF (i.e., the KL-divergence, or relative entropy; [56]).

We used stochastic gradient descent (SGD) as the optimization algorithm, with a

momentum of 0.9 and 0.0001 weight decay. We began with a learning rate of 0.2 and

decreased its value by 0.9 every epoch using an exponential learning rate scheduler.

Our final network has ≈110M parameters in total and all the networks were trained

for 30 epochs, using a batch size of 255. We utilized the open-source frameworks

PyTorch [57] and PytorchLightning [58] to simplify training and inference, and to

make the models more reproducible.

In order to optimize hyperparameters for the VAE, we used Weights & Biases Sweeps

[59] to scan over the batch size, learning rate, convolution kernel size, transpose

convolution kernel size, and convolution stride in the Ig model, while optimizing the

ELBO. We used the Bayesian Optimization search strategy and hyperband method

with 3 iterations for early termination. We found no significant changes and used

the default values: convolution kernel size of 3, transpose convolution kernel size of

2, and convolution stride of 2.

Due to a large-scale class imbalance between the number of domains in each su-

perfamily, we follow the ”one-class classifier” approach, creating one VAE for each

superfamily. We also train a joint SH3 and OB model and compare random over- and

under-sampling from ImbalancedLearn [35] on joint models of multiple superfamilies

(Supp. Fig. 8).

128

All 20 models used throughout this work were trained using 1-4 NVIDIA RTX A6000

GPUs.

3.4.4 Evaluation of Model Performance

We calculate the area under the receiver operating characteristic curve (auROC) and

the area under the precision-recall curve (auPRC) for 20 SFs. Representative domains,

as defined by CATH, for each superfamily were subjected to their SF-specific VAE

and predicted values were micro-averaged to perform auROC and auPRC calculations.

Immunoglobulins were chosen to display in the supplemental material for this paper

(Supp. Fig. 4-6), but the results for all SFs can be found in the extended supplemental

material. All SFs report similar metrics for each group of features.

3.4.5 Assess the Urfold Model by Subjecting Proteins with

Permuted Secondary Structures to Superfamily-specific

VAEs

To gauge the sensitivity of our DeepUrfold model to loop orderings (i.e., topology), we

generate fictitious folds by implementing a multi-loop permutation algorithm [36] in

order to ‘scramble’ the secondary structural elements (SSEs) found in a representative

SH3 and OB domains. We stitch together the SSEs and relax the conformations/en-

ergetics of each new 3D structure using the MODELLER suite [48].

Next, each novel permuted structure is subjected to a VAE model trained on all other

domains from the SH3 homologous superfamily. Fit to the model is approximated by

the log likelihood score of the permuted and natural (wild-type) protein represented

129

ELBO scores, which can be viewed as a similarity metric. We also calculate a ‘back-

ground’ distribution of each model by perming an all vs all TM-align for all domains

in our representative CATH domains, saving domain that have a TM-Score ≤ 0.3 as

that is thought to represent domains that have random similarity.

3.4.6 Latent-space Organization

We subject representative domains from a single superfamily through its superfam-

ily model and visualize the latent space of each representative. A ‘latent-space’ for a

given domain corresponds to a 1024 dimensional vector describing the representatives

in their most ‘compressed’ form, accounting for the position of each atom and their

biophysical properties represented by the mean of the learned distribution. We com-

bine the latent spaces from each domain from each superfamily and then reduce the

number of dimensions to two in order to easily visualize it; the latter is achieved using

the uniform manifold approximation and projection (UMAP) algorithm. UMAP is a

dimensionality reduction algorithm that is similar to methods such as PCA (principal

component analysis; Supp. Fig. 9) and particularly t-SNE (t-distributed stochastic

neighbor embedding; Supp. Fig. 10), with the benefit of preserving topological rela-

tionships at both local and global scales in a dataset.

3.4.7 Mixed-membership Community Detection

We performed all-vs-all comparisons of domains and superfamilies by subjecting rep-

resentative protein domain structures from each of the 20 chosen SF through each

SF-specific one-class VAE model. The ELBO loss score for each domain—SF-model

pair can be used to quantitatively evaluate pairwise ’distances’ between SFs by treat-

130

ing it as a fully connected bipartite graph between domains and SF models, defined

by adjacency matrix Aij, with edges weighted by the -log(ELBO) score in covauate

matrix x. Stochastic Block Models (SBM; [43]) are a generative model for random

graphs that can be used to partition the bipartite graph into communities of domains

that have similar distribution of edge covariates between them [39]. Using the SBM

liklihood equation (equation 3.2), inference is done via the posterior:

P (b,G|A, x) = P (A, x, ,G, k, e, b)

P (A, x)
(3.3)

where b is the overlapping partition, e is the matrix of edge counts between groups,

k is the labelled degree sequence, and G is a tensor representing half-edges (each

edge end-point r, s) to account for mixed-membership, satisfying Aij =
∑

rsG
rs
ij .

Edge covariates x are sampled from a microcanonical distribution, P (x|G, γ), where

γ adds a hard constraint such that
∑

ij G
rs
ij xij = γrs ([44] Sec. VIIC and personal

communication with T. Peixoto).

Using the same SBM approach as we did for DeepUrfold, we compare our results

to state-of-the-art sequence- and structure-based methods for comparing proteins.

All SBMs are created using fully connected bipartite graphs connected n CATH S35

domains to m Superfamily models. In this case, we used 3654 representative CATH

domains from 20 superfamilies, creating a 3654× 20 similarity matrix for each method

we wish to compare. Each SBM was degree corrected, overlapping, and nested and fit

to a real normal distribution of edge covariates. For methods with decreasing scores

(closer to zero is best), we took the negative log of each score, whereas scores from

methods with increasing scores remained the same.

While only the ‘Superfamily-specific‘ models are directly comparable (e.g. where

n×m matrices are the original output created by subjecting n CATH representative

131

domains without labels to m superfamily-specific models), we also included ‘Pairwise’

and ‘Single Model’ methods. For pairwise approaches, an all-vs-all n × n similarity

matrix is created and is converted to an n ×m by taking the median distance of a

single CATH domain to every other domain in a given superfamily. ‘Single Model’

approaches are where a single model is trained on all known proteins and outputs a

single embedding score for each domain, creating an n× 1 vector. To convert it into

an n×m matrix, we take the median distance of a single CATH domain embedding

to every other domain embedding from a given superfamily.

3.4.8 Comparisons to CATH

Because we have no ground truth with the Urfold view of the protein universe, we

perform cluster comparison metrics on each SBM community compared to the original

CATH clusterings; these measures can include partition overlap, homogeneity, and

completeness for each of the protein comparison tools:

• Silhouette Score: measure of how similar an object is to its own cluster (co-

hesion) compared to next closest cluster (separation). -1: incorrect, 0: perfect,

1: too dense

• Overlap: maximum overlap between partitions by solving an instance of the

maximum weighted bipartite matching problem [41]

• Homogeneity: each cluster contains only members of a single class. [0, 1],

1=best

• Completeness: all members of a given class are assigned to the same cluster.

[0, 1], 1=best

132

All comparisons start using the sequence and structure representatives from CATH’s

S35 cluster for each of the 20 superfamilies of interest. USEARCH [60] was run twice

with parameters -allpairs_local and -allpairs_global; both runs included the

-acceptall parameter. HMMER [61] models were built using (1) MUSCLE [62]

alignments from CATH’s S35 cluster; and (2) a deep MSA created from EVcouplings

[63] using jackhmmer [61] and UniRef90 of the first S35 representative for each su-

perfamily. Each HMMER model was used to search all representatives, reporting all

sequences with bitscores ≥ −1012. SeqDesign [64] was run using the same MSAs from

EVcouplings. We also compared against the pretrained ESM models [65].

For other structure-based comparisons, we ran TM-Align [66] on all representa-

tive domains with and without circular permutations saving RMSD and TM-Scores.

Struct2Seq [67] was run with default parameters after converting domain structure

representatives into dictionaries matching the required input.

3.5 Data Availability

The Prop3D dataset used to train each superfamily model can found at https:

//doi.org/10.5281/zenodo.6873024, which includes the raw HDF file as well as

instructions to access the public version of the dataset on the University of Vir-

ginia Research Computing HSDS endpoint http://hsds.uvarc.io (Draizen et al.,

in prep).

The extended supplemental material, including the 20 pre-trained SF models and

raw output from the stochastic block modelling of DeepUrfold and other tools used

to compare against can be found at https://doi.org/10.5281/zenodo.6916524.

https://doi.org/10.5281/zenodo.6873024
https://doi.org/10.5281/zenodo.6873024
http://hsds.uvarc.io
https://doi.org/10.5281/zenodo.6916524

133

All code to build datasets and train models can be found at http://github.com/

bouralab/Prop3D and http://github.com/bouralab/DeepUrfold, respectively.

We also provide an accompanying website to explore the SBM communities and the

CATH hierarchy at https://bournelab.org/research/DeepUrfold/

Acknowledgements

We thank Luis Felipe Murillo and John Readey for support with HSDS, as well as

Jaime Iranzo and Tiago Peixoto for discussions regarding stochastic block models; we

also thank Menuka Jaiswal, Saad Saleem, and Yonghyeon Kweon for early efforts on

this project. Portions of this work were supported by the University of Virginia and

NSF CAREER award MCB-1350957. EJD was supported by a University of Virginia

Presidential Fellowship in Data Science.

http://github.com/bouralab/Prop3D
http://github.com/bouralab/Prop3D
http://github.com/bouralab/DeepUrfold
https://bournelab.org/research/DeepUrfold/

134

Figure 3.3: Dominant variables of DeepUrfold’s latent-space models cap-
ture gross structural properties and indicate a highly continuous fold space.
In a pilot study, we used DeepUrfold to develop 20 distributions/models for 20 CATH
homologous superfamilies. Representatives from each SF were subjected to deep mod-
els that were trained on domains from the same SF, and then the latent space variables
for each structural domain were examined via the uniform manifold approximation
and projection (UMAP) method, thereby reducing the 1024 dimensions of the actual
model to the two-dimensional projection shown here. In this representation, kernel
density estimates (isodensity contour lines) surround domains with the same anno-
tated CATH Class. Each domain is colored by its secondary structure score, com-
puted as #β atoms − #α atoms

2(#β atoms + #α atoms) + 0.5. The protein domains can be seen to group together
by secondary structure composition; moreover, they are roughly ordered, with the
α/β region extensively overlapping the mostly-β region (yellow, predominantly in the
vertical direction) and mostly-α region (purple, running predominantly horizontally).

135

Fi
gu

re
3.

4:
P

ro
te

in
in

te
rr

el
at

io
ns

hi
ps

de
fy

di
sc

re
te

cl
us

te
ri

ng
s:

St
oc

ha
st

ic
bl

oc
k

m
od

el
in

g
of

an
al

l-v
s-

al
l

co
m

pa
ri

so
n

of
do

m
ai

n
st

ru
ct

ur
es

an
d

su
pe

rf
am

ily
m

od
el

s.
A
)W

e
re
pr
es
en
tt

he
th
e
SB

M
co
m
m
un

iti
es

pr
ed
ic
te
d

by
D
ee
pU

rfo
ld

as
a
ci
rc
le

pa
ck
in
g
di
ag

ra
m

fo
llo

w
in
g
th
e
sa
m
e
hi
er
ar
ch
y.

Ea
ch

do
m
ai
n
is

di
sp
la
ye
d
as

th
e
in
ne
r
m
os
t

ci
rc
le
s
(le

af
s)

co
lo
re
d
by

th
e
an

no
ta
te
d
C
AT

H
su
pe

rfa
m
ily

an
d
siz

ed
by

th
ei
r
nu

m
be

r
of

at
om

s.
A
ll
of

th
e
su
pe

rfa
m
ily

la
be

lle
d
no

de
sc

lu
st
er
ed

to
ge
th
er

an
d
we

re
re
m
ov
ed

fro
m

th
is
lis
t(

Se
e
su
pp

le
m
en
ta
lf
ile

2)
.A

sp
ro
of

of
co
nc
ep
t,
we

sh
ow

th
e
SH

3
an

d
O
B

do
m
ai
ns

ar
e
fo
un

d
w
ith

in
th
e
sa
m
e
co
m
m
un

iti
es
.
B)

C
AT

H
H
ie
ra
rc
hy

re
pr
es
en
te
d
as

a
ci
rc
le

pa
ck
in
g

di
ag

ra
m

sh
ow

in
g
th
at

D
ee
pU

rfo
ld

is
le
ar
ni
ng

a
co
m
pl
et
el
y
di
ffe

re
nt

hi
er
ar
ch
y.

136

Figure 3.5: DeepUrfold does not recapitulate CATH. We compare DeepUr-
fold to other sequence- and structure-based protein similarity tools by attempting to
reconstruct CATH. The scores from each of the algorithms are used as edge weights
in the SBM. If scores were increasing e.g. were a distance metric, the converted to
a similarity metric by -x or -log(x). We take the communities at the lowest hierar-
chical level as clusters and use cluster comparison metrics to understand how well
each algorithm/similarity metric can be used to recapitulate CATH. For each metric
of Silhouette Score, overlap, homogeneity, and completeness, a value of 1 is deemed
best. DeepUrfold does poorly based for each metric because it does not produce
the same clusters, and is learning something completely different compared to the
other algorithms. For TM-Align, ‘CP’ stands for Circular Permutation. For more
information, see Supp Table 2.

137

Bibliography

[1] Rachel Kolodny, Leonid Pereyaslavets, Abraham O Samson, and Michael Levitt.

On the universe of protein folds. Annual Review of Biophysics, 42:559–582, Mar

2013.

[2] Vikram Alva, Johannes Söding, and Andrei N Lupas. A vocabulary of ancient

peptides at the origin of folded proteins. eLife, 4:e09410, dec 2015.

[3] Rachel Kolodny, Sergey Nepomnyachiy, Dan S Tawfik, and Nir Ben-Tal. Bridg-

ing themes: short protein segments found in different architectures. Molecular

Biology and Evolution, 38(6):2191–2208, may 2021.

[4] Yana Bromberg, Ariel A. Aptekmann, Yannick Mahlich, Linda Cook, Ste-

fan Senn, Maximillian Miller, Vikas Nanda, Diego U. Ferreiro, and Paul G.

Falkowski. Quantifying structural relationships of metal-binding sites suggests

origins of biological electron transfer. Sci. Adv., 8(2), jan 2022.

[5] Claudia Alvarez-Carreño, Rohan J Gupta, Anton S. Petrov, and Loren Dean

Williams. The evolution of protein folds by creative destruction. bioRxiv, 2022.

[6] Philippe Youkharibache. Protodomains: Symmetry-related supersecondary

structures in proteins and self-complementarity. Methods in Molecular Biology,

1958:187–219, 2019.

[7] Philippe Youkharibache, Stella Veretnik, Qingliang Li, Kimberly A Stanek,

Cameron Mura, and Philip E Bourne. The small β-barrel domain: A survey-

based structural analysis. Structure, 27(1):6–26, jan 2019.

138

[8] Cameron Mura, Peter S. Randolph, Jennifer Patterson, and Aaron E. Cozen.

Archaeal and eukaryotic homologs of Hfq: A structural and evolutionary per-

spective on Sm function. RNA Biology, 10(4):636–651, 2013.

[9] Cameron Mura, Stella Veretnik, and Philip E Bourne. The Urfold: Structural

similarity just above the superfold level? Protein Science, 28(12):2119–2126, nov

2019.

[10] N V Grishin. Fold change in evolution of protein structures. Journal of Structural

Biology, 134(2-3):167–185, jun 2001.

[11] Lisa N Kinch and Nick V Grishin. Evolution of protein structures and functions.

Current Opinion in Structural Biology, 12(3):400–408, jun 2002.

[12] S Sri Krishna and Nick V Grishin. Structural drift: a possible path to protein

fold change. Bioinformatics, 21(8):1308–1310, apr 2005.

[13] Claudia Alvarez-Carreño, Petar I Penev, Anton S Petrov, and Loren Dean

Williams. Fold evolution before LUCA: Common ancestry of SH3 domains and

OB domains. Molecular Biology and Evolution, 38(11):5134–5143, oct 2021.

[14] Ruslan I Sadreyev, Bong-Hyun Kim, and Nick V Grishin. Discrete-continuous

duality of protein structure space. Current Opinion in Structural Biology,

19(3):321–328, jun 2009.

[15] William R Taylor. Exploring protein fold space. Biomolecules, 10(2), jan 2020.

[16] L Holm and C Sander. Mapping the protein universe. Science, 273(5275):595–

603, aug 1996.

[17] Jingtong Hou, Se-Ran Jun, Chao Zhang, and Sung-Hou Kim. Global mapping

of the protein structure space and application in structure-based inference of

139

protein function. Proceedings of the National Academy of Sciences of the United

States of America, 102(10):3651–3656, mar 2005.

[18] Hannah Edwards and Charlotte M Deane. Structural bridges through fold space.

PLoS Computational Biology, 11(9):e1004466, sep 2015.

[19] Jeffrey Skolnick, Adrian K Arakaki, Seung Yup Lee, and Michal Brylinski. The

continuity of protein structure space is an intrinsic property of proteins. Pro-

ceedings of the National Academy of Sciences of the United States of America,

106(37):15690–15695, sep 2009.

[20] Iddo Friedberg and Adam Godzik. Fragnostic: walking through protein structure

space. Nucleic Acids Research, 33(Web Server issue):W249–51, jul 2005.

[21] Andrew Harrison, Frances Pearl, Richard Mott, Janet Thornton, and Christine

Orengo. Quantifying the similarities within fold space. Journal of Molecular

Biology, 323(5):909–926, nov 2002.

[22] Andrew Harrison, Frances Pearl, Ian Sillitoe, Tim Slidel, Richard Mott, Janet

Thornton, and Christine Orengo. Recognizing the fold of a protein structure.

Bioinformatics, 19(14):1748–1759, sep 2003.

[23] Alexander Goncearenco, Alexey K Shaytan, Benjamin A Shoemaker, and Anna R

Panchenko. Structural perspectives on the evolutionary expansion of unique

protein-protein binding sites. Biophysical Journal, 109(6):1295–1306, sep 2015.

[24] Sergey Nepomnyachiy, Nir Ben-Tal, and Rachel Kolodny. Complex evolutionary

footprints revealed in an analysis of reused protein segments of diverse lengths.

Proceedings of the National Academy of Sciences of the United States of America,

114(44):11703–11708, oct 2017.

140

[25] Martin Steinegger, Markus Meier, Milot Mirdita, Harald Vöhringer, Stephan J

Haunsberger, and Johannes Söding. HH-suite3 for fast remote homology detec-

tion and deep protein annotation. BMC Bioinformatics, 20(1):473, sep 2019.

[26] Inbal Budowski-Tal, Yuval Nov, and Rachel Kolodny. FragBag, an accurate

representation of protein structure, retrieves structural neighbors from the entire

PDB quickly and accurately. Proceedings of the National Academy of Sciences

of the United States of America, 107(8):3481–3486, feb 2010.

[27] Rachel Kolodny, Patrice Koehl, Leonidas Guibas, and Michael Levitt. Small

libraries of protein fragments model native protein structures accurately. Journal

of Molecular Biology, 323(2):297–307, oct 2002.

[28] Janani Durairaj, Mehmet Akdel, Dick de Ridder, and Aalt D J van Dijk. Ge-

ometricus represents protein structures as shape-mers derived from moment in-

variants. Bioinformatics, 36(Suppl_2):i718–i725, dec 2020.

[29] Ian Sillitoe, Natalie Dawson, Tony E Lewis, Sayoni Das, Jonathan G Lees, Paul

Ashford, Adeyelu Tolulope, Harry M Scholes, Ilya Senatorov, Andra Bujan, Fa-

tima Ceballos Rodriguez-Conde, Benjamin Dowling, Janet Thornton, and Chris-

tine A Orengo. CATH: expanding the horizons of structure-based functional

annotations for genome sequences. Nucleic Acids Research, 47(D1):D280–D284,

jan 2019.

[30] Antonina Andreeva, Dave Howorth, Cyrus Chothia, Eugene Kulesha, and

Alexey G Murzin. SCOP2 prototype: a new approach to protein structure min-

ing. Nucleic Acids Research, 42(Database issue):D310–4, jan 2014.

[31] Naomi K Fox, Steven E Brenner, and John-Marc Chandonia. SCOPe: Struc-

tural classification of proteins–extended, integrating SCOP and ASTRAL data

141

and classification of new structures. Nucleic Acids Research, 42(Database

issue):D304–9, jan 2014.

[32] Hua Cheng, R Dustin Schaeffer, Yuxing Liao, Lisa N Kinch, Jimin Pei, Shuoyong

Shi, Bong-Hyun Kim, and Nick V Grishin. ECOD: an evolutionary classification

of protein domains. PLoS Computational Biology, 10(12):e1003926, dec 2014.

[33] Vishal Agrawal and Radha KV Kishan. Functional evolution of two subtly dif-

ferent (similar) folds. BMC Structural Biology, 1(1):1–6, 2001.

[34] Ronaldo C. Prati, Gustavo E. A. P. A. Batista, and Maria Carolina Monard.

Data mining with imbalanced class distributions: Concepts and methods. 2009.

[35] Guillaume Lemaître, Fernando Nogueira, and Christos K. Aridas. Imbalanced-

learn: A Python toolbox to tackle the curse of imbalanced datasets in machine

learning. Journal of Machine Learning Research, 18(17):1–5, 2017.

[36] Liang Dai and Yaoqi Zhou. Characterizing the existing and potential structural

space of proteins by large-scale multiple loop permutations. Journal of Molecular

Biology, 408(3):585–595, may 2011.

[37] Jinrui Xu and Yang Zhang. How significant is a protein structure similarity with

tm-score = 0.5? Bioinformatics, 26(7):889–895, Apr 2010.

[38] Yanshun Liu and David Eisenberg. 3D Domain swapping: As domains continue

to swap. Protein science, 11(6):1285–1299, 2002.

[39] Tiago P Peixoto. Nonparametric weighted stochastic block models. Physical

review. E, 97(1-1):012306, jan 2018.

[40] Tiago P. Peixoto. Model selection and hypothesis testing for large-scale network

models with overlapping groups. Physical Review X, 5(1), mar 2015.

142

[41] Tiago P. Peixoto. Revealing consensus and dissensus between network partitions.

Physical Review X, 11(2):021003, apr 2021.

[42] Tiago P. Peixoto. Hierarchical block structures and high-resolution model selec-

tion in large networks. Physical Review X, 4(1), mar 2014.

[43] Tiago P. Peixoto. Nonparametric Bayesian inference of the microcanonical

stochastic block model. Physical Review E, 95(1), jan 2017.

[44] Tiago P. Peixoto. Bayesian stochastic blockmodeling. pages 289–332, nov 2019.

[45] Rachel Kolodny. Searching protein space for ancient sub-domain segments. Cur-

rent Opinion in Structural Biology, 68:105–112, 2021.

[46] Grégoire Montavon, Alexander Binder, Sebastian Lapuschkin, Wojciech Samek,

and Klaus-Robert Müller. Layer-wise relevance propagation: An overview. In

Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen, and

Klaus-Robert Müller, editors, Explainable AI: interpreting, explaining and visu-

alizing deep learning, volume 11700 of Lecture notes in computer science, pages

193–209. Springer International Publishing, Cham, 2019.

[47] Joshua Hochuli, Alec Helbling, Tamar Skaist, Matthew Ragoza, and David Ryan

Koes. Visualizing convolutional neural network protein-ligand scoring. Journal

of molecular graphics & modelling, 84:96–108, sep 2018.

[48] Narayanan Eswar, Ben Webb, Marc A Marti-Renom, M S Madhusudhan, David

Eramian, Min-Yi Shen, Ursula Pieper, and Andrej Sali. Comparative protein

structure modeling using Modeller. Current Protocols in Bioinformatics, Chapter

5:Unit 5.6, oct 2006.

143

[49] Georgii G Krivov, Maxim V Shapovalov, and Roland L Dunbrack. Improved pre-

diction of protein side-chain conformations with SCWRL4. Proteins, 77(4):778–

795, dec 2009.

[50] Todd J Dolinsky, Paul Czodrowski, Hui Li, Jens E Nielsen, Jan H Jensen, Ger-

hard Klebe, and Nathan A Baker. PDB2PQR: expanding and upgrading auto-

mated preparation of biomolecular structures for molecular simulations. Nucleic

Acids Research, 35(Web Server issue):W522–5, jul 2007.

[51] W Kabsch and C Sander. Dictionary of protein secondary structure: pat-

tern recognition of hydrogen-bonded and geometrical features. Biopolymers,

22(12):2577–2637, dec 1983.

[52] John Vivian, Arjun Arkal Rao, Frank Austin Nothaft, Christopher Ketchum,

Joel Armstrong, Adam Novak, Jacob Pfeil, Jake Narkizian, Alden D Deran,

Audrey Musselman-Brown, Hannes Schmidt, Peter Amstutz, Brian Craft, Mary

Goldman, Kate Rosenbloom, Melissa Cline, Brian O’Connor, Megan Hanna,

Chet Birger, W James Kent, David A Patterson, Anthony D Joseph, Jingchun

Zhu, Sasha Zaranek, Gad Getz, David Haussler, and Benedict Paten. Toil enables

reproducible, open source, big biomedical data analyses. Nature Biotechnology,

35(4):314–316, apr 2017.

[53] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal

convnets: Minkowski convolutional neural networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 3075–3084, 2019.

[54] G. W. Stewart. The efficient generation of random orthogonal matrices with

an application to condition estimators. SIAM Journal on Numerical Analysis,

17(3):403–409, 1980.

144

[55] JunYoung Gwak, Christopher B Choy, and Silvio Savarese. Generative sparse

detection networks for 3d single-shot object detection. In European conference

on computer vision, 2020.

[56] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv,

dec 2013.

[57] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie

Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance

deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-

Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing

Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[58] William Falcon, Jirka Borovec, Adrian Wälchli, Nic Eggert, Justus Schock,

Jeremy Jordan, Nicki Skafte, Ir1dXD, Vadim Bereznyuk, Ethan Harris, Tul-

lie Murrell, Peter Yu, Sebastian Præsius, Travis Addair, Jacob Zhong, Dmitry

Lipin, So Uchida, Shreyas Bapat, Hendrik Schröter, Boris Dayma, Alexey Kar-

nachev, Akshay Kulkarni, Shunta Komatsu, Martin.B, Jean-Baptiste SCHI-

RATTI, Hadrien Mary, Donal Byrne, Cristobal Eyzaguirre, cinjon, and Anton

Bakhtin. Pytorchlightning/pytorch-lightning: 0.7.6 release, May 2020.

[59] Lukas Biewald. Experiment tracking with weights and biases, 2020. Software

available from wandb.com.

[60] Robert C Edgar. Search and clustering orders of magnitude faster than BLAST.

Bioinformatics, 26(19):2460–2461, oct 2010.

145

[61] Jaina Mistry, Robert D Finn, Sean R Eddy, Alex Bateman, and Marco Punta.

Challenges in homology search: HMMER3 and convergent evolution of coiled-

coil regions. Nucleic Acids Research, 41(12):e121, jul 2013.

[62] Robert C Edgar. MUSCLE: multiple sequence alignment with high accuracy and

high throughput. Nucleic Acids Research, 32(5):1792–1797, mar 2004.

[63] Thomas A Hopf, Anna G Green, Benjamin Schubert, Sophia Mersmann, Char-

lotta P I Schärfe, John B Ingraham, Agnes Toth-Petroczy, Kelly Brock, Adam J

Riesselman, Perry Palmedo, Chan Kang, Robert Sheridan, Eli J Draizen, Chris-

tian Dallago, Chris Sander, and Debora S Marks. The EVcouplings python

framework for coevolutionary sequence analysis. Bioinformatics, 35(9):1582–

1584, may 2019.

[64] Jung-Eun Shin, Adam J Riesselman, Aaron W Kollasch, Conor McMahon, Elana

Simon, Chris Sander, Aashish Manglik, Andrew C Kruse, and Debora S Marks.

Protein design and variant prediction using autoregressive generative models.

Nature Communications, 12(1):2403, apr 2021.

[65] Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason

Liu, Demi Guo, Myle Ott, C Lawrence Zitnick, Jerry Ma, and Rob Fergus.

Biological structure and function emerge from scaling unsupervised learning to

250 million protein sequences. Proceedings of the National Academy of Sciences

of the United States of America, 118(15), apr 2021.

[66] Yang Zhang and Jeffrey Skolnick. TM-align: a protein structure alignment al-

gorithm based on the TM-score. Nucleic Acids Research, 33(7):2302–2309, apr

2005.

146

[67] John Ingraham, Vikas Garg, Regina Barzilay, and Tommi Jaakkola. Genera-

tive models for graph-based protein design. Advances in Neural Information

Processing Systems, 2019.

147

3.6 Supplemental Matrial

3.6.1 Superfamilies used in this paper

Table 3.1: CATH Superfamilies used in this study.

C
A

T
H

C
o

d
e

N
am

e
D

es
cr

ip
ti

on
#

D
om

ai
n

s #
R

ep
re

se
nt

at
iv

es

M
an

u
al

U
rf

ol
d

1.
10

.1
0.

10
W

in
ge

d
he

lix
-l

ik
e

D
N

A
-b

in
di

ng

do
m

ai
n

su
pe

rf
am

ily
/W

in
ge

d
he

lix

D
N

A
-b

in
di

ng
do

m
ai

n

34
44

52
4

1.
10

.2
38

.1
0

E
F

-h
an

d
19

33
16

6

1.
10

.4
90

.1
0

G
lo

bi
ns

28
91

52

1.
10

.5
10

.1
0

T
ra

ns
fe

ra
se

(P
ho

sp
ho

tr
an

sf
er

as
e)

do
m

ai
n

1

72
19

14
8

1.
20

.1
26

0.
10

Fe
rr

it
in

,
co

re
su

bu
ni

t,
fo

ur
-h

el
ix

bu
nd

le

a
m

aj
or

no
n-

ha
em

ir
on

st
or

ag
e

pr
o-

te
in

in
an

im
al

,
pl

an
ts

an
d

m
ic

ro
or

-

ga
ni

sm
s

29
85

60

2.
30

.3
0.

10
0

SH
3

ty
pe

ba
rr

el
s

In
cl

ud
es

In
te

gr
as

e,
C

-t
er

m
in

al
do

-

m
ai

n
su

pe
rf

am
ily

,
re

tr
ov

ir
al

15
45

56
SB

B

2.
40

.5
0.

14
0

O
B

fo
ld

D
ih

yd
ro

lip
oa

m
id

e
A

ce
ty

lt
ra

ns
-

fe
ra

se
,

E
2P

N
uc

le
ic

ac
id

-b
in

di
ng

pr
ot

ei
ns

”

28
79

22
7

SB
B

2.
60

.4
0.

10
Im

m
un

og
lo

bu
lin

31
90

5
87

3

3.
10

.2
0.

30
B

et
a-

gr
as

p
do

m
ai

n
a

co
re

st
ru

ct
ur

e
co

ns
is

ti
ng

of

be
ta

(2
)-

al
ph

a-
be

ta
(2

),
w

hi
ch

is

si
m

ila
r

to
th

at
fo

un
d

in
ub

iq
ui

ti
n.

52
0

48
be

ta
-g

ra
sp

(U
b)

3.
30

.1
36

0.
40

G
yr

as
e

A
;

do
m

ai
n

2
16

0
13

Sm
-l

ik
e

ri
bo

nu
-

cl
eo

pr
ot

ei
ns

3.
30

.1
37

0.
10

‘’K
H

om
ol

og
y

do
m

ai
n,

ty
pe

1”
13

9
34

R
R

M
/R

B
D

(i
sh

)

3.
30

.1
38

0.
10

H
ed

ge
ho

g
do

m
ai

n
10

1
10

Sm
-l

ik
e

ri
bo

nu
-

cl
eo

pr
ot

ei
ns

3.
30

.2
30

.1
0

R
ib

os
om

al
P

ro
te

in
S5

;
do

m
ai

n
2

12
74

45
Sm

-l
ik

e
ri

bo
nu

-

cl
eo

pr
ot

ei
ns

3.
30

.3
00

.2
0

K
ho

m
ol

og
y

(K
H

)
do

m
ai

n
C

ou
ld

be
lo

ng
to

ge
th

er
w

/
th

e

R
R

M
s

in
a

ne
w

U
rf

ol
d

52
9

30
R

R
M

/R
B

D
(i

sh
)

3.
30

.3
10

.6
0

Sm
-l

ik
e

ri
bo

nu
cl

eo
pr

ot
ei

n
C

-t
er

m
in

al
do

m
ai

n
28

1
Sm

-l
ik

e
ri

bo
nu

-

cl
eo

pr
ot

ei
ns

3.
40

.5
0.

30
0

P
-l

oo
p

N
T

P
as

es
P

-l
oo

p
co

nt
ai

ni
ng

nu
cl

eo
ti

de

tr
ip

ho
sp

ha
te

hy
dr

ol
as

es
(b

ot
h

2a
k3

an
d

1r
eb

in
sa

m
e

ca
th

id
)

92
33

56
1

P
-l

oo
p

N
T

P
as

es

3.
40

.5
0.

72
0

N
A

D
(P

)-
bi

nd
in

g
R

os
sm

an
n-

lik
e

D
om

ai
n

11
72

8
64

7
R

os
sm

an
n-

ba
se

d

3.
80

.1
0.

10
R

ib
on

uc
le

as
e

In
hi

bi
to

r
L

ue
ci

ne
ri

ch
re

pe
at

pr
ot

ei
n;

po
si

-

ti
ve

co
nt

ro
l,

sa
ni

ty
ch

ec
k

70
9

99

3.
90

.4
20

.1
0

‘’O
xi

do
re

du
ct

as
e,

m
ol

yb
do

pt
er

in
-

bi
nd

in
g

do
m

ai
n”

58
6

be
ta

-g
ra

sp
(U

b)

3.
90

.7
9.

10
N

T
P

P
yr

op
ho

sp
ho

hy
dr

ol
as

e
85

0
74

be
ta

-g
ra

sp
(U

b)

148

3.6.2 Voxelization & Featurization

Figure 3.6: Voxelization & Featurization Method. Each domain is voxelized
by (1) centering in a 256 3 volume; and (2) discretizing each atom to fit 1 3 voxels
searching a KD-Tree with a radius equal to the current atoms van der walls radii,
where the KD-tree initialized by the full 256 3 volume, with 1 3 resolution. If two or
more atoms occupy a single voxel, the maximum from each feature is used to handle
covalent bonding. Each voxel contains a 1-hot feature vector with 19 or 40 features
depending on if residue type is included. Residue type was not included in the models
shown in this paper because due poor reconstruction metrics so was not considered
useful for this type of model, seen in Fig 3.8

149

3.6.3 Immunoglobulin (2.60.40.10) Model Metrics

Training & Validation Loss

Figure 3.7: The 2.60.40.10 model was trained for 30 epochs using a 80% / 10 %
split from CATH’s S35 clusters (test [10 %] not shown).

150

Classification Metrics (w/ Residue Type)

Figure 3.8: Classification Metrics for 7 Different Groups of Features In-
cluding Residue Type. We trained an Immunoglobulin-specific model 7 different
times for 7 different groups of features, excluding all of the other feature groups. We
compared the reconstructed values for each values to the input using ROC (receiver
operating; true positive vs false positive) and PRC (precision vs recall) curves, saving
the AUC (area under curve) for each. Most features were able to be reconstructed
well (AUC ≥ 0.6) except residue type so we removed them from further models. We
hypothesize that residue type is not as important for atom-only models and is too
coarse-grained to be meaningful for this context.

151

Classification Metrics (w/o Residue Type)

Figure 3.9: Classification Metrics for 7 Different Groups of Features Re-
moving Residue Type. The 2.60.40.10 model was trained with all features, but
individual feature groups were separated to perform micro-averaging ROC, PRC, and
F1 scores

152

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

is_helix (AUC = 0.67)
is_sheet (AUC = 0.80)
Unk_SS (AUC = 0.77)

(a) Micro-averaged ROC
Curve for separated fea-
tures in the Secondary
Structure feature group.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

is_helix (AP = 0.07)
is_sheet (AP = 0.79)
Unk_SS (AP = 0.73)

(b) Micro-averaged PRC
Curve for separated fea-
tures in the Secondary
Structure feature group.

(c) Micro-averaged F1 val-
ues for separated features
in the Secondary Structure
feature group.

Figure 3.10: Classification metrics for separated features in the Secondary Structure
feature group.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

H (AUC = 0.63)
HD (AUC = 0.63)
C (AUC = 0.82)
A (AUC = 0.62)
N (AUC = 0.68)
NA (AUC = 0.62)
OA (AUC = 0.75)
SA (AUC = 0.75)

(a) Micro-averaged ROC
Curve for separated fea-
tures in the Atom Type fea-
ture group.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

H (AP = 0.60)
HD (AP = 0.20)
C (AP = 0.50)
A (AP = 0.05)
N (AP = 0.07)
NA (AP = 0.00)
OA (AP = 0.23)
SA (AP = 0.01)

(b) Micro-averaged PRC
Curve for separated fea-
tures in the Atom Type fea-
ture group.

(c) Micro-averaged F1 val-
ues for separated features
in the Atom Type feature
group.

Figure 3.11: Classification metrics for separated features in the Atom Type feature
group.

153

3.6.4 Multiple Loop Permutations

Permutants

(a) Exemplar SH3 permutatants

(b) TM-Scores for Multiple Loop Permuted structures.
Many of the SH3 and OB permutant TM-Scores fall
between 0.3-0.5, showing that that are more than ran-
domly similar, but not the same fold.

Figure 3.12: Multiple Loop Permutations Example

154

Class Imbalance Scores

Figure 3.13: Class Imbalance Studied for SH3 and OB VAE models. In
order test how class imbalance affects our models, we trained 3 joint SH3 and OB
models: (A) using all domains from each superfamily; (B) oversampling SH3 domains
to match the number of OB domains; and (3) under-sampling OB domains to match
the number of SH3 domains. We found no significant change between them in terms
of ELBO scores when running representatives, multi-loop permuted models, and an-
cestral versions of SH3 and OB.

155

3.6.5 Latent Space

UMAP

(a) Colored by secondary structure (b) Colored by averaged electro-negativity
values

(c) Colored by true CATH Superfamily

Figure 3.14: Latent Space from UMAP. Representatives from each superfamily
were subjected to models trained with domains from the same superfamily, saving
the latent variable representing the mean for each representative domain. The latent
variables for each different model were concatenated and reduced from 1024 dims to
2 for visualization

156

T-SNE

(a) Colored by secondary structure (b) Colored by averaged electro-negativity
values

(c) Colored by true CATH Superfamily

Figure 3.15: Latent Space from T-SNE

157

PCA

(a) Colored by secondary structure (b) Colored by averaged electro-negativity
values

(c) Colored by true CATH Superfamily

Figure 3.16: Latent Space from PCA

158

3.6.6 Stochastic Block Modelling

of Clusters 20
Silhouette Score −0.0705

Davies-Boundin Score 33.1678

Overlap Score 0.2798

Rand Score 0.8542

Rand Score Adjusted 0.1977

Adjusted Mutual Information 0.4108

Homogeneity Score 0.4831

Completeness Score 0.3749

Table 3.2: Clustering metrics of DeepUrfold SBM vs CATH

159

E
le

ct
ro

st
at

ic
s

Fi
gu

re
3.

17
:

SB
M

C
om

m
un

it
ie

s
C

ol
or

ed
by

E
le

ct
ro

st
at

ic
P

ot
en

ti
al

.
Ea

ch
at
om

it
an

no
ta
te
d
w
ith

th
e
Bo

ol
ea
n

fe
at
ur
e
is_

el
ec
tr
on

eg
at
iv
e.

W
e
su
m

up
al
lo

ft
he

el
ec
tr
on

eg
tiv

e
at
om

s
an

d
ta
ke

a
fra

ct
io
n
of

th
e
to
ta
ln

um
be

ro
fa

to
m
s.

160

C
harge

Figure
3.18:

SBM
C
om

m
unities

C
olored

by
Partial

C
harge.

Each
atom

it
annotated

w
ith

the
Boolean

feature
is_

positive.
W
e
sum

up
allofthe

positive
atom

s
and

take
a
fraction

ofthe
totalnum

ber
ofatom

s.

161

Se
co

nd
ar

y
St

ru
ct

ur
e

Fi
gu

re
3.

19
:

SB
M

C
om

m
un

it
ie

s
C

ol
or

ed
by

Se
co

nd
ar

y
St

ru
ct

ur
e.

To
ca
lc
ul
at
e
th
e
se
co
nd

ar
y
st
ru
ct
ur
e
sc
or
e,

we
us
e
th
e
fo
rm

ul
a:

(#
be

ta
at
om

s
-#

al
ph

a
at
om

s)
/(
2*

(#
be

ta
at
om

s
+

#
al
ph

a
at
om

s)
)
+

0.
5.

162

G
O

:M
olecular

Function

Figure
3.20:

SB
M

C
om

m
untities

C
olored

by
G

O
M

F
enrichm

ent.
W
euseG

O
AT

O
O
LS

to
calculateenrichm

ent
for

each
G
O

term
from

alldom
ains

in
the

predicted
SBM

com
m
unity

(leafgrouping
only)

using
G
O

Slim
term

s
from

A
G
R
.Ifthe

dom
ain

has
a
G
O

term
that

is
enriched

in
its

com
m
unity

(p_
fdr_

bh
≤

0.05),then
it

is
colored

for
the

associated
term

.
Ifthere

are
m
ultiple

enriched
term

s,only
the

first
is

used.

163

G
O

:B
io

lo
gi

ca
lP

ro
ce

ss

Fi
gu

re
3.

21
:

SB
M

C
om

m
un

ti
ti

es
C

ol
or

ed
by

G
O

B
P

en
ri

ch
m

en
t.

W
e
us
e
G
O
AT

O
O
LS

to
ca
lc
ul
at
e
en
ric

hm
en
t

fo
r
ea
ch

G
O

te
rm

fro
m

al
ld

om
ai
ns

in
th
e
pr
ed
ic
te
d
SB

M
co
m
m
un

ity
(le

af
gr
ou

pi
ng

on
ly
)
us
in
g
G
O

Sl
im

te
rm

s
fro

m
A
G
R
.I

ft
he

do
m
ai
n
ha

s
a
G
O

te
rm

th
at

is
en
ric

he
d
in

its
co
m
m
un

ity
(p
_
fd
r_

bh
≤

0.
05

),
th
en

it
is

co
lo
re
d
fo
r
th
e

as
so
ci
at
ed

te
rm

.
If
th
er
e
ar
e
m
ul
tip

le
en
ric

he
d
te
rm

s,
on

ly
th
e
fir
st

is
us
ed
.

164

G
O

:C
ellular

C
om

ponent

Figure
3.22:

SB
M

C
om

m
untities

C
olored

by
G

O
C

C
enrichm

ent.
W
e
use

G
O
AT

O
O
LS

to
calculate

enrichm
ent

for
each

G
O

term
from

alldom
ains

in
the

predicted
SBM

com
m
unity

(leafgrouping
only)

using
G
O

Slim
term

s
from

A
G
R
.Ifthe

dom
ain

has
a
G
O

term
that

is
enriched

in
its

com
m
unity

(p_
fdr_

bh
≤

0.05),then
it

is
colored

for
the

associated
term

.
Ifthere

are
m
ultiple

enriched
term

s,only
the

first
is

used.

165

Downsampled SBM

Figure 3.23: Class Imbalance Studies during Stochastic Block Modelling.
In order to test how the SBM treats highly imbalanced classes, we included only su-
perfamilies that had ≥ 100 domain representatives and sampled 100 random domains
from each. No immediate change can be detected and OB domains are still found in
the same community as Immunoglobulins

166

3.6.7 Comparison to Other metrics

Table 3.3: Comparison of Stochastic Block Modelling of a Bipartite graph of CATH
Domains and Superfamilies with scores based on similar algorithms to DeepUrfold.
Silhouette Score and Davis-Boundin are self measures and do not compare against
CATH.

M
et

h
o

d
M

o
d

el
T

ra
in

D
at

a

S
co

re

#
Com

m
uniti

es Silh
ouett

eSco
re Davis

-B
oundin

Ove
rla

p

Rand
Sco

re
(A

dju
ste

d)

Adju
ste

d
M

utu
alIn

form
atio

n

Homog
en

eit
y

Complet
en

es
s

S
eq

u
en

ce
-b

as
ed

P
ai

rw
is

e
U

C
L

U
ST

G
lo

ba
l

A
lig

n-

m
en

t

C
A

T
H

S3
5

↑%
Se

q

ID

1
9

0
.2
8
6
3

2
.4
8
3
0

0
.6
1
4
8

0
.9
1
3
1

(0
.6
7
7
8

)

0
.7
7
0
3

0
.7
7
1
2

0
.7
7
9
1

L
oc

al

A
lig

nm
en

t

C
A

T
H

S3
5

↑%
Se

q

ID

3
8

−
0
.2
5
8
4

1
0
.4
4
0
8

0
.3
4
7
6

0
.8
3
3
8

(0
.2
7
3
0

)

0
.4
3
8
2

0
.5
0
7
4

0
.4
1
5
6

Si
ng

le
M

od
el

E
SM

-1
b

L
an

gu
ag

e

T
ra

ns
-

fo
rm

er

U
ni

re
f5

0
↓E

uc
lid

ea
n

D
is

ta
nc

e

1
2
1

0
.4
2
9
9

0
.7
9
3
1

0
.1
6
7
6

0
.8
6
3
8

(0
.0
8
9
6

)

0
.5
8
4
3

0
.9
0
6
5

0
.4
3
1
1

Su
pe

rf
am

ily
-s

pe
ci

fi
c

m
od

el
s

H
M

M
E

R
H

M
M

C
A

T
H

S3
5

↑B
it

sc
or

e
2
4

−
0
.1
7
1
5

5
.3
7
9
7

0
.4
1
2
2

0
.7
4
6
3

(0
.2
4
4
4

)

0
.4
7
4
7

0
.4
4
2
9

0
.5
4
1
6

E
V

co
up

lin
gs

al
ig

n-

m
en

t

↑B
it

sc
or

e
1
4

0
.5
4
2
2

3
.5
9
0
2

0
.3
1
0
5

0
.5
5
4
6

(0
.0
9
0
5

)

0
.2
1
7
3

0
.1
7
3
4

0
.3
3
8
2

Se
qD

es
ig

n
A

ut
o-

re
gr

es
si

ve

E
V

co
up

lin
gs

al
ig

n-

m
en

t

(U
na

lig
ne

d)

↑B
it

sc
or

e
7

0
.0
4
1
0

3
.6
6
2
9

0
.4
0
9
5

0
.7
6
0
4

(0
.2
0
8
5

)

0
.2
7
3
6

0
.2
3
7
0

0
.3
2
3
5

S
tr

u
ct

u
re

-b
as

ed

P
ai

rw
is

e
T

M
-A

lig
n

St
ru

ct
ur

al

A
lig

n-

m
en

t

C
A

T
H

S3
5

↑T
M

-

Sc
or

e

4
2

0
.1
3
0
3

1
.7
1
3
8

0
.3
1
5
0

0
.8
7
3
4

(0
.2
3
8
0

)

0
.6
2
3
2

0
.8
2
4
7

0
.5
1
8
8

↓R
M

SD
2
9

0
.1
5
9
3

1
.8
1
4
1

0
.4
2
0
0

0
.8
8
3
1

(0
.3
3
4
2

)

0
.6
6
2
8

0
.8
1
7
2

0
.5
7
0
6

C
ir

cu
la

r

P
er

m
ut

at
io

ns

C
A

T
H

S3
5

↑T
M

-

Sc
or

e

4
2

0
.1
1
2
4

1
.7
4
0
7

0
.2
9
6
9

0
.8
7
0
2

(0
.2
1
6
2

)

0
.6
0
4
2

0
.8
0
0
5

0
.5
0
3
7

↓R
M

SD
2
6

0
.1
8
0
1

1
.6
5
2
9

0
.4
1
6
4

0
.8
7
9
9

(0
.3
4
6
7

)

0
.6
7
4
0

0
.8
0
3
2

0
.5
9
2
9

Su
pe

rf
am

ily
-s

pe
ci

fi
c

m
od

el
s

St
ru

ct
2S

eq
G

ra
ph

T
ra

ns
-

fo
rm

er

C
A

T
H

(B
ac

kb
on

e)

↑P
er

pl
ex

it
y

1
5

0
.0
5
6
3

2
.5
6
5
7

0
.4
7
2
4

0
.8
7
4
5

(0
.3
9
5
9

)

0
.5
4
3
4

0
.5
8
5
7

0
.5
1
9
6

D
ee

pU
rf

ol
d

(o
ur

s)

3D
-C

N
N

V
A

E

C
A

T
H

(F
ul

l)

↓E
L

B
O

2
0

−
0
.0
7
0
5

3
3
.1
6
7
8

0
.2
7
9
8

0
.8
5
4
2

(0
.1
9
7
7

)

0
.4
1
0
8

0
.4
8
3
1

0
.3
7
4
9

167

3.6.8 Model Architecture

1 DomainStructureVAE (

2 (encoder) : Encoder (

3 (b lock1) : Sequent i a l (

4 (0) : MinkowskiConvolution (in =20, out =16, k e rne l_s i z e =[3 , 3 , 3] ,

s t r i d e =[2 , 2 , 2] , d i l a t i o n =[1 , 1 , 1])

5 (1) : MinkowskiSyncBatchNorm (16 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

6 (2) : MinkowskiELU ()

7 (3) : MinkowskiConvolution (in =16, out =16, k e rne l_s i z e =[3 , 3 , 3] ,

s t r i d e =[1 , 1 , 1] , d i l a t i o n =[1 , 1 , 1])

8 (4) : MinkowskiSyncBatchNorm (16 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

9 (5) : MinkowskiELU ()

10)

11 (b lock2) : Sequent i a l (

12 (0) : MinkowskiConvolution (in =16, out =32, k e rne l_s i z e =[3 , 3 , 3] ,

s t r i d e =[2 , 2 , 2] , d i l a t i o n =[1 , 1 , 1])

13 (1) : MinkowskiSyncBatchNorm (32 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

14 (2) : MinkowskiELU ()

15 (3) : MinkowskiConvolution (in =32, out =32, k e rne l_s i z e =[3 , 3 , 3] ,

s t r i d e =[1 , 1 , 1] , d i l a t i o n =[1 , 1 , 1])

16 (4) : MinkowskiSyncBatchNorm (32 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

17 (5) : MinkowskiELU ()

18)

19 (b lock3) : Sequent i a l (

20 (0) : MinkowskiConvolution (in =32, out =64, k e rne l_s i z e =[3 , 3 , 3] ,

s t r i d e =[2 , 2 , 2] , d i l a t i o n =[1 , 1 , 1])

168

21 (1) : MinkowskiSyncBatchNorm (64 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

22 (2) : MinkowskiELU ()

23 (3) : MinkowskiConvolution (in =64, out =64, k e rne l_s i z e =[3 , 3 , 3] ,

s t r i d e =[1 , 1 , 1] , d i l a t i o n =[1 , 1 , 1])

24 (4) : MinkowskiSyncBatchNorm (64 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

25 (5) : MinkowskiELU ()

26)

27 (b lock4) : Sequent i a l (

28 (0) : MinkowskiConvolution (in =64, out =128 , k e rne l_s i z e =[3 , 3 , 3] ,

s t r i d e =[2 , 2 , 2] , d i l a t i o n =[1 , 1 , 1])

29 (1) : MinkowskiSyncBatchNorm (128 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

30 (2) : MinkowskiELU ()

31 (3) : MinkowskiConvolution (in =128 , out =128 , k e rne l_s i z e =[3 , 3 , 3] ,

s t r i d e =[1 , 1 , 1] , d i l a t i o n =[1 , 1 , 1])

32 (4) : MinkowskiSyncBatchNorm (128 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

33 (5) : MinkowskiELU ()

34)

35 (b lock5) : Sequent i a l (

36 (0) : MinkowskiConvolution (in =128 , out =256 , k e rne l_s i z e =[3 , 3 , 3] ,

s t r i d e =[2 , 2 , 2] , d i l a t i o n =[1 , 1 , 1])

37 (1) : MinkowskiSyncBatchNorm (256 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

38 (2) : MinkowskiELU ()

39 (3) : MinkowskiConvolution (in =256 , out =256 , k e rne l_s i z e =[3 , 3 , 3] ,

s t r i d e =[1 , 1 , 1] , d i l a t i o n =[1 , 1 , 1])

40 (4) : MinkowskiSyncBatchNorm (256 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

169

41 (5) : MinkowskiELU ()

42)

43 (b lock6) : Sequent i a l (

44 (0) : MinkowskiConvolution (in =256 , out =512 , k e rne l_s i z e =[3 , 3 , 3] ,

s t r i d e =[2 , 2 , 2] , d i l a t i o n =[1 , 1 , 1])

45 (1) : MinkowskiSyncBatchNorm (512 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

46 (2) : MinkowskiELU ()

47 (3) : MinkowskiConvolution (in =512 , out =512 , k e rne l_s i z e =[3 , 3 , 3] ,

s t r i d e =[1 , 1 , 1] , d i l a t i o n =[1 , 1 , 1])

48 (4) : MinkowskiSyncBatchNorm (512 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

49 (5) : MinkowskiELU ()

50)

51 (b lock7) : Sequent i a l (

52 (0) : MinkowskiConvolution (in =512 , out =1024 , k e rne l_s i z e =[3 , 3 , 3] ,

s t r i d e =[2 , 2 , 2] , d i l a t i o n =[1 , 1 , 1])

53 (1) : MinkowskiSyncBatchNorm (1024 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

54 (2) : MinkowskiELU ()

55 (3) : MinkowskiConvolution (in =1024 , out =1024 , k e rne l_s i z e =[3 , 3 ,

3] , s t r i d e =[1 , 1 , 1] , d i l a t i o n =[1 , 1 , 1])

56 (4) : MinkowskiSyncBatchNorm (1024 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

57 (5) : MinkowskiELU ()

58)

59 (g loba l_pool) : MinkowskiGlobalPooling (mode=PoolingMode .

GLOBAL_AVG_POOLING_PYTORCH_INDEX)

60 (linear_mean) : MinkowskiLinear (in_fea ture s =1024 , out_features =1024 ,

b i a s=True)

170

61 (l inear_log_var) : MinkowskiLinear (in_fea tu re s =1024 , out_features

=1024 , b i a s=True)

62)

63 (decoder) : Decoder (

64 (b lock1) : Sequent i a l (

65 (0) : MinkowskiConvolutionTranspose (in =1024 , out =1024 , k e rne l_s i z e

=[2 , 2 , 2] , s t r i d e =[2 , 2 , 2] , d i l a t i o n =[1 , 1 , 1])

66 (1) : MinkowskiSyncBatchNorm (1024 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

67 (2) : MinkowskiELU ()

68 (3) : MinkowskiConvolution (in =1024 , out =1024 , k e rne l_s i z e =[3 , 3 ,

3] , s t r i d e =[1 , 1 , 1] , d i l a t i o n =[1 , 1 , 1])

69 (4) : MinkowskiSyncBatchNorm (1024 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

70 (5) : MinkowskiELU ()

71 (6) : MinkowskiConvolutionTranspose (in =1024 , out =512 , k e rne l_s i z e

=[2 , 2 , 2] , s t r i d e =[2 , 2 , 2] , d i l a t i o n =[1 , 1 , 1])

72 (7) : MinkowskiSyncBatchNorm (512 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

73 (8) : MinkowskiELU ()

74 (9) : MinkowskiConvolution (in =512 , out =512 , k e rne l_s i z e =[3 , 3 , 3] ,

s t r i d e =[1 , 1 , 1] , d i l a t i o n =[1 , 1 , 1])

75 (10) : MinkowskiSyncBatchNorm (512 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

76 (11) : MinkowskiELU ()

77)

78 (b lock2) : Sequent i a l (

79 (0) : MinkowskiConvolutionTranspose (in =512 , out =256 , k e rne l_s i z e

=[2 , 2 , 2] , s t r i d e =[2 , 2 , 2] , d i l a t i o n =[1 , 1 , 1])

80 (1) : MinkowskiSyncBatchNorm (256 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

171

81 (2) : MinkowskiELU ()

82 (3) : MinkowskiConvolution (in =256 , out =256 , k e rne l_s i z e =[3 , 3 , 3] ,

s t r i d e =[1 , 1 , 1] , d i l a t i o n =[1 , 1 , 1])

83 (4) : MinkowskiSyncBatchNorm (256 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

84 (5) : MinkowskiELU ()

85)

86 (b lock3) : Sequent i a l (

87 (0) : MinkowskiConvolutionTranspose (in =256 , out =128 , k e rne l_s i z e

=[2 , 2 , 2] , s t r i d e =[2 , 2 , 2] , d i l a t i o n =[1 , 1 , 1])

88 (1) : MinkowskiSyncBatchNorm (128 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

89 (2) : MinkowskiELU ()

90 (3) : MinkowskiConvolution (in =128 , out =128 , k e rne l_s i z e =[3 , 3 , 3] ,

s t r i d e =[1 , 1 , 1] , d i l a t i o n =[1 , 1 , 1])

91 (4) : MinkowskiSyncBatchNorm (128 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

92 (5) : MinkowskiELU ()

93)

94 (b lock4) : Sequent i a l (

95 (0) : MinkowskiConvolutionTranspose (in =128 , out =64, k e rne l_s i z e =[2 ,

2 , 2] , s t r i d e =[2 , 2 , 2] , d i l a t i o n =[1 , 1 , 1])

96 (1) : MinkowskiSyncBatchNorm (64 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

97 (2) : MinkowskiELU ()

98 (3) : MinkowskiConvolution (in =64, out =64, k e rne l_s i z e =[3 , 3 , 3] ,

s t r i d e =[1 , 1 , 1] , d i l a t i o n =[1 , 1 , 1])

99 (4) : MinkowskiSyncBatchNorm (64 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

100 (5) : MinkowskiELU ()

101)

172

102 (b lock5) : Sequent i a l (

103 (0) : MinkowskiConvolutionTranspose (in =64, out =32, k e rne l_s i z e =[2 ,

2 , 2] , s t r i d e =[2 , 2 , 2] , d i l a t i o n =[1 , 1 , 1])

104 (1) : MinkowskiSyncBatchNorm (32 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

105 (2) : MinkowskiELU ()

106 (3) : MinkowskiConvolution (in =32, out =32, k e rne l_s i z e =[3 , 3 , 3] ,

s t r i d e =[1 , 1 , 1] , d i l a t i o n =[1 , 1 , 1])

107 (4) : MinkowskiSyncBatchNorm (32 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

108 (5) : MinkowskiELU ()

109)

110 (b lock6) : Sequent i a l (

111 (0) : MinkowskiConvolutionTranspose (in =32, out =16, k e rne l_s i z e =[2 ,

2 , 2] , s t r i d e =[2 , 2 , 2] , d i l a t i o n =[1 , 1 , 1])

112 (1) : MinkowskiSyncBatchNorm (16 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

113 (2) : MinkowskiELU ()

114 (3) : MinkowskiConvolution (in =16, out =16, k e rne l_s i z e =[3 , 3 , 3] ,

s t r i d e =[1 , 1 , 1] , d i l a t i o n =[1 , 1 , 1])

115 (4) : MinkowskiSyncBatchNorm (16 , eps=1e −05, momentum=0.1 , a f f i n e=

True , track_running_stats=True)

116 (5) : MinkowskiELU ()

117)

118 (b lock7) : MinkowskiConvolution (in =16, out =20, k e rne l_s i z e =[1 , 1 , 1] ,

s t r i d e =[1 , 1 , 1] , d i l a t i o n =[1 , 1 , 1])

119 (pruning) : MinkowskiPruning ()

120)

121)

173

Chapter 4

DeepUrfold-explain: Explainable

Deep Generative Models,

Ancestral Fragments, and Murky

Regions of the Protein Structure

Universe

Eli J. Draizen1,2, Cameron Mura2, and Philip E. Bourne1,2

1 Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903

2 School of Data Science, University of Virginia, Charlottesville, VA 22903

Accepted to Machine Learning for Structural Biology Workshop, NeurIPS 2022 and

is available as a preprint at https://doi.org/10.1101/2022.11.16.516787.

https://doi.org/10.1101/2022.11.16.516787

174

Abstract

Modern proteins did not arise abruptly, as singular events, but rather over the course

of at least 3.5 billion years of evolution. Can machine learning teach us how this

occurred? The molecular evolutionary processes that yielded the intricate three-

dimensional (3D) structures of proteins involve duplication, recombination and mu-

tation of genetic elements, corresponding to short peptide fragments. Identifying and

elucidating these ancestral fragments is crucial to deciphering the interrelationships

amongst proteins, as well as how evolution acts upon protein sequences, structures

& functions. Traditionally, structural fragments have been found using sequence and

3D structural alignment, but that becomes challenging when proteins have under-

gone extensive permutations—allowing two proteins to share a common architecture,

though their topologies may drastically differ (a phenomenon termed the Urfold).

We have designed a new framework to identify compact, potentially-discontinuous

peptide fragments by combining (i) deep generative models of protein superfamilies

with (ii) layer-wise relevance propagation (LRP) to identify atoms of great relevance

in creating an embedding during an allsuperfamilies× alldomains analysis. Our approach

recapitulates known relationships amongst the evolutionarily ancient small β-barrels

(e.g. SH3 and OB folds) and P-loop–containing proteins (e.g. Rossmann and P-loop

NTPases), previously established via manual analysis. Because of the generality of

our deep model’s approach, we anticipate that it can enable the discovery of new an-

cestral peptides. In a sense, our framework uses LRP as an ‘explainable AI’ approach,

in conjunction with a recent deep generative model of protein structure (termed Deep-

Urfold), in order to leverage decades worth of structural biology knowledge to decipher

the underlying molecular bases for protein structural relationships—including those

which are exceedingly remote, yet can be discovered via deep learning.

175

4.1 Introduction

Historically, protein structural evolution has been studied via painstaking visual in-

spection and manual analyses of structures, including a heavy reliance on compar-

isons built upon 3D superposition/alignment of atomic coordinates. Indeed, visualiz-

ing protein structures and their 3D alignments using graphical tools such as ‘ribbon

diagrams’ has enabled many landmark discoveries in biology and medicine, largely

because these diagrams simplify the inordinately complicated geometric structures of

proteins into something that is comprehensible by the human brain. However, simpli-

fied cartoon representations ignore the high-dimensional, largely biophysical/physico-

chemical feature space of all the atoms defining a protein, and an over-reliance on

simplified, static representations can limit us to seeing a structure of a particular

protein as being the structure—i.e., we fall prey to viewing as important only one

particular geometric representation or structural conformation, versus the true sta-

tistical ensemble of thermally-accesible states that an actual protein structure sam-

ples in reality. In short, conventional schemes for conceptualizing and analyzing

protein structure relationships are not without limitations, and can cause us to miss

phylogenetically remote (deeply ancestral) relationships. Some have referred to this

pitfall as the ‘curse of the ribbon’ [1]. Modern deep learning–based methods enable

fundamentally new representations of proteins and their sequence/structure/func-

tion relationships—for example, as lower-dimensional embeddings that incorporate

biophysical properties (e.g., electrostatics) alongside 3D-coordinate data (i.e., geome-

try), sequence information and residue profiles, and so on. All of this, in turn, might

finally lift the curse.

While many new sequence-based deep learning methods, based on large language

models [2, 3, 4, 5], can identify more remote similarities than can hidden Markov mod-

176

els (HMMs) or classic sequence-comparison algorithms (e.g., BLAST), larger struc-

tural rearrangements and permutations, such as occur on evolutionary timescales,

are still difficult to detect. If one views the protein universe through the lens of a

hierarchical classification scheme such as CATH [6], most new homologous sequences

identified by these methods would be located within the same homologous super-

family or topology strata—i.e., there are bounds on how remote a homology can be

detected by existing methods. Thus, sets of potentially distantly-related proteins,

with similar architectures yet different topologies, are generally missed [7]. Indeed,

it was recently proposed that there might exist a new level of structural granularity,

lying between the architecture and topology levels (the latter of which is synony-

mous with a given protein’s fold); termed the ‘Urfold’, this provisional new level

would naturally allow for 3D fragments that are spatially compact yet potentially

discontinuous in sequence [7], such as may be the case with ancient, deeply ances-

tral fragments. An example of an urfold can be seen in Fig 4.1, highlighting two

widespread classes of phosphate-binding loop (PBL)–containing proteins, namely the

Rossmann fold-containing proteins and P-loop NTPases.

The Urfold model of protein structure—and, thus, protein structural interrelationships—

arose by noticing the striking structural and functional similarities among deeply-

divergent collections of domains from the SH3 and OB superfamilies [8]. Those su-

perfamilies all contain a small β-barrel (SBB) domain, composed of five β-strands,

but the topologies/connections between the strands have been permuted such that

these proteins often share less than 20% sequence identity between one another (i.e.,

below the classic ‘twilight zone’ of similarity for inferring homology between two se-

quences). Despite having permuted strands, the architecturally-identical SBBs are

often involved in nucleic acid metabolic pathways, and many of them oligomerize

177

via residue interactions amongst similar edge-strands [8]. Recently, it was proposed

that the SH3 and OB share a common ancestor that diverged via a process called

‘Creative Destruction’ [9, 10]. Notably, the SH3 and OB are two of the most an-

cient and widespread protein folds, and they permeate most information-storage and

information-processing pathways in cellular life, from DNA replication to transcrip-

tion of DNA→RNA and translation of RNA→protein [9, 11].

Figure 4.1: The Urfold Represents Architectural Similarity Despite Topo-
logical Variability. A) CATH hierarchically organizes the protein universe into
Class, Architecture, Topology, and Homologous Superfamilies. We hypothesize the
‘Urfold’ strata would fall in between Architecture and Topology. B) SH3 and OB
share a small β-barrel urfold. C) The Rossmann and P-loop NTPases both contain a
common core theme of three β-strands connected to an α-helix by a glycine-rich loop;
the loop is of functional importance by virtue of binding phosphorylated ribonucle-
oside ligands, be they substrates, cofactors, or otherwise. However, the Rossmann
fold is permuted such that one β-strand is no longer nearby in sequence and another
β-strand has reversed direction. These gross structural differences have led biologists
to incorrectly classify these ancient folds as being unrelated. The two folds are now
bridged via a ‘PBL’ urfold [12, 7].

Another prominent example of an urfold can be seen in the phosphate-binding loop

(PBL) containing proteins, which include the Rossmann and P-loop NTPases super-

families [12]. Both of these superfamilies contain a small protein fragment of three

178

β-strands that contact a single α-helix, with these structural elements linked by a

phosphate-binding glycine-rich loop (Fig. 4.1). Most domains from the PBL urfold

are quite large, i.e. featuring many additional secondary structural elements (SSEs)

beyond the core, and they do not oligomerize; rather, they have a large central cavity

for ligand-binding. While Rossmann and PBL proteins are known to bind a diverse

repertoire of ligands and catalyze many different types of reactions, they predomi-

nately bind phosphorylated nucleotides and similar compounds, with the phosphate

groups primarily interacting with the phosphate-binding loop [13].

In addition to similarity at the full-domain level, the Urfold model allows for sub-

domain–level structural fragments that may be discontinuous in sequence. That is,

the Urfold extends a CATH-like hierarchical representational scheme of the protein

universe by allowing for (conserved) spatial constellations of short peptides, perhaps

like the Ancestral Peptides [14] or Themes [15] that have been thought to underlie

the structural evolution into larger domains. Note that algorithms which flexibly

allow for discontinuous fragments are making a resurgence, as in Geometricus [16],

for analyzing structural embeddings.

In a recent study that developed a deep generative approach to protein structural

relationships, using the Urfold model of protein structure in a framework called

DeepUrfold, 20 superfamily-specific, sparse 3D-CNN variational autoencoders (VAEs)

were trained for 20 different, highly-populated CATH superfamilies [17]. These

DeepUrfold-trained models were shown to be agnostic to topology, as architecturally-

similar SH3/OB proteins with artificially-constructed loop permutations yielded simi-

lar evidence lower bound–based (ELBO) scores; most significantly, applying community-

detection methods (as stochastic block models) to the patterns of ELBO similarities

led to the SH3 and OB domains clustering into similar groupings (with some inter-

179

mixing). All of those findings were consistent with the prediction that the SH3 and

OB comprise a distinct urfold (in this case, the SBB).

This paper explores—and seeks to begin explaining—the models from [17] in more

depth, by applying an approach known as layer-wise relevance propagation (LRP). In

principle, explainable AI techniques such as LRP can be used to understand which

atoms in the input structure are ‘important’, based on their spatial locations and

biophysical properties (and, really, any other sorts of features that one encodes in the

model). In or our allsuperfamilies× alldomains analysis, we look at the ELBO likelihood

of a domain x under under DeepUrfold VAE models Mi and Mj for superfamilies i and

j respectively. Functionally conserved regions from both Mi and Mj should positively

affect the the likelihood under both models and therefore should have high LRP scores.

Focusing on the two specific urfolds described above, i.e. the small β-barrels (SBB)

and the phosphate-binding loop (PBL)–containing proteins, we show how LRP can

be used to identify cross-model functionally important atoms; achieving that task,

in turn, forms the foundation for identifying and characterizing new discontinuous

fragments or ancestral peptides.

4.2 Results

4.2.1 Small β-barrels

We first investigated the SH3-specific (2.30.30.100), DeepUrfold-derived VAE model.

This model was trained using all energy-minimized domain structures from the SH3

superfamily along with hand-crafted biophysical features, as described in [17]. We

first attempted to subject representative SH3 domains through the SH3 model and

180

calculated relevance scores during backpropagation. Promisingly, all of the residues

that were previously identified in the SBB’s ”conserved hydrophobic core” [8] were

labelled as relevant according to our LRP calculation (Fig. 4.2B). Next, we found

that a specific, highly-conserved glycine in the second β-strand, known from years

of manual analysis as being conformationally important in allowing the strand to

bend [18], was deemed to be ‘relevant’ (Fig. 4.2C). Finally, we show that many

contacts between strands β4 and β5, such as comprise the subunit interface in the

‘Sm’ variety of SH3-based oligomeric rings, are also labelled as important (Fig. 4.2D).

From these initially promising results, we suspect that LRP can identify functionally

important atoms, such as are learned as part of the latent space in the DeepUrfold-

based superfamily models.

Figure 4.2: LRP Identifies Conserved and Structurally Important Re-
gions in SH3 Domains. A) SH3 domains, and specifically those of the Sm/Sm-like
proteins, tend to self-assemble into oligomeric rings of n=5, 6, or 7 SH3 domain
subunits [18]. B) All SH3 domains, as well as other domains with the SBB urfold,
have a conserved hydrophobic core [8]. LRP identifies residues in the core by be-
ing 80th percentile or greater, displayed using the spectrum from blue→white→red
with range of 50th to 80th percentile all of the 1kq1H00 relevance scores. C) The
phylogenetically conserved, structurally critical β2 glycine [18] is detected by LRP.
The color scale for 1kq1A00 with spcetrum cyan→white→magenta with range 50th
to 80th percentile of all of the 1kq1A00 relevance scores. D) By manual/visual in-
spection of the 1kq1H00:1kq1A00 dimer interface, we can see that important atoms
from both 1kq1H00 roughly align with important atoms in 1kq1A00 (yellow dashed
lines). 1kq1H00 is shown same color scale as in (B), and 1kq1A00 is shown with the
same with the same color scale as in (C).

181

4.2.2 Phosphate-binding Loop (PBL)–Containing Proteins

We next tested the outcome of an allsuperfamily × alldomain approach for the PBL

urfold. That is, we trained two separate DeepUrfold VAE models, one for the canon-

ical Rossmann Fold (3.40.50.720) and another for P-loop NTPases (3.40.50.300),

and then we subjected representative domains from both superfamilies through both

VAEs. Due to the importance of phosphate binding, we investigated residues that

were known to specifically bind phosphates: the glycine-rich loop and the Walker

B motif’s aspartic acid on one of the edge strands of the PBL theme [12]. For all

combinations of domain × model—i.e., (i) Rossmann domain→Rosmann model, (ii)

Rossmann domain→P-Loop NTPase model, (iii) P-Loop NTPase domain→Rossmann model,

and (iv) P-Loop NTPase domain → P-Loop NTPase model—we find that LRP cor-

rectly identifies the glycine-rich loop and Walker B Asp with relevance scores >=75th

percentile, shown in Fig 4.3. Because the important atoms are predicted regardless

of the DeepUrfold model, even for the model that is trained on domains annotated

from a different CATH superfamily, we expect that these important residues, shared

by both the Rossmann and PBL families, can be used to identify common fragments

that comprise a joint Rossmann/PBL urfold.

4.3 Methods

4.3.1 DeepUrfold-Explain and VAE Model

In a recent paper that introduced DeepUrfold, the authors developed: (1) a pre-

processed dataset based on CATH superfamlies that includes biophysical properties

for each atom along with energy-minimized domain structures; and (2) superfamily-

182

Figure 4.3: Important atoms in the Phosphate Binding Loop Urfold Iden-
tified via LRP. We subjected representative domains from the Rossmann (3tjrA00)
and P-Loop NTPase (1ko7A02) superfamilies through each VAE model trained on all
members of Rossmann and P-Loop NTPases respectively. Relevance scores are dis-
played on a spectrum from blue→white→red, using a range of 50th to 80th percentile
of a given structure. Key atoms from residues that have been previously shown to be
important in bridging these folds, namely the Walker B Asp motif and the glycine-rich
loop [12], are selected by LRP having an relevance score >=75th percentile. Included
ligands highlight phosphate-binding regions.

183

specific sparse 3D-CNN VAEs [17]. Energy-minimized domain structures from a

single superfamily were voxelized using a kD-Tree to discretize atoms into 13 voxels

in a 26433 volume and are rotated randomly by sampling the SO(3) group to train

a VAE model, modified from [19, 20], to create superfamily-specific models. Each

voxel is annotated with biophysical properties of atoms that intersect it. Each VAE

was trained using CATH’s 30% sequence identity clusters, as defined by CATH for

each superfamily, to create train (≈80%), test (≈10%), and validation (≈10%) splits.

Hyperparameters used to construct the VAE were tuned using Weights & Biases [17].

Figure 4.4: DeepUrfold-Explain Identifies Important Atoms in Input
Structures via LRP of Superfamily-specific VAEs. Relevant atoms are pre-
dicted for a given protein domain by: 1) obtaining an energy-minimized, featurized
domain structure from a pre-calculated dataset and voxelized; 2) running the infer-
ence stage of pre-trained superfamily-specific VAE for the given domain; and finally,
3) running LRP during a backwards pass of only the encoder module, starting with
the embedding of a given domain.

4.3.2 Layer-wise Relevance Propagation

Layer-wise relevance propagation defines a Relevance Score, asRj =
∑

k
aj ·ρ(ωjk)

ϵ+
∑

0,j aj ·ρ(ωjk)
Rk,

where j is the current layer, aj are the activations from the current layer, ρ is LRP

rule, and ωjk are the weights from the previous layer. LRP starts with the embedding

of a given domain in a backwards pass. For layer j, a forward pass is run with the

184

same data that was used as input into the layer j (the denominator) which is com-

pared to the Relevance value from the previous layer, Rk. A backwards pass is then

run using the data from the relevance weighted forward pass. Finally, the value from

the backwards pass is compared to the output of the original input of the current

layer [21].

We follow [22] and use rules LRP-0 for the lowest 60% of layers, ϵ-LRP (γ=0.25) for

the middle 20%-60% of layers, and γ-LRP (γ=0.25) for the top 20% of layers. LRP-0

is the base rule where ρ(x) = x and ϵ = 0, which finds the contributions of each

nueron to the final activation. ϵ-LRP is the base rule where ρ(x) = x, but ϵ > 0,

which helps remove noise and sparsify the explanations in terms of the input. γ-LRP

sets ρ(x) = x + γx+, where x+ only includes positive relevance scores (all others set

to 0) and ϵ = 0, which is used to remove negative contributions.

Finally, we create a total relevance score by aggregating all relevance scores in a voxel

by summing the relevance scores for every feature in that voxel and then we map

voxels to atoms by taking the average total relevance score from all of the voxels that

intersect a given atom based on a kD-Tree with radius the size of the atoms van der

walls radius.

We adapted PyTorchLRP from [23] to add MinkowskiEngine layers [19] and regular-

ization [24].

4.3.3 Cross-Model Fragment Identification

We subjected 2674 representative domains from 20 different superfamilies to 20 superfamily-

specific VAEs, saving all LRP results. Residues containing any atom >= 75th per-

centile from a given structure were extracted to create a set of 53,480 (dis-)continuous

185

fragments. For each community identified with Stochastic Block Modelling of the bi-

partite graph formed from the allsuperfamilies× alldomains approach [17], we used fold-

seek [25] to cluster all LRP structures from domains present in each community that

were processed through all superfamilies represented by the community (TM-Align

global alignment). We select the LRP structure cluster representative from the most

populated cluster in each community, resulting in the top 20 ‘potential urfolds.’

4.4 Conclusion

Machine learning for proteins is extremely difficult, partly due to the fact that all

proteins are related via evolution [26]. It is important to know if a given model accu-

rately represents reality or is giving garbage results. Explainable AI techniques and

Layer-wise Relevance Propagation (LRP) alleviate these problems by allowing us to

compare known biophysical properties of a given protein to a model’s prediction. We

were able to show that LRP correctly selects structurally important and conserved

atoms in SH3 domains, showing that the model is learning superfamily-specific fea-

tures. Because the models are topologically-agnostic, we were also able to show that

LRP can find important atoms from structures that exhibit ‘architectural similarity

despite topological variability,’ specifically the phosphate binding loops in Rossmann

and P-Loop NTPases. In the future, we plan to identify and verify more common

fragments and ancestral peptides by aligning and clustering ‘important’ regions from

the cross-model fragments while comparing them to known databases of potentially

discontinuous fragment libraries, e.g. from shapemers [27], Fuzzle2.0 [28], ancestral

peptides [14], themes [15], or TERMs [29].

186

Bibliography

[1] Philip E. Bourne, Eli J. Draizen, and Cameron Mura. The curse of the ribbon.

PLoS Biology, Accepted 2022.

[2] Vamsi Nallapareddy, Nicola Bordin, Ian Sillitoe, Michael Heinzinger, Maria

Littmann, Vaishali Waman, Neeladri Sen, Burkhard Rost, and Christine Orengo.

CATHe: Detection of remote homologues for CATH superfamilies using embed-

dings from protein language models. bioRxiv, 2022.

[3] Michael Heinzinger, Maria Littmann, Ian Sillitoe, Nicola Bordin, Christine

Orengo, and Burkhard Rost. Contrastive learning on protein embeddings en-

lightens midnight zone. NAR Genomics and Bioinformatics, 4(2), 06 2022.

lqac043.

[4] Tymor Hamamsy, James T. Morton, Daniel Berenberg, Nicholas Carriero,

Vladimir Gligorijevic, Robert Blackwell, Charlie E. M. Strauss, Julia Koehler

Leman, Kyunghyun Cho, and Richard Bonneau. TM-Vec: Template modeling

vectors for fast homology detection and alignment. bioRxiv, 2022.

[5] Tristan Bepler and Bonnie Berger. Learning the protein language: Evolution,

structure, and function. Cell Systems, 12(6):654–669.e3, June 2021.

[6] Ian Sillitoe, Nicola Bordin, Natalie Dawson, Vaishali P Waman, Paul Ash-

ford, Harry M Scholes, Camilla S M Pang, Laurel Woodridge, Clemens Rauer,

Neeladri Sen, Mahnaz Abbasian, Sean Le Cornu, Su Datt Lam, Karel Berka,

Ivana Hutařová Varekova, Radka Svobodova, Jon Lees, and Christine A Orengo.

187

CATH: increased structural coverage of functional space. Nucleic Acids Research,

49(D1):D266–D273, November 2020.

[7] Cameron Mura, Stella Veretnik, and Philip E. Bourne. The Urfold: Structural

similarity just above the superfold level? Protein Science, 28(12):2119–2126,

November 2019.

[8] Philippe Youkharibache, Stella Veretnik, Qingliang Li, Kimberly A. Stanek,

Cameron Mura, and Philip E. Bourne. The small β-barrel domain: A survey-

based structural analysis. Structure, 27(1):6–26, January 2019.

[9] Claudia Alvarez-Carreño, Petar I Penev, Anton S Petrov, and Loren Dean

Williams. Fold evolution before LUCA: Common ancestry of SH3 domains and

OB domains. Molecular Biology and Evolution, 38(11):5134–5143, August 2021.

[10] Claudia Alvarez-Carreño, Rohan J Gupta, Anton S. Petrov, and Loren Dean

Williams. The evolution of protein folds by creative destruction. bioRxiv, 2022.

[11] Vishal Agrawal and Radha KV Kishan. Functional evolution of two subtly dif-

ferent (similar) folds. BMC Structural Biology, 1(1):1–6, 2001.

[12] Liam M Longo, Jagoda Jabłońska, Pratik Vyas, Manil Kanade, Rachel Kolodny,

Nir Ben-Tal, and Dan S Tawfik. On the emergence of P-Loop NTPase and Ross-

mann enzymes from a beta-alpha-beta ancestral fragment. eLife, 9, December

2020.

[13] Kirill E. Medvedev, Lisa N. Kinch, R. Dustin Schaeffer, and Nick V. Grishin.

Functional analysis of Rossmann-like domains reveals convergent evolution of

topology and reaction pathways. PLOS Computational Biology, 15(12):e1007569,

December 2019.

188

[14] Vikram Alva, Johannes Söding, and Andrei N Lupas. A vocabulary of ancient

peptides at the origin of folded proteins. eLife, 4, December 2015.

[15] Sergey Nepomnyachiy, Nir Ben-Tal, and Rachel Kolodny. Complex evolutionary

footprints revealed in an analysis of reused protein segments of diverse lengths.

Proceedings of the National Academy of Sciences, 114(44):11703–11708, October

2017.

[16] Janani Durairaj, Mehmet Akdel, Dick de Ridder, and Aalt D J van Dijk. Ge-

ometricus represents protein structures as shape-mers derived from moment in-

variants. Bioinformatics, 36(Supplement_2):i718–i725, December 2020.

[17] Eli J. Draizen, Stella Veretnik, Cameron Mura, and Philip E. Bourne. Deep

generative models of protein structure uncover distant relationships across a

continuous fold space, 2022.

[18] Cameron Mura, Peter S. Randolph, Jennifer Patterson, and Aaron E. Cozen.

Archaeal and eukaryotic homologs of Hfq: A structural and evolutionary per-

spective on Sm function. RNA Biology, 10(4):636–651, April 2013.

[19] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D spatio-temporal

convnets: Minkowski convolutional neural networks. pages 3075–3084, 2019.

[20] JunYoung Gwak, Christopher B Choy, and Silvio Savarese. Generative sparse

detection networks for 3D single-shot object detection. 2020.

[21] Alexander Binder, Grégoire Montavon, Sebastian Bach, Klaus-Robert Müller,

and Wojciech Samek. Layer-wise relevance propagation for neural networks with

local renormalization layers. 2016.

189

[22] Grégoire Montavon, Alexander Binder, Sebastian Lapuschkin, Wojciech Samek,

and Klaus-Robert Müller. Layer-wise relevance propagation: An overview. pages

193–209, 2019.

[23] Moritz Böhle, Fabian Eitel, Martin Weygandt, and Kerstin Ritter. Layer-wise

relevance propagation for explaining deep neural network decisions in MRI-based

alzheimer's disease classification. Frontiers in Aging Neuroscience, 11, jul 2019.

[24] Erico Tjoa, Guo Heng, Lu Yuhao, and Cuntai Guan. Enhancing the extraction of

interpretable information for ischemic stroke imaging from deep neural networks.

2019.

[25] Michel van Kempen, Stephanie S. Kim, Charlotte Tumescheit, Milot Mirdita,

Johannes Söding, and Martin Steinegger. Foldseek: fast and accurate protein

structure search. bioRxiv, 2022.

[26] Sean Whalen, Jacob Schreiber, William S. Noble, and Katherine S. Pollard.

Navigating the pitfalls of applying machine learning in genomics. Nature Reviews

Genetics, 23(3):169–181, November 2021.

[27] Janani Durairaj, Joana Pereira, Mehmet Akdel, and Torsten Schwede. What is

hidden in the darkness? Characterization of AlphaFold structural space. bioRxiv,

2022.

[28] Noelia Ferruz, Florian Michel, Francisco Lobos, Steffen Schmidt, and Birte

Höcker. Fuzzle 2.0: Ligand binding in natural protein building blocks. Fron-

tiers in Molecular Biosciences, 8, August 2021.

190

[29] Craig O. Mackenzie, Jianfu Zhou, and Gevorg Grigoryan. Tertiary alphabet for

the observable protein structural universe. Proceedings of the National Academy

of Sciences, 113(47), November 2016.

[30] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv,

dec 2013.

4.5 Appendix

4.5.1 Variational Autoencoders

Each variational autoendcoder model learns a normal distribution for each super-

family using the ‘reparameterization trick’ to allow for backpropagation through ran-

dom variables. This makes only the mean (µ) and variance (σ) differentiable, while

sampling from the normally distributed random variable (N (0, I)). That is, the la-

tent variable posterior z is given by z = µ + σ
⊙

N (0, I), where
⊙

denotes the

Hadamard (element-wise) matrix product and N is the ‘auxiliary noise’ term ([30]).

191

Chapter 5

Epilogue

This dissertation has explored the possibility of creating and organizing a new, re-

imagined protein universe, with a reproducible, systematic and yet flexible framework

enabled by machine learning. Ideally, such a system would allow for pairwise rela-

tionships to be detected and allowed for (i.e., they would be representable) between

proteins that are remotely homologous—even if the relationship is extremely faint

and barely detectable. Perhaps such distantly-related proteins ought to be bridged

together in a new Urfold model of protein interrelationships, which recognizes the ex-

istence of small peptide fragments that can be potentially discontinuous in sequence

[1]? In terms of a hierarchical representation of the protein universe, the Urfold is

conceived of as a new entity that sits between the ‘architecture’ and ‘topology’ strata

(to use the terms from CATH), allowing for the phenomenon of “architectural similar-

ity despite topological variability” [1]. In this scheme, the strict hierarchical nature of

available databases, wherein a given protein is assigned to one mutually-exclusive bin

or another, is no longer required—i.e., the protein universe makes more sense when

viewed as a network instead of a tree, wherein, for example, an individual protein

domain may well be thought of as belonging to more than one ‘bin’. This new view

of the protein universe can (i) give insights about how proteins could have evolved

pre-LUCA, via small fragments; (ii) identify potential new protein-ligand and protein-

protein interactions, based on known interactions in exceedingly remote homologs;

192

and (iii) aid in structure prediction and design, by providing a methodological foun-

dation for creating less biased train & validation splits, with fewer remote homologs

cross-polluting between the two datasets.

Available hierarchical representations of the protein universe, such as CATH [2],

SCOP [3, 4], and ECOD [5], paved the way for biologists to think about the pro-

tein structure universe as clusters of evolutionarily, structurally and functionally re-

lated proteins. Such representations are powerful because they reduce the extremely

high-dimensionality protein structure space into something a human brain can com-

prehend. This type of reductionism, often referred to as ‘Wittgenstein’s ladder’ [6]

or ‘Lie-to-children’ [7], is an important step in the process of human understanding,

as it attempts to distill an intractably complicated subject/topic into a more com-

prehensible form via a simplified model. An analogous device in structural biology

(at the level of individual proteins) is the cartoon ribbon diagrams, which we believe

has engendered what we have called ‘The Curse of the Ribbon’: cartoon diagrams of

protein 3D structures, which highlight the secondary structures, are themselves a re-

ductionist viewpoint that ignores biophysical properties, protein dynamics, and other

nuances, though such representations have allowed for countless insights into struc-

tural biology [8]. However, we are now in an era where newer tools can be developed

to help address what we believe are the shortcomings of these classic representations,

and get to the next rung of the ladder. In broad terms, the development of such tools

is a central goal of this thesis.

The work described in this dissertation can be largely viewed as a form of biomolecular

data science. What does that mean? Here, I will summarize and reflect on the

content of this thesis by considering the work from the perspective of the Five Pillars

of Data Science: (i) Data Acquisition; (ii) Data Integration & Engineering; (iii)

193

Machine Learning & Analytics; (iv) Visualization & Dissemination; and (v) Ethics,

Law, Policy, & Social Implications [9]. Finally, I will conclude with thoughts on future

work and directions, were the lines of work described in this thesis to be continued.

Figure 5.1: This Thesis & the Five Pillars of Data Science. Here, we see
that the contents of this thesis can be fairly cleanly mapped to the five pillars of data
science; more details on the pillars can be found in [9].

5.1 Data Acquisition

The field of Structural Biology has had a rich history in open-access science and data

sharing/availability. For example, the Protein Dank Bank has been collecting and

sharing protein structures determined by X-ray Crystallogphy since 1971 — from ≈75

structures to a total of ≈200K that are available today that are freely accessible to

everyone around the world [10]. Because of that history, I was able to freely ob-

tain all of the information that served as the raw/primary data for this dissertation’s

projects—including all 3D structures of proteins that have been experimentally deter-

mined (deposited into the PDB), as well as extracted domain structures from CATH

194

(a public database of domain interrelationships [2]). Therefore, the realm of Data

Acquisition was itself not a Chapter or major area of activity in this thesis; as with

all of scientific research, this dissertation’s work built upon that of past researchers,

in this case decades of structural biology efforts that have amassed nearly 200,000

structures in the PDB (and worked their way into downstream databases like CATH

and SCOP).

5.2 Data Engineering ↔ Chapter 2 (Prop3D)

Pursuing any domain-specific question, be it in structural biology or any other realm

of basic science, demands that certain computational tools and utilities be in place;

these resources may take the form of lightweight toolkits, software libraries, monolithic

codebases, datasets, etc. Ideally, these tools will strike a balance between being (i)

general, such that they can be used in different data science applications; and (ii)

specific enough to address our given problem of identifying the urfold. My effort

to explore the Urfold, via the DeepUrfold methodology (Chapter 3), required me to

develop a useful set of tools and datasets that are both useful (for the calculation at

hand) and extensible (for future calculations). From the perspective of data science,

this machine learning codebase corresponds to the ‘data engineering’ pillar.

Specifically, I developed Prop3D, a resource to create and share biophysical atomic

properties for all domains in CATH. This is a data engineering task because, as

detailed in Chapter 2, I needed to automate the ‘cleaning’ of every domain structure

by adding missing atoms and residues, protonating all atoms, and energy minimizing

the structure in order create the most biophysically relevant protein structure. I

processed the entire CATH dataset in a massively parallel workflow using Toil [11]

195

and saved and shared the data using the Highly Scalable Data Service (HSDS) [12].

In pursuing that code-development work, I sought to strike a balance in writing code

that was not overly general-purpose, that would be extensible (modular, amenable

to being refactored and otherwise adapted), and that would provide the necessary

functionality for (i) structural bioinformatics tasks as well as (ii) deployment on a

massively-parallel scale.

5.3 Data Analytics ↔ Chapter 3 (DeepUrfold)

Next, I developed DeepUrfold, a deep generative model based on one-class Variational

Autoencoders (VAEs), to learn about relationships between protein structures at the

level of CATH homologous superfamilies. This undertaking essentially created a new

distance measure between a given domain structure and a given CATH superfamily,

quantified by the likelihood that the given structure came from a specific superfamily-

model (versus others); this calculation was achieved via the Evidence Lower Bound

(ELBO) metric, which is a concept from the underlying variational Bayesian theory

of VAEs. To examine how variations in topology affect each VAE-based DeepUrfold

model, I created fictitious folds(/topologies) which had the same architecture, yet

systemically permuted loops to modify the topology for representative domains from

the SH3 and OB superfamilies. Note that this exercise effectively serves as a negative

control for the core Urfold concept of “architectural similarity despite topological

variability”. Each permuted or ‘rewired’ domain structure was found to yield similar

ELBO scores to its wild-type (unscrambled) domain when run through its superfamily

VAE model, thus showing that the VAEs were indeed agnostic of topology [13]; this

result, in turn, serves as a necessary (albeit not sufficient) condition for being able to

196

use the DeepUrfold machine learning framework to identify distinct urfolds.

As described in Chapter 3, I ran all representative domains from a single superfamily

and subjected them to the VAE trained on all domains from the same superfamily,

saving the embeddings for each domain; this process was repeated for all 20 highly-

populated CATH superfamilies that were chosen for our initial study. We used the

Uniform Manifold Approximation and Projection (UMAP) approach to dimensional-

ity reduction in order to probe the high-dimensional latest spaces of the individual,

superfamily-specific VAE DeepUrfold models. Doing so, we found that the embed-

dings for all domains, across all subfamilies, were organized fairly smoothly by their

secondary structure content—all-α proteins were quite visually distinct from all-β,

with α/β occurring intermediately. Most promising, these results are reassuringly

consistent with earlier studies by others (e.g., Sung-Hou Kim, William Taylor, Rachel

Kolodny) and, moreover, suggest that these global properties of protein fold space

can be captured by the deep neural network architecture of DeepUrfold [13].

Finally, I performed an all-vs-all analysis—in this case, allsuperfamilies× alldomains—

by subjecting all representative domains from the 20 highly-populated superfamilies

and all superfamily-specific VAEs, saving the ELBO score for each combination; note

that this calculation yields what is essentially a fully-connected bipartite graph. To

analyze this graph, I developed a new mixed-membership clustering method to find

interrelationships between CATH domains using a Stochastic Block Model on the

adjacency matrix of the graph, wherein the edges are weighted by ELBO scores. I

show that there is a large degree of intermixing between ‘true’/annotated’ CATH

superfamilies compared to the predicted SBM communities. The domains in an SBM

community all have similar ELBO scores to every superfamily-specific VAE, suggest-

ing they are more similar based on biophysical, physicochemical and evolutionary

197

properties in combination with geometry, versus purely 3D structure/geometry [13].

It is also plausible that they share common structures of biophysical properties &

geometry that could potentially be noncontiguous (i.e., structural fragments) in 3D

space; this latter possibility, of sub-domain structural fragments, is a question ex-

plored in Chapter 4.

5.4 Visualization & Dissemination ↔ Chapter 4

(DeepUrfold-explain)

Finally, I used an Explainable AI technique, termed Layer-wise Relevance Propaga-

tion (LRP), to understand how each model manages to create an embedding that

successfully captures or ‘represents’ a given set of similar domains (i.e., the partic-

ular superfamily being considered). To be more explicit, in our context of protein

structural biology the ‘how’ in the last sentence really means the underlying phys-

ical/molecular basis for the machine learning results—in this case, what features

might a trained VAE DeepUrfold model have learnt about one superfamily that dis-

tinguishes it from other superfamilies, in terms of its being an optimal match to a

particular domain? In effect, the answer to this question can be viewed as providing

a way to define superfamily A versus B versus C and so on—this, indeed, is central to

DeepUrfold’s view of protein groupings and interrelationships. Following the similar

allsuperfamilies× alldomains approach as described in Chapter 3, I added a step to calcu-

late all relevant voxels and atoms in a backwards pass of the model. A most exciting

initial result is that, at least for the proteins examined thus far, those atoms which

are predicted to be important by LRP also have known biochemical and biophysical

features that have flagged them as being significant (e.g., from past experimental

198

biochemical or structural characterization in the literature).

Next, we attempt to identify common substructures among domains in the same SBM

community mapped to (i) atom space; and (ii) voxel space. In both cases we perform

an all-by-all 3D superposition of atom or voxels to create a distance metric, cluster

on those distances, and find regions of all the cluster members that overlap with the

cluster representative. These approaches yield discontinuous fragments of structure

and is the first step at creating an automatic, rigorous, systemic, and reproducible

definition of the Urfold.

5.5 Ethics

All of my datasets, code, and analyses comply with the ‘FAIR’ principles for research

best practices, meaning they are Findable, Accessible, Interoperable, and Reusable.

In particular, all the information in this dissertation has been made publicly available

under a Creative Commons license (CC-by-4.0); furthermore, any new datasets that

build from this work must follow these FAIR guidelines. In other words, the dataset

must: (1) be easy to find, with appropriate metadata to facilitate searching; (2) be

available to access all of the data easily; (3) be able to integrate with other data

and software; (4) and be replicable, so that others can reproduce/adapt/etc. our

workflows without undue effort. To be FAIR, all of this dissertation’s code, datasets,

and analyses have been released on Github and Zenodo, with sufficient documentation

and descriptions on how to use them.

199

5.6 Future Directions

Given more time to work on this project, I would first apply DeepUrfold to every

CATH superfamily to systematically and exhaustively predict Urfolds across the pro-

tein universe. I was able to show that new urfolds could be identified within those

20 CATH superfamilies that we considered with high population density; it would

be extremely interesting to apply DeepUrfold to the remaining six thousands super-

families, if computational resources and time were not a bottleneck. In terms of the

‘community structure’ and general patterns of interrelationships of protein superfam-

ilies across all of fold space, it would also be interesting to explore in greater detail

the mixed-membership aspect of the Stochastic Block Modelling in Chapter 3.

5.6.1 Method Development

Next, since the start of this thesis, several improved deep learning models for protein

structure have been developed and appeared in the recent literature — indeed, deep

learning is a fast-moving target, for applications in biology and beyond! It would

be exciting to apply these very new approaches to learn more about the Urfold.

Most notably, Equivariant Neural networks [14] would improve our current 3D-CNN

approach because it would alleviate the computational overhead associated with ro-

tating all 3D structures randomly (we only sample 30 random rotations, which is

likely missing possible orientations), and certainly it would accelerate training of our

models.

AlphaFold2 [15], along with other efforts, notably RoseTTAFold [16], have been the

most significant achievements in deep learning & structural biology to predict pro-

tein structures. By combining a novel MSA transformer with Equivariant Neural

200

Networks, they were able to predict protein structures with significantly greater ac-

curacy than any previous approach. These models have also been adapted to perform

protein design [17]. If Explainable AI techniques were used to interrogate the Al-

phaFold2 modeling process, perhaps the results could be used to further refine the

definition of an Urfold (and detect individual urfolds)?

Other deep neural network models that would aid in the detection of urfolds could

be the recent large language models (LLM), graph neural nets, and geometric deep

learning. LLMs have been recently shown to be useful in finding remote homologs [18],

and in structure prediction & design [19, 20]. Graph-based neural nets are another

important deep neural network to encode protein structure information [21, 22], and

can even be combined with LLMs to obtain more sensitive results [23]. Finally, I would

also like to use geometric deep learning models such as dMaSIF [24], for “Differentiable

Molecular Surface Interaction Fingerprints”, to explore the Urfold. Such might be

possible because this method can compare similarities in surface features, not the

protein core, so it can be considered to be agnostic of topology. In all of these

cases, the resultant models can be used to learn about the Urfold, in molecular and

structural biology terms, by creating deep generative networks that can be explored

with LRP or other explainable AI techniques.

5.6.2 Application

Finally, longer-term I would like to use the Urfold model of protein structure in order

to interrogate protein interaction networks. From what we know about SH3 and OB

interactions, I believe it would be fruitful to discover and characterize more instances

of this phenomenon.

201

When I first started my thesis work, my plan was to study proteins involved at

the host-parasite interaction (HPI) interface, especially proteins from apicomplexan

parasites (single-celled eukaryotic pathogens that cause malaria and toxoplasmosis).

Many HPIs involve proteins with permuted structures, highlighting the potential

importance of the Urfold model of protein structures and structural relationships (or

at least an Urfold-like approach). Apicomplexan Urfolds can be seen in the 6-Cys

surface proteins, which are hypothesized to have evolved from a mammalian ephrin

protein, obtained in turn via horizontal gene transfer events [25]. Apicomplexans are

thought to have co-opted an ephrin because the latter proteins serve as ligands that

play key roles in cell:cell interactions, which the parasites can use to ‘trick’ the host

into binding with them. Ephrins can be seen to contain an Urfold that is shared with

Immunoglobulins: they both have a seven-stranded β-sandwich architecture; however,

their topology has been permuted [26]. Another example of an Apicomplexan urfold

can be seen in the group of protease inhibitors known as serpins, which also have

structures that are permuted relative to their human homologs [27, 28]. Identifying

urfolds in pathogenic proteins can help us learn about the evolution of the immune

system and immune evasion, allowing for the development of new drugs and vaccines

to treat these pathogens.

202

Bibliography

[1] Cameron Mura, Stella Veretnik, and Philip E Bourne. The urfold: Structural

similarity just above the superfold level? Protein Science, 28(12):2119–2126,

Nov 2019.

[2] Ian Sillitoe, Natalie Dawson, Tony E Lewis, Sayoni Das, Jonathan G Lees, Paul

Ashford, Adeyelu Tolulope, Harry M Scholes, Ilya Senatorov, Andra Bujan, Fa-

tima Ceballos Rodriguez-Conde, Benjamin Dowling, Janet Thornton, and Chris-

tine A Orengo. Cath: expanding the horizons of structure-based functional an-

notations for genome sequences. Nucleic Acids Research, 47(D1):D280–D284,

Jan 2019.

[3] Naomi K Fox, Steven E Brenner, and John-Marc Chandonia. Scope: Structural

classification of proteins–extended, integrating scop and astral data and classi-

fication of new structures. Nucleic Acids Research, 42(Database issue):D304–9,

Jan 2014.

[4] Antonina Andreeva, Dave Howorth, Cyrus Chothia, Eugene Kulesha, and

Alexey G Murzin. Scop2 prototype: a new approach to protein structure mining.

Nucleic Acids Research, 42(Database issue):D310–4, Jan 2014.

[5] Hua Cheng, R Dustin Schaeffer, Yuxing Liao, Lisa N Kinch, Jimin Pei, Shuoyong

Shi, Bong-Hyun Kim, and Nick V Grishin. Ecod: an evolutionary classification

of protein domains. PLoS Computational Biology, 10(12):e1003926, Dec 2014.

203

[6] Alastair Hannay, editor. Cambridge texts in the history of philosophy:

Kierkegaard: Concluding unscientific postscript. Cambridge University Press,

Cambridge, England, May 2009.

[7] Jack S Cohen and Ian Stewart. Collapse of chaos. Viking, London, England,

June 1994.

[8] Philip E. Bourne, Eli J. Draizen, and Cameron Mura. The curse of the ribbon.

PLoS Biology, In Review 2022.

[9] Cameron Mura, Eli J Draizen, and Philip E Bourne. Structural biology meets

data science: does anything change? Current Opinion in Structural Biology,

52:95–102, Oct 2018.

[10] Stephen K. Burley, Helen M. Berman, Jose M. Duarte, Zukang Feng, Justin W.

Flatt, Brian P. Hudson, Robert Lowe, Ezra Peisach, Dennis W. Piehl, Yana Rose,

Andrej Sali, Monica Sekharan, Chenghua Shao, Brinda Vallat, Maria Voigt,

John D. Westbrook, Jasmine Y. Young, and Christine Zardecki. Protein data

bank: A comprehensive review of 3d structure holdings and worldwide utilization

by researchers, educators, and students. Biomolecules, 12(10):1425, October

2022.

[11] John Vivian, Arjun Arkal Rao, Frank Austin Nothaft, Christopher Ketchum,

Joel Armstrong, Adam Novak, Jacob Pfeil, Jake Narkizian, Alden D Deran, Au-

drey Musselman-Brown, Hannes Schmidt, Peter Amstutz, Brian Craft, Mary

Goldman, Kate Rosenbloom, Melissa Cline, Brian O’Connor, Megan Hanna,

Chet Birger, W James Kent, David A Patterson, Anthony D Joseph, Jingchun

Zhu, Sasha Zaranek, Gad Getz, David Haussler, and Benedict Paten. Toil en-

204

ables reproducible, open source, big biomedical data analyses. Nat. Biotechnol.,

35(4):314–316, April 2017.

[12] Shweta Gopaulakrishnan, Samuela Pollack, B J Stubbs, Hervé Pagès, John

Readey, Sean Davis, Levi Waldron, Martin Morgan, and Vincent Carey. rest-

fulSE: A semantically rich interface for cloud-scale genomics with bioconductor.

F1000Res., 8:21, January 2019.

[13] Eli J. Draizen, Stella Veretnik, Cameron Mura, and Philip E. Bourne. Deep

generative models of protein structure uncover distant relationships across a

continuous fold space. bioRxiv, 2022.

[14] Fabian B. Fuchs, Daniel E. Worrall, Volker Fischer, and Max Welling. SE(3)-

transformers: 3D roto-translation equivariant attention networks. arXiv, 2020.

[15] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,

Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek,

Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A A Kohl, Andrew J

Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub

Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy,

Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer,

Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W Senior, Koray

Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein

structure prediction with AlphaFold. Nature, 596(7873):583–589, August 2021.

[16] Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey

Ovchinnikov, Gyu Rie Lee, Jue Wang, Qian Cong, Lisa N Kinch, R Dustin Scha-

effer, Claudia Millán, Hahnbeom Park, Carson Adams, Caleb R Glassman, Andy

DeGiovanni, Jose H Pereira, Andria V Rodrigues, Alberdina A van Dijk, Ana C

205

Ebrecht, Diederik J Opperman, Theo Sagmeister, Christoph Buhlheller, Tea

Pavkov-Keller, Manoj K Rathinaswamy, Udit Dalwadi, Calvin K Yip, John E

Burke, K Christopher Garcia, Nick V Grishin, Paul D Adams, Randy J Read,

and David Baker. Accurate prediction of protein structures and interactions

using a three-track neural network. Science, 373(6557):871–876, August 2021.

[17] Christoffer Norn, Basile I. M. Wicky, David Juergens, Sirui Liu, David Kim,

Brian Koepnick, Ivan Anishchenko, Foldit Players, David Baker, and Sergey

Ovchinnikov. Protein sequence design by explicit energy landscape optimization.

bioRxiv, 2020.

[18] Tymor Hamamsy, James T. Morton, Daniel Berenberg, Nicholas Carriero,

Vladimir Gligorijevic, Robert Blackwell, Charlie E. M. Strauss, Julia Koehler

Leman, Kyunghyun Cho, and Richard Bonneau. Tm-vec: template modeling

vectors for fast homology detection and alignment. bioRxiv, 2022.

[19] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu,

Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, and

Alexander Rives. Language models of protein sequences at the scale of evolution

enable accurate structure prediction. bioRxiv, 2022.

[20] Ruidong Wu, Fan Ding, Rui Wang, Rui Shen, Xiwen Zhang, Shitong Luo, Chen-

peng Su, Zuofan Wu, Qi Xie, Bonnie Berger, Jianzhu Ma, and Jian Peng. High-

resolution de novo structure prediction from primary sequence. bioRxiv, 2022.

[21] J Dauparas, I Anishchenko, N Bennett, H Bai, R J Ragotte, L F Milles, B I M

Wicky, A Courbet, R J de Haas, N Bethel, P J Y Leung, T F Huddy, S Pellock,

D Tischer, F Chan, B Koepnick, H Nguyen, A Kang, B Sankaran, A K Bera,

206

N P King, and D Baker. Robust deep learning-based protein sequence design

using ProteinMPNN. Science, 378(6615):49–56, October 2022.

[22] Zuobai Zhang, Minghao Xu, Arian Jamasb, Vijil Chenthamarakshan, Aurelie

Lozano, Payel Das, and Jian Tang. Protein representation learning by geometric

structure pretraining. ”arXiv”, 2022.

[23] Can Chen, Jingbo Zhou, Fan Wang, Xue Liu, and Dejing Dou. Structure-aware

protein self-supervised learning, 2022.

[24] Freyr Sverrisson, Jean Feydy, Bruno E. Correia, and Michael M. Bronstein. Fast

end-to-end learning on protein surfaces. bioRxiv, 2020.

[25] Silvia A Arredondo, Mengli Cai, Yuki Takayama, Nicholas J MacDonald, D Eric

Anderson, L Aravind, G Marius Clore, and Louis H Miller. Structure of the plas-

modium 6-cysteine s48/45 domain. Proc. Natl. Acad. Sci. U. S. A., 109(17):6692–

6697, April 2012.

[26] Julien Grassot, Manolo Gouy, Guy Perrière, and Guy Mouchiroud. Origin and

molecular evolution of receptor tyrosine kinases with immunoglobulin-like do-

mains. Mol. Biol. Evol., 23(6):1232–1241, June 2006.

[27] Viviana Pszenny, Paul H Davis, Xing W Zhou, Christopher A Hunter, Vern B

Carruthers, and David S Roos. Targeted disruption of toxoplasma gondii serine

protease inhibitor 1 increases bradyzoite cyst formation in vitro and parasite

tissue burden in mice. Infect. Immun., 80(3):1156–1165, March 2012.

[28] S Ye, A L Cech, R Belmares, R C Bergstrom, Y Tong, D R Corey, M R Kanost,

and E J Goldsmith. The structure of a michaelis serpin-protease complex. Nat.

Struct. Biol., 8(11):979–983, November 2001.

	Titlepage
	Abstract
	Dedication
	Acknowledgements
	Introduction
	Background on proteins and evolution
	Primary structure
	Secondary structure
	Tertiary Structure
	Quaternary Structure
	Protein Folding Problem
	Protein Structure Prediction
	Molecular Evolution at 1000 feet

	Domains as the unit of evolution
	Nature of the protein universe and issues with hierarchical classification: discrete vs continuous
	Short peptide fragments as unit of evolution
	Protein Comparison
	Sequence Comparison
	Structure Comparison

	Overall Problem
	Revisit the question of fold space in light of new deep learning methods
	Thesis Outline

	Prop3D: A flexible, Python-based platform for protein structural properties and biophysical data in machine learning
	Introduction
	Motivating factors: Data leakage, biophysical properties, and protein representations
	Evolutionary data leakage
	Biophysical properties
	Protein representations
	Outline of this work

	Overview of the software & dataset
	Architecture and design
	Meadowlark: An extensible, Dockerized toolkit for reproducible, cross-platform structural bioinformatics workflows
	AtomicToil: Mapping structural info to sets of massively parallel tasks
	Capabilities and Features
	Dataset Design and Data Format

	Summary and Future Outlook
	Data Availability

	DeepUrfold: Deep Generative Models of Protein Structure Uncover Distant Relationships Across a Continuous Fold Space
	Introduction
	Fold Space, Structural Transitions & Fragments
	Limitations of Hierarchical Systems, The Urfold
	DeepUrfold: Motivation & Overview

	Results
	The DeepUrfold Computational Framework: Deep Generative Models
	DeepUrfold Models Can Detect Similarities among Topologically -distinct, Architecturally-similar Proteins
	Latent Spaces Capture Gross Structural Properties Across Many Superfamilies, and Reveal a Highly Continuous Nature of Fold Space
	Protein Interrelationships Defy Discrete Clusterings

	Discussion, Further Outlook
	Computational Methodology
	Datasets
	Protein Structure Representation
	VAE Model Design and Training
	Evaluation of Model Performance
	Assess the Urfold Model by Subjecting Proteins with Permuted Secondary Structures to Superfamily-specific VAEs
	Latent-space Organization
	Mixed-membership Community Detection
	Comparisons to CATH

	Data Availability
	Supplemental Matrial
	Superfamilies used in this paper
	Voxelization & Featurization
	Immunoglobulin (2.60.40.10) Model Metrics
	Multiple Loop Permutations
	Latent Space
	Stochastic Block Modelling
	Comparison to Other metrics
	Model Architecture

	DeepUrfold-explain: Explainable Deep Generative Models, Ancestral Fragments, and Murky Regions of the Protein Structure Universe
	Introduction
	Results
	Small -barrels
	Phosphate-binding Loop (PBL)–Containing Proteins

	Methods
	DeepUrfold-Explain and VAE Model
	Layer-wise Relevance Propagation
	Cross-Model Fragment Identification

	Conclusion
	Appendix
	Variational Autoencoders

	Epilogue
	Data Acquisition
	Data Engineering Chapter 2 (Prop3D)
	Data Analytics Chapter 3 (DeepUrfold)
	Visualization & Dissemination Chapter 4 (DeepUrfold-explain)
	Ethics
	Future Directions
	Method Development
	Application

