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Abstract

With the ever increasing applications of machine learning algorithms many new challenges, beyond accuracy,

have been raised. Among them, and one of the most important ones, is robustness against adversarial attacks.

The persistent impact of these attacks on the security of otherwise successful machine learning algorithms

begs a fundamental investigation. This dissertation aims at building a foundation to systematically investigate

robustness of machine learning algorithms in the presence of different adversaries.

Two special cases of security threats, which have been the focus of many studies in the recent years,

are evasion attacks and poisoning attacks. Evasion attacks occur during the inference phase and refer to

adversaries who perturb the input to a classifier to get their desired output. Poisoning attacks occur in the

training phase where an adversary perturbs the training data, with the goal of leading the learning algorithm

to choose an insecure hypothesis. This dissertation studies provable evasion and then poisoning attacks that

could be applied to any learning algorithm and classification model. The dissertation also studies algorithmic

aspects of such attacks and study the possibility of using hardness assumptions to prevent these general

purpose attacks. Most of the attacks discussed in this dissertation are inspired by (and have implications for)

coin tossing attacks in cryptography.
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Chapter 1

Introduction

In recent years machine learning has been shown to be very successful in many domains. The progress of

machine learning in practical applications has gone far beyond what theory can explain. On the other hand,

as machine learning algorithms find new applications, there are emerging concerns about their deployment

for critical applications. Trying to address these new concerns, machine learning developers have tried to

come up with new algorithms. However, many of these concerns are still unresolved.

One important new aspect that has recently been studied is machine learning in adversarial settings.

Many modern learning algorithms are shown to be vulnerable to adversaries who try to interfere with the

training phase or testing phase. It has been shown for many learning algorithms that there exist adversarial

algorithms who change small fraction of training data and cause the output model to make mistakes in favor

of the adversary. These types of attacks are called poisoning attacks and there is huge line of work exploring

them. There is also another type of adversarial attacks called evasion attacks that has got a lot of attention

recently. The goal of an evasion adversary is to fool the learning model by adding carefully crafted and small

perturbations to the test instances which will produce an “adversarial example”.

The line of research on the power and limitations of poisoning and evasion attacks contains numerous

attacks and many defenses designed (usually specifically) against them (e.g., see Yuan et al. [2019] and

references therein). The state of affairs in attacks and defenses with regard to the robustness of learning

systems in both the evasion and poisoning contexts shapes the main questions in my research. The first

fundamental question in my research is about the limitations of robustness in adversarial settings.

What are the inherent limitations of defense mechanisms for evasion and poisoning attacks?

Equivalently, what are the inherent power of such attacks?

Understanding the answer to the above question is fundamental for finding the right bounds that robust

learning systems can indeed achieve, and achieving such bounds would be the next natural goal. The second

1



Introduction 2

question in my research is about possibility of designing machine learning algorithms that are provably secure

against such adversaries.

Can we design provably secure machine learning algorithms, relying on the fact that adversary is

computationally limited?

In fact, this is the main theme that enables modern cryptography to prove security by leveraging the

limitations of the adversary, e.g. computational power. We follow the same approach here and try to see

what will change if we limit our adversary to be computationally bounded.

This thesis has three main parts:

1. Part 1: Training-time Attacks

2. Part 2: Inference-time Attacks

3. Part 3: Computational Complexity of Attacks

The first part studies different adversarial perturbation in the training phase which are known as data

poisoning attacks. The second part is devoted to the adversarial attacks that happen during the inference

phase and are called evasion attacks (the product of these attacks are perturbed instances that are known as

adversarial examples). The third part studies the computational complexity of both inference and training-

time attacks. In the rest of this section we will give a short overview of each part and give an bird’s eye view

of the contributions of this thesis. But before getting to the overview, we define several important notations

that are used throughout the document.

1.1 Notations

The following introduces several notation that is used in this section and across other sections of this document.

Note that this is not a complete list of notations used in this document and later we will provide notations

that are specific to each chapter.

General notation. We use calligraphic letters (e.g., X ) for sets. By u← u we denote sampling u from

the probability distribution u. For a randomized algorithm R(·), by y ← R(x) we denote the randomized

execution of R on input x outputting y. For a joint distribution (u,v), by (u | v) we denote the conditional

distribution (u | v = v). By Supp(u) = {u | Pr[u = u] > 0} we denote the support set of u. By Tu(·) we

denote an algorithm T (·) with oracle access to a sampler for distribution u that upon every query returns a

fresh sample from u. By u×v we refer to the product distribution in which u and v are sampled independently.

By un we denote the n-fold product u with itself returning n iid samples. Multiple instances of a random
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variable D in the same statement (e.g., (D, c(D)) refer to the same sample. By PPT we denote “probabilistic

polynomial time”.

Notation for classification problems. A classification problem (X ,Y, D, C,H) is specified by the follow-

ing components. The set X is the set of possible instances, Y is the set of possible labels, D is a distribution

over X , C is a class of concept functions where c ∈ C is always a mapping from X to Y. Even though in a

learning problem, we usually work with a family of distributions (e.g., all distributions over X ) here we work

with only one distribution D. The reason is that our results are impossibility results, and proving limits

of learning under a known distribution D are indeed stronger results. We did not state the loss function

explicitly, as we work with classification problems. In the cases that we work with a special loss function we

use the notation (X ,Y, D, C,H, `oss). Also, sometimes where the concept class and the hypothesis class are

the same, we use the notation (X ,Y, D,H). For x ∈ X , c ∈ C, the risk or error of a hypothesis h ∈ H is equal

to Risk(h, c) = Prx←D[h(x) 6= c(x)]. We are usually interested in learning problems (X ,Y, D, C,H) with a

specific metric d defined over X for the purpose of defining risk and robustness under instance perturbations

controlled by metric d. Then, we simply write (X ,Y, D, C,H, d) to include d. For a concept function c, and a

hypothesis h, we denote the error region of h by E(c, h) = {x ∈ X ;h(x) 6= c(x)}.

1.2 Training-time (Poisoning) Attacks

A very important notion of robustness for a learning algorithm deals with adversaries that could make

perturbations to the data that is used in the training phase. Here, we would like to know how much the risk

of the produced hypothesis h might increase, if an adversary A tampers with the training data T with the

goal of increasing the “error” (or any “bad” event in general) during the test phase. Such attacks are referred

to as poisoning attacks Biggio et al. [2012]. The following definition captures poisoning adversaries who try

to increase the probability of a bad event and decrease the “adversarial confidence”.

Definition 1.2.1 (Adversarial confidence). Let L be a learning algorithm for a classification problem

P = (X ,Y, D, C,H), m be the sample complexity of L, and c ∈ C be any concept. Also let B : H → 0, 1 be

an arbitrary bad property defined over the hypothesis class. We define the (adversarial) confidence as follows

ConfA(m, c,B) = 1− Pr
S←(D,c(D))m

h←L(A(S))

[B(h) = 1].

By Conf(·) we denote the confidence without any attack; namely, Conf(·) = ConfI(·) for the trivial (identity

function) adversary I that does not change the training data.
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The line of research on the power and limitations of poisoning attacks contains numerous attacks and

many defenses designed against them. The goal of these attacks is usually hurting the accuracy of the trained

model either on the whole distribution or on a specific instance (We can define the bad property B according

with respect to each of these situations). The first part of this document is devoted to these type of attacks.

Bellow is a quick summary of the result of part 2 which are based on 4 published papers.

1. Saeed Mahloujifar, Dimitrios I Diochnos, and Mohammad Mahmoody. The curse of concentration in

robust learning: Evasion and poisoning attacks from concentration of measure. Conference on Artificial

Intelligence (AAAI), 2019a

2. Saeed Mahloujifar, Dimitrios I Diochnos, and Mohammad Mahmoody. Learning under p-tampering

poisoning attacks. Annals of Mathematics and Artificial Intelligence, pages 1–34, 2019b

3. Saeed Mahloujifar, Mohammad Mahmoody, and Ameer Mohammed. Universal multi-party poisoning

attacks. In Proceedings of the 36th International Conference on Machine Learning, volume 97 of

Proceedings of Machine Learning Research, pages 4274–4283. PMLR, 2019c. URL http://proceedings.

mlr.press/v97/mahloujifar19a.html

4. Melissa Chase, Esha Ghosh, and Saeed Mahloujifar. Poisoning attacks against privacy of collaborative

learning. Under Submission, 2020

One aspect of poisoning adversaries that must be defined is their tampering pattern. For instance, one

can imagine a poisoning adversary who looks at the training data and changes a fraction of the training

examples arbitrarily. Alternatively, a weaker adversary may only add some poisoned data to the original

dataset, without knowing the other examples in training set1. The first three chapters of part 1, studies

different poisoning adversaries based on the tampering pattern

1.2.1 Random Access Poisoning Attacks

In Chapter 1 of part 1 we introduce poisoning adversaries who could substitute a random p fraction of a

training examples and replace them with other examples2. We showed that in this model there are adversaries

who increase the probability of an arbitrary bad property by Ω(p) if the probability of getting the bad

property is originally constant. The adversaries in this attack model, called p-tampering model, are very

powerful in the sense that they can achieve these bounds with many restrictions such as (only) black-box

access to the training algorithm, working online, and using the correct labels for the training examples. We

1These two models are known as strong contamination model and Huber’s contamination model. For more details see
Diakonikolas and Kane [2019].

2This adversarial model is tightly related to valiant’s malicious noise model. For more details see Kearns and Li [1993a].

http://proceedings.mlr.press/v97/mahloujifar19a.html
http://proceedings.mlr.press/v97/mahloujifar19a.html
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also prove that our attacks could be implemented in polynomial time, given oracle access to the training

algorithm and enough samples from the distribution of instances.

1.2.2 Byzantine Adversaries in Multi-party Learning

Multi-party learning enables distinct parties to combine their data and train a shared model. With the recent

advances in collaborative machine learning, it has become very important to study the effect of malicious

parties who provide corrupted data. In Chapter 2 of part 1, we introduce a new model of (k, p) poisoning

adversaries, in multi-party learning setting, where there are m parties who provide the training data. Among

those, k are partially corrupted meaning that for each training example provided (by the partially corrupted

parties) there is a probability p that the example is generated by the adversary. For k = m, this model

becomes the notion of p-tampering poisoning, and for p = 1 it coincides with the standard notion of static

corruption in multi-party computation. we showed, in this setting, for any m-party learning protocol there

exist a computationally bounded (k, p) poisoning adversary that increases the probability of the bad property

by Ω(p · k/m). Our (k, p) poisoning attacks are online and only use correct labels for the corrupted training

data. Moreover, we showed that our attack can be implemented in polynomial time as long as it has access

to sampling oracle for distributions of all the parties as well as oracle access to the training algorithm.

1.2.3 Strong Adaptive Adversaries

One can define a stronger poisoning adversary that has control over the tampering locations. In particular,

in this strong adversarial model, the adversary can inspect the training data first and then change a small

fraction of the training data. In Chapter 3 of part 1, we studied these type of adversaries and proved that

there are adversaries who select Õ(
√
m) (m is the sample complexity of the learning algorithm) number of

training examples, replace them with other correctly labeled training examples, and increase the probability

of the bad property to almost 1, if the original probability is 1/poly(m). The significance of this attack is

that it uses sub-linear number of tampering and yet is able to increase the probability of the bad property to

almost 1. This attack is based on the concentration of measure property of product distributions. Later, in

par 3 of the document, we will see how we made this information theoretic attacks to run in polynomial.

1.2.4 Poisoning Attacks against Privacy

A good thing about defining poisoning attacks in an abstract way , and based on a bad property (See Definition

1.2.1), is that it can capture different adversarial goals. The current body of work on poisoning attacks usually

considers adversarial goals that relate to the error of the final mode (e.g. increasing the population error
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or error on a specific instance). To show that poisoning adversaries can attack other qualities of machine

learning, we studied the poisoning attacks that aim at causing the output model to leak information about

the underlying training set. In particular, we consider aggregate property leakage, where there is a property P

over the training examples and the goal of adversary is to find out the fraction of examples in the training set

that satisfy the property P . It is important to not that these type of leakage are not protected by Differential

Privacy and hence it is important to study them. In Section 4 of Part 1 we show how poisoning attacks

could significantly increase these property leakage. In particular, we first show a theoretical attack that uses

the generalization power of machine learning algorithms to infer any property leakage, as long as it can add

sufficient number of poisoning data to the training set. Then we implement these attacks for simple machine

learning algorithms and show it can significantly boost the property leakage. Note that poisoning attacks

against privacy do not have knowledge of the training data (otherwise the property leakage would be obsolete)

and that makes it harder to find poisoning points. However, our attack uses a very simple poisoning strategy,

enabling the adversary to infer the expected value of any property on the training set.

1.3 Inference-time (Evasion) Attacks

Learning how to classify instances based on labeled examples is a fundamental task in machine learning.

The goal is to find, with high probability, the correct label c(x) of a given test instance x coming from a

distribution D. Thus, we would like to find a good-on-average “hypothesis” h (also called the trained model)

that minimizes the error probability Prx←D[h(x) 6= c(x)], which is referred to as the risk of h with respect to

the ground truth c. Due to the explosive use of learning algorithms in real-world systems (e.g., using neural

networks for image classification) a more modern approach to the classification problem aims at making the

learning process more robust. Namely, even if the instance x is perturbed in a limited way into x′ by an

adversary A, we would like to have the hypothesis h still predict the right label for x′.

One major motivation behind this problem comes from scenarios such as image classification, in which

the adversarially perturbed instance x′ would still “look similar” to the original x, at least in humans’ eyes,

even though the classifier h might now misclassify x′ Goodfellow et al. [2018]. In fact, starting with the work

of Szegedy et al. Szegedy et al. [2014] an active line of research investigated various attacks and possible

defenses to resist such attacks. The race between attacks and defenses in this area motivates a study of

whether or not such robust classifiers could ever be found.

The current literature contains multiple definitions of risk and robustness in the presence of evasion

adversaries. In a work with Diochnos and Mahmoody Mahloujifar et al. [2018d], we formalized these definitions
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based on their goals. The definition that we work with in this document is the error region definition of

Mahloujifar et al. [2018d]. In Chapter 1 of Part 2 we will discuss other definitions as well.

Definition 1.3.1 (Error region adversarial risk). Let (X ,Y, D, C,H, d) be a classification problem. For

h ∈ H and c ∈ C, let E = {x ∈ X | h(x) 6= c(x)} be the error region of h with respect to c. Then, Adversarial

risk is defined as follows. For b ∈ R+, the (error-region) adversarial risk under b-perturbation is

Riskb(h, c) = Pr
x←D

[∃x′ ∈ Ballb(x) ∩ E ] = D(Eb).

We might call b the “budget” of an imaginary “adversary” who perturbs x into x′. Using b = 0, we recover

the standard notion of risk: Risk(h, c) = Risk0(h, c) = D(E).

Throughout Part 2, we try to understand why adversarial examples persist despite all the research that is

devoted to eliminate them. Bellow is a summary of all chapters except for Chapter 1 which is devoted to

definitions. These chapters are based on 4 papers as follows:

1. Dimitrios Diochnos, Saeed Mahloujifar, and Mohammad Mahmoody. Adversarial risk and robustness:

General definitions and implications for the uniform distribution. In Advances in Neural Information

Processing Systems, pages 10359–10368, 2018a

2. Saeed Mahloujifar, Dimitrios I Diochnos, and Mohammad Mahmoody. The curse of concentration in

robust learning: Evasion and poisoning attacks from concentration of measure. Conference on Artificial

Intelligence (AAAI), 2019a

3. Saeed Mahloujifar, Xiao Zhang, Mohammad Mahmoody, and David Evans. Empirically measuring

concentration: Fundamental limits on intrinsic robustness. Advances in Neural Information Processing

Systems, 2019d

4. Dimitrios I Diochnos, Saeed Mahloujifar, and Mohammad Mahmoody. Lower bounds for adversarially

robust pac learning. arXiv preprint arXiv:1906.05815, 2019

1.3.1 Adversarial Examples from Concentration of Measure

Persistence of adversarial examples has raised a serious concern regarding possibility of implementing a

robust machine learning algorithm. To investigate this important issue we posed a research question. In

particular, we asked, is there an upper bound on the robustness of machine learning algorithms against evasion

adversaries? Alternatively, is there a lower bound on the power of evasion adversaries? We attend to this

questions in a Section 2 of Part 2. We show an inherent upper bound on achievable robustness in the presence
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of evasion adversaries. Explicitly, we draw a connection between the robustness of learning algorithms and a

well-studied mathematical phenomena known as concentration of measure. We showed that if the metric

probability space of the underlying input distribution is well concentrated and the trained hypothesis has

some non-negligible error, for most of the instances, there exist perturbations with sub-linear magnitude which

when applied to that instance, cause the classifier to output a wrong label. The concentration of measure

phenomenon, which is tightly related to isoperimetric and optimal transport inequalities, states that for many

natural metric probability spaces (e.g. all so called Lévy families) and for any subset with a constant measure,

almost every point sampled from the measure has sub-linear distance from that subset. There are many

mathematical results on the concentration of natural metric probability spaces, such as product distributions

under hamming distance, Gaussian distribution under euclidean distance, product of unit spheres under the

euclidean or geodesic distance and more. We showed that any such concentration inequality for a metric

probability space will give an upper bound on achievable robustness of any classification problem where

instances are coming from that probability space.

1.3.2 Black-box Estimation of Concentration

Although the result of Section 2 of Part 2 shows the connection between concentration of measure and

adversarial robustness, it was still unclear whether real-world data distributions are concentrated enough

to justify the existence of adversarial examples. The next immediate question then was whether we can

translate the theoretical upper bounds to the real world applications. In Section 3 of Part 2, we introduce

a new method to estimate concentration of measure for an arbitrary metric probability space, using i.i.d.

samples. We design an empirical concentration problem and proved that the solution of this empirical

problem converges to the solution of the actual concentration problem asymptotically. In our published paper

Mahloujifar et al. [2019d], we also provided a heuristic algorithm to solve the empirical concentration for

estimating concentration of measure on image datasets such as MNIST and CIFAR103. Our results showed

that even though there are cases where the robustness of the algorithm in practice is very close to what our

estimation of concentration suggests, for some cases, the gap between the two is large. This finding suggested

that concentration of measure alone cannot fully explain the existence of adversarial examples in some of the

practical scenarios.

3The description of the heuristic and experimental results are not present in this dissertation , please see the full version of
our paper for more details on the experiments.
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1.3.3 Lower Bounds on Adversarially Robust PAC Learning

Our result in Section 2 of Part 2 leveraged the fact that the target classifier have some initial error. A

natural question that follows is whether we can decrease the error rate of the classifier so that the effect of

the adversaries are not as severe. In other words, can we mitigate these attacks by training better classifiers

with smaller error rate? To answer this question, in Chapter 3 of Part 2, we studied the effect of evasion

adversaries on the required sample complexity of learning algorithms. We showed that there exist a learning

problem which requires exponential sample complexity to achieve small adversarial risk. However, in the

absence of adversaries, the same problem can be learned with polynomial number of samples. This shows a

barrier against learning robust classifier by simply using more training data.

1.4 Computational Complexity of Attacks

An important open question about security of machine learning is whether one can rely on the fact that

adversaries are computationally bounded and design secure schemes. This technique is what enables many

constructions in cryptography which are provably secure as long as the adversary can only compute bounded

number of operations. Inspired by the success of the field of cryptography in exploiting computational

limitation of adversaries, we discuss the power and limitation of computationally bounded training-time

and inference-time adversaries in Part 3 of this dissertation. Part 3 consists of 3 parts and is based on the

following three papers.

1. Saeed Mahloujifar and Mohammad Mahmoody. Can adversarially robust learning leverage computational

hardness? arXiv preprint arXiv:1810.01407, 2018a

2. Omid Etesami, Saeed Mahloujifar, and Mohammad Mahmoody. Computational concentration of

measure: Optimal bounds, reductions, and more. In Proceedings of the Fourteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 345–363. SIAM, 2020

3. Sanjam Garg, Somesh Jha, Saeed Mahloujifar, and Mahmoody Mohammad. Adversarially robust

learning could leverage computational hardness. In Algorithmic Learning Theory, pages 364–385, 2020

Computational hardness can potentially be used for resisting both training and inference time attacks.

We show some provable attacks for both training and in Parts 1 and 2 of the documents, some of the

strongest attacks only work if the adversary has infinite computational power. In particular, the strong

adaptive poisoning attacks that use sublinear number of perturbations and also the impossibility result for

inference-time robustness only hold for computationally unbounded adversaries. We tried to attend the
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question of possibility of using computational hardness to resist these attacks. Bellow is a summary of the

progress we have made so far in this direction.

1.4.1 Can adversarially robust learning leverage computational hardness?

In Section 1 of Part 3, we discuss the general idea of using computational hardness for robustness of machine

learning. In particular, we provide “computational” definition similar to definition of cryptographic primitives.

In that section, we also provide some negative result. Specifically, we show that

we showed that if instances are coming from a product distribution, it is computationally feasible to

find adversarial examples with O(
√
n) perturbations (under Hamming distance) as long as the adversary

has black-box access to the hypothesis. In this section, we introduced a new notion called Computational

Concentration of Measure and showed that it is sufficient for getting polynomial time inference-time attacks.

Remember that our strong adaptive poisoning attacks in Part 1, Section 4 were also based on concentration

of measure for product distributions. Our computational concentration of measure result also implies that

our strong adaptive poisoning attacks could be implemented in polynomial-time as well. This rules out the

possibility of using computational hardness for general purpose poisoning attacks. Although these two results

sound disappointing, there is still some gap between computational and information theoretic adversaries.

We will discuss this gap in the Sections 2 and 3 In particular for poisoning attacks, as we our result on

computational concentration does not have the exact same power of our information theoritic attack.

1.4.2 Optimal Bounds for Computational Concentration of Measure

Although the result of Section 1 shows a barrier against leveraging on hardness assumptions to design learning

algorithms that are robust against polynomial time adversaries. Yet, there was a gap between the power of

algorithmic attacks of Section 1 of Part 3 and the existential attacks of Parts 1 and 2. In this section, we

show that how we can improve our computational concentration of measure bounds to match the information

theoretic version of concentration of measure. Using this, we could improve our poisoning attack and close the

gap between power of computationally bounded and unbounded attack for poisoning. As for evasion attacks,

we extend the computational concentration beyond Hamming distance and prove our result for another

theoretically studied distribution. Specifically, we show that isotropic Gaussian distribution, equipped with `1

distance is computationally concentrated. This shows that for such distributions, there are computationally

bounded adversaries who can find adversarial examples in polynomial time.
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1.4.3 Separating Computational Robustness from Information-theoretic Robust-

ness

Although the result of Sections 1 and 2 might sounds disappointing, it does not imply that computational

hardness assumptions cannot be helpful. Considering that there is a gap between existing algorithm’s

robustness and theoretical upper bounds, computational hardness might help closing this gap. In particular,

improving machine learning algorithms to match the existing theoretical upper bounds is still an open problem.

One might be able to use computational hardness assumptions to close this gap by assuming adversaries that

are computationally bounded. In Section 3 of Part 3, we explore this problem. We constructed a learning

problem which its computational robustness was much higher than its information theoretic robustness. To

achieve this, we use some cryptographic primitive to construct learning problems that has high computational

robustness and low information-theoretic robustness. This is a first step in showing that machine learning

can enjoy computational assumptions that is used in cryptography.
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Chapter 1

Random Access Poisoning Attacks

1.1 Introduction

In his seminal work, Valiant [Valiant, 1984] introduced the Probably Approximately Correct (PAC) model

of learning that triggered a significant amount of work in the theory of machine learning.1 An important

characteristic of learning algorithms is their ability to cope with noise. Valiant also initiated a study of

adversarial noise [Valiant, 1985] in which each incoming training example is chosen, with independent

probability p, by an adversary who knows the learning algorithm. Since no assumptions are made on such

adversarial examples, this type of noise is called malicious. Subsequently, Kearns and Li [Kearns and Li,

1993b] and the follow-up work of Bshouty et. al [Bshouty et al., 2002] essentially proved the impossibility of

PAC learning under such malicious noise by heavily relying on the existence of mistakes (i.e., wrong labels)

in adversarial examples given to the learner under a carefully chosen specific distribution. In its simplest

form, the main idea of their approach was to make it impossible for the learner to distinguish between two

different target concepts, and this was achieved by generating wrong labels at an appropriate rate under a

carefully chosen pathological distribution. This approach for obtaining a negative result is a consequence of

Valiant’s model of distribution-free PAC learning, since in general, the learning algorithms have to be able to

deal well with all distributions.2

The method of induced distributions gained popularity and was seen as a tool that was used in order

to prove negative results within various noise models. Sloan in [Sloan, 1995] used this method in order to

determine an upper bound on the error rate that can be tolerated in a noise model where the labels can be

1The original model studies learnability in a distribution-free sense, but it also make sense for classes of distributions; [Benedek
and Itai, 1991].

2In fact, determining properties of distribution-free learning algorithms by looking at their behavior under specific distributions
makes sense in the noise-free setting as well; for example, [Blumer et al., 1989, Ehrenfeucht et al., 1989] obtain lower bounds on
the number of examples needed for learning by looking at specific distributions.

13
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mislabeled maliciously. Bshouty, Eiron, and Kushilevitz [Bshouty et al., 2002] studied a noise model closely

related to Valiant’s malicious noise, in which the adversary is allowed to make its choices based on the full

knowledge of the original training examples; in their work they used the method of induced distributions

in order to give an upper bound on the maximum amount of noise that can be tolerated by any learning

algorithm.

In contrast to the works of [Kearns and Li, 1993b, Sloan, 1995, Bshouty et al., 2002] who used the method

of (pathological) induced distributions from where the malicious samples were drawn, in this Section we are

interested in attackers who do not have any control over the the original distributions, but they can choose

and inject malicious examples in certain (restricted) ways. This is indeed a subtle point, as adversary might

still shift the distribution of the instances through the attack, but we emphasize that it is not the adversary

(nor our proof of the negative result) that chooses the original untampered distribution. On the other hand,

it is also worth noting that near the end of our work in this chapter we also provide a construction for a

negative result within PAC learning. Interestingly, our idea for the behavior of the adversary that yields

this negative learning result in our framework is the same as the key idea underlying the method of induced

distributions where one tries to make it impossible for the learner to disambiguate between competing target

concepts; however, in our context no wrong labels are used.

Poisoning attacks. Impossibility results against learning under adversarial noise could be seen as attacks

against learners in which the attacker injects some malicious training examples to the training set and tries

to prevent the learner from finding a hypothesis with low risk. Such attackers, in general, are studied in

the context of poisoning (a.k.a causative) attacks3 [Barreno et al., 2006, Biggio et al., 2012, Papernot et al.,

2016a]. This type of attack has recently gained a lot of attention in machine learning community as a security

threat in machine learning systems. There has been a lot of empirical studies on power of poisoning attacks

that show learning algorithms are vulnerable to small adversarial changes in the training set (For example see

[Biggio et al., 2012, Shafahi et al., 2018a, Wang and Chaudhuri, 2018]). In this section, we focus on attacks

that can achieve provable bounds against any learning algorithm with the hope of getting a better theoretical

understanding of this phenomenon.

Poisoning attacks could happen naturally when a learning process happens over time [Rubinstein et al.,

2009b,a] and the adversary has some noticeable chance of injecting or substituting malicious training data

in an online manner. A stronger form of poisoning attacks are the so called targeted (poisoning) attacks

[Barreno et al., 2006, Shen et al., 2016], where the adversary performs the poisoning attack while she has a

3At a technical level, the malicious noise model also allows the adversary to know the full state (and thus the randomness) of
the learner, while this knowledge is not given to the adversary of the poisoning attacks, who might be limited in other ways as
well.
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particular test example in mind, and her goal is to make the final generated hypothesis fail on that particular

test example. While poisoning attacks against specific learners were studied before [Awasthi et al., 2014, Xiao

et al., 2015, Shen et al., 2016], the recent work of Mahloujifar and Mahmoody [Mahloujifar and Mahmoody,

2017b] presented a generic targeted poisoning attack that could be adapted to apply to any learner, so long

as there is an initial non-negligible error over the target point.

p-tampering (random access) attacks. The work of [Mahloujifar and Mahmoody, 2017b] proved their

result using a special case of Valiant’s malicious noise, called p-tampering, in which the attacker can only use

mistake-free (i.e., correct label) malicious noise. Namely, similar to Valiant’s model, any incoming training

example might be chosen adversarially with independent probability p (see Definition 1.2.5 for a formalization).

However, the difference between p-tampering noise and Valiant’s malicious noise (and even from all of its

special cases studied before [Sloan, 1995]) is that a p-tampering adversary is only allowed to choose valid

tampered examples with correct labels4 to substitute the original examples. As such, although the attributes

can change pretty much arbitrarily in the tampered examples, the label of the tampered examples shall still

reflect the correct label. For example, the adversary can repeatedly present the same example to the learner,

thus reducing the effective sample size, or it can be the case that the adversary returns correct examples

that are somehow chosen against the learner’s algorithm and based on the whole history of the examples

so far. Therefore, as opposed to the general model of Valiant’s malicious noise, p-tampering noise/attacks

are ‘defensible’ as the adversary can always claim that a malicious training example is indeed generated

from the same original distribution from which the rest of the training examples are generated. Similar

notions of defensible attacks are previously explored in the context of cryptographic attacks [Haitner et al.,

2010, Aumann and Lindell, 2007]. Therefore, learning under p-tampering can be seen as a generalization of

“robustness” [Xu and Mannor, 2012, Yamazaki et al., 2007, González and Abu-Mostafa, 2015] in which the

training distribution can adaptively and adversarially deviate from the testing distribution without using

wrong labels.

Targeted Poisoning Attacks through Biasing Bounded Functions. At the heart of the poisoning

attacks of [Mahloujifar and Mahmoody, 2017b] against learners was a p-tampering attack for the more

basic task of biasing the expected value of bounded real-valued functions. In particular, [Mahloujifar and

Mahmoody, 2017b] proved that for any (polynomial time computable) function f mapping inputs drawn

from distributions like S ≡ Dn (consisting of n independent identically distributed ‘blocks’) to [0, 1], there is

always a polynomial time p-tampering attacker A who changes the input distribution S into S̃ while increasing

4This is assuming that the original training distribution only contains correct labels.
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the expected value by at least p
3+5p · V[f(S)] where V[·] is the variance.5 (Note that the bias shall somehow

depend on V[f(S)] since constant functions cannot be biased by changing their inputs.)

To see the relation of these biasing attacks to targeted poisoning, consider f to be a real valued function

over training set S such that f(S) is equal to the loss of the final model over a target instance x, where S is

the training set that is used to train the model. By applying the biasing attack to this function, the attacker

can increase the expected loss of the final model over the target instance x. Note that V[f(S)] is the variance

of the loss function over x and one can obtain lower bounds for it using bias-variance trade-off arguments

[Rao, 1992].

The work of [Mahloujifar and Mahmoody, 2017b] shows that for some functions even computationally

unbounded p-tampering attackers (who can run in exponential time) cannot achieve better than ln(1/µ)
1−µ · p ·

V[f(S)] for all p, µ ∈ (0, 1), if µ = E[f(S)], which because of limµ→1
ln(1/µ)

1−µ = 1, means the best possible

universal constant c to achieve bias c · p · V[f(S)] through p-tampering is at most c ≤ 1. For the special case

of Boolean function f(·), or alternatively when the p-tampering attacker is allowed to run in exponential

time, [Mahloujifar and Mahmoody, 2017b] achieved almost optimal bias of p
1+p·µ−p · V[f(S)] > p · V[f(S)].

Using their biasing attacks, [Mahloujifar and Mahmoody, 2017b] directly obtained p-tampering targeted

poisoning attacks with related bounds. Therefore, a main question that remained open after [Mahloujifar

and Mahmoody, 2017b] and is a subject of our study is the following. What is the maximum possible bias

of real-valued functions through p-tampering attacks? Resolving this question, directly leads to improved

p-tampering poisoning attacks against learners, when the loss function is real-valued.

Example 1.1.1. As an example, consider a regression problem where a regressor L tries to learn a bounded

function c : X → [0, 1] through another function h : X → [0, 1]. Let x be a target point and the adversary

tries to increase the absolute error loss of h over x. Assume that the average of loss over x is 0.2 and the

variance of loss over x is 0.1. According to the biasing attack of [Mahloujifar and Mahmoody, 2017b] if an

adversary can control each training example with probability p = 0.5 then she can increase the the average

loss over x to ≈ 0.21.

1.1.1 Summary of Results

Improved p-tampering biasing attacks. Our main technical result in this section is to improve the

efficient (polynomial-time) p-tampering biasing attack of [Mahloujifar and Mahmoody, 2017b] to achieve the

bias of p
1+p·µ−p ·V[f(S)] ≥ p ·V[f(S)] (where µ = E[f(S)] for S ≡ Dn and V[·] is the variance) in polynomial

time and for real-valued bounded functions with output in [0, 1] (see Theorem 1.3.1). This main result

5In the original version a slightly stronger bound of 2p
3+4p

· V[f(S)] was claimed, though the full version [Mahloujifar and

Mahmoody, 2017a] corrected this to the weaker bound p
3+5p

· V[f(S)]



1.1 Introduction 17

immediately allows us to get improved polynomial-time targeted p-tampering attacks against learners for

scenarios where the loss function is not Boolean (see Corollary 1.3.2). As in [Mahloujifar and Mahmoody,

2017b], our attacks apply to any learning problem P and any learner L for P as long as L has a non-zero

initial error over a specific test example d.

Example 1.1.2. To see the gap between our result and previous work of [Mahloujifar and Mahmoody,

2017b] we go back to the setting of Example 1.1.1. Namely, if the average loss over x is 0.2 and the variance

of loss over x is 0.1, then the adversary by running the biasing attack of our work can increase the average

loss to more than 0.28. Compare this with 0.21 that the attack of previous work could achieve in the same

setting.

Special case of p-resetting attacks. The biasing attack of [Mahloujifar and Mahmoody, 2017b] has an

extra property that for each input block (or training example) di, if the adversary gets to tamper with di, it

either does not change di at all, or it simply ‘resets’ it by resampling it from the original (training) distribution

D. In this section, we refer to such limited forms of p-tampering attacks as p-resetting attacks. Interestingly,

p-resetting attacks were previously studied in the work of Bentov, Gabizon, and Zuckerman [Bentov et al.,

2016] in the context of (ruling out) extracting uniform randomness from Bitcoin’s blockchain [Nakamoto,

2008] when the adversary controls p fraction of the computing power.6 Bentov, et al. [Bentov et al., 2016]

showed how to achieve bias p/12 when the original (untampered) distribution D is uniform and the function

f is Boolean and balanced.7 As a special case of p-tampering attacks, p-resetting attacks have interesting

properties that are not present in general p-tampering attacks. For example, if an attacker chooses its

adversarial examples from a large pool by “skipping” some of them, then p-resetting attacks need a pool of

about ≈ (1 + p) · n, while p-tampering attackers might need much more. That is because, for each tampered

example, the adversary simply needs to choose one out of two original correctly labeled examples, while a

p-tampering attacker might need more samples. Motivated by special applications of p resetting attacks and

the special properties of p-resetting attacks, in this section we also study such attacks over arbitrary block

distributions D and achieve bias of at least p
1+p·µ · V[f(S)], improving the bias of p

3+5p · V[f(S)] proved in

[Mahloujifar and Mahmoody, 2017b].

PAC learning under p-tampering. We also study the power of p-tampering (and p-resetting) attacks in

the non-targeted setting where the adversary’s goal is simply to increase the risk of the generated hypothesis.8

6To compare the terminologies, the work of [Bentov et al., 2016] studies p-resettable sources of randomness, while here we
study p-resetting attackers that generate such sources.

7The running time of the p-resetting attacker of [Bentov et al., 2016] was poly(n, 2|D|) where |D| is the length of the binary
representation of any d← D. In contrast, our p-resetting attacks run in time poly(n, |D|).

8In the targeted setting, the ε parameter of (ε, δ)-PAC learning goes away, due to the pre-selection of the target test.
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In this setting, it is indeed meaningful to study the possibility (or impossibility) of PAC learning, as the

test example is chosen at random. We show that in this model, p-tampering attacks cannot prevent PAC

learnability for ‘realizable’ settings; that is when there is always a hypothesis consistent with the training data

(see Theorem 1.4.5). We further go beyond p-tampering attacks and study PAC learning under more powerful

adversaries who might choose the location of training examples that are tampered with but are still limited

to choose ≤ p · n such examples. We show that PAC learning under such adversaries depends on whether the

adversary makes its tampering choices before or after getting to see the original sample di. We call these two

class of attacks, respectively, weak and strong p-budget tampering attacks (see Definition 1.4.4).

Comparison with classical models of malicious and nasty noise. Our notion of strong p-budget

tampering is inspired by notions of adaptive corruption [Canetti et al., 1996b] and particularly strong adaptive

corruption [Goldwasser et al., 2015a] studied in cryptographic contexts. Furthermore, p-tampering and

p-budget tampering can be seen as analogues of malicious noise and nasty noise respectively, where the

adversary shall respect the correct label of the perturbed instance. One subtle difference is that, the nasty

noise model of Bshouty et. al [Bshouty et al., 2002] allows the adversary to see the whole training set before

tampering with a small fraction of it. However, we note that we improve their negative result (i.e., their lower

bound for PAC learning in their nasty noise model) by showing the impossibility of PAC learning even if the

adversary is limited to correct labels, and even if it is “online” the same way Valiant’s malicious noise and

p-tampering noise are modeled. On the other hand, our positive result about PAC learning under p-budget

attacks is incomparable to the positive result of Kearns and Li [Kearns and Li, 1993b] and Bshouty et. al

[Bshouty et al., 2002]. Our result is weaker in the sense that we require correct labels and we do not allow

the adversary to see the next example before deciding to corrupt it (what we call the weak attack model), yet

our result is stronger in the sense that we allow much higher noise rate, which is essentially close to one!

Our impossibility result of PAC learnability under strong p-budget attacks (see Theorem 1.4.7) shows that

PAC learning under ‘mistake-free’ adversarial noise is not always possible.

Finally, we would like to point out that our positive result about PAC learnability under p-tampering

attacks (see Theorem 1.4.5) shows a stark contrast between the ‘mistake-free’ adversarial noise and general

malicious noise for p > 1/2. Indeed, when the adversary can tamper with p ≈ 1/2 fraction of the training

data in an arbitrary way for a binary classification problem, it can make the training data completely useless

by always picking the labels at random from {0, 1}. Such adversary will end up changing only p ≈ 1/2 of the

examples, but will make the labels independent of the features. However, as we prove in Theorem 1.4.5, PAC

learning is possible under p-tampering for any constant p < 1.
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Applications beyond attacking learners. Similar to how [Mahloujifar and Mahmoody, 2017b] used

their biasing attacks in applications other than attacking learners, our new biasing attacks can also be used to

obtain improved polynomial-time attacks for biasing the output bit of any (candidate) seedless randomness

extractors [Von Neumann, 1951, Chor and Goldreich, Santha and Vazirani, 1986], hence ruling out their

existence for bias o(p). Moreover, similarly to [Mahloujifar and Mahmoody, 2017b] we also can obtain

blockwise p-tampering (and p-resetting) attacks against security of indistinguishability-based cryptographic

primitives (e.g., encryption, secure computation, etc.). Previous attacks of [Dodis et al., 2004] used information

theoretic Santha-Vazirani [Santha and Vazirani, 1986] sources with high min-entropy while our attacks similar

to [Mahloujifar and Mahmoody, 2017b] are algorithmic and run in polynomial time. We refer to [Mahloujifar

and Mahmoody, 2017b] for the statement of the attacks and formal results, and note that our new attacks

imply new algorithmic attacks on the same set of primitives. Furthermore, as in [Mahloujifar and Mahmoody,

2017b], our new improved biasing attacks apply to any joint distribution (e.g., martingales) when the

tampered values affect the random process in an online way. In this section, however, we focus on the case

of product distributions as they suffice for getting our attacks against learners and include all the main

ideas even for the general case of random processes. We refer the reader to the work of [Mahloujifar and

Mahmoody, 2017b] for the statement of these extra applications of p-tampering attacks. Finally, we note

that p-tampering is an information theoretic framework (not focused on cryptography) even though it was

initially studied in cryptographic contexts. In fact, by using p-tampering in our work in a learning context

we confirm the generality of this information theoretic tampering framework. f

Recent positive results achieving algorithmic robustness. On the positive (algorithmic) side, the

seminal works of Diakonikolas et al. [Diakonikolas et al., 2016] and Lai et al. [Lai et al., 2016] showed the

surprising power of algorithmic robust inference over poisoned data with error that does not depend on the

dimension of the distribution (but still depends on the fraction of poisoned data). These works led to an

active line of work (e.g., see [Charikar et al., 2017, Diakonikolas et al., 2017, 2018b,a, Prasad et al., 2018,

Diakonikolas et al., 2018c] and references therein) exploring the possibility of robust statistics over poisoned

data with algorithmic guarantees. The works of [Charikar et al., 2017, Diakonikolas et al., 2018b] performed

list-decodable learning, and [Diakonikolas et al., 2018a, Prasad et al., 2018] studied supervised learning. In

our attacks, however, similarly to virtually all attacks in the literature (over specific learners and models) we

demonstrate inherent power of poisoning attacks (that apply to any learner and hypothesis class) to amplify

the error of classifiers starting from small and perhaps acceptable error rates, while after the attack the error

probability is essentially one. Namely, our results show that in order to resist poisoning attacks, the same

algorithms should do much better in the no-attack setting, as otherwise a poisoning attacker can increase the
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targeted error probability significantly.

Implications to (impossibility of) computational robustness. Previously [Mahloujifar and Mah-

moody, 2019b, Garg et al., 2019] it was asked whether security of learning algorithms can leverage com-

putational hardness by making successful attacks run in exponential (or at least super-polynomial) time

over the input length, making them infeasible in practice. Since our attacks run in polynomial time, as a

result, we conclude a stronger negative result. In particular, our results show that there is no way to beat our

impossibility results by modeling the adversary as an efficiently bounded entity and rely on computational

intractably assumptions to prove the security.

Comparison with related work. In this section, our attacks work in the p-tampering poisoning model,

in which an attacker get to tamper with each training example with independent probability p, and the

adversary is also limited to use only correct labels. Here we show how to increase the probability of a bad

predicate over the hypothesis by Ω(p). In [Mahloujifar and Mahmoody, 2019b, Etesami et al., 2019b] it was

shown shown that if the adversary can choose the location of the tampered examples, then it would have

much more power. Namely, in that case an adversary who changes only Õ(
√
m) of the training examples,

where m is the size of the training set, can increase the probability of any bad event from any non-negligible

probability Ω(1/ poly(m) to ≈ 1. The Our results are incomparable to the ones above, as our adversary

does not choose the location of the tampering, while the increase in the probability of bad event is more in

[Mahloujifar and Mahmoody, 2019b, Etesami et al., 2019b].

Ideas behind our new biasing attacks and our approach

Our new biasing attacks build upon ideas developed in previous work [Reingold et al., 2004, Dodis et al.,

2004, Beigi et al., 2017, Dodis and Yao, 2015, Bentov et al., 2016] in the context of attacking deterministic

randomness extractors from the so called Santha-Vazirani sources [Santha and Vazirani, 1986]. In [Mahloujifar

and Mahmoody, 2017b] the authors generalized the idea of ‘half-space’ sources (introduced in [Reingold

et al., 2004, Dodis et al., 2004]) to real-valued functions, using which they showed how to find p-tampering

biasing attacks with bias p
1+p·µ−p · V[f(S)]. However, their attacks need inefficient (i.e., super polynomial

time) tampering algorithms. In particular, [Mahloujifar and Mahmoody, 2017b] directly defined a perturbed

joint distribution S̃ = (D̃1, . . . , D̃n) of the original product distribution S ≡ D such that has two properties

hold: (1) E[f(S̃)] achieves the desired bias, and (2) Pr[S̃ = z] ≤ c · Pr[S = z] for all points z and sufficiently

small constant c, meaning that S̃ does not increase the point-wise probabilities “too much”. It was shown

in [Mahloujifar and Mahmoody, 2017b] that the second property guarantees that the distribution S̃ can
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be obtained from S by some tampering algorithm, but their proof was existential, namely it said nothing

about the computational complexity of such tampering algorithm. Achieving the same bias efficiently for

real-valued functions is the main technical challenge in this section.

Our approach. At a very high level, we show how to achieve in polynomial-time the same bias achieved in

[Mahloujifar and Mahmoody, 2017b] through the following two steps.

1. We first show how to obtain the same exact final distribution achieved in [Mahloujifar and Mahmoody,

2017b] through local p-tampering decisions that could be implemented in polynomial time using an

idealized oracle f̂ [·] that provides certain information about function f(·).

2. We then, show that the idealized oracle f̂ [·] can be approximated in polynomial time, and more

importantly, the p-tampering attack of the previous step (using idealized oracle f̂ [·]) is robust to this

approximation and still achieves almost the same bias.

Idealized oracle f̂ [·]. Let d≤i = (d1, . . . , di) be the first i blocks given as input to a function f .9 Now,

suppose the adversary gets the chance to determine the next block di+1 based on its knowledge of the

previously generated blocks (d1, . . . , di). We achieve the goal of the first step depicted above, with the help

of the following oracle provided for free to the p-tampering attacker.

f̂ [d≤i] = E
di+1,...,dn←Dn−i

[f(d1, . . . , dn)].

In other words, f̂ [d≤i] computes the expected value of f when each of the blocks (examples) di+1, . . . , dn

is drawn independent and identically distributed according to D, while the first i blocks d1, . . . , di are fixed

as dictated by d≤i.

Although the partial averages f̂ [d≤i] are not exactly computable in polynomial time, they can indeed be

efficiently approximated within arbitrary small additive error. As we show, our attacks are also robust to

such approximations, and using the approximations of f̂ [d≤i] (rather than their exact values) we can still

bound the bias. See Sections 1.3.2 and Section 1.3.3 for the details.

The case of p-resetting attacks. When it comes to p-resetting attacks, we cannot achieve the same bias

that we do achieve through general p-tampering attacks. However, we still use the same recipe as described

above. Namely, we use the idealized oracle f̂ [d≤i] to make careful local sampling to keep or reset a given

9Alternatively the first i training examples, when we attack learners. However, some of the blocks in (d1, . . . , di) might be
the result of previous tampering decisions.
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block di, so that the final distribution has the desired bias. We then approximate the idealized oracle while

arguing that the analysis is robust to this change.

Comparison with the polynomial-time attacker of [Mahloujifar and Mahmoody, 2017b]. As

mentioned before, the work of [Mahloujifar and Mahmoody, 2017b] also provides polynomial p-tampering

attacks with weaker bounds. At a high level, the attacks of [Mahloujifar and Mahmoody, 2017b] were simple

to describe (without using the idealized oracle f̂), while their analyses were extremely complicated and used

the function f̂ as well as a carefully chosen potential function based on ideas from [Austrin et al., 2014a]

in which authors presented a p-tampering biasing attack for the special case of uniform Boolean blocks

(i.e., D ≡ U1). Our new (polynomial time) attacks takes a dual approach: the analysis of our attacks are

conceptually simpler, as they directly achieve the desired bias, but the description of our attacks are more

complicated as they also depend on the idealized oracle f̂ .

1.2 Preliminaries

Notation. We use calligraphic letters (e.g., D) for sets and capital non-calligraphic letters (e.g., D) for

distributions. By d← D we denote that d is sampled from D. Usually D denotes the joint distribution over

pairs (x, y) in which x is an instance and y is its label. By D ∈ S we denote that D always outputs in S,

namely Supp(D) ⊆ S. By TD(·) we denote an algorithm T (·) with oracle access to a sampler for D. By Dn

we denote n independent identically distributed samples from D. By ε(n) ≤ 1
poly(n) we mean ε(n) ≤ 1

nΩ(1)

and by t(n) ≤ poly(n) we mean t(n) ≤ nO(1).

An example s is a pair s = (x, y) where x ∈ X and y ∈ Y. An example is usually sampled from a

distribution D. A sample set (or sequence) S of size n is a set (or sequence) of n examples. A hypothesis h

is consistent with a sample set (or sequence) S if and only if h(x) = y for all (x, y) ∈ S. We assume that

instances, labels, and hypotheses are encoded as strings over some alphabet such that given a hypothesis h

and an instance x, h(x) is computable in polynomial time.

Definition 1.2.1 (Realizability). We say that the problem P = (X ,Y,D,H, `oss) is realizable, if for all

D ∈ D, there exists an h ∈ H such that RiskD(h) = 0.

We can now define Probably Approximately Correct (PAC) learning. Our definition is with respect

to a given set of distributions D, and it can be instantiated with one distribution {D} = D to get the

distribution-specific case. We can also recover the distribution-independent scenario, whenever the projection

of D over X covers all distributions.
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Definition 1.2.2 (PAC Learning). A realizable problem P = (X ,Y,D,H, `oss) is (ε, δ)-PAC learnable if

there is a (possibly randomized) learning algorithm L such that for every n and every D ∈ D, it holds that,

Pr
S←Dn,h←L(S)

[RiskD(h) ≤ ε(n)] ≥ 1− δ(n).

We call P simply PAC learnable if ε(n), δ(n) ≤ 1/ poly(n), and we call it efficiently PAC learnable if, in

addition, L is running in polynomial time.

Definition 1.2.3 (Average Error of a Test). For a problem P = (X ,Y,D,H, `oss), a (possibly randomized)

learning algorithm L, a fixed test sample (x, y) = d ← D for some distribution S over Supp(D)n (e.g.,

S ≡ Dn) for some n ∈ N, the average error10 of the test example d (with respect to S,L) is defined as,

ErrS,L(d) = E
S←S,h←L(S)

[`oss(h(x), y)].

We call ErrS,L = Ed←D ErrS,L(d) simply the average error. When L is clear from the context, we simply write

ErrS(d) (resp. ErrS) to denote ErrS,L(d) (resp. ErrS,L).

It is easy to see that a realizable problem P = (X ,Y,D,H, `oss) with bounded loss function `oss is PAC

learnable if and only if there is a learner L (for P) such that its average error ErrS is bounded by a fixed

1/ poly(n) function for all D ∈ D.11

Poisoning attacks. PAC learning under adversarial noise is already defined in the literature, however,

poisoning attacks include broader classes of attacks. For example, a poisoning adversary might add adversarial

examples to the training data (thus, increasing its size) or remove some of it adversarially. A more powerful

form of poisoning attack is the so called targeted poisoning attack where the adversary gets to know the target

test example before poisoning the training examples. More formally, suppose S = (d1, . . . , dn) is the training

examples sampled independently and identically distributed from D ∈ D. For a poisoning attacker A, by

S̃ ← A(S) we denote the process through which A generates an adversarial training set S̃ based on S. Note

that, this notation does not specify the exact limitations of how A is allowed to tamper with S, and that is

part of the definition of A. In the targeted case, the adversary A is also given a test example (x, y) = d← D.

So, we would denote this by writing S̃ ← A(d,S) to emphasize that d is the test example given as input to

A. We use calligraphic A to denote a class of attacks. Note that a particular adversary A ∈ A might try

to poison a training set S based on the knowledge of a problem P = (X ,Y,D,H, `oss). On the other hand,

10The work [Mahloujifar and Mahmoody, 2017b] called the same notion the ‘cost’ of d.
11Suppose `oss(·) is bounded (i.e., always in [0, 1]). If P is (ε, δ)-PAC learnable, then by a union bound, ErrS ≤ ε+δ. Moreover,

if L is not (ε, δ)-PAC learnable, then its average error is at least ε · δ. This means that if L has average error γ = ErrS , then L is
an (
√
γ,
√
γ)-PAC learner as well.
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because sometimes we would like to limit the adversary’s power based on the specific distribution D (e.g., by

always choosing tampered data to be in Supp(D)), by AD ⊆ A we denote the adversary class for a particular

distribution D.

Definition 1.2.4 (Learning under poisoning). Suppose P = (X ,Y,D,H, `oss) is a problem, A = ∪D∈DAD

is an adversary class, and L is a (possibly randomized) learning algorithm for P.

� PAC learning under poisoning. For problem P, L is an (ε, δ)-PAC learning algorithm for P under

poisoning attacks of A, if for every D ∈ D, n ∈ N, and every adversary A ∈ AD,

Pr
S←Dn,S̃←A(S),h←L(S̃)

[RiskD(h) ≤ ε(n)] ≥ 1− δ(n).

PAC learnability and efficient PAC learnability are then defined similarly to Definition 1.2.2.

� Average error under targeted poisoning. If A contains targeted poisoning attackers, for a

distribution D ∈ D and an attack A ∈ AD, the average error ErrADn(d) for a test example d = (x, y)

under poisoning attacker A is equal to ErrS̃(d) where S̃ ≡ A(d, S) for S ≡ Dn.

p-tampering attacks. We now define the specific class of poisoning attacks studied in this section.

Informally speaking, p-tampering attacks model attackers who will manipulate the training sequence S =

(d1, . . . , dn) in an online way, meaning while tampering with di, they do not rely on the knowledge of dj , j > i.

Moreover, such attacks get to tamper with di only with independent probability p, modeling scenarios where

the tampering even is random and outside the adversary’s choice. A crucial point about p-tampering attacks

is that they always stay in Supp(D). The formal definition follows.

Definition 1.2.5 (p-tampering/resetting attacks). The class of p-tampering attacks Aptam = ∪D∈DAD is

defined as follows. For a distribution D ∈ D, any A ∈ AD has a (potentially randomized) tampering algorithm

Tam such that (1) given oracle access to D, TamD(·) ∈ Supp(D), and (2) given any training sequence

S = (d1, . . . , dn), the tampered S̃ = (d̃1, . . . , d̃n) is generated by A inductively (over i ∈ [n]) as follows.

� With probability 1− p, let d̃i = di.

� Otherwise, (with probability p), get d̃i ← TamD(1n, d̃1, . . . , d̃i−1, di).

The class of p-resetting attacks Apres ⊂ A
p
tam include special cases of p-tampering attacks where the tampering

algorithm Tam is restricted as follows. Either Tam(1n, d̃1, . . . , d̃i−1, di) outputs di, or otherwise, it will output

a fresh sample d′i ← D. In the targeted case, the adversary AD and its tampering algorithm Tam are also

given the final test example d0 ← D as extra input (that they can read but not tamper with). An attacker

AD is called efficient, if its oracle-aided tampering algorithm TamD runs in polynomial time.
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Subtle aspects of the definition. Even though one can imagine a more general definition for tampering

algorithms, in all the attacks of [Mahloujifar and Mahmoody, 2017b] and the attacks of this section, the

tampering algorithms do not need to know the original un-tampered values d1, . . . , di−1. Since our goal

here is to design p-tampering attacks, we use the simplified definition above, while all of our positive results

still hold for the stronger version in which the tampering algorithm is given the full history of the training

examples. Another subtle issue is about whether di is needed to be given to the tampering algorithm. As

already noted in [Mahloujifar and Mahmoody, 2017b], when we care about p-tampering distributions of Dn,

di is not necessary to be given to the tampering algorithm Tam, as Tam can itself sample a copy from D and

treat it like di. Therefore the ‘stronger’ form of such attacks (where di is given) is equivalent to the ‘weaker’

form where di is not given. In fact, if D is samplable in polynomial time, then this equivalence holds with

respect to efficient adversaries (with efficient Tam algorithm) as well. In this section, for both p-tampering

and p-resetting attacks we choose to always give di to Tam. Interestingly, as we will see in Section 1.4, if

the adversary can choose the p · n locations of tampering, the weak and strong attackers will have different

powers!

1.2.1 Concentration Bounds

Lemma 1.2.6 (Hoeffding inequality [Hoeffding, 1963]). Let X1, . . . , Xn be n independent random variables

where Supp(Xi) ⊆ [0, 1] for all i ∈ [n]. Let X = 1
n

∑n
i=1Xi and λ = E [X]. Then, for any ξ ≥ 0,

Pr [|X − λ| ≥ ξ] ≤ 2e−2nξ2

.

Lemma 1.2.7 (Chernoff Bound [Chernoff, 1952]). Let X1, . . . , Xn be n independent Boolean random variables,

Supp(Xi) ⊆ {0, 1} for all i ∈ [n]. Let X = 1
n

∑n
i=1Xi and λ = E [X]. Then, for any γ ∈ [0, 1],

Pr [X ≥ (1 + γ) · λ] ≤ e−n·λ·γ
2/3 ,

1.3 Improved p-Tampering and p-Resetting Poisoning Attacks

In this section we study the power of p-tampering attacks in the targeted setting and improve upon the

p-tampering and p-resetting attacks of [Mahloujifar and Mahmoody, 2017b]. Our main tool is the following

theorem giving new improved p-tampering and p-resetting attacks to bias the output of bounded real-valued

functions.
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1.3.1 The Statement of Results

Theorem 1.3.1 (Improved biasing attacks). Let D be any distribution, S ≡ Dn, and f : Supp(S)→ [0, 1].

Suppose µ = E[f(S)] and ν = V[f(S)] be the expected value and the variance of f(S) respectively. For every

constant p ∈ (0, 1), and a given parameter ξ ∈ (0, 1), the following holds.

1. There is a p-tampering attack Atam such that,

E
S̃←Atam(S)

[f(S̃)] ≥ µ+
p · ν

1 + p · µ− p
− ξ

and given oracle access to f and sampling oracle for D, the tampering algorithm TamD,f
tam of Atam could

be implemented in time poly(|D| · n/ξ) where |D| is the bit length of d← D.

2. There is a p-resetting attack Ares such that,

E
S̃←Ares(S)

[f(S̃)] ≥ µ+
p · ν

1 + p · µ
− ξ

and given oracle access to f and sampling oracle for D, the tampering algorithm TamD,f
res of Ares could

be implemented in time poly(|D| · n/ξ) where |D| is the bit length of d← D.

See Section 1.3.2 for the full proof of Theorem 1.3.1. In this section, we use Theorem 1.3.1 and obtain

the following improved attacks in the targeted setting against any learner. In particular, for any fixed

(x, y) = d← D, the following corollary follows from Theorem 1.3.1 by letting f(S) = Eh←L(S)[`oss(h(x), y)].

Corollary 1.3.2 (Improved targeted p-tampering attacks). Given a problem P = (X ,Y,D,H, `oss) with a

bounded loss function `oss, for any distribution D ∈ D, test example (x, y) = d← D, learner L, and n ∈ N,

let µ = ErrD(d) be the average error for d, and let,

ν = V
S←Dn

[
E

h←L(S)
[`oss(h(x), y)]

]
.

Then, for any constant 0 < p < 1, and any 0 < ξ < 1 there is a p-tampering (resp. p-resetting) attack

Atam (resp. Ares) that increases the average error by p·ν
1+p·µ−p − ξ (resp. p·ν

1+p·µ − ξ). Moreover, if D is

polynomial-time samplable and both functions f, `oss are polynomial-time computable, then Atam,Ares could

be implemented in poly(|D| · n/ξ) time.

Remark 1.3.3. Even when the average error µ = ErrD(d) is not too small, the variance ν (as defined in

Corollary 1.3.2) could be negligible in general. However, for natural cases this cannot happen. For example,
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if the loss function `oss(·) is Boolean (e.g., P is a classification problem) and if L is a deterministic learning

algorithm, then ν = µ · (1− µ).

We now demonstrate the power of p-tampering and p-resetting attacks on PAC learners by using them to

increase the failure probability of deterministic PAC learners.

Corollary 1.3.4 (p-tampering attacks on PAC learners). Given a problem P = (X ,Y,D,H, `oss), D ∈

D, n ∈ N, and deterministic learner L, suppose,

Pr
S←Dn, h=L(S)

[RiskD(h) ≥ ε] = δ.

Then, there is a poly(|D| · n/ε) time p-tampering attack Atam and a p-resetting attack Ares such that,

Pr
S←Dn,S̃←Atam(S),h=L(S̃)

[RiskD(h) ≥ 0.99 · ε] ≥ δ +
p · (δ − δ2)

1 + p · δ − p
− e−n

Pr
S←Dn,S̃←Ares(S),h=L(S̃)

[RiskD(h) ≥ 0.99 · ε] ≥ δ +
p · (δ − δ2)

1 + p · δ
− e−n.

Before proving this we prove a useful proposition.

Proposition 1.3.5. The following functions are increasing for δ ∈ [0, 1] and any constant p ∈ (0, 1).

γtam(δ) = δ +
p · (δ − δ2)

1 + p · δ − p
, γres(δ) = δ +

p · (δ − δ2)

1 + p · δ
.

Proof. The lemma holds because we have,

∂γtam

∂δ
=

1− p
(p(δ − 1) + 1)2

> 0 and
∂γres

∂δ
=

1 + p

(p · δ + 1)2
> 0 .

Proof of Corollary 1.3.4. The inefficient versions of the attacks follow from Theorem 1.3.1 by letting f(S) = 1

if RiskD(h) ≥ ε and f(S) = 0 otherwise. When the attacks are supposed to run in polynomial time, we have

to approximate RiskD(h) using oracle access to D. Suppose we have access to some oracle f̃(.) such that,

f̃(S) =


1 if RiskD(L(S)) ≥ ε,

0 if RiskD(L(S)) ≤ 0.99 · ε,

0 or 1 if 0.99 · ε ≤ RiskD(L(S)) ≤ ε.
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We first show that by using the oracle f̃(.) instead of f(·), we can achieve the desired bias, and then we will

approximate f(·) using oracle access to a sampling oracle for D such that we obtain a simulated oracle for

f̃(.) with probability 1− e−n.

If δ̃ = ES←Dn [f̃(S)], then Theorem 1.3.1 shows that given oracle access to f̃(.), there is a p-tampering

attack Atam and a p-resetting attack Ares that can bias the average of f̃ as,


ES←Dn,S̃←Atam(S)[f̃(Ŝ)] ≥ δ̃ + p · p·(δ̃−δ̃

2)

1+p·δ̃−p , or

ES←Dn,S̃←Ares(S)[f̃(Ŝ)] ≥ δ̃ + p · p·(δ̃−δ̃
2)

1+p·δ̃ .

On the other hand, we know that for all S ∈ Supp(Dn), f(S) ≤ f̃(S). Therefore,

δ = E
S←Dn

[f(S)] ≤ δ̃.

We also know that f̃(S) = 1 implies that Risk(L(S)) ≥ 0.99 · ε, thus for any distribution Z defined on

Supp(Dn) we have,

E
S̃←Z

[f̃(Ŝ)] ≤ Pr
S̃←Z

[Risk(L(Ŝ)) ≥ 0.99 · ε].

Combining the above inequalities for the p-tampering attack, we get,

Pr
S←Dn,S̃←Atam(S)

[Risk(L(Ŝ)) ≥ 0.99 · ε] ≥ E
S←Dn,S̃←Atam(S)

[f̃(Ŝ)]

≥ δ̂ + p · p · (δ̃ − δ̃
2)

1 + p · δ̃ − p

(By Proposition 1.3.5) ≥ δ + p · p · (δ − δ
2)

1 + p · δ − p
.

Similarly, for the p-resetting attack we get,

Pr
S←Dn,S̃←Ares(S)

[Risk(L(Ŝ)) ≥ 0.99 · ε] ≥ E
S←Dn,S̃←Ares(S)

[f̃(Ŝ)]

≥ δ̂ + p · p · (δ̃ − δ̃
2)

1 + p · δ̃

(By Proposition 1.3.5) ≥ δ + p · p · (δ − δ
2)

1 + p · δ
.

Now, we show how to obtain an oracle f̃(.) that provides the properties above with high probability by accessing

sampling oracle for D. The simulated oracle f̃(.) works as follows. Given a training set S, it first performs L

on S to get the hypothesis h. Then it samples m examples d1 = (x1, y1), . . . , dm = (xm, ym) from Dm, for
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m to be chosen later, and it computes an “empirical risk” r(h) as follows: r(h) = 1
m

∑m
i=1 `oss(h, xi, yi). If

r(h) ≥ 0.995, f̃(S) outputs 1, otherwise it outputs 0. By Hoeffding’s inequality, it holds that,

Pr[|r(h)− RiskD(h)| ≥ 0.005 · ε] ≤ 2 · e− m·ε2
20000 .

Therefore,

Pr[((r(h) ≤ 0.995 · ε) ∧ (RiskD(h) ≥ ε)) ∨ ((r(h) ≥ 0.995 · ε) ∧ (RiskD(h) ≤ 0.99 · ε))]

is upper bounded by the quantity

2 · e− m·ε2
20000 ,

which means that the oracle f̃(.) has the required properties with very high probability. Now, if the original

attacker Atam or Ares runs in time t = poly(|D| · n/ε), we choose m = poly(|D| · n/ε) large enough such that

t · e− m·ε2
20000 ≤ e−n. In particular, we choose m ≥ (n+ ln(2t)) · 20000/ε2. Therefore, by a union bound, with

probability 1− e−n, all the queries to f̃(·) would be within ±ε/200 of the answer that the ideal oracle f(·)

would provide. This concludes the proof of the corollary.

1.3.2 New p-Tampering and p-Resetting Biasing Attacks

In this subsection and Subsection 1.3.3 we prove Theorem 1.3.1. Our focus is on describing the relevant

tampering algorithms Tam; the general attacks will be defined accordingly. (Recall Definition 1.2.5 and

that the p-tampering attacker has an internal ‘tampering’ algorithm Tam that is executed with independent

probability p.) We first describe our tampering algorithms in an ideal model where certain parameters of the

function f are given for free by an oracle. In Section 1.3.3, we get rid of this assumption by approximating

these parameters in polynomial time.

Definition 1.3.6 (Function f̂). Let D be a distribution, f : Supp(S) 7→ R be defined over Dn for some

n ∈ N, and d≤i ∈ Supp(D)i for some i ∈ [n]. We define the following functions.

� fd≤i(·) is a defined as fd≤i(d≥i+1) = f(z) for z = (d≤i, d≥i+1) = (d1, . . . , dn).

� f̂ [d≤i] = Ed≥i+1←Dn−i [fd≤i(d≥i+1)]. We let µ = f̂ [∅] denote f̂ [d≤0] = E[f(S)].

The key idea in both of our attacks is to design them (to run in polynomial time) based on oracle access

to f̂ . The point is that f̂ could later be approximated within arbitrarily small 1/ poly(n) factors, thus leading

to sufficiently close approximations of our attacks. After describing the ‘ideal’ version of the attacks, we will

describe how to make them efficient by approximating oracle calls to f̂ .
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Changing the range of f(·). In both of our attacks, we describe our attacks using functions with range

[−1,+1]. To get the results of Theorem 1.3.1 we simply need to scale the parameters back appropriately.

New p-Tampering Biasing Attack (Ideal Version)

Our Ideal p-Tam attack below, might repeat a loop indefinitely, but as we will see in Section 1.3.3, we can

cut this rejection sampling procedure after a large enough polynomial number of rejection trials.

Construction 1.3.7 (Ideal p-Tam tampering). Let D be an arbitrary distribution and S ≡ Dn for some

n ∈ N . Also let f : Supp(D)n 7→ [−1,+1] be an arbitrary function.12 For any i ∈ [n], given a prefix

d≤i−1 ∈ Supp(D)i−1,13 ideal p-Tam is a p-tampering attack defined as follows.

1. Let r[d≤i] =
1−f̂ [d≤i]

3−p−(1−p)·f̂ [d≤i−1]
.

2. With probability 1− r[d≤i] return di. Otherwise, sample a fresh di ← D and go to step 1.

Proposition 1.3.8. Ideal p-Tam attack is well defined. Namely, r[d≤i] ∈ [0, 1] for all d≤i ∈ Supp(D)i.

Proof. Both f̂ [d≤i], f̂ [d≤i−1] are in [−1, 1]. Therefore 0 ≤ 1− f̂ [d≤i] ≤ 2 and 3− p− (1− p) · f̂ [d≤i−1] ≥ 2

which implies 0 ≤ r[d≤i] ≤ 1.

In the following, let Atam be the p-tampering adversary using tampering algorithm Ideal p-Tam.14

Claim 1.3.9. Let S̃ = (D̃1, . . . , D̃n) be the joint distribution after Atam attack is performed on S ≡ Dn using

ideal p-Tam tampering algorithm. For every prefix d≤i ∈ Supp(D)i we have,

Pr[D̃i = di | d≤i−1]

Pr[D = di]
=

2− p · (1− f̂ [d≤i])

2− p · (1− f̂ [d≤i−1])
.

Proof. During its execution, ideal p-Tam keeps sampling examples and rejecting them until a sample is

accepted. For ` ∈ N we define R` to be the event that is true if the `’th sample in the tampering algorithm is

rejected, conditioned on reaching the `th sample. We have,

Pr[R`] =
∑
di

Pr[D = di] ·

(
1− f̂ [d≤i]

3− p− (1− p) · f̂ [d≤i−1]

)

=

∑
di

Pr[D = di] · (1− f̂ [d≤i])

3− p− (1− p) · f̂ [d≤i−1]
=

1− f̂ [d≤i−1]

3− p− (1− p) · f̂ [d≤i−1]
.

12As mentioned before, we describe our attacks using range [−1,+1], and then we will do the conversion back to [0, 1].
13Note that here di is the ‘original’ untampered value for block i, while d1, . . . , di−1 might be the result of tampering.
14Therefore, AD, inductively runs p-Tam over the current sequence with probability p. See Definition 1.2.5.
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Let c[d≤i−1] =
1−f̂ [d≤i−1]

3−p−(1−p)·f̂ [d≤i−1]
. Then we have,

Pr[D̃i = di | d≤i−1]

Pr[D = di]
= 1− p+ p ·

 ∞∑
j=0

(1− r[d≤i]) ·
j∏
`=1

Pr[R`]


= 1− p+ p ·

 ∞∑
j=0

(1− r[d≤i]) · c[d≤i−1]j


= 1− p+ p ·

(
1− r[d≤i]

1− c[d≤i−1]

)
=

2− p+ p · f̂ [d≤i]

2− p+ p · f̂ [d≤i−1]
.

The next corollary follows from Claim 1.3.9 and induction. (Recall that µ = f̂ [∅] = f̂ [d≤0] = E[f(S)].)

Corollary 1.3.10. By applying the attack Atam based on the ideal p-Tam tampering algorithm, the distribution

after the attack would be as follows,

Pr[S̃ = z] =
2− p+ p · f(z)

2− p+ p · µ
· Pr[S = z].

Corollary 1.3.11. The p-tampering attack Atam (based on the ideal p-Tam tampering algorithm) biases f(·)

by p·ν
2−p+p·µ where µ = E[f(S)], ν = V[f(S)].

Proof. It holds that E[f(S̃)] is equal to

∑
z∈Supp(D)n

Pr[S̃ = z] · f(z) =
∑

z∈Supp(D)n

2− p+ p · f(z)

2− p+ p · µ
· Pr[S = z] · f(z)

=
2− p

2− p+ p · µ
·

 ∑
z∈Supp(D)n

Pr[S = z] · f(z)


+

p

2− p+ p · µ
·

 ∑
z∈Supp(D)n

Pr[S = z] · f(z)2


=

(2− p) · µ
2− p+ p · µ

+
p · (ν + µ2)

2− p+ p · µ
= µ+

p · ν
2− p+ p · µ

.

Corollary 1.3.12. For any S ≡ Dn and any function f : Supp(Dn)→ [0, 1], there is a p-tampering attack

that given oracle access to f̂(·) and a sampling oracle for D, it biases the expected value of f by p·ν
1−p+p·µ

where µ = E[f(S)], ν = V[f(S)].
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Proof. Consider another function f ′ = 2 · f − 1. The range of f ′ is now [−1,+1] and we have µ′ = E[f ′(S)] =

2 · µ− 1 and ν′ = V[f ′(S)] = 4 · ν. By Corollary 1.3.11, the p-tampering attack Atam biases f ′ by p·ν′
2−p+p·µ′ .

Let S̃ be the tampered distribution after performing Atam on function f ′ and S. We have,

E[f ′(S̃)] ≥ µ′ + p · ν′

2− p+ p · µ′
.

Therefore we have,

E[f(S̃)] =
E[f ′(S̃)] + 1

2
≥ µ′ + 1

2
+

p · ν′

2 · (2− p+ p · µ′)
= µ+

p · ν
1− p+ p · µ

.

New p-Resetting Biasing Attack (Ideal Version)

Construction 1.3.13 (Ideal p-Res). Let D be an arbitrary distribution and S ≡ Dn for some n ∈ N . Also let

f : Supp(D)n 7→ [−1,+1] be an arbitrary function.15 For any i ∈ [n], and given a prefix d≤i−1 ∈ Supp(D)i−1,

the p-Res tampering algorithm works as follows.

1. Let r[d≤i] =
1−f̂ [d≤i]

2+p·(1+f̂ [d≤i−1])
.

2. With probability 1− r[d≤i] output the given di.

3. Otherwise sample d′i ← D (i.e., ‘reset’ di) and return d′i.

Proposition 1.3.14. Ideal p-Res algorithm is well defined. Namely, r[d≤i] ∈ [0, 1] for all d≤i ∈ Supp(D)i.

Proof. We have f̂ [d≤i] ∈ [−1,+1] and f̂ [d≤i−1] ∈ [−1,+1]. Therefore 0 ≤ 1 − f̂ [d≤i] ≤ 2 and 2 + p · (1 +

f̂ [d≤i−1]) ≥ 2 which implies 0 ≤ r[d≤i] ≤ 1.

In the following let Ares be the p-tampering adversary using ideal p-Res. (See Definition 1.2.5.)

Claim 1.3.15. Let S̃ = (D̃1, . . . , D̃n) be the distribution after the attack Ares (using ideal p-Res tampering

algorithm) is performed on S ≡ Dn. For all d≤i ∈ Supp(D)i it holds that,

Pr[D̃i = di | d≤i−1]

Pr[D = di]
=

2 + p · (1 + f̂ [d≤i])

2 + p · (1 + f̂ [d≤i−1])
.

15As mentioned before, we describe our attacks using range [−1,+1], and then we will do the conversion back to [0, 1].
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Proof. If R1 defines the event that is true if the given sample is rejected, then,

Pr[R1] =
∑
di

Pr[D = di] ·

(
1− f̂ [d≤i]

2 + p · (1 + f̂ [d≤i−1])

)

=

∑
di

Pr[D = di] · (1− f̂ [d≤i])

2 + p · (1 + f̂ [d≤i−1])
=

1− f̂ [d≤i−1]

2 + p · (1 + f̂ [d≤i−1])
.

Therefore, we conclude that,

Pr[D̃i = di | d≤i−1]

Pr[D = di]
= 1− p+ p · (1− r[d≤i] + Pr[R1])

= 1− p+ p ·

(
1 +

f̂ [d≤i]− f̂ [d≤i−1]

2 + p · (1 + f̂ [d≤i−1])

)

= 1 + p ·

(
f̂ [d≤i]− f̂ [d≤i−1]

2 + p · (1 + f̂ [d≤i−1])

)
=

2 + p · (1 + f̂ [d≤i])

2 + p · (1 + f̂ [d≤i−1])
.

The next corollary follows from Claim 1.3.15 and induction. (Recall that µ = f̂ [∅] = f̂ [d≤0] = E[f(S)].)

Corollary 1.3.16. By applying attack Ares (using ideal p-Res), the distribution after the attack is,

Pr[S̃ = z] =
2 + p+ p · f(z)

2 + p+ p · µ
· Pr[S = z].

Corollary 1.3.17. The p-resetting attack Ares (using ideal p-Res) biases the function by p·ν
2+p+p·µ where

µ = E[f(S)], ν = V[f(S)].

Proof. It holds that µ̃ = E[f(S̃)] is equal to

∑
z∈Supp(D)n

Pr[S̃ = z] · f(z) =
∑

z∈Supp(D)n

2 + p+ p · f(z)

2 + p+ p · µ
· Pr[S = z] · f(z)

=
2 + p

2 + p+ p · µ
·

 ∑
z∈Supp(D)n

Pr[S = z] · f(z)


+

p

2 + p+ p · µ
·

 ∑
z∈Supp(D)n

Pr[S = z] · f(z)2


=

(2 + p) · µ
2 + p+ p · µ

+
p · (ν + µ2)

2 + p+ p · µ
= µ+

p · ν
2 + p+ p · µ

.
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Corollary 1.3.18. For S ≡ Dn and any f : Supp(S) → [0, 1] there exist a p-resetting attack that, given

oracle access to f̂ and a sampling oracle for D, it biases f by p·ν
1+p·µ where µ = E[f(S)], ν = V[f(S)].

Proof. Consider another function f ′ = 2 ·f −1. Now, the range of f ′ is [−1,+1], and we have µ′ = E[f ′(S)] =

2 · µ− 1 and ν′ = V[f ′(S)] = 4 · ν. By Corollary 1.3.17, the p-resetting attack Ares biases f ′ by p·ν′
2−p+p·µ′ . Let

S̃ be the tampered distribution after performing Atam on function f ′ and S. We have,

E[f ′(S̃)] ≥ µ′ + p · ν′

2 + p+ p · µ′
.

Therefore we have,

E[f(S̃)] =
E[f ′(S̃)] + 1

2
≥ µ′ + 1

2
+

p · ν′

2 · (2 + p+ p · µ′)
= µ+

p · ν
1 + p · µ

.

1.3.3 Approximating the Ideal Attacks in Polynomial Time

In this subsection, we describe the efficient version of the attacks of Theorem 1.3.1 and prove their properties.

We first describe the efficient version of our p-resetting attack, where achieving efficiency is indeed simpler.

We then go over the efficient variant of our p-tampering attack. In both cases, we describe the modifications

needed for the tampering algorithms and it is assumed that such tampering algorithms are used by the main

efficient attackers (see Definition 1.2.5).

We start by approximating in polynomial time our Ideal p-resetting attack, as it is simpler to argue about

the polynomial-time version of this attack. We will then use lemmas and ideas that we develop along the way

to also make our 1st Ideal p-tampering attacker also polynomial time.

Polynomial-time Variant of the Ideal p-Resetting Biasing Attack

The p-resetting attack of Construction 1.3.13 is not polynomial-time since it needs access to the idealized

oracle providing partial averages. In general, we can not compute such averages exactly in polynomial time,

however in order to make those attacks polynomial-time, we can rely on approximating the partial averages

and consequently the corresponding rejection probabilities. To get the polynomial-time version of the attack

of Construction 1.3.13 we can pursue the following idea. For every prefix d≤i, the polynomial-time attacker

first approximates the partial average f̂ [d≤i] by sampling a sufficiently large polynomial number of random

continuations d(1)
≤n−i, . . . d

(`)
≤n−i and getting the average Ej∈[`][f(d≤i, d

(j)
≤n−i] as an approximation for

the partial average. By the Hoeffding inequality, this average is a good approximation of f̂ [d≤i] with
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exponentially high probability. Consequently, the rejection probabilities can be approximated well making

the final distributions statistically close to the distribution of the ideal attack, meaning that the amount of

bias is close to the ideal bias as well.

We now formalize the ideas above.

Definition 1.3.19 (Semi-ideal oracle f̃ [·]). Let D be a distribution. If for all d≤i ∈ Supp(D)i we have

f̃ξ[d≤i] ∈ f̂ [d≤i]± ξ, then, we call f̃ξ[·] an ξ-approximation of f̂ [·]. For simplicity, and when it is clear from

the context, we simply write f̃ [·] and call it a semi-ideal oracle.

The following lemma immediately follows from the Hoeffding inequality.

Lemma 1.3.20 (Approximating f̂ [·] in polynomial-time). Consider an algorithm that on inputs d≤i and ξ

performs as follows where ` = −10 ln(ξ/2)/ξ2.

1. Sample (d1
≤n−i, . . . , d

`
≤n−i)← (Dn−i+1)`.

2. Output f̃ξ[d≤i] = Ej∈[`] f(d≤i, d
j
≤n−i).

Then it holds that Pr[|f̃ξ[d≤i]− f̂ [d≤i]| ≥ ξ] ≤ ξ.

The above lemma implies that if f is polynomial-time computable and D is polynomial-time samplable,

any q-query algorithm can approximate the semi-ideal oracle f̃ [·] in time poly(q ·n/ξ) and total error (of failing

in one of the queries) by at most ξ. Based on this approximation of f̃ [·], we now describe our polynomial-time

version of the Ideal p-Res attack in the semi-ideal oracle model of f̃ [·], by essentially using the semi-ideal

oracle f̃ [·] instead of the ideal oracle f̂ [·].

Construction 1.3.21 (Polynomial-time p-Res). Polynomial-time p-Res is the same as ideal p-Res of Con-

struction 1.3.13 but it calls the semi-ideal oracle f̃ξ[·] instead of the ideal oracle f̂ [·].

In the following we analyze the bias achieved by the polynomial-time variant of the p-Res algorithm. We

simply pretend that all the queries to the semi-ideal oracle are within ±ξ approximation of the ideal oracle,

knowing that the error of ξ-approximating all of the queries is itself at most ξ and can affect the average also

by at most O(ξ). First we show that the rejection probabilities are approximated well.

Lemma 1.3.22. Let 0 < p < 1, 0 < ξ < 1, α, β ∈ [−ξ, ξ], and f̂ [d≤i−1], f̂ [d≤i], f̃ξ[d≤i−1], f̃ξ[d≤i] ∈ [0, 1]

such that f̃ξ[d≤i−1] = f̂ [d≤i−1] + α and f̃ξ[d≤i] = f̂ [d≤i] + β. Let r[.] and r̃[.] respectively be the rejection

probabilities of the Ideal and Polynomial-time p-Res. Then, for every d≤i ∈ Supp(D)i, |r[d≤i]− r̃[d≤i]| ≤ O(ξ).

Proof. We have,

|r[d≤i]− r̃[d≤i]| =

∣∣∣∣∣ 1− f̂ [d≤i])

2 + p · (1 + f̂ [d≤i−1])
− 1− f̃ξ[d≤i]

2 + p · (1 + f̃ξ[d≤i−1])

∣∣∣∣∣ ,
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where we can compute the following for the right hand side,

=

∣∣∣∣∣ (2 + p)(f̃ξ[d≤i]− f̂ [d≤i]) + p · (f̃ξ[d≤i−1]− f̂ [d≤i−1])

(2 + p · (1 + f̂ [d≤i−1])) · (2 + p · (1 + f̃ξ[d≤i−1]))

+
p · (f̂ [d≤i−1]f̃ξ[d≤i]− f̃ξ[d≤i−1]f̂ [d≤i])

(2 + p · (1 + f̂ [d≤i−1])) · (2 + p · (1 + f̃ξ[d≤i−1]))

∣∣∣∣∣
≤

∣∣∣(2 + p)(f̃ξ[d≤i]− f̂ [d≤i])
∣∣∣+
∣∣∣p · (f̃ξ[d≤i−1]− f̂ [d≤i−1])

∣∣∣
4

+

∣∣∣p · (f̂ [d≤i−1]f̃ξ[d≤i]− f̃ξ[d≤i−1]f̂ [d≤i])
∣∣∣

4

≤
(2 + p)ξ + pξ + p

∣∣∣f̂ [d≤i−1](f̂ [d≤i] + β)− (f̂ [d≤i−1] + α)f̂ [d≤i]
∣∣∣

4

=
2ξ + 2pξ + p

∣∣∣βf̂ [d≤i−1]− αf̂ [d≤i]
∣∣∣

4
≤ 2ξ + 2pξ + p · (|β|+ | − α|)

4
≤ 3ξ/2 .

Now we want to argue that when we approximate the p-resetting tampering algorithm’s rejection

probabilities as proved in Lemma 1.3.22, it leads to ‘close probabilities’ of sampling final outputs. We prove

the following general lemma that will be also useful for the case of Polynomial-time p-Tam attack. For the

case of p-resetting, we only need the special case of k = 1.

Notation. For p ∈ [0, 1] and distributions X,Y , by Z ≡ (1− p)X + pY we denote the distribution Z in

which we sample from X with probability 1− p, and otherwise (i.e., with probability p) we sample from Y .

Definition 1.3.23 ((p, k, ρ)-variations). For any distribution D, function ρ : Supp(D)→ [0, 1], and k ∈ N,

the (p, k, ρ)-variation of D is Dp,k,ρ ≡ (1− p)D + pZ, where Z is defined as follows.

1. Sample (d1, . . . , dk)← Dk.

2. For i ∈ {1, . . . , k}, go sequentially over d1, . . . , dk, and with probability ρ[di] return di and exit.

3. If nothing was returned after reading all the k samples, return a fresh sample dk+1 ← D.

Lemma 1.3.24 (Implication of approximating rejection probabilities). Let D be a distribution and ρ :

Supp(D) → [0, 1] and ρ′ : Supp(D) → [0, 1] be two functions such that ∀d ∈ Supp(D), |ρ(d) − ρ′(d)| ≤ ξ.

Then, for every k ∈ N and every d ∈ Supp(D), it holds that,

∣∣∣∣ln( Pr[Dp,k,ρ = d]

Pr[Dp,k,ρ′ = d]

)∣∣∣∣ ≤ p

1− p
· (k2 + k) · ξ.
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Before proving the lemma above, we note that it indeed implies that the max divergence [Dwork et al.,

2010] of Dp,k,ρ and Dp,k,ρ′ is at most O(k2 · ξ).

Proof. Let a = Ed←D[ρ(d)] and a′ = Ed←D[ρ′(d)]. We have,

Pr[Dp,k,ρ = d]

Pr[D = d]
= (1− p) + p · ((1− a)k +

∑
i∈[k−1]

ρ(d) · (1− a)i).

With a similar calculation for Pr[Dp,k,ρ′ = d] we get,

Pr[Dp,k,ρ = d]

Pr[Dp,k,ρ′ = d]

=
(1− p) + p · ((1− a)k +

∑
i∈[k−1] ρ(d) · (1− a)i)

(1− p) + p · ((1− a′)k +
∑
i∈[k−1] ρ(d) · (1− a′)i)

= 1 +
p · ((1− a)k − (1− a′)k +

∑
i∈[k−1] ρ(d) · (1− a)i − ρ′(d) · (1− a′)i)

(1− p) + p · ((1− a′)k +
∑
i∈[k−1] ρ(d) · (1− a′)i)

≤ 1 +
p · (k · ξ +

∑
i∈[k−1](2i+ 1) · ξ)
1− p

= 1 +
p

1− p
(k2 + k) · ξ

≤ e
p

1−p (k2+k)·ξ.

Similarly, we have
Pr[Dp,k,ρ′=d]

Pr[Dp,k,ρ=d] ≤ e
p

1−p (k2+k)ξ which implies that,

∣∣∣∣ln( Pr[Dp,k,ρ = d]

Pr[Dp,k,ρ′ = d]

)∣∣∣∣ ≤ p

1− p
· (k2 + k) · ξ.

The following lemma states that the expected values of a function over two distributions that are ‘close’

(under max divergence) are indeed close real numbers.

Lemma 1.3.25. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two joint distributions such that Supp(X) =

Supp(Y ) and for every prefix x≤i such that Pr[Xi = xi | x≤i−1] > 0, we have,

∣∣∣∣ln(Pr[Xi = xi | x≤i−1]

Pr[Yi = xi | x≤i−1]

)∣∣∣∣ ≤ ξ.
Then, for any function f : Supp(X)→ [−1,+1] we have,

E[f(X)] ≥ E[f(Y )]− eξ·n + 1.
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Proof. First, we note that for every x ∈ Supp(X) it holds that,

∣∣∣∣ln(Pr[X = x]

Pr[Y = x]

)∣∣∣∣ =

∣∣∣∣∣∣
∑
i∈[n]

ln

(
Pr[Xi = xi | x≤i−1]

Pr[Yi = xi | x≤i−1]

)∣∣∣∣∣∣ ≤ n · ξ.
Now for the difference E[f(Y )]− E[f(X)] we have,

∑
x∈Supp(X)

(Pr[Y = x]− Pr[X = x]) · f(x)

≤
∑

x∈Supp(X)

|(Pr[Y = x]− Pr[X = x]) · f(x)|

≤
∑

x∈Supp(X)

∣∣∣min(Pr[X = x],Pr[Y = x]) ·
(

e|ln(
Pr[Y=x]
Pr[X=x]

)| − 1
)
· f(x)

∣∣∣
≤ (en·ξ − 1) ·

∑
x∈Supp(X)

|min(Pr[X = x],Pr[Y = x]) · f(x)|

≤ en·ξ − 1.

Putting things together. Now we show how to choose the parameters of the Polynomial-time p-Res.

Suppose ξ′ is the parameter of Theorem 1.3.1. If we choose ξ as the parameter of our attack we can bound

the final bias as follows. Firstly, if the approximation algorithm of Lemma 1.3.20 gives us a semi-ideal

oracle f̃ξ[.], then based on Lemma 1.3.22 we can approximate the rejection probabilities with error at most

O(ξ). Then based on Lemma 1.3.24 the attack Ares that uses efficient p-Res generates a distribution that is

O( p
1−p · ξ)-close16 to the distribution of the attack Ares that uses ideal p-Res.

Now we can use Lemma 1.3.25 (for k = 1) to argue that the bias achieved by the efficient adversary

is (eO(n·ξ· p
1−p ) − 1)-close to the bias achieved by the ideal adversary. Also note that, if the approximation

algorithm fails to provide a semi-ideal oracle for all queries, then the bias of the efficient attack is at least −2

because the function range is [−1,+1]. However, the probability of this event is bounded by O(n · ξ) because

adversary needs at most 2n number of queries to f̃ . Therefore, the difference of bias of the efficient and the

ideal adversary is at most O(n · ξ) + eO(n·ξ· p
1−p ) − 1 which is at most O(n · ξ + n · ξ · p

1−p ) if the exponent in

eO(n·ξ· p
1−p ) is at most 1. As a result, if we choose ξ = o

(
ξ′/(n · p

1−p )
)

= o (ξ′ · (1− p)/(n · p)), we can indeed

guarantee that the bias of the efficient adversary is ξ′-close to bias of ideal adversary.

16Since we are assuming p < 1 is constant O( p
1−p · ξ) simply means O(ξ).
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Polynomial-time Variant of our p-Tampering Biasing Attack

Building upon the ideas developed above to make our Ideal p-Res tampering algorithm polynomial time, here

we focus on our Ideal p-Tam attack. We start by describing a variant of the original attack of Construction 1.3.7

where we cut the rejection sampling procedure after k iterations.

Construction 1.3.26 (Ideal k-cut p-Tam). Ideal k-cut p-Tam is the same as ideal p-Tam of Construction

1.3.7 but it is forced to stop and return a fresh sample if the first k samples were rejected.

Now we show that the new modified attack of Construction 1.3.26 will lead to a close distribution compared

to the original attack of Construction 1.3.7.

Lemma 1.3.27. Let S̃ = (D̃1, . . . , D̃n) be the joint distribution after Atam attack is performed on S ≡ Dn

using ideal p-Tam tampering algorithm. Also, let S̃′ = (D̃′1, . . . , D̃
′
n) be the joint distribution after Atam attack

is performed on S using Ideal k-cut p-Tam tampering algorithm. For every prefix d≤i ∈ Supp(D)i,

∣∣∣∣∣ln
(

Pr[D̃i = di | d≤i−1]

Pr[D̃′i = di|d≤i−1]

)∣∣∣∣∣ ≤ p

(1− p)2 · (2− p)k−1
.

Proof. Let r[d≤i] =
1−f̂ [d≤i]

3−p−(1−p)·f̂ [d≤i−1]
and c[d≤i−1] =

1−f̂ [d≤i−1]

3−p−(1−p)·f̂ [d≤i−1]
as it was defined in proof of Claim

1.3.9. We have,

Pr[D̃′i = di | d≤i−1]

Pr[D = di]
= (1− p)+

p ·

(c[d≤i−1])k +
∑

j∈[k−1]

(1− r[d≤i]) · (1− c[d≤i)]j)


= (1− p) + p ·

(
(c[d≤i−1])k +

(1− r[d≤i]) · (1− c[d≤i−1]k)

1− c[d≤i−1]

)
.

Also, in the proof of Claim 1.3.9 we showed that,

Pr[D̃i = di | d≤i−1]

Pr[D = di]
= 1− p+ p ·

(
1− r[d≤i]

1− c[d≤i−1]

)
.

Therefore, we conclude that,

Pr[D̃′i = di | d≤i−1]

Pr[D̃i = di | d≤i−1]
=

(1− p) + p ·
(

(c[d≤i−1])k +
(1−r[d≤i])·(1−c[d≤i−1]k)

1−c[d≤i−1]

)
1− p+ p ·

(
1−r[d≤i]

1−c[d≤i−1]

)
= 1 +

p ·
(

(r[d≤i]−c[d≤i−1])·c[d≤i−1]k

1−c[d≤i−1]

)
1− p+ p ·

(
1−r[d≤i]

1−c[d≤i−1]

) .
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We also know that c[d≤i−1] ≤ 1
2−p because f̂ [d≤i−1] ∈ [−1,+1]. So we have,

Pr[D̃′i = di | d≤i−1]

Pr[D̃i = di | d≤i−1]
= 1 +

p ·
(

(r[d≤i]−c[d≤i−1])·c[d≤i−1]k

1−c[d≤i−1]

)
1− p+ p ·

(
1−r[d≤i]

1−c[d≤i−1]

)
≤ 1 +

p · c[d≤i−1]k

(1− p) · (1− c[d≤i−1])

≤ 1 +
p

(1− p)2 · (2− p)k−1
≤ e

p

(1−p)2(2−p)k−1 .

Also for the inverse ratio, we have,

Pr[D̃i = di | d≤i−1]

Pr[D̃′i = di | d≤i−1]
= 1 +

p ·
(

(c[d≤i−1]−r[d≤i])·c[d≤i−1]k

1−c[d≤i−1]

)
(1− p) + p ·

(
(c[d≤i−1])k +

(1−r[d≤i])·(1−c[d≤i−1]k)

1−c[d≤i−1]

)
≤ 1 +

p · c[d≤i−1]k

(1− p) · (1− c[d≤i−1])

≤ 1 +
p

(1− p)2 · (2− p)k−1
≤ e

p

(1−p)2·(2−p)k−1 .

Therefore, we can finally conclude that,

∣∣∣∣∣ln
(

Pr[D̃i = di | d≤i−1]

Pr[D̃′i = di|d≤i−1]

)∣∣∣∣∣ ≤ p

(1− p)2 · (2− p)k−1
.

Lemma 1.3.28. Let S̃ = (D̃1, . . . , D̃n) be the joint distribution after Atam attack is performed on S ≡ Dn

using ideal p-Tam tampering algorithm. Also, let S̃′ = (D̃′1, . . . , D̃
′
n) be the joint distribution after Atam attack

is performed on S using Ideal k-cut p-Tam tampering algorithm where k = ln(2−p)−2 ln((1−p)·ξ)
ln(2−p) . Then, it holds

that,

E[f(S̃′)] ≥ E[f(S̃)]− en·ξ + 1.

Proof. Using Lemma 1.3.27, for every prefix d≤i ∈ Supp(D)i we have,

∣∣∣∣∣ln
(

Pr[D̃i = di | d≤i−1]

Pr[D̃′i = di|d≤i−1]

)∣∣∣∣∣ ≤ p

(1− p)2 · (2− p)k−1
≤ ξ.

Now, using Lemma 1.3.25 we get E[f(S̃′)] ≥ E[f(S̃)]− en·ξ + 1.

We can now describe the actual efficient variant of our Ideal p-Tam attack.
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Construction 1.3.29 (Polynomial-time k-cut p-Tam). Efficient k-cut p-Tam is the same as Ideal k-cut

p-Tam of Construction 1.3.26 but it it calls the semi-ideal oracle f̃ξ[·] instead of the ideal oracle f̂ [·].

Lemma 1.3.30. Let 0 < p < 1. Let 0 < ξ < 1. Let α, β ∈ [−ξ, ξ]. Let f̂ [d≤i−1], f̂ [d≤i], f̃ξ[d≤i−1],

f̃ξ[d≤i] ∈ [0, 1] such that f̃ξ[d≤i−1] = f̂ [d≤i−1] + α and f̃ξ[d≤i] = f̂ [d≤i] + β. Let r[.] and r̃[.] respectively be

the rejection probabilities of the Ideal and Efficient k-cut p-Tam. Then, for every d≤i ∈ Supp(D)i we have

|r[d≤i]− r̃[d≤i]| ≤ O(ξ).

Proof. The proof is similar to the proof of Lemma 1.3.22. We have,

|r[d≤i]− r̃[d≤i]| =

∣∣∣∣∣ 1− f̂ [d≤i])

3− p− (1− p)f̂ [d≤i−1]
− 1− f̃ξ[d≤i]

3− p− (1− p)f̃ξ[d≤i−1]

∣∣∣∣∣ ,
where we can compute the following for the right hand side,

=

∣∣∣∣∣ (1− f̂ [d≤i])(3− p− (1− p)f̃ξ[d≤i−1])

(3− p− (1− p)f̂ [d≤i−1])(3− p− (1− p)f̃ξ[d≤i−1])

− (1− f̃ξ[d≤i])(3− p− (1− p)f̂ [d≤i−1])

(3− p− (1− p)f̂ [d≤i−1])(3− p− (1− p)f̃ξ[d≤i−1])

∣∣∣∣∣
≤

∣∣∣∣∣ (1− p)(f̂ [d≤i−1]− f̃ξ[d≤i−1]) + (3− p)(f̃ξ[d≤i]− f̂ [d≤i])

(3− p− (1− p))(3− p− (1− p))

+
(1− p)(f̃ξ[d≤i−1]f̂ [d≤i]− f̂ [d≤i−1]f̃ξ[d≤i])

(3− p− (1− p))(3− p− (1− p))

∣∣∣∣∣
≤

(1− p)ξ + (3− p)ξ + (1− p)
∣∣∣(f̂ [d≤i−1] + α

)
f̂ [d≤i]− f̂ [d≤i−1]

(
f̂ [d≤i] + β

)∣∣∣
4

≤ 4ξ + |α|+ |β|
4

≤ 3ξ/2 .

Putting things together. Now we show how to choose the parameters of the Efficient k-cut p-Tam.

Suppose ξ′ is the parameter of Theorem 1.3.1. If we choose ξ as the parameter of our attack we can bound

the final bias as follows. Firstly, if the approximation algorithm of Lemma 1.3.20 gives us a semi-ideal oracle

f̃ξ[.], then based on Lemma 1.3.30 we can approximate the rejection probabilities with error at most O(ξ).

Then based on Lemma 1.3.24 the attack Atam that uses the efficient k-cut p-Tam generates a distribution

that is O( p
1−p · k

2 · ξ)-close to the distribution of the attack Atam that uses ideal k-cut p-Tam.

By Lemma 1.3.25, the bias of an efficient adversary is
(
eO(n·ξ·k2· p

1−p ) − 1
)
-close to the bias of the ideal

adversary. Also note that, if the approximation algorithm fails to provide a semi-ideal oracle for all queries,

then the bias of efficient attack is at least −2 because the function range is [−1,+1]. However, the probability
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of this event is bounded by O(k · n · ξ) because the adversary needs at most (k+ 1) · n number of queries to f̃ .

Therefore, the difference of bias of the efficient and the ideal adversary is at most O(k ·n ·ξ)+eO(k2·n·ξ· p
1−p )−1

which is at most O(n · ξ + k2 · n · ξ · p
1−p ) if the exponent in eO(k2·n·ξ· p

1−p ) is at most 1. As a result, if we

choose ξ = o(ξ′/(k2 ·n · p
1−p )) = o(ξ′ · (1− p)/(k2 ·n · p)), we can indeed guarantee that the bias of the efficient

adversary (that uses efficient k-cut p-Tam tampering algorithm) is ξ′-close to the bias of the ideal adversary

(that uses ideal k-cut p-Tam).

Now we want to select our other parameter k. Based on Lemma 1.3.28, if we choose k = ω
(

ln((1−p)ξ′)
ln(2−p)

)
the bias of the attack Atam that uses the ideal k-cut p-Tam would be ξ′-close to the bias of the attack Atam

that uses the ideal p-Tam. Therefore, the bias of the Atam that uses efficient k-cut attack is 2 · ξ′-close to the

bias of Atam that uses ideal p-Tam.

1.4 PAC Learning under p-Tampering and p-Budget Attacks

In this section, we study the non-targeted case where PAC learning could be defined. We show that realizable

problems that are PAC learnable (without attacks), are usually PAC learnable under p-tampering attacks as

well. Essentially we bound the probability of some bad event happening (see Definition 1.4.2) in a manner

similar to Occam algorithms [Blumer et al., 1987] by relying on the realizability assumption and relying

on the specific property of the p-tampering attacks. In particular, we crucially rely on the fact that any

p-tampering distribution D̃ of a distribution D contains a (1− p) ·D measure in itself. In fact, we show (see

Theorem 1.4.7) that in a close scenario to p-tampering in which the adversary can choose the (≤ p fraction of

the) tampering locations, PAC learning might suddenly become impossible. This shows that the ‘mistake-free’

nature of p-tampering is indeed not enough for PAC learnability.17

1.4.1 Definitions

Definition 1.4.1. For a learning problem P = (X ,Y,D,H, `oss), distribution D ∈ D, and training sequence

S = ((x1, y1), . . . , (xn, yn))← Dn, we say that the event Badε(D,S) holds, if there exists an h ∈ H such that

h(xi) = yi for every i ∈ [n] and RiskD(h) > ε.

Definition 1.4.2 (Special PAC Learnability). A realizable learning problem P = (X ,Y,D,H, `oss) is called

special (ε(n), δ(n))-PAC learnable if for all D ∈ D, n ∈ N, PrS←Dn [Badε(D,S)] ≤ δ(n). Special (ε(n), δ(n))-

PAC learnability under poisoning attacks is defined similarly, where we demand the inequality to hold for

every A ∈ AD tampering with the training set S̃ ← A(S).

17We note that bounded-budget noise and in fact malicious has also been discussed outside of PAC learning; e.g., [Angluin
et al., 1997a] in the membership query model of Angluin [Angluin, 1987].
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It is easy to see that if P is special (ε(n), δ(n))-PAC learnable, then it is (ε(n), δ(n))-PAC learnable

through a ‘canonical’ learner L who simply finds and outputs a hypothesis h consistent with the training

sample set S. Such an h always exists due to the realizability assumption. In fact, many efficient PAC

learning results follow this very recipe.18 That motivates our next definition.

Definition 1.4.3 (Efficient Realizability). We say that the problem P = (X ,Y,D,H, `oss) is efficiently

realizable, if there is a polynomial-time algorithm M , such that for all D ∈ D, and all S ← Dn, M(S) outputs

some h ∈ H such that RiskD(h) = 0.

Here we define two types of tampering attackers who do have control over which examples they tamper

with, yet with a ‘bounded budget’ limiting the number of such instances. Our definitions are inspired by the

notions of adaptive corruption [Canetti et al., 1996b] and strong adaptive corruption defined by Goldwasser,

Kalai, and Park [Goldwasser et al., 2015b] in the secure multi-party (coin-flipping) protocols.

Definition 1.4.4 (p-budget attacks). The class of strong p-budget (tampering) attacks Apbud = ∪D∈DAD is

defined as follows. For D ∈ D, any A ∈ AD has a (randomized) tampering algorithm Tam such that:

1. Given access to a sampling oracle for distribution D, TamD(·) always outputs something in Supp(D).

2. For a training sequence S = (d1, . . . , dn), the tampered output S̃ = (d̃1, . . . , d̃n) is generated by A

inductively, over i ∈ [n], as d̃i ← TamD(1n, d̃1, . . . , d̃i−1, di).

3. The number of locations that Tam actually changes di is |{i | di 6= d̃i}| ≤ p · n.

Weak p-budget tampering attacks are defined similarly, with the following difference. The tampering

algorithm’s execution TamD(1n, d̃1, . . . , d̃i−1) is not given di, but instead it could either output oi ∈ Supp(D),

in which case we let d̃i = oi, or it outputs a special symbol ⊥, in which case we will have d̃i = di. Finally,

since the weak p-budget attacker should make its decisions without the knowledge of di, we shall have

|{i | ⊥ 6= oi}| ≤ p · n.19

1.4.2 Results

We first prove that PAC learning is possible under weak p-budget (poisoning) attacks. We then show that

this implies a similar possibility result under p-tampering attacks. We then prove that a similar result

does not hold for strong p-budget attacks in general. Our positive result (Theorem 1.4.5) holds even if

18For example, properly learning monomials [Valiant, 1984], or using 3-CNF formulae to learn 3-term DNF formulae [Pitt and
Valiant, 1988]; the latter is an example of realizable but not proper learning. As an example where the realizability assumption
does not necessarily hold, see e.g., [Diochnos, 2016], for learning monotone monomials under a class of distributions - including
uniform.

19The reason that we did not use the condition |{i | di 6= d̃i}| ≤ p · n is the weak p-budget case is that, if the attacker chooses
to tamper with the i’th location and simply happens to pick the same oi = di, it should still count against its total budget.



Random Access Poisoning Attacks 44

the tampering algorithm is given all the history of tampered and untampered blocks (i.e., it is given given

input (1n, d̃1, . . . , d̃i−1, d1, . . . , di)), and our impossibility result (Theorem 1.4.7) holds even if the tampering

algorithm is given only di.

Theorem 1.4.5 (PAC learning under weak p-budget attacks). If a realizable problem P = (X ,Y,D,H, `oss)

is (ε(n), δ(n))-special PAC learnable, then for any p ∈ (0, 1), P is also (ε (n · (1− p)) , δ (n · (1− p)))-special

PAC learnable under weak p-budget (poisoning) attacks.

Proof. Without loss of generality, we can assume that the tampering algorithm of the adversary is deterministic

(otherwise, we can fix the randomness to what is the best for the adversary, and we get a deterministic one

again.) For i ∈ [n] let Di be the random variable corresponding to the ith example before performing the

tampering algorithm and let (D̂1, . . . , D̂n) be the joint distribution of the training sequence after performing

the tampering algorithm. Also let Ti be a Boolean random variable which is equal to 1 if the adversary picks

to choose the i’th example and Ti = 0 otherwise. Using the notation of Definition 1.4.4, Ti = 0 if oi = ⊥, and

Ti = 1 otherwise. For i ∈ [(1− p) · n] let Ui be the random variable corresponding to the index of the i’th

zero in the sequence T1, . . . , Tn, and let Wi ≡ D̂Ui . We prove that the joint distribution (W1, . . . ,W(1−p)·n)

is distributed identically to D(1−p)·n. For every i ∈ [(1− p) · n] and d≤i ∈ Supp(Di) we have,

Pr[Wi = di |W≤i−1 = d≤i−1]

which is
n∑
j=1

Pr[D̂j = di |W≤i−1 = d≤i−1 ∧ Ui = j] · Pr[Ui = j] .

Based on the assumption that the tampering algorithm of the adversary is deterministic, we know that Ti

is a function of D≤i−1. On the other hand, Di is independent of D≤i−1, so Di and Ti are independent.

Therefore, for all predicates R : Supp(D≤i−1)→ [0, 1] such that R(D≤i−1) = 1 implies Ti = 0 (i.e., Pr[Ti =

0 | R(D≤i−1) = 1] = 1) we have,

Pr[D̂i = d | R(D≤i−1) = 1] = Pr[Di = d | R(D≤i−1) = 1] = Pr[Di = d].

It is clear that W≤i−1 = d≤i−1 ∧ Ui = j is a predicate of D≤j−1 as it is a predicate of D̂≤j−1 and T≤j . Also

this predicate implies Tj = 0, therefore we have,

Pr[Wi = di |W≤i−1 = d≤i−1]
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which is,
n∑
j=1

Pr[D̂j = di |W≤i−1 = d≤i−1 ∧ Ui = j] · Pr[Ui = j]

which in turn is,
n∑
j=1

Pr[Dj = di] · Pr[Ui = j] = Pr[D = di] .

The above implies (W1, . . . ,W(1−p)·n) ≡ D(1−p)·n.

Now let ε̂(n) = ε ((1− p) · n) and δ̂(n) = δ ((1− p) · n). Consider the two sets,


Good1 = {S ∈ Supp(Dn) : Badε̂(n)(D,S)}

Good2 = {S ∈ Supp(D(1−p)·n) : Badε̂(n)(D,S)}
.

Based on the definition of the event Bad (Definition 1.4.1) we know that,

Pr
[
(D̂1, . . . , D̂n) ∈ Good1 | (W1, . . . ,W(1−p)·n) ∈ Good2

]
= 1.

Therefore we have,

Pr
[
(D̂1, . . . , D̂n) ∈ Good1

]
≥ Pr

[
(W1, . . . ,W(1−p)·n) ∈ Good2

]
= Pr[D(1−p)·n ∈ Good2] ≥ 1− δ̂(n).

Using Theorem 1.4.5, we now prove the following theorem about p-tampering attacks.

Theorem 1.4.6 (PAC learning under weak p-tampering attacks). For any p ∈ (0, 1), if a realizable problem

P = (X ,Y,D,H, `oss) is (ε(n), δ(n))-special PAC learnable, then for any q ∈ (0, 1−p), P is also (ε′(m), δ′(m))-

special PAC learnable under p-tampering poisoning attacks for ε′(m) = ε(m · (1− p− q)), δ′(m) = e−2m·q2

+

δ(m · (1− p− q)). Thus, if P is efficiently realizable and special PAC learnable, then P is also efficiently PAC

learnable under p-tampering.

Proof. Consider a p tampering attacker. By the Hoeffding inequality of Lemma 1.2.6, the probability that this

attacker tampers with more than (p+ q) ·m input instances is at most e−2m·q2

. Therefore, with probability

1− e−2m·q2

, this attacker is a special case of a weak (p+q)-budget attacker, as it does not choose the locations

of the attack, and thus cannot choose the tampering locations based on the content of the training examples.
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Therefore, we can obtain the same bounds of Theorem 1.4.5, but we shall use p+ q as the budget and also

add e−2m·q2

to the confidence error.

Theorem 1.4.7 (PAC learning under strong p-budget attacks). For any constant p ∈ (0, 1), there is a

problem P = (X ,Y,D,H, `oss) that is PAC learnable (under no attack), but it is not PAC learnable under

strong p-budget attacks.

Proof. Suppose X = [k] where k = d 2
pe. Let Y = {0, 1}, and suppose D consists of all (x, c(x))x←X where

x← X is an example drawn from X uniformly at random and c is an arbitrary function (concept) in YX .

Let the hypothesis class H contain all of YX , and `oss(b0, b1) = |b0 − b1| is the natural loss for classifiers.

PAC learnability of P trivially follows from the fact that |X | = k is finite. Therefore, enough samples will

reveal the concept function c (defined through D) completely with overwhelming probability for large enough

samples n. Consider a concept class which consists of only two functions c0 and c1 such that,

c0(i) = 0,∀i ∈ [k], and

c1(i) =


0 i ∈ [k − 1]

1 i = k.

Now we propose a strong p-budget adversary Asb (sb stands for ( strong budgeted)) that replaces every pair

(k, ∗) it sees with (k− 1, 0) until it runs out of its budget which is p ·n examples. We denote the distribution

of examples after the attack is performed by Asb(D
n). Let us define an event E which is 0 if the adversary

runs out of budget at some point and is 1 if she does not run out of budget. Note that if c0 is being used

then the adversary will not do any thing at all and cannot run out of budget. If c1 is used we can bound the

probability of the adversary running out of its budget using Chernoff bound as follows,

Pr[E] ≥ 1− e
−n
3k .

Let L be a learning algorithm that is going to learn a concept c sampled uniformly from {c0, c1} by looking

at n labeled examples sampled from Asb(D
n
c ) where Dc ≡ (d, c(d))d←U[k]

. We have,

Pr
c←{c0,c1}

h←L(Asb(D
n
c ))

[h(k) = c(k) | E] ≤ 1

2
.
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The reason is that two conditional distributions (Asb(D
n
c0) | E) and (Asb(D

n
c1) | E) are identical, and there is

no way for the learning algorithm to find out which of these distributions are being used. Therefore,

E
c←{c0,c1}

h←L(Asb(D
n
c ))

[RiskDc(h)] ≥ 1

k
· Pr

c←{c0,c1}
h←L(Asb(D

n
c ))

[h(k) 6= c(k)]

≥ 1

k
· Pr

c←{c0,c1}
h←L(Asb(D

n
c ))

[h(k) 6= c(k) | E] · Pr[E]

≥ 1− e
n
3k

2k
.

Now let εc(n) and δc(n) be the error and confidence that L provides when using n examples sampled from

A(Dn
c ). We know that,

E
h←L(Asb(Dnc ))

[RiskDc(h)] ≤ εc(n) + δc(n)

which implies,

E
c←{c0,c1}

h←L(Asb(D
n
c ))

[RiskDc(h)] ≤ εc0(n) + δc0(n) + εc1(n) + δc1(n)

2
.

Therefore we have,

εc0(n) + δc0(n) + εc1(n) + δc1(n) ≥ 1− e
−n
3k

k

which means for any learning algorithm L, one of these values will remain at least Ω(1/k) = Ω(p) no matter

how many examples the algorithm uses.

1.5 Summary and Open Questions

In this chapter, we studied poisoning attacks from a theoritical prospective. Our main contribution was to

improved the efficient (polynomial-time) p-tampering biasing attack of [Mahloujifar and Mahmoody, 2017b]

to achieve better bias in polynomial time and for real-valued bounded functions with output in [0, 1]. This

main result allowed us to get improved polynomial-time targeted p-tampering attacks against learners. As in

[Mahloujifar and Mahmoody, 2017b], our attacks apply to any learning problem P and any learner L for P.

We also studied the power of p-tampering attacks in the non-targeted setting where the adversary’s goal

is simply to increase the risk of the generated hypothesis. We showed that in this model, p-tampering attacks

cannot prevent PAC learnability in ‘realizable’ settings. We also studied PAC learning under influence of

more powerful adversaries who might choose the location of training examples that are tampered with but
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are still limited to choose ≤ p · n such examples. We conclude this section with some natural directions for

future work that remain open following our work.

Bounds for attacking specific problems and/or specific learners. The bounds of Corollaries 1.3.4

and 1.3.2 apply to any PAC learning problem P and any learner L for problem P. Therefore, one can possibly

get much stronger bounds for specific learning problems, and even for a fixed learning problem P, one can get

even better bounds if specific learning algorithms are attacked.

Learning under p-tampering without realizability. The result of Theorems 1.4.5 and 1.4.6 require

the realizability assumption to hold for the learning problem P. In what settings do these results extend

without the realizability assumption?

Learning under targeted p-tampering. Theorems 1.4.5 and 1.4.6 both apply to the case of non-targeted

poisoning attacks, where the adversary does not know the final test example. A natural open question is

whether, at least for specific natural cases, this result extends even to the targeted case, where the adversary’s

tampering strategy could depend on the final test example drawn from the same distribution D as that of

training.



Chapter 2

Multi-party Poisoning Attacks

2.1 Introduction

Learning from a set T = {d1 = (a1, b1), . . . , dn = (an, bn)} of training examples in a way that the predictions

generalize to instances beyond T is a fundamental problem in learning theory. The goal here is to produce a

hypothesis h in such a way that h(a), with high probability, predicts the “correct” label b, where the pair

(a, b) = d is sampled from the target (test) distribution D. In the most natural setting, the examples in the

training data set T are also generated from the same distribution D, however this is not always the case (e.g.,

due to noise in the data).

Multi-party poisoning. In the distributed setting [McMahan and Ramage, 2017, McMahan et al., 2016,

Bonawitz et al., 2017, Konečnỳ et al., 2016], the training data T might be coming from various sources; e.g.,

it can be generated by m data providers P1, . . . , Pm in an online way, while at the end a fixed algorithm,

called the aggregator G, generates the hypothesis h based on T . The goal of P1, . . . , Pm is to eventually

help G construct a hypothesis h that does well (e.g. in the case of classification) in predicting the label b

of a given instance a, where (a, b) ← D is sampled from the final test distribution. The data provided by

each party Pi might even be of “different type”, so we cannot simply assume that the data provided by Pi is

necessarily sampled from the same distribution D. To model this more general setting, we let Di model the

distribution from which the training data Ti (of Pi) is sampled. Poisoning attacks can naturally be defined in

the distributed setting as well [Fung et al., 2018, Bagdasaryan et al., 2018, Blanchard et al., 2017, Hayes and

Ohrimenko, 2018] to model adversaries who partially control the training data T . These works, however,

focus on attacking and defending specific learning tasks. This leads us to the central question of this section.

What is the inherent provable power of poisoning attacks in the multi-party setting?

49
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Answering the above question is critical for understanding the limits of provable security against multi-party

poisoning.

2.1.1 Summary of Results

We first formalize a new general model multi-party poisoning. We then prove the existence of universal data

poisoning attacks in the multi-party setting that apply to any task.

New attack model: (k, p)-poisoning attacks. our first contribution of this section is to formalize a

general notion that covers multi-party poisoning attackers that corrupt k out of m data provider parties and

furthermore, for each message sent by a corrupted party, the adversary still generates data that is “close” to

the honestly generated data. More formally, a (k, p)-poisoning attacker A can first choose to corrupt k of the

parties. Then, if a corrupted P̃i is supposed to send the next message, then the adversary will sample d← D̃

for a maliciously chosen distribution D̃ that is guaranteed to be p to the original distribution Di in total

variation distance. Our (k, p)-poisoning attacks include the so called “p-tampering” attacks of [Mahloujifar

et al., 2018a] as special case by letting k = m (m is the number of parties). Moreover, (k, p)-attacks also

include the standard model of k static corruption in secure multi-party computation (in cryptography) letting

p = 1. Our main result in this sections is to prove the universal power of (k, p)-poisoning as follow. We show

that in any m-party learning protocol, there exist a (k, p)-poisoning adversary that increases probability of

the produced hypothesis h having a bad property B (e.g., failing on a particular target instance known to

the adversary).

(For the formal version of Theorem 2.1.1, see Theorem 2.2.6.)

Theorem 2.1.1 (Power of (k, p)-poisoning attacks–informal). Let Π = (P1, . . . , Pm) be an m-party learning

protocol for an m-party learning problem. Also let B be a bad property defined over the output of the protocol.

There is a polynomial time (k, p)-poisoning attack A such that, given oracle access to the data distribution of

the parties, A can increase the probability of B from µ to µ1−kp/m.

Example. By corrupting half of the parties (i.e., p = 1, k = m/2) the adversary can increase the

probability of any bad event B from 1/100 to 1/10.

Universal nature of our attack. Our attacks are universal in the sense that they could be applied

to any learning algorithm for any learning task, and they are dimension-independent as they applied to

any data distribution. On the other hand, our universal attacks rely on an initial vulnerability of arbitrary

small constant probability that is then amplified through the poisoning attack. As a result, although recent

poisoning attacks (e.g., see [Koh et al., 2018]) obtain stronger bounds in their attack against specific defenses,

our attacks apply to any algorithm with any built in defenses.
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Deriving attacks on federated learning as special case. Since we allow the distribution of each

party in the multi-party case to be completely dependent on that party, our attacks cover the case of

model poisoning in federated learning [Bagdasaryan et al., 2018, Bhagoji et al., 2018], in which each party

sends something other than their plain share of data, as special case. In fact, multiple works have already

demonstrated the power of poisoning attacks and defences in the federated learning setting (e.g., see [Fung

et al., 2018, Bhagoji et al., 2018, Chen et al., 2018, 2017, Guerraoui et al., 2018, Yin et al., 2018a, Tomsett

et al., 2019, Cirincione and Verma, 2019, Han and Zhang, 2019]). Some of these attacks obtain stronger

quantitative bounds in their attacks, however this is anticipated as these works investigate attacks on specific

learners, while a crucial property of our attack is that our attacks come with provable bounds and are

universal in that they apply to any learning task and any hypothesis class (including neural nets as special

case), if there is an initial Ω(1) vulnerability (for some bad property) over the generated hypothesis.

Note that, our attacks actually do not need the exact history of examples that are used by parties, and

only need to know the updates sent by the parties during the course of protocol. Suppose an uncorrected

party randomizes its local model (e.g., for differential privacy purposes) and shares an update ui with the

server. Knowledge of ui is enough for our attacker. One might go even further and ask what if the updates

are sent in a secure/private way? Interestingly, our attack work in that model too as it only needs to know

the effect of the updates on the central model at the end of round i− 1 (because all attack wants is to perform

a random continuation on the intermediate model).

It also worth mentioning that our attack requires sampling oracles from distributions of all the parties.

This might seem that we are giving the adversary too much power. However, we think the right way to define

security of federated learning is by giving the adversary everything that hat might be leaked to them. This

way of defining security is inspired by cryptography. For instance, when modeling the “chosen plaintext”

security of encryption schemes, adversary is given access to an encryption oracle, while one might question

how realistic it is. Analogously, In federated learning, the adversary can potentially gather some statistics

about the distribution of other parties and learn them over time. However, as mentioned above, we do not

need to give adversary access to the actual data of honest parties. Only the public effect of them on the

shared model is needed.

2.1.2 Technical Overview

Previous universal poisoning attacks of Mahloujifar and Mahmoody [2017b], Mahloujifar et al. [2018c] for the

single party case are designed in a setting in which each training example is chosen by the adversary with

independent probability p. We first describe where exactly the ideas of these works come short of extending
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to the multiparty case, and then we explain how to borrow ideas from attacks on coin-tossing protocols

in cryptography Ben-Or and Linial [1989], Haitner and Omri [2014] and obtain the desired attacks of this

section.

p-tampering attacks and their shortcoming. For starters, let us assume that the adversary gets to

corrupt and control k randomly selected parties. In this case, it is easy to see that, at the end every single

message in the protocol Π between the parties P1, . . . , Pm is controlled with exactly probability p = k/m by

the adversary A (even though these probabilities are correlated). Thus, at a high level it seems that we should

be able to use the p-tampering attacks of Mahloujifar and Mahmoody [2017b], Mahloujifar et al. [2018c]

to degrade the quality of the produced hypothesis. However, the catch is that the proof of p-tampering

attacks of Mahloujifar and Mahmoody [2017b], Mahloujifar et al. [2018c] (and the bitwise version of Austrin

et al. [2017]) crucially rely on the assumption that each message (which in our context corresponds to a

training example) is tamperable with independent probability p, while corrupting k random parties, leads to

tamperable messages in a correlated way.

We prove our main results by first proving a general result about the power of “biasing” adversaries

whose goal is to increase the expected value of a random process by controlling each incoming “segment”

(aka block) of the random process with probability q (think of q as ≈ p · k/m). These segments/blocks

correspond to single or multiple training examples shared during the learning. As these biasing attacks

generalize p-tampering attacks, we simply call them generalized p-tampering attacks. We now describe this

attack model and clarify how it can be used to obtain Theorem 2.1.1.

Generalized p-tampering: new model for biasing attacks. In this section we introduce generalized

p-tampering (biasing) attacks that are defined for any random process x ≡ (x1, . . . ,xn) and a function

f(x) ∈ [0, 1] defined over this process. In order to explain the attack model, first consider the setting where

there is no attacker. Now, given a prefix x1, . . . , xi−1 of the blocks, the next block xi is simply sampled from

its conditional probability distribution (xi | x1, . . . , xi−1). (Looking ahead, think of xi as the i’th training

example provided by one of the parties in the interactive learning protocol.) Now, imagine an adversary who

enters the game and whose goal is to increase the expected value of a function f(x1, . . . ,xn) defined over the

random process x by tampering with the block-by-block sampling process of x described above. Before the

attack starts, there will be a a list S ⊆ [n] of “tamperable” blocks that is not necessarily known to the A in

advance, but will become clear to him as the game goes on. Indeed, this set S itself will be first sampled

according to some fixed distribution S, and the crucial condition we require is that Pr[i ∈ S] = p holds for all

i ∈ [n]. After S ← S is sampled, the sequence of blocks (x1, . . . , xn) will be sampled block-by-block as follows.

Assuming (inductively) that x1, . . . , xi−1 are already sampled so far, if i ∈ S, then A gets to fully control xi

and determine its value, but if i 6∈ S, then xi is simply sampled from its original conditional distribution
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(xi | x1, . . . , xi−1). At the end, the function f is computed over the (adversarially) sampled sequence.

We now explain the intuitive connection between generalized p-tampering attacks and (k, p)-poisoning

attacks. The main idea is that we will use a generalized q-tampering attack for q = p · k/m over the

random process that lists the sequence of training data provided by the parties during the protocol. Let S

be the distribution over [n] that picks its members through the following algorithm. First choose a set of

random parties {Q1, . . . , Qk} ⊆ {P1, . . . , Pm}, and then for each message xj that belongs to Qi, include the

corresponding index j in the final sampled S ← S with independent probability p. It is easy to see that S

eventually picks every message with (marginal) probability q = p · k/m, but it is also the case that these

inclusions are not independent events. Finally, to use the power of generalized p-tampering attacks over the

described S and the random process of messages coming from the parties to get the results of Theorem 2.1.1,

roughly speaking, we let a function f model the loss function applied over the produced hypothesis. Therefore,

to prove Theorem 2.1.1 it is sufficient to prove Theorem 2.1.1 below which focuses on the power of generalized

p-tampering biasing attacks.

Theorem 2.1.2 (Power of generalized p-tampering-informal). Suppose x ≡ (x1, . . . ,xn) is a joint dis-

tribution such that, given any prefix, the remaining blocks could be efficiently sampled in polynomial time.

Also let f : Supp(x) 7→ [0, 1]. Then, for any set distribution S for which Pr[i ∈ S] = p for all i, there is a

polynomial-time generalized p-tampering attack (over tampered blocks in S) that increases the average of f

over its input from µ to µ′ ≈ µ−p · E[f(x)1+p]. In particular, if f is boolean function µ′ ≈ µ1−p.

(The formal statement of Theorem 2.1.1 above follows from Theorem 2.3.2 and Lemma 2.3.6.)

Bitwise vs. blockwise attacks. It is easy to see that in the definition of generalized p-tampering

attacks, it does not matter whether we define the attack bit-by-bit or block-by-block. The reason is that,

even if we break down each block into smaller bits, then still each bit shall eventually fall into the set of

tamperable bits, and the model allows correlation between the inclusion and exclusion of each block/bit into

the final tamperable set. This is in contrast to the p-tampering model for which this equivalence is not true.

In fact, optimal bounds achievable by bitwise p-tampering as proved in Austrin et al. [2017] are impossible to

achieve in the blockwise p-tampering setting Mahloujifar and Mahmoody [2017b]. Despite this simplification,

we still prefer to use a blockwise presentation of the random process, as this way of modeling the problem

allows better tracking measures for the attacker’s sample complexity.

Ideas Behind the Tampering Attack of Theorem 2.1.1. To prove Theorem 2.1.1 we use ideas from

Haitner and Omri [2014], Ben-Or and Linial [1989] in the context of coin-tossing attacks and generalize them

using new techniques to obtain our generalized p-tampering attacks.
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Rejection sampling attack. The simplified version of our attack can be described as follows. Based on

the nature of this attack, we call it the “rejection sampling” (RS) attack. For any prefix of already sampled

blocks (x1, . . . , xi−1), suppose the adversary is given the chance of controlling the next i’th block. The RS

tampering then works as follows:

1. Let x′i, . . . , x
′
n be a random continuation of the random process, conditioned on (x1, . . . , xi−1).

2. If s = f(x1, . . . , xi−1, x
′
i, . . . , x

′
n), then if s = 1 output yi, and otherwise (i.e., if s = 0) go to Step 1 and

repeat the sampling process.

The above attack is inspired by the two-party attack of Haitner and Omri [2014]. Our main contribution

is to do the following steps. (1) First, analyze this attack in the generalized tampering setting and show its

power, which implies the multiparty case as special case. This already gives an alternative, and in our eyes

simpler, proof of the classic result of Ben-Or and Linial [1989] (2) We then extend this attack and its analysis

to the real-output setting. (3) Finally, we show how to approximate this attack in polynomial time.

2.2 Multi-Party Poisoning Attacks: Definitions and Main Results

Notation. We use bold font (e.g., x,S,α) to represent random variables, and usually use same non-bold

letters for denoting samples from these distributions. We use d ← D to denote the process of sampling d

from the random variable D. By E[α] we mean the expected value of α over the randomness of α, and

by V[α] we denote the variance of random variable α. We might use a “processed” version of α, and use

E[f(α)] and V[f(α)] to denote the expected value and variance, respectively, of f(α) over the randomness

of α. A learning problem (A,B, D,H) is specified by the following components. The set A is the set of

possible instances, B is the set of possible labels, D is distribution over A× B.1 The set H ⊆ BA is called

the hypothesis space or hypothesis class. An example s is a pair s = (a, b) where x ∈ A and y ∈ B. We

consider loss functions `oss : B × B 7→ R+ where `oss(b′, b) measures how different the ‘prediction’ y′ (of

some possible hypothesis h(a) = y′) is from the true outcome y. We call a loss function bounded if it always

takes values in [0, 1]. A natural loss function for classification tasks is to use `oss(b′, b) = 0 if y = y′ and

`oss(b′, b) = 1 otherwise. The risk of a hypothesis h ∈ C is the expected loss of h with respect to D, namely

Risk(h) = E(a,b)←D[`oss(h(a), b)]. The average error which quantifies the total error of the protocol is defined

as Err(D) = Prh←Π,(a,b)←D[`oss(h(a), b)].

Some Useful Inequalities. The following well-known variant of the inequality for the arithmetic mean and

the geometric mean could be derived from the Jensen’s inequality.

1By using joint distributions over A× B, we jointly model a set of distributions over A and a concept class mapping A to B
(perhaps with noise and uncertainty).
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Lemma 2.2.1 (Weighted AM-GM inequality). For any n ∈ N, let z1, ..., zn be a sequence of non-negative

real numbers and let w1, ..., wn be such that wi ≥ 0 for every i ∈ [n] and
∑n
i=1 wi = 1. Then, it holds that

n∑
i=1

wizi ≥
n∏
i=1

zwii .

The following lemma provides a tool for lower bounding the gap between the two sides of Jensen’s

inequality, also known as the Jensen gap.

Lemma 2.2.2 (Lower bound for Jensen gap Liao and Berg [(accepted in 2017]). Let α be a real-valued

random variable, Supp(α) ⊆ [0, 1], and E[α] = µ. Let ϕ(·) be twice differentiable on [0, 1], and let hb(a) =

ϕ(a)−ϕ(b)
(a−b)2 − ϕ′(a)

a−b . Then,

E[ϕ(α)]− ϕ(µ) ≥ V[α] · inf
a∈[0,1]

{hµ(a)} .

Definition 2.2.3 (Multi-party learning protocols). An m-party learning protocol Π for the m-party learning

problem (D,H) consists of an aggregator function G and m (interactive) data providers P = {P1, . . . , Pm}.

For each data provider Pi, there is a distribution Di ∈ D that models the (honest) distribution of labeled

samples generated by Pi, and there is a final (test) distribution D that P, G want to learn jointly. The

protocol runs in r rounds and at each round, based on the protocol Π, one particular data owner Pi broadcasts

a single labeled example (a, b)← Di.
2 In the last round, the aggregator function G maps the the messages to

an output hypothesis h ∈ H.

Now, we define poisoning attackers that target multi-party protocols. We formalize a more general notion

that includes p-tampering attacks and k-party corruption as special case.

Definition 2.2.4 (Multi-party (k, p)-poisoning attacks). A (k, p)-poisoning attack against an m-party

learning protocol Π is defined by an adversary A who can control a subset C ⊆ [m] of the parties where

|C| = k. The attacker A shall pick the set C at the beginning. At each round j of the protocol, if a data

provider Pi ∈ C is supposed to broadcast the next example from its distribution Di, the adversary can

partially control this sample using the tampered distribution D̃ such that |D̃ −Di| ≤ p in total variation

distance. Note that the distribution D̃ can depend on the history of examples broadcast so far, but the

requirement is that, conditioned on this history, the malicious message of adversary modeled by distribution

D̃, is at most p-statistically far from Di. We use ΠA to denote the protocol in presence of A. We also define

the following notions. A is a plausible adversary, if it always holds that Supp(D̃) ⊆ Supp(Di). A is efficient

2We can directly model settings where more data is exchanged in one round, however, we stick to the simpler definition
w.l.o.g.
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if it runs in polynomial time in the total length of the messages exchanged during the protocol (from the

beginning till end).

Remark 2.2.5 (Static vs. adaptive corruption). Definition 2.2.4 focuses on corrupting k parties statically.

A natural extension of this definition in which the set C is chosen adaptively Canetti et al. [1996a] while

the protocol is being executed can also be defined naturally. In this section, however, we focus on static

corruption, and leave the possibility of improving our results in the adaptive case for future work.

We now formally state our result about the power of (k, p)-poisoning attacks.

Theorem 2.2.6 (Power of efficient multi-party poisoning). In any m-party protocol Π for parties P =

{P1, . . . , Pm}, for any p ∈ [0, 1] and k ∈ [m], the following hold where M is the total length of the messages

exchanged.

1. For any bad property B : H → {0, 1}, there is a plausible (k, p)-poisoning attack A that runs in time

poly(M/ε) and increases the probability of B from µ (in the no-attack setting) to

µ′ ≥ µ1−p − ε.

2. If the (normalized) loss function is bounded (i.e., it outputs in [0, 1]), then there is a plausible, (k, p)-

poisoning A that runs in time poly(M/ε) and increases the average error of the protocol as

ErrA(D) ≥ Err(D)−p · E
h←Π

[Risk(h,D)1+p]

≥ Err(D) +
p · k
2m
· ν − ε

where ν = Vh←Π[Risk(h,D)] and V[·] is the variance.

Allowing different distributions in different rounds. In Definition 2.2.4, we restrict the adversary

to remain “close” to Di for each message sent out by one of the corrupted parties. A natural question is:

what happens if we allow the parties distributions to be different in different rounds. For example, in a round

j, a party Pi might send multiple training examples D(j) =
(
d

(j)
1 , d

(j)
2 , . . . , d

(j)
k

)
, and we want to limit the

total statistical distance between the distribution of the larger message D(j) from Dk
i (i.e., k iid samples

from Di).
3 We emphasize that, our results extend to this more general setting as well. In particular, the

proof of Theorem 2.2.6 directly extends to a more general setting where we can allow the honest distribution

Di of each party i to also depend on the round j in which these messages are sent. Thus, we can use a

3Note that, even if each block in
(
d
(j)
1 , d

(j)
2 , . . . , d

(j)
k

)
remains p-close to Di, their joint distribution could be quite far from

Dki .
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round-specific distribution D
(j)
i to model the joint distribution of multiple samples D(j) =

(
d

(j)
1 , d

(j)
2 , . . . , d

(j)
k

)
that are sent out in the j’th round by the party Pi. This way, we can obtain the stronger form of attacks that

remain statistically close to the joint (correct) distribution of the (multi-sample) messages sent in a round. In

fact, as we will discuss shortly D(j) might be of completely different type.

Allowing randomized aggregation. The aggregator G is a simple function that maps the transcript

of the exchanged messages to a hypothesis h. A natural question is: what happens if we generalize this

to the setting where G is allowed to be randomized. We note that in Theorem 2.2.6, Part 2 can allow G

to be randomized, but Parts 1 and 3 need deterministic aggregation. The reason is that for those parts,

we need the transcript to determine the confidence and average error functions. One general way to make

up for randomized aggregation is to allow the parties to inject randomness into the transcript as they run

the protocol by sending messages that are not necessarily learning samples from their distribution Di. As

described above, our attacks extend to this more general setting as well. Otherwise, we will need the adversary

to be able to also depend on the randomness of G, but that is also a reasonable assumption if the aggregation

is used using public beacon that could be obtained by the adversary as well.

Before proving Theorem 2.2.6, we need to develop our main result about the power of generalized

p-tampering attacks. In Section 2.3, we develop such tools, and then in Section 2.3.2 we prove Theorem

2.2.6.

2.3 Multi-Party Poisoning via Generalized p-Tampering

To prove our Theorem 2.2.6 we interpret the multi-party learning protocol as a coin tossing protocol in which

the final bit is 1 if h has the (bad) property B. We define a corresponding attack model in coin tossing

protocols that can be directly used to obtain the desired goal; this model is called generalized p-tampering.

Below, we formally state our main result about the power of generalized p-tampering attacks. We start by

formalizing some notation and definitions.

Notation. By x ≡ y we denote that the random variables x and y have the same distributions. Unless

stated otherwise, by using a bar over a variable, we emphasize that it is a vector. By x ≡ (x1,x2, . . . ,xn) we

refer to a joint distribution over vectors with n components. For a joint distribution x ≡ (x1, . . . ,xn), we use

x≤i to denote the joint distribution of the first i variables x ≡ (x1, . . . ,xi). Also, for a vector x = (x1 . . . xn)

we use x≤i to denote the prefix (x1, . . . , xi). For a randomized algorithm L(·), by y ← L(x) we denote the

randomized execution of L on input x outputting y. For a distribution (x,y), by (x | y) we denote the

conditional distribution (x | y = y). By Supp(D) = {d | Pr[D = d] > 0} we denote the support set of D. By
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TD(·) we denote an algorithm T (·) with oracle access to a sampler for D that upon every query returns fresh

samples from D. By Dn we denote the distribution that returns n iid samples from D.

Definition 2.3.1 (Valid prefixes). Let x ≡ (x1, . . . ,xn) be an arbitrary joint distribution. We call x≤i =

(x1, . . . , xi) a valid prefix for x if there exist xi+1, . . . , xn such that (x1, . . . , xn) ∈ Supp(x). ValPref(x)

denotes the set of all valid prefixes of x.

Definition 2.3.2 (Tampering with random processes). Let x ≡ (x1, . . . ,xn) be an arbitrary joint distribution.

We call a (potentially randomized and possibly computationally unbounded) algorithm Tam an (online)

tampering algorithm for x if given any prefix x≤i−1 ∈ ValPref(x), we have

Pr
xi←Tam(x≤i−1)

[x≤i ∈ ValPref(x)] = 1 .

Namely, Tam(x≤i−1) outputs xi such that x≤i is again a valid prefix. We call Tam an efficient tampering

algorithm for x if it runs in time poly(N) where N is maximum bit length to represent any x ∈ Supp(x).

Definition 2.3.3 (Online samplers). We call OnSam an online sampler for x ≡ (x1, . . . ,xn) if for all

x≤i−1 ∈ ValPref(x), OnSam(n, x≤i−1) ≡ xi. Moreover, we call x ≡ (x1, . . . ,xn) online samplable if it has an

online sampler that runs in time poly(N) where N is maximum bit length of any x ∈ Supp(x).

Notation for tampering distributions. Let x ≡ (x1, . . . ,xn) be an arbitrary joint distribution and

Tam a tampering algorithm for x. For any subset S ⊆ [n], we define y ≡ 〈x ‖Tam〉S to be the joint

distribution that is the result of online tampering of Tam over set S, where y ≡ (y1, . . . ,yn) is sampled

inductively as follows. For every i ∈ [n], suppose y≤i−1 is the previously sampled block. If i ∈ S, then

the ith block yi is generated by the tampering algorithm Tam(y≤i−1), and otherwise, yi is sampled from

(xi | xi−1 = y≤i−1). For any distribution S over subsets of [n], by 〈x ‖Tam〉S we denote the random variable

that can be sampled by first sampling S ← S and then sampling y ← 〈x ‖Tam〉S.

Definition 2.3.4 (p-covering). Let S be a distribution over the subsets of [n]. We call S a p-covering

distribution on [n] (or simply p-covering, when n is clear from the context), if for all i ∈ [n],PrS←S[i ∈ S] = p.

The following theorem states the power of generalized p-tampering attacks.

Theorem 2.3.5 (Biasing of bounded functions through generalizing p-tampering). Let S be a p-covering

distribution on [n], x ≡ (x1, . . . ,xn) be a joint distribution, f : Supp(x) 7→ [0, 1], and µ = E[f(x)]. Then,

for any ε ∈ [0, 1], there exists a tampering algorithm Tamε that, given oracle access to f and any online

sampler OnSam for x, it runs in time poly(N/ε), where N is the bit length of any x ← x, and for yε ≡
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〈x ‖Tamf,OnSam
ε 〉S, it holds that

E [f(yε)] ≥ µ−p · E
[
f(x)1+p

]
− ε .

Special case of Boolean functions. When the function f is Boolean, we get µ−p ·E[f(x)1+p] = µ1−p ≥

µ(1 + Ωµ(p)), which matches the bound proved in Ben-Or and Linial [1989] for the special case of p = k/n

for integer k ∈ [n] and for S that is uniformly random subset of [n] of size k. (The same bound for the case

of 2 parties was proved in Haitner and Omri [2014] with extra properties). Even for this case, compared

to Ben-Or and Linial [1989], Haitner and Omri [2014] our result is more general, as we can allow S with

arbitrary p ∈ [0, 1] and achieve a polynomial time attack given oracle access to an online sampler for x. The

work of Haitner and Omri [2014] also deals with polynomial time attackers for the special case of 2 parties,

but their efficient attackers use a different oracle (i.e., OWF inverter), and it is not clear whether or not their

attack extend to the case of more then 2 parties. Finally, both Ben-Or and Linial [1989], Haitner and Omri

[2014] prove their bound for the geometric mean of the averages for different S ← S, while we do so for their

arithmetic mean, but we emphasize that this is enough for all of our applications.

The bounds of Theorem 2.3.2 for both cases rely on the quantity µ′ = µ−p ·E[f(x)1+p]. A natural question

is: how large is µ′ compared to µ? As discussed above, for the case of Boolean f , we already know that

µ′ ≥ µ, but that argument does not apply to the real-output f . A simple application of Jensen’s inequality

shows that µ ≤ µ′ in general, but that still does not mean that µ′ � µ.

General case of real-output functions: relating the bias to the variance. If V[f(x)] = 0, then

no tampering attack can achieve any bias, so any gap achieved between µ′ and µ shall somehow depend on the

variance of f(x). In the following, we show that this gap does exist and that µ′ − µ ≥ Ω(p · V[f(x)]). similar

results (relating the bias the the variance of the original distribution) were previously proved Mahloujifar et al.

[2018c], Mahloujifar and Mahmoody [2017b], Austrin et al. [2014b] for the special case of p-tampering attacks

(i.e., S chooses every i ∈ [n] independently with probability p). Here we obtain a more general statement

that holds for any p-covering set structure S.

Using Lemma 2.3.6 below for α ≡ f(x), we immediately get Ω(p · V[f(x)]) lower bounds for the bias

achieved by (both versions of) the attackers of Theorem 2.3.2 for the general case of real-valued functions

and arbitrary p-covering set distribution S. See full version of paper for the proof.

Lemma 2.3.6. Let α be any real-valued random variable over Supp(α) ⊆ [0, 1], and p ∈ [0, 1]. Let µ = E[α]

be the expected value of α, ν = V[α] be the variance of α. Then, it holds that

µ−p · E[α1+p]− µ ≥ p · (p+ 1)

2 · µp
· ν ≥ p

2
· ν .
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2.3.1 Proving Theorem 2.3.2 For Computationally Unbounded Adversaries.

The construction below describes a computationally unbounded biasing algorithm that achieves the bounds

of Theorem 2.3.2. Please see the full version of paper for the proof of computationally bounded setting where

we carefully approximate the construction bellow by a computationally bounded polynomial-time biasing

adversary.

Construction 2.3.7 (Rejection-sampling tampering). Let x ≡ (x1, . . . ,xn) and f : Supp(x) 7→ [0, 1]. The

rejection sampling tampering algorithm RejSamf works as follows. Given the valid prefix y≤i−1 ∈ ValPref(x),

the tampering algorithm would do the following:

1. Sample y≥i ← (x≥i | y≤i−1) by using the online sampler for f .

2. If s = f(y1, . . . , yn), then with probability s output yi, otherwise go to Step 1 and repeat the process.

We will first prove a property of the rejection sampling algorithm when applied on every block.

Definition 2.3.8 (Notation for partial expectations of functions). Suppose f : Supp(x) 7→ R is defined over

a joint distribution x ≡ (x1, . . . ,xn), i ∈ [n], and x≤i ∈ ValPref(x). Then, using a small hat, we define the

notation f̂ [x≤i] = Ex←(x|x≤i)[f(x)]. (In particular, for x = x[n], we have f̂ [x] = f(x).)

Claim 2.3.9. If 〈x ‖RejSamf 〉[n] ≡ y[n] ≡ (y1, . . . ,yn). Then, for every valid prefix y≤i ∈ ValPref[x],

Pr[y≤i = y≤i]

Pr[x≤i = y≤i]
=
f̂ [y≤i]

µ
.

Proof. Based on the description of RejSamf , for any y≤i ∈ ValPref(x) the following equation holds for the

probability of sampling yi conditioned on prefix y≤i−1.

Pr[yi = yi | y≤i−1] = Pr[xi = yi | y≤i−1] · f̂ [y≤i]

+ (1− f̂ [y≤i−1]) · Pr[yi = yi | y≤i−1].

The first term in this equation corresponds to the probability of selecting and accepting in the first round of

sampling and the second term corresponds to the probability of selecting and accepting in any round except

the first round. Therefore we have

Pr[yi = yi | y≤i−1] =
f̂ [y≤i]

f̂ [y≤i−1]
· Pr[xi = yi | y≤i−1] ,
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which implies that

Pr[y≤i = y≤i] =
∏
j∈[i]

(
f̂ [y≤j ]

f̂ [y≤j−1]

)
· Pr[x≤i = y≤i]

=
f̂ [y≤i]

µ
· Pr[x≤i = y≤i] .

Now, we prove two properties for any tampering algorithm (not just rejection sampling) over a p-covering

distribution.

Lemma 2.3.10. Let S be p-covering for [n] and y ∈ Supp(x). For any S ∈ Supp(S) and an arbitrary

tampering algorithm Tam for x, let yS ≡ 〈x ‖Tam〉S. Then,

∏
S∈2[n]

(
Pr[yS = y]

Pr[x = y]

)Pr[S=S]

=

(
Pr[y[n] = y]

Pr[x = y]

)p
.

Proof. For every y≤i ∈ ValPref(y[n]) ⊆ ValPref(x) define ρ[y≤i] as

ρ[y≤i] =
Pr[y

[n]
i = xi | y[n]

≤i−1 = y≤i−1]

Pr[xi = xi | x≤i−1 = y≤i−1]
.

Then, for all y ∈ ValPref(yS) ⊆ ValPref(x) we have

Pr[yS = y] = Pr[x = y] ·
∏
i∈S

ρ[y≤i] .

Therefore we have

∏
S∈2[n]

(
Pr[yS = y]

Pr[x = y]

)Pr[S=S]

=

∏
i∈[n]

ρ[y≤i]

p

.

Claim 2.3.11. Suppose S is p-covering on [n], yS ≡ 〈x ‖Tam〉S for any S ← S, and y ≡ 〈x ‖Tam〉S for

an arbitrary tampering algorithm Tam for x. Then, it holds that

E[f(y)] ≥
∑

y∈Supp(x)

Pr[x = y] · f(y) ·

(
Pr[y[n] = y]

Pr[x = y]

)p
.
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Proof. Let hS,y = Pr[yS=y]
Pr[x=y] . Also let Z ⊆ Supp(x). Note that Supp(yS) ⊆ Z for any S ⊆ [n]. Therefore, we

have E[f(y)] = ES←S Ey←yS [f(y)] is equal to

∑
S∈2[n]

Pr[S = S] ·
∑
y∈Z

Pr[yS = y] · f(y)

=
∑
S∈2[n]

Pr[S = S] ·
∑
y∈Z

hS,y · Pr[x = y] · f(y)

=
∑
y∈Z

Pr[x = y] · f(y) ·
∑
S∈2[n]

Pr[S = S] · hS,y

(by AM-GM inequality)

≥
∑
y∈Z

Pr[x = y] · f(y) ·
∏

S∈2[n]

h
Pr[S=S]
S,y

(by p-covering of S and Lemma 2.3.10)

=
∑
y∈Z

Pr[x = y] · f(y) ·

(
Pr[y[n] = y]

Pr[x = y]

)p
.

We now prove the main result using the one-rejection sampling tampering algorithm and also relying on

the p-covering property of S. In particular, if y ≡ 〈x ‖RejSamf 〉S, then by Claims 2.3.11 and 2.3.9 we have

E[f(y)] ≥
∑

y∈Supp(x)

(
Pr[y[n] = y]

Pr[x = y]

)p
· Pr[x = y] · f(y)

(by Claim 2.3.9)

=
∑

y∈Supp(x)

(
f(y)

µ

)p
· Pr[x = y] · f(y)

= µ−p ·
∑

y∈Supp(x)

Pr[x = y] · f(y)1+p

= µ−p · E[f(x)1+p] .

2.3.2 Obtaining (k, p)-Poisoning Attacks: Proof of Theorem 2.2.6 using Theo-

rem 2.3.2

In this section, we formally prove Theorem 2.2.6 using Theorems 2.3.2. We first prove the first part of

theorem about the boolean property.
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Proof of Theorem 2.2.6 part 1. For a subset C ⊆ [m] let PC = {Pi; i ∈ C} and RC be the subset of rounds

where one of the parties in PC sends an example. Also for a subset S ⊆ [n], we define Bion(S, p) to be a

distribution over all the subsets of S, where each subset S′ ⊆ S hast the probability p|S
′| · (1− p)|S|−|S

′|. Now,

consider the covering S of the set [n] which is distributed equivalent to the following process. First sample a

uniform subset C of [m] of size k. Then sample and output a set S sampled from Bion(RC , p). S is clearly a

(p · km )-covering. We use this covering to prove the theorem. For j ∈ [n] let w(j) be the index of the provider

at round j and let Dw(j) be the designated distribution of the jth round and let x = Dw(1) × · · · ×Dw(n).

We define a function f : Supp(x) → {0, 1}, which is a Boolean function and is 1 if the output of the

protocol has the property B, and otherwise it is 0. Now we use Theorem 2.3.2. We know that S is a

(p · km )-covering for [n]. Therefore of Theorem 2.3.2, there exist an poly(m/ε) time tampering algorithm Tamε

that changes x to y ≡ 〈x ‖Tamf,OnSam
ε 〉S where E[f(y)] ≥ E[f(y)]1−pk/m − ε.

By an averaging argument, we can conclude that there exist a set C ∈ [m] of size k for which the

distribution Bion(RC , p) produces average output at least E[f(y)]1−pk/m − ε. Note that the measure of

empty set in Bion(RC , p) is exactly equal to 1− p which means with probability 1− p the adversary will

not tamper with any of the blocks, therefore, the statistical distance |x− 〈x ‖Tamf,OnSam
ε 〉Bion(RC , p)| is at

most p. This concludes the proof.

Now we prove the second part using Theorem 2.3.2 and Lemma 2.3.6.

Proof of Theorem 2.2.6 part 2. Now we prove the second part. The second part is very similar to first part

except that the function that we define here is a real valued function. Consider the function f2 : Supp(x)→

[0, 1] which is defined to be the risk of the output hypotheses. Now by Theorem 2.3.2 and Lemma 2.3.6, we

know that there is tampering algorithm Tamε that changes x to y ≡ 〈x ‖Tamf2,OnSam
ε 〉S such that

E[f2(y)] ≥ µ2 +
p · k
2m
· ν − ε.

By a similar averaging argument we can conclude the proof.

2.4 Proof of Theorem 2.3.2

In the following subsections, we focus on proving Theorem 2.3.2. We first prove a version of theorem for

computationally unbounded adversaries and then will extend it to computationally bounded setting. At the

end we prove Lemma 2.3.6.
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2.4.1 Proving Theorem 2.3.2 for Polynomially Bounded Attacks

In this section, we prove the second item of Theorem 2.3.2. Namely, we show an efficient tampering algorithm

whose average is ε-close to the average of RejSam. We define this attack as follows:

Construction 2.4.1 (k-rejection-sampling tampering). Let x = (x1, . . . ,xn) be a joint distribution and

f : Supp(x) 7→ [0, 1]. The k-rejection sampling tampering algorithm RejSamf
k works as follows. Given the

valid prefix y≤i−1 ∈ ValPref(x), the tampering algorithm would do the following for k times:

1. Sample y≥i ← (x≥i | y≤i−1) by using the online sampler for f .

2. Let s = f(y1, . . . , yn); with probability s output yi, otherwise go to Step 1.

If no yi was output during any of the above k iterations then output a fresh sample yi ← (xi | y≤i−1).

The output distribution of RejSamk on any input, converges to the rejections sampling tampering algorithm

RejSam for sufficiently large k →∞.

Notation. Below, use the notation z = 〈x ‖RejSamf
k〉S and µk = E[f(z)].

We will prove the following claim which will directly completes the proof of second part of Theorem 2.3.2.

Claim 2.4.2. Let x = (x1, . . . ,xn) be a joint distribution and f : Supp(x) 7→ [0, 1]. For any ε ∈ [0, 1], let

k ≥ 16 ln(2n/ε)
ε2µ2 . Then RejSamk runs in time O(k) = poly(N/(ε · µ)), where N ≥ n is the total bit-length of

representing x, and for z ≡ 〈x ‖RejSamf,OnSam
k 〉S it holds that

E[f(z)] ≥ µ−p · E[f(x)1+p]− ε .

Proof. It is easy to see why RejSamk runs in time O(k) and thus we will focus on proving the expected value

of the output of the k-rejection sampling tampering algorithm. To that end, we start by providing some

definitions relevant to our analysis.

Definition 2.4.3. For δ ≥ 0, let

High(δ) =
{
x | x ∈ Supp(x) ∧ ∀i ∈ [n], f̂ [x≤i−1] ≥ δ

}
, Low(δ) = Supp(x) \High(δ) ,

Big(δ) = {x | x ∈ Supp(x) ∧ f(x) ≥ δ} , and Small(δ) = Supp(x) \ Big(δ) .

Claim 2.4.4. For δ1 · δ2 = δ, it holds that

Pr
x←x

[x ∈ Big(δ1) | x ∈ Low(δ)] ≤ δ2 .
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As a result, it holds that Prx←x[x ∈ Big(δ1) ∧ x ∈ Low(δ)] ≤ δ2, and so

∑
x∈Big(δ1)∩Low(δ)

Pr[x = x] ≤ δ2 .

Proof. Let t : Low(δ)→ ValPref(x) be such that t(x) is the smallest prefix x≤i such that f̂ [x≤i] ≤ δ. Now

consider the set T = {t(x) | x ∈ Low(δ)}. For any w ∈ T we have

δ ≥ f̂ [w] ≥ Pr
x←x

[x ∈ Big(δ1) | t(x) = w] · δ1 ,

which implies

Pr
x←x

[x ∈ Big(δ1) | t(x) = w] ≤ δ2 .

Thus, we have

Pr
x←x

[x ∈ Big(δ1) | x ∈ Low(δ)]

=
∑
w∈T

Pr
x←x

[x ∈ Big(δ1) ∧ t(x) = w | x ∈ Low(δ)]

=
∑
w∈T

Pr
x←x

[x ∈ Big(δ1) | x ∈ Low(δ) ∧ t(x) = w] · Pr
x←x

[t(x) = w | x ∈ Low(δ)]

≤
∑
w∈T

δ2 · Pr
x←x

[t(x) = w | x ∈ Low(δ)] ≤ δ2 .

Claim 2.4.5. Let x ∈ High(δ), then we have

Pr[z = y] ≥ (1− (1− δ)k)n · f(y)

µ
· Pr[x = y] .

Proof. Consider Ek,y≤i to be the event that RejSamk outputs one of its first k samples, when performed on

y≤i. Then, it holds that

Pr[Ek,y≤i ] = 1− (1− f̂ [y≤i])
k ≥ 1− (1− δ)k .
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On the other hand, we know that Pr[zi+1 = yi+1 | y≤i ∧ Ek,y≤i ] = Pr[yi+1 = yi+1 | y≤i]. Thus, we have

Pr[zi+1 = yi+1 | y≤i] ≥ Pr[zi+1 = yi+1 | y≤i ∧ Ek,y≤i ] · Pr[Ek,y≤i ]

= Pr[yi+1 = yi+1 | y≤i] · Pr[Ek,y≤i ]

≥ Pr[yi+1 = yi+1 | y≤i] · (1− (1− δ)k)n.

By multiplying these inequalities for i ∈ [n] we get Pr[z = y] ≥ (1− (1− δ)k)n · Pr[y = x] .

Claim 2.4.6. For δ1 · δ2 = δ, it holds that

µk ≥
∑

y∈Supp(x)

(
f(y)

µ

)p
· Pr[x = y] · f(y)− δ1 + δ2

µ
− n · (1− δ)k .

Proof. Let

µ′ =
∑

y∈Low(δ)∩Small(δ1)

(
f(y)

µ

)p
· Pr[x = y] · f(y) ,

and µ′′ =
∑

y∈Low(δ)∩Big(δ1)

(
f(y)

µ

)p
· Pr[x = y] · f(y) .

By Claim, 2.3.11 we have

E[f(z)] ≥
∑

y∈Supp(x)

(
Pr[z[n] = y]

Pr[x = y]

)p
· Pr[x = y] · f(y)

≥
∑

y∈High(δ)

(
Pr[z[n] = y]

Pr[x = y]

)p
· Pr[x = y] · f(y)

(by Claim 2.4.5) ≥
∑

y∈High(δ)

(1− (1− δ)k)n·p ·
(
f(y)

µ

)p
· Pr[x = y] · f(y)

= (1− (1− δ)k)n·p ·

 ∑
y∈Supp(x)

(
f(y)

µ

)p
· Pr[x = y] · f(y)− µ′ − µ′′

 .

We have µ′ ≤ δ1+p
1 /µp ≤ δ1/µ, because f(y) ≤ δ1 for all y ∈ Small(δ1). Also, by Claim 2.4.4, we get

µ′′ ≤
∑

y∈Low(δ)∩Big(δ1)

(
1

µ

)p
· Pr[x = y] ≤ δ2

µp
≤ δ2

µ
.
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Therefore, we have

E[f(z)] ≥ (1− (1− δ)k)n·p ·

 ∑
y∈Supp(x)

(
f(y)

µ

)p
· Pr[x = y] · f(y)− δ1 + δ2

µ


(by Bernoulli inequality) ≥ (1− n·(1− δ)k) ·

 ∑
y∈Supp(x)

(
f(y)

µ

)p
· Pr[x = y] · f(y)− δ1 + δ2

µ


≥

∑
y∈Supp(x)

(
f(y)

µ

)p
· Pr[x = y] · f(y)− δ1 + δ2

µ
− n · (1− δ)k.

In order to conclude the proof of Claim 2.4.2, we can set δ1 = δ2 =
√
δ and let δ ≤ (εµ/4)2. Then, given

that we have k ≥ 16 ln(2n/ε)
ε2µ2 , we get

E[f(z)] ≥
∑

y∈Supp(x)

(
f(y)

µ

)p
· Pr[x = y] · f(y)− ε

2
− ε

2
.

2.4.2 Relating the Bias to the Variance: Proving Lemma 2.3.6

We use Lemma 2.2.2 by letting ϕ(x) = x1+p. Thus, we have to minimize the following function on x ∈ [0, 1],

gµ(x) =
(
x1+p − µ1+p − (1 + p) · µp · (x− µ)

)
/(x− µ)2 .

We now prove that the minimum happens on x = 1. Note that the function gµ(x) is continues on [0, µ) and

(µ, 0] and the limit exists at x = µ and is equal to 1/2 · p · (1 + p) · µ−1+p. Therefore if we show that g′µ is

negative for x ∈ [0, µ) ∪ (µ, 1] it implies that, ∀x ∈ [0, 1]g(x) ≥ g(1). We have

g′µ(x) =
(p− 1) · µp+1 − (p+ 1) · x · µp + (p+ 1) · µ · xp − (p− 1) · xp+1

(µ− x)3

(using c = x/µ) = µp−2 · (p− 1)− (p+ 1) · c+ (p+ 1) · cp − (p− 1) · cp+1

(1− c)3
.
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We prove that the numerator q(c) = (p− 1)− (p+ 1) · c+ (p+ 1) · cp − (p− 1) · cp+1 is positive for c > 1 and

negative for 0 < c < 1. For c > 0, we have

q′(c) = −(1 + p) + (p+ 1) · p · cp−1 + (1− p) · (p+ 1) · cp

= (1 + p) · (p · cp−1 + (1− p) · cp − 1)

(by AM-GM inequality of Lemma 2.2.1) ≥ (1 + p) · (cp·(p−1) · c(1−p)·p − 1)

= 0 .

Therefore, q is increasing for c > 0 which implies ∀c ∈ [0, 1], q(c) < q(1) = 0 and ∀c > 1, q(c) > q(1) = 0. We

have ∀x ∈ [0, µ) ∪ (µ, 1], g′(x) ≤ 0. Therefore we have

∀x ∈ [0, 1], gu(x) ≥ gu(1) . (2.1)

Now we prove that gµ(1) ≥ p(1+p)
2 . Consider the following function,

w(µ) = gµ(1) =
(
1− µ1+p − (1 + p) · µp · (1− µ)

)
/(1− µ)2 .

We will show that q is a decreasing function for µ ∈ [0, 1]. We have

w′(µ) =
p · (1− µ2) · µp−1 + p2(1− µ)2 · µp−1 + 2 · (µp − 1))

(−1 + µ)3
.

We will show that the numerator s(µ) = p · (1− µ2) · µp−1 + p2(1− µ)2 · µp−1 + 2 · (µp − 1) is negative for

µ ∈ [0, 1] . We have s′(µ) = p(p2 − 1) · (1 − µ)2 · µp−2 which is negative for µ ∈ [0, 1]. This implies that

∀µ ∈ [0, 1], s(µ) ≥ s(1) = 0. Therefore, w is a decreasing function, and we obtain

∀µ ∈ [0, 1], gµ(1) = w(µ) ≥ lim
u→1

w(u) =
p(1 + p)

2
. (2.2)

Now, we conclude that

µ−p · E[α1+p]− µ = µ−p
(
E[α1+p]− µ1+p

)
(by Lemma 2.2.2) ≥ µ−p

(
inf

x∈[0,1]
{gµ(x)} · ν

)
(by Inequality 2.1) ≥ µ−p · gµ(1) · ν

(by Inequality 2.2) ≥ p · (1 + p)

2 · µp
· ν .



Chapter 3

Strong Adaptive Poisoning Attacks

3.1 Poisoning Attacks from Concentration of Product Measures

In this section, we design new poisoning attacks against any deterministic learning algorithm, by using

the concentration of space in the domain of training data. We start by defining the confidence and error

parameters of learners.

3.1.1 Definition of Confidence and Chosen-Instance Error

Definition 3.1.1 (Probably approximately correct learning). An algorithm L is an (ε(·), δ(·))-PAC learner

for a classification problem (X ,Y, D,H, C), if for all c ∈ C and m ∈ N, we have

Pr
T←(D,c(D))m

h←L(T )

[Risk(h, c) > ε(m)] ≤ δ(m).

The function ε(·) is the error parameter, and 1− δ(m) is the confidence of the learner L.

Now, we formally define the class of poisoning attacks and their properties.

Definition 3.1.2 (Strong Adaptive poisoning attacks). Let (X ,Y, D,H, C) be a classification with a learning

algorithm L. Then, a poisoning adversary A for (L,X ,Y, D,H, C) is an algorithm that takes as input a

training set T ← (D, c(D))m and outputs a modified training set T ′ = A(T ) of the same size1. We also

interpret T and T as vectors with m coordinates with a large alphabet and let HD be the Hamming distance

for such vectors of m coordinates. For any c ∈ C, we define the following properties for A.

� A is called plausible (with respect to c), if y = c(x) for all (x, y) ∈ T ′.
1Requiring the sets to be equal only makes our negative attacks stronger.
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� A has tampering budget b ∈ [m] if for all T ← (D, c(D))m, T ′ ← A(T ), we have

HD(T ′, T ) ≤ b.

� A has average tampering budget b, if we have:

E
T←(D,c(D))m

T ′←A(T )

[HD(T ′, T ))] ≤ b.

Before proving our results about the power of poisoning attacks, we need to define the confidence function

of a learning algorithm under such attacks.

Definition 3.1.3 (Confidence function and its adversarial variant). For a learning algorithm L for a

classification problem (X ,Y, D,H, C), we use ConfA to define the adversarial confidence in the presence of a

poisoning adversary A. Namely,

ConfA(m, c, ε) = Pr
T←(D,c(D))m

h←L(A(T ))

[Risk(h, c) ≤ ε].

By Conf(·), we denote L’s confidence function without any attack; namely, Conf(·) = ConfI(·) for the

trivial (identity) attacker I that does not change the training data.

Definition 3.1.4 (Chosen instance (average) error and its adversarial variant). For a classification problem

(X ,Y, D,H, C), and a learning algorithm L, a chosen instance x ∈ X , a concept c ∈ C and for some m ∈ N,

the chosen-instance error of x in presence of a poisoning adversary A is

ErrA(m, c, x) = Pr
T←(D,c(D))m

h←L(A(T ))

[h(x) 6= c(x)].

The chosen-instance error for x (without attacks) is then defined as Err(m, c, x) = ErrI(m, c, x) using the

trivial adversary that outputs its input.

3.1.2 Decreasing Confidence and Increasing Chosen-Instance Error through

Poisoning

The following theorem formalizes our poisoning attack. We emphasize that by choosing the adversary after

the concept function is fixed, we allow the adversary to depend on the concept class. This is also the case

in e.g., p-tampering poisoning attacks of Mahloujifar et al. [2018a] (describesd in Section 1 of this part).
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However, there is a big distinction between our attacks here and those of Mahloujifar et al. [2018a], as

our attackers need to know the entire training sequence before tampering with them, while the attacks of

Mahloujifar et al. [2018a] were online.

Theorem 3.1.5. For any classification problem (X ,Y, D,H, C), let L be a deterministic learner, c ∈ C and

ε ∈ [0, 1]. Also let Conf(m, ε, c) = 1− δ be the original confidence of L for error probability ε.

1. For any γ ∈ [0, 1], there is a plausible poisoning adversary A with tampering budget at most
√
− ln(δ · γ) ·m

such that, A makes the adversarial confidence to be as small as γ:

ConfA(ε, c,m) ≤ γ.

2. There is a plausible poisoning adversary A with average tampering budget
√
− ln(δ) ·m/2 eliminating

all the confidence:

ConfA(ε, c,m) = 0.

Before proving Theorem 3.1.5, we introduce a notation.

Notation. For x = (x1, . . . , xm) ∈ Xm we use (x, c(x)) to denote
(
(x1, c(x1)), . . . , (xm, c(xm))

)
.

Proof of Theorem 3.1.5. We first prove Part 1. Let F = {x ∈ Xm | L((x, c(x)) = h,Risk(h, c) > ε}, and let

Fb be the b expansion of F under Hamming distance inside Xm.

We now define an adversary A that fulfills the statement of Part 1 of Theorem 3.1.5. Given a training set

T = (x, c(x)), the adversary A does the following.

Case 1: If x ∈ Fb, it selects an arbitrary x′ ∈ F where HD(x, x′) ≤ b and outputs T ′ = (x′, c(x′)).

Case 2: If T 6∈ Fb, it does nothing and outputs T .

By definition, A is using tampering budget at most b, as its output is always in a Hamming ball of radius b

centered at x. In addition, A is a plausible attacker, as it always uses correct labels.

We now show that A decreases the confidence as stated. Note that by the definition of Conf we have

Conf(ε, c,m) = 1−D(m)(F) where D(m) is the product distribution measuring according to m independently

samples from D. By Lemma 2.2.5, we have D(m)(Fb) ≥ 1− e−b
2/m

D(m)(F)
which by letting b =

√
− ln(δ · γ) ·m

implies that

D(m)(Fb) ≥ 1− γ. (3.1)
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We also know that if A goes to Case 1, it always selects some x′ ∈ F , and that means that the generated

hypothesis using A’s output will have a Risk greater than or equal to ε. Also, if A goes to Case 2 then it will

output the original training set which means the generated hypothesis will have a Risk less than ε. Therefore,

we have

ConfA(ε, c,m) = 1− Pr
x←D(m)

[Case 1] = 1−D(m)(Fb) ≤ γ.

Before proving Part 2, we state the following claim, which we prove using McDiarmid Inequality.

Claim 3.1.6. For any product distribution λ = λ1 × · · · × λm where (Supp(λ),HD,λ) is a nice metric

probability space and any set S ⊆ Supp(λ) where λ(S) = ε, we have

E
x←λ

[HD(x,S)] ≤
√
− ln(ε) ·m

2
.

Proof of Claim 3.1.6. We define function f(x) = HD(x,S). Because (Supp(λ),HD,λ) is a nice metric

probability space by assumption, f is a measurable function. Moreover, it is easy to see that for every pair

(x, x′) we have |f(x) − f(x′)| ≤ HD(x, x′) (i.e., f is Lipschitz). Now if we let a = Ex←λ[f(x)], by using

Lemma 2.2.6, we get

ε = λ(S) = Pr
x←λ

[f(x) = 0] = Pr
x←λ

[f(x) ≤ 0] ≤ e−2a2/m

simply because for all x ∈ S we have f(x) = 0. Thus, we get a ≤
√
− ln(ε) ·m/2.

Now we prove Part 2. We define an adversary A that fulfills the statement of the second part of the

theorem. Given a training set T = (x, c(x)) the adversary selects some x′ ∈ F such that HD(x, x′) = HD(x,F)

(i.e., one of the closest points in F under Hamming distance). The adversary then outputs T ′ = (x′, c(x′)).

It is again clear that this attack is plausible, as the tampered instances are still within the support set of

the correct distribution. Also, it is the case that ConfA(ε, c,m) = 0, as the adversary always selects x′ ∈ F .

To bound the average budget of A we use Claim 3.1.6. By the description of A, we know that the average

number of changes that A makes to x is equal to Ex←D(m) [HD(x,F)] which, by Claim 3.1.6, is bounded by√
− ln(ε) ·m/2.

Remark 3.1.7 (Attacks for any undesired predicate). As should be clear from the proof of Theorem 3.1.5,

this proof directly extends to any setting in which the adversary wants to increase the probability of any

“bad” event B defined over the hypothesis h, if h is produced deterministically based on the training set T .

More generally, if the learning rule is not deterministic, we can still increase the probability of any bad event

B if B is defined directly over the training data T . This way, we can increase the probability of bad predicate

B, where B is defined over the distribution of the hypotheses.
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We now state our results about the power of poisoning attacks that increase the average of the error

probability of learners. Our attacks, in this case, need to know the final text instance x, which makes our

attacks targeted poisoning attacks Barreno et al. [2006].

Theorem 3.1.8. For any classification problem (X ,Y, D,H, C), let L be a deterministic learner, x ∈ X ,

c ∈ C, and let ε = Err(m, c, x) be the chosen-instance error of x without any attack.

1. For any γ ∈ (0, 1], there is a plausible poisoning adversary A with budget
√
− ln(ε · γ) ·m such that

ErrA(m, c, x) ≥ 1− γ.

2. There is a plausible poisoning adversary A with average budget
√
− ln(ε) ·m such that

ErrA(m, c, x) = 1.

Proof of Theorem 3.1.8. The proof is very similar to the proof of Theorem 3.1.5. We only have to change

the description of F as

F = {x ∈ Xm | h = L(x, c(x)), h(x) 6= c(x)} ,

and then everything directly extends to the new setting.

First now remark on the power of poisoning attacks of Theorems 3.1.5 and 3.1.8.

Remark 3.1.9 (Asymptotic power of our poisoning attacks). We note that, in Theorem 3.1.5 as long as the

initial confidence is 1− 1/ poly(n), an adversary can decrease it to 1/ poly(n) (or to 0, in the average-budget

case) using only tampering budget Õ(
√
n). Furthermore, if the initial confidence is at most 1− exp(−o(n))

(i.e., subexponentially far from 1) it can be made subexponentially small exp(−o(n)) (or even 0, in the

average-budget case) using only a sublinear o(n) tampering budget. The same remark holds for Theorem

3.1.8 and average error. Namely, if the initial average error for a test example is 1/ poly(n), an adversary

can decrease increase it to 1− 1/ poly(n) (or to 1, in the average-budget case) using only tampering budget

Õ(
√
n), and if the initial average error is at least exp(−o(n)) (i.e., subexponentially large), it can be made

subexponentially close to one: 1− exp(−o(n)) (or even 1, in the average-budget case) using only a sublinear

o(n) tampering budget. The damage to average error is even more devastating, as typical PAC learning

arguments usually do not give anything more than a 1/ poly(n) error.



Chapter 4

Poisoning Attacks against Privacy

4.1 Introduction

Collaborative ML. Machine learning is revolutionizing nearly every discipline from healthcare to finance

to manufacturing and marketing. However, one of the limiting factors in ML is availability of large quantities

of quality data. Smaller entities may not be able to collect enough data to build reliable models, and even

larger entities may have subpopulations for which they do not have enough data to get accurate results. This

has prompted calls for collaborative learning, where many parties combine datasets to train a joint model.

However, much of this data involves either private data about individuals or confidential enterprise

information. Moreover, the folk-lore belief that ML models are sufficiently complex that it is hard to extract

information about the training data, is being increasingly challenged by recent research on unintended

memorization and leakage attacks on ML models Carlini et al. [2018], He et al. [2019]. This prompts the

following question:

If I as a company/hospital allow a model to be trained on my (confidential) data and released, what am I

revealing about my data?

Note that there are two concerns here: information revealed during the training process, and information

revealed by the resulting model. The former can be addressed using a number of cryptographic techniques

including Secure Multi-Party Computation Yao [1986], Goldreich et al. [1987], trusted hardware (e.g. Intel

SGX), and Homomorphic Encryption Gentry [2009], while the latter is an issue regardless of the techniques

used, even if one has a trusted party to perform the training.

Information leakage from ML models There has been a series of work looking at to what extent

a model leaks information about a certain individual record in the training set, including work on using
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differential privacy Dwork et al. [2006] to define what it means for a training algorithm to preserve privacy of

these individuals and technically how that can be achieved.

However, leaking information on individuals is not the only concern in this context. In many cases even

the aggregate information is sensitive. For example, consider an email classification system which identifies

spam or phishing mail. Such a model would be expected to reveal which words commonly indicate spam, and

companies might be comfortable sharing this information. However, if this model also leaked information

about how often a particular word or set of words appeared in the training data, that could potentially be

very sensitive. Similarly, a financial company might be willing to share a model to detect fraud, but might

not be willing to reveal the volume of various types of transactions. Or a number of smaller companies might

be willing to share a model to help target customers for price reductions etc, however such companies might

not be willing to share specific sales numbers for different types of products.

This inspires a line of work started in Ateniese et al. [2015], Ganju et al. [2018a] that looks at property

inference attacks, in which the attacker is trying to learn aggregate information about a dataset. In particular,

we focus here, as did Ganju et al. [2018a], on an attacker who is trying to determine the frequency of a

particular feature in the dataset. Notice that this type of aggregate leakage is a global property of the training

dataset and is not mitigated by adding differential-privacy mechanisms.

Leakage from combining datasets One of the questions that is not addressed in any of the above works

is:

Does releasing a model trained by combining my dataset with other parties’ data leak more than one trained

only on my own data

In particular, we consider the possibility that one party may modify their data before submitting it in

order to learn more from the final model. Note that this is not prevented by any of the cryptographic or

hardware assisted solutions: in all of these there is no practical way to guarantee that the data that is entered

is actually correct.

This type of training data poisoning attack has been extensively studied in the context of security of ML

models, i.e., where the goal of the attacker is to train the model to miss-classify certain datapoints Nelson

et al. [2008], Mei and Zhu [2015], Jagielski et al. [2018], but to the best of our knowledge ours is the first

work that looks at poisoning attacks that aim to compromise privacy of the training data.

Black box or white box model access Finally, one might ask:

Can I prevent this leakage by keeping the model hidden and only allowing other parties to query it?
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We show that even in the black box model, where the attacker is only allowed to make a limited number

of queries to the trained model and learn the results, these attacks can be very successful. ”Black box”

attacks is sometimes used to refer to attacks which also have access to model’s confidence values on each

query Sablayrolles et al. [2019]. We emphasize here that we use the stricter notion of black box and our

attacker will use only the model predictions.

Theory and experimentation The research in adversarial machine learning has been something of an

arms race in recent years, with proposed heuristic defenses followed by new attacks and in turn new defenses.

Here we aim to take a more principled approach, where we first present and analyse a theoretical attack

which we can show succeeds against any Bayes optimal classifier. Then, we verify this result experimentally

by implementing it and testing it against models with different architectures, and show that it does indeed

succeed with very high probability. The experiments show that these attacks are real, whereas the theoretical

analysis gives intuition for the attacks and hopefully will help to offer some suggestion for where we might

look in the future to either strengthen the attack or think about mitigations.

Summary of results In this section we consider an attacker who is allowed to first submit a set of

”poisoned” data of its choice, which will be combined with the victim dataset and used to train a model. The

attacker can then make a series of black box queries. Finally, the attacker’s goal is to determine whether a

particular feature is above or below a particular threshold.

1. We first describe a theoretical attack that works as long as the trained model is a Bayes optimal classifier.

The rough intuition is that if we can introduce some poisoned data at the training phase in which the

label is correlated with the target feature then this will change the Bayes optimal classifier a bit. In

particular, the ambiguous cases (those data points which occur in the original training set/underlying

distribution equally often with either label) will be slightly more likely to have a particular label when

the poisoned data is included in the training set. We can choose these poison points in a way such that

this shift is noticeably different for the cases when the target feature occurs with frequency below or

above the threshold.

The key idea is that the amount that the classifier changes depends on the frequency of the target

feature in the dataset. For example, if high education individuals are rare in the original training

dataset, then adding poisoned information about such individuals will shift the optimal predictions

for them much more noticeably as compared to a dataset with an abundance of such individuals. We

formalize this intuition by giving a concrete attack in this model and analyzing it’s effectiveness. Note

that our attack is agnostic to the architecture of the trained model since it is completely blackbox.
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2. Real model are not exactly Bayes optimal, so there is a question about whether the above result occur

in practice. To explore this we implement our attack on various target properties on Census and Enron

dataset. The objective of the attacker in all these experiments is to distinguish if there is a higher

frequency of the target property or not. Our attack succeeded for various ranges of higher vs. lower

frequencies, e.g. (5% from 10%), (40% from 60%), (30% from 70%). We experiment with three types of

target properties:

(a) Property that is present in the training dataset as a feature, e.g., Gender and Race in Census.

(b) Property that is not used as a feature in the training data, e.g., Negative emails in Enron.

(c) Property that is random: for this experiment, we added a random binary feature to both the

Census and the Enron data is completely uncorrelated to the classification task.

Experimenting with these variety of target properties demonstrate the power of our attack. The

whitebox attack in Ganju et al. [2018a] used Gender and Race as their target properties on Census

dataset, so these experiments demonstrate the effectiveness of our attack and also provide a reference

for comparison. In our attacks, we were able to achieve above 90% attack accuracy with about 10%

poisoning in all of these experiments without degrading the quality of the trained model. We run our

experiments for logistic regression and more complex architectures.

3. Since the work closest to ours is whitebox attack in Ganju et al. [2018a], we experimentally compare

its performance our attack. With ≤ 10% poisoning and 50 shadow models we beat the accuracy the

white-box attack for the target properties Gender and Race in the Census data that uses 1000 shadow

models. For the Random property, the blackbox completely outperforms the whitebox. So our attack

improves the performance of the white-box attack both in accuracy and running time, and of course in

the access model which is fully black box.

4.2 Related Work

It is quite well known by now that understanding what ML models actually memorize from their training

data is not trivial. As discussed above, there is a rich line of work that tries to investigate privacy leakage

from ML models under different threat models. Here we provide some more detail on several of the works

which seem most related to ours. For a comprehensive survey on the other privacy attacks on neural networks,

please see He et al. [2019].

The global property inference attacks of Ateniese et al. [2015], Ganju et al. [2018a] are the most relevant

to us: here the adversary’s goal is to infer sensitive global properties of the training dataset from the trained
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model that the model producer did not intend to share. We have already described some examples above.

Yet another example of a global property of a dataset is the following: whether the training data had a higher

or lower representation of a particular gender. Property inference attacks were first formulated and studied

in Ateniese et al. [2015]. However, this initial approach did not scale well to deep neural networks, so Ganju

et al. [2018a] proposed a modified attack that is more efficient. The main differences from our attack are in

the threat model: 1) our adversary can poison a portion of the training data and 2) in Ateniese et al. [2015],

Ganju et al. [2018a] the adversary has whitebox access to the model meaning that it is given all of the weights

in the neural net, while our adversary has only blackbox access to the trained model as described above. We

experimentally compare our attack performance and accuracy with that of Ganju et al. [2018a] in Section 4.6.

Another closely related attack is the more recent subpopulation attack Jagielski [2019]. Here the adversary’s

goal is to poison part of the training data in such a way that only the predictions on inputs coming from a

certain subpopulation in the data are impacted. To achieve this, the authors poison the data based on a

filter function that specifies the target subpopulation. An example filter function that the authors suggest is

the following: in a dataset with race and gender features, an adversary may want to harm the performance

specifically for black men. So it will choose data from the underlying distribution where “race” = “black”

and “gender” = “male”. To poison the training data, the adversary picks some sample data that satisfy the

filter function and adds this to the training set with flipped labels. The hope is that if the filter function

represents a good enough separation, then the learning algorithm will be able to learn the poisoned function

for the targeted subpopulation. While this attack is not targeting any global property leakage, a natural

question is whether we can enhance their poisoning strategy with our attack to learn some global property of

the target subpopulation. We leave this as future work.

In Melis et al. [2019] the authors studied property leakage in the federated learning framework. In

federated learning the process proceeds through multiple rounds. In each round each of the n > 2 takes the

intermediate model and uses their own data to locally compute an update. These updates are all collected by

a central party and used to form the next intermediate model. The threat model in Melis et al. [2019] is the

following: n > 2 parties participate in a ML training using federated learning where one of the participant is

the adversary. The adversary uses the model updates revealed in each round of the federated training and

tries to infer properties of the training data that are true of a subpopulation but not of the population as

a whole. We note that in this threat model, the adversary gets to see a lot more information than on our

model, so this result is not directly comparable to ours.

Finally, we note that our work is similar to Sablayrolles et al. [2019] in spirit, where the authors develop
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Bayes optimal strategies for membership inference for grey box membership inference attack1. The attack the

authors study is membership-inference (as opposed to property inference), so the goal and technique of the

attack and the assumptions they make about the model are completely different from ours.

4.3 Threat model

Before going through the threat model, we introduce some useful notation.

Notation. We use calligraphic letter (e.g T ) to denote sets and capital letters (e.g. D) to denote distributions.

We use (X,Y ) to denote the joint distribution of two random variables (e.g. the distribution of labeled

instances). To indicate the equivalence of two distributions we use D1 ≡ D2. By x← X we denote sampling

x from X and by Prx←X we denote the probability over sampling x from X. We use Supp(X) to denote

the support set of distribution X. For a distribution of labeled instances D ≡ (X,Y ) and a predictor

h : Supp(X) → Supp(Y ) we use Risk(h,D) = Pr(x,y)←D[h(x) 6= y] to denote the average of (0-1) loss over

the distribution. We use p ·D1 + (1− p) ·D2 to denote the weighted mixture of D1 and D2 with weights p

and (1− p).

Property Inference: Consider a learning algorithm L : (X×Y)∗ → H that maps datasets in T ∈ (X×Y)∗

to a hypothesis class H. Also consider a Boolean property f : X → {0, 1}. We consider adversaries who aim

at finding information about the statistics of the property f over dataset T ∈ (X × Y)∗, that is used to train

a hypothesis h ∈ H. In particular, the goal of the adversary is to learn information about f̂(T ) which is

the fraction of data entries in T that has the property f over data entries. More specifically the adversary

tries to distinguish between f̂(T ) ≥ t0 or f̂(T ) ≤ t1 for some t0 > t1 ∈ [0, 1]. We are interested in Black-box

setting where the adversary can only query the trained model on several points to see the output label.

Formal Model: To formalize this, we use distributions D−, D+ to model the underlying distribution of

the dataset for instances with f(x) = 0 and f(x) = 1 respectively. Then we consider two distributions made

by mixing D−, D+ at different ratios, i.e.,

Dt ≡ t ·D+ + (1− t) ·D−

Dt is the distribution where t fraction of the points have f(x) = 1. The adversary’s goal is to determine the

value t for the distribution that has been used to train a model that adversary has access to.

1We note that, even though the authors claimed that there results hold for black-box attack, in reality, they addressed
grey-box attacks as the adversary in their model also learned the confidence and not just the prediction
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For example, the two distributions could be Dt0 and Dt1 obtained by mixing D− and D+ in ratios t0 and

t1 respectively.

In this attack, as in previous work Ateniese et al. [2015], Ganju et al. [2018a] we assume that the adversary

can sample from D−, D+, i.e. he knows how data is correlated and distributed except for the target property.

Property Inference with Poisoning: We consider the poisoning model where adversary can contribute

pn ”poisoned” points to a n-entry dataset T that is used to train the model. To the best of our knowledge,

this is the first time that poisoning attacks against privacy of machine learning are modeled and studied.

In order to measure the power of adversary in this model we define the following adversarial game between

a challenger C and an adversary A. Our game mimics the classic indistinguishably game style used in

cryptographic literature. As described above, L is the learning algorithm, n is the size of the training dataset

of which p fraction are poisoned points selected by an adversary. D−, D+ are the distributions of elements x

with f(x) = 0, 1 respectively, and the goal of the attacker is to tell whether the victim dataset contains less

than t0 fraction of points from D− or more than t1 fraction of points from D−. The distinguishing game

bellow formalizes this adversarial model.

PIWP(L, n, p,D−, D+, t0, t1):

1. C select a bit b ∈ {0, 1} uniformly at random.

then samples a dataset of size (1− p) · n: Tclean ← D
(1−p)n
tb

2. Given all the parameters in the game, A selects a poisoning dataset Tpoison of size pn and sends it

to C.

3. C then trains a model M ← L(Tpoison ∪ Tclean).

4. A adaptively queries the model on a sequence of points x1, . . . , xm and receives y1 =

M(x1), . . . , ym = M(xm).

5. A then outputs a bit b′ and wins the game if b = b′.

We aim to construct an adversary that succeed with probability significantly above 1/2.

Remark 4.3.1. Note that the attacker is assumed to be able to sample from D− and D+, the distribution

of items with f(x) = 0 and with f(x) = 1. This assumption is same as what is used in previous property and

membership inference attacks against privacy of machine learning. The reason we assume this for the attacker
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is because we want to have a worst case analysis of the privacy and we should give the adversary all the

oracles that we cannot prevent him to have. This is how security games are usually modeled in cryptography

and we follow the same path here. However, removing this assumption and having a success full attack that

does not need this knowledge is an interesting open question that we also mention in the Conclusion section.

4.4 Attack against Bayes-Optimal Classifiers

In this section, we will introduce a theoretical attack with provable guarantees for Bayes-optimal classifiers.

A Bayes-optimal classifier for a distribution D ≡ (X,Y ) is defined to be a classifier that provides the

best possible accuracy, given the uncertainty of D. Bellow, we first define the notion of Bayes error and

Bayed-optimal classifiers.

Definition 4.4.1 (Bayes Error and Bayes-optimal classifier). Let D ≡ (X,Y ) be distribution over X × Y.

The Bayes error of D is defined to be the optimal error for a deterministic predictor of Y from X . Namely,

Bayes(D) = inf
h : X→Y

Pr
(x,y)←D

[h(x) 6= y].

Also the Bayes-optimal classifier for D is defined to be a hypothesis h that minimizes the error over

the distribution. Such classifier always exists if Y is a finite set. In particular, the following function is a

Bayes-optimal classifier for any such D

∀x ∈ X : h∗D(x) = argmax
y∈Y

Pr[Y = y | X = x].

The Bayes error is the best error that a classifier can hope for. High performance learning algorithms

would try to achieve the error rates close Bayes error by mimicking the behavior of Bayes-optimal classifier.

Bellow, we assume a fictional learning algorithm who can learn the bayes-optimal classifier for any distribution,

and will show that even such a high quality learning algorithm is susceptible to a certain attack that we

describe.

Definition 4.4.2 (Fictional learning algorithm). The fictional learning algorithm L∗ is an algorithm that

given a dataset T ← Dn of size n sampled from an arbitrary distribution D ≡ (X,Y ), outputs a model M

such that

Risk(M,D) = Bayes(D).

We know that the fictional algorithm L∗ cannot exist because of the No free lunch Wolpert [1996] theorem.

However, for understanding the attack we imagine this learning algorithm exists and try to attack it. After
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that we will see that we can attack any learning algorithm that outputs some model “close” to the Bayes

optimal classifier, for a class of (not all) distributions.

Theorem 4.4.3. Let L∗ be the fictional learning algorithm of definition 4.4.2. Let D ≡ (X,Y ) be a

distribution over X × Y and f : X → {0, 1} be a property over instances. For a any p, t1 < t2 ∈ [0, 1], if

Pr
x←D+

[
1

2
− p

2t2(1− p)
≥ Pr[Y = 1 | X = x] ≥ 1

2
− p

2t1(1− p)
] > 0

then for D+ = (X,Y | f(X) = 1) and D− = (X,Y | f(X) = 0), there is an adversary A who wins the security

game PIWP(n,L∗, D−, D+, p, t1, t2) with probability 1.

4.4.1 Attack Description

In this section we prove Theorem 4.4.3. We first describe an attack and then show how it proves Theorem

4.4.3.

The rough intuition behind the attack is the following. If an adversary can introduce some poisoned data

at the training phase to introduce correlation of the target property with the label, then, this will change L∗

a bit for the ambiguous cases (i.e., those which occur in the training set equally often with label 0 and 1).

The adversary can choose these poison points in a way such that this shift is noticeably different for the cases

when the target property occurs with frequency t1 vs t2. Thus, this attack exploits the inherent leakage in

the model to infer information about the target property

Let the original data distribution of clean samples be D ≡ (X,Y ). Our adversary A will pick the poison

data by i.i.d. sampling from a a distribution DA ≡ (XA, YA). Note that this adversary is weak in a sense

that it does not control the poison set but only controls the distribution from which the poison set is sampled.

Such an adversary will change the distribution of instances to a distribution D̃ such that D̃ is a weighted

mixture of D and DA. More precisely,

D̃ ≡

 D, With probability (1− p),

DA With probability p

Now we describe the distribution DA. The adversary first picks a value mA ∈ [0, 1] and chooses

XA ≡ mA ·X+ + (1−mA) ·X− where X+ = (X | f(X) = 1) and X− = (X | f(X) = 0). The adversary also

picks an adversarial rule ha : X → Y and sets its poisoning distribution as DA = (XA, hA(XA)). Later we

will see how the choice of mA and hA would help the adversary to optimize the attack.
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Now consider the algorithm L∗ and its guarantees for D̃. On a dataset T̃ ← D̃n, the algorithm L∗ is

guaranteed to output of model M̃ = L∗(T̃ ) that has the Bayes-optimal error on D̃. Consider joint distribution

(X̃, Ỹ ) such that D̃ ≡ (X̃, Ỹ ). Consider a Bayes-optimal classifier on D̃ is defined as follows:

h̃(x) =

 1 if Pr[Ỹ = 1 | X̃ = x] > 0.5,

0 if Pr[Ỹ = 1 | X̃ = x] ≤ 0.5.
(4.1)

Because both h̃ and M̃ are Bayes-optimal classifiers, the probability of them disagreeing with each other

should be zero. Namely,

Pr[M̃(X) 6= h̃(X)] = 0. (4.2)

Now we want to calculate h̃ and to see the effect of advesary on the behavior of trained model. Specifically,

we calculate Pr[Ỹ = 1 | X̃ = x] to see the effect of poisoning on the classifier. Let E be the event that D̃ is

sampled from the poison distribution. We have

Pr[Ỹ = 1 | X̃ = x] = Pr[Ỹ = 1 | X̃ = xANDE] · Pr[E | X̃ = x]

+ Pr[Ỹ = 1 | X̃ = xANDĒ] · Pr[Ē | X̃ = x]

= Pr[YA = 1 | XA = x] · Pr[E | X̃ = x]

+ Pr[Y = 1 | X = x] · Pr[Ē | X̃ = x]

= Pr[hA(x) = 1 | XA = x] · Pr[E | X̃ = x]

+ Pr[Y = 1 | X = x] · Pr[Ē | X̃ = x] (4.3)

Now we should calculate the probability Pr[E | X̃ = x]. We have

Pr[E | X̃ = x] =
Pr[X̃ = x | E] · Pr[E]

Pr[X̃ = x | E] · Pr[E] + Pr[X̃ = x | Ē] · Pr[Ē]
(4.4)

=
Pr[XA = x] · p

Pr[XA = x] · p+ Pr[X = x] · (1− p)
(4.5)

On the other hand for all x ∈ X such that f(x) = 1 we have

Pr[XA = x] = mA · Pr[X+ = x]. (4.6)

and for all x ∈ X such that f(x) = 0 we have
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Pr[XA = x] = (1−mA) · Pr[X− = x]. (4.7)

Now let t = Pr[f(X)], for all x ∈ X such that f(x) = 1 we have

Pr[X = x] = t · Pr[X+ = x]. (4.8)

and for all x ∈ X such that f(x) = 0 we have

Pr[X = x] = (1− t) · Pr[X− = x]. (4.9)

Now combining Equations 4.5, 4.6, 4.7, 4.8 and 4.9 we for all x ∈ X such that f(x) = 1 we have

Pr[E | X̃ = x] =
mA · p

mA · p+ t · (1− p)
(4.10)

and for all x ∈ X such that f(x) = 0 we have

Pr[E | X̃ = x] =
(1−mA) · p

(1−mA) · p+ (1− t) · (1− p)
(4.11)

It should be already clear that the behavior of final model would depend on t. The strategy of our

adversary is to pick mA and hA in a way that maximizes the dependence on t. In next section, we will see

how we can implement a concrete attack with this goal, but here just to finish the theorem, we instantiate

mA = 0 and hA(x) = 1. Then we have the following claim:

Claim 4.4.4. If adversary sets mA = 1 and hA(x) = 1 then for any x ∈ X such that f(x) = 1 we have

Pr[Ỹ | X̃ = x] =
p

p+ t(1− p)
+

t(1− p)
p+ t(1− p)

· Pr[Y = 1 | X = x].

Proof. The proof directly follows from combining Equations 4.3 and 4.10.

Now the following claim shows how the adversary can exploit the dependence of the model on t and infer

between t1 and t2.

Claim 4.4.5. If for some x ∈ X such that f(x) = 1

1

2
− p

2t2(1− p)
≥ Pr[Y = 1 | X = x] ≥ 1

2
− p

2t1(1− p)
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we have  h̃(x) = 0 if t ≥ t2,

h̃(x) = 1 if t ≤ t1

Proof. By putting the numbers in Claim 4.4.4 we get if t > t2 then Pr[Y = 1 | X = x] ≤ 0.5 and if t < t1

then Pr[Y = 1 | X = x] ≥ 0.5. Therefore, using Equation 4.1 the proof is complete.

And finally, we show that if the probability of xs that satisfy the condition of Claim 4.4.4 is higher than 0,

then the adversary can distinguish t1 from t2.

Claim 4.4.6. If

Pr
x←X+

[
1

2
− p

2t2(1− p)
≥ Pr[Y = 1 | X = x] ≥ 1

2
− p

2t1(1− p)
] > 0

then at least for one point x∗ ∈ X , we have

 M̃(x∗) = 0 if t ≥ t2,

M̃(x∗) = 1 if t ≤ t1.

Proof. Using Equation 4.2 we know that the probability of M̃ disagreeing with h̃ is zero. Since we have

Pr
x←X+

[
1

2
− p

2t2(1− p)
≥ Pr[Y = 1 | X = x] ≥ 1

2
− p

2t1(1− p)
] > 0

there is at least one point x∗ that satisfies the conditions in the probability and we have M̃(x∗) = h̃(x∗) for

both cases of t ≤ t1 and t ≥ t2. This, together with Claim 4.4.5 implies

 M̃(x∗) = 0 if t ≥ t2,

M̃(x∗) = 1 if t ≤ t1.

This finishes the proof of Theorem 4.4.3. This is because the adversary can infer whether t < t1 or t > t2

by only querying the x∗.

Remark 4.4.7. Although we only described the attack for our fictional algorithm, However, note that

the assumption behind our attack is not that strong as we only need the learning algorithm to output the

Bayes-optimal for one (poisoned) distribution. One can try to make the assumption more relax and prove the

a similar result for the almost optimal Bayes classifiers. However, we do not take that approach and instead
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show the effectiveness of our attack and its idea by designing a concrete attack (next section) and running

experiments on real world datasets and simple learning algorithms.

4.5 A concrete attack

Here we describe the concrete attack we use in our experiments. We note that there are many possible

variations on this attack; what we have presented here is just one configuration that demonstrates that the

attack is feasible with high accuracy. We leave exploration of some of the other variations to future work.

High level approach Recall that the attacker is assumed to be able to sample from D− and D+, the

distribution of items with f(x) = 0 and with f(x) = 1. As in the theoretical attack described in Section 4.4,

the poisoned data is generated by sampling from D− and D+ and introducing correlation between the target

feature f(x) and the label y. The fraction of poisoned data that is sampled from each of these distributions,

in particular mA fraction of D+ and (1−mA) fraction of D−, depend on the fractions t0 and t1 that the

attacker is trying to distinguish. In particular, we set mA =
±1(1/2− t0+t1

2 )+1

2 of its poison points from D−

and 1−mA points from D+. Note that mA is always either 0 or 1, based on the way we pick its value. This

means that the adversary either always picks all the poison points from D+ or from D−.

Now let us look at the correlation rule between the label and the target feature. In our concrete attack

this correlation rule can either be hA(x) = 1 or hA(x) = 0. Based on our theoretical study, it is in the

adversary’s best interest to introduce the correlation rule that is different from the correlation rule that is

dominant in the victim’s training data. But of course, the adversary do not know which rule is dominant in

the victim’s training dataset. So he does the following: observe the correlation between poison points and

their label introduce the opposite correlation in the poison set. For example, if most of the poison points are

labeled as 1, pick hA(x) = 0 as the poison rule.

The next challenge here is in choosing the query points. As in Section 4.4, we want to find borderline

points, i.e. x’s which are roughly equally likely to have label y = 0 or y = 1. Since we only have sampling

access to the distribution, we don’t know this probability exactly. Instead we estimate the probability that

the label is 0 or 1 by training an ensemble of models and then evaluating all of them on x; if roughly half of

the models predict label y = 0, we consider it a borderline point. We also include the poisoning points in the

points that adversary queries.

In the theoretical analysis, we only need 1 query to determine which of the two distributions was used

to train the model: Dt0 or Dt1 . However, in this concrete attack there is a lot of noise and uncertainty

introduced by the above sampling process and by the fact that the model is not necessarily exactly Bayes
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optimal. Thus, we find a set of borderline points to use for our queries and combine the responses on all of

them to make our prediction.

This raises the question of how to combine these responses. To do this we train another model to determine

the best weights to place on the responses. Here we use a shadow model approach: we train a series of

”shadow” models at t0 and t1, and apply the above poisoning approach using the real poisoned data generated

above. Then we query each of the models on each of the chosen query points. Finally, we generate a training

set where these responses are the features and the label are 0 or 1 depending on whether the ”shadow” model

used was from Dt0 or Dt1 , and train a model on this set. The adversary will guess f̂(T ) = t0 or f̂(T ) = t1

based on the output of this model on the real response values.

Here we describe the concrete attack for distinguishing D.3 from D.7 with initial victim training set size n

and poisoning rate p (i.e. pn poisoned points out of n total training points).

Choosing poisoned data: Recall that the attacker has sampling access to D−, D+, the distribution of

samples with f(x) = 0 and f(x) = 1 respectively. The attack will proceed as follows:

1. Sample pn samples from D+ if (t0 + t1) < 1, or pn samples from D− where t = (t0 + t1) ≥ 1

2. Observe the fraction of samples with label 1 and let l the majority label.

3. Modify each sample in the poison data and set the label equal to 1− l

4. Output the resulting pn items as the poisoned set Tpoison

Choosing the black box queries: 1. Sample a thousand data sets T1, . . . , T1000 each composed half

of elements sampled from D− and half of elements sampled from D+.

2. Train M1, . . . ,M1000 using T1, . . . , T1000.

3. Set Tq = ∅.

4. While |Tq| < 1000 repeat the following two steps:

� If |Tq| < 500 queries, sample x← D−, otherwise sample x← D+.

� if

300 ≤
1000∑
i=1

Mi(x) ≤ 700

Tq = Tq ∪ {x} .



Poisoning Attacks against Privacy 88

5. Set Tq = Tq ∪ Tpoison

6. Output Tq as the set of black box queries to make.

Guessing f̂(T ) given responses Rq = y1, . . . yq: The attack proceeds as follows:

1. Sample data sets T 30%
1 , . . . , T 30%

100 with size n from D.30 and T 70%
1 , . . . , T 70%

100 with size n from

D.70. (Note that the adversary can generate samples from these distributions given sampling

access to D−, D+: e.g. to sample from D.3, first choose bit b from a distribution that is 1

with probability .3, then sample from Db.)

2. Train M30%
1 , . . . ,M30%

100 using T 30%
1 ∪ Tpoison, . . . , T 30%

100 ∪ Tpoison and M70%
1 , . . . ,M70%

100 using

T 70%
1 ∪ Tpoison, . . . , T 70%

100 ∪ Tpoison.

3. Query all models on Tq to get R70%
1 , . . . , R70%

100 and R30%
1 , . . . , R30%

100 .

4. Train a linear model on R70%
1 , . . . , R70%

100 and R30%
1 , . . . , R30%

100 with labels 0 and 1 respectively

to get MA with appropriate regularization terms (We use `2 regulizer with weight 2 ·
√

1/m

where m is the number of shadow models).

5. Evaluate MA(Rq) and output the result.

4.6 Experimental Evaluation

Here we evaluate the performance and the accuracy of our attack described in Section 4.5.

4.6.1 Experimental Setup

DataSets We have run our experiments on two datasets:

Census: The primary dataset that we use for our experiments is the US Census Dataset Frank et al.

[2011]. The US Census Income Dataset contains census data extracted from the 1994 and 1995

population surveys conducted by the U.S. Census Bureau. This dataset includes 299,285 records with

41 demographic and employment related attributes such as race, gender, education, occupation, marital

status and citizenship. The classification task is to predict whether a person earns over $50,000 a year

based on the census attributes.



4.6 Experimental Evaluation 89

Enron: The second dataset that we use to validate our attack on a completely different dataset is the Enron

email dataset Klimt and Yang [2004]. This dataset contains 33717 emails. The classification task here

was to classify a mail as spam or not spam based on the words used in the mail. We use 200 words to

use as features using tf-idf. The accuracy of spam detection with logistic regression on this dataset is

96%.

We used the census dataset as is, as compared to Ganju et al. [2018a] where they preprocess the census

dataset and run their experiments with balanced labels (50% low income and 50% high income). We notice

that in the original dataset, the labels are not balanced (around 90% low income and 10% high income) which

makes the task much harder.

Target Property In Table 4.1, we summarize the features we experimented with. In all these experiments,

the attacker’s objective is to distinguish if there is a higher frequency of the target feature or not. Bellow

is a summary list of all these properties. Note that in different experiments, different ratios are used to

demonstrate the effectiveness of the attack in distinguishing different values and we did not hand pick our

experiments.

DataSet Target Feature Distinguish between
Census Random binary 0.05 vs 0.15
Census Gender 0.6 vs 0.4 female
Census Race 0.1 vs 0.25 black
Enron Random binary 0.7 vs 0.3
Enron Negative sentiment 0.10 vs 0.05

Table 4.1: Target Features

Random binary: We note that to understand the power of this attack on a feature that is completely

random and uncorrelated to the classification task (hence, should not be leaked by an ideal model), we

did a set of experiments where we added a random binary feature to both the census data and set that

as the target feature. Note that this feature is not correlated with any other feature in the dataset and

the model should not depend on it to make its decision. This is actually true in experiments and as we

will see, the attack of Ganju et al. [2018b] does not perform better than random guess on this property.

Gender: Gender is one of the features in census data with values Male and Female. In our attack, we try to

infer whether the dataset has 40% or 60% females included. We picked this property because it could

be used as a tool to identify gender bias in a dataset by only looking at the blackbox queries to the

trained model.
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Race: Another feature that we attack in the census dataset is Gender. In this target property, the adversary

tries to infer between two different distribution, one of which has 10% black population and the other

one has 25%. Again, we chose this because the race distribution in a population could be a sensitive

information in many datasets.

Negative Sentiment: In one of our target properties, we try to infer how many fraction of emails in the

enron email dataset have negative sentiment. To do this, we use the sentiment analysis tool in python

nltk to identify emails with positive and negative sentiment. Note that unlike all the other target

properties, the Negative sentiment feature is not part of the dataset which makes it much harder for

the attacker.

4.6.2 Black-box queries

As mentioned before, we are interested in the privacy leakage caused by black-box access to the model.

Namely, the adversary can query the model on a number of points and infer information about target property

using the label prediction of the model on those queries (See Section 4.3 for more details). Our model does

not require any other information other than predicted label (e.g. confidence score, derivative of the model,

etc). The query points are selected from points that their confidence falls into a certain interval, suggested by

our theoretical attack (See claim 4.4.5 and also Section 4.5.) For Enron experiments, we use 500 number of

query points and for census data experiments we use 1000 number of query points.

4.6.3 Target model architectures

Most of our experiments use logistic regression as the model architecture for training. The main reason we

picked logistic regression was that because it is much faster to train compare to Neural Networks. However,

we also have a few experiments on the more complex models. In particular, we test our attack on fully

connected neural networks with up to 6 hidden layers. We have to note that since our attack is black-box, we

do not need any assumption over the target model architecture other than the fact that it will have high

accuracy. This is again in contrast with the previous work of Ganju et al. [2018b] that only work on fully

connected neural networks.

4.6.4 Shadow model training

Our shadow model training step is quite simple. As described in Section 4.5, we train a series of shadow

models with a fixed poisoning set. Then we use the shadow models to train a simple linear attack model

over the predictions on the queries. We use linear models since our theoretical results suggest a simple linear
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Figure 4.1: Poison rate vs attack accuracy

model over the queries would be able to do the job. We use `2 and `1 regularization for our linear models to

reduce the number of effective queries as much as possible. Note that this choice of simple linear models is

contrast with the attack of Ganju et al. [2018b] that uses complex models (e.g. set neural networks) to train

the attack model which runs much slower.

4.6.5 Accuracy Perfomance

In the following experiments, we evaluate the performance of our attack and compare it with the attack

of Ganju et al. [2018a]. In the rest of the manuscript, we denote the attack of Ganju et al. [2018a] as

WBAttack. We first evaluate how the different parameters, namely, poisoning rate, training set size, number of

shadow models (defined in Sec 4.3) and the complexity of the target model affect its accuracy. To understand

the effect of each parameter, for each set of experiments, we fix a set of parameters and vary one.

Poisoning Rate In Fig. 4.1, we have 6 experimets where we fix the model to be logistic regression for all

of them except one (Census random MLP) which uses a 5 layer perceptron with hidden layers sizes 32, 16

and 8. In all the experiments we set the number of shadow models to be 500 and the training size to be 1000.

We vary the poisoning rate from 0% upto 20%. The number of black-box queries is set to 500 for experiments

on Enron and 1000 for experiments on Census. The attack accuracy for the other target features are quite

low when there is no poisoning as well. But with increase in poisoning rate, the attack accuracy dramatically

improves and for all features, the accuracy reaches around 0.9 with just 10% poisoning. All the experiments

are repeated 5 times
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Figure 4.2: Poison rate vs attack accuracy

Note that the Enron negative sentiment experiment seems like an anomaly in Figure 4.1. However, we

want to mention that the drop of accuracy with more poison points could be anticipated. To understand

this, one can think about the extreme case where 100% of the distribution is the poison data, which means

there is no information about the clean distribution in the trained model. This especially happens for the

properties that have very weak signal in the behavior of the final model. The Enron negative sentiment

property produces the weakest signal among all the experiments because (1) the feature does not exist in the

dataset and (2) it has the smallest difference in percentage among all the other experiments (5% vs 10%). In

order to verify the understanding that the accuracy of the attack would drop with more poison points, we

tried various poisoning rates on Enron dataset with random feature. Figure 4.2 shows this phenomenon.

Number of Shadow Models The next set of experiments (See Fig 4.3) are to see the effect of number of

shadow models on the accuracy of the attack. For this experiments, we vary the number of shadow models

from 50 to 2000. We notice that increasing the number of shadow models increases the attack accuracy and

about 500 shadow models are sufficient to get close to maximum accuracy. Note that in this experiment we

set the poisoning ratio to small values so that we can see the trend better. If larger poison ratio were chosen,

in most experiments the attack reaches the maximum of 1 with very small number of shadow models and it

is hard to see the trend. For instance, with 10% percent poisoning, the experiments with random feature

(both census and Enron) would reach 100% accuracy with only 50 number of shadow models. This small

number of shadow models makes the running time of the attack much lower.
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Figure 4.3: Number of shadow models vs attack accuracy

Figure 4.4: Training Set Size vs attack accuracy

Training Set size In Fig. 4.4, we wanted to see the effect of training size on the effectiveness of the attack.

Note that our theoretical attack suggests that larger training size should actually improve the attack because

the models trained on larger training sets would have smaller generalization error and hence would be closer

to a Bayes-optimal classifier. In fact, our experiments verify this theoretical insight. In our experiments, we

vary the training set size from 100 to 1500 and the upward trend is quite easy to observe. Again, we have

selected the poisoning rate and the number of shadow models in a way that the attack does not get accuracy

1.0 for small training sizes.
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Figure 4.5: Precision

Undetectablilty of the Attack Recall that in our threat model, the adversary is able to poison a fraction

of the training data. If the target model quality degrades significantly due to this poisoning, then it becomes

easily detectable. Therefore, for the effectiveness of this attack, it is important that the quality of the model

does not degrade. We experimentally confirm that this is indeed true with our poisoning strategy. See Fig 4.5

and Fig 4.6 for the precision and recall rate for the model Logistic Regression where the poison rate varies

from 0% to 20% (for 500 shadow models and training set size of 1000). In general, the experiments show that

the precision tends to decrease with a rather low slope and recall tend to increase by adding more poison data.

Note that for census data, the slope of decrease in precision is much higher than Enron. We think this is

because of the uncertain nature of Census dataset and the fact that we do not balance the label distribution

in Census data. However, it also worth mentioning that for all experiments in Census data, 4-5% poisoning

is sufficient to get attack accuracy more than 90%. This means that, if one considers the drop in precision

versus the attack accuracy, the census data is not much worse than enron.

Complexity of Target Models While in most of our experiments we fix the target model to be logistic

regression, here we experiment with more complex architectures to see how our attack performs. We

summarize the results in Table 4.2. Based on our theoretical analysis, the effectiveness of the attack would

depend on its performance in generalization to the training data distribution. Therefore, we expect the

effectiveness of the attack to drop with more complex networks as the generalization error would increase

when the number of parameters in the model increases. This might sound counter intuitive as the privacy

problems are usually tied with over fitting and unintended memorizationCarlini et al. [2018]. However, our
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Figure 4.6: Recall

experiments verify our theoretical intuition. We observe that we more layers, the accuracy of the attack tends

to drop. However, this issue could be resolved if one uses larger training size as the larger training size could

compensate the generalization error caused by higher number of parameters and overfitting. For instance, in

the last row of Table 4.2 the accuracy increases significantly when we set the training size to 10000 and use

more shadow models.

Architecture Performance
Hidden Layers Layer sizes Training Size Attack Accuracy Shadow Models

1 [2] 1000 1.0 600
2 [4 2] 1000 0.97 600
3 [8 4 2] 1000 0.94 600
4 [16 8 4 2] 1000 0.88 600
5 [32 16 8 4 2] 1000 0.81 600
5 [32 16 8 4 2] 10000 0.92 1000

Table 4.2: Complexity of target models vs attack accuracy on Census Data

4.6.6 Comparison with WBAttack

Since the work closest to ours is WBAttack, even though it is a white-box attack, we experimentally compare

the performance of WBAttack to ours. For this comparison, we run the vector attack in WBAttack. In

Table 4.3, we see how our black-box attack performance compares with WBAttack. Notice that blac-kbox with

no poisoning (first 3 rows of the table) performs much worse that WBAttack on race and gender. However,

WBAttack also performs poorly on the random feature. In fact, the strength of our attack is to find a way
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Experiment parameters White-box Performance Black-box Performance
Feature # Shadows Accuracy # Shadows Poison Accuracy

Census-Random 1000 .52 1000 0 .5
Census-Gender 1000 .96 1000 0 .61
Census-Race 1000 .95 1000 0 .55

Census-Random 1000 .52 100 0.05 1.0
Census-Gender 1000 .96 100 0.03 .99
Census-Race 1000 .95 100 0.05 .97

Census-Random 1000 .52 50 0.1 1.0
Census-Gender 1000 .96 50 0.1 1.0
Census-Race 1000 .95 50 0.1 .98

Table 4.3: Comparison on Logistic Regression. The training size in all experiments is 1000.

to infer information about features similar to random that do not have high correlation with the label. As

we see in the columns bellow, with very small ratio of poisoning our attack get accuracy 1.0 on the random

target property. It also beats the performance of WBAttack on other experiments by very few number of

poison points. Note that our attack also requires much fewer number of poison points. For example with 10%

poisoning, only 50 number of shadow models would beat the accuracy WBAttack that uses 1000 number of

shadow models. The small number of shadow models would be important in scenarios where the adversary

does not have access to a lot of similar data. So in summary, our attack can improve the performance

WBAttack both in accuracy and number of shadow models, and of course in the access model which is fully

black box. The cost of these improvements is allowing the adversary to choose a fraction of training set which

is not an uncommon scenario in multi-party learning applications.
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Chapter 1

Definitions of Adversarial Risk and

Robustness

In recent years, modern machine learning tools (e.g., neural networks) have pushed to new heights the

classification results on traditional datasets that are used as testbeds for various machine learning methods.1

As a result, the properties of these methods have been put into further scrutiny. In particular, studying the

robustness of the trained models in various adversarial contexts has gained special attention, leading to the

active area of adversarial machine learning.

Within adversarial machine learning, one particular direction of research that has gained attention in

recent years deals with the study of the so-called adversarial perturbations of the test instances. This line of

work was particularly popularized, in part, by the work of Szegedy et al. [Szegedy et al., 2014] within the

context of deep learning classifiers, but the same problem can be asked for general classifiers as well. Briefly,

when one is given a particular instance x for classification, an adversarial perturbation x′ for that instance

is a new instance with minimal changes in the features of x so that the resulting perturbed instance x′ is

misclassified by the classifier h. The perturbed instance x′ is commonly referred to as an adversarial example

(for the classifier h). Adversarial machine learning has its roots at least as back as in [Lowd and Meek, 2005,

Nelson et al., 2010a,b]. However, the work of [Szegedy et al., 2014] revealed pairs of images that differed

slightly so that a human eye could not identify any real differences between the two, and yet, contrary to what

one would naturally expect, machine learning classifiers would predict different labels for the classifications of

such pairs of instances. It is perhaps this striking resemblance to the human eye of the pairs of images that

were provided in [Szegedy et al., 2014] that really gave this new push for intense investigations within the

1For example, http://rodrigob.github.io/are we there yet/build/ has a summary of state-of-the-art results.
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context of adversarial perturbations. Thus, a very intense line of work started, aiming to understand and

explain the properties of machine learning classifiers on such adversarial perturbations; e.g., [Goodfellow et al.,

2015, Moosavi-Dezfooli et al., 2016, Bastani et al., 2016, Carlini and Wagner, 2017b, Madry et al., 2018].

These attacks are also referred to as evasion attacks [Nelson et al., 2012, Biggio et al., 2014, Goodfellow et al.,

2015, Carlini and Wagner, 2017b, Xu et al., 2018]. There is also work that aims at making the classifiers

more robust under such attacks [Papernot et al., 2016b, Xu et al., 2018], yet newer attacks of Carlini and

Wagner [Carlini and Wagner, 2017a] broke many proposed defenses.

As the current literature contains multiple definitions of adversarial risk and robustness, we start by

giving a taxonomy for these definitions based on their direct goals. More specifically, suppose x is an original

instance that the adversary perturbs into a “close” instance x′. Suppose h(x), h(x′) are the predictions of

the hypothesis h(·) and c(x), c(x′) are the true labels of x, x′ defined by the concept function c(·). To call

x′ a successful “adversarial example”, a natural definition would compare the predicted label h(x′) with

some other “anticipated answer”. However, what h(x′) is exactly compared to is where various definitions

of adversarial examples diverge. We observe in Section 4.2 that the three possible definitions (based on

comparing h(x′) with either of h(x), c(x) or c(x′)) lead to three different ways of defining adversarial risk

and robustness. We then identify one of them (that compares h(x) with c(x′)) as the one guaranteeing

misclassification by pushing the instances to the error region. We also discuss natural conditions under which

these definitions coincide. However, these conditions do not hold in general.

Defining Adversarial Risk and Robustness

Here we briefly explain the core ideas behind some previous definitions and how they compare with our new

definitions. For simplicity we focus on the case of classification problems where c(x) is the correct label for

an instance x ∈ X . The adversary aims to perturb the instance x into an instance x′ such that x′ is close to

x under some metric and moreover x′ is misclassified by the trained hypothesis h. By risk we refer to the

probability by which the adversary can get a misclassified x′ ‘close’ to x, and by robustness we refer to the

minimum change to x that can guarantee x′ is misclassified.

Risk and robustness based on the original prediction. The work of [Szegedy et al., 2014] modeled adversary’s

job as perturbing the instance x into the close instance x′ such that h(x′) 6= h(x).2 (See Definition 2.4.1

for a formalization.) Note that, x′ would indeed be a misclassification if c(x′) 6= h(x), but by substituting

this condition with h(x′) 6= h(x) one can use optimization methods to find such a close point x′ solely based

on the parameters of the trained model h. However, this approach is based on two implicit assumptions:

2[Szegedy et al., 2014] focuses on the || · ||2 norm, and also studies the targeted perturbations where the adversary has a
specific target label in mind.
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(1) that the hypothesis h is correct on all the original untampered examples x← D; we call this the initial

correctness assumption, and that (2) the ground truth c(·) does not change under small perturbations of x

into x′ (i.e., c(x) = c(x′)); we call this the truth proximity assumption. However, if either of these to implicit

assumptions do not hold, we cannot use the condition h(x′) 6= h(x) as adversary’s goal. We refer to this

approach for defining risk and robustness as the prediction-change (PC) approach.

Risk based on the original truth. The recent work of [Madry et al., 2018] proposed a new way of defining

an adversarial loss and risk based on adversary’s ability to obtain an x′ close to x such that c(x) 6= h(x′);

namely, here we compare the new prediction to the original actual label. This definition has the advantage

that it no longer relies on the implicit assumption of initial correctness for x← D. However, x′ is misclassified

only under the truth proximity assumption; that is, one still needs to assume c(x′) = c(x). We refer to this

approach for defining adversarial risk and robustness as the original-truth (OT) approach.

Our approach: error region. In this chapter, we propose defining adversarial risk and robustness (see

Definition 2.3.1) directly based on requiring the adversary to push the instances into the error region regardless

of whether or not the truth proximity or the initial correctness assumptions hold. Namely, our adversary

simply aims to perturb x into a close x′ such that h(x′) 6= c(x′). The main motivation for revisiting these

notions, is that in broader settings where either of the truth proximity or the initial correctness assumptions

do not hold, our new definitions of adversarial risk and robustness are still meaningful while the previous

definitions no longer guarantee misclassification of x′. We call this the error-region (ER) approach.

1.1 General Definitions of Adversarial Risk and Robustness

Notation. We use calligraphic letters (e.g., X ) for sets and capital non-calligraphic letters (e.g., D) for

distributions. By x← D we denote sampling x from D. In a classification problem P = (X ,Y,D, C,H), the

set X is the set of possible instances, Y is the set of possible labels, D is a set of distributions over X , C is a

class of concept functions, and H is a class of hypotheses, where any f ∈ C ∪ H is a mapping from X to Y.

An example is a labeled instance. We did not state the loss function explicitly, as we work with classification

problems, however all main three definitions of this section directly extend to arbitrary loss functions. For

x ∈ X , c ∈ C, D ∈ D, the risk or error of a hypothesis h ∈ H is the expected (0-1) loss of (h, c) with respect

to D, namely Risk(h, c,D) = Prx←D[h(x) 6= c(x)]. We are usually interested in learning problems with a

fixed distribution D = {D}, as we are particularly interested in robustness of learning under the uniform

distribution Un over {0, 1}n. Note that since we deal with negative results, fixing the distribution only makes

our results stronger. As a result, whenever D = {D}, we omit D from the risk notation and simply write

Risk(h, c). We usually work with problems P = (X ,Y, D, C,H, d) that include a metric d over the instances.
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For a set S ⊆ X we let d(x,S) = inf {d(x, y) | y ∈ S} and Ballr(x) = {x′ | d(x, x′) ≤ r}. By HD we denote

Hamming distance for pairs of instances from {0, 1}n. Finally, we use the term adversarial instance to refer

to an adversarially perturbed instance x′ of an originally sampled instance x when the label of the adversarial

example is either not known or not considered.

1.1.1 Different Definitions and Qualitative Comparisons

Below we present formal definitions of adversarial risk and robustness. In all of these definitions we will deal

with attackers who perturb the initial test instance x into a close adversarial instance x′. We will measure

how much an adversary can increase the risk by perturbing a given input x into a close adversarial example

x′. These definitions differ in when to call x′ a successful adversarial example. First we formalize the main

definition that we use in this chapter based on adversary’s ability to push instances to the error region.

Definition 1.1.1 (Error-region risk and robustness). Let P = (X ,Y, D, C,H, d) be a classification problem

(with metric d defined over instances X ).

� Risk. For any r ∈ R+, h ∈ H, c ∈ C, the error-region risk under r-perturbation is

RiskER
r (h, c) = Pr

x←D
[∃x′ ∈ Ballr(x), h(x′) 6= c(x′)] .

For r = 0, RiskER
r (h, c) = Risk(h, c) becomes the standard notion of risk.

� Robustness. For any h ∈ H, x ∈ X , c ∈ C, the error-region robustness is the expected distance of a

sampled instance to the error region, formally defined as follows

RobER(h, c) = E
x←D

[inf {r : ∃x′ ∈ Ballr(x), h(x′) 6= c(x′)}] .

Definition 2.3.1 requires the adversarial instance x′ to be misclassified, namely, h(x′) 6= c(x′). So, x′

clearly belongs to the error region of the hypothesis h compared to the ground truth c. This definition is

implicit in the work of Gilmer et al. [2018b]. In what follows, we compare our main definition above with

previously proposed definitions of adversarial risk and robustness found in the literature and discuss when

they are (or when they are not) equivalent to Definition 2.3.1.

Definitions based on hypothesis’s prediction change (PC risk and robustness). Many works,

including the works of [Szegedy et al., 2014, Fawzi et al., 2018] use a definition of robustness that compares

classifier’s prediction h(x′) with the prediction h(x) on the original instance x. Namely, they require
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h(x′) 6= h(x) rather than h(x′) 6= c(x′) in order to consider x′ an adversarial instance. Here we refer to this

definition (that does not depend on the ground truth c) as prediction-change (PC) risk and robustness (denoted

as RiskPC
r (h) and RobPC(h)). We note that this definition captures the error-region risk and robustness if we

assume the initial correctness (i.e., h(x) = c(x)) of classifier’s prediction on all x← X and “truth proximity”,

i.e., that c(x) = c(x′) holds for all x′ that are “close” to x. Both of these assumptions are valid in some

natural scenarios. For example, when input instances consist of images that look similar to humans (if used

as the ground truth c(·)) and if h is also correct on the original (non-adversarial) test examples, then the two

definitions (based on error region or prediction change) coincide. But, these assumptions do not hold in in

general.

We note that there is also a work in the direction of finding adversarial instances that may potentially fool

humans that have limited time to decide for their label, as in [Elsayed et al., 2018]. The images of [Elsayed

et al., 2018] are sufficiently ‘confusing’ that answers of the form “I do not know” are very plausible from the

humans that are asked. This fuzzy classification that allows “I do not know” answers is reminiscent of the

limited membership query model of Sloan and Turán [Sloan and Turán, 1994] (which is a worst-case version of

the incomplete membership query model of Angluin and Slonim [Angluin and Slonim, 1994]; see also [Angluin

et al., 1997b] and [Sloan et al., 2010] for further related discussions) as well as of the model of learning from

a consistently ignorant teacher of Frazier et al. [Frazier et al., 1996].

Definitions based on the notion of corrupted instance (CI risk and robustness). The works

of [Mansour et al., 2015, Feige et al., 2015, 2018, Attias et al., 2018] study the robustness of learning models in

the presence of corrupted inputs. A more recent framework was developed in [Madry et al., 2018, Schmidt et al.,

2018] for modeling risk and robustness that is inspired by robust optimization [Ben-Tal et al., 2009] (with

an underlying metric space) and model adversaries that corrupt the the original instance in (exponentially

more) ways. When studying adversarial perturbations using corrupted instances, we define adversarial risk

by requiring the adversarial instance x′ to satisfy h(x′) 6= c(x). The term “corrupted instance” is particularly

helpful as it emphasizes on the fact that the goal (of the classifier) is to find the true label of the original

(uncorrupted) instance x, while we are only given a corrupted version x′. Hence, we refer to this definition

as the corrupted instance (CI) risk and robustness and denote them by RiskCI
r (h, c) and RobCI(h, c). The

advantage of this definition compared to the prediction-change based definitions is that here, we no longer

need to assume the initial correctness assumption. Namely, only if the “truth proximity” assumption holds,

then we have c(x) = c(x′) which together with the condition h(x′) 6= c(x) we can conclude that x′ is indeed

misclassified. However, if small perturbations can change the ground truth, c(x′) can be different from c(x),

in which case, it is no long clear whether x′ is misclassified or not.
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Stronger definitions with more restrictions on adversarial instance. The corrupted-input definition

requires an adversarial instance x′ to satisfy h(x′) 6= c(x), and the error-region definition requires h(x′) 6= c(x′).

What if we require both of these conditions to call x′ a true adversarial instance? This is indeed the definition

used in the work of Suggala et al. [Suggala et al., 2018a], though more formally in their work, they subtract

the original risk (without adversarial perturbation) from the adversarial risk. This definition is certainly a

stronger guarantee for the adversarial instance. Therefore, we simply refer to risk and robustness under this

condition as strong adversarial risk and robustness. As this definition is a hybrid of the error-region and

corrupted-instance definitions, we do not make a direct study of this definition and only focus on the other

three definitions described above.

How about when the classifier h is 100% correct? We emphasize that when h happens to be the same

function as c, (the error region) Definition 2.3.1 implies h has zero adversarial risk and infinite adversarial

robustness RobER(h, c) =∞. This is expected, as there is no way an adversary can perturb any input x into

a misclassified x′. However, both of the definitions of risk and robustness based on prediction change [Szegedy

et al., 2014] and corrupted instance [Mansour et al., 2015, Madry et al., 2018] could compute large risk and

small robustness for such h. In fact, in a recent work [Tsipras et al., 2018a] it is shown that for definitions

based on corrupted input, correctness might be provably at odds with robustness in some cases. Therefore,

even though all these definitions could perhaps be used to approximate the risk and robustness when we do

not have access to the ground truth c′ on the new point x′, in this chapter we separate the definition of risk

and robustness from how to compute/approximate them, so we will use Definition 2.3.1 by default.

1.1.2 Various Aspects of the Attack Models

We emphasize that the definitions of Section 1.1.1 are all information theoretic and do not address the

efficiency of the adversary who perturbs the original instance x into x′. Moreover, there are other aspects of

the attack that are implicit in the definitions Section 1.1.1 in terms of what adversary does or does not have

access to during the course of the attack. Below, we briefly point out these other aspects.

� Efficiency. This aspect of an attack could come in two flavor. One way to mathematically formalize

“efficient” attacks is to use polynomial-time attacks as it is done in cryptography. Another way is to

use information theoretic attacks without the efficiency requirements. Security against information

theoretic attacks are stronger, while attacks of polynomial-time form are stronger.

� Information access. The other aspect of the attack is about what adversary has access to during the

attack and how it can access this information. We separate these aspects as follows.
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– What to access. In general, we can consider attacks that do or do not access to either of the

ground truth c, the hypothesis h, or distribution D.

– How to access. If the attack can depend on a function f (e.g., f = h or f = c) or a distribution D

it can still access this information in various forms. An information theoretic attack can completely

depend on the full description of f , while an efficient (polynomial time attack) can use oracle

access to f (regardless of efficiency of f itself) or a sampler for D. In fact, if f (or a sampler for a

distribution D) has a compact representation, then an efficient attacker can also fully depend on f

or D if that representation is given.

Going back to the definitions of Section 4.2, by “∃x′ ∈ Ballr(x), P (x′)” we simply state the existence of a

close instance x′ with a property P (x′) while it might be computationally infeasible to actually find such an

x′. Moreover, the definitions of Section 4.2 assume the adversary has full access to f, c,D.



Chapter 2

Evasion Attacks from Concentration

of Measure

2.1 Introduction

Learning how to classify instances based on labeled examples is a fundamental task in machine learning.

The goal is to find, with high probability, the correct label c(x) of a given test instance x coming from a

distribution D. Thus, we would like to find a good-on-average “hypothesis” h (also called the trained model)

that minimizes the error probability Prx←D[h(x) 6= c(x)], which is referred to as the risk of h with respect to

the ground truth c. Due to the explosive use of learning algorithms in real-world systems (e.g., using neural

networks for image classification) a more modern approach to the classification problem aims at making the

learning process, from training till testing, more robust. Namely, as we discussed in previous section, even if

the instance x is perturbed in a limited way into x′ by an adversary A, we would like to have the hypothesis

h still predict the right label for x′; hence, minimizing the “adversarial risk”

Pr
x←D

[h(x′) 6= c(x′) for some x′ “close” to x]

of the hypothesis h under such perturbations, where “close” is defined by a metric. An attack to increase the

risk is called an “evasion attack” (see e.g., Biggio et al. [2014], Carlini and Wagner [2017b]) due to the fact

that x′ “evades” the correct classification. One major motivation behind this problem comes from scenarios

such as image classification, in which the adversarially perturbed instance x′ would still “look similar” to the

original x, at least in humans’ eyes, even though the classifier h might now misclassify x′ Goodfellow et al.

105
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[2018]. In fact, starting with the work of Szegedy et al. Szegedy et al. [2014] an active line of research (e.g.,

see Biggio et al. [2013, 2014], Goodfellow et al. [2015], Papernot et al. [2016b], Carlini and Wagner [2017b],

Xu et al. [2018]) investigated various attacks and possible defenses to resist such attacks. The race between

attacks and defenses in this area motivates a study of whether or not such robust classifiers could ever be

found, if they exist at all.

The state of affairs in attacks and defenses with regard to the robustness of learning systems in both the

evasion contexts leads us to our main question:

What are the inherent limitations of defense mechanisms for evasion attacks? Equivalently, what

are the inherent power of such attacks?

Understanding the answer to the above question is fundamental for finding the right bounds that robust

learning systems can indeed achieve, and achieving such bounds would be the next natural goal.

Related prior work. In the context of evasion attacks, the most relevant to our main question above

are the recent works of Gilmer et al. Gilmer et al. [2018b], Fawzi et al. Fawzi et al. [2018], and Diochnos

et al. Diochnos et al. [2018c]. In all of these works, isoperimetric inequalities for specific metric probability

spaces (i.e., for uniform distributions over the n-sphere by Gilmer et al. [2018b], for isotropic n-Gaussian

by Fawzi et al. [2018], and for uniform distribution over the Boolean hypercube by Diochnos et al. [2018c])

were used to prove that problems on such input spaces are always vulnerable to adversarial instances.1 The

work of Schmidt et al. Schmidt et al. [2018] shows that, at least in some cases, being robust to adversarial

instances requires more data. However, the work of Bubeck et al. Bubeck et al. [2018b] proved that assuming

the existence of classifiers that are robust to evasion attacks, they could be found by “few” training examples

in an information theoretic way.

2.1.1 Summary of Results

In this section, we draw a connection between the general phenomenon of “concentration of measure” in metric

measured spaces and both evasion and poisoning attacks. A concentrated metric probability space (X , d, D)

with metric d and measure D has the property that for any set S of measure at least half (D(S) ≥ 1/2), most

of the points in X according to D, are “close” to S according to d (see Definition 2.2.4). We prove that for

any learning problem defined over such a concentrated space, no classifier with an initial constant error (e.g.,

1/100) can be robust to adversarial perturbations. Namely, we prove the following theorem. (See Theorem

2.3.2 for a formalization.)

1More formally, Gilmer et al. Gilmer et al. [2018b] designed specific problems over (two) n-spheres, and proved them to be
hard to learn robustly, but their proof extend to any problem defined over the uniform distribution over the n-sphere. Also,
Fawzi et al. Fawzi et al. [2018] used a different notion of adversarial risk that only considers the hypothesis h and is independent
of the ground truth c, however their proofs also extend to the same setting as ours.
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Theorem 2.1.1 (Informal). Suppose (X , d, D) is a concentrated metric probability space from which the test

instances are drawn. Then for any classifier h with Ω(1) initial “error” probability, there is an adversary who

changes the test instance x into a “close” one and increases the risk to ≈ 1.

In Theorem 2.1.1, the “error” could be any undesired event over h, c, x where h is the hypothesis, c is the

concept function (i.e., the ground truth) and x is the test instance.

The intuition behind the Theorem 2.1.1 is as follows. Let E = {x ∈ X | h(x) 6= c(x)} be the “error region”

of the hypothesis h with respect to the ground truth concept c(·) on an input space X . Then, by the

concentration property of X and that D(E) ≥ Ω(1), we can conclude that at least half of the space X is “close”

to E , and by one more application of the same concentration property, we can conclude that indeed most of the

points in X are “close” to the error region E . Thus, an adversary who launches an evasion attack, can indeed

push a typical point x into the error region by little perturbations. This above argument, is indeed inspired

by the intuition behind the previous results of Gilmer et al. [2018b], Fawzi et al. [2018], and Diochnos et al.

[2018c] all of which use isoperimetric inequalities for specific metric probability spaces to prove limitations of

robust classification under adversarial perturbations. Indeed, one natural way of proving concentration results

is to use isoperimetric inequalities that characterize the shape of sets with minimal boundaries (and thus

minimal measure after expansion). However, we emphasize that bounds on concentration of measure could be

proved even if no such isoperimetric inequalities are known, and e.g., approximate versions of such inequalities

would also be sufficient. Indeed, in addition to proofs by isoperimetric inequalities, concentration of measure

results are proved using tools from various fields such as differential geometry, bounds on eigenvalues of

the Laplacian, martingale methods, etc, Milman and Schechtman [1986]. Thus, by proving Theorem 2.1.1,

we pave the way for a wide range of results against robust classification for learning problems over any

concentrated space. To compare, the results of Gilmer et al. [2018b], Fawzi et al. [2018], Diochnos et al.

[2018c] have better constants due to their use of isoperimetric inequalities, while we achieve similar asymptotic

bounds with worse constants but in broader contexts.

Lévy families. A well-studied class of concentrated metric probability spaces are the so-called Lévy families

(see Definition 4.3.1) and one special case of such families are known as normal Lévy families. In such spaces,

when the dimension (seen as the diameter of, or the typical norm of vectors in (X , d)) is n, if we expand sets

with measure 1/2 by distance b, they will cover measure at least 1− k1e−k2b
2/n for some universal constants

k1, k2. When translated back into the context of adversarial classification using our Theorem 2.1.1, we

conclude that any learning task defined over a normal Lévy metric space (X , d, D) guarantees the existence of

(misclassified) adversarial instances that are only Õ(
√
n)-far from the original instance x, assuming that the

original error of the classifier is only polynomially large ≥ 1/ poly(n). Interestingly, all the above-mentioned
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classifier-independent results on the existence of adversarial instances follow as special cases by applying

our Theorem 2.1.1 to known normal Lévy families (i.e., the n-sphere, isotropic n-Gaussian, and the Boolean

hypercube under Hamming distance). However, many more examples of normal Lévy families are known

in the literature (e.g., the unit cube, the unit sphere, the special orthogonal group, symmetric group under

Hamming distance, etc.) for which we immediately obtain new results, and in fact, it seems that “natural”

probabilistic metric spaces are more likely to be Lévy families than not! In Section 2.3.2, we list some of

these examples and give citation where more examples could be found.2

Robustness against average-case limited perturbation. We also prove variants of Theorem 2.1.1

that deal with the average amount of perturbation done by the adversary with the goal of changing the

test instance x into a misclassified x′. Indeed, just like the notion of adversarial risk that, roughly speaking,

corresponds to the concentration of metric spaces with a worst-case concentration bound, the robustness of a

classifier h with an average-case bound on the perturbations corresponds to the concentration of the metric

probability space using an average-case bound on the perturbation. In this section we introduce the notion of

target-error robustness in which the adversary targets a specific error probability and plans its (average-case

bounded) perturbations accordingly (see Theorem 2.3.5).

Relation to hardness of robust image classification. Since a big motivation for studying the hardness

of classifiers against adversarial perturbations comes from the challenges that have emerged in the area of

image classifications, here we comment on possible ideas from our work that might be useful for such studies.

Indeed, a natural possible approach is to study whether or not the metric measure space of the images is

concentrated or not. We leave such studies for interesting future work. Furthermore, the work of Fawzi et al.

[2018] observed that vulnerability to adversarial instances over “nice” distributions (e.g., n-Gaussian in their

work, and any concentrated distribution in our work) can potentially imply attacks on real data assuming

that the data is generated with a smooth generative model using the mentioned nice distributions. So, as

long as one such mapping could be found for a concentrated space, our impossibility results can potentially

be used for deriving similar results about the generated data (in this case image classification) as well.

The special case of product distributions. One natural family of metric probability spaces for which

Theorem 2.1.1 entails new impossibility results are product measure spaces under Hamming distance. Results

of Amir and Milman [1980], Milman and Schechtman [1986], Talagrand [1995] show that such metric probability

spaces are indeed normal Lévy. Therefore, we immediately conclude that, in any learning task, if the instances

2More formally, in Definition 4.3.1, the concentration function is e−k2b
2·n, however in many natural examples that we discuss

in Section 2.3.2, the original norm required to be a Lévy family is ≈ 1, while the (expected value of the) “natural” norm is ≈ n
where n is the dimension. (See Remark 2.3.9.)
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come from any product space of dimension n, then an adversary can perturb them to be misclassified by

only changing O(
√
n) of the “blocks” of the input. A special case of this result covers the case of Boolean

hypercube that was recently studied by Diochnos et al. [2018c]. However, here we obtain impossibilities for

any product space. As we will see below, concentration in such spaces are useful beyond evasion attacks.

2.2 Preliminaries

2.2.1 Basic Concepts and Notation

Definition 2.2.1 (Notation for metric spaces). Let (X , d) be a metric space. We use the notation Diamd(X ) =

sup {d(x, y) | x, y ∈ Xi} to denote the diameter of X under d, and we use Balldb(x) = {x′ | d(x, x′) ≤ b} to

denote the ball of radius b centered at x. When d is clear from the context, we simply write Diam(X ) and

Ballb(x). For a set S ⊆ X , by d(x,S) = inf {d(x, y) | y ∈ S} we denote the distance of a point x from S.

Unless stated otherwise, all integrals in this chapter are Lebesgue integrals.

Definition 2.2.2 (Nice metric probability spaces). We call (X , d, D) a metric probability space, if D is a

Borel probability measure over X with respect to the topology defined by d. Then, for a Borel set E ⊆ X ,

the b-expansion of E , denoted by Eb, is defined as3

Eb = {x | d(x, E) ≤ b} .

We call (X , d, D) a nice metric probability space, if the following conditions hold.

1. Expansions are measurable. For every D-measurable (Borel) set E ∈ X , and every b ≥ 0, its

b-expansion Eb is also D-measurable.

2. Average distances exist. For every two Borel sets E ,S ∈ X , the average minimum distance of an

element from S to E exists; namely, the integral
∫
S d(x, E) · dD(x) exists.

At a high level, and as we will see shortly, we need the first condition to define adversarial risk and need

the second condition to define (a generalized notion of) robustness. Also, we remark that one can weaken the

second condition above based on the first one and still have risk and robustness defined, but since our goal in

this chapter is not to do a measure theoretic study, we are willing to make simplifying assumptions that hold

on the actual applications, if they make the presentation simpler.

3The set Eb is also called the b-flattening or b-enlargement of E, or simply the b-ball around A.
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Definition 2.2.3 (Nice classification problems). We call (X ,Y, D, C,H, d) a nice classification problem, if

the following two conditions hold:

1. (X , d, D) is a nice metric probability space.

2. For every h ∈ H, c ∈ C, their error region {x ∈ X | h(x) 6= c(x)} is D-measurable.

The second condition above is satisfied, e.g., if the set of labels Y (which is usually finite) is countable, and

for all y ∈ Y, f ∈ H ∪ C, the set {x ∈ X | f(x) = y} is D-measurable.

2.2.2 The Concentration Function and Some Bounds

We now formally define the (standard) notion of concentration function.

Definition 2.2.4 (Concentration function). Let (X , d, D) be a metric probability space and E ⊆ X be a

Borel set. The concentration function is then defined as

α(b) = 1− inf {D(Eb) | D(E) ≥ 1/2} .

Variations of the following Lemma 2.2.5 below are in Amir and Milman [1980], Milman and Schechtman

[1986], but the following version is due to Talagrand Talagrand [1995] (in particular, see Equation 2.1.3 of

Proposition 2.1.1 in Talagrand [1995]).

Lemma 2.2.5 (Concentration of product spaces under Hamming distance). Let D ≡ D1 × · · · ×Dn be a

product probability measure of dimension n and let the metric be the Hamming distance. For any D-measurable

S ⊆ X such that the b-expansion Sb of S under Hamming distance is also measurable,

D(Sb) ≥ 1− e−b
2/n

D(S)
.

Lemma 2.2.6 (McDiarmid inequality). Let D ≡ D1×· · ·×Dn be a product probability measure of dimension

n, and let f : Supp(D) 7→ R be a measurable function such that |f(x) − f(y)| ≤ 1 whenever x and y only

differ in one coordinate. If a = Ex←D[f(x)], then

Pr
x←D

[f(x) ≤ a− b] ≤ e−2·b2/n.



2.3 Evasion Attacks: Finding Adversarial Examples from Concentration 111

2.3 Evasion Attacks: Finding Adversarial Examples from Concen-

tration

In this section, we formally prove our main results about the existence of evasion attacks for learning problems

over concentrated spaces. We start by formalizing the notions of risk and robustness.

Definition 2.3.1 (Adversarial risk and robustness). Let (X ,Y, D, C,H, d) be a nice classification problem.

For h ∈ H and c ∈ C, let E = {x ∈ X | h(x) 6= c(x)} be the error region of h with respect to c. Then, we

define:

� Adversarial risk. For b ∈ R+, the (error-region) adversarial risk under b-perturbation is

Riskb(h, c) = Pr
x←D

[∃x′ ∈ Ballb(x) ∩ E ] = D(Eb).

We might call b the “budget” of an imaginary “adversary” who perturbs x into x′. Using b = 0, we

recover the standard notion of risk: Risk(h, c) = Risk0(h, c) = D(E).

� Target-error robustness. Given a target error ρ ∈ (0, 1], we define the ρ-error robustness as the

expected perturbation needed to increase the error to ρ; namely,

Robρ(h, c) = inf
D(S)≥ρ

{
E

x←D
[1S(x) · d(x, E)]

}
= inf
D(S)≥ρ

{∫
S

d(x, E) · dD(x)

}
,

where 1S(x) is the characteristic function of membership in S. Letting ρ = 1, we recover the notion of full

robustness Rob(h, c) = Rob1(h, c) = Ex←D [d(x, E)] that captures the expected amount of perturbations

needed to always change x into a misclassified x′ where x′ ∈ E .

As discussed in the introduction, starting with Szegedy et al. [2014], many papers (e.g., the related work

of Fawzi et al. [2018]) use a definitions of risk and robustness that only deal with the hypothesis/model and

is independent of the concept function. In Diochnos et al. [2018c], that definition is formalized as “prediction

change” (PC) adversarial risk and robustness. In Appendix 2.4, we show that using the concentration function

α(·) and our proofs of this section, one can also bound the PC risk and robustness of hypotheses assuming

that we have a concentration function. Then, by plugging in any concentration function (e.g., those of Lévy

families) and obtain the desired upper/lower bounds.

In the rest of this section, we focus on misclassification as a necessary condition for the target adversarial

example. So, in the rest of this section, we use Definition 2.3.1 to prove our results.
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2.3.1 Increasing Risk and Decreasing Robustness by Adversarial Perturbation

We now formally state and prove our result that the adversarial risk can be large for any learning problem

over concentrated spaces. Note that, even though the following is stated using the concentration function,

having an upper bound on the concentration function suffices for using it. Also, we note that all the results

of this section extend to settings in which the “error region” is substituted with any “bad” event modeling

an undesired region of instances based on the given hypothesis h and concept function c; though the most

natural bad event is that error h(x) 6= c(x) occurs.

Theorem 2.3.2 (From concentration to large adversarial risk). Let (X ,Y, D, C,H, d) be a nice classification

problem. Let h ∈ H and c ∈ C, and let ε = Prx←D[h(x) 6= c(x)] be the error of the hypothesis h with respect

to the concept c. If ε > α(b) (i.e., the original error is more than the concentration function for the budget

b), then the following two hold.

1. Reaching adversarial risk at least half. Using only tampering budget b, the adversary can make

the adversarial risk to be more than half; namely, Riskb(h, c) > 1/2.

2. Reaching adversarial risk close to one. If in addition we have γ ≥ α(b2), then the adversarial

risk for the total tampering budget b1 + b2 is Riskb1+b2(h, c) ≥ 1− γ.

Proof of Theorem 2.3.2. Let E = {x ∈ X | h(x) 6= c(x)} be the error region of (h, c), and so it holds that

ε = D(E). To prove Part 1, suppose for sake of contradiction that Riskb(h, c) ≤ 1/2. Then, for S = X \ Eb,

it holds that D(S) = 1 − D(Eb) = 1 − Riskb(h, c) ≥ 1/2. By the assumption D(E) > α(b), we have

D(Sb) ≥ 1− α(b) > 1− ε. So, there should be x ∈ Sb ∩ E , which in turn implies that there is a point y ∈ S

such that d(y, x) ≤ b. However, that is a contraction as d(y, x) ≤ b implies that y should be in Eb = X \ S.

To prove Part 2, we rely on Part 1. By Part 1, if we use a tampering budget b1, we can increase the

adversarial risk to Riskb1(h, c) > 1/2, but then because of the second assumption γ ≥ α(b2), it means that by

using b2 more budget, we can expand the error region to measure ≥ 1− γ.

The above theorem provides a general result that applies to any concentrated space. So, even though we

will compute explicit bounds for spaces such as Lévy families, Theorem 2.3.2 could be applied to any other

concentrated space as well, leading to stronger or weaker bounds than what Lévy families offer. Now, in the

following, we go after finding general relations between the concentration function and the robustness of the

learned models.

Simplifying notation. Suppose (X , d, D) is a nice metric probability space. Since our risk and robustness

definitions depend only on the error region, for any Borel set E ⊆ X and b ∈ R+, we define its b-tampering
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risk as Riskb(E) = D(Eb), and for any such E and ρ ∈ (0, 1], we define the ρ-error robustness as Robρ(E) =

infD(S)≥ρ
{∫
S d(x, E) · dD(x)

}
.

The following lemma provides a very useful tool for going from adversarial risk to robustness; hence,

allowing us to connect concentration of spaces to robustness. In fact, the lemma could be of independent

interest, as it states a relation between worst-case concentration of metric probability spaces to their

average-case concentration with a targeted amount of measure to cover.

Lemma 2.3.3 (From adversarial risk to target-error robustness). For a nice metric probability space (X , d, D),

let E ⊆ X be a Borel set. If ρ = Risk`(E), then we have

Robρ(E) = ρ · `−
∫ `

z=0

Riskz(E) · dz.

First, we make a few comments on using Lemma 2.3.3.

Special case of full robustness. Lemma 2.3.3 can be used to compute the full robustness also as

Rob(E) = Rob1(E) = `−
∫ `

z=0

Riskz(E) · dz, (2.1)

using any ` ≥ Diam(X ), because for such ` we will have Risk`(E) = 1. In fact, even if the diameter is not

finite, we can always use ` =∞ and rewrite the two terms as

Rob(E) =

∫ ∞
z=0

(1− Riskz(E)) · dz, (2.2)

which might or might not converge.

When we only have lower bounds for adversarial risk. Lemma 2.3.3, as written, requires the exact

amount of risk for the initial set E . Now, suppose we only have a lower bound Lz(E) ≤ Riskz(E) for the

adversarial risk. In this case, we can still use Lemma 2.3.3, but it will only give us an upper bound on the

ρ-error robustness using any ` such that ρ ≤ L`(E) as follows,

Robρ(E) ≤ `−
∫ `

z=0

Lz(E) · dz. (2.3)

Note that, even though the above bound looks similar to that of full robustness in Equation 2.1, in

Inequality 2.3 we can use ` < Diam(X ), which leads to a smaller total bound on the ρ-error robustness.
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Proof of Lemma 2.3.3. Let ν(S) =
∫
S d(x, E) · dD(x). Based on the definition of robustness, we have

Robρ(E) = inf
D(S)≥ρ

[ν(S)] .

For the fixed E , let mS = sup {d(x, E) : x ∈ S}, and let FS : R→ R be the cumulative distribution function

for d(x, E) over S, namely FS(z) = D(Ez ∩ S). Whenever S is clear from the context we simply write

m = mS , F (·) = FS(·). Before continuing the proof, we prove the following claim.

Claim 2.3.4. Let F be a cumulative distribution function of a random variable. For any m ∈ R+,

∫ m

z=0

z · dF (z) +

∫ m

z=0

F (z) · dz = m · F (m)

where the left integral shall be interpreted as Lebesgue integral over the Lebesgue–Stieltjes measure associated

with the cumulative distribution function F (·).

Proof of Claim 2.3.4. Claim 2.3.4 follows from the integration-by-parts (extension) for Lebesgue integral

over the Lebesgue–Stieltjes measure.

Now, we have

ν(S) =

∫
S

d(x, E) · dD(x) =

∫ m

z=0

z · dF (z)

(by Claim 2.3.4) = m · F (m)−
∫ m

z=0

F (z) · dz.

Indeed, for the special case of S = E` we have mS = `, FS(mS) = FS(`) = D(S) = ρ. Thus,

ν(E`) = mE` · FE`(mE`)−
∫ mE`

z=0

FE`(z) · dz = ` · ρ−
∫ `

z=0

Riskz(E) · dz,

and so the robustness can be bounded from above as

Robρ(E) = inf
D(S)≥ρ

[ν(S)] ≤ ν(E`) = ` · ρ−
∫ `

z=0

Riskz(E) · dz. (2.4)

We note that, if we wanted to prove Lemma 2.3.3 for the special case of full robustness (i.e., ` ≥

Diam(X ), D(E`) = ρ = 1), the above concludes the proof. The rest of the proof, however, is necessary for the

more interesting case of target-error robustness. At this point, all we have to prove is a similar lower bound
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for any S where D(S) ≥ ρ, so in the following assume S is one such set. By definition, it holds that

∀ z ∈ [0,m], F (z) ≤ D(Ez) = Riskz(E) (2.5)

and

F (m) = D(S) ≥ ρ. (2.6)

First, we show that ∫ m

z=`

(F (z)− F (m)) · dz ≤ 0. (2.7)

The inequality above clearly holds if m ≥ `. We prove that if ` > m then the integral is equal to 0. We know

that F (`) ≤ D(E`) = ρ, therefore F (m) ≥ ρ ≥ F (`). We also know that F is an increasing function and ` > m

therefore F (m) = ρ = F (`). So we have ∀z ∈ [m, `], F (z) = ρ which implies
∫m
z=`

(F (z) − F (m)) · dz = 0.

Now, we get

ν(S) = m · F (m)−
∫ m

z=0

F (z) · dz

= ` · F (m)−
∫ `

z=0

F (z) · dz −
∫ m

z=`

(F (z)− F (m)) · dz

(by Inequality 2.6) ≥ ` · ρ−
∫ `

z=0

F (z) · dz −
∫ m

z=`

(F (z)− F (m)) · dz

(by Inequality 2.5) ≥ ` · ρ−
∫ `

z=0

Riskz(E) · dz −
∫ m

z=`

(F (z)− F (m)) · dz

(by Inequality 2.7) ≥ ` · ρ−
∫ `

z=0

Riskz(E) · dz.

The above lower bound on Robρ(E) and the upper bound of Inequality 2.3 conclude the proof.

We now formally state our result that concentration in the instance space leads to small robustness of

classifiers. Similarly to Theorem 2.3.2, we note that even though the following theorem is stated using the

concentration function, having an upper bound on the concentration function would suffice.

Theorem 2.3.5 (From concentration to small robustness). Let (X ,Y, D, C,H, d) be a nice classification

problem. Let h ∈ H and c ∈ C, and let ε = Prx←D[h(x) 6= c(x)] be the error of the hypothesis h with respect

to the concept c. Then if ε > α(b1) and 1− ρ ≥ α(b2), we have

Robρ(E) ≤ (1− ε) · b1 +

∫ b2

z=0

α(z) · dz.
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Proof of Theorem 2.3.5. By Theorem 2.3.2, we know that Riskb1(E) = D(Eb1) ≥ 1
2 which implies Riskb1+b2(E) =

Riskb2(Eb1) ≥ ρ. If we let ρ∗ = Riskb1+b2(E), then we have

Robρ(E) ≤ Robρ∗(E)

(by Lemma 2.3.3) =

∫ b1+b2

z=0

(ρ∗ − Riskz(E)) · dz

=

∫ b1

z=0

(ρ∗ − Riskz(E)) · dz +

∫ b1+b2

b1

(ρ∗ − Riskz(E)) · dz

≤ (ρ∗ − γ) · b1 +

∫ b1+b2

b1

(ρ∗ − Riskz(E)) · dz

= (ρ∗ − γ) · b1 +

∫ b2

z=0

(ρ∗ − Riskz(Eb1)) · dz

(by Theorem 2.3.2) ≤ (ρ∗ − γ) · b1 +

∫ b2

z=0

(ρ∗ − 1 + α(z)) · dz

= (ρ∗ − ε) · b1 + (ρ∗ − 1) · b2 +

∫ b2

z=0

α(z) · dz

≤ (1− ε) · b1 +

∫ b2

z=0

α(z) · dz.

2.3.2 Normal Lévy Families as Concentrated Spaces

In this subsection, we study a well-known special case of concentrated spaces called normal Lévy families, as

a rich class of concentrated spaces, leading to specific bounds on the risk and robustness of learning problems

whose test instances come from any normal Lévy family. We start by formally defining normal Lévy families.

Definition 2.3.6 (Normal Lévy families). A family of metric probability spaces (Xn, dn, Dn)i∈N with

corresponding concentration functions αn(·) is called a (k1, k2)-normal Lévy family if

αn(b) ≤ k1 · e−k2·b2·n.

The following theorem shows that classifying instances that come from a normal Lévy family has the

inherent vulnerability to perturbations of size O(1/
√
n)

Theorem 2.3.7 (Risk and robustness in normal Lévy families). Let (Xn,Yn, Dn, Cn,Hn, dn)n∈N be a nice

classification problem with a metric probability space (Xn, dn, Dn)n∈N that is a (k1, k2)-normal Lévy family.

Let h ∈ Hn and c ∈ Cn, and let ε = Prx←D[h(x) 6= c(x)] be the error of the hypothesis h with respect to the

concept c.
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1. Reaching adversarial risk at least half. If b >
√

ln(k1/ε)/
√
k2 · n, then Riskb(h, c) ≥ 1/2.

2. Reaching Adversarial risk close to one. If b >
(√

ln(k1/ε) +
√

ln(k1/γ)
)
/
√
k2 · n, then it holds

that Riskb(h, c) ≥ 1− γ.

3. Bounding target-error robustness. For any ρ ∈ [ 1
2 , 1], we have

Robρ(h, c) ≤
(1− ε)

√
ln(k1/ε) + erf

(√
ln(k1/(1− ρ))

)
· k1
√
π/2

√
k2 · n

.

Proof of Theorem 2.3.7. Proof of Part 1 is similar to (part of the proof of) Part 2, so we focus on Part

2. To prove Part 2, let b2 =
√

ln(k1/γ)
k2·n and b1 = b − b2 >

√
ln(k1/ε)
k2·n . Then, we get k1 · e−k2·b22·n = γ and

k1 · e−k2·b21·n < ε. Therefore, by directly using Part 2 of Theorem 2.3.2 and Definition 4.3.1 (of normal Lévy

families), we conclude that Riskb(h, c) ≥ 1− γ for b = b1 + b2.

We now prove Part 3. By Theorem 2.3.5, we have

Robρ(h, c) ≤ (1− ε) · b1 + k1 ·
∫ b2

0

e−k2·z2·n · dz = (1− ε) · b1 +
k1 ·
√
π

2
√
n · k2

· erf
(
b2 ·

√
n · k2

)
.

Here we remark on its interpretation in an asymptotic sense, and discuss how much initial error is needed

to achieve almost full adversarial risk.

Corollary 2.3.8 (Asymptotic risk and robustness in normal Lévy families). Let Pn be a nice classification

problem defined over a metric probability space that is a normal Lévy family, and let ε be the error probability

of a hypothesis h with respect to some concept function c.

1. Starting from constant error. If ε ≥ Ω(1), then for any constant γ, one can get adversarial risk

1− γ for h using only O(1/
√
n) perturbations, and full robustness of h is also O(1/

√
n).

2. Starting from sub-exponential error. If ε ≥ exp(−o(n)), then one can get adversarial risk

1− exp(−o(n)) for h using only o(1) perturbations, and full robustness is also o(1).

Remark 2.3.9 (How much perturbation is needed? O(
√
n) or O(1/

√
n)?). The amount of perturbation in

normal Lévy families needed to (almost certainly) misclassify the adversarial example is O(1/
√
n), but this is

also the case that “typically” metric probability spaces become normal Lévy under a “normalized” metric;

meaning that the diameter (or more generally the average of distances of random pairs) is Θ(1). (E.g., when

working with the unit n-sphere.) However, in some occasions, the “natural” metrics over those spaces is
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achieved by scaling up the typical distances to Θ(n) (e.g., the Hamming distance in the Boolean hypercube).

In that case, the bounds of Theorem 2.3.7 also get scaled up to O(
√
n) (for constants ε, γ).

Examples of Normal Lévy Families.

Here, we list some natural metric probability spaces that are known to be normal Lévy families. For the

references and more examples we refer the reader to excellent sources Ledoux [2001], Giannopoulos and

Milman [2001], Milman and Schechtman [1986]. There are other variants of Lévy families, e.g., those called

Lévy (without the adjective “normal”) or concentrated Lévy families Alon and Milman [1985] with stronger

concentration, but we skip them and refer the reader to the cited sources and general tools of Theorems 2.3.2

and 2.3.5 on how to apply any concentration of measure results to get bounds on risk and robustness of

classifiers.

� Unit sphere under Euclidean or Geodesic distance. The unit n-spheres Sn (of radius 1 in Rn+1),

under the geodesic distance (or Euclidean distance) and the normalized rotation-independent uniform

measure is a normal Lévy family. Lévy was first Lévy [1951] to notice that the isoperimetric inequality

for Sn makes it (what is now known as a) Lévy family.

� Rn under Gaussian distribution and Euclidean distance. Rn with Euclidean distance and

n-dimensional Gaussian measure (where expected Euclidean length is 1) is a normal Lévy family. This

follows from the Gaussian isoperimetric inequality Borell [1975], Sudakov and Tsirel’son [1978].

� Unit cube and unit ball under Euclidean distance. Both the unit cube [0, 1]n and the unit n-ball

(of radius 1) are normal Lévy families under normalized Euclidean distance (where the diameter is 1)

and normalized Lebesgue distributions (see Propositions 2.8 and 2.9 in Ledoux [2001]).

� Special orthogonal group. The special orthogonal group SO(n) (i.e., the subgroup of the orthogonal

group O(n) containing matrices with determinant one) equipped with the Hilbert-Schmidt metric and

the Haar probability measure is a normal Lévy family.

� Product distributions under Hamming distance. Any product distribution Dn with normalized

Hamming distance is a normal Lévy family Amir and Milman [1980], Milman and Schechtman [1986],

Talagrand [1995]. In particular, the Boolean hypercube {0, 1}n with normalized Hamming distance and

uniform distribution is a normal Lévy family Amir and Milman [1980].4 In the next section, we will use

the concentration of product spaces to obtain poisoning attacks against learners.

4This also follows from the isoperimetric inequality of Harper [1966].
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� Symmetric group under Hamming distance. The set of all permutations Πn under Hamming

distance and the uniform distribution forms a non-product Lévy family.

2.4 Risk and Robustness Based on Hypothesis’s Prediction Change

As we discussed in previous section, the work of Szegedy et al. Szegedy et al. [2014], as well as a big

portion of subsequent work on adversarial examples, relies on defining adversarial risk and robustness of

a hypothesis h based on the amount of adversarial perturbations that change the prediction of h. Their

definition is independent of the concept function c determining the ground truth. In particular, for a given

example (x, c(x)) where the prediction of the hypothesis is h(x) (that might indeed be different from c(x)),

an adversarial perturbation of x is r such that for the instance x′ = x+ r we have h(x′) 6= h(x) (where h(x′)

may or may not be equal to c(x′)). Hence, since the attacker only cares about changing the prediction of the

hypothesis h, we refer to adversarial properties (be it adversarial perturbations, adversarial risk, adversarial

robustness) under this definition as adversarial properties based on “prediction change” (PC for short)– as

opposed to adversarial properties based on the “error region” in Definition 2.3.1.

In this section, we show that using the concentration function α(·) and our proofs of Section 2.3, one can

also bound the PC risk and robustness of hypotheses assuming that we have a concentration function. Then,

one can use any concentration function (e.g., those of Lévy families) and obtain the desired upper/lower

bounds, just as how we did so for the the results of Subsection 2.3.2.

Focusing on the hypothesis class. Whenever we consider a classification problem (X ,Y, D,H, d) without

explicitly denoting the concept class C, we mean that (X ,Y, D, C,H, d) is nice for the trivial set C of constant

functions that output either of y ∈ Y . The reason for this definition is that basically, below we will require

some concept class, and all we want is that preimages of specific labels under any h are measurable sets,

which is implied if the problem is nice with the simple C described.

Definition 2.4.1 (Prediction-change adversarial risk and robustness). Let (X ,Y, D,H, d) be a nice classifi-

cation problem. For h ∈ H, and ` ∈ Y, we define h` = {x ∈ X | h(x) = `}. Then, for any h ∈ H, we define

the following.

� Prediction change (PC) risk. The PC risk under b-perturbation is

RiskPC
b (h) = Pr

x←D
[∃x′ ∈ Ballb(x), h(x) 6= h(x′)] .
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� Target-label PC risk. For ` ∈ Y and b ∈ R+, the `-label (PC) risk under b-perturbation is

Risk`b(h) = Pr
x←D

[
∃x′ ∈ Ballb(x) ∩ h`

]
= D(h`b).

� PC robustness. For a given non-constant h ∈ H, we define the PC robustness as the expected

perturbation needed to change the labels as follows

RobPC(h) = E
x←D
`=h(x)

[
d(x,X \ h`)

]
.

� Target-label PC robustness. For ` ∈ Y and a given non-constant h ∈ H, we define the `-label (PC)

robustness as the expected perturbation needed to make the label always ` defined as

Rob`(h) = E
x←D

[
d(x, h`)

]
.

Theorem 2.4.2 (PC risk and robustness in concentrated spaces). Let (X ,Y, D,H, d) be a nice classification

problem. For any h ∈ H that is not a constant function, the following hold.

1. Let ε ∈ [0, 1/2] be such that D(h`) ≤ 1 − ε for all ` ∈ Y. If α(b1) < ε/2 and α(b2) ≤ γ/2, then for

b = b1 + b2 we have

RiskPC
b (h) ≥ 1− γ.

2. If α(b1) < D(h`) and α(b2) ≤ γ then for b = b1 + b2 we have

Risk`b(h) ≥ 1− γ.

3. If RiskPC
b (h) ≥ 1

2 , then

RobPC(h) ≤ b+

∫ ∞
0

α(z) · dz.

4. If α(b) < D(h`), then

Rob`(h) ≤ b+

∫ ∞
0

α(z) · dz.

Proof. We prove the parts in order.

1. Let b = b1 + b2. Also, for a set Z ⊆ Y , let hZ = ∪`∈Zh`. Because for all ` ∈ Y we have D(h`) ≤ 1− ε, it

can be shown that there is a set Y1 ⊂ Y such that D(hY
1

) ∈ (ε/2, 1/2]. Let X 1 =
{
x ∈ X | h(x) ∈ Y1

}



2.4 Risk and Robustness Based on Hypothesis’s Prediction Change 121

and X 2 = X \ X 1. We know that D(X 1) > ε/2, so

D(X 1
b ) ≥ 1− γ/2.

On the other hand, we know that D(X 2) ≥ 1/2, therefore we have

D(X 2
b ) ≥ D(X 2

b2) ≥ 1− γ/2.

By a union bound we conclude that

D(X 1
b ∩ X 2

b ) ≥ 1− γ

which implies that RiskPC
b (h) ≥ 1−γ. The reason is that for any x ∈ X 1

b ∩X 2
b there are x1, x2 ∈ Ball(x, b)

such that h(x1) ∈ Y1 and h(x2) ∈ Y \ Y1 which means either h(x) 6= h(x1) or h(x) 6= h(x2).

2. The proof Part 2 directly follows from the definition of α and an argument identical to that of Part 2

of Theorem 2.3.2.

3. Let E = {x ∈ X | ∃x′ ∈ Ballb(x), h(x) 6= h(x′)}. We know that D(E) ≥ 1/2, therefore by Theorem

2.3.5 we have

Rob(E) ≤
∫ ∞

0

α(z) · dz.

On the other hand, for every x ∈ X where ` = h(x), we have d(x,X \h`) ≤ b+ d(x, E) because we know

that for any x′ ∈ E there exist some x′′ ∈ Ball(x′, b) such that h(x′) 6= h(x′′). Therefore, we get that

either h(x′) 6= h(x) or h(x′′) 6= h(x), which implies d(x,X \ hh(x)) ≤ b+ d(x, E). Thus, we have

RobPC(h) ≤ b+ Rob(E) ≤ b+

∫ ∞
0

α(z) · dz.

4. Part 4 follows from an argument that is identical to that of Theorem 2.3.5.

the following corollary directly follows Theorem 2.4.2 above and Definition 4.3.1 of Lévy families, just the

same way Corollary 2.3.8 could be derived from Theorems 2.3.2 and 2.3.5 (by going through a variant of

Theorems 2.3.7 for PC risk and robustness that we skip) to get asymptotic bounds of risk and robustness of

classification tasks over Lévy spaces.

Corollary 2.4.3 (Asymptotic PC risk and robustness in normal Lévy families). Let Pn be a nice classification

problem defined over a metric probability space that is a normal Lévy family.
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1. PC risk and robustness. If for all ` ∈ Y it holds that D(h`) ≤ 0.99 (i.e., h is not almost constant),

then the amount of perturbations needed to achieve PC risk 0.99 is O(1/
√
n) and the (full) PC robustness

of h is also O(1/
√
n).

2. Target-label PC risk and robustness. If a particular label ` happens with constant probability

D(h`) = Ω(1), then the perturbation needed to increase `-label PC risk to 0.99 and the `-label PC

robustness of h are both at most O(1/
√
n). Furthermore, if D(h`) ≥ exp(−o(n)) is subexponentially

large, then the perturbation needed to increase the `-label PC risk to 1− exp(−o(n)) and the `-label PC

robustness of h are at both most o(1).



Chapter 3

Measuring Concentration for

real-world distributions

3.1 Introduction

that under certain assumptions regarding the data distribution and the perturbation metric, adversarial

examples are theoretically inevitable. As a result, for a broad set of theoretically natural metric probability

spaces of inputs, there is no classifier for the data distribution that achieves adversarial robustness. For

example, we showed that if the inputs come from any Normal Lévy family [Lévy, 1951], any classifier with a

noticable test error will be vulnerable to small (i.e., sublinear in the typical norm of the inputs) perturbations.

Although such theoretical findings seem discouraging to the goal of developing robust classifiers, all these

impossibility results depend on assumptions about data distributions that might not hold for cases of interest.

Our work develops a general method for testing properties of concrete datasets against these theoretical

assumptions.

Summary of Results Our work shrinks the gap between theoretical analyses of robustness of classification

for theoretical data distributions and understanding the intrinsic robustness of actual datasets. Indeed,

quantitative estimates of the intrinsic robustness1 of benchmark image datasets such as MNIST and CIFAR-

10 can provide us with a better understanding of the threat of adversarial examples for natural image

distributions and may suggest promising directions for further improving classifier robustness. Our main

1See Definition 3.2.2 for the formal definition of intrinsic robustness. The term robustness has been used with different
meanings in previous works (e.g., in Diochnos et al. [2018b], it refers to the average distances to the error region). However, all
such uses refer to a desirable property of the classifier in being resilient to adversarial perturbations, which is the case here as
well. See Diochnos et al. [2018b] for a taxonomy of different definitions.

123
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technical contribution is a general method to evaluate the concentration of a given input distribution µ

based on a set of data samples. We prove that by simultaneously increasing the sample size m and a

complexity parameter T , the concentration of the empirical measure converges to the actual concentration of

µ (Section 3.3). Using this method, we perform experiments to demonstrate the existence of robust error

regions Compared with state-of-the-art robustly trained models, our estimated intrinsic robustness shows

that, for most settings, there exists a large gap between the robust error achieved by the best current models

and the theoretical limits implied by concentration. This suggests the concentration of measure is not the

only reason behind the vulnerability of existing classifiers to adversarial perturbations. Thus, either there

is room for improving the robustness of image classifiers (even with non-zero classification error) or a need

for deeper understanding of the reasons for the gap between intrinsic robustness and the actual robustness

achieved by robust models, at least for the datasets like the image classification benchmarks used in our

experiments.

Related Work We are aware of only one previous work that attempts to heuristically estimate these

properties. To extend their theoretical impossibility result to the practical distributions, Gilmer et al. [2018b]

studied MNIST dataset to

Notation Lowercase boldface letters such as x are used to denote vectors, and [n] is used to represent

{1, 2, . . . , n}. For any set A, let Pow(A), |A| and 1A(·) be the set of measurable subsets of A, cardinality and

indicator function of A, respectively. For any x ∈ Rn, the `∞-norm and `2-norm of x are defined as ‖x‖∞ =

maxi∈[n] |xi| and ‖x‖2 = (
∑
i∈[n] x

2
i )

1/2 respectively. Let (X , µ) be a probability space and d : X × X → R

be some distance metric defined on X . Define the empirical measure with respect to a set S sampled from µ

as µ̂S(A) =
∑

x∈S 1A(x)/|S|,∀A ⊆ X . Let Ball(x, ε) = {x′ ∈ X : d(x′,x) ≤ ε} be the ball around x with

radius ε. For any subset A ⊆ X , define the ε-expansion Aε = {x ∈ X : ∃ x′ ∈ Ball(x, ε) ∩ A}. The collection

of the ε-expansions for members of any G ⊆ Pow(X ) is defined and denoted as Gε = {Aε : A ∈ G}.

3.2 Robustness and Concentration of Measure

In this chapter, we work with the following definition of adversarial risk :
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Definition 3.2.1 (Adversarial Risk). Let (X , µ) be the probability space of instances and f∗ be the underlying

ground-truth. The adversarial risk of a classifier f in metric d with strength ε is defined as

AdvRiskε(f, f
∗) = Pr

x←µ

[
∃ x′ ∈ Ball(x, ε) s.t. f(x′) 6= f∗(x′)

]
.2

For ε = 0, which allows no perturbation, the notion of adversarial risk coincides with traditional risk.

Definition 3.2.2 (Intrinsic Robustness). Consider the same setting as in Definition 3.2.1. Let F be some

family of classifiers, then the intrinsic robustness is defined as the maximum adversarial robustness that can

be achieved within F , namely

Robε(F , f∗) = 1− inf
f∈F

{
AdvRiskε(f, f

∗)
}
.

In this chapter, we specify F as the family of imperfect classifiers that have risk at least α ∈ (0, 1).

Previous work shows a connection between concentration of measure and the intrinsic robustness with

respect to some families of classifiers (Gilmer et al. [2018b], Fawzi et al. [2018], Mahloujifar et al. [2018b],

Shafahi et al. [2018c]). The concentration of measure on a metric probability space is defined by a concentration

function as follows.

Definition 3.2.3 (Concentration Function). Consider a metric probability space (X , µ, d). Suppose ε > 0

and α ∈ (0, 1) are given parameters, then the concentration function of the probability measure µ with respect

to ε, α is defined as

h(µ, α, ε) = inf
E∈Pow(X )

{µ(Eε) : µ(E) ≥ α} .

Note that the standard notion of concentration function (e.g., see Talagrand [1995]) is related to a special

case of Definition 3.2.3 by fixing α = 1/2.

Generalizing the result of Gilmer et al. [2018b] about instances drawn from spheres, Mahloujifar et al.

[2018b] showed that, in general, if the metric probability space of instances is concentrated, then any classifier

with 1% risk incurs large adversarial risk for small amount of perturbations.

Theorem 3.2.4 (Mahloujifar et al. [2018b]). Let (X , µ) be the probability space of instances and f∗ be the

underlying ground-truth. For any classifier f , we have

AdvRiskε(f, f
∗) ≥ h(µ,Risk(f, f∗), ε).

2Note that bounding lp norm might be restrictive for the adversary [Gilmer et al., 2018a] and this definition only covers a
subset of possible adversaries.
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In order for this theorem to be useful, we need to know the concentration function. The behavior of this

function is studied extensively for certain theoretical metric probability spaces [Ledoux, 2001, Milman and

Schechtman, 1986]. However, it is not known how to measure the concentration function for arbitrary metric

probability spaces. In this chapter, we provide a framework to (algorithmically) bound the concentration

function from i.i.d. samples from a distribution. Namely, we want to solve the following optimization task

using our i.i.d. samples:

minimize
E∈Pow(X )

µ(Eε) subject to µ(E) ≥ α. (3.1)

We aim to estimate the minimum possible adversarial risk, which captures the intrinsic robustness for

classification in terms of the underlying distribution µ, conditioned on the fact that the original risk is at

least α. Note that solving this optimization problem only shows the possibility of existence of an error region

E with certain (small) expansion. This means that there could potentially exist a classifier with risk at least

α and adversarial risk equal to the solution of the optimization problem of (3.1). Actually finding such an

optimally robust classifier (with error α) using a learning algorithm might be a much more difficult task or

even infeasible. We do not consider that problem in this chapter.

3.3 Method for Measuring Concentration

In this section, we present a method to measure the concentration of measure on a metric probability space

using i.i.d. samples. To measure concentration, there are two main challenges:

1. Measuring concentration appears to require knowledge of the density function of the distribution, but

we only have a data set sampled from the distribution.

2. Even with the density function, we have to find the best possible subset among all the subsets of the

space, which seems infeasible.

We show how to overcome these challenges and find the actual concentration in the limit by first empirically

simulating the distribution and then narrowing down our search space to a specific collection of subsets. Our

results show that for a carefully chosen family of sets, the set with minimum expansion can be approximated

using polynomially many samples. On the other hand, the minimum expansion convergence to the actual

concentration (without the limits on the sets) as the complexity of the collection goes to infinity.

Before stating our main theorems, we introduce two useful definitions. The following definition captures

the concentration function for a specific collection of subsets.
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Definition 3.3.1 (Concentration Function for a Collection of Subsets). Consider a metric probability space

(X , µ, d). Let ε > 0 and α ∈ (0, 1) be given parameters, then the concentration function of the probability

measure µ with respect to ε, α and a collection of subsets G ⊆ Pow(X ) is defined as

h(µ, α, ε,G) = inf
E∈G
{µ(Eε) : µ(E) ≥ α} .

When G = Pow(X ), we write h(µ, α, ε) for simplicity.

We also need to define the notion of complexity penalty for a collection of subsets. The complexity penalty

for a collection of subsets captures the rate of the uniform convergence for the subsets in that collection. One

can get such uniform convergence rates using the VC dimension or Rademacher complexity of the collection.

Definition 3.3.2 (Complexity Penalty). Let G ⊆ Pow(X ) be a collection of subsets of X . A function

φ : N× R→ [0, 1] is a complexity penalty for G iff for any probability measure µ supported on X and any

δ ∈ [0, 1], we have

Pr
S←µm

[∃ E ∈ G s.t. ‖µ(E)− µ̂S(E)‖ ≥ δ] ≤ φ(m, δ).

Theorem 3.3.3 shows how to overcome the challenge of measuring concentration from finite samples, when

the concentration is defined with respect to specific families of subsets. Namely, it shows that the empirical

concentration is close to the true concentration, if the underlying collection of subsets is not too complex.

The proof of Theorem 3.3.3 is provided in Appendix 3.4.1.

Theorem 3.3.3 (Generalization of Concentration). Let (X , µ, d) be a metric probability space and G ⊆

Pow(X ). For any δ, α, ε ∈ [0, 1], we have

Pr
S←µm

[h(µ, α− δ, ε,G)− δ ≤ h(µ̂S , α, ε,G) ≤ h(µ, α+ δ, ε,G) + δ] ≥ 1− 2
(
φ(m, δ) + φε(m, δ)

)
where φ and φε are complexity penalties for G and Gε respectively.

Remark 3.3.4. Theorem 3.3.3 shows that if we narrow down our search to a collection of subsets G such

that both G and Gε have small complexity penalty, then we can use the empirical distribution to measure

concentration of measure for that specific collection. Note that the generalization bound of Theorem 3.3.3

depends on complexity penalties for both G and Gε. Therefore, in order for this theorem to be useful, the

collection G must be chosen in a careful way. For example, if G has bounded VC dimension, then Gε might still

have a very large VC dimension. Alternatively, G might denote the collection of subsets that are decidable by

a neural network of a certain size. In that case, even though there are well known complexity penalties for

such collections (see Neyshabur et al. [2017]), the complexity of their expansions is unknown. In fact, relating
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the complexity penalty for expansion of a collection to that of the original collection is tightly related to

generalization bounds in the adversarial settings, which has also been the subject of several recent works

[Cullina et al., 2018, Attias et al., 2018, Montasser et al., 2019, Yin et al., 2018b, Raghunathan et al., 2019].

The following theorem, proved in Appendix 3.4.2, states that if we gradually increase the complexity

of the collection and the number of samples together, the empirical estimate of concentration converges to

actual concentration, as long as several conditions hold. Theorem 2.3.2 and the techniques used in its proof

are inspired by the work of Scott and Nowak [2006] on learning minimum volume sets.

Theorem 3.3.5. Let {G(T )}T∈N be a family of subset collections defined over a space X . Let
{
φT
}
T∈N and{

φTε
}
T∈N be two families of complexity penalty functions such that φT and φTε are complexity penalties for

G(T ) and Gε(T ) respectively, for some ε ∈ [0, 1]. Let {m(T )}T∈N and {δ(T )}T∈N be two sequences such that

m(T ) ∈ N and δ(T ) ∈ [0, 1].

Consider a sequence of datasets {ST }T∈N, where ST consists of m(T ) i.i.d. samples from a measure µ

supported on X . Also let α ∈ [0, 1] be such that h is locally continuous w.r.t the second parameter at point

(µ, α, ε,Pow(X )). If all the following hold,

1.
∑∞
T=1 φ

T (m(T ), δ(T )) <∞

2.
∑∞
T=1 φ

T
ε (m(T ), δ(T )) <∞

3. limT→∞ δ(T ) = 0

4. limT→∞ h(µ, α, ε,G(T )) = h(µ, α, ε)

then with probability 1, we have limT→∞ h(µ̂ST , α, ε,G(T )) = h(µ, α, ε).

Remark 3.3.6. In Theorem 2.3.2, the first two conditions restrict the growth rate for the complexity of

the collections. Namely, we need the complexity penalties φT (m(T ), δ(T )) and φTε (m(T ), δ(T )) to rapidly

approach 0 as T → ∞, which means the complexity of G(T ) and Gε(T ) should grow at a slow rate. The

third condition requires that our generalization error goes to zero as we increase T . Note that the complexity

penalty is a decreasing function with respect to δ, which means condition 3 makes achieving the first two

conditions harder. However, since the complexity penalty is a function of both δ and sample size, we can still

increase the sample size with a faster rate to satisfy the first two conditions. Finally, the fourth condition

requires our approximation error goes to 0 as we increase T . Note that this condition holds for any family of

collections of subsets that is a universal approximator (e.g., decision trees or neural networks). However, in

order for our theorem to hold, we also need all the other conditions. In particular, we cannot use decision

trees or neural networks as our collection of subsets, because we do not know if there is a complexity penalty

for them that satisfies condition 2.
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3.3.1 Special Case of `∞

In this subsection, we show how to instantiate Theorem 2.3.2 for the case of `∞. Below, we introduce a

special collection of subsets characterized by the complement of a union of hyperrectangles:

Definition 3.3.7 (Complement of union of hyperrectangles). For any positive integer T , the collection of

subsets specified by the complement of a union of T n-dimensional hyperrectangles is defined as

CR(T, n) =
{
Rn \ ∪Tt=1Rect(u(t), r(t)) : ∀t ∈ [T ], (u(t), r(t)) ∈ Rn × Rn≥0

}
,

where Rect(u, r) =
{
x ∈ X : ∀j ∈ [n], |xj − uj | ≤ rj/2

}
denotes the hyperrectangle centered at u with r

representing the edge size vector. When n is free of context, we simply write CR(T ).

Recall that our goal is to find a subset E ∈ Rn such that E has measure at least α and the ε∞-expansion

of E under `∞ has the minimum measure. To achieve this goal, we approximate the distribution µ with an

empirical distribution µ̂S , and limit our search to the special collection CR(T ) (though our goal is to find

the minimum concentration around arbitrary subsets). Namely, what we find is still an upper bound on the

concentration function, and it is an upper bound that we know it converges the actual value in the limit. Our

problem thus becomes the following optimization task:

minimize
E∈CR(T )

µ̂S(Eε∞) subject to µ̂S(E) ≥ α. (3.2)

The following theorem provides the key to our empirical method by providing a convergence guarantee. It

states that if we increase the number of rectangles and the number of samples together in a careful way, the

solution to the problem using restricted sets converges to the true concentration.

Theorem 3.3.8. Consider a nice metric probability space (Rn, µ, `∞). Let {ST }T∈N be a family of datasets

such that for all T ∈ N, ST contains at least T 4 i.i.d. samples from µ. For any ε∞ and α ∈ [0, 1], if h is

locally continuous w.r.t the second parameter at point (µ, α, ε∞), then with probability 1 we get

lim
T→∞

h(µ̂ST , α, ε∞, CR(T )) = h(µ, α, ε∞).

Note that the size of ST is selected as T 4 to guarantee conditions 1 and 2 are satisfied in Theorem 2.3.2.

In fact, we can tune the parameters more carefully to get T 2, instead of T 4, but the convergence will be

slower. See Appendix 3.4.3 for the proof.
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3.3.2 Special Case of `2

This subsection demonstrates how to apply Theorem 2.3.2 to the case of `2. The following definition introduces

the collection of subsets characterized by a union of balls:

Definition 3.3.9 (Union of Balls). For any positive integer T , the collection of subsets specified by a union

of T n-dimensional balls is defined as

B(T, n) =
{
∪Tt=1 Ball(u(t), r(t)) : ∀t ∈ [T ], (u(t), r(t)) ∈ Rn × Rn≥0

}
.

When n is free of context, we simply write B(T ).

By restricting our search to the collection of a union of balls B(T ) and replacing the underlying distribution

µ with the empirical one µ̂S , our problem becomes the following optimization task

minimize
E∈B(T )

µ̂S(Eε2) subject to µ̂S(E) ≥ α. (3.3)

Theorem 3.3.10, proven in Appendix 3.4.4, guarantees that if we increase the number of balls and samples

together in a careful way, the solution to the empirical problem (3.3) converges to the true concentration.

Theorem 3.3.10. Consider a nice metric probability space (Rn, µ, `2). Let {ST }T∈N be a family of datasets

such that for all T ∈ N, ST contains at least T 4 i.i.d. samples from µ. For any ε2 and α ∈ [0, 1], if h is locally

continuous w.r.t the second parameter at point (µ, α, ε2), then with probability 1 we get

lim
T→∞

h(µ̂ST , α, ε2,B(T )) = h(µ, α, ε2).

3.4 Proofs of Theorems in Section 3.3

In this section, we prove Theorems 3.3.3, 2.3.2, 3.3.8 and 3.3.10.

3.4.1 Proof of Theorem 3.3.3

Proof. Define g(µ, α, ε,G) = argminE∈G {µ(Eε) : µ(E) ≥ α}, and let E = g(µ, α+ δ, ε,G) and Ê = g(µ̂S , α, ε,G).

(Note that these sets achieving the minimum might not exist, in which case we select a set for which the

expansion is arbitrarily close to the infimum and every step of the proof will extend to this variant).
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By the definition of the complexity penalty we have

Pr
S←µm

[
‖µ(Ê)− µ̂S(Ê)‖ ≥ δ

]
≤ φ(m, δ)

which implies

Pr
S←µm

[µ(Ê) ≤ α− δ] ≤ φ(m, δ).

Therefore, by the definition of h we have

Pr
S←µm

[µ(Êε) ≤ h(µ, α− δ, ε,G)] ≤ φ(m, δ). (3.4)

On the other hand, based on the definition of φε we have

Pr
S←µm

[
‖µ(Êε)− µ̂S(Êε)‖ ≥ δ

]
≤ φε(m, δ). (3.5)

Combining Equation 3.4 and Equation 3.5, and by a union bound we get

Pr
S←µm

[µ̂S(Êε) ≤ h(µ, α− δ, ε,G)− δ] ≤ φ(m, δ) + φε(m, δ)

which by the definition of Ê implies that

Pr
S←µm

[h(µ̂S , α, ε,G) ≤ h(µ, α− δ, ε,G)− δ] ≤ φ(m, δ) + φε(m, δ). (3.6)

Now we bound the probability for the other side of our inequality. By the definition of the notion of complexity

penalty we have

Pr
S←µm

[‖µ(E)− µ̂S(E)‖ ≥ δ] ≤ φ(m, δ)

which implies

Pr
S←µm

[µ̂S(E) ≤ α] ≤ φ(m, δ).

Therefore, by the definition of h we have,

Pr
S←µm

[µ̂S(Eε) ≤ h(µ̂S , α, ε,G)] ≤ φ(m, δ). (3.7)
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On the other hand, based on the definition of φε we have

Pr
S←µm

[‖µ(Eε)− µ̂S(Eε)‖ ≥ δ] ≤ φ(m, δ) + φε(m, δ). (3.8)

Combining Equations 3.7 and 3.8, by union bound we get

Pr
S←µm

[µ(Eε) ≤ h(µ̂S , α, ε,G)− δ] ≤ φ(m, δ) + φε(m, δ)

which by the definition of E implies

Pr
S←µm

[h(µ, α+ δ, ε,G) ≤ h(µ̂S , α, ε,G)− δ] ≤ φ(m, δ) + φε(m, δ). (3.9)

Now combining Equations 3.6 and 3.9, by union bound we have

Pr
S←µm

[h(µ, α− δ, ε,G)− δ ≤ h(µ̂S , α, ε,G) ≤ h(µ, α+ δ, ε,G) + δ] ≥ 1− 2 (φ(m, δ) + φε(m, δ)) .

3.4.2 Proof of Theorem 2.3.2

In this section, we prove Theorem 2.3.2 using ideas similar to ideas used in Scott and Nowak [2006]. Before

proving the theorem, we lay out the following lemma which will be used in the proof.

Lemma 3.4.1 (Borel-Cantelli Lemma). Let {ET }T∈N be a series of events such that

∞∑
T=1

Pr[ET ] <∞

Then with probability 1, only finite number of events will occur.

Now we are ready to prove Theorem 2.3.2.

Proof of Theorem 2.3.2. Define ET to be the event that

h(µ, α− δ(T ), ε,G(T ))− δ(T ) > h(µ̂ST , α, ε) or h(µ, α+ δ(T ), ε,G(T )) + δ(T ) < h(µ̂ST , α, ε,G).
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Based on Theorem 3.3.3 we have Pr[ET ] ≤ 2 · (φT (m(T ), δ(T )) + φTε (m(T ), δ(T ))). Therefore, by Conditions

1 and 2 we have
∞∑
T=1

Pr[ET ] ≤ 2

( ∞∑
T=1

φT (m(T ), δ(T )) + φTε (m(T ), δ(T ))

)
<∞.

Now by Lemma 3.4.1, we know there exist with measure 1 some j ∈ N, such that for all T ≥ j,

h(µ, α− δ(T ), ε,G(T ))− δ(T ) ≤ h(µ̂ST , α, ε,G(T )) ≤ h(µ, α+ δ(T ), ε,G(T )) + δ(T ).

The above implies that

lim
T→∞

h(µ, α− δ(T ), ε,G(T ))− δ(T ) ≤ lim
T→∞

h(µ̂ST , α, ε,G(T )) ≤ lim
T→∞

h(µ, α+ δ(T ), ε,G(T )) + δ(T ).

We know that

lim
T→∞

h(µ, α− δ(T ), ε,G(T )) = lim
T1→∞

lim
T2→∞

h(µ, α− δ(T1), ε,G(T2))

(By condition 4) = lim
T1→∞

h(µ, α− δ(T1), ε)

(By local continuity and condition 3) = h(µ, α, ε).

Similarly, we have

lim
T→∞

h(µ, α+ δ(T ), ε,G(T )) = h(µ, α, ε).

Therefore we have,

lim
T→∞

h(µ, α, ε)− δ(T ) ≤ lim
T→∞

h(µ̂ST , α, ε,G(T )) ≤ lim
T→∞

h(µ, α, ε) + δ(T )

which by condition 3 implies

lim
T→∞

h(µ̂ST , α, ε,G(T )) = h(µ, α, ε).

3.4.3 Proof of Theorem 3.3.8

Proof. This theorem follows from our general Theorem 2.3.2. We show that the choice of parameters here

satisfies all four conditions of Theorem 2.3.2.

If we let G(T ) to be the collection of subsets specified by complement of union of T hyperrectangles. Then

Gε(T ) will be the collection of of subsets specified by complement of union of T hyperrectangles that are
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bigger than ε in each coordinate. Therefore we have Gε(T ) ⊂ G(T ). We know that the VC dimension of G(T )

is dT = O(nT log(T )) because the VC dimension of all hyperrectangles is O(n) and the functions formed by

T fold union of functions in a VC class is at most n · T log(T ) (See Eisenstat and Angluin [2007]). Therefore,

by VC inequality we have

Pr
S←µm

[
sup
E∈G(T )

|µ(E)− µ̂S(E)| ≥ δ
]
≤ 8enT log(T ) log(m)−mδ2/128.

Therefore ΦT (m, δ) = 8enT log(T ) log(m)−mδ2/128 is a complexity penalty for both G(T ) and Gε(T ). Hence, if

we define δ(T ) = 1/T and m(T ) ≥ T 4, then the first three conditions of Theorem 2.3.2 are satisfied. The

fourth condition is also satisfied by the universal consistency of histogram rules (See Devroye et al. [2013],

Ch. 9).

3.4.4 Proof of Theorem 3.3.10

Proof. Similar to Theorem 3.3.8 This theorem follows from our general Theorem 2.3.2. We show that the

choice of parameters here satisfies all four conditions of Theorem 2.3.2.

If we let G(T ) to be the collection of subsets specified by union of T balls. Then Gε(T ) will be the

collection of of subsets specified by union of T balls with diameter at least ε. Similar to the proof of Theorem

3.3.8, we have Gε(T ) ⊂ G(T ). We know that the VC dimension of all balls is O(n) so using the fact that G(T )

is T fold union of balls, the VC dimension of G(T ) is dT = O(nT log(T )) (See Eisenstat and Angluin [2007]).

Therefore, by VC inequality we have complexity penalties similar to those of Theorem 3.3.8 for both G(T )

and Gε(T ). Hence, if we define δ(T ) = 1/T and m(T ) ≥ T 4, then the first three conditions of Theorem 2.3.2

are satisfied. The fourth condition is also satisfied by the universal consistency of kernel-based rules (See

Devroye et al. [2013] , Ch. 10).



Chapter 4

Lower Bounds for Adversarially

Robust PAC Learning

4.1 Introduction

A fundamental question in robust learning is whether one can design learning algorithms that achieve “uniform

converegence” even under such adversarial perturbations. Namely, we want to know when we can learn a

robust classifier h that still correctly classifies its inputs even if they are adversarially perturbed in a limited

way. Indeed, one can ask when (ε, δ) PAC (probably approximately correct) learning [Valiant, 1984] is possible

in adversarial settings. More formally, the goal here is to learn a robust h from the data set S consisting of m

independently sampled labeled (non-adversarial) instances in such a way that, with probability 1− δ over the

learning process, the produced h has error at most ε even under “limited” adversarial perturbations of the

input. This limitation is carefully defined by some metric d defined over the input space X and some upper

bound “budget” b on the amount of perturbations that the adversary can introduce. That is, we would like

to minimize

AdvRisk(h) = Pr
x←D

[∃ x̃ : d(x, x̃) ≤ b, h(x̃) 6= c(x̃)] ≤ ε

where AdvRisk is the “adversarial” risk, and c(·) is the ground truth (i.e., the concept function). As we

discussed in Section 1 of this part, there are multiple definitions of adversarial examples. Here we mention

two of those definitions again for reader’s convenience.

Error-Region Adversarial Risk The above notion of adversarial risk has been used implicitly or explicitly

in previous work [Gilmer et al., 2018b, Diochnos et al., 2018b, Degwekar and Vaikuntanathan, 2019, Ford

135
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et al., 2019] and was formalized by Diochnos et al. [2018b] as the “error-region” adversarial risk, because the

adversary’s goal here is to push x̃ into the error region

E = {x | h(x) 6= c(x)} .

Corrupted-Input Adversarial Risk Another notion of adversarial risk (that is similar, but still different

from the error-region adversarial risk explained above) has been used in many works such as [Feige et al.,

2015, Madry et al., 2018, Bubeck et al., 2018a] in which the perturbed x̃ is interpreted as a “corrupted input”.

Namely, here the goal of the learner is to find the label of the original untampered point x by only having its

corrupted version x̃, and thus adversary’s success criterion is to reach d(x, x̃) ≤ b, h(x̃) 6= c(x). Hence, in that

setting, the goal of the learner is to find an h that minimizes

Pr
x←D

[∃ x̃ : d(x, x̃) ≤ b, h(x̃) 6= c(x)].

It is easy to see that, if the ground truth c(x) does not change under b-perturbations, c(x) = c(x̃), the two

notions of error-region and corrupted-input adversarial risk will be equal. In particular, this is the case for

practical distributions of interest, such as images or voice, where sufficiently-small perturbations do not

change human’s judgment about the true label. However, if b-perturbations can change the ground truth,

c(x) 6= c(x̃), the two definitions are incomparable.

Why PAC Learning under General Perturbation Is Meaningful We emphasize that, even if the

b-perturbation could change the ground truth’s judgement, asking whether a learning problem is PAC

learnable or not is very meaningful. In fact, the problem is still “realizable” under the right definition (for

the general setting) because if one happens to learn the concept class c completely and output the hypothesis

h = c, then h will have adversarial risk zero under the error-region definition. In other words, the ground

truth can still be predicted robustly. Thus, it is a natural question to ask whether one can learn a hypothesis

h that has small adversarial risk even under perturbations that are still small in magnitude compared to the

size of the original sample x.

Previous Work Several works have already studied PAC learning with provable guarantees under adver-

sarial perturbations [Bubeck et al., 2018b, Cullina et al., 2018, Feige et al., 2018, Attias et al., 2018, Khim and

Loh, 2018, Yin et al., 2018b, Montasser et al., 2019]. However, all these works use the corrupted-input notion

of adversarial risk. In particular, it is proved by Attias et al. [2018] that robust learning might require more

data, but it was also shown by Attias et al. [2018], Bubeck et al. [2018b] that in natural settings, if robust
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classification is feasible, robust classifiers could be found with a sample complexity that is only polynomially

larger than that of normal learning. This leads us to our central question:

What problems are PAC learnable under evasion attacks that perturb instances into the error

region? If PAC learnable, what is their sample complexity?

Note that previous positive (or negative) results about PAC learning under the corrupted-input definition

do not answer our question above, as we study general arbitrary perturbation budgets allowed to the adversary.

Also, when the ground truth can also change under that amount of perturbation we have to use the error-region

definition. More technically, we note that positive results about adversarial PAC learning (cited above) do not

answer our question for the following reason. When the allowed perturbation is limited to keep the ground

truth c robust, then the two definition are equivalent, yet, when the budget gets larger, then a positive result

proved using the corrupted-input definition would simply mean that there is a way to learn a hypothesis h

that has only ε adversarial risk more than the “best possible” h∗. However, this could be just a side affect

that any h∗ under the corrupted-input definition (and certain amount of allowed perturbations) could have

very large (even 1− ε) adversarial risk, making the job of agnostic learning trivial (to output anything). That

is why, when we work with arbitrary perturbation budget, we need to employ the error-region definition,

which still allows c = h to have small adversarial risk, which is the intuitive decision as well.

4.1.1 Summary of Results

In this section, we initiate a formal study of PAC learning under adversarial perturbations, where the goal of

the adversary is to increase the error-region adversarial risk using small (sublinear o(‖x‖)) perturbations

of the inputs x. Therefore, in what follows, whenever we refer to adversarial risk, by default it means the

error-region variant. Before we proceed, so that we can better put our work into perspective, we first give a

short description explaining our main contributions in previous work that we have done that is related to the

work of this chapter.

Putting our Work into Perspective Our work in Mahloujifar et al. [2018a] dealt with clean-label

“poisoning” attacks in situations where the adversary has the opportunity to substitute ≈ p randomly selected

fraction of the training examples, with some “adversarial” ones of their choosing but the labels of the injected

training examples need to respect the ground truth c (and hence the term “clean-label”). Such attacks are

called p-tampering. In particular, the adversary can also effectively reduce the sample size by repeating

training examples at the randomly selected p fraction of the changed examples. Our work in Mahloujifar

et al. [2018a] is connected to the second part of our work here, where we formalize and study hybrid attacks.
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In Diochnos et al. [2018b] we provided a taxonomy of definitions that are used for the computation of

adversarial examples and ultimately for the computation of the adversarial risk and robustness of learned

classifiers. In addition, we showed that when misclassification is really the goal of an adversarial perturbation,

then there is a natural problem (under the uniform distribution over {0, 1}n) where only the error region

definition computes the adversarial risk and robustness correctly. As a result we decided to use the error-region

adversarial risk and robustness by default. Finally in that work, we computed inherent bounds that classifiers

have on risk and robustness (based on the error-region) when again the distribution is uniform over {0, 1}n –

these bounds were information-theoretic.

In Mahloujifar et al. [2018b] extended the previous (information-theoretic) inherent bounds that classifiers

have on adversarial risk and robustness, from the uniform distribution over {0, 1}n, to information-theoretic

bounds on any Normal Lévy families (which, for example, include product distributions over {0, 1}n and

many more examples), using the phenomenon of concentration of measure. In the same work, we showed

that the same phenomenon of concentration of measure allows an adversary to substitute a sublinear amount

of training examples (that is, in a poisoning attack) and increase the probability of any bad property (e.g.,

misclassifying a particular test instance) from some non-negligible value (say 1%) to almost certainty (say

99%) by changing only ≈
√
n of the examples, using correct labels.

The works of Mahloujifar and Mahmoody [2019c], Etesami et al. [2019a] extended the above information-

theoretic results on poisoning and evasion attacks by explicitly providing efficient (polynomial-time) attacks

on product distributions, so that the perturbation budget used in the attack scheme matches the information-

theoretic bounds from the previous work of Mahloujifar et al. [2018b].

In Mahloujifar et al. [2019e], it was shown how to empirically approximate (more specifically, upper

bound) the concentration of a distribution of inputs given only (black-box) samples from the distribution.

This is relevant to the line of work in which concentration of measure plays a key role in the hardness of

adversarially robust learning, because one would need to know whether specific input distributions of interest

(e.g., MNIST) are concentrated or not.

As the description above shows, our previous work on adversarial examples has focused on the power of

an attacker. However, once one fixes the perturbation budget for the attacker, a natural question to ask is to

what extent a learner can defend the hypothesis that it forms – that is, flip the table of the point of view

of the analysis. Indeed, our first result in this section shows that a PAC learner needs exponentially many

training examples in order to form a robust hypothesis when the attacker can substitute only a sublinear

amount of the coordinates of the test instance. In the second part of the paper we introduce hybrid attacks

and see that essentially a learner is helpless to form a robust hypothesis when the attacker has access both to
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the training as well as to the testing phase.

We are now ready to provide more details for the results of this current work.

Result 1: Exponential Lower Bound on Sample Complexity Suppose the instances of a learning

problem come from a metric probability space (X , D, d) where D is a distribution and d is a metric defining

some norm ‖·‖. Suppose the input instances have norms ‖x‖ ≈ n where n is a parameter related (or is in

fact equal) to the data dimension. One natural setting of study for PAC learning is to study attackers that

can only perturb x by a sublinear amount o(‖x‖) = o(n) (e.g.,
√
n).

Our first result is to prove a strong lower bound for the sample complexity of PAC learning in this setting.

We prove that for many theoretically natural input spaces of high dimension n (e.g., isotropic Gaussian in

dimension n under `2 perturbations), PAC learning of certain problems under sublinear perturbations of the

test instances requires exponentially many samples in n, even though the problem in the no-attack setting

is PAC learnable using polynomially many samples. This holds e.g., when we want to learn half spaces in

dimension n under such distributions (which is possible in the no-attack setting). We note that even though

PAC learning is defined for all distributions, proving such lower bound for a specific input distribution D over

X only makes the negative result stronger. Our lower bound is in contrast with previously proved results

[Attias et al., 2018, Bubeck et al., 2018b, Montasser et al., 2019, Cullina et al., 2018] in which the gap between

the sample complexity of the normal and robust learning is only polynomial. However, as mentioned before,

all these previous results are proved using the corrupted-input variant of adversarial risk.

Our result extends to any learning problem where input space X , the metric d and the distribution D

defined over them, and the class of concept functions C have the following two conditions.

1. The inputs X under the distribution D and small perturbations measured by the metric d forms a

concentrated metric probability space [Ledoux, 2001, Milman and Schechtman, 1986]. A concentrated

space has the property that relatively small events (e.g., of measure 0.1) under small (e.g., smaller than

the diameter of the space) perturbations expand to cover almost all measure ≈ 1 of the input space.

2. The set of concept functions C is complex enough to allow proving lower bounds for the sample complexity

for (distribution-dependent) PAC learners in the no-attack setting under the same distribution D.

Distribution-dependent sample complexity lower bounds are known for certain settings [Long, 1995,

Balcan and Long, 2013, Sabato et al., 2013], however, we use a more relaxed condition that can be

applied to broader settings. In particular, we require that for a sufficiently small ε, there are two

concept functions c1, c2 that are equal for 1− ε fraction of inputs sampled from D (see Definition 4.3.3).
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Having the above two conditions, our proof proceeds as follows (I) We show that the (normal) risk

Risk(h) of a hypothesis produced by any learning algorithm with sub-exponential sample complexity cannot

be as large as an inverse polynomial over the dimension. (II) We then use ideas from the works (e.g., see

[Mahloujifar et al., 2018b]) to show that such sufficiently large risk will expand into a large adversarial risk

of almost all inputs, due to the measure concentration the input space.

Remark 4.1.1 (Approximation error in error-region robust learning). If a learning problem is realizable in

the no-attack setting, i.e., there is a hypothesis h that has risk zero over the test instances, it means that the

same hypothesis h will have adversarial (true) risk zero over the test instances as well, because any perturbed

point is still going to be correctly classified. This is in contrast with corrupted-input notion of adversarial risk

that even in realizable problems, the smallest corrupted-input (true) adversarial risk could still be large, and

even at odds with correctness [Tsipras et al., 2018b]. This means that our results rule out (efficient) PAC

learning even in the agnostic setting as well, because in the realizable setting there is at least one hypothesis

with error-region adversarial risk zero while (as we prove), in some settings learning a model with adversarial

risk (under sublinear perturbations) close to zero requires exponentially many samples.

Result 2: Ruling Out PAC Learning under Hybrid Attacks We then study PAC learning under

adversarial perturbations that happen during both training and testing phases. We formalize hybrid attacks

in which the final evasion attack is preceded by a poisoning attack [Biggio et al., 2012, Papernot et al., 2016a].

This attack model bears similarities to “trapdoor attacks” [Gu et al., 2017] in which a poisoning phase is

involved before the evasion attack, and here we give a formal definition for PAC learning under such attacks.

Our definition of hybrid attacks is general and can incorporate any notion of adversarial risk, but our results

for hybrid attacks use the error-region adversarial risk.

Under hybrid attacks, we show that PAC learning is sometimes impossible all together, even though it is

possible without such attacks. For example, even if the VC dimension of the concept class is bounded by n, if

the adversary is allowed to poison only 1/n10 fraction of the m training examples, then it can do so in such a

way that a subsequent evasion attack could then increase the adversarial risk to ≈ 1. This means that PAC

learning is in fact impossible under such hybrid attacks.

We also note that classical results about malicious noise [Valiant, 1985, Kearns and Li, 1993b] and nasty

noise [Bshouty et al., 2002] could be interpreted as ruling out PAC learning under poisoning attacks. However,

there are two differences: (I) The adversary in these previous works needs to change a constant fraction of

the training examples, while our attacker changes only an arbitrarily small inverse polynomial fraction of

them. (II) Our poisoning attacker only removes a fraction of the training set, and hence it does not add
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any misclassified examples to the pool. Thus the poisoning attack used here is a clean/correct label attack

[Mahloujifar et al., 2018a, Shafahi et al., 2018a].

4.2 Adversarially Robust PAC Learning

Notation. By Õ(f(n)) we refer to the set of all functions of the form O(f(n) log(f(n))O(1)).

Our learning problems Pn = (Xn,Yn, Cn,Dn,Hn) are usually parameterized by n where n denotes the

“data dimension” or (closely) capture the bit length of the instances. Thus, the “efficiency” of the algorithms

could depend on n. Even in this case, for simplicity of notation, we might simply write P = (X ,Y, C,D,H).

By default, we will have C ⊆ H, in which case we call P realizable. This means that for any training set for

c ∈ C, D ∈ D, there is a hypothesis that has empirical and true risk zero; though finding such h might be

challenging.

Evasion Attacks An evasion attacker A is one that changes the test instance x, denoted as x̃ ← A(x).

The behavior and actions taken by A could, in general, depend on the choices of D ∈ D, c ∈ C, and h ∈ H. As

a result, in our notation, we provide A with access to D, c, h by giving them as special inputs to A,1 denoting

the process as x̃← A[D, c, h](x). We use calligraphic font A to denote a class/set of attacks. For example,

A could contain all attackers who could change test instance x by at most b perturbations under a metric

defined over X .

Poisoning Attacks A poisoning attacker A is one that changes the training sequence as S̃ ← A(S). Such

attacks, in general, might add examples to S, remove examples from S, or do both. The behavior and actions

taken by A could, in general, depend on the choices of D ∈ D, c ∈ C (but not on h ∈ H, as it is not produced

by the learner at the time of the poisoning attack)2. As a result, we provide implicit access to D, c by giving

them as special inputs to A, denoting the process as S̃ ← A[D, c](S). We use calligraphic font A to denote a

class/set of attacks. For example, A could contain attacks that change 1/n fraction of S only using clean

labels [Mahloujifar et al., 2018b, Shafahi et al., 2018a].

Hybrid Attacks A hybrid attack A = (A1,A2) is a two phase attack in which A1 is a poisoning attacker

and A2 is an evasion attacker. One subtle point is that A2 is also aware of the internal state of A1, as they

are a pair of coordinating attacks. More formally, A1 outputs an extra “state” information st which will be

1This dependence is information theoretic, and for example, A might want to find x̃ that is misclassified, in which case its
success is defined as h(x̃) 6= c(x̃) which depends on both h, c.

2For example, an attack model might require A to choose its perturbed instances still using correct/clean labels, in which
case the attack is restricted based on the choice of c).
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given as an extra input to A2. As discussed above, A1 can depend on D, c, and A2 can depend on D, c, h as

defined for evasion and poisoning attacks.

We now define PAC learning under adversarial perturbation attacks. To do so, we need to first define our

notion of adversarial risk. We will do so by employing the error-region notion adversarial risk as formalized

in Diochnos et al. [2018b] adversary aims to misclassify the perturbed instance x̃.

Definition 4.2.1 (Error-region (adversarial) risk). Suppose A is an evasion adversary and let D, c, h be fixed.

The error-region (adversarial) risk is defined as follows.

AdvRiskA(D, c, h) = Pr
x←D,x̃←A[D,c,h](x)

[h(x̃) 6= c(x̃)].

For randomized h, the above probability is also over the randomness of h chosen after x̃ is selected.

We now define PAC learning under hybrid attacks, from which one can derive also the definition of PAC

learning under evasion attacks and under poisoning attacks.

Definition 4.2.2 (PAC learning under hybrid attacks). Suppose Pn = (Xn,Yn, Cn,Dn,Hn) is a realizable

classification problem, and suppose A is a class of hybrid attacks for Pn. Pn is PAC learnable with sample

complexity m(ε, δ, n) under hybrid attacks of A , if there is a learning algorithm L such that for every n,

0 < ε, δ < 1, c ∈ C, D ∈ D, and (A1,A2) ∈ A, if m = m(ε, δ, n), then

Pr
S←(D,c(D))m,

(S̃,st)←A1[D,c](S),

h←L(S̃)

[
AdvRiskA2[D,c,h,st](h, c,D) > ε

]
≤ δ.

PAC learning under (pure) poisoning attacks or evasion attacks could be derived from Definition 4.2.2 by

letting either of A1 or A2 be a trivial attack that does no tampering at all.

We also note that one can obtain other definitions of PAC learning under evasion or hybrid attacks in

Definition 4.2.2 by using other forms of adversarial risk, e.g., corrupted-input adversarial risk [Feige et al.,

2015, 2018, Madry et al., 2018, Schmidt et al., 2018, Attias et al., 2018]

4.3 Lower Bounds for PAC Learning under Evasion and Hybrid

Attacks

Before proving our main results, we need to recall the notion of Normal Lévy families, and define a desired

and common property of set of concept functions with respect to the distribution of inputs.
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Notation. Let (X , d) be a metric space. For S ⊆ X , by d(x,S) = inf {d(x, y) | y ∈ S} we denote the

distance of a point x from S. We also let Sb = {y | d(x, y) ≤ b, x ∈ S} be the b-expansion of S. When there

is also a measure D defined over the metric space (X , d), the concentration function is defined and denoted

as α(b) = 1− inf {PrD[Eb] | PrD[E ] ≥ 1/2} .

Definition 4.3.1 (Normal Lévy families). A family of metric probability spaces (Xn, dn, Dn)i∈N with

concentration function αn(·) is called a normal Lévy family if there are k1, k2, such that3

αn(b) ≤ k1 · e−k2·b2/n

Examples. Many natural metric probability spaces are Normal Lévy families. For example, all the following

examples under normalized distance (to make the typical norms ≈ n) are normal Lévy families as stated

in Definition 4.3.1: the unit n-sphere with uniform distribution under the Euclidean or geodesic distance,

Rn under Gaussian distribution and Euclidean distance, Rn under Gaussian distribution and Euclidean

distance, the unit n-cube and unit n-ball under the uniform distribution and Euclidean distance, any product

distribution of dimension n under the Hamming distance. See [Ledoux, 2001, Giannopoulos and Milman,

2001, Milman and Schechtman, 1986] for more examples.

The following lemma was proved in Mahloujifar et al. [2018b] when Normal Lévy input spaces.

Lemma 4.3.2. Let the input space of a hypothesis classifier h be a Normal Lévy family (Xn, dn, Dn)i∈N. If

the risk of h with respect to the ground truth concept function c is bigger than α, Risk(Dn, c, h) ≥ α, and if

an adversary A can perturb instances by up to b in metric dn for

b =
√
n/k2 ·

(√
ln(k1/α) +

√
ln(k1/β)

)
,

then the adversarial risk is AdvRiskA(D,h, c) ≥ 1− β.

Definition 4.3.3 (α-close function families). Suppose D is a distribution over X , and let C be a set of

functions from X to some set Y. We call C α-close with respect to D, if there are c1, c2 ∈ C such that

Prx←D[c1(x) 6= c2(x)] = α.

Examples. The set of homogeneous half spaces in Rn are α-close for all α ∈ (0, 1] under any of the

following natural distributions: uniform over the unit sphere, uniform inside the unit ball, and isotropic

Gaussian. This can be proved by picking two half spaces that their disagreement region under the mentioned

3Another common formulation of Normal Lévy families uses αn(b) ≤ k1 · e−k2·b2·n, but here we scale the distances up by n
to achieve “typical norms” to be ≈ n, which is the dimension.
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distributions is exactly α. The set of (monotone, or not necessarily monotone) conjunctions are α-close for

α = 2−k for all k ∈ {2, . . . , n} under the uniform distribution over {0, 1}n. This can be proved by looking at

c1 = x1 ∧ . . . ∧ xk−1 and c2 = x1 ∧ . . . ∧ xk−1 ∧ xk = c1 ∧ xk. Since all the variables that appear in c1 also

appear in c2, we have that Prx←{0,1}n [c1(x) 6= c2(x)] is equal to Prx←{0,1}n [(c1(x) = 1)∧ (c2(x) = 0)], and as

a consequence this is equal to 2−(k−1) − 2−k = 2−k.

We now state and prove our main results. Theorem 2.3.2 is stated in the asymptotic form considering

attack families that attack the problem for sufficiently large index n ∈ N of the problem. We describe a

quantitative variant afterwards (Lemma 4.3.5).

Theorem 4.3.4 (Limits of adversarially robust PAC learning). Suppose Pn = (X ,Y, C,D,H) is a realizable

classification problem and that X is a Normal Lévy Family (Definition 4.3.1) over D and a metric d, and

that C is Θ(α)-close with respect to D for all α ∈ [2−Θ(n), 1]. Then, the following hold even for PAC learning

with parameters ε = 0.9, δ = 0.49.

1. Sample complexity of PAC learning robust fo evasion attacks:

(a) Exponential lower bound: Any PAC learning algorithm that is robust against all attacks with

a sublinear tampering b = o(n) budget under the metric d requires exponential sample complexity

m ≥ 2Ω(n).

(b) Super-polynomial lower bound: PAC learning that is robust against against all tampering

attacks with budget b = Õ(
√
n), requires at least m ≥ nω(1) many samples.

2. Ruling out PAC learning robust to hybrid attacks:

Suppose the tampering budget of the evasion adversary can be any b = Õ(
√
n), and let Bλ be any class

of poisoning attacks that can remove λ = λ(n) fraction of the training examples for an (arbitrary small)

inverse polynomial λ(n) ≥ 1/ poly(n). Let R be the class of hybrid attacks that first do a poisoning

by some B ∈ Bλ and then an evasion by some adversary of budget b = Õ(
√
n). Then, Pn is not PAC

learnable (regardless of sample complexity) under hybrid attacks in R.

As we will see, Part 1a and Part 1b of Theorem 2.3.2 are special cases of the following more quantitative

lower bound that might be of independent interest.

Lemma 4.3.5. For the setting of Theorem 2.3.2, if the tampering budget is b = ρ · n, for a fixed function

ρ = ρ(n) = o(1), then any PAC learning algorithm for Pn under evasion attacks of tampering budget b = b(n),

even for parameters ε = 0.9, δ = 0.49 requires sample complexity at least

m(n) ≥ 2Ω(ρ2·n).
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Examples. Here we list some natural scenarios that fall into the conditions of Theorem 2.3.2. All examples

of Normal Lévy families listed after Definition 4.3.1 together with the concept class of half spaces satisfy

the conditions of Theorem 2.3.2 and hence cannot be PAC learned using a poly(n) number of samples.

The reason is that one can always find two half spaces whose symmetric difference has measure exactly

ε. Moreover, as discussed in examples following Definition 4.3.3, even discrete problems such as learning

monotone-conjunctions under the uniform distribution (and Hamming distance as perturbation metric)

fall into the conditions of Theorem 2.3.2, for which a lower bound on their sample complexity (or even

impossibility) of robust PAC learning could be obtained.

Remark 4.3.6 (Evasion-robust PAC learning in the RAM computing model with real numbers). We remark

that if we allow (truly) real numbers represent the concept and hypothesis classes, one can even rule out PAC

learning (not just lower bounds on sample complexity) under similar perturbations describe in Part 1. Indeed,

by inspecting the same proof of Theorem 2.3.2 for Part 1 one can get such results, e.g., for learning half-spaces

in dimension n when inputs come from isotropic Gaussian. However, we emphasize that such (seemingly)

stronger lower bounds are not realistic, as in real settings, we eventually work with finite precision to represent

the concept functions (of half spaces). This makes the set of concept functions finite, in which case the test

error eventually reaches zero, using perhaps exponentially many samples. Theorem 2.3.2, however, has the

useful feature that it applies even in those settings, as long as the concept functions are rich enough to allow

the sufficiently close (but not too close) pairs under the distribution D according to Definition 4.3.3.

In what follows, we will first prove Lemma 4.3.5. We will then use Lemma 4.3.5 to prove Theorem 2.3.2.

Proof of Lemma 4.3.5. Let m = m(0.9, 0.49, n) be the sample complexity of the (presumed) learner L that

achieves (ε, δ)-PAC learning for ε = 0.9, δ = 0.49. If m = 2Ω(n) already, we are done, as it is even larger than

what Lemma 4.3.5 states, so let m = 2o(n), and we will derive a contradiction. Since the distribution D is

fixed, in the discussion below, we simply denote Risk(D,h, c) as Risk(h, c).

Recall that, by assumption, for all ε ∈ [2−Θ(n), 1], there are c1, c2 ∈ C that are Θ(ε)-close under the

distribution D. Because m = 2o(n), it holds that 1/m ≥ ω(2−Θ(n)), and so there are c1, c2 ∈ C such that for

∆(c1, c2) = {x ∈ X | c1(x) 6= c2(x)} we have

Ω

(
1

m

)
≤ Pr
x←D

[x ∈ ∆(c1, c2)] ≤ 1

100m
.

Now, consider m i.i.d. samples that are given to the learner L as a training set S. With probability at

least 0.99 of the sampling of S, all x ∈ S would be outside ∆(c1, c2), in which case L would have no way to

distinguish c1 from c2. So, if we pick c← {c1, c2} at random and pick test instance x← (D | ∆(c1, c2)), the
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hypothesis h = L(S) fails with probability at least 0.99/2. Thus, we can fix the choice of c ∈ {c1, c2}, such

that with probability 0.99/2 > 0.49 we get a h← L(S) where

Risk(h, c) = Pr
x←D

[h(x) 6= c(x)] ≥ 1

2
· Pr
x←D

[x ∈ ∆(c1, c2)]

≥ Ω

(
1

m

)
.

For this fixed c and any such learned hypothesis h with Risk(h, c) = Ω(1)/m, by Lemma 4.3.2, the

adversarial risk reaches AdvRiskAb(h, c) ≥ 0.99 by an attack A ∈ Ab that has tampering budget:

b = O(
√
n) ·

(√
ln(O(m)) +

√
O(1)

)
≤ t · (

√
n · lnm)

for universal constant t. But, we said at the beginning that the tampering budget of the adversary is ρ(n) · n.

Therefore, it should be that

ρ(n) · n < t · (
√
n · lnm),

as otherwise the evasion-robust PAC learner is not actually robust as stated. Thus, we get

m ≥ eρ(n)2·n/t = 2Ω(ρ(n)2·n)

which finishes the proof of Lemma 4.3.5.

We now prove Theorem 2.3.2 using Lemma 4.3.5.

Proof of Theorem 2.3.2. Using Lemma 4.3.5, we will first prove Part 1a, then Part 1b, and then Part 2.

Throughout, ε = 0.9, δ = 0.49 are fixed, so the sample complexity m = m(n) is a function of n.

Proving Part 1a. We claim that PAC learning resisting all b = o(n)-tampering attacks requires sample

complexity m ≥ 2Ω(n). The reason is that, otherwise, there will be an infinite sequence of values n1 < n2 < . . .

for n for which m = m(ni) ≤ 2γ(ni)·(ni) for γ(n) = o(1). However, in that case, if we let ρ(n) = γ(n)1/3,

because ρ(n) = o(n), by Lemma 4.3.5, the sample complexity is

m(ni) ≥ 2Ω(ρ(ni)
2·ni) = ω

(
2γ(ni)·ni

)
.

However, this is a contradiction as we previously assumed m(ni) ≤ 2γ(ni)·(ni).
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Proving Part 1b. Suppose the adversary can tamper instances with budget b(n) = κ(n) ·
√
n for κ(n) ∈

polylog(n). Since we can rewrite b(n) = ρ(n) · n for ρ(n) = κ(n)/
√
n, then by Lemma 4.3.5, the sample

complexity of L should be at least

m(n) ≥ 2Ω(ρ(n)2·n) = 2Ω(κ(n)2).

Therefore, if we choose κ(n) = log(n)2, the sample complexity of L becomes m ≥ nlogn ≥ nω(1).

Proving Part 2. Let be c1, c2 ∈ C be such that for ∆(c1, c2) = {x ∈ X | c1(x) 6= c2(x)} we have

Ω(λ) ≤ Pr
x←D(c1,c2)

[x ∈ ∆(c1, c2)] ≤ λ.

Consider a poisoning attacker A1 that given a data set S, it removes any (x, y) from S such that x ∈ ∆(c1, c2).

Note that the (expected) number of such examples is Pr[x ∈ ∆(c1, c2)] ≤ λ. Let S̃ be the modified training

set. The learner L(S̃) now has now way to distinguish between c1 and c2. Thus, like in Lemma 4.3.5, we can

fix c ∈ {c1, c2}, such that L(S̃) always produces h where

Risk(h, c) = Pr
x←D

[h(x) 6= c(x)] ≥ 1

2
· Pr
x←D

[x ∈ ∆(c1, c2)]

≥ Ω(λ).

For this fixed c and any such learned hypothesis h with Risk(h, c) = Ω(λ), by Lemma 4.3.2, the adversarial

risk (under attacks) reaches AdvRiskAb(h, c) ≥ 0.99 by an attack A ∈ Ab that changes test instances x by at

most b for

b = O(
√
n) ·

(√
ln(O(1/λ)) +

√
O(1)

)
≤ O(

√
n · ln(1/λ)).

Since λ = 1/ poly(n), it holds that b = Õ(
√
n).

4.4 Extensions

In this section, we describe some extensions to Theorem 2.3.2 in various directions.

Extension to Randomized Predictors In Theorem 2.3.2, we ruled out PAC learning (or its small sample

complexity) even for very large values ε = 0.9, δ = 0.49. One might argue that proving such lower bound

could not be impossible because a trivial hypothesis (for the setting where Y = {0, 1}) can achieve ε = 0.5 by

outputting random bits. However, this trivial predictor is randomized, while Theorem 2.3.2 is proved for
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deterministic hypotheses. For the case of randomized hypotheses, one can adjust the proof of Theorem 2.3.2

to get similar lower bounds for ε = 0.49, δ = 0.49 as follows.

In the proof of Theorem 2.3.2 we first showed that small sample complexity implies the existence of c that

with probability > 0.49 it will have an error region with a non-negligible measure. When the hypothesis is

randomized, however, we cannot work with the traditional notion of error region, because on every point

x ∈ X , the hypothesis could be wrong h(x) 6= c(x) with some probability in [0, 1]. We can, however, work

with the relaxed notion of “approximate error” region, defined as AE(h, c) = {x | Prh[h(x) 6= c(x)] ≥ 1/2},

where the probability is over the randomness of h.

In proofs of both Lemma 4.3.5 and Theorem 2.3.2 we deal with two close concept functions c1, c2 that

are “indistinguishable” for the hypothesis h and then conclude that for each point x ∈ ∆(c1, c2), h makes a

mistake on at least one of c1, c2. If h is randomized, we cannot say this anymore, but we can still say that for

each such point x ∈ ∆(c1, c2), for at least one of c1, c2, h(x) is wrong with probability at least 0.5. Therefore,

we get the same lower bound on the size of the AE as we got in Lemma 4.3.5 and Theorem 2.3.2. However,

expanding the set AE instead of an actual error-region, implies that the adversarially perturbed points x̃

that fall into AE are now misclassified with probability 0.5. Thus, at least 0.99 fraction of inputs can be

perturbed into AE to be misclassified with probability > 0.49.

Lower Bound for PAC Learning of a “Typical” Concept Function Theorem 2.3.2 only proves the

existence of at least one concept function c ∈ C for which the (presumed) robust PAC learner will either fail

(to PAC learn) or will need large sample complexity. Now, suppose concept functions themselves come from a

(natural) distribution and we only want to robustly PAC learn most of them. Indeed, we can extend the

proof of Theorem 2.3.2 to show that for natural settings, the impossibility result extends to at least half of

the concept functions, not just a few pathological cases.

To extend Theorem 2.3.2 to the more general “typical” failure over c← C (stated as Claim 4.4.2 below)

we need the following definition as an extension to Definition 4.3.3.

Definition 4.4.1 (Uniformly α-close function families). Suppose D is a distribution over X , and let C

be a set of functions from X to some set Y. We call C uniformly α-close with respect to D, if there

is a joint distribution (c1, c2) where both coordinates are uniformly distributed over C, and that for all

(c1, c2)← (c1, c2), it both holds that c1, c2 ∈ C and that Prx←D[c1(x) 6= c2(x)] = α.

Claim 4.4.2. In Theorem 2.3.2 and Lemma 4.3.5, make the only change in the setting as follows. The

concept class C now satisfies the stronger condition of being uniform α-close with respect to D. Then, the

same limitations of PAC learning hold for at least measure half of c← C.
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Here we sketch why Claim 4.4.2 holds. The difference is that now, instead of knowing the existence of an

α-close pair (c1, c2), we have distribution (c1, c2) samples from which satisfy the α-close property. Therefore,

for all samples (c1, c2)← (c1, c2), at least one of c1 or c2 is “bad” for the (presumed) PAC learner L (with

the same proof before). But, since each of the coordinates in (c1, c2) is marginally uniform, therefore, at

least measure 1/2 of c← C is bad for L.

Example Consider the uniform measure over homogeneous half spaces in dimension n as the set of concept

functions C: choose a point w in the unit sphere and select the half space {x | 〈x,w〉 ≥ 0}. It is easy to see

that C with such measure is uniformly α-close with respect to the isotropic Gaussian distribution (or uniform

distribution over the unit sphere). Thus, Claim 4.4.2 applies to this case.

4.5 Conclusion and Open Questions

We examined evasion attacks, where the adversary can perturb instances during test time, as well as hybrid

attacks where the adversary can perturb instances during both training and test time. For evasion attacks we

gave an exponential lower bound on the sample complexity even when the adversary can perturb instances

by an amount of o(n), where n is the data dimension capturing the “typical” norm of an input. For hybrid

attacks, PAC learning is ruled out altogether when the adversary can poison a small fraction of the training

examples and still perturb the test instance by a sublinear amount o(n) (or even Õ(
√
n)).

Our result shows a different behavior when it comes to PAC learning for error-region adversarial risk

compared to previously used notions of adversarial robustness based on corrupted inputs. In particular,

in the error-region variant of adversarial risk, realizable problems stay realizable, as normal risk zero for a

hypothesis h also implies (error-region) adversarial risk zero for the same h. This makes our results more

striking, as they apply to agnostic learning as well.

Open Questions Our Theorem 2.3.2 relies on a level of tampering to be at least Õ(
√
n) to imply the

super-polynomial lower bounds. One natural question is to find the exact threshold of perturbations needed

that triggers super-polynomial lower bounds on sample complexity.

Another important direction is to study the sample complexity of PAC learning (with concrete parameters

ε, δ) for practical distributions such as images or voice. Our lower bounds of this chapter are only proved

for theoretically natural distributions that are provably concentrated in high dimension. Mahloujifar et al.

[2019e], presents a method for empirically approximating the concentration of such distributions given i.i.d.

samples from them.
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Finally, we ask if similar results could be proved for corrupted-input adversarial risk. Note that previous

work studying learning under corrupted-input adversarial risk [Bubeck et al., 2018b, Cullina et al., 2018,

Feige et al., 2018, Attias et al., 2018, Khim and Loh, 2018, Yin et al., 2018b, Montasser et al., 2019] focus on

agnostic learning, by aiming to get close to the “best” robust classifier. However, it is not clear how good the

best classifier is. It remains open to find out when we can learn robust classifiers (under corrupted-input risk)

in which the total adversarial risk is small.
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Chapter 1

Can Adversarially Robust Learning

Leverage Computational Hardness?

1.1 Introduction

Is adversarially robust classification possible? As we saw in Parts 1 and 2, recently, started by

Gilmer et el. Gilmer et al. [2018b] and followed by Fawzi et al. [2018], Diochnos et al. [2018c], Shafahi et al.

[2018b], Mahloujifar et al. [2018b], it was shown that for many natural metric probability spaces of instances

(e.g., uniform distribution over {0, 1}n, [0, 1]n, unit n-sphere, or isotropic Gaussian in dimension n, all with

“normalized” Euclidean or Hamming distance) adversarial examples of sublinear perturbations exist for almost

all test instances. Indeed, as shown by Mahloujifar, Diochnos, and Mahmoody Mahloujifar et al. [2018b], if

the instances are drawn from any “normal Lévy family” Milman and Schechtman [1986] of metric probability

spaces (that include all the above-mentioned examples), and if there exists an initial non-negligible risk for

the generated hypothesis classifier h, an adversary can perturb an initial instance x into an adversarial one x′

that is only ≈
√
n-far (which is sublinear in n) from x and that x′ is misclassified.

Is computationally robust classification possible? All the above-mentioned sublinear-perturbation

attacks of Fawzi et al. [2018], Diochnos et al. [2018c], Shafahi et al. [2018b], Mahloujifar et al. [2018b], in

both evasion and poisoning models, were information theoretic (i.e., existential). Namely, they only show the

existence of such adversarial instances for evasion attacks or that they show the existence of such adversarial

poisoned data with sublinear perturbations for poisoning attacks. In this chapter, we study the next natural

question; can we overcome these information theoretic (existential) lower bounds by relying on the fact that
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the adversary is computationally bounded? Namely, can we design solutions that resist polynomial-time

attacks on the robustness of the learning algorithms? More specifically, the general question studied in our

work is as follows.

Can we make classifiers robust to computationally bounded adversarial perturbations (of sublinear

magnitude) that occur during the training or the test phase?

1.1.1 Summary of Results

In this chapter, we prove strong barriers against basing the robustness of classifiers, in both evasion

and poisoning settings, on computational intractability based on a new notion that we introduce name

“computational concentration of measure”. We state two theorem on the power of polynomial time poisoning and

evasion attacks. We prove out Theorems based by assuming that product distributions are computationally

concentrated. In next section, we will prove the computational concentration for product distributions.

Namely, we show that in settings that computational concentration of measure (i.e., any problem for which

the instances are drawn from a product distribution and that their distances are measured by Hamming

distance) adversarial examples could be found in polynomial time. This result applies to any learning task

over these distributions. In the poisoning attacks’ setting, we show that for any learning task and any

distribution over the labeled instances, if the goal of the adversary is to decrease the confidence of the learner

or to increase its error on any particular instance x, it can always do so in polynomial time by only changing

≈
√
m of the labeled instances and replacing them with yet correctly labeled examples. Below we describe

both of these results at a high level.

Theorem 1.1.1 (Informal: polynomial-time evasion attacks). Let P be a classification problem in which

the test instances are drawn from a product distribution D ≡ u1 × · · · × un. Suppose c is a concept function

(i.e., ground truth) and h is a hypothesis that has a constant Ω(1) error in predicting c. Then, there is a

polynomial-time (black-box) adversary that perturbs only ≈ O(
√
n) of the blocks of the instances and make

them misclassified with probability ≈ 1.

(See Theorem 1.3.3 for the formal version of the following theorem.)

The above theorem covers many natural distributions such as uniform distributions over {0, 1}n or [0, 1]n

or the isotropic Gaussian of dimension n, so long as the distance measure is Hamming distance. Also, as we

will see in Theorem 1.3.3, the initial error necessary for our polynomial-time evasion attack could be as small

as 1/poly(log n) to keep the perturbations Õ(
√
n), and even initial error ω(log n/

√
n) is enough to keep the

perturbations sublinear o(n). Finally, by “black-box” we mean that our attacker only needs oracle access to
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the hypothesis h, the ground truth c, and distribution D.1 This black-box condition is similar to the one

defined in previous work of Papernot et al. Papernot et al. [2017], however the notion of black box in some

other works (e.g., see Ilyas et al. [2018]) are more relaxed and give some additional data, such as a vector

containing probabilities assigned to each label, to the adversary as well.

We also note that, even though learning is usually done with respect to a family of distributions (e.g., all

distributions), working with a particular distribution in our negative results make them indeed stronger.

We now describe our main result about polynomial-time poisoning attacks. See Theorem 1.3.6 for the

formal version of the following theorem.

Theorem 1.1.2 (Informal: polynomial-time poisoning attacks). Let P be a classification problem with

a deterministic learner L that is given m labeled examples of the form (x, c(x)) for a concept function c

(determining the ground truth).

� Decreasing confidence. For any risk threshold ε ∈ [0, 1], let ρ be the probability that L produces a

hypothesis of risk at most ε, referred to as the ε-confidence of L. If ρ is at most 1− Ω(1), then there

is a polynomial-time adversary that replaces at most ≈ O(
√
m) of the training examples with other

correctly classified examples and makes the ε-confidence go down to any constant O(1) ≈ 0.

� Increasing chosen-instance2 error. For any fixed test instance x, if the average error of the

hypotheses generated by L over instance x is at least Ω(1), then there is a polynomial-time adversary

that replaces at most ≈ O(
√
m) of the training examples with other correctly classified examples and

increases this average error to any constant ≈ 1.

Moreover, both attacks above are online and black-box.

Generalization to arbitrary predicates. More generally, and similarly to the information theoretic

attacks of Mahloujifar et al. [2018b], the two parts of Theorem 1.1.2 follow as special cases of a more

general result, in which the adversary has a particular efficiently checkable predicate in mind defined over the

hypothesis (e.g., mislabelling on a particular x or having more than ε risk). We show that the adversary

can significantly increase the probability of this bad event if it originally happens with any (arbitrary small)

constant probability.

Other features of our poisoning attacks. Similarly to the previous attacks of Mahloujifar et al. Mahlou-

jifar and Mahmoody [2017b], Mahloujifar et al. [2018b,e], both poisoning attacks of Theorem 1.1.2 have the

following features.

1As mentioned, we need to give our adversary oracle access to a sampler for the instance distribution x as well, though this
distribution is usually polynomial-time samplable.

2Poisoning attacks in which the instance is chosen are also called targeted Barreno et al. [2006].
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1. Our attacks are online; i.e., during the attack, the adversary is only aware of the training examples

sampled so far when it decides about the next tampering decision. So, these attacks can be launched

against online learners in a way that the tampering happens concurrently with the learning process (see

Wang and Chaudhuri [2018] for an in-depth study of attacks against online learners). The information

theoretic attacks of Mahloujifar et al. [2018b] were “off-line” as the adversary needed the full training

sequence before attacking.

2. Our attacks only use correct labels for instances that they inject to the training set (see Shafahi et al.

[2018a] where attacks of this form are studied in practice).

3. Our attacks are black-box Papernot et al. [2017], as they use the learning algorithm L and concept c as

oracles.

1.1.2 Technique: Computational Concentration of Measure in Product Spaces

In a concentrated spaces (e.g., in normal Lévy families) of dimension n, for any sufficiently large set S (of,

say constant measure) the “typical” minimum distance of the space points to S is sublinear o(n) (O(
√
n)

in normal Lévy families). A computational version of this statement shall find such “close” points in S in

polynomial time. The main technical contribution of our work is to prove such computational concentration

of measure for any product distribution under the Hamming distance. Namely, we prove the following result

about biasing Boolean functions defined over product spaces using polynomial time tampering algorithms.

(See Theorem 1.3.1 for a formal variant.)

Theorem 1.1.3 (Informal: computational concentration of products). Let u ≡ u1 × . . .un be any product

distribution of dimension n and let f : Supp(u) 7→ {0, 1} be any Boolean function with expected value

E[f(u)] = Ω(1). Then, there is a polynomial-time tampering adversary who only tampers with O(
√
n) of the

blocks of a sample u← u and increases the average of f over the tampered distribution to ≈ 1.

Once we prove Theorem 1.1.3, we can also use it directly to obtain evasion attacks that find adversarial

examples, so long as the test instances are drawn from a product distribution and that the distances over the

instances are measured by Hamming distance. Indeed, using concentration results (or their stronger forms of

isoperimetric inequalities) was the key method used in Section 2 of Part 2 to show the existence of adversarial

examples. Thus, our Theorem 1.3.1 is a natural tool to be used in this context as well, as it simply shows

that similar (yet not exactly equal) bounds to those proved by the concentration of measure can be achieved

algorithmically using polynomial time adversaries.
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Relation to approximate nearest neighbor search. We note that computational concentration of

measure (e.g., as proved in Theorems 1.1.3 and 1.3.1 for product spaces under Hamming distance) bears

similarities to the problem of “approximate nearest neighbor” (ANN) search problem Indyk and Motwani

[1998], Andoni and Indyk [2006], Andoni and Razenshteyn [2015], Andoni et al. [2018] in high dimension.

Indeed, in the ANN search problem, we are given a set of points P ⊆ X where X is the support set of a metric

probability space (of high dimension). We then want to answer approximate near neighbor queries quickly.

Namely, for a given x ∈ X , in case there is a point y ∈ P where x and y are “close”, the algorithm should

return a point y′ that is comparably close to x. Despite similarities, (algorithmic proofs of) computational

concentration of measure are different in two regards: (1) In our case the set P could be huge, so it is not

even possible to be given as input, but we rather have implicit access to P (e.g., by oracle access). (2) We

are not necessarily looking for point by point approximate solutions; we only need the average distance of the

returned points in P to be within some (nontrivial) asymptotic bounds.

Proof of Theorem 1.3.1 The proof of this Theorem evolved in two papers. First Mahloujifar and

Mahmoody [2018a] studied the concentration of product and achieved sub-optimal bounds for it. Then, in

Etesami et al. [2020] we could get almost optimal concentration results for product distributions. Both proofs

are inspired by the recent work of Kalai et al. Kalai et al. [2018a] in the context of attacks against coin tossing

protocols. Indeed, Kalai et al. [2018a] proved that in any coin tossing protocol in which n parties send a

single message each, there is always an adversary who can corrupt up to ≈
√
n of the players adaptively and

almost fix the output to 0 or 1, making progress towards resolving a conjecture of Ben-Or and Linial Ben-Or

and Linial [1989]. In next Section we provide a full proof of Theorem 1.3.1. In the rest of this Chapter, we

just show how we can get our poisoning and evasion attacks from Theorem 1.3.1.

1.2 Preliminaries

The following definition based on the definitions given in Mahloujifar and Mahmoody [2017b], Mahloujifar

et al. [2018a,b].

Definition 1.2.1 (Confidence, chosen-instance error, and their adversarial variants). Let L be a learning

algorithm for a classification problem P = (X ,Y, D, C,H), m be the sample complexity of L, and c ∈ C be

any concept. We define the (adversarial) confidence function and chosen-instance error as follows.
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� Confidence function. For any error function ε = ε(m), the adversarial confidence in the presence of

a adversary A is defined as

ConfA(m, c, ε) = Pr
S←(D,c(D))m

h←L(A(S))

[Risk(h, c) < ε].

By Conf(·) we denote the confidence without any attack; namely, Conf(·) = ConfI(·) for the trivial

(identity function) adversary I that does not change the training data.

� Chosen-instance error. For a fixed test instance x ∈ X , the chosen-instance error (over instance x)

in presence of a poisoning adversary A is defined as

ErrA(m, c, x) = Pr
S←(D,c(D))m

h←L(A(S))

[h(x) 6= c(x)].

By Err(·) we denote the chosen-instance error (over x) without any attacks; namely, Err(·) = ErrI(·) for

the trivial (identity function) adversary I.

1.2.1 Basic Definitions for Tampering Algorithms

Our tampering adversaries follow a close model to that of p-budget adversaries defined in Mahloujifar et al.

[2018a]. Such adversaries, given a sequence of blocks, select at most p fraction of the locations in the sequence

and change their value. The p-budget model of Mahloujifar et al. [2018a] works in an online setting in which,

the adversary should decide for the ith block, only knowing the first i− 1 blocks. In this chapter, we define

both online and offline attacks that work in a closely related budget model in which we only bound the

expected number of tampered blocks. We find this notion more natural for the robustness of learners.

Definition 1.2.2 (Online and offline tampering). We define the following two tampering attack models.

� Online attacks. Let u ≡ u1 × · · · × un be an arbitrary product distribution.3 We call a (potentially

randomized and computationally unbounded) algorithm OnTam an online tampering algorithm for u, if

given any i ∈ [n] and any u≤i ∈ Supp(u1)× · · · × Supp(ui), it holds that

Pr
vi←OnTam(u≤i)

[vi ∈ Supp(ui)] = 1 .

Namely, OnTam(u≤i) outputs (a candidate ith block) vi in the support set of ui.
4

3We restrict the case of online attacks to product distribution as they will have simpler notations and that they cover our
main applications, however they can be generalized to arbitrary joint distributions as well with a bit more care.

4Looking ahead, this restriction makes our attacks stronger in the case of poisoning attacks by always picking correct lables
during the attack.
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� Offline attacks. For an arbitrary joint distribution u ≡ (u1 . . . ,un) (that might or might not be a

product distribution), we call a (potentially randomized and possibly computationally unbounded)

algorithm OffTam an offline tampering algorithm for u, if given any u ∈ Supp(u), it holds that

Pr
v←OnTam(u)

[v ∈ Supp(u)] = 1 .

Namely, given any u← u, OnTam(u) always outputs a vector in Supp(u).

� Efficiency of attacks. If u is a joint distribution coming from a family of distributions (perhaps

based on the index n ∈ N), we call an online or offline tampering algorithm efficient, if its running

time is poly(N) where N is the total bit length of any u ∈ Supp(u).

� Notation for tampered distributions. For any joint distribution u, any u ← u, and for any

tampering algorithm Tam, by 〈u ‖Tam〉 we refer to the distribution obtained by running Tam over u,

and by 〈u ‖Tam〉 we refer to the final distribution by also sampling u← u at random. More formally,

– For an offline tampering algorithm OffTam, the distribution 〈u ‖OffTam〉 is sampled by simply

running OffTam on the whole u and obtaining the output (v1, . . . , vn)← OffTam(u1, . . . , un).

– For an online tampering algorithm OnTam and input u = (u1, . . . , un) sampled from a product

distribution u1 × . . .un, we obtain the output (v1, . . . , vn)← 〈u ‖OnTam〉 inductively : for i ∈ [i],

sample vi ← OnTam(v1, . . . , vi−1, ui).
5

� Average budget of tampering attacks. Suppose d is a metric defined over Supp(u). We say an

online or offline tampering algorithm Tam has average budget (at most) b, if

E
u←u,

v←〈u ‖Tam〉

[d(u, v)] ≤ b.

If no metric d is specified, we use Hamming distance over vectors of dimension n.

1.3 Polynomial-time Attacks from Computational Concentration

of Products

In this section, we will first formally state our main technical tool, Theorem 1.3.1, that underlies our

polynomial-time evasion and poisoning attacks. Namely, we will prove that product distributions are

5By limiting our online attackers to product distributions, we can sample the whole sequence of “untampered” values
(u1, . . . , un) at the beginning; otherwise, for general random processes in which the distribution of blocks are correlated, we
would need to sample (u1, . . . , un) and (v1, . . . , vn) jointly by sampling ui conditioned on v1, . . . , vi−1.
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“computationally concentrated” under the Hamming distance, in the sense that any subset with constant

probability, is “computationally close” to most of the points in the probability space. We will then use this

tool to obtain our attacks against learners. We will finally prove our main technical tool.

Theorem 1.3.1 (Computational concentration of product distributions). Let u ≡ u1 × · · · × un be any

product distribution and f : Supp(u) 7→ {0, 1} be any Boolean function over u, and let µ = E[f(u)] be the

expected value of f . Then, for any ρ where µ < ρ < 1, there is an online tampering algorithm OnTam

generating the tampering distribution v ≡ 〈u ‖OnTam〉 with the following properties.

1. Achieved bias. E[f(v)] ≥ ρ.

2. Efficiency. Having oracle access to f and a sampler for u, OnTam = OnTamf,u runs in time

poly
(

n·`
µ·(1−ρ)

)
where ` is the maximum bit length of any ui ∈ Supp(ui) for any i ∈ [n].

3. Average budget. OnTam = OnTamf,u uses average budget O(
√
n · ln(1/µ(1− ρ))) .

In the rest of this section, we will use Theorem 1.3.1 to prove limitations of robust learning in the presence

of polynomial-time poisoning and evasion attackers. We will prove Theorem 1.3.1 in the next section.

1.3.1 Polynomial-time Evasion Attacks

The following definition of robustness against adversarial perturbations of the input is based on the previous

definitions used in Gilmer et al. [2018b], Bubeck et al. [2018b], Diochnos et al. [2018c], Mahloujifar et al.

[2018b] in which the adversary aims at misclassification of the adversarially perturbed instance by trying to

push them into the error region.

We define the following definition for a fixed distribution D (as our negative results are for simplicity

stated for such cases) but a direct generalization can be obtained for any family of distributions over the

instances. Moreover, we only give a definition for the “black-box” type of attacks (again because our attacks

are black-box) but a more general definition can be given for non-black-box attacks as well.

Definition 1.3.2 (Computational (error-region) evasion robustness). Let P = (X ,Y, D, C,H, d) be a clas-

sification problem. Suppose the components of P are indexed by n ∈ N, and let 0 < µ(n) < ρ(n) ≤ 1 for

functions µ(n) and ρ(n) that for simplicity we denote by µ and ρ. We say that the µ-to-ρ evasion robustness

of P is at most b = b(n), if there is a (perhaps computationally unbounded) tampering oracle algorithm A(·)

such that for all h ∈ H, c ∈ C with error region E = E(h, c),Pr[D ∈ E ] ≥ µ, we have the following.

1. Having oracle access to h, c and a sampler for D, the oracle adversary A = Ah,c,D(x) reaches adversarial

risk to at least ρ (for the choice of c, h). Namely, Prx←D[Ah,c,D(x) ∈ E ] ≥ ρ.
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2. The average budget of the adversary A = Ah,c,D (with oracle access to h, c and a sampler for D) is at

most b for samples x← D and with respect to metric d.

The µ-to-ρ computational evasion robustness of P is at most b = b(n), if the same statement holds for an

efficient (i.e., PPT) oracle algorithm A.

Evasion robustness of problems vs. that of learners. Computational evasion robustness as defined

in Definition 1.3.2 directly deals with learning problems regardless of what learning algorithm is used for them.

The reason for such a choice is that in this chapter, we prove negative results demonstrating the limitations

of computational robustness. Therefore, limiting the robustness of a learning problems regardless of their

learner is a stronger result. In particular, any negative result (i.e., showing attackers with small tampering

budget) about µ-to-ρ (computational) robustness of a learning problem P, immediately implies that any

learning algorithm L for P that produces hypothesis with risk ≈ µ can always be attacked (efficiently) to

reach adversarial risk ρ.

Now we state and prove our main theorem about evasion attacks. Note that the proof of this theorem is

identical to the reduction shown in Mahloujifar et al. [2018b]. The difference is that, instead of using original

concentration inequalities, we use our new results about computational concentration of product measures

under hamming distance and obtain attacks that work in polynomial time.

Theorem 1.3.3 (Limits on computational evasion robustness). Let P = (X ,Y, D, C,H, d) be a classification

problem in which the instances’ distribution D ≡ u1 × · · · × un is a product distribution of dimension n and

d is the Hamming distance over vectors of dimension n. Let 0 < µ = µ(n) < ρ = ρ(n) ≤ 1 be functions of n.

Then, the µ-to-ρ computational evasion robustness of P is at most

b = O(
√
n · ln(1/µ · (1− ρ))).

In particular, if µ(n) = ω(1/poly(n)) and ρ(n) = 1− 1/ poly(n), then then b = Õ(
√
n).

Proof. We first define a Boolean function f : : X → [0, 1] as follows:

f(x) =


1 c(x) 6= h(x),

0 c(x) = h(x).

It is clear that E[f(D)] = Pr[D ∈ E ] ≥ µ. Therefore, by using Theorem 1.3.1, we know there is an tampering

algorithm Af,Dµ that runs in time poly(n · `/µ · (1− ρ)) and increases the average of f to ρ while using average
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budget at most O(
√
n · ln(1/µ(1− ρ)). Note that A needs oracle access to f(·) which is computable by oracle

access to h(·) and c(·).

Remark 1.3.4 (Computationally bounded prediction-change evasion attacks). As we mentioned in the

introduction, some works studying adversarial examples (e.g., Szegedy et al. [2014], Fawzi et al. [2018])

study robustness by only comparing the prediction of the hypothesis over the adversarial example with its

own prediction on the honest example, and so their definition is independent of the ground truth c. (In the

terminology of Diochnos et al. [2018c], such attacks are called prediction-change attacks.) Here we point out

that our biasing attack of Theorem 1.3.1 can be used to prove limits on the robustness against such evasion

attacks as well. In particular, in Mahloujifar et al. [2018b], it was shown that using concentration of measure,

one can obtain existential (information theoretic) prediction-change attacks (even of the “targeted” form in

which the target label is selected). By combining the arguments of Mahloujifar et al. [2018b] and plugging in

our computationally bounded attack of Theorem 1.3.1 one can obtain impossibility results for basing the

robustness of hypotheses on computational hardness.

1.3.2 Polynomial-time Poisoning Attacks

The following definition formalizes the notion of robustness against computationally bounded poisoning

adversaries. Our definition is based on those of Mahloujifar and Mahmoody [2017b], Mahloujifar et al. [2018a]

who studied online poisoning attacks and that of Mahloujifar et al. [2018b] who studied offline poisoning

attacks.

Definition 1.3.5 (Computational poisoning robustness). Let P = (X ,Y, D, C,H) be a classification problem

with a learner L of sample complexity m. Let 0 < µ = µ(m) < ρ = ρ(m) ≤ 1 be functions of m.

� Computational confidence robustness. For ε = ε(m), we say that the ρ-to-µ ε-confidence ro-

bustness of the learner L is at most b = b(m), if there is a (computationally unbounded) tampering

algorithm A such that for all c ∈ C for which Conf(m, c, ε) ≤ ρ, the following two conditions hold.

1. The average budget of A = AL,c,D (who has oracle access to L, c and a sampler for D) tampering

with the distribution (D, c(D))m is at most b.

2. The adversarial confidence for ε′ = 99 · ε/100 is at most ConfA(m, c, ε′) ≤ µ when attacked by the

oracle adversary A = AL,c,D.6

6The computationally-unbounded variant of this definition as used in Mahloujifar et al. [2018b] uses ε′ = ε instead of
ε′ = 99 · ε/100, but as observed by Mahloujifar et al. [2018a], due to the computational bounded nature of our attack we need to
have a small gap between ε′ and ε.



Can Adversarially Robust Learning Leverage Computational Hardness? 162

The ρ-to-µ computational ε-confidence robustness of the learner L is at most b = b(n), if the same

statement holds for an efficient (i.e., PPT) oracle algorithm A .

� Computational chosen-instance robustness. For an instance x ← D, we say that the µ-to-ρ

chosen-instance robustness of the learner L for x is at most b = b(m), if there is a (computationally

unbounded) tampering oracle algorithm A (that could depend on x) such that for all c ∈ C for which

E(m, c, x) ≥ µ, the following two conditions hold.

1. The average budget of A = AL,c,D (who has oracle access to L, c and a sampler for D) tampering

with the distribution (D, c(D))m is at most b.

2. Adversary A = AL,c,D increases the chosen-instance error to ErrA(m, c, x) ≥ ρ.

The µ-to-ρ computational chosen-instance robustness of the learner L for instance x is at most b = b(n),

if the same thing holds for an efficient (i.e., PPT) oracle algorithm A.

Now we state and prove our main theorem about poisoning attacks. Again, the proof of this theorem is

identical to the reduction from shown in Mahloujifar et al. [2018b]. The difference is that here we use our

new results about computational concentration of product measures under hamming distance and get attacks

that work in polynomial time. Another difference is that our attacks here are online due the online nature of

our martingale attacks on product measures.

Theorem 1.3.6 (Limits on computational poisoning robustness). Let P = (X ,Y, D, C,H) be a classification

problem with a deterministic polynomial-time learner L. Let 0 < µ = µ(m) < ρ = ρ(m) ≤ 1 be functions of

m, where m is the sample complexity of L.

� Confidence robustness. Let ε = ε(m) ≥ 1/ poly(m) be the risk threshold defining the confidence

function. Then, the ρ-to-µ computational ε-confidence robustness of the learner L is at most b =

O(
√
m · ln(1/µ(1− ρ)).

� Chosen-instance robustness. For any instance x← D, the µ-to-ρ computational chosen-instance

robustness of the learner L for x is at most b = O(
√
m · ln(1/(1− ρ)µ).

In particular, in both cases above if µ(m) = ω(1/ poly(m)) and ρ(m) = 1− 1/poly(m), then b = Õ(
√
m).

Moreover, the polynomial time attacker A bounding the computational poisoning robustness in both cases

above has the following features: (1) A is online, and (2) A is plausible; namely, it never uses any wrong

labels in its poisoned training data.
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Proof. We first prove the case of chosen-instance robustness. We define a Boolean function f : Xm → [0, 1] as

follows:

f1(x1, . . . , xm) =


1 h = L((x1, c(x1)), . . . , (xn, c(xm)) ∧ h(x) 6= c(x),

0 h = L((x1, c(x1)), . . . , (xn, c(xm)) ∧ h(x) = c(x).

It is clear that E[f1(Dm)] = E(m, c, x) ≥ µ. Therefore, by using Theorem 1.3.1, we know there is a PPT

tampering Algorithm A
f1(·),µ
2 that runs in time poly(m · `/(µ · (1− ρ))), and increase the average of f1 to ρ

while using average budget at most O(
√
m · ln(1/µ(1− ρ))). Note that A1 needs oracle access to f1(·) which

is computable by oracle access to the learning algorithm L(·) and concept c(·). Now we prove the case of

confidence robustness. Again we define a Boolean function f2 : Xm → [0, 1] as follows:

f2(x1, . . . , xm) =


1 h = L((x1, c(x1)), . . . , (xn, c(xm)) ∧ Pr[h(D) 6= c(D)] ≥ ε,

0 h = L((x1, c(x1)), . . . , (xn, c(xm)) ∧ Pr[h(D) 6= c(D)] < ε.

We have E[f2(Dm)] = 1− Conf(m, c, ε) ≥ 1− ρ. Therefore, by using Theorem 1.3.1, we know there is a PPT

tampering Algorithm A
f2(·),µ
2 that runs in time poly(m · `/(1− ρ) · µ), and increase the average of f2 to 1− µ

while using average budget at most O(
√
m · ln(2/µ(1− ρ)). Note that A2 needs oracle access to f2(·), which

requires the adversary to know the exact error of a hypothesis. Computing the exact error is not possible in

polynomial time but using an emprical estimator, the adversary can find an approximation of the error which

is sufficient for the attack (See Corollary 3 of Mahloujifar et al. [2018a]).



Chapter 2

Optimal Bounds for Computational

Concentration of Measure

2.1 Introduction

As we saw in previous section, computational concentration of measure is an important tool for robust learning.

In this section we try to achieve optimal computational concentration results. Let (X , d, D) be a metric

probability space in which d is a metric over X , and D is a probability measure over X . The concentration

of measure phenomenon Ledoux [2001], Milman and Schechtman [1986] states that many natural metric

probability spaces of high dimension are concentrated in the following sense. Any set S ⊆ X of “not too small”

probability D(S) ≥ ε is “close” (according to d) to “almost all” points ( 1− δ measure according to D).

A well-studied class of concentrated spaces is the set of product spaces in which the measureD = D1×. . . Dn

is a product measure of dimension n, and the metric d is Hamming distance of dimension n; namely,

HD(u, v) = | {i : ui 6= vi} | for vectors u = (u1, . . . , un), v = (v1, . . . , vn). More specifically, it is known, e.g.,

by results implicit in Amir and Milman [1980], Milman and Schechtman [1986] and explicit in McDiarmid

[1989], Talagrand [1995], and weaker versions known as blowing-up lemma proved in Ahlswede et al. [1976],

Margulis [1974], Marton [1986], that any such metric probability space is a so-called Normal Lévy family

Lévy [1951], Alon and Milman [1985]. Namely, for any S of probability D(S) ≥ ε, at least 1− δ fraction of

the points (under the product measure D) are O(
√
n · ln(1/εδ))-close in Hamming distance to S. Previous

proofs of measure concentration, and in particular those proofs for product spaces are information theoretic,

and only show the existence of a “close” such point y ∈ S to most of x← D sampled according to D. Naive

sampling of points around x will likely not fall into S (see Section 2.6).
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Motivated by finding polynomial-time attacks on the “robustness” of machine learning algorithms, recently

Mahloujifar and Mahmoody Mahloujifar and Mahmoody [2019a] (See previous section) studied a computational

variant of the measure concentration in which the mapping from a given point x← D to its close neighbor

y ∈ S is supposed to be computed by an efficient polynomial-time algorithm AS,D(x) = y that has oracle

access to test membership in S and a sampling oracle from the measure D.1 It was shown in Mahloujifar

and Mahmoody [2019a] that if S is large enough, then the measure computationally concentrates around

S. In particular, it was shown that if Pr[S] ≥ 1/ polylog(n), then AS,D(x) finds y with Hamming distance

Õ(
√
n) from x, and instead if S is at least Pr[S] ≥ ω(1/

√
n), then A finds y with Hamming distance o(n).

Consequently, it was left open to prove computational concentration of measure around any smaller sets of

“non-negligible” 1/poly(n) probability, e.g., of measure 1/n.

2.1.1 Summary of Results

In this chapter, we resolve the open question about the computational concentration of measure in product

spaces under Hamming distance and prove (tight up to constant) computational concentration for all ranges

of initial probabilities Pr[S] for the target set S. Namely, we prove the following result matching what

information theoretic concentration of product spaces guarantees up to a constant factor, while the mapping is

done algorithmically. As we deal with algorithms, without loss of generality, we focus on discrete distributions.2

Theorem 2.1.1 (Main result). There is an algorithm AS,Dε,δ (·) called MUCIO (short for “MUltiplicative

Conditional Influence Optimizer”) that given access to a membership oracle for any set S and a sampling

oracle from any product measure D of dimension n, it achieves the following. If Pr[S] ≥ ε, given ε and δ, the

algorithm AS,Dε,δ (·) runs in time poly(n/εδ), and with probability ≥ 1− δ given a random point x← D, it maps

x to a point y ∈ S of bounded Hamming distance HD(x, y) ≤ O(
√
n · ln(1/εδ)).

See Theorem 2.3.2 for a more general version of Theorem 2.1.1.

For the special case that ε, δ = 1/poly(n) (implying S has a non-negligible measure) the algorithm MUCIO

of Theorem 2.1.1 achieves its goal in poly(n) time, while it changes only Õ(
√
n) of the coordinates.

Our work can be seen as another example of works in computer science that make previously existential

proofs algorithmic. A good example of a similar successful effort is the active line of work started from

Moser [2009], Moser and Tardos [2010] that presented algorithmic proofs of Lovász’s local lemma, leading to

algorithms that efficiently find objects that previously where only shown to exist using Lovász’s local lemma.

1In case of product measure, oracle access to a sampler from D = D1× . . . Dn is equivalent to having such samplers for all Di.
2Note that even seemingly non-discrete distributions like Gaussian, when used as input to efficient algorithms, are necessarily

rounded to limited precision and thus end up being discrete.
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The work of Impagliazzo and Kabanets [2010] also approaches measure concentration from an algorithmic

perspective, but their goal is to algorithmically find witness for lack of concentration.

Extensions

In this chapter we also prove several extensions to our main result in different directions expanding a direct

study of computational concentration as an independent direction.

Extension to random processes and coin-tossing attacks.. We prove a more general result than

Theorem 2.1.1 in which the perturbed object is a random process. Namely, suppose w ≡ (w1, . . . ,wn) is a

discrete (non-product) random process in which, given the history of blocks w1, . . . , wi−1, the ith block wi

is sampled from its corresponding random variable (wi | w1, . . . , wi−1). Suppose Prw←w[w ∈ S] ≥ ε for an

arbitrary set S. A natural question is: how much can an adversary increase the probability of falling into S,

if it is allowed to partially tamper with the online process of sampling w1, . . . , wn up to K < n times? In

other words, the adversary has a limited budget of K, and in the ith step, it can use one of its budget, and in

exchange it gets to override the originally (honestly) sampled value wi ← (wi | w1, . . . , wi−1) by a new value.

Note that if the adversary does a tampering, the changed value will substitute wi and will affect the way the

future blocks of the random process are sampled, e.g., in the next sampling of wi+1 ← (wi+1 | w1, . . . , wi).

Our generalized version of Theorem 2.1.1 (stated in Theorem 2.3.2) shows that in the above setting

of tampering with random processes, an adversary with budget O(
√
n · ln(1/εδ)) can indeed change the

distribution of the random process and make the resulting tampered sequence end up in S with probability at

least 1− δ, while the adversary also runs in time poly(n/εδ). Previously, Mahloujifar and Mahmoody [2019a]

also showed a similar less tight result for random processes, but their result was limited to the setting that S

is sufficiently large Pr[S] ≥ ω(1/
√
n).

The variant of Theorem 2.1.1 for random processes allows us to attack cryptographic coin-tossing protocols

Ben-Or and Linial [1989], Cleve and Impagliazzo [1993], Maji et al. [2010], Berman et al. [2014], Haitner and

Omri [2014], Kalai et al. [2018b] in which n parties P1, . . . , Pn each send a single message during a total of n

rounds, and the full transcript M = (m1, . . . ,mn) determines a bit b. The goal of an attacker is to corrupt

up to K of the parties and bias the bit b towards its favor. Our results show that even if the original bit b

had a small probability of being 1, Prno-attack[b = 1] ≥ ε = 1/poly(n), then a poly(n)-time attacker who can

corrupt up to Õ(
√
n) parties and change their messages can bias the output bit b all the way up to make it

Prattack[b = 1] ≥ 1− 1/ poly(n). The corruption model here was first introduced by Goldwasser, Kalai and
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Park Goldwasser et al. [2015b] and is called strong adaptive corruption, because the adversary has the option

to first see the message mi before deciding to corrupt (or not corrupt) Pi to change its message mi (or not). 3

Weighted Hamming distance.. In another extension to our Theorem 2.1.1 (see Theorem 2.3.2) we

allow the Hamming distance to have different costs αi when changing the ith coordinate for any vector

α = (α1, . . . , αn) of `2 norm
∑
i α

2
i = n. In Talagrand’s inequality Talagrand [1995], it is proved that even if

αx can completely depend on the original point x, we still can conclude that most points are “close” to any

sufficiently large set S, when the distance from x to S is measured by the αx-weighted Hamming distance.

An algorithmic version of Talagrand’s inequality, then, shall find a close point y ∈ S to x measured by

αx-weighed Hamming distance. Interestingly, our proof allows the coordinate αi to completely depend on

(x1, . . . , xi−1), but falls short of proving an algorithmic version of Talagrand’s inequality, if possible at all.

Reductions and other metric probability spaces.. Motivated by proving computational concentration

of measure in other metric probability spaces, as well as designing a machinery for this goal, we define a

new model of algorithmic reductions between computational concentration of measure in different metric

probability spaces. This notion, whose definition has some subtle algorithmic aspects, requires two (inverse)

polynomial-time mappings one of which is an algorithmic Lipschitz mapping and the other one is an algorithmic

coupling connecting the two distributions. As an application, we apply this notion of reduction to obtain

computational concentration of measure for high-dimensional Gaussian distributions under the `1 distance.

We prove this exemplary case by revisiting the proof of Bobkov [1997] who proved the information theoretic

reduction from the concentration of Gaussian distributions under the `1 distance to that of Hamming cube.

We show how the core ideas of Bobkov [1997] could be extended to obtain all the algorithmic components

that are needed for a computational variant. Although there are known results on concentration of Gaussian

distribution `1 in information theoretic regime, this is the first time (to the best of our knowledge) that a

computational variant of concentration is proved for Gaussian spaces. We envision the same machinery can

be applied to more information theoretic results for obtaining new computational variants; we leave doing so

for future work. See Theorem 2.4.2 for the formal statement.

Computational concentration around mean.. As measure concentration is usually proved for concen-

tration around mean of a function f(·) when the inputs come from certain distributions, we show how to use

our main result of Theorem 2.3.2 to obtain algorithmic concentration results for that setting as well. Namely,

at a high level, we show that in certain settings (where concentration is known to follow from those settings)

one can algorithmically find the right minimal perturbations to sampled points x so that the new perturbed

3If each message mi is a bit, it turns out that our attack can be modified to an attack that is not strong.
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point x′ gives us the average of the concentrated function: f(x′) ≈ Ex←D[f(x)]. Sometimes doing so is trivial

(e.g., in case of Chernoff bound, when f is simply the addition of i.i.d. sampled Boolean values, as one

can greedily change Boolean variables to decrease/increase their summation) but sometimes doing so is not

straightforward. In particular, we prove a computational variant of McDiarmid’s inequality. Namely, we show

how to modify
√
n coordinates of a vector x← D sampled from a product distribution D of dimension n,

such that f(x′) gets arbitrary (i.e., 1/ poly(n)) close to the average µ = Ex←D[f(x)] for a function f that is

Lipschitz under Hamming distance. (Note that the Lipschitz property is needed for the McDiarmid inequality

as well). See Theorem 2.5.1 for the formal statement.

Lower bounds for simple methods.. We also prove exponential lower bounds on the query complexity

of natural, yet restricted, classes of algorithms. Two such classes stand out: One is non-adaptive algorithms

where the queries made do not depend on the answer of previous queries. Another, natural class of algorithms

are algorithms where all the queried points are at the distance where an acceptable final output may be

at that distance. These lower bounds shed light on why perhaps some of the ideas behind our algorithm

MUCIO are necessary, and that some simpler more straightforward algorithms are not as efficient.

Polynomial-time biasing attacks against extractors.. At a high level, our biasing attacks on random

processes are also related to impossibility results on extracting randomness from blockwise Santha-Vazirani

sources Santha and Vazirani [1986], Chor and Goldreich [1988], Beigi et al. [2017], Reingold et al. [2004],

Dodis et al. [2004] and specifically the p-tampering and p-resetting attacks of Bentov et al. [2016], Mahloujifar

and Mahmoody [2017b], Mahloujifar et al. [2018a]. In those attacks, an attacker might get to tamper

each incoming block with an independent probability p, and they can achieve a bias of magnitude O(p)

(in polynomial time). However, our attackers can choose which blocks are the target of their tampering

substitutions, but then achieve much stronger bias and almost fixing the output with much smaller o(n)

number of tamperings.

Polynomial-time Attacks on Robust Learning

Our results also have implications on (limits) of robust learning, which is also the focus of the work of

Mahloujifar and Mahmoody [2019a] where computational concentration of measure was also studied. We refer

the reader to Mahloujifar and Mahmoody [2019a] for a more in-depth treatment of the literature and settings

for (attacks on) robust learning. For sake of completeness, below we describe the basic setting of such attacks

and briefly discuss the implication of our computational concentration results to robust learning attacks.
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Suppose L is a (deterministic) learning algorithm, taking as input a training set T consisting of m iid

sampled and labeled examples T = {xi, c(xi)}i∈[m] where xi ← D for i ∈ [m], and that c(·) is a concept

function to be learned. Let h = L(T ) be the hypothesis that the learner produces based on the training set

T . Main attacks against robustness of learners are studied during the training phase or the testing phase of a

learning process. We describe the settings and previous work before explaining the implication of our new

computational concentration results to those settings.

Poisoning attacks. In a so-called data poisoning attack Barreno et al. [2006], Biggio et al. [2012], which is

tightly related to Valiant’s malicious noise model Valiant [1985], Kearns and Li [1993b], Bshouty et al. [2002],

the adversary only tampers with the training phase and substitutes a small p < 1 fraction of the examples in

T with other arbitrary examples, leading to a poisoned data set T̃ . The goal of the adversary, in general, is to

make L(T̃ ) produce a “bad” hypothesis h ∈ H̃ (e.g., bad might mean having large risk or making a mistake

on a particular test x during the test time) where H̃ ⊆ H includes the set of all undesired hypothesis. It was

shown by Mahloujifar et al. [2018b] that the concentration of measure in product spaces (under Hamming

distance) implies that in any such learning process, so long as PrT [L(T ) ∈ H̃] ≥ ε, then an adversary A who

changes O(
√
m · ln(1/εδ)) of the training examples (and substitute them with still correctly labeled data)

can increase the probability of producing a bad hypothesis in H̃ to PrT̃←A(T )[L(T̃ ) ∈ H̃] ≥ δ. It was left

open whether such attack can be made polynomial time, or that perhaps computational intractability can be

leveraged to prevent such attacks. The work of Mahloujifar and Mahmoody [2019a] showed how to make

such attacks polynomial time, only for the setting where the probability of falling into H̃ was already not too

small, and in particular at least ω(1/
√
n), and also with looser bounds. Our Theorem 2.1.1 shows how to get

such polynomial time evasion attacks for any non-negligible probability ε ≥ 1/ poly(n). In fact, as stated

in Theorem 2.1.1, our attack’s complexity can gracefully adapt to ε. More formally, we prove the following

theorem.

Theorem 2.1.2 (Polynomial time poisoning). Suppose L is a deterministic learner of sample complexity

n that takes data set T = {xi, c(xi)}i∈[m] of size n that is i.i.d. sampled from the distribution (x, c(x))x←D

and produces a hypothesis h ∈ H. Suppose, we have Pr[h ∈ H̃] ≥ ε for a set H̃ ⊆ H of “bad” hypotheses,

and where the probability is taken over the randomness of sampling T . Suppose testing membership of h ∈ H̃

can be done in time t, and suppose an adversary A is allowed to obtain more samples from the distribution

(x, c(x)) for x ← D through a given oracle and that it is allowed to run in time t · poly( n
ε·δ ). Then, such

adversary A can change T into T̃ that is O(
√
n · ln(1/εδ))-close in Hamming distance to T such that, we now

have Pr[L(T̃ ) ∈ H̃] ≥ 1− δ, where the probability is over the sampling of T and T̃ .



Optimal Bounds for Computational Concentration of Measure 170

The previous attacks of Mahloujifar et al. [2018b], Mahloujifar and Mahmoody [2019a] and our newer

attacks of this chapter do not contradict recent exciting works in defending against poisoning attacks

Diakonikolas et al. [2016], Lai et al. [2016], Diakonikolas et al. [2018a], Prasad et al. [2018], as those defenses

either focus on learning parameters of distributions or, even in the classification setting, they aim to bound

the risk of the hypothesis, while we increase the probability of a bad Boolean property.4

Evasion attacks. In another active line of work, other types of attacks on learners are studied in which

the adversary enters the game during the test time. In such so-called evasion attacks Biggio et al. [2014],

Carlini and Wagner [2017b], Szegedy et al. [2014], Goodfellow et al. [2018] that find “adversarial examples”,

the goal of the adversary is to perturb the test input x into a “close” input x̃ under some metric d (perhaps

because this small perturbation is imperceptible to humans) in such a way that this tampering makes the

hypothesis h make a mistake. In Mahloujifar et al. [2018b], it was also shown that the concentration of

measure can potentially lead to inherent evasion attacks, as long as the input metric probability space

(X , d, D) is concentrated. This holds e.g., if the space is a Normal Lévy family Lévy [1951], Alon and Milman

[1985]. The work of Mahloujifar and Mahmoody [2019a] showed the existence of polynomial time evasion

attacks with sublinear perturbations for classification tasks in which the input distribution is a n-dimensional

product space (e.g., the uniform distribution over the hypercube) under Hamming distance. But their

attacks could be applied only when the original risk ε of the hypothesis h is at least ε = ω(1/
√
n). However,

standard PAC learners (e.g., based on empirical risk minimization) can indeed achieve polynomially small risk

ε = 1/ poly(m) where m is the sample complexity. Our Theorem 2.1.1 shows how to obtain polynomial-time

attacks even in the low-risk regime ε = 1/ poly(n)5 and perturb given samples x← D in Õ(
√
n) coordinates

and make the perturbed adversarial instance x̃ misclassified with high probability.

Our results of Section 2.4 show that one can also obtain polynomial time evasion attacks for classifiers

whose inputs come from metric probability spaces that use metrics other than Hamming distance (e.g.,

Gaussian under `1). Using the reductionist approach of Section 2.4 one can perhaps obtain more such results.

Our attacks, however, do not rule out the possibility of robust classifiers for specific input distributions such

as images or voice that is the subject of recent intense research Szegedy et al. [2014], Carlini and Wagner

[2017b], Moosavi-Dezfooli et al. [2016], but they shed light on barriers for robustness in theoretically natural

settings. See Bubeck et al. [2018b], Degwekar and Vaikuntanathan [2019] for more discussion on other possible

barriers for robust learning.

4In fact, the challenge in those works is to obtain polynomial-time learners in settings where inefficient robust methods were
perhaps known in the robust statistics literature. The focus here, however, is to obtain polynomial-time attacks.

5Note that in the “high dimensional” setting where input dimension n is huge, we can see the sample complexity m bounded,
which implies ε ≥ 1/ poly(m) if ε = 1/ poly(n).
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2.1.2 Technical Overview

In this subsection, we describe the challenges and key ideas behind the proof of Theorem 2.1.1 and some of

its extensions. The extension for the concentration around mean (see Section 2.5) follows directly from the

main result about concentration around noticeably large sets. Thus, we only focus on explaining ideas behind

some other extensions to our result; namely how to obtain new results through carefully defined algorithmic

reductions, and proving limits for the power of simple methods for proving computational concentration.

Setting.. (The reader might find the explanations for our notation at the beginning of Section 2.2 useful.)

Suppose w ≡ (w1×· · ·×wn) is a random variable with a product distribution of dimension n.6 Also, suppose

the set S ⊆ Supp(w) is denoted by its characteristic function f , where f(w) = 1 iff w ∈ S. The goal of

the tampering algorithm Tam is to change as few as possible of the sampled blocks w = (w1, . . . , wn)← w

making the new vector v = (v1, . . . , vn) such that f(v) = 1 with high probability (over the both steps of

sampling w and obtaining v from it).

Our starting point is the previous attack of Mahloujifar and Mahmoody [2019a] that only proved computational

concentration around large sets of measure Pr[S] ≥ ω(1/
√
n). The result of Mahloujifar and Mahmoody

[2019a], in turn, was built upon techniques developed in the work of Komargodski, Kalai, and Raz Kalai

et al. [2018b] that presented an alternative simpler proof for a previously known result of Lichtenstein et

al. Lichtenstein et al. [1989]. Below, we first describe the high level ideas behind the approach of Mahloujifar

and Mahmoody [2019a], Kalai et al. [2018b], and then we describe why that approach breaks down when S

gets smaller than 1/
√
n, and thus fails to obtain the optimal information theoretic bounds for concentration.

We then describe our new techniques to bypass this challenge and obtain computational concentration with

optimal bounds.

The high-level approach of Mahloujifar and Mahmoody [2019a]. As it turns out, the tampering

algorithm of Mahloujifar and Mahmoody [2019a], as well as ours, do not need to know wi+1, . . . , wn when

deciding to change wi (into a different vi 6= wi) or leaving it as is (i.e., wi = vi). So, a useful notation to use

is the partial expected values, capturing the chance of falling into S (i.e., f(w) = 1) over the randomness of

the remaining blocks.

f̂ [w1, . . . , wi] = E
(wi+1,...,wn)←(wi+1,...,wn)

[f(w1, . . . , wn)].

6As discussed above, our results extend to random processes as well, when formalized carefully, but for simplicity we focus on
the interesting special case of product distributions.
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One obvious reason for working with f̂ [·] quantities is that they can be approximated with arbitrary small

±1/ poly(n) additive error. This can be done using the sampling oracle of the distribution of w ≡ w1×· · ·×wn

and the oracle f(·) determining membership in S.

At a high level, the idea behind the attack of Mahloujifar and Mahmoody [2019a] is to change wi only

if this change allows us to increase f̂ [·] additively by +λ for a parameter λ ≈ 1/
√
n. We first describe this

attack, and then explain its challenges against obtaining optimal bounds and how we resolve them.

At a high level, the attack of Mahloujifar and Mahmoody [2019a] tampers with the ith block (i.e., wi), if

just before or just after looking at wi, we conclude that we can increase f̂ [·] by λ.

Construction 2.1.3. (Attack of Mahloujifar and Mahmoody [2019a] oracle f̂ [·]) Suppose that we are given

a prefix v≤i−1 that is finalized, and we are also given a candidate value wi for the i’th block (supposedly

sampled from wi) and we want to decide to keep it if vi = wi or change it if vi 6= wi. Let λ > 0 be a parameter

of the attack to be chosen later, v∗i = argmaxyi f̂ [v≤i−1, yi] be the choice for i’th block that maximizes f̂ [v≤i],

and let f∗ = f̂ [v≤i−1, v
∗
i ].

1. (Case 1) If f∗ ≥ f̂ [v≤i−1]+λ, then output vi = v∗i (regardless of wi).

2. (Case 2) Otherwise, if (by looking at wi) f̂ [v≤i−1, wi] ≤ f̂ [v≤i−1]−λ, then again output vi = v∗i .

3. (Case 3) Otherwise, keep the value wi and output vi = wi.

Why this attack biases f(·) towards 1? For simplicity, suppose Pr[S] = 1/2. Suppose we “color” different

i ∈ [n] depending on whether the tampering algorithm changes the ith block wi or not. If vi 6= wi (tampering

happened), color i green, denoted by i ∈ G, and otherwise color i red, denoted as i ∈ R = [n] \G. A simple

yet extremely useful observation is that we can write f(v) as the sum of the changes in f̂ [v≤i] between

consecutive i. Namely, if we let ĝ(v≤i) = f̂ [v≤i]− f̂ [v≤i−1], then

f̂ [v≤n]− f̂ [∅] = f(v)− 1/2 =
∑
i∈[n]

ĝ(v≤i).

This means that we have to study the effect of the green and red coordinates i on how ĝ(v≤i) behaves, because

that will tell us how the final output bit is determined and distributed.

Construction 2.1.3 is designed so that, whenever i is green, the partial expectation oracle f̂ [v≤i] jumps up

at least by λ (This is easy to observe in Case 1 of the attack, but needs a carefull calculation for Case 2.). So,

the only damage (leading to falling outside S) could come from the red coordinates and how they change

f̂ [v≤i] downwards. Let us now focus on the red coordinates i ∈ R. A simple inspection of Construction 2.1.3

shows that, the change in f̂ [·] captured by ĝ(v≤i) is bounded in absolute value by λ, and that is the result



2.1 Introduction 173

of no-tampering for a block. Therefore, the summation of ĝ(v≤i) for red coordinates i would cancel out

each other and, by the Azuma inequality, the probability that this summation is more than 1 is at most

exp(−1/(n · λ2). So, by choosing λ� 1/
√
n, the red coordinates cannot control the final bit, as with high

probability this summation is less than one. This means that the outcome (whenever the red coordinates do

not fix the function) should be 1, because the green coordinates only increase the f̂ [·] function.

Why the attack is efficient? The efficiency of the attack follows from its effectiveness and the same argument

described above. Namely, whenever the green coordinates are determining the output, it means that their

total sum of of ĝ(v≤i) is going from a specific number in [0,+1] to 1, and each time they jump up by at least

λ, so they cannot be more than n/λ green steps. Since we chose λ = 1/
√
n, the efficiency follows as well.

The challenge when Pr[S] = E[w] = ε is too small. The issue with the above approach is that whenever

ε is too small (not around 1/2) we need to pick λ much smaller, so that the summation (i.e., the effect of the

red coordinates does not make the function reach zero). Simple calculation shows that after the threshold

ε ≈ 1/
√
n, the number of tampered (green) blocks would grow too much and eventually become more than n.

However, note that when we reach n tamperings, it means the attack’s efficiency is meaningless.

Our Approach (MUCIO: MUltiplicative Conditional Influence Optimizer)

Main step 1: tampering with multiplicatively influential blocks. Our first key idea is to judge

whether a block is influential (and thus tamper it) based how much it can change the partial expectations in a

multiplicative way. (This is related to the notion of a log-likelihood ratio in statistics and information theory.)

Construction 2.1.4 below describes this simple change. However, as we will see, doing this simple change will

have big advantages as well as new challenges to be resolved. We will describe both the advantages and thew

new challenges after the construction.

Construction 2.1.4. (Multiplicative online tampering using oracle f̂ [·]) The key difference between this

attack and that of Construction 2.1.3 is that here, in order to judge whether tampering with the current ith

block is worth it or not, we make the decision based on the multiplicative gain (in how f̂ [·] changes) that this

would give us. Namely, for the same setting of Construction 2.1.3, we do as follows.

1. (Case 1) If f∗ ≥ eλ·f̂ [v≤i−1], then output vi = v∗i (regardless of wi).

2. (Case 2) Otherwise, if f̂ [v≤i−1, wi] ≤ e−λ·f̂ [v≤i−1], then output vi = v∗i .

3. (Case 3) Otherwise, keep the value wi and output vi = wi.
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Main advantage: the output is fully biased. We first describe what advantages the above change gives us,

and then will discuss the remaining challenges. The key insight into why this is a better approach is that

the tampering algorithm of Construction 2.1.4 will always lead to obtaining f(v) = 1 at the end (i.e., we

always end up in S). In order to see why this is a big difference, notice that if f̂ [w≤0] = ε is very small at the

beginning and we tamper only based on additive differences (as is done in Construction 2.1.3), there is a

possibility that we do not tamper with the first block and end up at f̂ [w≤1] = 0. Such a problem does not

happen when we decide on tampering based on multiplicative improvement, and every tiny chance of falling

into S is taken advantage of.

Only few tamperings happen. To analyze the number of tamperings that occur in the “idealized” attack of

Construction 2.1.4 we keep track of ln
(
f̂ [v≤i]/f̂ [v≤i−1]

)
as we go. We know that the output of function

under the attack is always 1 which means:

n∑
i=1

ln

(
f̂ [v≤i]

f̂ [v≤i−1]

)
= ln

(
f̂ [v≤n]

f̂ [∅]

)
= ln

(
1

f̂ [∅]

)
.

We again categorize the indices i to red and green. Green set indicates the locations that the algorithm

tampers with wi and red is the set of locations that tampering has not happened and vi = wi. For the

red locations, we prove the following inequality that plays a key role in our analysis of the attack. One

interpretation of this inequality is that we will now use ln(1/f̂ [v≤i−1]) as a potential function that allows us

keep track of, and control, the number of tamperings.

ln(1/f̂ [v≤i−1])− E
vi←v[v≤i−1]

[ln(1/f̂ [v≤i])] ≥ −
λ2

2
.

This inequality follows from a Jensen Gap inequality on the natural logarithm function. For green locations,

we increase ln(f̂ [v≤i]) whenever we tamper by at least λ. Therefore, the overall effect of green locations on∑n
i=1 ln(f̂ [v≤i]/f̂ [v≤i−1]) will be

λ · E[# of tampering].

Combining these together we get the following:

λ · E[# of tampering]− n · λ2

2
≤ ln(1/ε).

Now we can optimize λ to get the best inequality on the expected number of tampering.

New challenge: obtaining good multiplicative approximations when f̂ [·] gets too small. Construction 2.1.4

increases the average to 1 (i.e., we always end up in S) with small number of tampering. However we cannot
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implement that construction in polynomial time. The problem is that it is hard to instantiate the oracle

f̂ [v≤i] polynomial-time when the partial average gets close to 0. To solve this issue, we add a step to the

construction that makes the algorithm abort if the partial average goes below some threshold.

Construction 2.1.5. (Online tampering with abort TamAb using partial-expectations oracle) This con-

struction is identical to Construction 2.1.4, except that whenever the fixed prefix has a too small partial

expectation f̂ [v≤i−1, wi] (based on a new parameter τ) we will abort. Also, in that case the tampering

algorithm does not tamper with any future vi block either. Namely, we add the following “Case 0” to the

previous steps:

� (Case 0) If f̂ [v≤i−1, wi] ≤ e−τ · ε abort. If had aborted before, do nothing.

Main step 2: showing that reaching low expectations is unlikely under the attack. To argue

that the new construction does not hurt the performance of our algorithm by much, we show that the

probability of getting a low f̂ [v≤i] is small because of the way our algorithm works. The idea is that, our

algorithm always guarantees that

−λ ≤ ln (f̂ [v≤i]/f̂ [v≤i−1]) ≤ λ.

We also show that

E[ln(f̂ [v≤i]/f̂ [v≤i−1])] ≥ −λ
2

2
.

This means that the sequence of ln
(

f̂ [v≤i]

f̂ [v≤i−1]

)
forms an “approximate” sub-martingale difference sequence.

We can use Azuma inequality to show that sum of this sequence will remain bigger than some small threshold,

with high probability. After all, we can bound the probability of getting into Case 0 to be very small.

More Computational Concentration Results through Algorithmic Reductions

Here we explain a technical overview of our generic reduction technique. Let S1 = (X1, d1, D1) and

S2 = (X2, d2, D2) be two metric probability spaces. In addition, assume we already know some level of

computational concentration proved for S2, and that we want to prove (some level of) computational

concentration for S1 through a reduction. In Section 2.4, we formalize a generic framework to prove such

reductions. The main ingredients of such algorithmic reduction are two polynomial time mappings f : X1 → X2

and g : X2 → X1 with 3 properties. The first property (roughly speaking) requires that the pushforward of

D1 under f is an approximation of D2 and the pushforward of D2 under g is an approximation of D1, namely

f∗(D1) ≈ D2 and g∗(D2) ≈ D1. This property guarantees that if we sample a point from one space and use

the mapping and go to the other space, we get a distribution close to the probability measure of the second
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space. (This can be interpreted as an algorithmic coupling.) The second property requires that the mapping

g is Lipschitz. The third property requires that g(f(x)) is close to x. The idea behind why such reduction (as

a collection of these mappings) work is as follows. We are given a point x1 in S1 and we want to find a close

x2 such that x2 falls inside a subset S. To do that we first map x1 to a point x′1 in S2 using f . We know that

S2 is computationally concentrated and we can efficiently find a close x′2 such that x′2 falls into an specific

subset S ′. Then we use g to go back to a point x2 in S1. The second and third properties together guarantee

that x1 and x2 are close, because x′1 and x′2 are close. At the same time, the first condition guarantees that

x2 will hit S if we select S ′ in a careful way. See Theorem 2.4.2 for more details.

We use this general framework to prove computational concentration bounds for Gaussian spaces under `1

norm. We reduce the computational concentration of Gaussian distribution under `1 to the computational

concentration of the Boolean Hamming cube. For this goal, we show how to build two mappings f and g from

an n-dimensional Gaussian space to a n2-dimensional Hamming cube and vice versa, following the footsteps

of a reduction by Bobkov [1997] who proved an information theoretic variant of this result. Here we show

that the algorithmic ingredients that are necessary, in addition to the ideas already in Bobkov [1997], could

indeed be obtained. The main idea behind this mappings is the fact that the number of 1’s in a sample from

n-dimensional hamming cube approximately forms a Gaussian distribution centered around n
2 . Therefore,

we can map each dimension of the Gauss space to a n-dimensional hamming cube and vice versa. Here we

observe that we can use the same idea and build the mappings in a way that achieves the three properties

mentioned above. See Section 2.4 for more details.

Lower Bounds for Simple Methods

To prove exponential lower bounds on the query complexity of too-simple algorithms, we consider the

half-space S in the Hamming cube consisting of those points with below-average Hamming weight.

A uniformly random point x in the cube, with high probability has Hamming distance Ω(
√
n) from

the set S. Now, if for such a point x, we hope to find a close point in S simply by sampling uniformly at

random among points close to x, we fail except with exponentially small probability. For only random points

with distance n1−o(1) have a significant chance of changing the weight of point x by Ω(
√
n), whereas the

information-theoretic bound says there exists a point of distance O(
√
n) that changes the weight by Ω(

√
n).

To achieve lower bounds for more general classes of algorithms, we use a random half-space instead of

a fixed half-space. This gives us exponential lower bounds for non-adaptive attacks as well as attacks that

query about S-membership of points outside a ball of size d = O(
√
n · ln(1/εδ)) even when we are interested

in finding a point in the intersection of S and this ball. Notice that MUCIO avoids this last restriction by
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surveying the influence of the first coordinate on the totality of points, while it ends up changing only a small

fraction of the coordinates.

2.2 Preliminaries

General notation. We use calligraphic letters (e.g., X ) for sets. By default, all distributions and random

variables in this chapter are discrete. We use bold letters (e.g., w) to denote random variables that return

a sample from a corresponding discrete distribution. By w ← w we denote sampling w from the random

variable w. By Supp(w) we denote the support set of w. For an event S ⊆ Supp(w), the probability function

of w for S is denoted as Pr[w ∈ S] = Prw←w[w ∈ S]. For a randomized algorithm R(·), by y ← R(x) we

denote the randomized execution of R on input x outputting y. By u ≡ v we denote that the random

variables u and v have the same distributions. Unless stated otherwise, we denote vectors by using a bar

over a variable. By w ≡ (w1,w2, . . . ,wn) we refer to a sequence of n jointly sampled random variables. For

a vector w = (w1 . . . wn), we use w≤i to denote the prefix (w1, . . . , wi), and we use the same notation w≤i

for jointly distributed random variables. For a jointly distributed random variables (u,v), by (u | v) we

denote the conditional distribution (u | v = v). For a random variable u, by Tu(·) we denote an oracle-aided

algorithm T (·)(·) that can query fresh sample from u. By u× v we refer to the product distribution in which

u and v are sampled independently. For a real-valued random variable x, by E[x] we refer to the expected

value of x, and by V[x] we denote its variance. By negl(n) we denote some function that is negligible in input

n; namely for all k ∈ N, negl(n) ≤ O(1/nk) .

Notation on random processes and online samplers. Let w ≡ (w1, . . . ,wn) be a sequence of jointly

distributed random variables. We can interpret the distribution of w as a random process in which the

ith block wi is sampled from the marginal distribution (wi | w≤i−1). For simplicity, we use notation

w[w≤i−1] ≡ (wi | w≤i−1) to refer to this marginal conditional distribution. (Note that i is dropped from the

distribution’s name, relying on the input w≤i−1 that uniquely determines i.) We can interpret w≤i−1 as a

“node” in a tree of depth i, and the sampling wi ← w[w≤i−1] can be seen as the process of sampling the next

child according to the distribution of w[w≤i−1]. Alternatively, describing the distributions of the random

variables w[w≤i−1] defines the distribution of w. For random variable w ≡ (w1, . . . ,wn) we sometimes refer

to the random variable w[w≤i−1] as the online sampler for w, because it returns fresh samples form the next

block, given the previously fixed prefix w≤i−1.
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Definition 2.2.1 (Online tampering). Let w ≡ (w1, . . . ,wn) be a sequence of jointly distributed random

variables, and let w[w≤i−1] be the online sampler for w for all i ∈ [n] and all w≤i−1 ∈ Supp(w≤i−1). Online

tampering algorithms for w and their properties are defined as follows.

� Online tampering. We call a (potentially randomized and computationally unbounded) algorithm

Tam an online tampering algorithm for w, if for all i ∈ [n] and w≤i ∈ Supp(w≤i), it holds that

Pr[Tam(w≤i) ∈ Supp(w[w≤i−1])] = 1 .

Namely, Tam(w≤i) always outputs a candidate ith block that still falls into Supp(w[w≤i−1]).

� Resulting tampered distribution. For an online tampering algorithm Tam for w, by (u,v) ≡

〈w ‖Tam〉 we refer to the jointly distributed sequence of random varaibles defined as follows. For

i = 1, 2, . . . , n, we first sample ui ← w[v≤i−1], and then we obtain vi ← Tam(v≤i−1, ui) as the (possibly

different than ui) choice of the tampering algorithm Tam for the ith block (that will override ui). At

the end, we output the pair of sequences (u = u≤n, v = v≤n) as the sample from (u,v).

Notation. For simplicity, we use v[v≤i−1] to denote (vi | v≤i−1) and use (w,v)[v≤i−1] to denote the

jointly distributed random variables from which (ui, vi) are sampled conditioned on the prefix v≤i−1.

The notation allows us to use v[v≤i−1], (w,v)[v≤i−1] similarly to how we use online samplers.7

� Budget of tampering attacks. Let d be a metric defined over Supp(u) as vectors of dimension n.

We say a tampering algorithm Tam has budget (at most) b, if

Pr
(u,v)←〈w ‖Tam〉

[d(u, v) ≤ b] = 1.

We say that Tam has average budget (at most) b, if the following weaker condition holds

E
(u,v)←〈w ‖Tam〉

[d(u, v)] ≤ b.

� Algorithmic efficiency of attacks. If w = wn is a member from a family defined for all n ∈ N, we

call an online or offline tampering algorithm efficient, if its running time is poly(N) where N is the

total bit-length representation of any w ∈ Supp(wn).

7Note that are not defining a similar notation of the form u[v≤i−1] for u. Firstly, this is not needed as w[v≤i−1] already
provides a sampler for ui. Moreover, such notation would be inconsistent with our notation for online samplers for random
processes based on joint distributions, because the notation would implicitly interpret v≤i−1 as previous samples from u≤i−1.
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Definition 2.2.2. (Partial expectations) Suppose f : Supp(w) 7→ R for w ≡ (w1, . . . ,wn), i ∈ [n], and

w≤i ∈ Supp(w≤i). Then (using a small hat) we define the notation f̂ [w≤i] = Ew←(w|w≤i)[f(w)] to define

the expected value of f for a sample from w given the prefix w≤i. In particular, for w = w≤n, we have

f̂ [w] = f(w), and also f̂ [∅] = E[f(w)].

Lemma 2.2.3. (Hoeffding’s lemma) Let x be a random variable such that Pr[a ≤ x ≤ b] = 1 and E [x] = 0.

Then, it holds that E[ex] ≤ e(b−a)2/8.

Lemma 2.2.4. Let x be a random variable where Pr
[
e−λ ≤ x

]
= 1 and Pr

[
x ≤ eλ

]
≥ 1−δ and Pr [x ≤ c] = 1.

Then, E [ln(x)] ≥ ln(E [x]− δ · c)− λ2/2.

Proof. Let E [min(ln(x), λ)] = s. Consider a random variable y ≡ min(ln(x), λ)− s. We have E[y] = 0 and

−λ− s ≤ y ≤ λ− s. Therefore, by Lemma 2.2.3 we have

E [ey] ≤ eλ
2/2.

On the other hand, we have E [ey] = E
[
emin(ln(x),λ)−s] = E

[
min

(
x, eλ

)]
·e−s. Thus, we have E

[
min

(
x, eλ

)]
·

e−s ≤ eλ2/2 which implies e−s ≤ eλ
2/2−ln(E[min(x,eλ)]), and so s ≥ ln

(
E
[
min

(
x, eλ

)])
− λ2/2. Therefore we

have, s ≥ ln (E [x]− δ · c)− λ2/2.

Lemma 2.2.5. Let x be a random variable where Pr[e−λ ≤ x] = 1 and Pr[x ≤ eλ] ≥ 1− δ and Pr[x ≤ c] = 1.

Then, E[1/x] ≤ eλ
2

E[x]−δ·c .

Proof. Let E[min(ln(x), λ)] = s. Consider a random variable y = min(ln(x), λ) − s. Similar to proof of

Lemma 2.2.4 we have s ≥ ln(E[x]− δ · c)− λ2/2. Now consider another random variable y′ ≡ −y. Again by

using Hoeffding Lemma we have E[ey
′
] ≤ eλ2/2 which means

E[e−min(ln(x),λ)] · es ≤ eλ
2/2

which implies

E[max(1/x, e−λ)] ≤ eλ
2/2 · e−s ≤ eλ

2

E[x]− δ · c
.

The following lemma is implied by Theorem 3.13 from Mcdiarmid et al. [1998].

Lemma 2.2.6. (Azuma’s inequality for sub-martingales) Let t ≡ (t1, . . . , tn) be a sequence of n jointly

distributed random variables such that for all i ∈ [n], Pr[|ti| ≤ ci] ≥ 1− ξ, for all t≤i−1 ← t≤i−1, and that



Optimal Bounds for Computational Concentration of Measure 180

E[ti | t≤i−1] ≥ −γi. If γ =
∑n
i=1 γi, then we have

Pr

[
n∑
i=1

ti ≤ −s

]
≤ e

−(s−γ)2

2
∑n
i=1

c2
i + n · ξ.

2.3 Optimal Computational Concentration for Hamming Distance

In this section, we formally state and prove our main result, which is the computational concentration of

measure in any product space under Hamming distance.

Definition 2.3.1. (Weighted Hamming Distance) For α = (α1, . . . , αn) ∈ Rn+, the α-weighted Hamming

distance between vectors of dimension n is denoted by HDα(·, ·) and is defined as

HDα(u, v) =
∑

i∈[n],ui 6=vi

αi.

Theorem 2.3.2. Let (α1, . . . , αn) ∈ Rn be such that
∑n
i=1 α

2
i = n. Then, there is a (uniform) oracle-aided

randomized algorithm Tam such that the following holds. Suppose f : Supp(w) 7→ {0, 1} is a Boolean function

for random variable w ≡ (w1, . . . ,wn), and that Pr[f(w) = 1] = ε. Then, the oracle-aided algorithm

Tamw[·],f(·)(ε, δ, ·) (also denoted by Tam for simplicity) with access to the online sampler w[·] for w and f(·)

as oracles is an online tampering algorithm for w and has the following features:

1. Pr[f(v) = 1] ≥ 1− δ where v is the tampered sequence, i.e., Pr(u,v)←〈w ‖Tam〉[f(v) = 1] ≥ 1− δ.

2. Tam’s tampering budget in α-weighed Hamming distance HDα is O(
√
n · ln(1/εδ)).

3. Tam runs in time poly(N/εδ) where N is the total bit representation of any w ← w.

Remark 2.3.3. (Corollary for product distributions) If the original random variable w = (w1, . . . ,wn) in

Theorem 2.3.2 is a product, w = (w1 × · · · ×wn), then the distribution of the samples u obtained through

(u, v)← 〈w ‖Tam〉 would be identical to that of w. Namely, we can simply think of the samples u as the

original untampered vector sampled from w, and v would be the perturbed vector.

In the rest of this section, we prove Theorem 2.3.2.

2.3.1 Proof Using Promised Approximate Partial Expectation Oracles

The following result works in the model where the approximate partial-expectations oracle f̃(·) is available to

the online tampering algorithm AppTam.



2.3 Optimal Computational Concentration for Hamming Distance 181

Consider three oracles f̃(v≤i) , m(v≤i) and f̃∗(v≤i) = f̃(v≤i,m(v≤i)) with the guarantee that for all

v≤i ∈ Supp(w≤i) we have 5 conditions:

1.
∣∣∣ln f̃(v≤i)− ln f̂ [v≤i]

∣∣∣ ≤ γ,

2. f̃∗(v≤i) = f̃(v≤i,m(v≤i)) ≥ f̃(v≤i),

3. Pr
[
f̃(v≤i,w[v≤i]) ≥ f̃∗(v≤i)

]
≤ γ · f̃(v≤i),

4. 0 ≤ f̃(v≤i) ≤ 1,

5. f̃(v≤n) = f(v≤n).

The first condition states that the approximate partial expectation oracle has a small multiplicative error.

The second and third conditions state that m(v≤i−1) is a good approximation of some v∗ that maximized

f̃(v≤i, v
∗). Now we construct an algorithm using these oracles.

Construction 2.3.4. (Online tampering using promised approximate partial-expectations oracle) Recall

that we are given a prefix v≤i that is finalized, and we are also given a candidate value ui for the i’th block

(supposedly sampled from w[v≤i]) and we want to decide to keep vi = ui or change it. Let λ > 0 be a

parameter of the attack to be chosen later, v∗i+1 = f̃∗(v≤i) and let f̃∗ = f̃∗(v≤i−1) be that maximum.

1. (Case 1) If f̃∗ ≥ eλαi · f̃(v≤i−1), then output vi = v∗i (regardless of ui).

2. (Case 2) Otherwise, if f̃(v≤i−1, ui) ≤ e−λαi · f̃(v≤i−1) , then output vi = v∗i .

3. (Case 3) Otherwise keep the value ui and output vi = ui.

Claim 2.3.5. (Average case analysis of Construction 2.3.4) Let ki be the Boolean random variable that

ki = 1 iff the tampering over the i’th block happens, and let Kα =
∑
i∈[n] αi · ki capture the resulting HDα

distance between the jointly sampled u and v. Also let ε̃ = f̃(∅). Then, it holds that

ln(1/ε̃) ≥ E[Kα] · λ− λ2n/2 + n · ln(1− 3γ).

Corollary of Claim 2.3.5. By setting λ =
√

2 ln(1/ε)/n and γ = 1
6n we obtain E[Kα] ≤

√
2n ln(1/ε) + 1.

We prove the following stronger statement that implies Claim 2.3.5.

Claim 2.3.6. Let v≤i−1 be fixed. Then,

ln(1/f̃(v≤i−1))− E
vi←v[v≤i−1]

[
ln
(

1/f̃(v≤i)
)]

≥ Pr[ki] · (αiλ)− α2
iλ

2

2
+ ln(1− 3γ).
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Proof. (Proof of Claim 2.3.5 using Claim 2.3.6.) A key property of Construction 2.3.4 is that, because the

tampering algorithm does not allow the function reach 0, the final sequence v always makes the function 1,

namely

Pr[f(v≤n) = 1] = 1. (2.1)

Using the above equation, Claim 2.3.5 follows from Claim 2.3.6 and linearity of expectation as follows.

ln(1/ε̃) = ln(1/f̃(∅))− E[ln(1)]

= ln(1/f̃(∅))− E[ln(1/f̃(v≤n))]

=
∑
i∈[n]

[
E[ln(1/f̃(v≤i−1))− E[ln(1/f̃(v≤i))]

]
≥
∑
i∈[n]

[
E[αi · ki] · λ−

α2
i · λ2

2
+ ln(1− 3γ)

]

= E[Kα] · λ− n · λ2

2
+ ln(1− 3γ) · n.

Now we prove Claim 2.3.6.

Proof. (Proof of Claim 2.3.6) There are two cases:

� If tampering of Case 1 happens, then we have Pr[ki = 1] = 1, and

ln(1/f̃(v≤i−1))− E
vi←v[v≤i−1]

[ln(1/f̃(v≤i))]

≥ ln(1/f̃(v≤i−1))− ln(1/f̃∗)

≥ λαi

Thus, in this case Claim 2.3.6 follows trivially.

� If tampering of Case 1 does not happen, it means that f̃∗ is bounded from above. In the following, we

focus on this case and all the probabilities and expectations are conditioned on Case 1 not happening;

namely, we have f̃∗ ≤ f̃(v≤i−1) · eλ·αi .

Let I(v≤i) be the indicator function for the set
{
v≤i : f̃(v≤i) ≤ e−λαi · f̃(v≤i−1)

}
. Now consider the

random variable t for a fixed v≤i−1 as follows

t ≡
max

(
e−αiλ · f̃(v≤i−1), f̃(v≤i−1,w[v≤i−1])

)
f̃(v≤i−1)

.
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We have

Pr
(ui,vi)←(w,v)[v≤i−1]

[
f̃(v≤i) ≥ t · eλαi·I(v≤i−1,ui)

]
= 1.

This is correct because we are either in Case 2, which means I(v≤i) = 1 and

f̃(v≤i) = f̃∗ ≥ f̃(v≤i−1) ≥ f̃(v≤i−1, ui) · eλ·αi

or we are in Case 3 which means I(v≤i) = 0 and

f̃(v≤i) = f̃(v≤i−1, ui).

Therefore, by linearity of expectation we have

E
vi←v[v≤i−1]

[ln(f̃(v≤i))]

≥ E
ui←w[v≤i−1]

[
ln
(
t · eλ·αi·I(v≤i−1,ui)

)]
= E
ui←w[v≤i−1]

[ln (t)] + λ · αi · E
ui←w[v≤i−1]

[I(v≤i−1, ui)]

= E
ui←w[v≤i−1]

[ln (t)] + λ · αi · E[ki]. (2.2)

It holds that

Pr
[
e−λαi ≤ t

]
= 1. (2.3)

We also know by condition 3 of the f̃∗(·) oracle that

Pr[f̃∗(v≤i−1) ≥ f̃(v≤i−1,w[v≤i−1])] ≥ 1− γ · f̃(v≤i−1)

which together with f̃∗(v≤i−1) ≤ f̃(v≤i−1) · eλαi implies

Pr[t ≤ eλ·αi ] ≤ 1− γ · f̃(v≤i−1). (2.4)

We also know that

Pr

[
t ≤ 1

f̃(v≤i−1)

]
= 1. (2.5)
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We also have

E
[
t · f̃(v≤i−1)

]
= E

[
max

(
e−λ · f̃(v≤i−1), f̃(v≤i−1,w[v≤i−1])

)]
≥ E

[
f̃(v≤i−1,w[v≤i−1])

]
≥ E

[
f̂ [v≤i−1,w[v≤i−1]]

]
· e−γ

= f̂ [v≤i−1] · e−γ

≥ f̃(v≤i−1) · e−2γ .

which implies

E[t] ≥ e−2γ ≥ 1− 2γ. (2.6)

Therefore using 2.3, 2.4, 2.5 and 2.6 and applying Lemma 2.2.4 we get,

E[ln(t)] ≥ ln

(
E[t]− γ · f̃(v≤i−1) · 1

f̃(v≤i−1)

)
− α2

i · λ2

2

≥ ln(1− 3γ)− α2
i · λ2

2
. (2.7)

Combining Equations (2.2) and (2.7), we get

E
vi←v[v≤i−1]

[
ln(f̃(v≤i))

]
≥ ln(f̃(v≤i−1))

+ λ · αi · E[ki]−
λ2 · α2

i

2
+ ln(1− 3γ)

which finishes the proof.

Claim 2.3.7. (Worst case analysis of Construction 2.3.4) Let ki be the Boolean random variable that ki = 1

iff the tampering over the i’th block happens, and let Kα =
∑
i∈[n] αi · ki capture the resulting HDα distance

between the jointly sampled u and v. Also let ε̃ = f̃(∅). Then, it holds that

Pr[K ≥ k] ≤ e(
∑n
i=1 α

2
i )λ

2−kλ

ε̃ · (1− 2γ)n
.

Proof. We prove this claim by induction on n. Let A(n, k, ε̃) be a function that indicates the maximum

probability of using more than k budget, over all random processes with boolean outcome of length n, and
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average ε̃. We want to inductively show that

A(n, k, ε̃) ≤ e(
∑n
i=1 α

2
i )·λ

2−kλ

ε̃ · (1− 2γ)n
.

Consider different cases that might happen during the tampering of first block. If we tamper on first block

through Case I, we have

Pr[K ≥ k] ≤ A(n− 1, k − α1, f̃∗(∅))

And by induction hypothesis we have

A(n− 1, k − α1, f̃∗(∅)) ≤ e(
∑n
i=2 α

2
i )λ

2−kλ+λ·αi

f̃∗(∅) · (1− 2γ)n

≤ e(
∑n
i=2 α

2
i )λ

2−kλ+λ·αi

eλα1 · ε̃ · (1− 2γ)n

≤ e(
∑n
i=1 α

2
i )·λ

2−kλ

ε̃ · (1− 2γ)n
.

So the induction goes through for Case 1. Consider the random variable t for a fixed v≤i−1 as follows

t ≡ max(e−λ·αi · ε̃, f̃(u≤1)).

If we are not in Case 1, then we have,

Pr [K ≥ k] = Pr [K ≥ k | Case 3] · Pr [Case 3]

+ Pr [K ≥ k | Case 2] · Pr [Case 2]

≤ E
[
A
(
n− 1, k, f̃(u≤1)

)
| Case 3

]
· Pr [Case 3]

+ E
[
A
(
n− 1, k − α1, f̃∗(∅)

)
| Case 2

]
· Pr [Case 2]

≤ E

[
e(

∑n
i=2 α

2
i )·λ

2−kλ

f̃(u≤1)− 2(n− 1)γ
| Case 3

]
· Pr [Case 3]

+ E

[
e(

∑n
i=2 α

2
i )·λ

2−kλ+λ·α1

f̃∗(∅) · (1− 2γ)n−1
| Case 2

]
· Pr [Case 2]

≤ E

[
e(

∑n
i=2 α

2
i )·λ

2−kλ

f̃(u≤1) · (1− 2γ)n−1
| Case 3

]
· Pr [Case 3]

+ E

[
e(

∑n
i=2 α

2
i )·λ

2−kλ+λ·α1

t · eλ·αi · (1− 2γ)n−1
| Case 2

]
· Pr [Case 2]

≤ e(
∑n
i=2 α

2
i )·λ

2−kλ · E
[

1

t · (1− 2γ)n−1

]
(2.8)
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We know that E[max(e−λ·αi · ε̃, f̃(u≤1)))] ≥ E[f̃(u≤1)] ≥ ε̃ · e−γ . Now we can use Lemma 2.2.5 and get

E[
1

max(e−λ·α1 · ε̃, f̃(u≤1)))
] ≤ eα

2
1·λ

2

ε̃ · (e−γ − γ)
≤ eα

2
1·λ

2

ε̃ · (1− 2γ)
(2.9)

Combining Equations 2.8 and 2.9 we get,

Pr[K ≥ k] ≤ e(
∑n
i=1 α

2
i )λ

2−kλ

ε̃(1− 2γ)n

which finishes the proof.

Tampering with Abort

The Construction 2.3.4 achieves average close to 1 with small number of tampering. However we cannot

implement that construction it in polynomial time. The problem is that it is hard to instantiate the oracle

f̃(·) and f̃∗(·) in polynomial time when the partial average gets close to 0. Following we add a step to our

construction to address this issue. Then we will show that this additional step will not hurt the performance

of the algorithm by much.

Construction 2.3.8. (Online tampering with abort AppTamAb using promised approximate partial-expectations

oracle) This construction is identical to Construction 2.3.4, except that whenever the fixed prefix has a too

small approximate partial expectation f̃(v≤i−1, ui) (based on a parameter τ) we will abort. Also, in that

case the tampering algorithm does not tamper with any future vi block either. Namely, we add the following

“Case 0” to the previous steps:

� (Case 0) If f̃(v≤i−1, ui) ≤ e−τ · ε̃ abort (ε̃ = f̃(∅)). If had aborted before, do nothing.

Average and worst case analysis of Construction 2.3.8. The average number of tampering of

Construction 2.3.8 is trivially less than average number of tampering of Construction 2.3.4. Therefore, the

same bound of Claim 2.3.5 still applies to Construction 2.3.8 as well. Also, the probability of number of

tampering going beyond some threshold does not increase compared to Construction 2.3.4 which means the

same bound of Claim 2.3.7 hold here.

Claim 2.3.9. The probability of ever aborting during sampling (u, v) ← 〈w ‖TamAb〉 is at most n ·

e−
(τ−n·λ2/2)2

2·n·λ2 . As a result, we also have

E
(u,v)←〈w ‖TamAb〉

[f(v)] ≥ 1− n · e−
(τ−n·λ2/2)2

2·n·λ2 − n2γ.
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Proof. For proof please see full version.

2.3.2 Putting Things Together

In this subsection we show how to instantiate parameters of Construction 2.3.8 so that we can get polynomial

time attack. We first show how to instantiate the oracles. To compute oracle f̃(v≤i), we sample 8
γ3·e−τ ·ε̃

random continuation and take the average over all of them. By Hoeffding inequality, if f̂ [v≤i] ≥ e−τ · ε̃ we

get the following:

Pr[| ln(f̃(v≤i))− ln(f̂ [v≤i])| ≥ γ] ≤ γ.

For m(v≤i) and f̃∗(v≤i) oracle, sample 1
γ2·e−τ ·ε̃ number of vi+1 and take the maximum over f̃(v≤i+1).

This way, we can easily bound the probability of Conditions 2 or 3 not happening by γ for all v≤i that

f̃(v≤i) ≥ e−τ · ε̃. Note that in both of these oracle, we are ignoring the case where f̃(v≤i) is smaller than

the threshold that causes the construction to abort. This enables us to achieve high confidence on our

oracles. Using these oracles, we can bound the average of function, average budget and worst case budget of

construction 2.3.8 as follows. Based on Claim 2.3.9 we have

E
(u,v)←〈w ‖TamAb〉

[f(v)] ≥ 1− n · e−
(τ−n·λ2/2)2

2·n·λ2 − n2γ − 2n · γ.

The last −2n · γ is added to the right hand side to capture the probability of any of the algorithm’s oracle

calls failing. For the average budget, following Claim 2.3.5 we have,

E[Kα] ≤ ln(1/ε̃) + λ2n/2− n · ln(1− 3γ)

λ
+ 2 · n · γ.

And for the worst case budget, following Claim 2.3.7 we have

Pr[K ≥ k] ≤ enλ
2−kλ

ε̃− 2γ
+ 2n · γ.

Instantiating the Average Case Algorithm: Now if we set λ =
√
−2 ln(ε)/n, τ = ln(1/ε̃)+

√
4 ln(δ/2n) · ln(ε̃)

and γ = δ
24n2 then we can provide the oracles in time poly(n/ε·δ) and we get:

E
(u,v)←〈w ‖TamAb〉

[f(v)] ≥ 1− δ

and

E[Kα] ≤
√
−2n ln(ε) + δ.
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Instantiating the Worst Case Algorithm: Also, for the worst case attacks. If we select the tampering

budget k =
√

2n · ln(δ/8) · ln(ε/2) and then let λ = k/2n. For τ = ln(1/ε̃) +
√

4 ln(δ/2n) · ln(ε̃) and γ =

min(δ/24n2, ε/4n) we get an algorithm that runs in time poly(n/ε·δ), uses at most k tamperings and increases

the average as follows

E
(u,v)←〈w ‖TamAb〉

[f(v)] ≥ 1− δ.

2.4 Algorithmic Reductions for Computational Concentration

In this section, we show a generic framework to prove computational concentration for a metric probability

space by reducing its computational concentration to that of another metric probability space. We first define

an embedding with some properties.

Definition 2.4.1. Let S1 = (X1, d1, D1) and S2 = (X2, d2, D2) be two metric probability spaces. We call a

pair of mappings (f ,g) (where f and g are potentially randomized) an (α, b, w) computational concentration

(CC) reduction from S1 to S2 if the following hold:

� Probability embedding. The pushforward f∗(D1) is α-close (in statistical distance) to D2 and g∗(D2)

is α-close to D1.

� Almost Lipschitz property of g. with probability 1 over all x, x′ ← D2, d1(g(x),g(x′)) ≤ w ·

d2(x, x′) + b.

� Almost inverse mappings. With probability at least 1−α for x1 ← D1, and all x2 ← f(x1), it holds

that d1(x1,g(x2)) ≤ b.

Now we have the following lemma which how to reduce computational concentration on a metric probability

space by reducing it to computational concentration on another metric probability space using the embedding

between them.

Theorem 2.4.2. Let S2 = (X2, d2, D2) be a metric probability space and let A
S(·)
2 : X2 → X2 be an oracle

algorithm such that for any subset S ⊆ X2 we have d2(A
S(·)
2 (x), x) ≤ k and

Pr
x←D2

[A
S(·)
2 (x) ∈ S] ≥ c(D2(S))

for a function c : [0, 1] → [0, 1]. If (f ,g) is an (α, b, w) CC reduction from S1 = (X1, d1, D1) to S2 =

(X2, d2, D2), then there is an oracle algorithm A
S(·)
1 : X1 → X1 such that for any subset S ⊆ X1 we have
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d1(A
S(·)
1 (x), x) ≤ w · k + 2b and

Pr
x←D1

[A
S(·)
1 (x) ∈ S] ≥ c(D1(S)/2− α)− 2α− negl(n).

Furthermore, if A2, f and g run in time poly(nε ), then A1 also runs in time poly(nε ).

Proof. We define algorithm A
S(·)
1 on input x1 as follows: A1 first computes f(x1) to get x′1. Then it creates a

set S ′ = {x ∈ X2 : Pr[g(x) ∈ S] ≥ 1/2} and runs A
S′(·)
2 on x′1 to get x′2. Then, it computes g(x′2) for at most

n times until it gets some x2 ∈ S. If d1(x1, x2) ≤ w · k + 2b it outputs x2, otherwise it outputs x1. We have

Pr
x1←D1

[A
S(·)
1 (x1) ∈ S]

≥ Pr
x1←D1

[A
S′(·)
2 (f(x1)) ∈ S ′]− 2−n

− Pr
x1←D1

[d1(x1, x2) ≥ w · k + 2b]

≥ Pr
x′1←D2

[A
S′(·)
2 (x′1) ∈ S ′]− α− 2−n

− Pr
x1←D1

[d1(x1, x2) ≥ w · k + 2b]

≥ c(D2(S ′))− 2−n − α

− Pr
x1←D1

[d1(x1, x2) ≥ w · k + 2b]

≥ c(D1(S)/2− α)− 2−n − α

− Pr
x1←D1

[d1(x1, x2) ≥ w · k + 2b].

Note that the oracle S ′(·) cannot be implemented in polynomial time, but it could be approximated with

negligible error in polynomial time. In particular, we can implement oracle S ′′(·) oracle, that for every x,

S ′′(x) = S ′(x) with probability 1− negl(n) over the randomness of S ′′. On the other hand, we have

d1(A1(x1), x1) = d(x2, x1)

≤ d1(x2, g(x′1)) + d1(g(x′1), x1)

≤ w · d2(x′2, x
′
1)) + b+ d1(g(x′1), x1)

≤ w · k + b+ d1(g(x′1), x1).
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By almost inverse property of g we know that Prx1←D1 [d1(x1, g(x′1)) > b] ≤ α which implies Prx1←D1 [d1(A1(x1), x1)) ≥

w · k + 2b] ≤ α. Therefore we have,

Pr
x1←D1

[A
S(·)
1 (x1) ∈ S]

≥ c(D1(S)/2− α)− 2−n − α

− Pr
x1←D1

[d1(x1, x2) ≥ w · k + 2b]

≥ c(D1(S)/2− α)− 2−n − 2α

The following construction shows an embedding from Gaussian distribution to hamming cube. Using

this embedding and Lemma 2.4.2 we get computational concentration for the Gaussian distribution. The

following embedding uses ideas similar to Bobkov [1997].

Construction 2.4.3. (CC reduction from (Gaussian, `1) to Hamming cube) We construct f and g as follows.

f : Let n be an even number. Given a point x = (x1, . . . , xn) sampled from Gaussian space of dimension

n, do the following:

1. If ∃i; |xi| ≥
√
n/2, output 0n

2

.

2. Otherwise, for each i ∈ n compute ai = [ xi√
n

+ n
2 ] then uniformly sample some yi ∈ {0, 1}n such

that yi has exactly ai number of 1s. Then append yi s to get y = (y1| . . . |yn).

g : Let y = (y1| . . . |yn) be a Boolean vector of size n2 (each yi has size n). Let ai be the number of 1s in

yi. Then sample x = (x1, . . . , xn) from Gaussian space conditioned on 2ai−n
2
√
n
≤ xi < 2ai−n+1

2
√
n

Claim 2.4.4. The embedding of Construction 2.4.3 is an (negl(n), 1/
√
n, 1/

√
n) CC reduction from n-

dimensional isotropic Gaussian space (where the standard deviation of each coordinate is
√
n and the metric

is `1) to Hamming cube (i.e., Boolean hypercube under Hamming distance).

Proof. The embedding property of these mappings is proved in Bobkov [1997]. The mappings f and g are

clearly polynomial time in n and the Almost Lipschitz and Inverse Mappings properties are straightforward.

The following Corollary follows from Lemma 2.4.2, Claim 2.4.4 and Theorem 2.3.2.

Corollary 2.4.5. (Computational concentration of Gaussian under `1) There is an algorithm AS,Dε,δ (·) that

given access to a membership oracle for any set S and a sampling oracle from an isotropic Gaussian measure
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D of dimension n, it achieves the following. If Pr[S] ≥ ε, given ε and δ, the algorithm AS,Dε,δ (·) runs in time

poly(n/εδ), and with probability ≥ 1− δ given a random point x← D, it maps x to a point y ∈ S of bounded

`1 distance `1(x, y) ≤ O(
√
n · ln(1/εδ)).

2.4.1 Case of Gaussian or Sphere under `2

A reduction may also be used to obtain a (non-optimal) computational concentration of measure for the

multi-dimensional Gaussian distribution under the `2 metric.

Theorem 2.4.6. There is an algorithm AS,Dε,δ (·) that given access to a membership oracle for any set S and

a sampling oracle from an isotropic Gaussian measure D of dimension n, where each coordinate has variance

1, it achieves the following. If Pr[S] ≥ ε, given ε, δ ≥ 1/nO(1), the algorithm AS,Dε,δ (·) runs in time poly(n),

and with probability ≥ 1− δ given a random point x← D, it maps x to a point y ∈ S of bounded `2 distance

`2(x, y) ≤ O(n1/4 logO(1) n).

Proof. Since ε ≥ 1/nO(1), at most ε/2 and δ/2 fraction of the points have a coordinate of size ≥ O(
√

log n).

So ignoring points having such large coordinates, we may assume Pr[S] ≥ ε/2 while every point of S has

coordinates as small as O(
√

log n), and we may assume the point we are mapping also has small coordinates

(except our algorithm should now work for 1− δ/2 fraction of the points instead of for 1− δ fraction.)

Now, when each coordinate is O(
√

log n), the l2 distance between two points is at most O(
√
dH log n),

where dH is the Hamming distance of the two points. Now, the theorem follows from our main theorem for

Hamming distance.

We should note that the above computational bound is not information-theoretically tight, since for the

Gaussian `2 metric probability space, where each coordinate has variance 1, the right bound is O(
√

ln(1/(εδ))).

(This follows e.g. from the Gaussian isoperimetric inequality proved in Sudakov and Tsirel’son [1978], Borell

[1975], which shows the half-space is isopermetrically optimal for the Gaussian distribution.)

Finally, the following shows that our results are not limited to product spaces, and may for example be

applied to computational concentration of measure for the high-dimensional sphere.

Theorem 2.4.7. There is an algorithm AS,Dε,δ (·) that given access to a membership oracle for any set S and

a sampling oracle from the uniform measure D on the unit sphere of dimension n, it achieves the following.

If Pr[S] ≥ ε, given ε, δ ≥ 1/nO(1), the algorithm AS,Dε,δ (·) runs in time poly(n), and with probability ≥ 1− δ

given a random point x← D, it maps x to a point y ∈ S of bounded `2 distance `2(x, y) ≤ O(n−1/4 logO(1) n).

Proof. First, we note that a random Gaussian vector, where each coordinate has variance 1, has `2 norm

√
n+O(n1/4) except for arbitrary inverse polynomial probability.
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So given x, we can map it to a new vector x′ with the same direction as x but with a random length of

distribution square root of chi square, so that the new vector has the Gaussian distribution. We also map the

set S to the set S ′ = {r · s : r ∈ n1/2 +O(n1/4), s ∈ S}, where the new set still has probability ≥ ε/2 under

the Gaussian distribution. By the computational concentration of measure for the Gaussian, we know that

we can map, with probability 1− δ/2, x′ to a point y′ ∈ S ′ of distance n1/4 logO(1) n from x′ in `2. Let y be

the projection of y′ onto the unit sphere. Therefore

d`2(x, y) ≤ d`2(x, x′/
√
n)

+ d`2(x′/
√
n, y′
√
n) + d`2(y′/

√
n, y)

= O(n1/4 logO(1) n).

These types of relations between concentration of measure of Gaussian and uniform sphere measures has

been well-known information-theoretically, e.g. see [Ledoux, 2001, page 2] where concentration for Gaussian

is derived from concentration for sphere. In the above we showed a similar relation for computational

concentration of measure, this time deriving for the sphere from the Gaussian.

2.5 Computational Concentration around Mean

Let (X , d, D) be a metric probability space and f : X 7→ R a measurable function (with respect to D). For

any Borel set T ⊆ R, an parameters k, δ ∈ R+, one can define a computational problem as follows. Given

oracle access to a sampler from D, d and function f(·), map a given input x ∈ X algorithmically to y ∈ Y,

such that: (1) d(x, y) ≤ k, and (2) f(y) ∈ T for 1− δ fraction of x ∈ X according to D. If we already know

that (X , d, D) is (ε, δ, k) (computationally) concentrates, and if Prx←D[f(x) ∈ T ] ≥ ε, then it implies that

by changing x by at most distance k into a new point y, we can (algorithmically) get f(y) ∈ T , by defining

S = f−1(T ) and noting that PrD[S] ≥ ε. This algorithm needs oracle access to S

Computational concentration around mean. Again, let (X , d, D) be a metric probability space and

let f : X 7→ R be measurable. Now suppose η = Ex←D[f(x)]. If we already know, by information theoretic

concentration bounds, that Prx←D[|f(x)− η| ≤ T ] ≥ 1− δ, then it means that a trivial algorithm that does

not even change given x← D, finds a point where f(x) is T -close to the average η. However, this becomes

nontrivial, if the goal of the algorithm is to find y that is close to x, and that f(y) is much closer to the

mean η than what x achieves. In particular, suppose we somehow know that Prx←D[|f(x) − η| ≤ t] ≥ ε
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for t � T, ε � 1 − δ. (Such results usually follow from the same concentration inequalities proving

Prx←D[|f(x)− η| ≤ T ] ≈ 1.) The smaller t is, the “higher quality” the point x has in terms of f(x) being

closer to the mean. This means the set S = {x : |f(x)− η| ≤ t} has D measure at least ε. Therefore, if

the space (X , d, D) is (ε, δ, k) computationally concentrated, then we can conclude that there is an efficient

algorithm (whose running time can polynomially depend on 1/εδ and) that maps 1− δ fraction of x← D to

a point y ∈ S. Different, but similar, statements about one-sided concentration can be made as well, if we

start from weaker conditions of the form Prx←D[f(x) > η + t] ≤ ε (or Prx←D[f(x) < η − t] ≤ 1− ε) leading

to a weaker conclusion: we can map x to a point y satisfies f(x) ≥ η − t (or f(x) ≤ η + t).

Finally, we note that even if the mean η is not known to the mapping algorithm A, good approximations

of it can be obtained by repeated sampling and taking their average. So for simplicity, and without loss of

generality, the reader can assume that η is known to the mapping algorithm A.

Special case of Lipschitz functions: algorithmic proofs of concentration. When f : X 7→ R is

Lipschitz, i.e., |f(x)− f(y)| ≤ d(x, y), computational concentration around a set like S = {x : |f(x)− η| ≤ t}

(or similar one-sided variants) means something stronger than before. We now have an algorithm that

indirectly proves the concentration around η by efficiently finding points that are almost at the border defined

by η. Namely, the Lipschitz now implies that |f(x) − f(y)| ≤ k, whenever |x − y| ≤ k. Therefore, the

algorithm A mapping x to y is also proving that 1− δ measure of the space (X , D) is mapped under f to a

point that is k + t close to average η.

All the above arguments are general and apply to any metric probability space. Below, we discuss an

special case of a “McDiarmid type” inequality in more detail to demonstrate the power of this argument.

Theorem 2.5.1. (An algorithmic variant of McDiarmid inequality) Suppose D ≡ D1× · · · ×Dn is a product

measure on a product space X = X1 × · · · × Xn, and let f : X 7→ R be such that |f(x)− f(x′)| ≤ αi whenever

x and x′ only differ in the ith coordinate. Let a = ‖α‖2 for α = (α1, . . . , αn). Let η = Ex←D[f(x)] and

S = {x : f(x) ≤ η + ε · a}. Then there is an algorithm A
D,f(x)
ε,δ (·) running in time poly(n/εδ) that uses oracle

access to f and a sampler from D, and it holds that

Pr
x←D,y←AD,fε,δ (x)

[
y ∈ S

and |f(x)− f(y)| ≤ O
(√

m · log(1/εδ)
) ]
≥ 1− δ.

Corollaries for special cases. Theorem 2.5.1 implies a similar result when the quality of the destination

region is base on the `1 norm; namely, S = {x : f(x) ≤ η + ε · ‖α‖1}, but this follows from the same statement
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since ‖α‖2 ≤ ‖α‖1. In addition, for the special case where αi = 1 for all i,8 and let γ, δ = 1/ poly(n) be

arbitrarily small inverse polynomials. In that case, Theorem 2.5.1, shows that for 1− δ fraction of x← D, we

can map x to y in poly(n) time in such a way that f(y) ≤ E[f(D)] + γ and |f(x)− f(y)| ≤ Õ(
√
n). If we

choose γ < 1/2, due to the Lipschitz condition, we can also find some y for which f(y) ∈ E[f(D)]± 1. This is

possible by first finding some y where f(y) ≤ E[f(D)] + γ, and then go back over the coordinates in which

x and y differ and only changing some of them to get y′ where f(y′) ∈ E[f(D)]± 1, and output y′ instead.

We note that, however, that whenever we want to choose γ < 1/2, we need to also choose ε < 1/(2n). For

this range of small ε, we cannot use the computational concentration results of Mahloujifar and Mahmoody

[2019a], but we can indeed use the stronger computational concentration results of this chapter that prove

computational concentration around any non-negligible event.

Proof of Theorem 2.5.1. For starters, suppose η is given. In that case, we first observe that PrD[S] ≥

1− e−2ε2 = Θ(ε2) by McDiarmid’s inequality itself. We can then apply Theorem 2.3.2.

When η is not given, we can find a sufficiently good approximation of it, such that η′ ∈ η±‖α‖2 · ε/10 (in

time poly(n/εδ) and error probability δ/10) and use it instead of η. Obtaining such η′ can be done because

any x, x′ satisfy |f(x) − f(x′)| ≤ ‖α‖1. Therefore, we can obtain η′ ∈ η ± λ · ‖α‖1 in time by sampling

` = poly(n/λδ) (for sufficiently large `) many points x1, . . . , x` ← D and letting η′ = Ei←` f(xi). The only

catch is that we want η′ ∈ η±ε ·‖α‖2. However, since it holds that ‖α‖2 ≤ ‖α‖1 ·
√
n, we can choose λ = ε/

√
n,

and use the same procedure to obtain η′ ∈ η ± λ · ‖α‖1 with probability 1− δ/10 in time poly(n/εδ).

2.6 Limits of Nonadaptive Methods for Proving Computational

Concentration

In this section, we consider three restricted types of attacks and prove exponential lower bounds on their

running time. The attacks are

� I.i.d. queries: An attack where given x, we query i.i.d. points whose distribution may depend on x,

until one of these points lies in S. The analysis of this attack boils down to analysis of a single-query

attack where we want to maximize the probability of S-membership of the queried point.

� Non-adaptive queries: An attack where given x, we output a list of points, and query all the points

in this list. Since the points in the list are determined before the querying, this attack is non-adaptive.

8For example, this could be the setting of Hoeffding’s inequality in which each coordinate Di is arbitrarily distributed over
[0, 1], and f(x) =

∑
i∈[n] xi, where x = (x1, . . . , xn)
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It is easy to see (and we give a proof below) how lower bounding this type of attack reduces to the

previous type of attack.

� Querying only points close enough to have a chance to be output: If we are interested in

finding a point at distance ≤ d from x, one may be tempted to limit the queried points to points at

distance ≤ d from x. We show how lower bounding this type of attack reduces to the previous type of

attack.

Theorem 2.6.1. (Lower bound for non-adaptive algorithms) Let D be the uniform probability distribution

on {1,−1}n, and let ε = 1/2 and δ < 1/2 be constants. There does not exist any non-adaptive algorithm A

that given x← D, the algorithm outputs m = nO(1) (random) points y1, . . . , ym, all within Hamming distance

n1−Ω(1) of x, such that given any set S with Pr[S] ≥ ε, one of these m points lies in S with probability 1− δ

over the randomness of x and randomness of y1, . . . , ym.

Proof. Assume for the sake of contradiction that such an algorithm A exists. Consider the following modified

algorithm: given x, run A to produce y1, . . . , ym, and then let z1 be one of those m vectors uniformly at

random. To produce z2, run A independently afresh, and let z2 be one of the m freshly produced vectors.

We can continue in this way, and produce the vectors z1, . . . , zm
′

as the output of the modified algorithm. By

the assumption, for any constant δ′ ∈ (δ, 1/2), with probability 1− δ′ over the randomness of x, algorithm A

has success probability at least 1/n, hence each zi lies in S with probability ≥ 1/mn. Hence for these x, if we

choose m′ = mn2, with probability 1− (1− 1/mn)m
′

= 1− o(1), the modified algorithm succeeds. Therefore,

the average success probability of the algorithm is ≥ 1− δ′ − o(1) ≥ 1/2 + Ω(1).

The above argument shows that we only need to look at algorithms where y1, . . . , ym are independent

given x. Thus, it is enough to show that there does not exist a random mapping from x to a vector y in such

a way that with probability 1− δ over the randomness of x, the probability Pr[y ∈ S] is non-negligible (since

m is polynomial in n).

For the sake of contradiction, assume such a mapping from x to y exists. Let S be a random half-space, i.e.

S = {z :
∑n
i=1 aizi ≤ 0} for a uniformly random vector a = (a1, . . . , an) ∈ {−1, 1}n. We will show that for

every x, with probability δ over the randomness of a, the probability Pr[y ∈ S] is negligible. By an averaging

argument, this shows that there exists a half-space S such that with probability δ over the randomness of x,

Pr[y ∈ S] is negligible, completing the proof.

As mentioned above, we want to show that for every x, a random half-space is troublesome for the algorithm.

By symmetry, without loss of generality, we may assume x = (1, 1, . . . , 1). Let η = (η1, . . . , ηn) = (x− y)/2

be the characteristic vector for the coordinates for which y is different from x. We note that y ∈ S iff∑
i ai − 2

∑
i aiηi ≤ 0. We know that with probability δ + Ω(1) over the randomness of a, we have

∑
i ai ≥
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Ω(
√
n). (This easily follows from the central limit theorem.) Now, conditioned on η, the sum

∑
i ηiai is actually

a sum of n1−Ω(1)-many ±1 independent random variables of mean zero, so Pr[
∑
i ηiai ≥ Ω(

√
n)] is a negligible,

actually exponentially small, probability. This implies over the randomness of a and η, Pr[
∑
i ηiai ≥ Ω(

√
n)]

is negligible. Thus, except for an o(1) fraction of random half-spaces, Pr[
∑
i ηiai ≥ Ω(

√
n)] is negligible over

the randomness of y. Thus, with probability at least δ + Ω(1)− o(1) ≥ δ over the randomness of a, we have

both

�
∑
i ai ≥ Ω(

√
n), and

� Pr[
∑
i aiηi = Ω(

√
n)] is negligible over the randomness of y.

In this case, y does not lie in S except with non-negligible.

Remark 2.6.2. It can be seen that the above theorem holds whenever ε and δ are positive constants such

that ε+ δ < 1. It can be seen that the above theorem does not hold when ε+ δ > 1 since when we set y = x,

our failure probability δ is exactly 1− ε.

Lemma 2.6.3. Given a radius r, assume an adaptive algorithm A, given x, wants to find a vector y ∈ S

in the ball of radius r around x. Furthermore, assume that the algorithm does not make any S-membership

oracle queries regarding points outside the ball. Then, we can transform the algorithm into a non-adaptive

algorithm with the same performance.

Proof. When the algorithm ever queries about a point y (and by assumption y is in the ball), if the oracle

says that y ∈ S, then we are done (since we have found our desired point.) So the algorithm may always

pretend that the result of each membership query about each queried point is that the point is not in S. This

equivalent algorithm is non-adaptive.

Corollary 2.6.4. In the {0, 1}n uniform product space, when we want to find a point y ∈ S at distance

n1/2+ε from a random x (for some ε ∈ (0, 1/2)), to be query-efficient, we need to query about S-membership

of points having distance more than n1/2+ε.

The above corollary says that even though we are interested in points in a ball of certain radius around x,

we have to query about points outside that ball. When we notice that we are not assuming any structure on

the set S other than it should have some minimum mass, the above corollary becomes all the more surprising!



Chapter 3

Separating Computational and

Statistical Robustness for

Inference-time Attacks

3.1 Introduction

Our results in Part 2 suggest that perhaps the existence of adversarial example is due to fundamental reasons

that might be inevitable. In Part 2, Section 2 we showed that for natural theoretical distributions (e.g.,

isotropic Gaussian of dimension n) and natural metrics over them (e.g., `0, `1 or `2), adversarial examples

are inevitable. Namely, the concentration of measure phenomenon [Ledoux, 2001, Milman and Schechtman,

1986] in such metric probability spaces imply that small perturbations are enough to map almost all the

instances x into a close x′ that is misclassified. This line of work, however, does not yet say anything about

“natural” distributions of interest such as images or voice, as the precise nature of such distributions are yet

to be understood.

Can lessons from cryptography help? Given the pessimistic state of affairs, researchers have asked

if we could use lessons from cryptography to make progress on this problem [Madry, 2018, Goldwasser,

2018, Mahloujifar and Mahmoody, 2018b]. Indeed, numerous cryptographic tasks (e.g. encryption of long

messages) can only be realized against attackers that are computationally bounded. In particular, we know

that all encryption methods that use a short key to encrypt much longer messages are insecure against

computationally unbounded adversaries. However, when restricted to computationally bounded adversaries

197
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this task becomes feasible and suffices for numerous settings. This insight has been extremely influential in

cryptography. Nonetheless, despite attempts to build on this insight in the learning setting, we have virtually

no evidence on whether this approach is promising. Thus, in this chapter we study the following question:

Could we hope to leverage computational hardness for the benefit of adversarially robust learning

by rendering successful attacks computationally infeasible?

Taking a step in realizing this vision, we provide formal definitions for computational variants of robust

learning. Following the cryptographic literature, we provide a game based definition of computationally

robust learning. Very roughly, a game-based definition consists of two entities: a challenger and an attacker,

that interact with each other. In our case, as the first step the challenger generates independent samples

from the distribution at hand, use those samples to train a learning algorithm, and obtain a hypothesis

h. Additionally, the challenger samples a fresh challenge sample x from the underlying distribution. Next,

the challenger provides the attacker with oracle access to h(·) and x. At the end of this game, the attacker

outputs a value x′ to the challenger. The attacker declares this execution as a “win” if x′ is obtained as a

small perturbation of x and leads to a misclassification. We say that the learning is computationally robust

as long as no attacker from a class of adversaries can “win” the above game with a probability much better

than some base value. (See Definition 3.3.1.) This definition is very general and it implies various notions of

security by restricting to various classes of attackers. While we focus on polynomially bounded attackers in

this chapter, we remark that one may also naturally consider other natural classes of attackers based on the

setting of interest (e.g. an attacker that can only modify certain part of the image).

What if adversarial examples are actually easy to find? Mahloujifar and Mahmoody [2019b] studied

this question, and showed that as long as the input instances come from a product distribution, and if the

distances are measured in Hamming distance, adversarial examples with sublinear perturbations can be found

in polynomial time. This result, however, did not say anything about other distributions or metrics such as

`∞. Thus, it was left open whether computational hardness could be leveraged in any learning problem to

guarantee its robustness.

3.1.1 Summary of Results

From computational hardness to computational robustness. In this chapter, we show that compu-

tational hardness can indeed be leveraged to help robustness. In particular, we present a learning problem P

that has a classifier hP that is only computationally robust. In fact, let Q be any learning problem that has

a classifier with “small” risk α, but that adversarial examples exist for classifier hQ with higher probability

β � α under the `0 norm (e.g., Q could be any of the well-studied problems in the literature with a vulnerable
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classifier hQ under norm `0). Then, we show that there is a “related” problem P and a related classifier hP

that has computational risk (i.e., risk in the presence of computationally bounded tampering adversaries)

at most α, but the risk of hP will go up all the way to ≈ β if the tampering attackers are allowed to be

computationally unbounded. Namely, computationally bounded adversaries have a much smaller chance of

finding adversarial examples of small perturbations for hP than computationally unbounded attackers do.

(See Theorem 3.4.2.)

The computational robustness of the above construction relies on allowing the hypothesis to sometimes

“detect” tampering and output a special symbol ?. The goal of the attacker is to make the hypothesis output a

wrong label and not get detected. Therefore, we have proved, along the way, that allowing tamper detection

can also be useful for robustness. Allowing tamper detection, however, is not always an option. For example

a real-time decision making classifier (e.g., classifying a traffic sign) that has to output a label, even if it

detects that something might be suspicious about the input image. We prove that even in this case, there is

a learning problem P with binary labels and a classifier h for P such that computational risk of h is almost

zero, while its information theoretic risk is ≈ 1/2, which makes classifiers’ decisions under attack meaningless.

(See Theorem 3.4.8).

Extension: existence of learning problems that are computationally robust. Our result above

applies to certain classifiers that “separate” the power of computationally bounded vs. that of computationally

unbounded attackers. Doing so, however, does not rule out the possibility of finding information theoretically

robust classifiers for the same problem. So, a natural question is: can we extend our result to show the

existence of learning tasks for which any classifier is vulnerable to unbounded attackers, while computationally

robust classifiers for that task exist? At first, it might look like an impossible task, in “natural” settings, in

which the ground truth function c itself is robust under the allowed amount of perturbations. (For example,

in case of image classification, Human is the robust ground truth). Therefore, we cannot simply extend our

result in this setting to rule out the existence of robust classifiers, since they might simply exist (unless one

puts a limits on the complexity of the learned model, to exclude the ground truth function as a possible

hypothesis).

However, one can still formulate the question above in a meaningful way as follows: Can we have a learning

task for which any polynomial time learning algorithm (with polynomial sample complexity) is forced to

produce (with high probability) hypotheses with low robustness against unbounded attacks? Indeed, in this

chapter we also answer this question affirmatively, as a corollary to our main result, by also relying on recent

results proved in recent exciting works of [Bubeck et al., 2018c,a, Degwekar and Vaikuntanathan, 2019].
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In summary, our work provides credence that perhaps restricting attacks to computationally bounded

adversaries holds promise for achieving computationally robust machine learning that relies on computational

hardness assumptions as is currently done in cryptography.

From computational robustness back to computational hardness. Our first result shows that

computational hardness can be leveraged in some cases to obtain nontrivial computational robustness

that beats information theoretic robustness. But how about the reverse direction; are computational

hardness assumptions necessary for this goal? We also prove such reverse direction and show that nontrivial

computational robustness implies computationally hard problems in NP. In particular, we show that a

non-negligible gap between the success probability of computationally bounded vs. that of unbounded

adversaries in attacking the robustness of classifiers implies strong average-case hard distributions for class

NP. Namely, we prove that if the distribution D of the instances in learning task is efficiently samplable,

and if a classifier h for this problem has computational robustness α, information theoretic robustness β, and

α < β, then one can efficiently sample from a distribution S that generates Boolean formulas φ← S that are

satisfiable with overwhelming probability, yet no efficient algorithm can find the satisfying assignments of

φ← S with a non-negligible probability. (See Theorem 3.5.2 for the formal statement.)

What world do we live in? As explained above, our main question is whether adversarial examples could

be prevented by relying on computational limitations of the adversary. In fact, even if adversarial examples

exist for a classifier, we might be living in either of two completely different worlds. One is a world in which

computationally unbounded adversaries can find adversarial examples (almost) whenever they exist and they

would be as powerful as information-theoretic adversaries. Another world is one in which machine learning

could leverage computational hardness. Our work suggests that computational hardness can potentially

help robustness for certain learning problems; thus, we are living in the better world. Whether or not we

can achieve computational robustness for practical problems (such as image classification) that beats their

information-theoretic robustness remains an intriguing open question. A related line of work [Bubeck et al.,

2018c,a, Degwekar and Vaikuntanathan, 2019] studied other “worlds” that we might be living in, and studied

whether adversarial examples are due to the computational hardness of learning robust classifiers. They

designed learning problems demonstrating that in some worlds, robust classifiers might exist, while they

are hard to be obtained efficiently. We note however, that the goal of those works and our work are quite

different. They deal with how computational constraints might be an issue and prevent the learner from

reaching its goal, while our focus is on how such constraints on adversaries can help us achieve robustness

guarantees that are not achievable information theoretically.
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What does our result say about robustifying other natural learning tasks? Our results only show

the existence of a learning task for which computational robustness is very meaningful. So, one might argue

that this is an ad hoc phenomenon that might not have an impact on other practical problems (such as

image classification). However, we emphasize that prior to our work, there was no provable evidence that

computational hardness can play any positive role in robust learning. Indeed, our results also shed light

on how computational robustness can potentially be applied to other, perhaps more natural learning tasks.

The reason is that the space of all possible ways to tamper a high dimensional vector is exponentially large.

Lessons from cryptography, and the construction of our learning task proving our main result, suggest that,

in such cases, there is potentially a huge gap between the power of computationally bounded vs. unbounded

search algorithms. On the other hand, there are methods proposed by researchers that seem to resist attacks

that try to find adversarial examples [Madry et al., 2018], while the certified robustness literature is all

focused on modeling the adversary as a computationally unbounded entity who can find adversarial examples

within a certain distance, so long as they exist [Raghunathan et al., 2018, Wong and Kolter, 2018, Sinha

et al., 2018, Wong et al., 2018]. Our result shows that, perhaps we shall start to consider computational

variants of certification methods that focus on computationally bounded adversaries, as by doing so we might

be able to prove better robustness bounds for methods that are designed already.

Techniques

We prove our main result about the possibility of computationally robust classifiers (Theorem 3.4.2) by

“wrapping” an arbitrary learning problem Q with a vulnerable classifier by adding computational certification

based on cryptographic digital signatures to test instances. A digital signature scheme (see Definition 3.2.2)

operates based on two generated keys (vk, sk), where sk is private and is used for signing messages, and vk is

public and is used for verifying signatures. Such schemes come with the guarantee that a computationally

bounded adversary with the knowledge of vk cannot sign new messages on its own, even if it is given signatures

on some previous messages. Digital signature schemes can be constructed based on the assumption that

one-way functions exist.1 Below we describe the ideas behind this result in two steps.

Initial Attempt. Suppose DQ is the distribution over X × Y of a learning problem Q with input space

X and label space Y. Suppose DQ had a hypothesis hQ that can predict correct labels reasonably well,

Pr(x,y)←DQ
[h(x) 6= y] ≤ α. Suppose, at the same time, that a (perhaps computationally unbounded) adversary

A can perturb test instances like x into a close adversarial example x′ that is now likely to be misclassified by

1Here, we need signature schemes with “short” signatures of poly-logarithmic length over the security parameter. They could
be constructed based on exponentially hard one-way functions [Rompel, 1990] by picking the security parameter sub-exponentially
smaller that usual and using universal one-way hash functions to hash the message to poly-logarithmic length..
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hQ,

Pr
(x,y)←DQ

[h(x′) 6= y;x′ = A(x)] ≥ β � α.

Now we describe a related problem P, its distribution of examples DP , and a classifier hP for P. To sample

an example from DP , we first sample (x, y) ← DQ and then modify x to x = (x, σx) by attaching a short

signature σx = Sign(sk, x) to x. The label y of x remains the same as that of x. Note that sk will be kept

secret to the sampling algorithm of DP . The new classifier hP will rely on the public parameter vk that is

available to it. Given an input x = (x, σx), hP first checks its integrity by verifying that the given signature

σx is valid for x. If the signature verification does not pass, hP rejects the input as adversarial without

outputting a label, but if this test passes, hP outputs hQ(x).

To successfully find an adversarial example x′ for hP through a small perturbation of x = (x, σ) sampled

as (x, y)← DP , an adversary A can pursue either of the following strategies. (I) One strategy is that A tries

to find a new signature σ′ 6= σx for the same x, which will constitute as a sufficiently small perturbation as

the signature is short. Doing so, however, is not considered a successful attack, as the label of x′ remains the

same as that of the true label of the untampered point x. (II) Another strategy is to perturb the x part of

x into a close instance x′ and then trying to find a correct signature σ′ for it, and outputting x′ = (x′, σ′).

Doing so would be a successful attack, because the signature is short, and thus x′ would indeed be a close

instance to x. However, doing this is computationally infeasible, due to the very security definition of the

signature scheme. Note that (x′σ′) is a forgery for the signature scheme, which a computationally bounded

adversary cannot construct because of the security of the underlying signature scheme. This means that the

computational risk of hP would remain at most α.

We now observe that information theoretic (i.e., computationally unbounded) attackers can succeed in

finding adversarial examples for hP with probability at least β � α. In particular, such attacks can first

find an adversarial example x′ for x (which is possible with probability β over the sampled x), construct a

signature σ′ for x′, and then output (x′, σ′). Recall that an unbounded adversary can construct a signature

σ′ for x′ using exhaustive search.

Actual construction. One main issue with the above construction is that it needs to make vk publicly

available, as a public parameter to the hypothesis (after it is sampled as part of the description of the

distribution DP). Note that it is computationally hard to construct the hypothesis described above without

knowing vk. The problem with revealing vk to the learner is that the distribution of examples should come

with some extra information other than samples. However, in the classical definition of a learning problem,

the learner only has access to samples from the distribution. In fact, if we were allowed to pass some extra

information to the learner, we could pass the description of a robust classifier (e.g. the ground truth) and



3.1 Introduction 203

the learning task becomes trivial. The other issue is that the distribution DP is not publicly samplable in

polynomial time, because to get a sample from DP one needs to use the signing key sk, but that key is kept

secret. We resolve these two issues with two more ideas. The first idea is that, instead of generating one pair

of keys (vk, sk) for DP and keeping skD secret, we can generate a fresh pair of keys (vkx, skx) every time that

we sample (x, y)← DQ and attach vkx also to the actual instance x = (x, σx, vkk). The modified hypothesis

hP also uses this key and verifies (x, σx) using vkx. This way, the distribution DP is publicly samplable,

and moreover, there is no need for making vk available as a public parameter. However, this change of the

distribution DP introduces a new possible way to attack the scheme and to find adversarial examples. In

particular, now the adversary can try to perturb vkx into a close string vk′ for which it knows a corresponding

signing key sk′, and then use sk′ to sign an adversarial example x′ for x and output (x′, σ′, vk′). However, to

make this attack impossible for the attacker under small perturbations of instances, we use error correction

codes and employ an encoding [vkx] of the verification key (instead of vkx) that needs too much change before

one can fool a decoder to decode to any other vk′ 6= vkx. But as long as the adversary cannot change vkx, the

adversary cannot attack the robustness computationally. (See Construction 3.4.1.)

To analyze the construction above (see Theorem 3.4.2), we note that the computationally bounded

adversary would need to change Ω(|x|) number of bits in (x, σ, [vk]) to get (x′, σ′, [vk′]) where x 6= x′. This is

because the encoded [vk] would need Ω(|x|) number of perturbations to change the encoded vk, and if vk

remains the same it is hard computationally to find a valid signature. On the other hand, a computationally

unbounded adversary can focus on perturbing x into x′ and then forge a short signatures for it, which could

be as small as poly(log(|x|)) perturbations.

Extension to problems, rather than specific classifiers for them. Note that the construction above

could be wrapped around any learning problem. In particular, we can pick an original problem that is

not (information theoretically) robustly learnable in polynomial time. These problems, which we call them

robust-hard are studied recently in [Bubeck et al., 2018c] and [Degwekar and Vaikuntanathan, 2019] where

they construct such robust-hard problems to show the effect of computational limitation in robust learning

(See Definition 3.3.5 and 3.3.6). Here, using their construction as the original learning problem, and wrapping

it with our construction, we can strengthen our result and construct a learning problem that is not robustly

learnable by any polynomial time learning algorithm, yet it has a classifier that is computationally robust.

See Corollary 3.4.3 for more details.

Computational robustness without tamper detection. The computational robustness of the con-

structed classifier relies on sometimes detecting tampering attacks and not outputting a label. We give an
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alternative construction for a setting that the classifier always has to output a label. We again use digital

signatures and error correction codes as the main ingredient of our construction but in a different way. The

main difference is that we have to repeat the signature multiple times to prevent the adversary from changing

all of the signatures. The caveat of this construction is that it is no longer a wrapper around an arbitrary

learning problem. See Construction 3.4.7 for more details.

3.2 Useful Tools

Here, we define the notions of one-way function, one-time signature and error correcting code.

Definition 3.2.1 (One-way function). A function f : {0, 1}∗ → {0, 1}∗ is one-way if it can be computed in

polynomial time and the inverse of f is hard to compute. Namely, there is a polynomial time algorithm M

such that

Pr[x← {0, 1}n ;M(x) = f(x)] = 1

and for any polynomial time algorithm A there is a negligible function negl(·) such that we have,

Pr[x← {0, 1}n ; y = f(x); f(A(y)) = x] ≤ negl(|x|).

The assumption that one-way functions exist is standard and omnipresent in cryptography as a minimal

assumption, as many cryptographic tasks imply the existence of OWFs [Goldreich, 2007, Katz and Lindell,

2014].

Definition 3.2.2 (One-time signature schemes). A one-time signature scheme S = (KGen,Sign,Verify)

consists of three probabilistic polynomial-time algorithms as follows:

� KGen(1λ)2 → (sk, vk)

� Sign(sk,m)→ σ

� Verify(vk, σ,m)→ {0, 1}

which satisfy the following properties:

2By 1λ we mean an string of bits of size λ that is equal to 1 at each location. Note that λ is the security parameter that
controls the security of the scheme. As λ increases the task of finding a forgery for a signature becomes harder.
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1. Completeness: For every m

Pr[(sk, vk)← KGen(1λ);σ ← Sign(sk,m);

Verify(vk, σ,m) = 1] = 1.

2. Unforgeability: For every positive polynomial s, for every λ and every pair of circuits (A1, A2) with

size s(λ) the following probability is negligible in λ:

Pr[(sk, vk)← KGen(1λ);

(m, st)← A1(1λ, vk);

σ ← Sign(sk,m);

(m′, σ′)← A2(1λ, vk, st,m, σ);

m 6= m′ ∧ Verify(vk, σ′,m′) = 1] ≤ negl(λ).

Definition 3.2.3 (Error correction codes). An error correction code with code rate α and error rate β

consists of two algorithms Encode and Decode as follows.

� The encode algorithm Encode takes a Boolean string m and outputs a Boolean string c such that

|c| = |m|/α.

� The decode algorithm Decode takes a Boolean string c and outputs either ⊥ or a Boolean string

m. It holds that for all m ∈ {0, 1}∗, c = Encode(m) and c′ where HD(c, c′) ≤ β · |c|, it holds that

Decode(c′) = m.

3.3 Defining Computational Risk and Computationally Robust

Learning

Notation. We use calligraphic letters (e.g., X ) for sets and capital non-calligraphic letters (e.g., D) for

distributions. By d← D we denote sampling d from D. For a randomized algorithm R(·), y ← R(x) denotes

the randomized execution of R on input x outputting y. A classification problem P = (X ,Y, D,H) is specified

by the following components: set X is the set of possible instances, Yis the set of possible labels, D ∈ D is

a joint distribution over X × Y, and H is the space of hypothesis. For simplicity we work with problems

that have a single distribution D (e.g., D is the distribution of labeled images from a data set like MNIST or
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CIFAR-10). A learner L for problem P is an algorithm that takes a dataset S ← Dm as input and outputs a

hypothesis h ∈ H. We did not state the loss function explicitly, as we work with classification problems and

use the zero-one loss by default. For a learning problem P = (X ,Y, D,H), the risk or error of a hypothesis

h ∈ H is RiskP(h) = Pr(x,y)←D[h(x) 6= y]. We are usually interested in learning problems P = (X ,Y, D,H)

with a specific metric d defined over X for the purpose of defining adversarial perturbations of bounded

magnitude controlled by d. In that case, we might simply write P = (X ,Y, D,H), but d is implicitly defined

over X . Finally, for a metric d over X , we let db(x) = {x′ | d(x, x′) ≤ b} be the ball of radius b centered

at x under the metric d. By default, we work with Hamming distance HD(x, x′) = | {i : xi 6= x′i} |, but our

definitions can be adapted to any other metrics. We usually work with families of problems Pn where n

determines the length of x ∈ Xn (and thus input lengths of h ∈ Hn, c ∈ Cn, dn). We sometimes use a special

notation Pr[x← X;E(x)] to define Prx←X [E(x)] that is the probability of and event E over a random variable

X. We also might use a combination of multiple random variables, for examples Pr[x← X; y ← Y ;E(x, y)]

denotes the same thing as Prx←X,y←Y [E(x, y)]. Order of sampling of X and Y matters Y might depend on

X.

Allowing tamper detection. In this chapter, we expand the standard notion of hypotheses and allow

h ∈ H to output a special symbol ? as well (without adding ? to Y), namely we have h : X 7→ Y ∪ {?}. This

symbol can be used by the classifier h to denote “out of distribution” points, or any form of tampering,

without outputting an actual label. In natural scenarios, h(x) 6= ? when x is not an adversarially tampered

instance. However, we allow this symbol to be output by h even in no-attack settings as long as its probability

is small enough.

We follow the tradition of game-based security definitions in cryptography [Naor, 2003, Shoup, 2004,

Goldwasser and Kalai, 2016, Rogaway and Zhang, 2018]. Games are the most common way that security is

defined in cryptography. These games are defined between a challenger Chal and an adversary A. Consider

the case of a signature scheme. In this case the challenger Chal is a signature scheme Π and an adversary A is

given oracle access to the signing functionality (i.e. adversary can give a message mi to the oracle and obtains

the corresponding signature σi). Adversary A wins the game if he can provide a valid signature on a message

that was not queried to the oracle. The security of the signature scheme is then defined informally as follows:

any probabilistic polynomial time/size adversary A can win the game by probability that is bounded by a

negligible n−ω(1) function on the security parameter. We describe a security game for tampering adversaries

with bounded tampering budget in HD, but the definition is more general and can be used for other adversary

classes.
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Definition 3.3.1 (Security game of adversarially robust learning). Let Pn = (Xn,Yn, Dn,Hn) be a classifi-

cation problem where the components are parameterized by n. Let L be a learning algorithm with sample

complexity m = m(n) for Pn. Consider the following game between a challenger Chal, and an adversary A

with tampering budget b = b(n).

1. Chal samples m i.i.d. examples S ← Dm
n and gets hypothesis h← L(S) where h ∈ Hn.

2. Chal then samples a test example (x, y)← Dn and sends (x, y) to the adversary A.

3. Having oracle access (or oracle gates, in case of circuits) to hypothesis h and a sampler for Dn, the

adversary obtains the adversarial instance x′ ← Ah(·),Dn(x) and outputs x′.

Winning conditions: In case x = x′, the adversary A wins if h(x) 6= y,3 and in case x 6= x′, the adversary wins

if all the following hold:

1. HD(x, x′) ≤ b,

2. h(x′) 6= y, and

3. h(x′) 6= ?.

Why separating winning conditions for x = x′ from x 6= x′? One might wonder why we separate the

winning condition for the two cases of x = x′ and x 6= x′. The reason is that ? is supposed to capture tamper

detection. So, if the adversary does not change x and the hypothesis outputs h(x) = ?, this is an error, and thus

should contribute to the risk. More formally, when we evaluate risk, we have RiskP(h) = Pr(x,y)←D[h(x) 6= y],

which implicitly means that outputting ? contributes to the risk. However, if adversary’s perturbs to x′ 6= x

leads to h(x′) = ?, it means the adversary has not succeeded in its attack, because the tampering is detected.

In fact, if we simply require the other 3 conditions to let adversary win, the notion of “adversarial risk” (see

Definition 3.3.2) might be even less than the normal risk, which is counter intuitive.

Alternative definitions of winning for the adversary. The winning condition for the adversary could

be defined in other ways as well. In our Definition 3.3.1, the adversary wins if d(x, x′) ≤ b and h(x′) 6= y.

This condition is inspired by the notion of corrupted input [Feige et al., 2015], is extended to metric spaces in

[Madry et al., 2018], and is used in and many subsequent works. An alternative definition for adversary’s goal,

formalized in [Diochnos et al., 2018b] and used in [Gilmer et al., 2018b, Diochnos et al., 2018b, Bubeck et al.,

2018a, Degwekar and Vaikuntanathan, 2019] requires h(x′) to be different from the true label of x′ (rather

than x). This condition requires the misclassification of x′, and thus, x′ would belong to the “error-region”

3Note that, if h(x) 6= y, without loss of generality, the adversary A can output x′ = x
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of h. Namely, if we let c(x) = y be the ground truth function, the error-region security game requires

h(x′) 6= c(x′). Another stronger definition of adversarial risk is given by Suggala et al. [2018b] in which the

requirement condition requires both conditions: (1) the ground truth should not change c(x) = c(x′), and

that (2) x′ is misclassified. For natural distributions like images or voice, where the ground truth is robust to

small perturbations, all these three definitions for adversary’s winning are equivalent.

Stronger attack models. In the attack model of Definition 3.3.1, we only provided the label y of x to the

adversary and also give her the sample oracle from Dn. A stronger attacker can have access to the “concept”

function c(x) which is sampled from the distribution of y given x (according to Dn). This concept oracle

might not be efficiently computable, even in scenarios that Dn is efficiently samplable. In fact, even if Dn is

not efficiently samplable, just having access to a large enough pool of i.i.d. sampled data from Dn is enough

to run the experiment of Definition 3.3.1. In alternative winning conditions (e.g., the error-region definition)

for Definition 3.3.1 discussed above, it makes more sense to also include the ground truth concept oracle c(·)

given as oracle to the adversary, as the adversary needs to achieve h(x′) 6= c(x′). Another way to strengthen

the power of adversary is to give him non-black-box access to the components of the game (see Papernot

et al. [2017]). In definition 3.3.1, by default, we model adversaries who have black-box access to h(·), Dn, but

one can define non-black-box (white-box) access to each of h(·), Dn, if they are polynomial size objects.

Diochnos et al. [2018b] focused on bounded perturbation adversaries that are unbounded in their running

time and formalized notions of of adversarial risk for a given hypothesis h with respect to the b-perturbing

adversaries. Using Definition 3.3.1, in Definition 3.3.2, we retrieve the notions of standard risk, adversarial

risk, and its (new) computational variant.

Definition 3.3.2 (Adversarial risk of hypotheses and learners). Suppose L is a learner for a problem

P = (X ,Y, D,H). For a class of attackers A we define

AdvRiskP,A(L) = sup
A∈A

Pr[A wins]

where the winning is in the experiment of Definition 3.3.1. When the attacker A is fixed, we simply write

AdvRiskP,A(L) = AdvRiskP,{A}(L). For a trivial attacker I who outputs x′ = x, it holds that RiskP(L) =

AdvRiskP,I(L). When A includes attacker that are only bounded by b perturbations, we use notation

AdvRiskP,b(L) = AdvRiskP,A(L), and when the adversary is further restricted to all s-size (oracle-aided)

circuits, we use notation AdvRiskP,b,s(L) = AdvRiskP,A(L). When L is a learner that outputs a fixed

hypothesis h, by substituting h with L, we obtain the following similar notions for h, which will be denoted

as RiskP(h), AdvRiskP,A(h), AdvRiskP,b(h), and AdvRiskP,b,s(h).
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Definition 3.3.3 (Computationally robust learners and hypotheses). Let Pn = (Xn,Yn, Dn,Hn) be a family

of classification parameterized by n. We say that a learning algorithm L is a computationally robust learner

with risk at most R = R(n) against b = b(n)-perturbing adversaries, if for any polynomial s = s(n), there is

a negligible function negl(n) = n−ω(1) such that

AdvRiskPn,b,s(L) ≤ R(n) + negl(n).

Note that the size of circuit used by the adversary controls its computational power and that is why we

are enforcing it to be a polynomial. Again, when L is a learner that outputs a fixed hypothesis hn for each

n, we say that the family hn is a computationally robust hypothesis with risk at most R = R(n) against

b = b(n)-perturbing adversaries, if L is so. In both cases, we might simply say that L (or h) has computational

risk at most R(n).

Remark 3.3.4 (Alternative definition without the negligible term for concrete adversary runtime). We

remark that, when the class of adversary is a finite set, and when we work with a concrete setting of parameter

(as opposed to the asymptotic setting of Definition 3.3.2) one can opt to work with concrete bounds and

a version that drops the negligible probability negl on the right hand side of the inequality and asks for

the probability of winning to be simply stated as AdvRiskPn,b,s(L) ≤ R(n) for s-sized oracle-aided circuit

adversaries or s-time oracle-aided Turing machines. However, in the asymptotic setting, one can work

with very large polynomials for small security parameters, in which case there is little difference between

information theoretic adversaries versus computationally bounded ones. In that case, the negligible additive

term will subsume any large advantage that such adversaries might have for small security parameters. In

this chapter, we opt to work with the above asymptotic definition together with the negligible additive term.

Moreover, the negligible probability usually comes up in computational reductions, and hence it simplifies

the statement of our theorems, but we emphasize that both forms of the definition of computational risk (for

concert as well as asymptotic settings) are equally appealing and valid on their own.

PAC learning under computationally bounded tampering adversaries. Recently, several works

studied generalization under adversarial perturbations from a theoretical perspective [Bubeck et al., 2018b,

Cullina et al., 2018, Feige et al., 2018, Attias et al., 2018, Khim and Loh, 2018, Yin et al., 2018b, Montasser

et al., 2019, Diochnos et al., 2019], and hence they implicitly or explicitly revisited the “probably approximately

corect” (PAC) learning framework of Valiant [2013] under adversarial perturbations. Here we comment

that, one can derive variants of those definitions for computationally bounded attackers, by limiting their

adversaries as done in our Definition 3.3.3. In particular, we call a learner L an (ε, δ) PAC learner for a
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problem P and computationally bounded b-perturbing adversaries, if with probability 1 − δ, L outputs a

hypothesis h that has computational risk at most ε.

Bellow we formally define the notion of robust-hard learning problems which captures the inherent

vulnerability of a learning problem to adversarial attacks due to computational limitations of the learning

algorithm. This definition are implicit in works of [Degwekar and Vaikuntanathan, 2019, Bubeck et al., 2018c].

In Section 3.4, we use these robust-hard problems to construct learning problems that are inherently non-robust

in presence of computationally unbounded adversaries but have robust classifiers against computationally

bounded adversaries.

Definition 3.3.5 (Robust-hard learning problems). A learning problem Pn = (Xn,Yn, Dn,Hn) is robust-hard

w.r.t budget b(n) if for any learning algorithm L that runs in poly(n) we have

AdvRiskPn,b(L) ≥ 1− negl(n).

Theorem 3.3.6 (Degwekar and Vaikuntanathan [2019], Bubeck et al. [2018c]). There exist a Learning

problem Pn = (Xn,Yn, Dn,Hn) and a sub-linear budget b(n) such that Pn is robust-hard w.r.t b unless

one-way functions do not exist. (See appendix for the definition of one-way functions)

Discussion on falsifiability of computational robustness. If the learner L is polynomial time, and

that the distribution Dn is samplable in polynomial time (e.g., by sampling y first and then using a generative

model to generate x for y), then the the computational robustness of learners as defined based on Definitions

3.3.3 and 3.3.1 is a “falsifiable” notion of security as defined by Naor [2003]. Namely, if an adversary claims

that it can break the computational robustness of the learner L, it can prove so in polynomial time by

participating in a challenge-response game and winning in this game with a noticeable (non-negligible)

probability more than R(n). This feature is due to the crucial property of the challenger in Definition 3.3.1

that is a polynomial time algorithm itself, and thus can be run efficiently. Not all security games have efficient

challengers (e.g., see Pandey et al. [2008]).

3.4 From Computational Hardness to Computational Robustness

In this section, we will first prove our main result that shows the existence of a learning problem with

classifiers that are only computationally robust. We first prove our result by starting from any hypothesis

that is vulnerable to adversarial examples; e.g., this could be any of the numerous algorithms shown to be
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susceptible to adversarial perturbations. Our constructions use error correction codes and cryptographic

signatures. For definitions of these notions refer to section 3.2.

3.4.1 Computational Robustness with Tamper Detection

Our first construction uses hypothesis with tamper detection (i.e, output ? capability). Our construction is

based on cryptographic signature schemes with short (polylogarithmic) signatures.

Construction 3.4.1. Let Q = ({0, 1}d ,Y, D,H) be a learning problem and h ∈ H a classifier for Q. We

construct a family of learning problems Pn (based on the fixed problem Q) with a family of classifiers hn.

In our construction we use signature scheme (KGen,Sign,Verify) for which the bit-length of vk is λ and the

bit-length of signature is `(λ) = polylog(λ) 4. We also use an error correction code (Encode,Decode) with

code rate cr = Ω(1) and error rate er = Ω(1).

1. The space of instances for Pn is Xn = {0, 1}n+d+`(n)
.

2. The set of labels is Yn = Y.

3. The distribution Dn is defined by the following process: first sample (x, y)← D, (sk, vk)← KGen(1n·cr),

σ ← Sign(sk, x), then encode [vk] = Encode(vk) and output ((x, σ, [vk]), y).

4. The classifier hn : Xn → Yn is defined as

hn(x, σ, [vk]) =


h(x) if Verify (Decode([vk]), x, σ) ,

? otherwise.

Theorem 3.4.2. For family Pn of Construction 3.4.1, the family of classifiers hn is computationally robust

with adversarial risk at most RiskQ(h) = α against adversaries with budget er · n. (Recall that er is the error

rate of the error correction code.) On the other hand hn is not robust against information theoretic adversaries

of budget b+ `(n), if h itself is not robust to b perturbations:

AdvRiskPn,b+`(n)(hn) ≥ AdvRiskQ,b(h).

Theorem 3.4.2 means that, the hn is computationally robust for adversarial budget as large as Ω(n) (if

we choose a code with constant error correction rate) while it has small information theoretic adversarial

robustness for budget value as small as b + polylog(n) ≤ polylog(n) (note that b is a constant here) if we

choose a signature scheme with short signatures of poly-logarithmic length.

4Such signatures exist assuming exponentially hard one-way functions [Rompel, 1990].
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Before proving Theorem 3.4.2 we state the following corollary about robust-hard learning problems.

Corollary 3.4.3. If the underlying problem Q in Construction 3.4.1 is robust-hard w.r.t sublinear budget

b(n), then for any polynomial learning algorithm L for Pn we have

AdvRiskPn,b+`(n)(L) ≥ 1− negl(n).

On the other hand, the family of classifiers hn for Pn is computationally robust with risk at most α against

adversaries with linear budget.

The above corollary follows from Theorem 3.4.2 and definition of robust-hard learning problems. The

significance of this corollary is that it provides an example of a learning problem that could not be learnt

robustly with any polynomial time algorithm. However, the same problem has a classifier that is robust

against computationally bounded adversaries. This construction uses a robust-hard learning problem that is

proven to exist based on cryptographic assumptions [Bubeck et al., 2018c, Degwekar and Vaikuntanathan,

2019]. Now we prove Theorem 3.4.2.

Proof. (of Theorem 3.4.2) We first prove the following claim about the risk of hn.

Claim 3.4.4. For problem Pn we have

RiskPn(hn) = RiskQ(h) = α.

Proof. The proof follows from the completeness of the signature scheme. We have,

RiskPn(hn) = Pr[((x, σ, [vk]) , y)← Dn; hn(x, σ, [vk]) 6= y]

= Pr[(x, y)← D; h(x) 6= y] = RiskQ(h).

Now we prove the computational robustness of hn.

Claim 3.4.5. For family Pn, and for any polynomial s(·) there is a negligible function negl such that for all

n ∈ N

AdvRiskPn,er·n,s(hn) ≤ α+ negl(n).

Proof. Let A{n∈N} be the family of circuits maximizing the adversarial risk for hn for all n ∈ N. We build a

sequence of circuits A1
{n∈N}, A2

{n∈N} such that A1
n and A2

n are of size at most s(n) + poly(n). A1
n just samples
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a random (x, y)← D and outputs (x, y). A2
n gets x, σ and vk, calls An to get (x′, σ′, vk′)← An((x, σ, [vk]), y)

and outputs (x′, σ′). Note that A2
n can provide all the oracles needed to run An if the sampler from D, h and

c are all computable by a circuit of polynomial size. Otherwise, we need to assume that our signature scheme

is secure with respect to those oracles and the proof will follow. We have,

AdvRiskPn,er·n,s(hn) = Pr[((x, σ, [vk]), y)← Dn; (x′, σ′, vk′)← A((x, σ, [vk]), y));

(x′, σ′, vk′) ∈ HDer·n(x, σ, [vk]) ∧ hn(x′, σ′, vk′) 6= ? ∧ hn(x′, σ′, vk′) 6= y].

Note that (x′, σ′, vk′) ∈ HDer·n(x, σ, [vk]) implies that Decode(vk′) = vk based on the error rate of the error

correcting code. Also hn(x′, σ′, vk′) 6= ? implies that σ′ is a valid signature for x′ under verification key vk.

Therefore, we have,

AdvRisker·n,s(hn)

≤ Pr[(sk, vk)← KGen(1n); (x, y)← A1(1n); σ ← Sign(sk, x); (x′, σ′)← A2(x, σ, vk);

Verify(vk, x′, σ′) ∧ hn(x′, σ′, [vk]) 6= y]

≤ Pr[(sk, vk)← KGen(1n); x← A1(1n); σ ← Sign(sk, x); (x′, σ′)← A2(x, σ, vk);

Verify(vk, x′, σ′) ∧ x′ 6= x] + RiskPn(hn).

Thus, by the unforgeability of the one-time signature scheme we have

AdvRiskPn,er·n,s(hn) ≤ RiskPn(hn) + negl(n),

which by Claim 3.4.4 implies

AdvRisker·n,s(hn) ≤ α+ negl(n).

Now we show that hn is not robust against computationally unbounded attacks.

Claim 3.4.6. For family Pn and any n, b ∈ N we have

AdvRiskPn,b+`(n)(hn) ≥ AdvRiskQ,b(h).

Proof. For any ((x, σ, [vk]), y) define A(x, σ, [vk]) = (x′, σ′, [vk]) where x′ is the closes point to x where h(x) 6= y

and σ′ is a valid signature such that Verify(vk, x∗, σ′) = 1. Based on the fact that the size of signature is `(n),
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we have HD(A(x, σ, [vk]), (x, σ, [vk])) ≤ `(n) + HD(x, x′). Also, it is clear that hn(A(x, σ, [vk])) 6= ? because σ′

is a valid signature. Also, hn(A(x, σ, [vk])) 6= cn(A(x, σ, [vk])). Therefore we have

AdvRiskPn,b+`(n)(hn)

= Pr[((x, σ, [vk]), y)← Dn;∃(x′, σ′) ∈ HDb+`(n)(x, σ), h(x′) 6= y ∧ h(x′) 6= ? ∧ Verify(vk, σ′, x′)]

≥ Pr[((x, σ, [vk]), y)← Dn;∃x′ ∈ HDb(x), h(x′) 6= y ∧ h(x′) 6= ?]

= AdvRiskQ,b(h).

This concludes the proof of Theorem 3.4.2.

3.4.2 Computational Robustness without Tamper Detection

The following theorem shows an alternative construction that is incomparable to Construction 3.4.1, as it

does not use any tamper detection. On the down side, the construction is not defined with respect to an

arbitrary (vulnerable) classifier of a natural problem.

Construction 3.4.7 (Computational robustness without tamper detection). Let D be a distribution over

{0, 1}cr·n × {0, 1} with a balanced “label” bit: Pr(x,y)←D[y = 0] = 1/2. We construct a family of learning

problems Pn with a family of classifiers hn. In our construction we use a signature scheme (KGen,Sign,Verify)

for which the bit-length of vk is λ and the bit-length of signature is `(λ) = polylog(λ) and an error correction

code (Encode,Decode) with code rate cr = Ω(1) and error rate er = Ω(1).

1. The space of instances for Pn is Xn = {0, 1}2n+n·`(n).

2. The set of labels is Yn = {0, 1}.

3. The distribution Dn is defined as follows: first sample (x, y)← D, then sample (sk, vk)← KGen(1n·cr)

and compute [vk] = Encode(vk). Then compute [x] = Encode(x). If y = 0 sample a random σ ←

{0, 1}`(n) that is not a valid signature of x w.r.t vk. Then output (([x], σn, [vk]), 0). Otherwise compute

σ ← Sign(sk, x) and output (([x], σn, [vk]), 1).

4. The classifier hn : Xn → Yn is defined as

hn(x′, σ1, . . . , σn, vk′) =


1 if ∃i ∈ [n]; Verify

(
Decode(vk′),Decode(x′), σi

)
,

0 otherwise.
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Theorem 3.4.8. For family Pn of Construction 3.4.7, the family of classifiers hn has risk 0 and is compu-

tationally robust with risk at most 0 against adversaries of budget er · n. On the other hand hn is not robust

against information theoretic adversaries of budget `(n):

AdvRiskPn,`(n)(hn) ≥ 1/2.

Note that reaching adversarial risk 1/2 makes the classifier’s decisions meaningless as a random coin toss

achieves this level of accuracy.

Proof. First it is clear that for problem Pn we have RiskPn(hn) = 0. Now we prove the computational

robustness of hn.

Claim 3.4.9. For family Pn, and for any polynomial s(·) there is a negligible function negl such that for all

n ∈ N

AdvRiskPn,er·n,s(hn) ≤ negl(n).

Proof. Similar to proof of Claim 3.4.5 we prove this based on the security of the signature scheme. Let A{n∈N}

be the family of circuits maximizing the adversarial risk for hn for all n ∈ N. We build a sequence of circuits

A1
{n∈N} and A2

{n∈N} such that A1
n and A2

n are of size at most s(n) + poly(n). A1
n just asks the signature for

0cr·n. A2
n gets vk and does the following: It first samples (x, y) ← D, computes encodings [x] = Encode(x)

and [vk] = Encode(vk) and if y = 0, it samples a random σ ← {0, 1}`(n) then calls An on input ([x], σn, [vk])

to get (x′, (σ1, . . . , σn), vk′)← An(([x], σn, [vk]), y). Then it checks all σi’s and if there is any of them that

Verify(vk, σi, x) = 1 it outputs (x, σi), otherwise it aborts and outputs ⊥. If y = 0 it aborts and outputs ⊥.

Note that A2
n can provide all the oracles needed to run An if the sampler from D, h and c are all computable

by a circuit of polynomial size. Otherwise, we need to assume that our signature scheme is secure with respect

to those oracles and the proof will follow. We have,

AdvRiskPn,er·n,s(hn)

= Pr[(([x], σn, [vk]), y)← Dn; (x′, (σ1, . . . , σn), vk′)← An(([x], σn, [vk]), y));

(x′, (σ1, . . . , σn), vk′) ∈ HDer·n([x], σn, [vk]) ∧ hn(x′, (σ1, . . . , σn), vk′) 6= y].

Because of the error rate of the error correcting code, (x′, (σ1, . . . , σn), vk′) ∈ HDer·n(x, σn, [vk]) implies that

Decode(vk′) = vk and Decode(x′) = x. Also hn(x′, (σ1, . . . , σn), vk′) 6= y implies that y = 0. This is because

if y = 1, the adversary has to make all the signatures invalid which is impossible with tampering budget

cr · n. Therefore y must be 1 and one of the signatures in (σ1, . . . , σn) must pass the verification because the
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prediction of hλ should be 1. Therefore we have

AdvRiskPn,er·n,s(hn) ≤ Pr[((x, σn, [vk]), y)← Dn; (x′, (σ1, . . . , σn), vk′)← A((x, σ, [vk]), y));

y = 0 ∧ ∃iVerify(vk, σi, x)]

≤ Pr[(sk, vk)← KGen(1n); 0cr·n ← A1(1n, vk); σ ← Sign(sk, 0cr·n);

(x, σi)← A2(vk); Verify(vk, x, σi)]

Thus, by the unforgeability of the one-time signature scheme we have

AdvRiskPn,er·n,s(hn) ≤ negl(n).

Now we show that hn is not robust against computationally unbounded attacks.

Claim 3.4.10. For family Pn and any n ∈ N we have

AdvRiskPn,`(n)(hn) = 0.5.

Proof. For any (([x], σn, [vk]), y) define A([x], σn, [vk]) as follows: If y = 1, A does nothing and outputs

([x], σn, [vk]). If y = 0, A search all possible signatures to find a signature σ′ such that Verify(vk, σ′, x) =

1. It then outputs ([x], (σ′, σn−1), [vk]). Based on the fact that the size of signature is `(n), we have

HD((x, (σ′, σn−1), [vk]), (x, σn, [vk])) ≤ `(n). Also, it is clear that hn(x, (σ′, σn−1), [vk]) = 1 because the first

signature is always a valid signature. Therefore we have

AdvRiskPn,`(n)(hn) ≥ Pr[(([x], σn, [vk]), y)← Dn;h(A(([x], σn, [vk]))) 6= y]

= Pr[(([x], σn, [vk]), y)← Dn; 1 6= y]

= 0.5.

This concludes the proof of Theorem 3.4.8.
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3.5 Average-Case Hardness of NP from Computational Robust-

ness

In this section, we show a converse result to those in Section 3.4, going from useful computational robustness to

deriving computational hardness. Namely, we show that if for there is a learning problem whose computational

risk is noticeably more than its information theoretic risk, then NP is hard even on average.

Definition 3.5.1 (Hard samplers for NP). For the following definition, A Boolean formula φ over some

Boolean variables x1, . . . , xk is satisfiable, if there is an assignment to x1, . . . , xk ∈ {0, 1}, for which φ evaluates

to 1 (i.e, TRUE). We use some standard canonical encoding of such Boolean formulas and fix it, and we refer

to |φ|, the size of φ, as the bit-length of this representation for formula φ. Let SAT be the language/set of

all satisfiable Boolean formulas. Suppose S(1n, r) is a polynomial time randomized algorithm that takes 1n

and randomness r, runs in time poly(n), and outputs Boolean formulas of size poly(n). We call S a hard

(instance) sampler for NP if,

1. For a negligible function negl it holds that Prφ←S [φ ∈ SAT] = 1− negl(n).

2. For every poly-size circuit A, there is a negligible function negl, such that

Pr
φ←S,t←A(φ)

[φ(t) = 1] = negl(n).

The following theorem is stated for computationally robust learning, but the same proof holds for

computationally robust hypotheses as well.

Theorem 3.5.2 (Hardness of NP from computational robustness). Let Pn = (Xn,Yn, Dn,Hn) be a learning

problem. Suppose there is a (uniform) learning algorithm L for Pn such that:

1. L is computationally robust with risk at most α under b(n)-perturbations.

2. AdvRiskPn,b(n)(L) ≥ β(n); i.e., information-theoretic adversarial risk of L is at least β(n).

3. β(n)− α ≥ ε for ε = 1/ poly(n).

4. Dn is efficiently samplable by algorithm S.

5. For any x, x′ ∈ Xn checking d(x, x′) ≤ b(n) is possible in polynomial time.

Then, there is a hard sampler for NP.
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Before proving Theorem 3.5.2, we recall a useful lemma. The same proof of amplification of (weak to

strong) one-way functions by Yao [1982] and described in [Goldreich, 2007], or the parallel repetition of

verifiable puzzles [Canetti et al., 2005, Holenstein and Schoenebeck, 2011] can be used to prove the following

lemma.

Lemma 3.5.3 (Amplification of verifiable puzzles). Suppose S is a distribution over Boolean formulas such

that for every poly-size adversary A, for sufficiently large n, it holds that solving the puzzles generated by S are

weakly hard. Namely, Prφ←S(1n,r1)[φ(t) = 1; t← A(φ)] ≤ ε for ε = 1/poly(n). Then, for any polynomial-size

adversary A, there is a negligible function negl, such that the probability that A can simultaneously solve all

of k = n/ε puzzles φ1, . . . , φk that are independently sampled from S is at most negl(n).

Proof. (of Theorem 3.5.2.) First consider the following sampler S1. (We will modify S1 later on).

1. Sample m examples S ← Dm
n .

2. Run L to get h← L(S).

3. Sample another (x, y)← Dn

4. Using the Cook-Levin reduction, get a Boolean formula φ = φh,x,y such that φ ∈ SAT, if (1) d(x′, x′) ≤

b(n) and (2) h(x′) 6= y. This is possible because using h, x, y, both conditions (1) and (2) are efficiently

checkable.

5. Output φ.

By the assumptions of Theorem 3.5.2, it holds that Prφ←S1 [φ ∈ SAT] ≥ β(n) while for any poly-size algorithm

A, it holds that Prφ←S1,t←A(φ)[φ(t) = 1] ≤ α. So, S1 almost gets the conditions of a hard sampler for NP,

but only with a weak sense.

Using standard techniques, we can amplify the ε-gap between α, β(n). The algorithm S2 works as follows.

(This algorithm assumes the functions α, β(n) are efficiently computable, or at least there is an efficiently

computable threshold τ ∈ [α+ 1/ poly(n), β(n)− 1/poly(n)].)

1. For k = n/ε2, and all i ∈ [k], get φi ← S1.

2. Using the Cook-Levin reduction get a Boolean formula φ = φφ1,...,φk such φ ∈ SAT, if there is a solution

to satisfy at least τ = (α+ β(n))/2 of the formulas φ1, . . . , φk. More formally, φ ∈ SAT, if there is a

vector t = (t1, . . . , tk) such that | {i : φi(ti) = 1} | ≥ τ . This is possible since verifying t is efficiently

possible.
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By the Chernoff-Hoeffding bound,

Pr
φ←S2

[φ ∈ SAT] ≥ 1− e−(ε/2)2·n/ε2 ≥ 1− e−n/4.

Proving the second property of the hard sampler S is less trivial, as it needs an efficient reduction. However,

we can apply a weak bound here and then use Lemma 3.5.3. We first claim that for any poly-size adversary A,

Pr
φ←S2,t←A(φ)

[φ(t) = 1] ≤ 1− ε/3. (3.1)

To prove Equation 3.1, suppose for sake of contradiction that there is such adversary A. We can use A and

solve φ′ ← S1 with probability more than α+ Ω(ε) which is a contradiction. Given φ′, The reduction is as

follows.

1. Choose i← [k] at random.

2. Sample k − 1 instances φ1, . . . , φi−1, φi+1, . . . , φk ← S1 independently at random.

3. Let φi = φ′.

4. Ask A to solve φφ1,...,φk , and if A’s answer gave a solution for φi = φ′, output this solution.

Since A cannot guess i, a simple argument shows that the above reduction succeeds with probability

α+ ε/2− ε/3 = α+ ε/6. Now that we have a puzzle generator S2 that has satisfiable puzzles with probability

1− negl(n) and efficient algorithms can solve its solutions by probability at most ε/2, using Lemma 3.5.3, we

can use another direct product and design sampler S that samples 2n/ε independent instances from S2 and

asks for solutions to all of them. Because we already established that Prφ←S2
[φ ∈ SAT] ≥ 1− negl(n), the

puzzles sampled by S are also satisfiable by probability 1− n · negl(n) = 1− negl(n), but efficient algorithms

can still find the solution only with probability that is negl(n).

3.6 Conclusion

The assumption of computationally-bounded adversaries has been the key to modern cryptography. In fact,

without this assumption modern cryptographic primitives would not be possible. this chapter investigates

whether this assumption helps in the context of robust learning and demonstrates that is indeed the case

(i.e., computational hardness can be leveraged in robust learning). We hope that this chapter is the first-step

in leveraging computational hardness in the context of robust learning.

Several intriguing questions remain, such as:
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� Our Construction 3.4.2 takes a natural learning problem, but then it modifies it. Can computational

robustness be achieved for natural problems, such as image classification?

� Theorem 3.5.2 shows that computational hardness is necessary for nontrivial computational robustness.

However, this does not still mean we can get cryptographic primitives back from such problems. Can

we obtain cryptographically useful primitives, such as one-way functions, from such computational

robustness?
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Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Xiaodong Song. The secret sharer:
Evaluating and testing unintended memorization in neural networks. In USENIX Security Symposium,
2018.

Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from untrusted data. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 47–60. ACM, 2017.

Melissa Chase, Esha Ghosh, and Saeed Mahloujifar. Poisoning attacks against privacy of collaborative
learning. Under Submission, 2020.

Lingjiao Chen, Hongyi Wang, Zachary Charles, and Dimitris Papailiopoulos. Draco: Byzantine-resilient
distributed training via redundant gradients. In International Conference on Machine Learning, pages
902–911, 2018.

Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial settings:
Byzantine gradient descent. Proceedings of the ACM on Measurement and Analysis of Computing Systems,
1(2):44, 2017.



Bibliography 224

Herman Chernoff. A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of
Observations. Annals of Mathematical Statistics, 23(4):493–507, 1952.

Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and probabilistic com-
munication complexity. pages 429–442.

Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and probabilistic com-
munication complexity. SIAM Journal on Computing, 17(2):230–261, 1988.

Gregory Cirincione and Dinesh Verma. Federated machine learning for multi-domain operations at the
tactical edge. In Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications,
volume 11006, page 1100606. International Society for Optics and Photonics, 2019.

Richard Cleve and Russell Impagliazzo. Martingales, collective coin flipping and discrete control processes.
In other words, 1:5, 1993.

Daniel Cullina, Arjun Nitin Bhagoji, and Prateek Mittal. Pac-learning in the presence of evasion adversaries.
arXiv preprint arXiv:1806.01471, 2018.

Akshay Degwekar and Vinod Vaikuntanathan. Computational limitations in robust classification and
win-win results. arXiv preprint arXiv:1902.01086, 2019.
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