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Abstract

The ability to solve signal estimation and classification problems has wide-ranging practical applications.

With the advent of advanced sensor technology, signal data generation has increased in various fields, creating

a need for effective and efficient solutions to the ever-growing signal processing problems. Prior literature

offers several approaches to solving estimation and classification problems. However, they often fail to

address the underlying nonlinearity of the system of interest, resulting in poor performance when solving

nonlinear problems. The proposed research explores the use of transport-based transforms to estimate signal

parameters and classify signal data. A transport-based generative model is adopted to define an estimation

or classification problem. The mathematical properties of transport transforms are then used to simplify the

problem in the transform domain, leading to an effective and efficient solution. The specific objectives of

the thesis include: (1) proposing a closed-form solution to certain nonlinear estimation problems using the

cumulative distribution transform (CDT), a transport-based signal transformation technique, (2) proposing

an end-to-end signal classifier using the signed cumulative distribution transform (SCDT), an extension of

the CDT, and (3) exploring a transport-based modeling approach to identify the governing partial differential

equation (PDE) of a dynamical system.
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Chapter 1

Introduction

1.1 Signal Estimation & Classification

Estimation and classification problems lie at the core of many signal processing applications. The former

is concerned with locating and tracking source signals in various fields, including radar [2], underwater

acoustics [3], seismology [4] [5], communication [6], and source localization [7] [8]. Such systems require

the estimation of multiple parameters. For instance, in radar systems, the estimated time delay and Doppler

stretch between transmitted and received signals help determine the location and speed of a target object, as

illustrated in Figure 1.1a. Similarly, in Figure 1.1b, the time difference of arrivals (TDOAs) of signals received

by four sensors is estimated to identify the location of an AE (acoustic emission) source. Likewise, signal

classification tasks are also widespread in various applications, such as human activity recognition (HAR)

[9], physiological signal assessment [10][11], communications [12], structural or machine health monitoring

systems [13] [14], and financial modeling [15], among others. Two examples of signal classification problems

are shown in Fig. 1.2. The first example involves distinguishing between normal and diseased heartbeats from

ECG signals, as depicted in Fig. 1.2a. The second example pertains to hand gesture recognition utilizing

accelerometer data, as shown in Fig. 1.2b.

There is a substantial body of literature in signal estimation and classification, but many existing methods

are inadequate for modeling nonlinear systems, leading to suboptimal outcomes. Common estimation ap-

proaches involve maximizing the likelihood function, which often results in non-convex optimization prob-

lems that are difficult and computationally expensive to solve. Maximizing cross-correlation [16], lp correla-

tion [17], maximizing the magnitude of difference between measured and template signals [18], entropy [19],

and mutual information-based methods [20][21] are among the previously proposed techniques. However,
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(a) Radar system

(b) Source localization

Figure 1.1: Examples of estimation problems in signal processing applications.

(a) Physiological signal assessment
(b) Human activity recognition

Figure 1.2: Examples of classification problems in signal processing applications.

all of these approaches assume that the only difference between the measured and template signals is time

delay and noise, disregarding the possibility of complex parameterized changes in real-world scenarios. For

instance, in radar-related estimation problems, the motion of the target object causes linear dispersion, also

known as Doppler stretch, in addition to time delay.

The joint estimation of time delay and Doppler stretch has been a topic of study in the literature, with

estimation techniques focusing on maximizing the ambiguity function between the measured and template

signals [22] [23] [24]. However, these methods typically result in non-convex optimization problems, making

it difficult to obtain global minima. A number of subspace-based methods [25] [26] [27] [28] have been

developed for the joint estimation of time delay and Doppler parameters. The majority of these methods

rely on a narrowband signal approximation, allowing for the modeling of the Doppler effect as a frequency
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shift, and subsequently enabling explicit estimation. Nonetheless, like ambiguity function maximization-

based techniques, subspace methods necessitate a computationally expensive search over a parameter space

to estimate the parameters.

Signal classification approaches can be broadly categorized into two categories: feature engineering-

based classifiers and end-to-end learning classifiers like convolutional neural networks (CNNs). Feature

engineering-based methods [29] [30] [31] typically involve the extraction of numerical features (such as time

domain features, frequency domain features, and wavelet features) from the raw signal data, followed by the

use of various multivariate regression-based classification techniques such as support vector machines, linear

discriminant analysis, random forests, and others. However, the majority of these methods require extensive

data preprocessing and crafting specially designed features.

Distance-based techniques [32] [33] are the traditional end-to-end signal classification methods that op-

erate directly on raw time series using similarity measures like Euclidean distance or dynamic time warping

(DTW) [34]. One very effective approach in this category is the combination of 1-nearest neighbor (1NN)

with DTW distance [35]. However, the computational complexity of this approach is high [36], which limits

its applicability to real-world scenarios. Recent studies have explored end-to-end signal classification meth-

ods based on deep neural networks, especially convolutional neural networks (CNN) [37]. For example,

Wang et al. [38] introduced three standard deep learning benchmark models for time series classification:

deep multilayer perceptrons (MLP), fully convolutional networks (FCN), and residual networks (ResNet).

Another popular deep learning approach is the multi-scale convolutional neural network (MCNN) [39], which

leverages CNNs for end-to-end classification of univariate time series. Karim et al. [40] proposed LSTM-

FCN, a combination of FCN with a Long Short Term Recurrent Neural Network (LSTM RNN) sub-module.

However, these approaches typically require a significant amount of training data, can be computationally

expensive, and are susceptible to out-of-distribution examples.

The main focus of this thesis is to propose novel and efficient methods to address the problems of sig-

nal estimation and classification. A generative model-based problem formulation is adopted for the systems

where the signals undergo some nonlinear deformations. Additionally, a transport-based signal transfor-

mation technique is introduced to linearize certain nonlinear deformations in the transform domain. A least-

squares solution is then proposed to solve nonlinear estimation and classification problems in the transformed

space. This mathematical model-based approach is further utilized to solve nonlinear system identification

problems in structural health monitoring applications.
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1.2 Structural Health Monitoring

Structural health monitoring (SHM) systems utilize distributed sensors installed at certain regions of a struc-

ture and employ diagnostic algorithms to analyze the acquired data. SHM typically consists of four functional

levels referred to as technology classification levels (TCLs) [41] [42]:

• Level I: detection of the occurrence of an event (damage/crack)

• Level II: estimation of the location of the event

• Level III: determination of the magnitude (severity) of the event

• Level IV: estimation of the remaining service life/strength of the structure

In each level, the technology employed requires analyzing time series data collected by the onboard sensors

in order to effectively accomplish the targeted actions. Figure 1.3 presents a schematic overview of a generic

active-sensing SHM system. A body of work aimed at the detection and identification of structural damage

Figure 1.3: Generic active sensing structural health monitoring (SHM) principles of operation [1].

can be found in the field of Structural Health Monitoring (SHM). Typically, this information is inferred

from the dynamic response of the structure to ambient or applied excitation [43]. This thesis aims to use the

dynamic response measured at a specific location of the structure over time to detect and identify nonlinearity

induced by damage.

Although the idea of inferring parametric system equations from time series data has been around for a

while [44], traditional linear identification methods such as eigensystem realization algorithm (ERA) [45] and
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dynamic mode decomposition (DMD) [46] [47] fail to account for the nonlinear behavior of a dynamical sys-

tem [48]. To address this limitation, various data-driven nonlinear system identification methods have been

proposed in the literature. For instance, NARMAX [49], neural networks [50] [51] [52] [53], equation-free

methods [54] [55], and Laplacian spectral analysis [56] are among the methods that have been used. Sparse

regression-based methods have also been employed to identify ordinary [57] [58] and partial [59][46][60]

differential equations. However, these methods often require significant amounts of data for training, in-

volve tuning a large number of parameters, and can be computationally expensive. This thesis proposes a

transport transform-based data-driven approach to solve the parametric system identification problem in a

computationally and data-efficient manner.

1.3 Dissertation Overview

The main focus of this thesis is to introduce innovative and efficient solutions for signal estimation and

classification problems in systems where signals can be represented as observations of templates subjected to

unknown deformations.

First, we present a new method for estimating signal model parameters using the Cumulative Distribution

Transform (CDT). The proposed approach minimizes the Wasserstein distance between measured and model

signals. We establish some useful properties of the CDT and demonstrate that the estimation problem, which

is nonlinear in the original signal domain, becomes a linear least squares problem in the transform domain.

Additionally, we discuss the estimator’s properties in the presence of noise and present a novel technique

for mitigating the noise’s impact on the estimates. To evaluate the proposed estimation approach, we apply

it to a source localization problem where we localize a crack on a metal plate using sensor measurements.

Comparing the results with traditional methods, we demonstrate that the proposed approach provides better

estimates of the source location.

Next, we introduce a new end-to-end generic signal classification method which utilizes the signed cumu-

lative distribution transform (SCDT), an extension of the CDT. The proposed approach involves defining the

classification problem using a transport generative model and exploiting mathematical properties of the SCDT

to simplify the problem in the transform domain. To determine the class of an unknown sample, we employ

a nearest local subspace (NLS) search algorithm in the SCDT domain. Experiments show that the proposed

method provides high accuracy classification results while being computationally cheap, data efficient, and

robust to out-of-distribution samples with respect to the existing end-to-end classification methods.

The next section of this thesis explores the feasibility of utilizing generative model-based solutions for

structural health monitoring (SHM) applications. Specifically, the focus is on addressing nonlinear system
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identification problems. The proposed approach lies somewhere between model-based system identification

techniques and data-driven pattern recognition approaches. We presume some basic knowledge of the struc-

tural system, namely that it follows an underlying partial differential equation (PDE) model and that damage

results in the presence of nonlinearity in the model. It is also presumed that the solution of this PDE model

measured at a particular sensor location conforms to a generative model; meaning, it is generated from a

template under some unknown deformations. Given the assumption that the sensor data adheres to the gen-

erative model, the SCDT nearest local subspace classifier is employed to identify the nonlinearity parameter

of a dynamical system. The potential of the proposed approach in the field of structural health monitoring is

demonstrated through comparisons with state-of-the-art deep neural networks and Fourier transform-based

approaches.

1.4 Dissertation Outline

The organization of the dissertation is as follows: Chapter 2 details a novel technique for parametric signal es-

timation using the cumulative distribution transform (CDT). This approach aims to minimize the Wasserstein

distance between measured and model signals by transforming the nonlinear estimation problem into a lin-

ear least-squares problem in the transform domain. Chapter 3 introduces an end-to-end signal classification

method using the signed cumulative distribution transform (SCDT). In this work, a nearest local subspace

classifier is employed in the SCDT domain to provide an effective solution for signal classification problems.

Chapter 4 proposes a transport transform-based mathematical modeling approach for structural health mon-

itoring applications. This chapter explores a novel technique for recovering the parameters of the governing

partial differential equation (PDE) of a dynamical system. Lastly, Chapter 5 provides a concise discussion

regarding the knowledge learned from this study, and it serves as the concluding chapter of the dissertation.
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Chapter 2

Parametric Signal Estimation Using the

Cumulative Distribution Transform

2.1 Introduction

Signal parameter estimation is at the heart of many signal processing applications that involve localisation and

tracking of a source signal, e.g. radar [2], underwater acoustics [3], source localization [7] [8], seismology

[4] [5], communication [6] etc. All these systems require estimation of the values of a group of parameters.

In radar systems, for example, the estimated time delay and Doppler stretch between transmitted and received

signals are used to determine the position and speed of a target object (Fig. 2.1a). Fig. 2.1b illustrates another

example where the location of an AE (acoustic emission) source is determined using the estimated time

difference of arrivals (TDOAs) of the signals received by four sensors. Typical estimation techniques involve

maximizing the likelihood function [2], which most often yield to non-convex optimization problems. In

this work, we propose to solve the parametric signal estimation problem by minimizing Wasserstein distance

between measured and model signals. To solve the ensuing transport problem, we rely on a novel technique

called the cumulative distribution transform (CDT) introduced in [61] for the purposes of simplifying the

estimation process.

2.1.1 Estimation as a transport problem

We propose to solve certain signal estimation problems borrowing concepts from optimal transport theory

[62]. Specifically, we are interested in the case where a strictly positive quantity s(t) is undergoing a param-
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(a)

(b)

Figure 2.1: Estimation in signal processing applications: (a) radar system, and (b) source localization.

eterized change of variables

sg(t) = g′p(t)s(gp(t)) (2.1)

where gp(t) is a one to one, differentiable function with parameters p (e.g. gp(t) =
∑K−1

k=0 pkt
k) and

g′p(t) = dgp/dt. This signal model is particularly pertinent in physical situations where s(t) represents a

conserved quantity, e.g., intensity, that evolves in time or space. To emphasize this point we note that Eqn.

(2.1) can be restated as:

∫ t

−∞
sg(u)du =

∫ gp(t)

−∞
s(u)du (2.2)

which underscores the conservation of s(t) under the action of gp(t). Here, u is the integration variable.

Indeed, Eqn. (2.1) is simply a Lagrangian restatement of the continuity equation from continuum mechanics

where the function gp(t) transforms the independent variable according to the problem physics (see e.g.,

[63, 64]).

Such models are common in wave optics, for example, where Eqn. (2.1) is seen to operate on the squared

magnitude of a wavefunction or an electric field (see e.g., Schrodinger equation [65] or paraxial wave equation
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[66, 67]). For example, if s(t) represents the time-varying optical intensity of a beam propagating through a

lossless medium, gp(t) captures the influence of the medium to yield the modified intensity sg(t) [64]. Similar

physics can be observed in phase modulated acoustic signals of finite duration (i.e., “pulses”) propagating

through linear elastic solids [68]. In short, the signal model used in this work is consistent with data collected

from a broad and important class of physical systems.

Note that measured signals may or may not conform to the approach outlined above since they may not

be strictly positive or conserve energy. These properties can be guaranteed, however, under an appropriate

normalization scheme. Denoting the measured signal zg(t), t ∈ Ωz , we can associate with this signal a

positive probability density function (PDF):

sg(t) = B(zg)(t) :=
z2g(t)∫

Ωz
z2g(t)dt

(2.3)

where B(.) is a normalization scheme that transforms raw signals into PDFs. Although this transformation is

non-invertible, it guarantees strict positivity and a constant signal energy in accordance with our signal model

(2.1). The impact of this normalization scheme on the estimation problem will be discussed in section (2.5).

Note that B(zg) is not one-to-one function of zg(t), and thus critical phase information may not be retrieved

[69]. This would impede us from performing correct estimation in case of estimating the shift of periodic

signals (e.g. a pure sign wave); however, in this work we are interested to estimate the parameters of signals

that are mostly transient. Therefore our approach does not require recovering zg(t).

The goal of this work is to illustrate how relationships (2.1) and (2.2) can be leveraged to produce esti-

mates of the parameters p of gp(t) that governs the modulation or modification of such signals. In particular,

we will show how this nonlinear, generally non-convex estimation problem in the time domain can be trans-

formed into a linear least-squares problem in the CDT domain.

2.1.2 Related works

Previously proposed methods include maximizing cross-correlation [16], lp correlation [17], maximizing the

magnitude of difference between measured and template signals [18], entropy [19] and mutual information

based methods [20][21]. All these approaches assume that the only difference between the measured and

template signals is the time delay, in addition to noise. In real applications, however, signals may undergo

complex parameterized changes. In radar related estimation problems, for example, motion of the target

object introduces linear dispersion (also called Doppler stretch) along with the time delay. In such cases the

above mentioned techniques may produce erroneous estimates.
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Several subspace based methods [25] [26] [27] [28] have been proposed to jointly estimate time delay

and Doppler parameters. Most of the subspace methods exploit narrowband approximation of the signals

so that the Doppler effect can be modeled as frequency shift, and hence, can be estimated explicitly. A

search over a parameter space is still required for time delay estimation, which is computationally expensive.

Colonnese et al. [70] proposed a generalized method of moments (GMM) for estimating shift/translation, i.e.

location parameters. Applying the GMM to parameters other than shift requires a transformation function

to convert it to a location parameter; for example, a transformation realizing exponential warping of the

independent axis can be applied to turn a scale parameter into a location one. Moreover, similar to subspace

methods the GMM based approach requires computationally expensive search to estimate the parameters.

Joint estimation of time delay and Doppler stretch has also been studied in the literature where the estimation

techniques involve maximizing the ambiguity function between the measured and the template signals [22]

[23] [24]. In most cases, ambiguity function-related techniques yield non-convex optimization problems for

which global minima may be difficult to produce. The proposed method described in this work involves

minimizing Wasserstein distance which yields to a convex problem.

The Wasserstein metric is a well developed concept in the optimal transport theory [71], which measures

the difference between two distributions by the optimal cost of rearranging one distribution into the other.

It has been proven to be a suitable tool to model and solve problems in the areas of signal processing and

machine learning [62]. Nichols et al. [8] proposed an estimator based on the Wasserstein distance for es-

timating the time delay, but they did not address the linear dispersion or other forms of transformation. In

[72], Engquist and Froese first used this metric in the seismic inversion problems. Then, the idea of using

the Wasserstein distance to identify a geophysical model from the observations was exploited in [4] and [73],

where the convexity property of the Wasserstein metric in the context of model identification was utilized. In

this work, we incorporate the CDT, a new transformation technique, along with the Wasserstein distance so

that the estimation problem becomes a linear least squares problem in the transform space.

In a prior work [61] the cumulative distribution transform (CDT) was introduced as a useful means of

modeling and subsequently classifying observed data. The CDT is a fundamentally nonlinear mapping of the

locations of the signal values with respect to a particular reference. Put another way, computations performed

in the CDT domain alter the independent variable of the signal(s) to produce a desired effect (e.g., matching

one signal to another). The advantages of the CDT include its invertibility, ease of computation, and its ability

to render certain classification problems linearly separable in transform space (see again, [61]).
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2.1.3 Outline and overview of contributions

The main contribution of this work is to describe a Wasserstein distance minimization-approach to parametric

signal estimation. The mathematical approach is aided by the CDT [61] to help develop a generic closed form

solution to the problem. The solution is general enough to encompass a variety of mass (signal) transport phe-

nomena. In the following sections, we briefly review the definitions of the Wasserstein distance and the CDT,

derive two important lemmas to formulate an expression for the estimator, discuss details of implementation,

and introduce a strategy for mitigating the influence of noise on the estimates. We will conclude with both

numerical and experimental examples comparing the CDT based estimator against some standard techniques.

In section 2.7, we present a source localization example where the location of a crack is determined on a metal

plate using the estimated TDOAs of the acoustic signals received by the sensors. Our analysis shows that in

most cases the accuracy is improved when using the proposed technique, but most importantly, in all cases

the computational cost is orders of magnitude lower than competing methods.

2.1.4 Note about notation

Throughout this chapter, we deal with real signals s, r, z etc. assuming these to be square integrable in their

respective 1D domains. That is, we assume that
∫
Ωs
|s(t)|2dt < ∞, where Ωs is the domain over which s is

defined. In addition, we at times make use of the common notation: ∥s∥2 =< s, s >=
∫
Ωs
|s(t)|2dt. Some

necessary symbols used throughout this chapter are described in Table 2.1.

Table 2.1: Description of symbols

Symbols Description
s Normalized, strictly positive signal
S Cumulative distribution function (CDF) of s
s0 Reference density function
ŝ Cumulative distribution transform (CDT) of s
sg Generated from s under the action of gp
gp One-to-one, continuous function with

parameter p
zg Measured signal (not normalized) in absence

of noise
r B(zg + η); normalized measured signal with

noise (η)
B Normalization scheme to transform raw

signals into PDFs
rf Generated from r under the action of fp
fp g−1

p

W (s1, s2) Wasserstein distance between density
functions s1 and s2
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2.2 Estimation as a Transport Problem

First, let gp(t) be a differentiable and strictly increasing mapping (i.e. g′p = dgp/dt > 0) between Ω = [0, 1]

and Ωz , where p refers to a parameter vector. It is easy to see that gp is one-to-one and hence invertible.

For example, polynomials gp(t) =
∑K−1

k=0 pkt
k of different degrees will be used in the estimation problem

described in this work. This polynomial is able to capture events such as time delay and dispersion in the

physics of wave propagation. Moreover, such polynomial model of the transformation gp(t) is commonly

used in many signal processing applications [74] [75] [76]. In applications where gp(t) is unknown, polyno-

mial approximations are often used to model the transformation [77].

The goal in our estimation problem is to then find the parameter vector p that generated some measured,

normalized data r(t) = B(zg(t) + η(t)) where η(t) is a noise process (see again section 2.5). Typical esti-

mation techniques try to solve this problem by finding the parameters of a model, e.g. sg(t) = g′p(t)s(gp(t))

that best matches the measured signal r(t) [78] [79]. Alternatively, this problem can also be stated as find-

ing the parameter vector p such that some measure of a ‘match’ between rf (t) = f ′
p(t)r(fp(t)) and s(t) is

maximized, where fp(t) = g−1
p (t). In this work, we adopt the alternative approach as it helps generating

closed form solution (discussed in section 2.4) for our estimation problem even when gp(t) is a higher order

polynomial. Here we propose to solve the signal estimation problem by finding the parameters of gp(t) such

that the Wasserstein distance [62] between rf (t) and s(t) is minimized:

W 2(rf , s) = inf
h

∫
Ωs

|h(u)− u|2s(u)du (2.4)

where W (., .) is the Wasserstein distance between two PDFs and

∫ h(t)

inf(Ωr)

f ′
p(u)r(fp(u))du =

∫ t

inf(Ωs)

s(u)du. (2.5)

Thus, we have implicitly defined a “match” as the minimum distance h(u) − u, for all possible h(·),

over which the original signal values s(t) must be moved in order to form rf (t). The quantity (2.4) features

prominently in the field of optimal mass transport where the minimizer is used to define the optimal transport

map h(u) for moving the “mass” s(u) over a distance h(u)− u [62].

We note that because we are looking at 1D signals s(t), there is only one h satisfying the equation above.

Moreover, by Lemma III.1 (see next section) we will never need to explicitly compute h, instead, its influence

is embedded in the respective CDTs of the relevant signals.

In what follows we demonstrate the benefits of defining the cost function in this manner for the parameter

estimation problem.
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2.3 The Cumulative Distribution Transform

In this section we show that using the cumulative distribution transform (CDT) [61] we can derive a solution

to the signal estimation problem expressed in equation (2.4) above. Let s0(y), y ∈ Ωs0 define a reference

signal pattern defined on the domain Ωs0 which is in general different from the signal domain Ωs. Without

loss of generality we use s0(y) = 1 and Ωs0 = [0, 1] in this work. The transform of s(t) is then defined to be

the function ŝ(y) that solves

∫ ŝ(y)

inf(Ωs)

s(u)du =

∫ y

inf(Ωs0
)

s0(u)du. (2.6)

Now define the cumulative distribution functions (CDFs) S(t) =
∫ t

−∞ s(u)du and S0(y) =
∫ y

−∞ s0(u)du.

Note that because s(t), s0(y) > 0 for t ∈ Ωs, y ∈ Ωs0 , it follows that S, S0 are one to one continuous maps.

Furthermore, if s, s0 are continuous, S, S0 will be differentiable [61]. Therefore, an alternative expression

for ŝ is

ŝ(y) = S−1(S0(y)). (2.7)

The CDT is therefore seen to inherit the domain of the reference signal. Moreover, given our particular

choice of reference, s0(y) = 1, S0(y) = y and ŝ(y) = S−1(y). That is to say, the CDT is the inverse of

the cumulative distribution function of s(t). This definition is similar to the Quantile Function [80] [81] in

statistics, although the similarity does not hold if non-uniform reference s0(y) is used to calculate the CDT.

The inverse formula can then be defined as

s(t) =
(
ŝ−1
)′
(t)s0(ŝ

−1(t)) (2.8)

where ŝ−1(t) = S(t). Fig. 2.2 illustrates the process of calculating the CDT for a normalized, strictly

positive quantity s(t) and uniform reference signal s0(y). Physically, the CDT is a coordinate transformation

acting on the independent variable (in this case time) in such a way as to preserve the total signal energy

while morphing the distribution s0(y) into the distribution s(t). Note that this definition is slightly different

from that used in [61] where the CDT was defined in terms of the coordinate deviation ŝ(y)−y. In summary,

the CDT and inverse CDT map continuous positive PDFs to diffeomorphism, and vice versa [61].

Given these definitions, we can now describe the proposed cost function (2.4) in the CDT domain. The

following lemma [8] helps link the Wasserstein distance between s and r, and ∥ŝ− r̂∥2ℓ2

Lemma 2.3.1. Let ŝ and r̂ be the CDTs of s and r, respectively. We then have that W 2(s, r) = ∥ŝ− r̂∥2L2
.
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Figure 2.2: Steps of calculating the CDT of a signal s(t), given the uniform reference signal s0(y).

Proof : Given, ŝ and r̂ are the CDTs of s and r, respectively. That is:

ŝ′(y)s(ŝ(y)) = r̂′(y)r(r̂(y)) = s0(y)

Let h′(t)s(h(t)) = r(t). Plugging t = r̂(y) into this equation, we have r(r̂(y)) = h′(r̂(y))s(h(r̂(y))) and

ŝ(y) = h(r̂(y)). Consequently

W 2
2 (s, r) =

∫
Ωr

(h(u)− u)2r(u)du

=

∫
Ωs0

(h(r̂(y))− r̂(y))2r̂′(y)r(r̂(y))dy

=

∫
Ωs0

(ŝ(y)− r̂(y))2s0(y)dy

= ∥ŝ− r̂∥2L2

The lemma above simply states that for 1D signals which are PDFs, the CDT naturally embeds the

Wasserstein distance. As in the computations all the signals are discrete, L2 (norm of functions on real line)

will be replaced by ℓ2 (norm of sequences) in what follows. Therefore, in discrete cases we have,

W 2(s, r) = ∥ŝ− r̂∥2ℓ2

In addition, we also have the following useful functional composition lemma.

Lemma 2.3.2. Let r̂ and r̂f be the CDTs of signals r and rf respectively, where rf = f ′
pr ◦ fp. The CDT of

rf is then given by r̂f = f−1
p ◦ r̂.

Proof : Consider again the reference signal s0(y) and the signal r(t). The relationship between these two

signals can be defined in terms of CDT as,

∫ r̂(y)

inf(Ωr)

r(u)du =

∫ y

inf(Ωs0
)

s0(u)du. (2.9)
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Similarly, can we relate rf (t) and s0(y) via

∫ r̂f (y)

inf(Ωrf
)

rf (u)du =

∫ y

inf(Ωs0 )

s0(u)du. (2.10)

We replace rf (t) with f ′
p(t)r(fp(t)) (where fp(t) = g−1

p (t)), in which case

∫ r̂f (y)

f−1
p (inf(Ωr))

f ′
p(u)r(fp(u))du =

∫ y

inf(Ωs0 )

s0(u)du. (2.11)

Applying the change of variables fp(u) = y and dy = f ′
p(u)du to the left hand side,

∫ fp(r̂f (y))

inf(Ωr)

r(y)dy =

∫ y

inf(Ωs0 )

s0(u)du. (2.12)

From Eqn. (2.9) and (2.12) it can be stated,

∫ fp(r̂f (y))

inf(Ωr)

r(y)dy =

∫ r̂(y)

inf(Ωr)

r(u)du. (2.13)

For this statement to be true, the upper bound of the left hand side must be equal to the upper bound of the

right hand side, i.e. fp(r̂f (y)) = r̂(y). Since fp(t) = g−1
p (t) and gp(t) are invertible, we can finally write

r̂f = f−1
p ◦ r̂ = gp ◦ r̂.

Simply stated, the CDT composition lemma says that changes along the independent variable (e.g., shifts

in time t− τ or dispersions ωt) become changes in the dependent variable in transform domain (refer to Fig.

2.3b). Fig. 2.3 illustrates the relationships between the signals and the transforms for a signal undergoing

parametric change. Each of the constituent CDTs transforms their respective signals into the reference signal

s0(y). Similarly, the mapping fp(t) transforms r(t) into rf (t).

2.3.1 Numerical Implementation of the CDT

Recall that the CDT is defined for continuous-time signals in contiguous, finite domain. Here we describe

the numerical method for approximating the CDT given discrete data. As the CDT ŝ(y) is the inverse of the

CDF of s(t) for a particular choice of reference signal (s0(y) = 1 for y ∈ [0, 1]), we need to compute the

cumulative function first.

15



(a)

(b)

Figure 2.3: Example case relating the different signals and transforms used in the CDT. Let s0 be the reference
signal, r be the measured signal, and rf be the manipulated signal. The transforms and their directions are
also given. Plots in (b) show that the transformation (linear dispersion in this case) along the independent
axis in signal space becomes a transformation along the dependent axis in CDT space.

Let s = [s1, s2, ..., sN ]T be a N-point discrete-time signal, where s[n] = sn,∀n = 1, 2, ..., N is the nth

sample of s. Then the numerical approximation of the cumulative function is given by,

S[n] =

n∑
i=1

s[n], n = 1, 2, ..., N (2.14)

The CDT is then calculated by taking the inverse of the CDF using interpolation.

2.4 Signal Estimation in CDT Domain

This section will demonstrate the use of CDT in estimating signal parameters. We will highlight the relevance

of the transform with respect to time delay, linear dispersion, and quadratic dispersion. For each case, we
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will leverage lemmas 2.3.1 and 2.3.2 above, so that the cost function in (2.4) becomes

W 2(rf , s) = ∥f−1
p ◦ r̂ − ŝ∥2ℓ2 = ∥gp ◦ r̂ − ŝ∥2ℓ2 . (2.15)

It is evident that when gp(t) is a monotonically increasing polynomial, the problem above is simply a linear

least squares problem. The advantage of signal estimation in the CDT domain is that only the function gp(t)

needs to be computed before proceeding to the estimation problem. We note the following specific examples

that can be derived from the above.

2.4.1 Time delay estimation

In the time delay estimation problem gp(t) = t− τ , hence the cost function (2.15) becomes,

W 2(rf , s) = ∥r̂ − τ − ŝ∥2ℓ2 .

The translation value τ that minimizes the equation above is then given by:

τ̃ =
1

|Ωs0 |

∫
Ωs0

[r̂(u)− ŝ(u)] du (2.16)

Note that, as already mentioned in [8] the problem above is convex on τ , hence a global minimizer is possible

and given in closed form. Furthermore, utilizing the fact that the center of mass of s can be estimated by

µs =
∫
Ωs

ts(t)dt =
∫
Ωs

1 − S(t)dt one can also show that 1
|Ωs0

|
∫
Ωs0

ŝ(u)du = µs and thus the solution of

the time delay problem is also given by

τ̃ = µr − µs.

2.4.2 Linear Dispersion Estimation

In the linear dispersion problem we have that gp(t) = ωt, and thus

W 2(rf , s) = ∥ωr̂ − ŝ∥2ℓ2 . (2.17)

This problem is convex on ω and possesses closed form solution. The minimizer for the equation above

(following linear least squares on ω) is

ω̃ =
< ŝ, r̂ >

∥r̂∥2ℓ2
(2.18)

where < ·, · > denotes the inner product.
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2.4.3 Time delay and Linear Dispersion estimation

In the joint estimation of time delay and linear dispersion we have that gp(t) = ωt− τ , thus gp ◦ r̂ = ωr̂− τ .

Hence, the cost function (2.15) becomes,

W 2(rf , s) = ∥ωr̂ − τ − ŝ∥2ℓ2 = ∥αr̂ + β − ŝ∥2ℓ2 (2.19)

where, α = ω, and β = −τ . Once again, this is a linear least squares problem, from which ω and τ can

readily be recovered. The closed form solution to this problem is given by,

[
α̃, β̃

]T
=
(
XTX

)−1
XT ŝ (2.20)

where X ≡
[
⃗̂r, 1⃗
]

is an N × 2 matrix.

2.4.4 Quadratic dispersion estimation

In the quadratic dispersion estimation problem we have gp(t) = κt2, so gp ◦ r̂ = κr̂2. Consequently

W 2(rf , s) = ∥κr̂2 − ŝ∥2ℓ2 . (2.21)

Again we have convexity with the solution being

κ̃ =
< ŝ, r̂2 >

∥r̂2∥2ℓ2
(2.22)

2.4.5 Quadratic dispersion with time delay

The quadratic dispersion with time delay can be expressed as gp(t) = κt2 − τ . Therefore the Wasserstein

distance is:

W 2(rf , s) = ∥κr̂2 − τ − ŝ∥2ℓ2 = ∥αr̂2 + β − ŝ∥2ℓ2 (2.23)

Similar to joint time delay and linear dispersion estimation described in 2.4.3, this problem is also convex

and possesses closed form solution which is given by

[
α̃, β̃

]T
=
(
XTX

)−1
XT ŝ (2.24)

where X ≡
[
⃗̂r2, 1⃗

]
, α = κ, and β = −τ .
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2.4.6 Higher order polynomial

For any general polynomial, i.e. gp(t) =
∑K−1

k=0 pkt
k, gp ◦ r̂ =

∑K−1
k=0 pkr̂

k. Thus, the cost function in

(2.15) becomes,

W 2(rf , s) = ∥
K−1∑
k=0

pkr̂
k − ŝ∥2ℓ2 (2.25)

which can be stated as a linear least squares problem,

˜⃗p = argmin
p⃗
∥Xp⃗− ⃗̂s∥2ℓ2 (2.26)

where p⃗ = [p0, p1, ..., pK−1]
T , X ≡

[
1⃗, ⃗̂r, ⃗̂r2, ..., ⃗̂rK−1

]
. The Hessian of (2.26) is 2XTX which is posi-

tive semi-definite. Therefore the estimation problem described in equation (2.26) is convex. Moreover, the

columns of matrix X are linearly independent, that means Hessian is positive definite and XTX is invertible.

Hence, (2.26) possesses closed form solution which is given by,

˜⃗p =
(
XTX

)−1
XT ŝ (2.27)

In this section, we have shown that the estimation problem, while non-linear in time domain, can be

transformed into a linear least squares problem with closed form solution using CDT. In the next section we

will address the influence of noise in the estimation process and a strategy to mitigate it.

2.5 Signal Estimation in Noise

In the previous sections, we defined the CDT, provided the relationship between the CDTs of signals related

by a transformation of the independent variable, and then demonstrated linearity of the Wasserstein cost

function with respect to the signal parameters that define several such transformations. These relationships

were derived without explicit consideration of the corrupting noise source and how it influences the associated

estimation problem.

In this section, we consider the impact of additive Gaussian noise on the CDT and on the subsequent

parameter estimation. Assume the received signal is corrupted by zero mean, i.i.d Gaussian noise values,

η(t) ∼ N (0, σ2) so that the measured data are zη(t) = zg(t) + η(t) and

r(t) = B(zη)(t) =
(zg(t) + η(t))

2

∥zg(t) + η(t)∥2ℓ2
. (2.28)
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The normalization therefore results in three terms, two of which involve the signal noise. This additional

signal “mass” alters the Wassserstein distance and biases the resulting signal parameter estimates. In what

follows we propose a simple solution for removing the influence of the additive noise directly in the signals’

CDFs.

2.5.1 Noise corrected CDF

Using Eqn. (2.28) as a starting point, in expectation the effects of additive, zero-mean Gaussian noise on the

CDF are modelled as (detailed in A.1)

E [R(t)] =
EzSg(t) + σ2(t− t1)

Ez + σ2(tN − t1)
, t1 ≤ t ≤ tN . (2.29)

Here, Sg(t) and R(t) are the CDFs associated with sg(t) = B(zg)(t) and r(t) = B(zη)(t) respectively and

the term Ez = ∥zg(t)∥2ℓ2 is the total energy of the noise free signal. An expression for the noise corrected

CDF in expectation is then obtained from Eqn. (2.29) as

S̃g(t) =
E[R(t)]{Ez + σ2(tN − t1)} − σ2(t− t1)

Ez
(2.30)

where Ez + σ2(tN − t1) is the expected energy of noisy signal (see A.1). Alternatively we can define the

signal-to-noise ratio SNR = Ez/σ2(tN − t1) in which case (2.30) becomes

S̃g(t) =
E[R(t)] [SNR+ 1]− t−t1

tN−t1

SNR
, t1 ≤ t ≤ tN (2.31)

In short, the influence of additive, i.i.d noise is seen as the addition of a constant slope to the CDF.

Moreover, under our chosen normalization scheme (2.3), this slope is the noise variance. Thus, a simple

strategy for denoising in the CDT domain is to first estimate σ2 using a “noise only” portion of the signal,

and then apply Eqn. (2.30). This method is effectively filtering the signal in the CDF domain.

To illustrate, consider a Gaussian pulse subject to the coordinate transformation gp(t) = ωt − τ with

ω = 2, τ = 2. The noise free input signal PDF is therefore s(t) = A2 exp(−t2/2b2w) which, after the

transformation, becomes sg(t) = A2ω exp(−(ωt− τ)2/2b2w). For this example the corresponding CDFs can

be determined analytically and are shown in Fig. 2.4 for A = bw = 1. The noisy signal was taken as zg(t) =

s
1/2
g (t) + η(t) where each η(t) ∼ N (0, σ2) with σ = 0.15. The associated CDF R(t) and noise corrected

version (S̃g(t)) are also shown. The SNR for this example was taken as SNR = Ez/(σ2(tN − t1)) = 4. The

noise corrected CDF (S̃g(t)) is seen to match almost exactly the true CDF (Sg(t)).
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Figure 2.4: CDFs associated with a Gaussian pulse before, S(t), and after, Sg(t), transformation by gp(t).
Also shown are the noisy, R(t), and noise corrected, S̃g(t), CDFs. The true and corrected CDFs match almost
exactly, even for this relatively high (SNR = 4) level of noise.

2.5.2 Distribution of the CDT

Even after the expected noise is removed via (2.30), there will remain residual fluctuations that will impact

our parameter estimates. The joint PDF of the values r̂(y) will dictate the degree to which the cost function

(2.15) can be expected to produce good estimates.

Following the derivation described in A.2, the distribution for the CDT values associated with each ob-

servation in the signal zη(tk), k = 1 · · ·N is shown to be approximated by the PDF

pR̂k
(r̂k) =

e
− (S(r̂k)−S(ŝk))2

2Σ2(ŝk)

√
2πΣ(ŝk)

∂S(r̂k)

∂r̂k
,

1 ≤ k ≤ N. (2.32)

where the variance

Σ2(tk) =
σ4 (2k + 4λk)

E2zη
(2.33)

is a function of the total noisy signal energy, Ezη =
∑

k z
2
η(tk), and the cumulative sum of the noise-free

signal, λk = σ−2
∑k

i=1 z
2(ti). Note that both mean and variance in (2.32) are evaluated at the fixed, noise-

free CDT values ŝk (as opposed to the independent variable r̂k). Both can be obtained by simply interpolating
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the functions S(tk), Σ(tk) → S(ŝk), Σ(ŝk). The resulting distribution is a peaked function that is largely

symmetric and centered on the noise-free CDT ŝ(y).

As an example, consider signals for which the CDF is well-approximated by the logistic model

S(t) =
1

1 + e−at+b
. (2.34)

This is the exact CDF for the logistic distribution, however has also been used to model other CDFs [82].

For appropriate choice of a, b this model almost exactly captures the behavior of the CDF for signals such as

those shown in Fig. 2.4. Using the general expression (2.32) with this logistic model, we can readily obtain

the distribution of CDT values.

We also examined the empirical distribution of the r̂(y) via Monte Carlo simulation. To this end we

simulated 1500 realizations of the Gaussian pulse of the previous example, using the parameter values ω =

2, τ = 9, A = 1, bw = 2. The associated normalized signals r(t) each consisted of N = 200 points sampled

at dt = 0.05s and where each additive noise value was taken independently fromN (0, σ2) with σ2 = 0.023.

The CDT r̂(y) was then estimated for each realization. The resulting empirical PDF of the CDT values is

shown in Fig. 2.5 along with the predicted distribution given by Eqn. (2.32) with a = 1.68, b = 7.54 and

plotted as a function of the dimensionless reference variable yk = k/N, k = 1 · · ·N .

(a) Theoretical distributions (given a logistic CDF) (b) Empirically obtained distributions

Figure 2.5: (a) Theoretical and (b) empirically obtained distributions for the CDT r̂(y) given a logistic CDF
(Eqn. (2.34)) consistent with the example of Fig. 2.4. The distributions appear peaked with a single maximum
and are well-approximated by a Gaussian function.

The analytical distribution captures precisely the behavior shown in empirically in Fig. 2.4, that is to say,

the distributions for CDT values near y = 0, 1 are skewed while those near the middle of the CDT curve are

approximately normally distributed. The difference between simulation and theory near y = 1 is due to the

fact that the inverse logistic (logit) transformation is only valid for 0 < R(t) < 1, however our derivation

22



(described in A.2) assumed constant noisy signal energy, leaving the possibility of values R(t) > 1 near the

end of the signal.

Nonetheless, the uncertainty in the estimate is indeed well-approximated by a Gaussian distribution as

evidenced by Fig. 2.5 and the functional form of (2.32). Moreover, for signals in additive, i.i.d. Gaussian

noise, the proposed cost function (2.4) yields a maximum likelihood estimate (MLE) of the parameters. As

such, the estimate is guaranteed to reach the Cramer-Rao lower bound (CRLB) asymptotically as N → ∞.

The CRLB places a lower bound on the covariance of the parameter estimates and is given by

C(pi, pj) = F(p⃗)−1 (2.35)

where F(p⃗) is the Fisher Information Matrix (FIM). For signals zg(t) in additive, i.i.d. Gaussian noise the

FIM is defined as [2]

F(p⃗) ≡ Fij

=
1

σ2∆t

(∫ tf

ts

∂zg(t)

∂pi
dt

)(∫ tf

ts

∂zg(t)

∂pj
dt

)
. (2.36)

Carrying out the integrals and subsequent inversion for the Gaussian pulse of the previous example then yields

the full covariance matrix (2.35). We are most interested in the diagonal elements C(pi, pi), i = 1 · · ·P as

these represent the variances of the associated parameter estimates. In what follows we compare our estimates

to the CRLB for several of the cases described in the prior section.

2.6 Impact of SNR on Quality of the Estimator

Here we explore the quality of the CDT-based estimation procedure through a series of numerical experi-

ments. Specifically, we compare the quality of the various estimators described in section (2.4) in terms of

mean square error (MSE) as a function of SNR.

The signal of interest is taken as the apodized sinusoid

z(t) = Ae−(t−tc)
2/(2b2w) sin(2πft) (2.37)

of width bw and frequency f . The SNR can be well-approximated by

SNR =
A2
√
πbw

2σ2T
(2.38)
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so long as the signal length T is large enough to include the entire non-zero portion of the pulse envelope. In

our examples we will take A = bw = f = 1 and set tc = 0. We are again assuming that the received signals

are corrupted by zero mean additive Gaussian noise, η(t) ∼ N (0, σ2).

2.6.1 Time Delay Estimation

From Eqn. (2.16) one can estimate the delay as the difference in the average values of the CDTs r̂, ŝ taken

over the domain Ωs0 = [0, 1]. Computationally, we have simply

τ̃ =
1

N

N∑
i=1

(r̂(ui)− ŝ(ui)) (2.39)

where the CDTs are defined on the discrete grid ui = i/N, i = 1 · · ·N . These estimates can then be

compared to those obtained via the more familiar cross-correlation estimator applied in the time domain

[8]. To this end we simulated 1000 realizations of the signal zn(t) for varying noise levels and a delay of

τ = 0.2575 s. The linear dispersion was fixed at ω = 1.

To evaluate the performance of the estimator we compute mean squared error (MSE) and compare the

results with cross-correlation (XC) based estimator. Although cross-correlation is known to be an MLE for

delay estimates in additive Gaussian noise [20], it is a discrete estimator. To implement a continuous delay

estimator, an optimization problem is designed that provides maximum likelihood estimates,

τ̃ = argmax
τ

N−1∑
i=0

zη(ti)z(ti − τ) (2.40)

To solve this optimization problem we exploit a gradient based nonlinear programming solver fmincon in

MATLAB [83]. As fmincon solves minimization problems, equation (2.40) is written as,

τ̃ = argmin
τ

−
N−1∑
i=0

zη(ti)z(ti − τ) (2.41)

As equation (2.41) is a non-convex problem, this gradient based solver may get stuck in local minima. To

resolve this issue, another MATLAB function GlobalSearch can be integrated, which repeatedly runs local

solver fmincon with random starting point to generate global optimal solution. Therefore, in our experiments

two approaches are adopted to solve this optimization problem: (i) using fmincon only, and (ii) using Glob-

alSearch and fmincon together. To compare with a subspace based method, the ESPRIT (estimation of signal

parameters via rotational invariance techniques) based time delay estimation technique has been implemented

following the approach described in [25]. The MSE for different delay estimators are plotted in Fig. 2.6. We
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Figure 2.6: MSE in the delay estimates as a function of SNR. For comparison, the estimates produced using
MLE, XC, ESPRIT, and the CRLB are also shown. In case of MLE, results for both local and global solvers
are plotted.

also plot the CRLB as baseline. The plot shows that the performance of the proposed CDT based estimator

is similar to the cross-correlation and ESPRIT estimators, although none of the techniques have reached the

CR bound. The MLE obtained via global optimum search reaches the bound, but the estimation using local

solver without GlobalSearch shows very poor performance.

2.6.2 Joint Estimation of Time Delay and Linear Dispersion

In this example we considered the joint estimation problem for both time delay τ = 0.2575s and linear

dispersion (time scale) ω = 0.75. Again, the estimation problem (2.19) possesses the closed form solution

given in section 2.4.3. The MSE of the joint delay and linear dispersion estimates for different estimators

are plotted in Fig. 2.7. For comparison, the cross-correlation and ESPRIT based estimators are used again

to estimate the delay parameter only. In this case, both XC and ESPRIT estimators perform poorly as these

techniques do not take linear dispersion into account. Another subspace based method, the MUSIC (multiple

signal classification) algorithm discussed in [25], has been implemented to estimate time delay when both

delay and dispersion are present. The time delay estimates from the ESPRIT estimator have been used in the

initialization stage of this algorithm. Although this method shows very good performance in significantly high

SNR (15 dB), the proposed technique outperforms it in highly noisy cases. Again, as this algorithm requires

narrowband approximation of the signal, it gives incorrect estimates of the linear dispersion parameter (ω)

for transient signals used in these experiments. Hence, only time delay (τ ) estimates are reported for MUSIC
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algorithm in Fig. 2.7. For joint time delay and linear dispersion estimation, the another commonly used

approach is to locate the peak of Wide-band Ambiguity Function (WBAF) of the received signal [22] [23]

[24]. The WBAF between the measured signal zη(t) and the known signal z(t) is given by [22],

Azη,z(τ, ω) =
√
ω

∫ ∞

−∞
zη(t)z

∗(ωt− τ)dt (2.42)

where (∗) denotes the complex conjugation which does not have any impact in our experiments as real valued

signals are used. Then the joint estimates of τ and ω are given by,

τ̃ , ω̃ = argmax
τ,ω

|Azη,z(τ, ω)|2

which can also be written as,

τ̃ , ω̃ = argmin
τ,ω

−|Azη,z(τ, ω)|2 (2.43)

Similar to time delay estimation discussed in 2.6.1, both the local and global solvers have been exploited to

estimate optimum τ and ω using equation (2.43). While global solver performs better than the local solver,

the proposed CDT based estimator yields better estimation of the delay parameter (τ ) than both solvers (Fig.

2.7). In case of linear dispersion (ω) estimation, it does not outperform the global solver, but the results are

still competitive. In both (τ and ω estimates) cases, CDT estimator outperforms local solver based estimator.

The concept of convexity can help understand the superior performance of the proposed technique over

the WBAF based estimator. Fig. 2.8 illustrates that in CDT based estimator we are dealing with a convex

problem while −|Azη,z(τ, ω)|2 is clearly non-convex with several local minima. Although GlobalSearch is

designed to handle this kind of problem, it is not always accurate to find the global minimal point. It should

also be noted that global solver is computationally very expensive as it runs several local solvers. The solution

provided by the CDT based estimator, on the other hand, is closed form, hence computational cost is very

low. Even running single local solver takes more time than the proposed estimator. The MUSIC algorithm

also requires an iterative search over parameter space. Moreover, it uses the result of ESPRIT algorithm for

initialization, which contributes to the computational cost. As a result, MUSIC based estimation is also a

computationally expensive technique relative to the proposed approach. Fig. 2.9 shows the average times

taken by CDT, MUSIC, and WBAF based estimators to jointly estimate the time delay (τ ) and the linear

dispersion (ω) parameters.
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Figure 2.7: MSE in the joint time delay (top) and linear dispersion (bottom) estimates obtained via linear
least squares in the CDT domain as compared to the CRLB, XC, ESPRIT, MUSIC, and WBAF (using both
local and global solvers). In case of XC, ESPRIT, and MUSIC algorithms, only delay estimates are reported.

2.6.3 Quadratic Dispersion & Delay

As a final illustration we consider the problem of jointly estimating both the quadratic dispersion coefficient

(κ) and time delay (τ ), i.e. gp(t) = κt2 − τ with κ = 0.5 and τ = 1.2575s. As discussed in section

2.6.3, the proposed estimation approach described by equation (2.23) possesses closed form solution which

is given by equation (2.24). Fig. 2.10 shows the MSE of the estimates of time delay and quadratic dispersion

coefficients jointly estimated using the proposed approach. The plots show that CDT based estimator could

not reach CR bounds. But the performance of time delay estimation using proposed estimator is better than

the cross-correlation based estimator, as cross-correlation does not correct the effect of quadratic dispersion.
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(a) (b)

Figure 2.8: Cost functions associated with (a) proposed CDT based estimator (green dot shows the global
minimum point), and (b) joint time delay and linear dispersion estimation using WBAF.
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Figure 2.9: Average elapsed time for CDT, MUSIC, and WBAF based estimators. Experiments were run
using MATLAB version: 9.4.0 (R2018a) on a computer with an Intel Xeon(R) CPU E5-2630 v3 processor
running at 2.40 GHz using 32 GB of RAM.

2.7 Application: Source Localization

As we have mentioned, the estimation approach we have described is appropriate for signals undergoing an

invertible transformation of the independent variable, i.e, z(t) → g′p(t)z(gp(t)). This is a reasonable model

in situations where the signal becomes distorted as it propagates through a medium.

One such situation is the propagation of acoustic signals in solids. Fig. 2.11 shows a metal plate with

crack emanating from the end of a horizontal “slot”. As the crack propagates it gives off acoustic emissions,

loosely defined as a spatially localized release of energy. The result is a short elastic wave “pulse”, similar

to those used in the preceding numerical examples. By measuring these pulses at different locations on the
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Figure 2.10: MSE associated with the joint estimates of time delay (top) and quadratic dispersion (bottom)
parameters

plate and estimating time difference of arrival one can in principle localize the source i.e., the crack tip. In

this experiment we used four fiber-optic strain sensors arranged in a diamond pattern, (see Fig. 2.11) [84].

Sample time series from an acoustic emission event are also shown in Fig 2.11.

The challenge is that such signals are difficult to detect and are affected by more than just a time delay

during propagation. For example, dispersion is known to influence such pulses during transit [85]. By

including dispersion in the model we hypothesize an improved ability to estimate the time delay. Moreover,

because this estimation problem reduces to linear least-squares in the CDT domain, the inclusion of this

additional term incurs no computational penalty (see again Fig. 2.9)
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Figure 2.11: (left) Slotted aluminum plate with a crack emanating from the right end of the slot. As the crack
propagates it gives off acoustic emission pulses which can be measured at different locations on the plate
(right). The time delay of arrival between recorded pulses can then provide the location of the crack tip.

Using the estimation procedure outlined herein, we estimated time delay of arrival among the four sensors.

Based on the obtained delays, we then used the source localization algorithm described in [86] to estimate the

location of the crack tip. Fig. 2.12 shows the results of these estimates for six different data sets. Specifically,

we show the cost function associated with the localization algorithm for a typical realization, along with

the estimated minimum which should denote the location of the acoustic emission (i.e., the crack tip). The

localization algorithm depends on delay estimates among the four sensors shown as black numbers. To obtain

the required delay estimates we used the delay-only estimator (section 2.6.1) as well as the joint delay and

linear dispersion estimator (section 2.6.2).

For each of the six data sets, the addition of linear dispersion in the signal model yielded a more well-

defined cost function and provided modest improvement in localizing the source of the emission. In fact,

one of the location estimates obtained using the “delay only” approach placed the crack tip at the edge of

the plate. The source localization results are compared to those obtained using the cross-correlation and the

WBAF based estimators. Fig. 2.12 shows that the proposed CDT based technique outperforms both the

estimators in estimating the location of the crack tip.
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Figure 2.12: Typical cost function for the source localization problem superimposed on the physical plate
dimensions. In this case the estimated source location provides the crack tip location (denoted ‘X’). Four
fiber-optic strain sensors record the data and the location estimate is based on the delay estimates among the
sensors as obtained via the cross-correlation (XC), WBAF and CDT. Shown are the locations that rely on the
delay-only estimators (left) and the delay + linear dispersion estimator (right).

2.8 Discussion

We considered a class of signal estimation problems for which a positive valued signal is altered by a trans-

formation of the independent variable. Such transformations are common in wave propagation, where the

energy of a signal or field is modified by the medium through which it travels, but is ultimately conserved.

We proposed using the Wasserstein distance between the modified received signal and the model signal

as a cost function for estimating the parameters that govern the transformation. The idea is to select those

parameters that minimize the amount of work it takes to transform the model signal into the received signal. It

was then shown that by using the cumulative distribution transform (CDT) the Wasserstein distance becomes

a linear, convex function of the desired parameters and possesses a closed form (least squares) solution.

A series of numerical experiments were then conducted to assess the quality of the estimator. The CDT

was found empirically to be approximately Gaussian distributed, hence the Wasserstein estimator is an ap-

proximate MLE for this class of problem. Indeed, the proposed estimator performs well in comparison to
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other approaches in terms of estimator MSE. Moreover, because the estimator is linear in CDT space, the

computational cost is orders of magnitude lower than competing methods.

The noise model used in the aforementioned experiments is assumed to be zero mean, i.i.d. Gaussian.

While not considered explicitly, we expect other noise models to yield similar results. The reason is that

the CDF is the summation of random variables, and with enough such variables the central limit theorem is

expected to be applicable. Thus, even under other additive noise models, our CDT distribution will likely

remain Gaussian (see Eqn. 2.32); this is a topic of ongoing work.

The numerical experiments also demonstrated the proposed noise reduction method, which works by

subtracting the i.i.d. noise cumulative distribution function (CDF) from the total noisy signal CDF prior to

effecting the transformation into the CDT domain.

Finally, the estimator was used to localize the source of acoustic emissions in a thin metal plate. It

was shown that including linear dispersion in the signal model offered modest improvement in the ability to

localize the source without incurring a computational penalty.

2.9 Conclusion

In this work, we proposed a parametric signal estimation approach by minimizing Wasserstein distance be-

tween measured and model signals. This approach, aided by the use of the cumulative distribution transform

[61], was shown to produce generic closed form solution to the estimation problem. Several numerical ex-

periments showed that the proposed approach not only performs well in comparison to existing methods but

also is significantly more computationally efficient compared to the competing methods. In short, by using

the CDT and the Wasserstein cost, one can easily and accurately estimate the parameters that govern the

modification of signal energy during propagation.
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Chapter 3

End-to-End Signal Classification in

Signed Cumulative Distribution

Transform Space

3.1 Introduction

Signal (time series) classification is considered a challenging problem in data science. It refers to the au-

tomatic prediction of the class label of an unknown time series event using the information extracted from

the corresponding signal intensities. Time series data classification tasks can be found in many applications

such as human activity recognition (HAR) [9], physiological signal assessment [10][11], communications

[12], structural or machine health monitoring systems [13] [14], financial modeling [15], and others. In many

applications (e.g., HAR, ECG, etc.) the time series events of interest can be modeled as instances of a certain

(often unknown) template or prototype pattern observed under unknown time warps [87]. Here we propose a

new end-to-end tool for classification of signals or time series events of this type using the signed cumulative

distribution transform (SCDT), a new mathematical signal transform introduced in [88].

Existing signal classification approaches can be categorized into two broad, and at times overlapping, cat-

egories: 1) feature engineering-based classifiers and 2) end-to-end learning classifiers, such as convolutional

neural networks (CNNs). Feature engineering-based methods [29] [30] [31] usually rely on the extraction

of numerical features (e.g., time domain features, frequency domain features, wavelet features) from the raw

signal data, and then the application of different multivariate regression-based classification methods includ-
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ing linear discriminant analysis, support vector machines, random forests, and others. Deep learning-based

signal classification methods [89] [90] [91], on the other hand, connect the raw input data to the output class

label by utilizing a large number of hidden layers. These methods have widely been studied recently as they

have shown high accuracy in certain classification tasks.

Feature engineering signal classification approaches primarily differ in the types of features chosen to

characterize each signal. The bag-of-features framework [92] extracts interval features using fixed- and

variable-length intervals, and trains a classifier on the extracted features. Ensemble-based approaches such

as COTE [93], HIVE-COTE [94], time series forest (TSF) [95], and others combine different features and

classifiers to achieve high classification accuracy. Most of these methods require crafting especially designed

features (feature engineering) as well as some amount of data preprocessing.

Traditional end-to-end signal classification techniques include distance-based methods [32] [33] that work

directly on raw time series with some similarity measures such as Euclidean distance or dynamic time warp-

ing (DTW) [34]. Particularly, a combination of 1-nearest neighbor (1NN) with DTW distance is known to

be a very effective time series classification approach [35]. However, it is known to have high computa-

tional complexity [36]. Approaches based on deep neural networks, especially convolutional neural networks

(CNN) [37], have been explored in recent years for end-to-end signal classification. Wang et al. [38], for

example, provided three standard deep learning benchmark models for time series classification: deep multi-

layer perceptrons (MLP), fully convolutional networks (FCN), and residual networks (ResNet). The method

known as multi-scale convolutional neural network (MCNN) [39] is another deep learning approach that

takes advantage of CNNs for end-to-end classification of univariate time series. Karim et al. [40] proposed

the LSTM-FCN, an improvement over FCN by augmenting the FCN module with a Long Short Term Recur-

rent Neural Network (LSTM RNN) sub-module. Though they can produce accurate results in many instances,

these methods tend to require extensive amounts of training data, are computationally expensive, and often

vulnerable to out-of-distribution examples. Furthermore, existing end-to-end classifiers often lack a proper

data model and a clear formulation of the classification problem, making the classification models difficult

to interpret. In particular, the lack of an underlying mathematical foundation often leads to uncertainty as to

which exact situations or applications they will work, and when they will fail.

In recent years, some effort has been made to exploit transport transforms for signal classification [62]

as an alternative to the techniques mentioned above. The cumulative distribution transform (CDT), based

on the 1D Wasserstein embedding, was introduced in [96] as a means of classifying strictly positive signals

following the linear optimal transport framework proposed in [97]. Aldroubi et al. [88] extended the CDT to

general signed signals and proposed the signed cumulative distribution transform (SCDT), which is related

to the generalized Wasserstein embedding [98] and can be viewed as an extension of the Wasserstein metric
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to signed densities and measures. Both transforms have a number of properties that allow one to solve

nonlinear classification problems using linear classifiers, such as Fisher discriminant analysis, support vector

machines, or logistic regression, in signal transform space. The classification method proposed in [87] utilizes

the nearest subspace method to classify signals in SCDT domain. Assuming the data corresponding to a

particular class as compositions of a single template, this method formed a linear subspace for each class.

The method we propose here is an extension of this approach.

In this work, we propose a new transport generative model to represent the signal data such that the signals

from each class can be seen as observations of a set of unknown templates under some unknown deformations.

We then formulate a supervised signal classification problem for the data that follows the transport genera-

tive model and employ a nearest local subspace search algorithm in SCDT domain to devise a solution. We

demonstrate the advantages of the method over state-of-the-art deep learning methods in terms of classifica-

tion accuracy on ten datasets with comprehensive experiments. The proposed method also provides superior

performance in classifying signals with significantly low computational cost with respect to a distance-based

end-to-end system (1NN-DTW). In addition, experiments highlight other interesting properties of the method

compared to alternative end-to-end solutions, including data efficiency and robustness to out-of-distribution

conditions. Note that the proposed classifier does not take the templates or the deformations present in a data

class as inputs since these are usually unknown in real applications. It utilizes the training samples to search

for the nearest local subspace in the SCDT space to classify an unknown signal. It should also be noted that

the term “transport generative model” used in this work links the signal classes to the physical processes that

generate the time series data from the corresponding classes. It differs from the “statistical generative model”

used in machine learning, which is usually referred to as learning the underlying data distribution.

The remaining of this chapter is organized as follows: in section 3.2, we briefly review the definitions

and properties of the CDT and the SCDT. In section 3.3, we state the classification problem and the proposed

solution. Experimental setup, datasets, and results are described in section 3.4, with the discussion of the

results in section 3.5. Finally, section 3.6 provides concluding remarks.

3.2 Preliminaries

3.2.1 Notation

Throughout this chapter, we work with L1 signals s, i.e.
∫
Ωs
|s(t)|dt < ∞, where Ωs ⊆ R is the domain

over which s is defined. We use s
(c)
j,m to represent a signal generated from the m-th template of class c under
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Table 3.1: Description of symbols

Symbols Description
s(t) Signal
s0(y) Reference signal to calculate the transform
ŝ(y) SCDT of signal s(t)
g(t) Strictly increasing and differentiable function
s ◦ g s(g(t)): composition of s(t) with g(t)
T Set of all possible increasing diffeomorphisms
S/Ŝ Set of signals/SCDT of the signals

deformation gj . We denote the m-th template from class c as φ
(c)
m . Some symbols used throughout this

chapter are listed in Table 3.1.

3.2.2 The Cumulative Distribution Transform

The Cumulative Distribution Transform (CDT) was introduced in [96] for positive smooth normalized func-

tions. It is an invertible nonlinear 1D signal transform from the space of smooth positive probability densities

to the space of diffeomorphisms, which can be described as follows: let s(t), t ∈ Ωs ⊆ R and s0(y), y ∈

Ωs0 ⊆ R define a given signal and a reference signal, respectively, such that
∫
Ωs

s(u)du =
∫
Ωs0

s0(u)du = 1

and s0(y), s(t) > 0 in their respective domains. The CDT of the signal s(t) is then defined to be the function

s∗(y) that solves,

∫ s∗(y)

inf(Ωs)

s(u)du =

∫ y

inf(Ωs0
)

s0(u)du. (3.1)

Now considering the cumulative distribution functions (CDFs) S(t) =
∫ t

−∞ s(u)du and S0(y) =
∫ y

−∞ s0(u)du,

an alternative expression for s∗(y) is given by,

s∗(y) = S−1(S0(y)). (3.2)

The CDT is therefore seen to inherit the domain of the reference signal. Moreover, if the uniform reference

signal is used (i.e., s0(y) = 1 in Ωs0 = [0, 1]), we can write S0(y) = y and s∗(y) = S−1(y). That is to

say, the CDT is the inverse of the cumulative distribution function of the given signal s(t). Note that the

definition of the CDT described above is slightly different from the formulation used in [96]. For simplicity,

here we use the CDT definition described in [99]. The CDT is invertible, and the inverse formula is defined

in differential form as:

s(t) =
(
s∗

−1

(t)
)′

s0(s
∗−1

(t)). (3.3)
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Although the CDT can be used in solving many classification [96] and estimation [99] problems, the frame-

work described above is defined only for positive density functions. Aldroubi et al. [88] extended the CDT

to general finite signed signals and named the new signal transformation technique as the signed cumulative

distribution transform (SCDT).

3.2.3 The Signed Cumulative Distribution Transform

The signed cumulative distribution transform (SCDT) [88] is an extension of the CDT, which is defined for

general finite signed signals with no requirements on the total mass. First, the transform is defined for the

non-negative signal s(t) with arbitrary mass as:

ŝ(y) =


(s∗(y), ∥s∥L1) , if s ̸= 0

(0, 0), if s = 0,

(3.4)

where ∥s∥L1 is the L1 norm of signal s and s∗ is the CDT (defined in eqn. (3.2)) of the normalized signal

s
∥s∥L1

with respect to a strictly positive reference signal s0.

Now for a signed signal, the Jordan decomposition [100] is used to define the transform. The Jordan

decomposition of a signed signal s(t) is given by s(t) = s+(t) − s−(t), where s+(t) and s−(t) are the

absolute values of the positive and negative parts of the signal s(t). The SCDT of s(t) is then defined as:

ŝ(y) =
(
ŝ+(y), ŝ−(y)

)
, (3.5)

where ŝ+(y) and ŝ−(y) are the transforms (defined in eqn. (3.4)) for the signals s+(t) and s−(t), respectively.

Fig. 3.1 shows an example of the SCDT of a signal. Like the CDT, the SCDT is also an invertible operation,

with the inverse being,

s(t) =∥s+∥L1

(
(s+)∗

−1

(t)
)′

s0((s
+)∗

−1

(t))

− ∥s−∥L1

(
(s−)∗

−1

(t)
)′

s0((s
−)∗

−1

(t)). (3.6)

Moreover, the SCDT has a number of properties that will help us simplify the signal classification problems.
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Figure 3.1: SCDT (without the constant terms) of an example signal.

Composition property

If the SCDT of a signed signal s is denoted as ŝ, the SCDT of the signal sg = g′s ◦ g is given by:

ŝg =
(
g−1 ◦ (s+)∗, ∥s+∥L1 , g

−1 ◦ (s−)∗, ∥s−∥L1

)
, (3.7)

where, g(t) is an invertible and differentiable increasing function, s◦g = s(g(t)), and g′(t) = dg(t)/dt [88].

For example, in case of shift and linear dispersion (i.e., g(t) = ωt − τ ) of a given signal s(t), the SCDT of

the signal sg(t) = ωs(ωt− µ) can be derived from composition property as:

ŝg =

(
(s+)∗ + µ

ω
, ∥s+∥L1 ,

(s−)∗ + µ

ω
, ∥s−∥L1

)
.

The composition property implies that variations along the independent variable caused by g(t) will change

only the dependent variable in the transform domain.

Convexity property

Let S = {sj |sj = g′jφ ◦ gj ,∀gj ∈ G} be a set of signals, where φ is a given signal and G ⊂ T denotes a set

of 1D temporal deformations of a specific kind (e.g., translation, dilation, etc.). The convexity property of the

SCDT [88] states that the set Ŝ = {ŝj : sj ∈ S} is convex for every φ if and only if G−1 = {g−1
j : gj ∈ G}

is convex.

The set S defined above can be interpreted as a transport generative model for a signal class while φ being

the template signal corresponding to that class.
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Numerical Implementation of the SCDT

The SCDT described above is defined for the continuous-time signals. In this section, we describe the nu-

merical method for approximating the SCDT given discrete signals. Let s = [s1, s2, ..., sN ]
T be a N-point

discrete-time signal, where sn = s[n],∀n = 1, 2, ..., N is the n-th sample of s. The positive and negative

parts of the signal after Jordan decomposition are given by s+ =
[
s+1 , ..., s

+
N

]T
and s− =

[
s−1 , ..., s

−
N

]T
,

respectively, where s+n = |sn|+sn
2 , s−n = |sn|−sn

2 , and |sn| is the absolute value of sn. Next, the CDT is

applied numerically to the normalized signals s+

∥s+∥ℓ1
and s−

∥s−∥ℓ1
, where ∥s+∥ℓ1 and ∥s−∥ℓ1 are the ℓ1-norms

of the positive and negative parts of the signal s, respectively. As the CDT (s±)∗(y) is the inverse of the

CDF of the signal s±(t) for a particular choice of reference signal (s0(y) = 1 for y ∈ [0, 1]), we need to

approximate the cumulative function first. The numerical approximation of the cumulative function is given

by,

S±[n] =

n∑
i=1

s±[n]

∥s±∥ℓ1
, n = 1, 2, ..., N,

where S+ and S− are the cumulation of the normalized signals s+

∥s+∥ℓ1
and s−

∥s−∥ℓ1
, respectively. The CDT is

then calculated by taking the generalized inverse of the CDF,

(s±)∗[m] = min
(
{t[n] : S±[n] > y[m]}

)
,

where t ∈ Ωs, y ∈ Ωs0 , and n,m = 1, 2, ..., N . Here, (s+)∗ and (s−)∗ are the CDTs of the normalized

discrete signals s+

∥s+∥ℓ1
and s−

∥s−∥ℓ1
, respectively. The SCDT of the discrete signal s is then given by,

ŝ =
(
(s+)∗, ∥s+∥ℓ1 , (s−)∗, ∥s−∥ℓ1

)
.

Note that the computational complexity of calculating the SCDT is O(N logN) for an N-point discrete-time

signal.

3.3 Proposed Method

In this section we describe a transport generative model-based problem formulation for time series event

classification, and then show how the composition and convexity properties of the SCDT help facilitate signal

classification.
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3.3.1 Transport generative model and problem statement

In [87], a transport generative model-based problem statement was proposed for signal classification problems

where each signal class can be modeled as instances of a certain template observed under some unknown

deformations, where the inverse of the deformation set can be modeled as a linear combination of increasing

functions. (e.g., translation, scaling, nonrigid deformations described by the combination of polynomials or

some other basis functions, etc.). Such models are common in data collected from a broad and important

class of physical systems, e.g., radar, sonar, wave optics, acoustic signals propagating through elastic solids,

etc. [99]. Signal classes of such type can be described with the following transport generative model:

Transport generative model (single template)

Let G(c) ⊂ T denote a set (usually infinite) of increasing 1D deformations of a specific kind, where T is a set

of all possible increasing diffeomorphisms from R to R. The 1D mass preserving transport generative model

for class c is then defined to be the set:

S(c) = {s(c)j |s
(c)
j = g′jφ

(c) ◦ gj , gj ∈ G(c), g′j > 0}, (3.8)

where g′j = dgj/dt, s
(c)
j is the j-th signal from class c, and φ(c) is the template pattern corresponding to

that class. However, in many applications it is difficult to find a signal class that can be represented using the

single template-based transport generative model defined above. In this work, we use a multiple template-

based transport generative model to represent such signal classes.

Transport generative model (multiple templates)

For a set of increasing 1D temporal deformations denoted as G(c)m ⊂ T , the 1D mass preserving transport

generative model for class c is defined to be the set:

S(c) =
Mc⋃
m=1

S
φ

(c)
m ,G(c)

m
,

S
φ

(c)
m ,G(c)

m
=
{
s
(c)
j,m|s

(c)
j,m = g′jφ

(c)
m ◦ gj , g′j > 0, gj ∈ G(c)m

}
,(

G(c)m

)−1

=

{
k∑

i=1

αif
(c)
i,m, αi ≥ 0

}
, (3.9)

where
{
f
(c)
1,m, f

(c)
2,m, ..., f

(c)
k,m

}
denotes a set of linearly independent and strictly increasing (within the do-

main of the signals) functions, and k is a positive integer. Here we assume that the signal classes are
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Figure 3.2: Transport generative model example for a signal class ‘c’. The set of all signals from class c is
denoted as S(c), which is modeled as the union of subsets S

φ
(c)
m ,G(c)

m
(for m = 1, 2) containing data generated

from a template φ
(c)
m under deformation G(c)m .

non-overlapping, i.e., S(c) ∩ S(p) = ∅ for c ̸= p. Eq. (3.9) states that the transport generative model for

class c is modeled as the union of Mc subsets, where each subset (S
φ

(c)
m ,G(c)

m
) corresponds to data generated

from a particular template (φ(c)
m ) under some time deformations (G(c)m ). Here, Mc is the total number of

templates used to represent class c, φ(c)
m is the m-th template signal from class c, and s

(c)
j,m is the j-th signal

generated from m-th template under deformation defined by gj . Fig. 3.2 illustrates a few examples of such

deformations. In eq. (3.9), by taking the finite sum, we hypothesize that the space where the inverse of the

deformation set G(c)m lies must be of finite dimension (k-dimensional). Therefore, the set it generates, though

infinite, is not a set of all possible diffeomorphisms, which would violate the assumption that the classes

are non-overlapping. We assume that with reasonable k (determined through a validation process), the set

of deformations G(c)m is flexible enough to model the deformations within a data cluster well. Moreover, the

introduction of multiple templates (φ(c)
m ) in the proposed transport generative model adds extra flexibility.

Note that the template φ
(c)
m is different from the reference s0 used to calculate the SCDT. Considering the

transport generative model, the classification problem can be defined as follows:
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Figure 3.3: Geometric interpretation of data following the proposed transport generative model defined in
equations (3.9) and (3.10). On the left panel, two classes (S(1)and S(2)) are depicted in signal space. The set
S(c) for class c is modeled as the union of two subsets: S

φ
(c)
1 ,G(c)

1
and S

φ
(c)
2 ,G(c)

2
, c = 1, 2, where both the

subsets are non-convex. The right panel shows the geometry of the signal classes in SCDT domain modeled
as the union of convex (for convex (G(c)1 )−1 and (G(c)2 )−1 as defined in (3.9)) subsets: Ŝ

φ
(c)
1 ,G(c)

1
and Ŝ

φ
(c)
2 ,G(c)

2

for c = 1, 2.

Classification problem: Let G(c)m ⊂ T be a set of temporal deformations and S(c) be defined as in eq.

(3.9), for classes c = 1, · · · , Nc. Given a set of training samples {s(c)1 , s
(c)
2 , ...} ⊂ S(c) for class c, determine

the class label of an unknown signal s.

3.3.2 Proposed solution

We propose a solution to the classification problem defined above using the SCDT in combination with the

nearest local subspace method. For a given test sample, the algorithm first searches for k closest training

samples (from a particular class) to the test signal in SCDT domain based on a distance definition specified

later. Next, a local subspace is spanned by these samples for each class. The unknown class label of the

test sample is then estimated based on the shortest distance from the SCDT of the test signal to these local

subspaces.

As stated in [87] and [101], the transport generative model described in eq. (3.9) generally yields non-

convex signal classes, causing the above classification problem to be difficult to solve. As specified above in

section 3.2.3 (see [88] for more details), under certain assumptions, the geometry of the signal class can be

simplified. Hence, the proposed solution begins with applying the SCDT defined in eq. (3.5) on the input
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signals. The transport generative model in the transform domain is then given by,

Ŝ(c) =
Mc⋃
m=1

Ŝ
φ

(c)
m ,G(c)

m
,

Ŝ
φ

(c)
m ,G(c)

m
=
{
ŝ
(c)
j,m|ŝ

(c)
j,m = g−1

j ◦ φ̂
(c)
m , gj ∈ G(c)m

}
,(

G(c)m

)−1

=

{
k∑

i=1

αif
(c)
i,m, αi ≥ 0

}
, (3.10)

where g−1
j ◦ φ̂(c)

m is the SCDT of the signal g′jφ
(c)
m ◦ gj . Here, the set

(
G(c)m

)−1

is convex by definition.

Therefore, using the convexity property highlighted earlier, it can be shown that Ŝ
φ

(c)
m ,G(c)

m
given in eq. (3.10)

forms a convex set. Moreover, since the SCDT is a one-to-one map, it follows that if S
φ

(c)
m ,G(c)

m
∩S

φ
(p)
w ,G(p)

w
=

∅ for c ̸= p, then Ŝ
φ

(c)
m ,G(c)

m
∩ Ŝ

φ
(p)
w ,G(p)

w
= ∅. Fig. 3.3 illustrates the geometry of signal classes that follow

the proposed transport generative model defined in equations (3.9) and (3.10) corresponding to signal and

SCDT domains, respectively.

To formulate the solution of the problem defined above, we adapt the subspace-based technique proposed

in [87] for the multiple template-based transport generative model. First, Let us define a subspace generated

by the convex set Ŝ
φ

(c)
m ,G(c)

m
as:

V̂(c)
m = span

(
Ŝ
φ

(c)
m ,G(c)

m

)
. (3.11)

Since Ŝ
φ

(c)
m ,G(c)

m
∩ Ŝ

φ
(p)
w ,G(p)

w
= ∅ (when c ̸= p) and

(
G(c)m

)−1

is convex by definition, it is reasonable to

assume that Ŝ(c) ∩ V̂(p)
w = ∅ for any w = 1, ...,Mp (see Appendix B.1). Now, if a test sample s is generated

according to the transport generative model defined in eq. (3.9), then there exist a certain class ‘c’ and a

certain template φ
(c)
m for which d2(ŝ,V̂(c)

m ) = 0. Here, ŝ is the SCDT of the test sample s, and d2(ŝ, V̂(c)
m )

is the Euclidean distance between ŝ and the nearest point in subspace V̂(c)
m . It also follows, d2(ŝ, V̂(p)

w ) > 0

when p ̸= c. Therefore, under the assumption that the test sample s is generated according to the transport

generative model for one of the (unknown) classes, the unknown class label can be uniquely predicted by

solving,

argmin
c

min
m

d2
(
ŝ, V̂(c)

m

)
, (3.12)

where V̂(c)
m is given by eq. (3.11). The proposed algorithm to solve the classification problem is outlined

below.
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3.3.3 Algorithm: nearest local subspace in SCDT domain

In the signal classification tasks considered below, as usually the case, the template φ
(c)
m and the deformation

set G(c)m are usually unknown. Therefore the subset Ŝ
φ

(c)
m ,G(c)

m
is also unknown; hence, we can not readily

estimate V̂(c)
m using eq. (3.11). Here we devise an algorithm to approximate V̂(c)

m using training samples

from class c. Let us assume that the test sample s is generated according to the transport generative model

S
φ

(c)
m ,G(c)

m
. From eq. (3.10), S

φ
(c)
m ,G(c)

m
can be defined in the SCDT domain as:

Ŝ
φ

(c)
m ,G(c)

m
=

{(
k∑

i=1

αif
(c)
i,m

)
◦ φ̂(c)

m , αi ≥ 0

}
,

where
{
f
(c)
1,m, f

(c)
2,m, ..., f

(c)
k,m

}
is a set of k linearly independent increasing functions. From this definition, it

is evident that V̂(c)
m (as defined in eq. (3.11)) is a k dimensional space. Therefore, if we were to estimate this

span, we would need at least k linearly independent elements from the set Ŝ
φ

(c)
m ,G(c)

m
to model it. Since we do

not have the knowledge of Ŝ
φ

(c)
m ,G(c)

m
, we employ a nearest local subspace (NLS) search algorithm in SCDT

domain to approximate V̂(c)
m . Let us denote the estimated local subspace for class c as ˜̂V(c)

m . The solution to

the problem defined in eq.(3.12) is then estimated by solving,

argmin
c

d2
(
ŝ,
˜̂V(c)

m

)
. (3.13)

Consider a set of training samples
{
s
(c)
1 , ..., s

(c)
j , ..., s

(c)
Lc

}
⊂ S(c) for class c, where Lc is the total number

of training samples given for class c and s
(c)
j is the j-th sample. The unknown class of a test sample s is

estimated in two steps:

Step 1: We search for the k closest training samples to ŝ from class c based on the distance between ŝ and

the span of each training sample. First, we sort the elements from the set {ŝ(c)1 , ..., ŝ
(c)
Lc
} into {ẑ(c)1 , ..., ẑ

(c)
Lc
}

such that

d2(ŝ, V̂(c)
z1 ) ≤ · · · ≤ d2(ŝ, V̂(c)

zl
) ≤ · · · , (3.14)

where V̂(c)
zl = span

(
{ẑ(c)l }

)
. Then we pick the first k elements from the sorted set to form {ẑ(c)1 , · · · , ẑ(c)k }

for k ≤ Lc, which gives the set of k closest training samples to ŝ from class c in the above sense (Fig.

3.4b-3.4c). We repeat this step for all other classes (Fig. 3.4d).
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Figure 3.4: Outline of proposed algorithm: (a) apply SCDT on the test signal s to obtain ŝ, (b) measure
distance between ŝ and subspace corresponding to each training sample from a particular class (class-1 in
this example), (c) find k closest training samples (k = 2 in this example) to ŝ from class-1, (d) repeat
previous steps for other classes (class-2 in this example), (e) build local subspace for each class using the k
samples found in previous steps and search for the nearest local subspace to predict the class of s.

Step 2: Compute ˜̂V(c)

m by:

˜̂V(c)

m = span
(
{ẑ(c)1 , · · · , ẑ(c)k }

)
, (3.15)

which approximates the nearest local subspace from class c with respect to ŝ. We then predict the unknown

class of the test sample s by solving eq. (3.13). Fig. 3.4e illustrates the second step. Note that similar local

subspace classification techniques can be found in the literature [102] [103]. Here, we employ the nearest

local subspace search technique in the SCDT domain to exploit the properties of the SCDT that simplify the

classification problem described above. Next, we show that the performance of the classifier can further be

improved by utilizing the composition property of the SCDT through analytical enrichment of the subspace

method.
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Subspace enrichment

The algorithm outlined above searches for the k closest training samples to a given test sample in SCDT

domain, and then forms a local subspace using these k samples. Inspired by [101, 104], here we adapt

the technique to mathematically enrich the ensuing subspace with certain prescribed deformations. Here we

enrich ˜̂V(c)

m in such a way that it will automatically include the samples undergoing certain time deformations.

The spanning sets corresponding to certain specific deformations are derived below:

• Translation: In case of translation, g(t) is given by t − µ, where µ ∈ R is the translation parameter.

Using the composition property of the SCDT, the transform of the translated signal sg(t) = s(t − µ)

is given by ŝg = ((s+)∗ + µ, ∥s+∥L1
, (s−)∗ + µ, ∥s−∥L1

). It implies that the translation applied to

the signal along the independent axis results in translation along the dependent axis in SCDT domain.

Hence, the spanning set for translation is defined as UT = {u(t)}, where u(t) = 1.

• Dilation: A time-dilated (scaled) version of a signal s(t) is defined as: sg(t) = αs(αt), α ∈ R+.

The transform of the signal sg(t) is given by: ŝg =
(

(s+)∗

α , ∥s+∥L1 ,
(s−)∗

α , ∥s−∥L1 ,
)

. An additional

spanning set is not required for dilation, as it is inherent in the modeling of the subspace.

• Time-warpings other than translation and dilation are also observed in certain classification problems.

To include those deformations in the SCDT domain, we approximate the increasing function g−1 ◦ ẑ(c)l

as:

g−1 ◦ ẑ(c)l =


N∑

n=−N

cnζn(ẑ
(c)
l ) for n ̸= 0

c0ẑ
(c)
l for n = 0

(3.16)

where, cn > 0,
∑N

n=−N cn = 1, and

ζn(ẑ
(c)
l ) =

[
ẑ
(c)
l −

sinnπẑ
(c)
l

|n|π

]
.

For the set {ẑ(c)1 , · · · , ẑ(c)k } from eq. (3.15), the spanning set is given by the set UH = {ζn(ẑ(c)1 ), ..., ζn(ẑ
(c)
k )},

for n = −N, ...,−1, 1, ..., N . These non-linear increasing deformations can be viewed as small pertur-

bations of the identity function and can be used as the approximation of some time-warpings present

in the data [105].
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In light of the discussion above, the subspace ˜̂V(c)

m in eq. (3.15) can be enriched as follows:

˜̂V(c)

m = span
(
{ẑ(c)1 , · · · , ẑ(c)k } ∪ UT ∪ UH

)
. (3.17)

In a nutshell, The subspace enrichment process consists of adding pre-determined dimensions to the span of

the training data. Each of these pre-determined dimensions is simply a vector that becomes another training

vector. The PCA algorithm is then employed to obtain an orthonormal basis spanning this set. The enrichment

vectors added tend to be few ( 2k + 1 per class on average, where k corresponds to the k nearest samples)

and thus the computation of the PCA step is not altered much. Note that the subspace V̂(c)
zl in (3.14) can

also be enriched in similar manner, i.e. V̂(c)
zl = span

(
{ẑ(c)l } ∪ UT ∪ UH

)
, where UH = {ζn(ẑ(c)l )}, for

n = −N, ...,−1, 1, ..., N .

Training phase

In the training phase of the algorithm, the subspace corresponding to each of training sample is calculated.

The first step is to compute SCDTs for all training samples from class c. Then, we take a training sample ŝ(c)l

and orthogonalize {ŝ(c)l }∪UT ∪{ζn(ŝ(c)l )} (where n = −N, ...,−1, 1, ..., N ) to obtain the basis vectors that

span the enriched subspace corresponding to that sample. Let B(c)
l =

[
b
(c)
l,1 , b

(c)
l,2 , ...

]
be a matrix that contains

the basis vectors in its column. We repeat these calculations for all the training samples to form B
(c)
l for

l = 1, 2, ..., Lc and c = 1, 2, ..., etc.

Testing phase

The testing algorithm begins with taking SCDT of the test sample s to obtain ŝ followed by the nearest local

subspace search in SCDT domain. In the first step of the algorithm, we estimate the distance of the subspace

corresponding to each of the training samples from ŝ by:

ϵl = ∥ŝ−B
(c)
l B

(c)T

l ŝ∥2, l = 1, 2, ..., Lc,

where ∥.∥ denotes L2 norm. As all the signals (and the corresponding SCDTs) are discrete, the L2 norm

(norm of functions on the real line) is replaced by the ℓ2 norm (norm of sequences) in the calculations. Note

that B(c)
l B

(c)T

l is the orthogonal projection matrix onto the space generated by the span of the columns of

B
(c)
l (computed in the training phase). We then find {ẑ(c)1 , · · · , ẑ(c)k }, a set of k closest training samples

to the test sample ŝ from class c, based on the distances ϵ1, ..., ϵLc
. In the next step, we orthogonalize

{ẑ(c)1 , · · · , ẑ(c)k }∪UT ∪UH to obtain the basis vectors {b(c)1 , b
(c)
2 , ...} spanning the local subspace from class
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c with respect to ŝ. Let B(c) =
[
b
(c)
1 , b

(c)
2 , ...

]
for c = 1, 2, ..., etc. The unknown class of s is then estimated

by:

argmin
c
∥ŝ−B(c)B(c)T ŝ∥2. (3.18)

The most computationally expensive step of the testing phase is the orthogonalization of the set {ẑ(c)1 , · · · , ẑ(c)k }∪

UT ∪ UH . If the set has m-elements (signals) of n-length (discrete samples), the complexity of the orthog-

onalization process is given by O(m2n) [106]. Therefore, the computational complexity of the proposed

classifier is given by O(cm2n), where c is the number of classes.

Note that the proposed algorithm requires two parameters k and N (see eq. (3.16)) to be tuned prior to

the testing phase. We use a validation set split from the training set to estimate the optimum values for these

parameters. We then follow the steps of the proposed algorithm outlined above with the validation set for

varying k and N . Parameter values corresponding to the best validation accuracy are chosen to be used in the

testing phase. This step is done during the training phase.

3.3.4 Proof-of-concept simulation

To demonstrate the efficacy of the proposed algorithm in solving the classification problem stated in section

3.3.1 we performed a simulated experiment. We took six prototype signals shown in Fig. 3.5 as the templates

(φ(c)
m ) corresponding to three different classes (c = 1, 2, 3), i.e., each class has two templates (m = 1, 2). We

then generated a synthetic dataset by applying specific time deformations on the prototype signals as follows:

s
(c)
j (t) = g′j(t)φ

(c)
m (gj(t)),

gj(t) = ωξ(t) + τ, g′j(t) > 0,

ξ′(t) =
∂

∂t
ξ(t) =

N∑
n=1

αn
1√

2πwn

e−
1
2 (

t−µn
wn

)
2

(3.19)

where αn > 0,
∑

n αn = 1 and the parameter values used to calculate gj(t) are randomly chosen from

fixed intervals. The dataset was equally split into training and testing sets. The proposed classification

method was then trained with a varying number of training samples per class randomly chosen from the

training set and evaluated on the testing set. Note that the samples were chosen in such a way that the training

set contains an equal number of samples generated from each template. Fig. 3.5 shows the test accuracy

plots with respect to the number of training samples per class. It demonstrates that the proposed method

achieves the perfect classification accuracy with few training samples (obtained 99.97% test accuracy with

only 16 training samples per class), while some alternative end-to-end systems (discussed in next section)
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Figure 3.5: A simulated experiment to demonstrate the efficacy of the proposed method in classifying signal
classes that follow the transport generative model defined in eq. (3.9).

fail to achieve such performance even with higher number of training data. That means, if the signal classes

follow the transport generative model defined in eq. (3.9), the proposed method solves the signal classification

problem stated in section 3.3.1.

3.4 Experiments and Results

3.4.1 Experimental setup

The goal is to evaluate the performance of the proposed generic end-to-end classifier with respect to selected

state-of-the-art end-to-end time series classification techniques. The classification performance of the differ-

ent methods were studied in terms of test accuracy, data efficiency, computational efficiency, and robustness

to the out-of-distribution samples. We conducted experiments on several time series data and compared the

results against several methods: Multilayer Perceptrons (MLP) [107], 1D Visual Geometry Group (VGG)

[107], 1D Residual Network (ResNet) [108] [107], Long Short Term Memory (LSTM) [109] [107], Long

Short Term Memory Fully Convolutional Network (LSTM-FCN) [40] [107], and 1-nearest neighbor DTW
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(1NN-DTW) [35]. For the neural network methods, we used the implementations outlined in [107] with data

augmentation. Jittering, scaling, and time-warping were used as the data augmentation methods to generate

augmented time series samples, which lead the training set used to train the neural networks to be six times

the original training set after data augmentation. During the training process, 10% of the training samples

were used as the validation set, and the test performance was reported based on the model that had the best

validation performance. In case of the 1NN-DTW method, the validation set was used to tune the parameter

corresponding to the warping window size. To show the efficacy of the proposed multiple template-based

transport generative model (defined in eq. (3.9)) over the single template-based model (eq. (3.8)), we also

compared the results against the SCDT-NS classifier [87] proposed earlier.

We followed the training and testing procedures outlined in the previous section for the proposed method.

The orthogonalization operations were performed using singular value decomposition (SVD). The left sin-

gular vectors obtained by the SVDs were used to construct the matrices B
(c)
l and B(c). Following [101],

the number of the basis vectors was chosen in such a way that the sum of variances explained by the se-

lected basis vectors captures at least 99% of the total variance explained by all the samples in the sorted set

{ẑ(c)1 , · · · , ẑ(c)k }. The SCDTs were computed with respect to a 1D uniform probability density function. Note

that the properties of the CDT/SCDT are independent of the choice of the reference signal s0. Therefore, in

principle, the performance of the proposed classifier will not change if a positive reference signal other than

the uniform density function is used to calculate the SCDT of the signals.

3.4.2 Datasets

To evaluate the comparative performance of the proposed method with respect to other end-to-end classifiers,

we selected multiple datasets with signal classes representing well-defined time series events. For example,

the accelerometer data plotted in Fig. 3.6(a) represent particular hand gestures. Similarly, signals shown in

Fig. 3.6(i) represent either normal or abnormal heartbeats. With a focus on this condition, we identified 10

different time series datasets, 8 of which were downloaded from the UCR time series classification archive

[110]. Some example signals from these datasets are shown in Fig. 3.6 (more examples have been provided

in Appendix B.2). Details about the datasets are given below:

• GesturePebbleZ2 [111]: Accelerometer data collected using Pebble smart watch from 4 different per-

sons performing 6 hand gestures. (classes: 6, train samples: 22 ∼ 25 per class, test samples: 25 ∼ 32

per class).
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• InsectEPGRegularTrain [112]: Contains electrical penetration graph (EPG) data which capture voltage

changes of the electrical circuit that connects insects and their food source. (classes: 2, train samples:

22 ∼ 30 per class, test samples: 89 ∼ 118 per class).

• PLAID: Plug Load Appliance Identification Dataset [113]. The data are intended for load identification

research using transient voltage/current measurements from 11 different appliance types. (classes: 11,

train samples: 13 ∼ 88 per class, test samples: 13 ∼ 87 per class).

• UWaveGestureLibraryAll [114]: A set of eight simple gestures generated from accelerometers using

Wii remote. (classes: 8, train samples: 100 ∼ 127 per class, test samples: 433 ∼ 460 per class).

• Wafer [115]: A collection of inline process control measurements recorded from various sensors during

the processing of silicon wafers. The two classes are normal and abnormal, with a significant class

imbalance. Hence, a subset of the original dataset is used to ensure the class balance. (classes: 2, train

samples: 97 ∼ 100 per class, test samples: 665 ∼ 700 per class).

• StarLightCurves [116]: Collection of time series signals representing the brightness of celestial objects

as a function of time. (classes: 3, train samples: 150 per class, test samples: 500 per class).

• TwoPatterns [117]: A simulated dataset (classes: 4, train samples: 237 ∼ 271 per class, test samples:

959 ∼ 1035 per class).

• ECG5000 [110]: A subset of BIDMC Congestive Heart Failure Database (CHFDB) downloaded from

PhysioNet. With a purpose of evaluating the methods trained with a large set, we interchanged the train

and test sets of the original dataset. (classes: 2, train samples: 1873 ∼ 2627 per class, test samples:

208 ∼ 292 per class).

• ECG (MLII) [118]: A subset of a publicly available dataset reported in [119]. The ECG signals were

collected from the PhysioNet MIT-BIH Arrhythmia database [120]. A method described in [121] was

used to segment the heartbeats from the ECG fragments. (classes: 3, train samples: 200 per class, test

samples: 200 per class).

• Connectionist Bench (Sonar, Mines vs. Rocks) [122] [123]: This dataset contains energy patterns (with

respect to frequency bands) of the signals obtained by bouncing sonar signals off a metal cylinder and

some rocks at various angles and under various conditions. (classes: 2, train samples: 49 ∼ 55 per

class, test samples: 48 ∼ 56).

In addition to the datasets listed above, we have used another dataset where time series events are not well-

defined as an example where the proposed method is not expected to work well. We have used the gearbox
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Figure 3.6: Some example signals from the datasets used to evaluate the proposed method.

fault diagnosis data [124], a collection of vibration signals recorded by using SpectraQuest’s Gearbox Fault

Diagnostics Simulator. The dataset was recorded in two different scenarios: 1) healthy and 2) broken tooth

conditions.

3.4.3 Test accuracy

Dataset MLP 1D-VGG 1D-ResNet LSTM LSTM-FCN SCDT-NS 1NN-DTW Proposed
GesturePebbleZ2 88.54 56.20 53.98 45.82 92.47 81.64 94.94 94.30
InsectEPGRegularTrain 80.39 87.63 49.66 60.58 50.63 73.43 82.61 90.82
PLAID 17.69 19.39 42.42 29.61 40.04 58.29 73.56 70.95
UWaveGestureLibraryAll 92.79 90.23 45.42 39.80 94.16 90.4 94.22 94.95
Wafer 96.77 95.32 90.53 51.62 94.02 92.75 98.16 95.60
StarLightCurves 84.05 89.41 68.98 77.23 81.31 77.4 83.80 84.2
TwoPatterns 56.09 99.67 51.40 41.54 79.6 95.15 99.90 99.92
ECG5000 98.40 99.04 98.68 99.16 98.76 93.4 99.20 97.6
ECG (MLII) 33.33 33.33 53.50 56.87 64.10 56.67 45.67 68.83
Sonar 75.38 78.65 52.31 53.85 73.65 61.54 76.92 78.85
Win 0 1 0 0 0 0 4 5
AVG arithmetic ranking 4.7 4.1 6.6 6.3 4.7 5.1 2.4 2.1
AVG geometric ranking 4.33 3.45 6.44 5.8 4.47 4.92 1.97 1.67
MPCE 0.073 0.061 0.112 0.127 0.073 0.071 0.049 0.038

Table 3.2: Test accuracy (%), rank-based statistics, and MPCE calculated for the classifiers across different
datasets.

To demonstrate the efficacy of the proposed method as a generic classifier, we applied it to the datasets

listed above and compared the test accuracies against the aforementioned end-to-end classification methods.

Table 3.2 shows the results and a comprehensive comparison with five neural network-based classifiers, 1NN-

DTW, and SCDT-NS. The results reported in the table show that for 5 out of 10 datasets, the proposed method

outperformed the existing state-of-the-art techniques and provided competitive test accuracy for the remaining
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five datasets. The average arithmetic and geometric rankings also demonstrate the efficacy of the proposed

method as a generic end-to-end technique to classify segmentable time series events.

Besides test accuracy and rank-based statistics, we also calculated mean per class error (MPCE) for each

method. This metric was proposed in [38] to evaluate the performance of a generic classifier on multiple

datasets. MPCE is defined as the arithmetic mean of the per class error (PCE) which is calculated for i-th

model on j-th dataset as: PCEi,j =
ei,j
cj

. Here ei,j is the error rate of i-th model on j-th dataset, and cj is the

total number of classes present in j-th dataset. MPCE for the corresponding model is given by,

MPCEi =
1

J

J∑
j=1

PCEi,j ,

where J is the total number of datasets used in the experiment. The MPCE values reported in Table 3.2

indicate that the proposed method generates the least expected error rate per class across all the datasets in

comparison to other classifiers.

3.4.4 Data efficiency

To show the data efficiency of the proposed method, we set up an experiment where we trained the models

with a varying number of training samples per class. For a training split of a particular size, its samples were

randomly drawn from the original training set, and the experiments for this particular size were repeated 10

times. Fig. 3.7 shows average accuracies with respect to the number of training samples per class for two

datasets: UWaveGestureLibraryAll and TwoPatterns. The standard deviation for each split is also shown

using the error bar. The plots illustrate that the proposed method achieves higher accuracy than the deep

learning methods with fewer training samples. Similar results can be seen in other datasets as well (see

Appendix B.3).

3.4.5 Computational efficiency

The proposed classification technique is not only effective in classifying time series events but also com-

putationally very efficient. Fig. 3.8 shows the computational complexity plots of the proposed method and

1NN-DTW as a function of number of training samples per class for TwoPatterns dataset. It demonstrates

that the proposed classifier requires less CPU operations in comparison to 1NN-DTW. Fig. 3.9 (upper panel)

plots the average time (in seconds) required during the training phase as a function of accuracy for each

method. It illustrates that all the alternative end-to-end solutions require greater number of computations to

train the models with respect to the proposed solution to achieve same level of accuracy. Despite the fact
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Figure 3.7: Accuracy as a function of number of training samples per class for different classification meth-
ods.
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Figure 3.8: Computational complexity plots of 1NN-DTW and the proposed method as a function of number
of training samples. Complexities of the proposed method and 1NN-DTW are given by O(cm2n) (discussed
in previous section) and O(pnw). Here p is the total number of training samples, n is the signal length, w is
the window length to calculate DTW.

that our method searches for k-closest training samples for a given test signal, it still provides competitive

performance as shown in Fig. 3.9 (lower panel) in terms of test time in comparison to deep learning-based

methods. The plots of the average time (in seconds) taken by the classification methods to test a signal from

TwoPatterns dataset show that the test time of the proposed method is close to the neural network-based

classifiers, while 1NN-DTW is highly expensive in terms of computation during testing phase. Note that the

SCDT is currently implemented with for loops in python, which is less than ideal in terms of execution time.

A compiled language (e.g. C, C++) would execute for loops much faster.

3.4.6 Robust to out-of-distribution samples

To demonstrate the robustness to out-of-distribution examples, we adopted a similar concept used in [87]. We

generated a synthetic dataset by applying time deformations defined in eq. (3.19) on three prototype signals:

a Gabor wave, an apodized sawtooth wave, and an apodized square wave (shown in the top row of Fig. 3.5).

Note that we used a single template per class to generate data for maintaining a simple experimental setup.

We varied the magnitude of the confounding factors (i.e., the parameters used to calculate gj(t)) to generate

different distributions for training and testing sets. The ‘in-distribution’ set used during the training process

consisted of signals with parameter values chosen randomly from smaller intervals with respect to the ‘out-

distribution’ (testing) set. Table 3.3 shows the list of the parameters of interest for the ‘out-of-distribution’

experiment. The intervals (from which the parameter values were chosen) corresponding to the training
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Figure 3.9: (Upper) Training time in seconds vs test accuracy for different classification methods. (Lower)
Average time taken by the classification methods to predict the class of a test signal. Experiments were run
using Python version 3.6.9 on a computer with an Intel(R) Xeon(R) CPU E5-2630 v4 processor running at
2.20GHz using 62 GB of RAM.
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Figure 3.10: Accuracy as a function of number of training samples per class under the out-of-distribution
setup.

and testing sets are also given in the table. Fig. 3.10 shows test accuracies with respect to the number of

training samples per class for the comparing methods. The plot shows that the proposed method significantly

outperforms other end-to-end solutions with very few training samples. Meaning, the proposed classification

technique provides the best classification result if the test signal belongs to the ‘out-distribution’ set in the

above sense but follows the transport generative model discussed in the previous section.

Parameter Train Test
N [2, 5] [2, 10]
µn N (0.5, 0.2) N (0.5, 0.3)
ω [0.9, 1.1] [0.75, 1.25]
τ [−0.05, 0.05] [−0.1, 0.1]

Table 3.3: Intervals used in the out-of-distribution setup.

To evaluate the performance of the proposed method on test signals that have undergone a different set of

deformations from the training data, we performed a modified simulated experiment. We generated synthetic

test signals by applying different types of time-warpings from the training set on the prototype signals shown

in Fig. 3.5. The training set was generated according to the following model:

s
(c)
j (t) = g′j(t)φ

(c)
m (gj(t)),

gj(t) = ωζ(t) + τ, g′j(t) > 0,

ζ(t) =

Nt∑
n=−Nt

βn

(
t− sin(πnt)

|n|π

)
, (3.20)
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Figure 3.11: Performance of the classification methods when there is mismatch of deformation between
training and testing sets.

where βn > 0,
∑

n βn = 1. The parameters to calculate gj(t) were randomly selected from fixed intervals.

However, to keep the deformations in the test set different from the training signals, we followed the model

described in eq. (3.19) to generate the test signals. The classification methods of interest were then trained

with a varying number of training samples per class randomly chosen from the training set and evaluated on

the test set. Fig. 3.11 shows the test accuracies as a function of training samples per class for the comparing

methods. The plots show that the proposed method provides perfect test accuracy with only 32 training

samples per class, while the other methods struggle to perform well under this experimental setup. The results

demonstrate that the proposed method is not sensitive to the mismatch of deformation between training and

testing sets as long as the deformations follow the definition in eq. (3.9).

3.4.7 A dataset that does not follow transport generative model

As described in 3.4.2, the proposed method performs well if the time series data is well segmented, i.e.

contains events with well-defined start and end points. There are examples of signal classification problems

where data do not follow these conditions. One such example is the gearbox fault diagnosis dataset [124],

where vibration signals are used to detect a faulty gearbox. Fig. 3.12(a) shows that the vibration signals

do not possess segmentable time series events. Hence, the proposed method is not suitable for classifying

raw gearbox vibration data, as shown in the table in Fig. 3.12. However, we can transform each time series

to frequency domain using the Fourier transform [125], where the support of the signals is relatively more

compact than in the original signal domain. As expected the proposed method performs better when applied

to the frequency domain signals shown in Fig. 3.12(b).

58



Method Time domain Frequency domain
MLP 55.67 90.45
1D-VGG 50.77 56.02
1D-ResNet 71.5 50.0
LSTM 57.32 72.35
LSTM-FCN 76.5 90.92
SCDT-NS 52.75 91.5
1NN-DTW 75.75 93.5
Proposed 57.25 89.5

Figure 3.12: Plots in (a) show few examples from the gearbox fault diagnosis dataset that do not follow the
transport generative model. Plots in (b) show the signals in frequency domain corresponding to the signals
shown in (a), which seem to fit the transport generative model; hence, the proposed method performs better
in classifying these signals. Table in lower panel shows the test accuracy (%) of the classifiers on both time
and frequency domain data.

3.5 Discussion

Classification test accuracies, rank-based statistics, and MPCE reported in Table 3.2 across 10 different time

series datasets suggest that the proposed method is a very good generic end-to-end signal classification model

for time series containing segmented events. Moreover, Fig. 3.7 shows that the proposed method can achieve

high accuracy with few training samples. The computational efficiency of the proposed classifier is also

demonstrated in figures 3.8 and 3.9 in terms of CPU operations, and average training and testing time with

respect to other end-to-end classifiers. It is also evident from Table 3.2 that the proposed method outperforms

the SCDT-NS classifier [87] which uses a single template-based transport generative model.

Another compelling property of the proposed method is the robustness to out-of-distribution samples

since it generalizes to samples outside the known distribution when the signal classes conform to the specific

transport generative model. Plots in Fig. 3.10 show that other methods fail to achieve good performance

under the out-of-distribution setup, whereas the proposed method achieves perfect test accuracy with very

few training samples (∼ 16 per class). The reason behind the robustness to the out-of-distribution setup
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is that the proposed method is capable of learning the underlying data model, more specifically, the types

of unknown deformations present in the signals. It can then successfully classify an unknown signal in the

presence of such deformations but with different magnitudes. Moreover, Fig. 3.11 demonstrates that the

proposed method is less sensitive to the mismatch of deformations between training and testing sets with

respect to other methods as long as the deformations follow the definition in eq. (3.9).

The main assumption of the proposed method is that the dataset needs to conform to the underlying

transport generative model proposed earlier. Specifically, we showed above that the method works best when

the time series (signal) being classified contains segmented events with finite duration. Fig. 3.12 shows an

example where raw signals (from a gearbox vibration experimental setup) do not possess well-defined time

series events of finite duration. Hence, the proposed method performs poorly in classifying those signals.

However, the same signals in frequency domain seem to fit the transport generative model better and the

proposed method performs better in classifying the gearbox data in frequency domain.

To summarize, this chapter presents a new idea of representing segmented signal data using a transport

generative model such that signals from a particular class can be considered as observations of a set of un-

known templates under some unknown deformations. Under this assumption, we formulated a classification

problem for segmented signal classes. Then we showed that if the data follow the proposed transport genera-

tive model, a simple solution can be devised by searching nearest local subspace in SCDT domain. Through

extensive experiments, we demonstrated that the proposed solution is effective in classifying unknown sig-

nals, computationally very cheap, data efficient, and robust to out-of-distribution samples.

3.6 Conclusion

This chapter introduced a new end-to-end signal classification method based on a recently developed signal

transform. First, we formulated the problem statement based on a multiple template-based transport genera-

tive model observed under unknown deformations. Then, we proposed an end-to-end solution to the problem

by employing a nearest local subspace search algorithm in SCDT domain. Although the problem statement

and solution are based on the assumption that signals are observations of templates under confounding de-

formations, knowledge of these templates or confound deformations is not required. The model was demon-

strated to achieve high test accuracy across multiple time series datasets. Several experiments show that the

proposed method not only outperforms the state-of-the-art deep learning based end-to-end methods but also

is data efficient and robust to out-of-distribution examples. Moreover, it provides competitive performance in

classifying segmented time series events with respect to 1NN-DTW with very cheap computational complex-

ity. We note that the approach assumes that the data being classified follows a certain transport generative
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model. Namely, each time series should contain an event with finite support, that is, with beginning and end

within the recorded time series. We showed that for signal classes that do not contain events of finite duration

the approach is less effective.
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Chapter 4

Nonlinear System Identification Using

the Signed Cumulative Distribution

Transform In Structural Health

Monitoring Applications

4.1 Introduction

Earlier chapters of this thesis presented techniques that utilize generative model-based approaches to solve

non-linear signal estimation and classification problems. Our findings indicate that when data adheres to a

specific generative model, some signal processing problems can effectively be solved with significantly high

computational and data efficiency. This chapter aims to explore the feasibility of applying generative model-

based solutions to structural health monitoring (SHM) applications. SHM involves the collection and analysis

of sensor data to assess the condition of a structure [126]. In several SHM applications, parametric identifi-

cation of a dynamical system is a critical aspect, wherein techniques for signal classification and estimation

are utilized to understand the system’s dynamics [48]. In this chapter, we utilize a generative model-based

approach to solve the problem of nonlinear system identification in the field of structural dynamics.

In numerous SHM applications, the dynamics of a system is mathematically represented as a Partial

Differential Equation (PDE). The task of identifying such a system involves retrieving the PDE coefficients.

Consider a model dynamical system (depicted in Fig. 4.1) describing a 1D wave propagation phenomenon
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Figure 4.1: A model dynamical system describing 1D wave propagation through an elastic medium.

through an elastic medium. Typically, the dynamics of such systems are expressed as partial differential

equations (PDEs) [60] in the following form:

u̇ = Ψ(u, ux, uxx, ..., x, t, ϕ, ξ), (4.1)

where u̇ = ∂u
∂t , ux and uxx are the first and second order derivatives of u with respect to x, respectively. Ψ

represents a partial differential equation-based model for the dynamical system that is parameterized with ξ.

ϕ(t) denotes the source signal that initiates the propagation and s(t) is the sensor measurement measured at

a specific location as a function of time (as depicted in Fig. 4.1). The main objective of system identification

problems is to estimate the system coefficients ξ of the governing PDE of the dynamical system using the

sensor measurements s. In this work, the focus is primarily on identifying the coefficients associated with

damage-induced nonlinearities.

The field of Structural Health Monitoring (SHM) comprises a body of work aimed at the detection, iden-

tification, and ultimately forecasting of structural damage. Typically it is presumed that this information is to

be inferred from the dynamic response of the structure to ambient or applied excitation [43]. While numerous

approaches to the problem exist, they can be loosely categorized in terms of the a priori information required

for their implementation.

On one hand, we can view the problem as one of “statistical pattern recognition” [127] where by certain

properties of the response signal (referred to in the literature as “features”) are used to classify the response

as coming from a particular damage state. Recent advances in machine learning have furthered research in

this general approach [128]. A key challenge with the associated data models lies in capturing the damage-

induced aspects of a structural response while ignoring those due to covariates (e.g., a change in the frequency

response due to damage vs. a change due to temperature variation) [129]. A system that is unable to distin-

guish among these sources will produce an unacceptably high number of “false positives”, mis-categorizing

other influences on the system response as being damage related.
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Another class of techniques views the problem as one of model-based system identification [43]. In this

setting, a model of the structure, including the damage, is formulated and various estimation methods are

used to identify the parameters related to structural damage. One of the main advantages of such an approach

is at least partial immunity to signal fluctuations un-related to damage. The model is explicitly separating

the physics of damage from these “other” sources which are collectively modeled as noise. The challenge

with this approach, of course, lies in the modeling. Predicting a structures response to a particular excitation

is quite challenging, as the exact forcing function is often unknown and even simple structures behave in

non-idealized fashion in practice (see e.g., [130] for an example).

These different viewpoints (data driven vs. model based) are not mutually exclusive, of course, and

represent endpoints on the continuum of a priori information we wish to bring to bear on the problem.

The pattern recognition approach presumes very little knowledge and seeks outliers of a data model, while

the model-based approach attempts to leverage structural mechanics to refine the search and subsequent

estimation of the damage. Both approaches must deal with the uncertainty inherent in measurements (e.g.

sensor noise) and other possible sources of “clutter” that can corrupt the structures response.

The method proposed in this work lies somewhere in between these aforementioned extremes. We pre-

sume some basic knowledge of the structure, namely that it supports traveling wave solutions and that damage

results in the presence of nonlinearity in the underlying model. This latter assumption has been widely ap-

plied and forms the basis for a number of techniques that focus on damage-induced nonlinearities [131, 132].

However, we do not presume to know or be able to measure the excitation signal. The underlying assumption

is that the sensor data collected at a particular location can be considered as an instance of a template pat-

tern under some time-warpings. This assumption is suitable for analyzing solutions to various classical PDE

systems, such as wave equation and convection-diffusion equation at a given location. Given the premise,

the proposed approach employs the SCDT nearest local subspace classifier (SCDT-NLS) [133] to detect the

presence and severity of the nonlinearity induced by structural damage. Fig. 4.2 demonstrates the outline

of the proposed system identification approach. Note that the proposed method does not necessitate prior

knowledge of the pattern template or time warpings. Instead, it utilizes the sensor measurements with known

system coefficients as training samples to recover the system parameters for an unknown test sample.

The remainder of this chapter is structured as follows: Section 4.2 provides a brief overview of the

definitions and explanations of CDT, SCDT, and SCDT-NLS. In Section 4.3, we present the generative model-

based identification problem and propose a solution. Section 4.4 presents the analytical derivation of the

proposed generative model for some classical PDEs, while extensive experimentation is carried out in Section

4.5 to evaluate the proposed solution. Section 4.6 summarizes the knowledge learned from the experiments,

and finally, Section 4.7 concludes this chapter.
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Figure 4.2: Outline of the proposed system identification approach.

Table 4.1: Description of symbols

Symbols Description
ϕ(t) Source signal that excites the propagation medium
s(t) Sensor measurement as a function of time
s0(y) Reference signal to calculate the transform
ŝ(y) SCDT of signal s(t)
φ(t) Template pattern corresponding to a class of signals
g(t) Strictly increasing and differentiable function
s ◦ g s(g(t)): composition of s(t) with g(t)
T Set of all possible increasing diffeomorphisms
S/Ŝ Set of signals/SCDT of the signals

4.2 Preliminaries

4.2.1 Notation

In the following sub-sections, we introduce CDT, SCDT and SCDT-NLS for signals s ∈ L1(Ωs) on the signal

domain Ωs ⊆ R. We denote s
(c)
j as a signal generated by a warping map gj acting on template φ(c) of class

c. Some other notations used throughout this chapter are listed in Table 4.1.

4.2.2 The Cumulative Distribution Transform

CDT [134] of positive smooth normalized functions is an invertible nonlinear 1D signal transform from the

space of smooth positive probability densities to the space of diffeomorphisms. Given, a signal s(t), t ∈ Ωs

and a reference signal s0(y), y ∈ Ωs0 ⊆ R such that
∫
Ωs

s(u)du =
∫
Ωs0

s0(u)du = 1 and s0(y), s(t) > 0 in
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their respective domains. The CDT of the signal s(t) is the function s∗(y) computed as:

∫ s∗(y)

inf(Ωs)

s(u)du =

∫ y

inf(Ωs0 )

s0(u)du , (4.2)

whose inverse is defined in differential form as:

s(t) =
(
s∗

−1

(t)
)′

s0(s
∗−1

(t)). (4.3)

Note, the CDT s∗(y) is alternatively defined as:

s∗(y) = S−1(S0(y)) , (4.4)

where S(t) =
∫ t

−∞ s(u)du and S0(y) =
∫ y

−∞ s0(u)du. If the reference signal is uniform, i.e. s0(y) = 1 in

Ωs0 = [0, 1], we have S0(y) = y and s∗(y) = S−1(y). It means the CDT is the inverse of the cumulative

distribution function of the given signal s(t).

Although the CDT can widely be used in classification [134] and estimation [135] problems, the CDT

framework is defined only for positive density functions. Aldroubi et al. [88] proposed the signed cumulative

distribution transform (SCDT) as an extension of the CDT to general finite signed signals.

4.2.3 The Signed Cumulative Distribution Transform

SCDT [88] is an extension of the CDT for general finite signed signals without requirements on the total

mass. Given a signal s(t), Jordan decomposition of a signed signal s(t) is given by s(t) = s+(t) − s−(t),

where s+(t) and s−(t) are the absolute values of the positive and negative parts of the signal s(t). The SCDT

of s(t) with respect to s0(y) is then defined as:

s(t)
SCDT(s0)←→ ŝ(y) =

(
ŝ+(y), ŝ−(y)

)
, (4.5)

where ŝ+(y) and ŝ−(y) are the transforms for the signals s+(t) and s−(t) as:

ŝ±(y) =


(
(s±)

∗
(y), ∥s±∥L1

)
, if s ̸= 0

(0, 0), if s = 0,

(4.6)

with L1 norm ∥ · ∥L1 and (s±)
∗ as the CDT of the normalized signal s±

∥s±∥L1
with respect to a strictly positive

reference signal s0. Fig. 4.3 demonstrates the SCDT calculation of an example signal. The inverse SCDT is
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Figure 4.3: SCDT (without the constant terms) of an example signal.

defined as:

s(t) =∥s+∥L1

(
(s+)∗

−1

(t)
)′

s0((s
+)∗

−1

(t))− ∥s−∥L1

(
(s−)∗

−1

(t)
)′

s0((s
−)∗

−1

(t)). (4.7)

The SCDT has a number of properties that are useful for the signal classification problems.

Composition property

Composition property states that the SCDT of the signal sg = g′s ◦ g, is defined as:

ŝg =
(
g−1 ◦ (s+)∗, ∥s+∥L1

, g−1 ◦ (s−)∗, ∥s−∥L1

)
, (4.8)

where g(t) is an invertible smooth warping map, s ◦ g = s(g(t)) and g′(t) = dg(t)/dt [88]. For example, a

shift and linear dispersion (i.e., g(t) = ωt− τ ) of a given signal s(t) is sg(t) = ωs(ωt− µ) having SCDT:

ŝg =

(
(s+)∗ + µ

ω
, ∥s+∥L1

,
(s−)∗ + µ

ω
, ∥s−∥L1

)
.

The composition property implies that variations along the independent variable caused by g(t) will change

only the dependent variable in the transform domain.

Convexity property

Given a signal φ and a set of 1D temporal deformations G (e.g., translation, dilation, etc), the set of the

SCDTs of the signals from S = {sj : sj = g′jφ ◦ gj ,∀gj ∈ G} is given by Ŝ = {ŝj : ŝj = g−1
j ◦ φ̂, sj ∈ S}

(using composition property). The convexity property of the SCDT [88] states that the set Ŝ is convex for

every φ if and only if G−1 = {g−1
j : gj ∈ G} is convex. The set S defined above can be interpreted as a

transport generative model for a signal class while φ being the template signal corresponding to that class.
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Numerical Implementation of the SCDT

The SCDT described above is defined for the continuous-time signals. In this section, we describe the nu-

merical method for approximating the SCDT given discrete signals. Let s = [s1, s2, ..., sN ]
T be a N-point

discrete-time signal, where sn = s[n],∀n = 1, 2, ..., N is the n-th sample of s. The positive and nega-

tive parts of the signal after Jordan decomposition are given by s± =
[
s±1 , ..., s

±
N

]T
, respectively, where

s±n = |sn|±sn
2 , and |sn| is the absolute value of sn. Next, the CDT is applied numerically to the normalized

signals s+

∥s+∥ℓ1
and s−

∥s−∥ℓ1
, where ∥ · ∥ℓ1 is the ℓ1-norms. As the CDT (s±)∗(y) is the inverse of the CDF of

the signal s±(t) for a particular choice of reference signal (s0(y) = 1 for y ∈ [0, 1]), we need to approximate

the cumulative function first. The numerical approximation of the cumulative function is given by,

S±[n] =

n∑
i=1

s±[n]

∥s±∥ℓ1
, n = 1, 2, ..., N,

where S+ and S− are the cumulation of the normalized signals s+

∥s+∥ℓ1
and s−

∥s−∥ℓ1
, respectively. The CDT is

then calculated by taking the generalized inverse of the CDF,

(s±)∗[m] = min
(
{t[n] : S±[n] > y[m]}

)
,

where t ∈ Ωs, y ∈ Ωs0 , and n,m = 1, 2, ..., N . Here, (s+)∗ and (s−)∗ are the CDTs of the normalized

discrete signals s+

∥s+∥ℓ1
and s−

∥s−∥ℓ1
, respectively. The SCDT of the discrete signal s is then given by,

ŝ =
(
(s+)∗, ∥s+∥ℓ1 , (s−)∗, ∥s−∥ℓ1

)
.

Note that the computational complexity of calculating the SCDT is O(N logN) for an N-point discrete-time

signal.

4.2.4 Nearest Local Subspace Classifier in SCDT Domain

SCDT-NLS [133] was proposed as an end-to-end classification technique to classify segmented signal classes

that can be seen as observations of a set of template patterns that have undergone some temporal deformations.
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Such class of signals can be modeled by the generative model defined as:

S(c) =
Mc⋃
m=1

S
φ

(c)
m ,G(c)

m
,

S
φ

(c)
m ,G(c)

m
=
{
s
(c)
j,m|s

(c)
j,m = g′jφ

(c)
m ◦ gj , g′j > 0, gj ∈ G(c)m

}
,(

G(c)m

)−1

=

{
k∑

i=1

αif
(c)
i,m, αi ≥ 0

}
, (4.9)

where c denotes a particular class,
{
f
(c)
1,m, f

(c)
2,m, ..., f

(c)
k,m

}
denotes a set of linearly independent and strictly

increasing (within the domain of the signals) functions, and G(c)m denotes a set of increasing 1D temporal

deformations. It states that the generative model for a given class c can be expressed as the collection of Mc

subsets, where each subset (S
φ

(c)
m ,G(c)

m
) represents data generated by a specific template signal (φ(c)

m ) under

various temporal deformations (G(c)m ). Here, Mc refers to the total number of templates utilized to represent

class c, while φ
(c)
m denotes the m-th template signal from class c, and s

(c)
j,m corresponds to the j-th signal

generated from the m-th template signal, subjected to the deformation defined by gj .

Since
(
G(c)m

)−1

is convex by definition, the set S(c) can be represented as a collection of convex sets in

the SCDT space, as per the convexity property. the generative model in the transform space is given by:

Ŝ(c) =
Mc⋃
m=1

Ŝ
φ

(c)
m ,G(c)

m
,

Ŝ
φ

(c)
m ,G(c)

m
=
{
ŝ
(c)
j,m|ŝ

(c)
j,m = g−1

j ◦ φ̂
(c)
m , gj ∈ G(c)m

}
, (4.10)

where g−1
j ◦ φ̂

(c)
m is the SCDT of the signal g′jφ

(c)
m ◦ gj . Under the assumption that S

φ
(c)
m ,G(c)

m
∩S

φ
(p)
w ,G(p)

w
= ∅

for c ̸= p, and an unknown sample s is generated according to the generative model, the unknown class label

can be uniquely predicted by solving,

argmin
c

min
m

d2
(
ŝ, V̂(c)

m

)
, (4.11)

where V̂(c)
m = span

(
Ŝ
φ

(c)
m ,G(c)

m

)
. Given a set of training samples

{
s
(c)
1 , ..., s

(c)
j , ..., s

(c)
Lc

}
⊂ S(c) for class c,

the unknown class of a test sample s is estimated in two steps:

Step 1: A set of k closest training samples to ŝ from class c are chosen based on the distance between ŝ and

the span of each training sample. First, the elements from the set {ŝ(c)1 , ..., ŝ
(c)
Lc
} are sorted into {ẑ(c)1 , ..., ẑ

(c)
Lc
}

69



such that

d2(ŝ, V̂(c)
z1 ) ≤ · · · ≤ d2(ŝ, V̂(c)

zl
) ≤ · · · , (4.12)

where V̂(c)
zl = span

(
{ẑ(c)l } ∪ UT ∪ UH

)
, UT and UH are spanning sets (defined in [133]) used to enrich the

subspace. First k elements from the sorted set are chosen to form {ẑ(c)1 , · · · , ẑ(c)k } for k ≤ Lc, which gives

the set of k closest training samples to ŝ from class c in the above sense. This step is repeated for all the

signal classes, i.e., c = 1, 2, ..., etc.

Step 2: The set {ẑ(c)1 , · · · , ẑ(c)k } ∪UT ∪UH is orthogonalized to obtain the basis vectors {b(c)1 , b
(c)
2 , ...}.

These basis vectors are used to construct a matrix B(c) for each signal class c, i.e., B(c) =
[
b
(c)
1 , b

(c)
2 , ...

]
for

c = 1, 2, ..., etc. The unknown class of s is then estimated by:

argmin
c
∥ŝ−B(c)B(c)T ŝ∥2, (4.13)

where ∥.∥ denotes L2 norm.

4.3 Proposed Method

In this work, we explore a transport transform-based data-driven approach to propose an effective and data-

efficient solution for the nonlinear system identification problem.

4.3.1 Nonlinear System Identification

Consider a dynamical system that describes the propagation of 1D waves through a damaged elastic medium.

The corresponding PDE equation for this system can be expressed as follows:

ρü− Euxx + ηu̇xx − ρMüxx − Fuxxxx + βuxuxx = 0, (4.14)

where ρ is the mass density of the medium and E is Young’s modulus. Here, η denotes the dissipation

parameter, and the model parameters M and F account for inertial and nonlocal elastic effects, respectively.

The nonlinearity coefficient is represented by β. The third term in equation (4.14) corresponds to dissipation,

while the fourth and fifth terms are related to dispersion, and the sixth term models nonlinearity. Let us assume

that a source signal ϕ(t) initiates wave propagation (with positive speed ν) through the elastic medium, and

a sensor placed at a fixed location x = xm measures a signal s(t). The PDE in eq. (4.14) can alternatively be
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represented as:

ξ0ü− ξ1uxx + ξ2u̇xx − ξ3üxx − ξ4uxxxx + βuxuxx = 0, (4.15)

where ξ = [ξ0, ξ1, ξ2, ξ3, ξ4]
T are the coefficients of the linear terms of the PDE. The objective of this work is

to recover the nonlinearity parameter β using the sensor data s(t) measured at a particular location x = xm.

4.3.2 Generative Model and Problem Statement

This work aims to propose a generative model-based problem statement to identify the nonlinearity parameter

β using the sensor measurement s(t) where each measured signal can be modeled as an instance of a particular

template observed under some unknown deformation such as translation, dispersion, or time warping. Such

a family of signals can be described with the following generative model:

Generative Model

Let the coefficients in ξ vary within a given range, such that ξi ∈ [Ei− ϵ, Ei+ ϵ] for i = 0, 1, ..., 4 and Ei ∈ R.

Let G(β)ξ ⊂ T denote a set of increasing 1D deformations of a specific kind, where T : R → R is a set of

all possible increasing diffeomorphisms. Given a β, there exists a template pattern φ
(β)
ξ (x, t) and a warping

function gj(x, t) ∈ G(β)ξ for small ϵ such that the family of the sensor measurement s(t) at a fixed location

x = xm can be modeled as:

S
φ

(β)
ξ ,G(β)

ξ

= {s(β)j |s
(β)
j = ġjφ

(β)
ξ ◦ gj , gj ∈ G(β)ξ , ġj > 0}, (4.16)

where s
(β)
j is the j-th signal under a given nonlinearity (β), and ġj represents first order derivative of gj with

respect to t. Note that since the sensor location x is fixed at xm, the signals sj , φ(β)
ξ , and the warping functions

gj are represented as a function of time t only, e.g., φ(β)
ξ (t) := φ

(β)
ξ (x = xm, t), gj(t) := gj(x = xm, t),

etc.

The generative model described in eq. (4.16) is simply a Lagrangian restatement of the continuity equa-

tion and expresses the conservation of signal intensity at a particular sensor location. Such models are com-

mon in many wave propagation phenomena, e.g., wave equation, diffusion equation, convection-diffusion

equation, etc. The warping function gj(·) transforms the independent variable (time, t in this problem) ac-

cording to the structural dynamics (including damage), and the effect of this function is to morph the template

signal φ(β)
ξ into the observed signal s(β)j .
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Problem Statement

Considering the generative model stated above, the nonlinear identification problem for the dynamical system

described by the PDE shown in eq. (4.15) is defined as follows:

Identification problem: Let G(β)ξ ⊂ T be a set of increasing temporal deformations, and S
φ

(β)
ξ ,G(β)

ξ

be

defined as in eq. (4.16). Given a set of sensor measurements {s(β)1 , s
(β)
2 , ...} ⊂ S

φ
(β)
ξ ,G(β)

ξ

with known β ∈ R,

identify the nonlinearity parameter β for an unknown measurement s.

In this work, we further split this nonlinear identification problem into two sub-problems:

• Detect nonlinearity: The problem of detecting nonlinearity can be framed as a binary classification

problem where classes 1 and 2 represent the sensor data corresponding to β = 0 and β ̸= 0, respec-

tively. Signals from class c (for c = 1, 2) can be modeled as:

S(c) =
Mc⋃
m=1

S
φ

(c)
m ,G(c)

m
,

S
φ

(c)
m ,G(c)

m
= {s(c)j,m|s

(c)
j,m = ġjφ

(c)
m ◦ gj , gj ∈ G(c)m , ġj > 0}, (4.17)

where φ
(c)
m is the template pattern corresponding to β

(c)
m from class c, and s

(c)
j,m is the j-th signal

generated from φ
(c)
m under the deformation defined by gj . Given the generative model for the signals

from class c, the nonlinearity detection problem can be defined as follows:

Let G(c)m ⊂ T be a set of increasing temporal deformations, and S(c) be defined as in eq. (4.17), for

classes c = 1, 2. Given a set of sensor measurements {s(c)1 , s
(c)
2 , ...} ⊂ S(c) for class c, determine the

class label of an unknown signal s, meaning, detect if the nonlinearity parameter β is zero or not.

• Estimate nonlinearity parameter: The objective is to estimate the value of the nonlinearity parameter

β for an unknown measurement s, given a set of sensor measurements {s(β)1 , s
(β)
2 , ...} ⊂ S

φ
(β)
ξ ,G(β)

ξ

with known β values. However, obtaining a precise estimation of β requires a large number of training

samples from the set S
φ

(β)
ξ ,G(β)

ξ

, which may not be feasible in a real-world scenario. In this work, the

estimation of the nonlinearity parameter is framed as a coarse regression problem where a range [lβ , hβ ]

is predicted for the unknown β. Furthermore, this regression problem can be viewed as a multi-class

classification problem, where each class represents signals corresponding to β values ranging from lβ

to hβ . Signals from class c (for c = 1, 2, ..., Nc) can be modeled by the generative model defined in

eq. (4.17), where the set S
φ

(c)
m ,G(c)

m
corresponds to β

(c)
m ∈ [l

β
(c)
m

, h
β
(c)
m

]. Given the generative model for

class c, the problem of estimating nonlinearity parameter is defined as follows:
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Let G(c)m ⊂ T be a set of increasing temporal deformations, and S(c) be defined as in eq. (4.17), for

classes c = 1, 2, ..., Nc. Given a set of sensor measurements {s(c)1 , s
(c)
2 , ...} ⊂ S(c) for class c, deter-

mine the class label of an unknown signal s, meaning, estimate a range [lβ , hβ ] for the nonlinearity

parameter β.

4.3.3 Proposed Solution

The proposed solution to the classification problems defined earlier involves using the SCDT-NLS method

[133] described in section 4.2.4. The generative model defined in equation (4.17) typically results in noncon-

vex signal classes, making the classification problems challenging to solve. However, as explained in section

4.2.3, we can simplify the geometry of the signal classes under certain assumptions by using the SCDT.

Hence, the proposed solution begins with applying the SCDT on the sensor measurements. The generative

model in SCDT domain is then given by,

Ŝ(c) =
Mc⋃
m=1

Ŝ
φ

(c)
m ,G(c)

m
,

Ŝ
φ

(c)
m ,G(c)

m
= {ŝ(c)j,m|ŝ

(c)
j,m = g−1

j ◦ φ̂
(c)
m , g−1

j ∈
(
G(c)m

)−1

}, (4.18)

where g−1
j ◦ φ̂(c)

m refers to the SCDT of the signal ġjφ
(c)
m ◦ gj . In many wave propagation phenomena,

such as those described by the wave equation, convection-diffusion equation, etc., the set
(
G(c)m

)−1

can be

proven to be convex (shown in the next section). As a result, by utilizing the convexity property of the SCDT

outlined in section 4.2.3, we can demonstrate that the set Ŝ
φ

(c)
m ,G(c)

m
defined in equation (4.18) forms a convex

set. Moreover, since the SCDT is a one-to-one mapping, if S
φ

(c)
m ,G(c)

m
∩ S

φ
(p)
w ,G(p)

w
= ∅ for c ̸= p, then

Ŝ
φ

(c)
m ,G(c)

m
∩ Ŝ

φ
(p)
w ,G(p)

w
= ∅.

To formulate the solution to the nonlinearity detection and estimation problems defined as binary and

multi-class classification problems, respectively, in section 4.3.2, we adopt the local subspace-based tech-

nique proposed in [133]. Under the assumption that an unknown test sample s is generated according to the

generative model for one of the classes, the unknown class label can be predicted by solving,

argmin
c

min
m

d2
(
ŝ, V̂(c)

m

)
, (4.19)

where d(ŝ, V̂(c)
m ) is the Euclidean distance between ŝ and the nearest point in subspace V̂(c)

m , and V̂(c)
m is given

by,

V̂(c)
m = span

(
Ŝ
φ

(c)
m ,G(c)

m

)
. (4.20)
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We then exploit the nearest local subspace search algorithm (outlined in [133]) in SCDT domain to solve this

classification problem.

Consider a set of training samples
{
s
(c)
1 , ..., s

(c)
j , ..., s

(c)
Lc

}
⊂ S(c) for class c, where Lc is the total number

of training samples given for class c, and s
(c)
j is the j-th sample. The training and testing phases of the

algorithm are described below:

Training Phase

During the training phase of the algorithm, the subspace that corresponds to each training sample is computed.

Firstly, the SCDTs are computed for all training samples from class c. Then, we take a training sample ŝ
(c)
l

and orthogonalize {ŝ(c)l }∪UT ∪UH to obtain the basis vectors that span the enriched subspace corresponding

to that sample. Here, UT and UH are the spanning sets (defined in section 3.3.3) to enrich the subspace with

translation and other time-warpings, respectively. Let B(c)
l =

[
b
(c)
l,1 , b

(c)
l,2 , ...

]
be a matrix that contains the

basis vectors in its column. These calculations are repeated for all the training samples to form B
(c)
l for

l = 1, 2, ..., Lc and c = 1, 2, ..., etc. Note that we employ the same subspace enrichment technique as

described in [133].

Testing Phase

The testing phase begins with taking SCDT of the test sample s to obtain ŝ followed by the nearest local

subspace search in SCDT domain. In the first step of the algorithm, we estimate the distance of the subspace

corresponding to each of the training samples from ŝ by:

ϵl = ∥ŝ−B
(c)
l B

(c)T

l ŝ∥2, l = 1, 2, ..., Lc,

where ∥.∥ denotes L2 norm. As all signals (and corresponding SCDTs) are discrete, the L2 norm, which is

the norm of functions on the real line, is replaced by the ℓ2 norm, the norm of sequences, in the calculations.

It should be noted that B(c)
l B

(c)T

l is the orthogonal projection matrix onto the space generated by the span

of the columns of B(c)
l that was computed during the training phase. Subsequently, a set of k closest train-

ing samples to the test sample ŝ from class c, denoted by {ŝ(c)1 , · · · , ŝ(c)k }, is found based on the distances

ϵ1, ϵ2, ..., etc. Next, {ŝ(c)1 , · · · , ŝ(c)k } ∪ UT ∪ UH is orthogonalized to obtain the basis vectors {b(c)1 , b
(c)
2 , ...}

spanning the local subspace from class c with respect to ŝ. Let B(c) =
[
b
(c)
1 , b

(c)
2 , ...

]
for c = 1, 2, ..., etc.

The unknown class of s is then estimated by:

argmin
c
∥ŝ−B(c)B(c)T ŝ∥2. (4.21)

74



The presence and severity of damage-induced nonlinearity within the propagation medium can be determined

by the predicted class label c. In a detection problem, it indicates the presence of nonlinearity, while in an

estimation problem, the label indicates the extent of nonlinearity.

It is important to note that the proposed solution does not require knowledge of the template patterns or

the warping functions present in the data. The approach utilizes a set of training samples to search for the

nearest local subspace for a given test sample. In the case of dynamical systems where the PDEs are known,

we can numerically simulate the PDE solutions and use the simulated data during the training phase. If the

system PDE is unknown, previously acquired data from a controlled experimental setup can be utilized as

training samples.

4.4 Generative Models for Some Classical PDE Models

This work proposes a generative model-based approach for the PDE system identification problem. The pro-

posed method is applicable to the PDEs where the solution measured at a particular sensor location conforms

the generative model defined in eq. (4.16). Meaning, there exists a template pattern and a warping func-

tion, which is invertible within the signal’s domain, such that the sensor data can be modeled as the instance

of the template under the warping function, and the family of the inverses of the warping functions form a

convex set. In this section, we investigate several common PDEs with analytical solutions and demonstrate

mathematically that such generative models are prevalent in many dynamical systems.

4.4.1 Standard Wave Equation

We begin with the 1D linear wave equation in its standard form, which is expressed as the partial differential

equation (PDE):

ρü(x, t)− Euxx(x, t) = 0, (4.22)

where ρ denotes the mass density, and E represents Young’s modulus. The wave speed, denoted as ν, can be

calculated using the formula ν =
√

E
ρ . Consider the initial condition: u(x, t = 0) = e−x2

. The solution to

the eq. (4.22) along the positive x axis can be represented as:

u(x, t) = e−(x−νt)2 . (4.23)
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From the solution, we can obtain the analytical expression for the sensor measurement s(t) at the specific

location x = xm by deriving it as follows:

s(t) := u(x = xm, t) = e−(νt−xm)2 , (4.24)

which can be modeled by the generative model with the following specifications:

s(t) = ġν(t)φν(gν(t)), gν ∈ Gν

template: φν(t) =
1

ν
e−t2

time-warping: gν(t) = νt− xm. (4.25)

The inverse of the warping function can be calculated as follows:

g−1
ν (t) =

1

ν
(t+ xm). (4.26)

We can represent the set of inverses of the warping functions as G−1
ν , i.e., g−1

ν ∈ G−1
ν . It can be observed

from eq. (4.26) that the set G−1
ν is convex with respect to 1

ν . Therefore, we can conclude that the solution to

the classical linear wave equation, as measured at a particular location, conforms to the proposed generative

model.

4.4.2 Diffusion Equation

The proposed generative model can also be applied to the diffusion equation. The 1D diffusion equation is

given by,

u̇(x, t)−Duxx(x, t) = 0, (4.27)

where D represents the diffusion coefficient. Given the initial condition u(x, 0) = 1√
4π

e−
x2

4 , we can obtain

the solution to eq. (4.27) as:

u(x, t) =
1√
4πDt

e−
x2

4Dt , (4.28)

from which, we can derive the expression for the sensor measurement at x = xm, i.e., s(t) = 1√
4πDt

e−
x2
m

4Dt .

Similar to the wave equation, we can find a template φD and a warping function gD ∈ GD, both parameterized
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with D, for the diffusion equation so that s(t) can be represented using the generative model given as follows:

s(t) = ġD(t)φD(gD(t)), gD ∈ GD

template: φD(t) =
xm

D
√
4πt

e−
1
4t

time-warping: gD(t) =
Dt

x2
m

. (4.29)

The inverse of the warping function is given by g−1
D (t) =

x2
mt
D , which generates the set G−1

D that is convex

with respect to 1
D . Hence, the sensor measurements for the diffusion equation also adhere to the proposed

generative model.

4.4.3 Convection-Diffusion Equation

Given the 1D convection-diffusion equation (PDE) initialized with an initial condition u(x, 0) as:

u̇(x, t) = νux(x, t) +Duxx(x, t), x ∈ Ωx , t ∈ R+, (4.30)

Initial condition: u(x, 0) =
1√
4π

e−
x2

4 ,

where ν and D denote the wave speed and the diffusion coefficient, respectively. Here, we assume that D

takes random values from a uniform distribution U(D0 − ϵ,D0 + ϵ), D > 0,∀ϵ, and ν is a fixed positive

value which needs to be estimated. A solution to the PDE defined in eq. (4.30) can be derived as:

u(x, t) =
1√
4πDt

e−
(x−νt)2

4Dt . (4.31)

The expression for the sensor data s(t) at location x = xm is given by:

s(t) =
1√
4πDt

e−
(xm−νt)2

4Dt , (4.32)

which can be represented using the transport generative model as:

s(t) = ġν,D(t)φν,D(gν,D(t)), gν,D ∈ Gν,D, (4.33)

xm, ν,D > 0, t >
xm

ν
. (4.34)
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The template φν,D(t) and the warping function gν,D(t) are derived as following:

φν,D(t) =
1

ν

√
4D

π

(
(xmν + 2Dt) +

√
(xmν + 2Dt)

2 − ν2x2
m

) 3
2

(
(xmν + 2Dt) +

√
(xmν + 2Dt)

2 − ν2x2
m

)2

− ν2x2
m

e−t , (4.35)

gν,D(t) =
(xm − νt)2

4Dt
.

For a detailed derivation, please refer to the appendix C.1. Since, gν,D(t) is a quadratic polynomial function of

t, it does not have a unique inverse warping map. However, under the condition that g−1
ν,D(t) is monotonically

increasing, we choose the inverse of the warping map to be,

g−1
ν,D(t) =

1

ν2

(
xmν + 2Dt+

√
(xmν + 2Dt)

2 − ν2x2
m

)
. (4.36)

Convexify set of inverses of warping maps: Let, the parameter D is uniformly distributed between D0−ϵ

and D0+ ϵ, i.e., D ∼ U(D0− ϵ,D0+ ϵ). From eq. (4.36) it is evident that the set G−1
ν,D formed by the family

of functions g−1
ν,D(t) is non-convex with respect to D. We aim to convexify the set by taking 1st order Taylor

expansion of the function g−1
ν,D with respect to D at D0, since we assume that D ∈ [D0 − ϵ ,D0 + ϵ]. The

resulting expression is given by:

g−1
ν,D(t) ≈g−1

ν,D0
(t) +

∂g−1
ν,D(t)

∂D

∣∣∣
D=D0

(D −D0)

=
1

ν2

(
xmν + 2D0t+

√
(xmν + 2D0t)2 − ν2x2

m

)
+

2t

ν2

(
1 +

xmν + 2D0t√
(xmν + 2D0t)2 − ν2x2

m

)
(D −D0)

:=g̃−1
ν,D(t) .

Since D ∈ [D0 − ϵ ,D0 + ϵ], we evaluate the approximate inverse warping map g̃−1
ν,D(t) at the boundary

values of D, i.e., D = D0 ± ϵ to obtain:

g−1
ν,D0±ϵ(t) ≈g̃

−1
ν,D0±ϵ(t)

=
1

ν2

(
xmν + 2D0t+

√
(xmν + 2D0t)2 − ν2x2

m

)
± 2t

ν2

(
1 +

xmν + 2D0t√
(xmν + 2D0t)2 − ν2x2

m

)
ϵ

=g−1
ν,D0

(t)± 2t

ν2

(
1 +

xmν + 2D0t√
(xmν + 2D0t)2 − ν2x2

m

)
ϵ.
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The expression for the approximated inverse warping map above suggests that the set G−1
ν,D can be approxi-

mated as convex with respect to the parameter D. Additionally, it can also be shown that the family of inverse

warping maps defined in eq. (4.36) can approximately form a convex set with respect to ν (see appendix C.1).

Therefore, the proposed generative model-based problem formulation can be utilized to estimate parameter

D while allowing ν to take a value from a uniform distribution U(ν0 − ϵ, ν0 + ϵ) or vice versa.

In this section, we have demonstrated that for certain PDEs with analytical solutions, the sensor measure-

ments at a particular location indeed conform the proposed generative model. Consequently, the proposed

method is capable of solving the system identification problem for these types of PDEs. However, for PDEs

like the one described in equation (4.14), deriving an analytical solution is challenging, making it difficult to

verify if the solution satisfies the generative model. Hence, in this work, a data-driven nonlinearity identifi-

cation approach is employed for such PDE models using the proposed method under the assumption that the

sensor measurements follow the generative model defined in eq. (4.16).

4.5 Numerical Experiments and Results

4.5.1 Experimental Setup

Since obtaining an analytical solution to the PDE defined in eq. (4.14) is difficult, we resorted to numerically

simulating the PDE solution using the spectral method[136]. For this purpose, we utilized a fast Fourier

transform-based implementation[137] of the PDE simulator, which mandates the use of periodic boundary

conditions. The initial conditions for the displacement and the velocity are given by:

u(x, 0) = e−
(x−x0)2

2σ2

u̇(x, 0) =
ν(x− x0)

2σ2
u(x, 0), (4.37)

where u̇(x, 0) := ∂u(x,t)
∂t |t=0 and ν is the wave speed. The selection of the initial velocity u̇(x, 0) was made

to produce a pure traveling wave in +x direction for the standard wave equation. A spatial grid of 600 points

was used, mean location x0 and standard deviation σ were set to 50 and 7, separately. The wave speed, which

is given by ν =
√

E
ρ , was computed with the mass density of the medium ρ set at 1, and Young’s modulus E

chosen from a uniform distribution U(0.95, 1.05). In addition, the parameter F was fixed at 0.01, while M

and η were both selected from the distributions U(0.2, 0.3) and U(0.1, 0.2), respectively. In this particular

experiment, the velocity u̇(x, t) was considered as the primary quantity of interest and was measured as a
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Figure 4.4: Simulation setup for 1D wave propagation through an elastic medium.

function of time at a fixed sensor location x = 300, i.e., the sensor measurement s(t) = u̇(x = 300, t). The

simulation setup for this experiment is depicted in Fig. 4.4.

Class β
1 0
2 U(0.01, 0.6)

Table 4.2: Binary class classification problem setup for nonlineairty detection. U(., .) represents a uniform
distribution.

Class β ∼ U(lβ , hβ)
1 U(0.01, 0.2)
2 U(0.21, 0.4)
3 U(0.41, 0.6)

Table 4.3: Coarse regression (3-class) problem setup for nonlineairty level estimation.

The nonlinearity detection problem was set up as a binary class classification problem, where class 1

denotes signals corresponding to β = 0 (no nonlinearity) and class 2 consists of signals produced by randomly

changing β. Table 4.2 presents the distribution used to select β. To assess the degree of nonlinearity, a

coarse regression problem was formulated, in which the proposed method predicts a range of β values for

an unknown signal. In the initial experiment, the sensor measurements were grouped into three categories

based on their corresponding β values (distributions shown in Table 4.3). Subsequently, this experiment was

converted into a relatively finer setup with ten classes, where a narrower range of β values was predicted for

an unknown sensor measurement. Table 4.4 displays the ten distributions that correspond to the ten classes.

The classification method described in section 4.3 was then utilized to identify the nonlinearity parameter β

from the sensor measurements. Fig. 4.5 displays a number of sensor measurements, characterized by the

absence (β = 0) or presence (β > 0) of nonlinearity. Furthermore, Fig. 4.6 presents a set of example signals

featuring three distinct levels of nonlinearity.
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Class β ∼ U(lβ , hβ)
1 U(0.01, 0.06)
2 U(0.07, 0.12)
3 U(0.13, 0.18)
4 U(0.19, 0.24)
5 U(0.25, 0.30)
6 U(0.31, 0.36)
7 U(0.37, 0.42)
8 U(0.43, 0.48)
9 U(0.49, 0.54)
10 U(0.55, 0.6)

Table 4.4: Coarse regression (10-class) problem setup for nonlineairty level estimation.

Figure 4.5: Sensor measurements at a particular location (top) without nonlinearity, and (bottom) with non-
linearity.

4.5.2 Evaluation

We conducted a comparative analysis of the proposed method with linear-support vector machine (SVM)

[138] classifier and some state-of-the-art deep neural network techniques, including Multilayer Perceptrons

(MLP) [107], 1D Visual Geometry Group (VGG) [107], 1D Residual Network (ResNet) [108] [107], and

Long Short Term Memory with Fully Convolutional Network (LSTM-FCN) [40] [107]. We also implemented

a Fourier transform-based method as a traditional approach, which employs a linear-SVM classifier to classify

the sensor measurements in the Fourier domain. Moreover, we compared the performance against SCDT-NS

[87], which models each signal class as a single subspace in the SCDT domain.

Detect nonlinearity

The PDE simulation procedure described in section 4.5.1 was executed for 2200 times per class with the

randomly varying parameters. During the simulation, the sensor signal was measured at a single location,
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Figure 4.6: Sensor measurements at a particular location under the presence of three different levels of
nonlinearity.

resulting in 2200 sensor measurements per class. The collected data was then split into two sets, with 2000

signals per class for training and 200 signals per class for testing. The classification models listed above

were trained using the training set, and the testing set was used to evaluate the methods. The performance

of detecting nonliearity was reported as classification accuracy. Table 4.5 shows the comparative results

of the classification methods. The table shows that the proposed solution achieved a nonlinearity detection

accuracy of 98.0%, which is higher than that of the comparative methods. These results suggest that the

proposed approach has the potential to detect nonlinearity induced by damage in the propagation medium.

Methods Accuracy (%)
MLP 73.8
1D-VGG 91.9
1D-ResNet 63.2
LSTM-FCN 83.6
SVM 79.8
FT-SVM 95.5
SCDT-NS 91.5
SCDT-NLS 98.0

Table 4.5: Nonlinearity detection accuracy (%) for different classification methods. All the models were
trained using 2000 samples per class, and tested on 200 samples per class.

In addition to its effectiveness, the proposed solution is also data-efficient, allowing it to achieve supe-

rior detection accuracy using fewer training samples than other methods. In order to demonstrate the data

82



Figure 4.7: Nonlinearity detection accuracy as a function of number of training samples per class for different
classification methods.

efficiency of the proposed approach, an experiment was conducted where all classifiers were trained with

varying numbers of training samples per class. A training split of a certain size was randomly selected from

the original training set, and the experiments for this particular size were repeated 10 times. The results are

presented in Figure 4.7, which displays the average detection accuracy as a function of the number of training

samples per class for the different classification methods. The error bars indicate the standard deviation for

each split. These plots demonstrate that the proposed method outperforms the comparative methods in terms

of accuracy, even with a smaller number of training samples.

Estimate degree of nonlinearity

As described in section 4.3.2, the estimation of nonlinearity parameter β is stated as a classification problem,

where the proposed approach predicts a range for β. Initially, a three-class classification problem was set

up based on the values of β, where three uniform distributions shown in Table 4.3 were used for selecting β

for each class. Afterwards, a more detailed regression problem was created, where the sensor measurements

were classified into ten different classes, and β-values were selected from ten non-overlapping distributions

as shown in Table 4.4. In both scenarios, the classification models were trained using 2000 samples per class,

collected by simulating the PDE, and then used to predict β-ranges, i.e., l̃β and h̃β , for 200 test samples

per class. To evaluate the performance of the methods, the mean squared errors (MSE) were calculated as
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follows:

MSE =
1

N

N∑
i=1

(
βi −

l̃βi
+ h̃βi

2

)2

, (4.38)

where N represents the total number of test samples, βi is the true nonlinearity parameter value of the i-th test

sample, and l̃βi
and h̃βi

are the lower and upper limits of the predicted class, respectively. The performance

of the classification methods for estimating β under both regression problem setups is presented in Table

4.6. According to the results, the proposed approach yields the least MSE in both cases, suggesting that it

outperforms all other methods in accurately estimating the degree of nonlinearity present in the propagation

medium. Fig. 4.8 illustrates the nonlinearity estimation performances of different methods as the number of

training samples varies. The plots in the figure highlight that SCDT-NLS outperforms the other methods in

estimating the degree of nonlinearity using fewer training data.

Methods MSE (3-class) MSE (10-class)
MLP 1.87× 10−2 3.12× 10−2

1D-VGG 5.10× 10−3 1.71× 10−2

1D-ResNet 3.72× 10−2 3.84× 10−2

LSTM-FCN 1.25× 10−2 9.77× 10−3

SVM 1.99× 10−2 2.67× 10−2

FT-SVM 3.66× 10−3 9.84× 10−4

SCDT-NS 4.30× 10−3 1.41× 10−3

SCDT-NLS 3.14 × 10−3 3.08 × 10−4

Table 4.6: Nonlinearity estimation error in MSE (eq. 4.38) for different methods. All the models were trained
using 2000 samples per class, and tested on 200 samples per class.

4.6 Discussion

Nonlinearity detection and estimation performances reported in Tables 4.5 and 4.6 suggest that the SCDT-

NLS classifier-based approach is a good method for solving nonlinear system identification problems in

structural health monitoring applications. In this work, we designed the system identification problem as

a classification problem. From the results it is evident that the proposed solution outperforms the state-of-

the-art neural network-based time series classification techniques and a Fourier transform-based traditional

approach.

The proposed solution utilizes sensor data from a specific location to identify nonlinearity. This approach

operates under the assumption that the sensor data conforms to the generative model presented in equation

(4.16). Meaning, for a given nonlinear parameter β, the signal measured by a sensor at a particular location

can be viewed as an instance of a template observed under a smooth invertible warping function. However, the

proposed system identification technique does not require knowledge of the template or the warping function
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Figure 4.8: Nonlinearity estimation performance (MSE) as a function of number of training samples per class
for different methods under coarse regression (10-class) setup.

to recover β. If the generation of an unknown signal satisfies the generative model, the proposed approach

can detect and estimate β by searching for the nearest local subspace in the SCDT domain using a set of

training samples.

In case of a dynamical system where the PDE model can be analytically formulated, the training samples

can be obtained by employing a PDE simulation technique, such as the spectral or finite difference method.

Conversely, if the PDE model is unknown, training samples can be generated through a controlled experiment

with a known nonlinearity. However, generating a large number of training samples under damage-induced

nonlinearity can be challenging in many structural health monitoring applications. As depicted in Fig. 4.8,

the proposed approach provides superior nonlinearity estimates with fewer training samples compared to

alternative methods. This feature renders the proposed solution suitable for structural health monitoring

applications where generating numerous sensor data with known nonlinearity is often impractical.

To summarize, this chapter proposes a novel approach to address nonlinear system identification problems

in structural health monitoring applications by leveraging sensor data. Specifically, the signals measured

at a specific sensor location are considered as observations of a set of template patterns subjected to some

unknown time-warpings. While certain PDE systems, like the classical wave equation or convection-diffusion

equation, have analytical formulations for sensor measurement that align with this generative model, others

pose difficulties in obtaining such solutions. However, through comprehensive experimentation, this study
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shows that the proposed generative model is an effective way to model sensor measurements even in complex

PDE systems.

4.7 Conclusion

This chapter explored the feasibility of utilizing a generative model-based approach to solve nonlinear system

identification problems in structural health monitoring (SHM) applications. It is presumed that the presence

of damage in the structural system results in the presence of nonlinearity in the underlying PDE model. Under

the assumption that the sensor data adheres to a specific generative model, we formulated the system identifi-

cation as a coarse regression problem and employed the SCDT nearest local subspace classifier to detect and

estimate the nonlinearity parameter of the dynamical system. Extensive experiments were conducted, and the

proposed solution was found to provide a significantly better estimate of the nonlinearity when compared to

state-of-the-art data-driven pattern recognition methods.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

The tasks of solving signal estimation and classification problems lie at the core of a wide range of signal

processing applications. Most existing methods fail to model the underlying nonlinearities of the systems,

resulting in suboptimal solutions. This thesis introduces a new approach to address the problems of signal

estimation and classification. The approach involves using a generative model that connects the signal data

to the physical processes that produce it. The generative model represents the signal data such that the signal

can be seen as an observation of a template under some temporal deformations. Next, the estimation and

classification problems are formulated for the family of signals that follow the proposed generative model.

The proposed solutions to these problems utilize transport-based signal transformation techniques such as the

cumulative distribution transform (CDT) and the signed cumulative distribution transform (SCDT) to solve

the problems effectively and efficiently.

Chapter 2 of this thesis introduced a novel approach to estimate the parametric change of a signal by

minimizing the Wasserstein distance between the measured and model signals. The proposed approach,

aided by the use of the cumulative distribution transform, was demonstrated to produce a generic closed-form

solution to the estimation problem. We also discussed the estimator’s properties in the presence of noise and

presented a novel technique to mitigate the impact of noise on the estimates. Through numerical experiments,

we showed that our proposed approach performs well in comparison to existing methods and is significantly

more computationally efficient. We further applied our approach to a source localization problem where a

crack was localized on a metal structure. In summary, our method provides a robust and accurate means
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to estimate parameters governing signal energy modification during propagation by leveraging the CDT and

Wasserstein cost.

In Chapter 3, we presented a novel end-to-end method for classifying segmented signals using the signed

cumulative distribution transform (SCDT), a newly developed signal transformation technique. We first for-

mulated a multiple template-based problem statement for the signal classes, where the signals can be repre-

sented as observations of a set of template patterns under some unknown deformations. Our proposed solution

to this problem utilized a nearest local subspace search technique in the SCDT domain to detect the class of an

unknown signal. We conducted extensive experiments to demonstrate that our method outperforms state-of-

the-art end-to-end signal classification methods in classifying segmented signal data. Moreover, we showed

that our method is data-efficient, computationally inexpensive, and robust to out-of-distribution examples. In

short, our proposed method provides an accurate and efficient means to classify segmented signals when the

signal classes follow a particular generative model.

In Chapter 4, we applied the generative model-based problem formulation approach introduced earlier

to develop a novel system identification technique for structural health monitoring (SHM) applications. In

many SHM scenarios, it is believed that the presence of damage in the structural system leads to nonlinearity

in the underlying PDE model of the dynamical system. Assuming that the sensor data conforms to a specific

generative model, we formulated the task of system identification as a coarse regression problem and utilized

the SCDT nearest local subspace classifier to detect and estimate the nonlinearity parameter. Initially, we

demonstrated analytically that the proposed generative model is prevalent in many classical PDE systems

where analytical solutions can be obtained. However, in the case of complex PDE systems where deriving

analytical solutions is difficult, we conducted extensive experiments and showed that our proposed solution

provides a significantly more accurate estimate of the nonlinearity compared to state-of-the-art data-driven

pattern recognition methods.

To summarize, this thesis put forth novel mathematical modeling-based approaches to solve certain es-

timation and classification problems for segmented signals that follow a particular generative model. The

proposed solutions have potential applications in various signal processing domains. This thesis primarily

focused on structural health monitoring (SHM) applications and showcased the effectiveness of the proposed

solutions in solving source localization and system identification problems.

5.2 Future Work

In Chapter 2, we studied the properties and performances of the CDT-based estimator in the presence of

noise. To gain a deeper understanding of the statistical properties of the CDT and develop a maximum
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likelihood estimator, further efforts will be directed towards statistical analysis. Similar analysis will be

conducted for the SCDT-based classification technique (proposed in Chapter 3) as well. Future work will

further include exploring ways to extend the classification method to classify time series events that are not

readily segmentable. Chapter 4 introduced a novel system identification technique for identifying damage-

induced nonlinearity in dynamical systems. In future work, this technique will be applied to experiments

aimed at identifying properties of the system (propagation medium).
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Appendix A

Supplementary Materials for Chapter 2

A.1 Noise correction in the CDF space
Let the noisy signal, zη(t) = zg(t) + η(t), where η(t) ∼ N (0, σ2). The associated positive pdf,

r(t) = B(zη)(t) =
z2n(t)

∥zη∥2ℓ2
, t = t1, · · · , tN

=
{zg(t) + η(t)}2

Ezη

(A.1)

where Ezη ≡ ∥zη∥2ℓ2 is the total energy of the received (noisy) signal. In terms of the CDF we may expand
(A.1) and write

R(t) =

∫ t

t1

{zg(u) + η(u)}2

Ezη
du

⇒R(t)Ezη =

∫ t

t1

{z2g(u) + η2(u) + 2zg(u)η(u)}du
(A.2)

Taking the expected value over different realizations of the noise, recognizing E[η2] ≡ σ2, one obtains

E[R(t)Ezη ] =
∫ t

t1

z2g(u)du+

∫ t

t1

σ2du

⇒ EzηE[R(t)] = Sg(t)Ez + σ2(t− t1) (A.3)

where Sg(t) =
∫ t

t1

z2
g(u)

Ez
du is the CDF of noise free signal, which we seek to estimate (Ez = ∥zg∥2ℓ2 is the

energy of the noise free signal).
In Eqn. (A.3) we have treated the noisy signal energy Ezη as constant and equal to its mean, i.e. Ezη =

E[Ezη ] = Ez + σ2(tN − t1). This approximation is valid as long as the fluctuations in the energy of the
received signal are small with respect to E[Ezη ] [139]. This is often the case, especially for applications
where the number of digital samples in the signals being processed is large, as the assumption simply says
that fluctuations in the total signal mass among different realizations will by typically small relative to the
total signal mass. As an example Fig. A.1 plots both Ez and Ezη for 100 realizations of noise with SNR 5,
10, and 15 dB. As expected the fluctuations are very small with respect to E[Ezη ].

Replacing Ezη with its mean, we can re-arrange Eqn. (A.3) to yield

Sg(t) =
E[R(t)]{Ez + σ2(tN − t1)} − σ2(t− t1)

Ez
(A.4)
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Figure A.1: Plots of total energies for 100 realizations of noise with SNR: 5, 10, 15 dB. The fluctuations are
very small relative to the magnitude of the mean energy.

for the noise-corrected CDF, Sg(t). The idea is simply that i.i.d. noise will result, on average, in the addition
of a straight line to the CDF. By subtracting this “noise CDF” one can account for the additive contribution.
In practice, one replaces E[R] by the estimated CDF of r(t) to get the estimated noise free CDF, Sg(t). This
step is performed prior to estimating the CDT.

Alternatively we can define the signal-to-noise ratio SNR = Ez/σ2(tN−t1) in which case (A.4) becomes

Sg(t) =
E[R(t)] [SNR+ 1]− t−t1

(tN−t1)

SNR
(A.5)

In the cases where obtaining the SNR is easier as opposed to the energy of noise free signal and the noise
variance (as required by Eqn. A.4), the formulation (A.5) may be preferable.

A.2 Distribution of Noise in the CDT Space
In practice, CDF is being calculated using following equation,

R(tk) =
1

Ezη

k∑
i=1

(z(ti) + η(ti))
2

=
1

Ezη

k∑
i=1

X(ti)
2, t1 ≤ tk ≤ tN
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where, X(n) ∼ N (z(n), σ2). Normalizing X(n) with standard deviation σ to make it a normal distribu-
tion with unit variance,

R(tk) =
σ2

Ezη

k∑
i=1

(
X(ti)

σ

)2

=
σ2

Ezη
Y (tk)

where, Y (tk) ∼ χ2
NC(k, λk) is a random variable with non-central chi-squared distribution. The two pa-

rameters of the distribution are: the number of degrees of freedom k and noncentrality parameter λk =

σ−2
∑k

i=1 z
2(ti).

With the exception of the first few CDF values, k can be considered large enough so that the asymptotic
approximation Y (tk) ∼ N (k + λk, 2k + 4λk) can be made yielding

R(tk) ∼̇ N (S(tk),Σ
2(tk))

= N

(
σ2 (k + λk)

Ezη
,
σ4 (2k + 4λk)

E2zη

)
t1 ≤ tk ≤ tN (A.6)

This approximation is expected to be valid if either k or λk are large [140]. Denote as Γ(tk) the random
variable used to model R(tk) and the associated normal PDF of (A.6) as pΓ(tk)(R(tk)).

By the definition of the CDT, ŝk ≡ S−1(yk), yk ∈ [0, 1], so the random variable modelling r̂k (the result
of the CDT) can be written R̂(yk) = S−1(Γ(ŝk)). Thus, we seek the transformation of the random variable
Γ(ŝk) by the inverse function S−1(·). Following the rules for the transformation of a random variable we
have

pR̂k
(r̂k) = pΓ(ŝk)(rk))

∣∣∣∣∂ŝ(rk))∂rk

∣∣∣∣−1 ∣∣∣
rk→S(r̂k)

(A.7)

Given the normal approximation to pΓ(tk)(Rk) given by Eqn. (A.6), noting that S(·) is monotonically in-
creasing, and recalling ŝ(S(x)) = x yields

pR̂k
(r̂k) =

e
− (S(r̂k)−S(ŝk))2

2Σ2(ŝk)

√
2πΣ(ŝk)

∂S(r̂k)

∂r̂k
,

1 ≤ k ≤ N. (A.8)

Note the independent variable r̂k is different from the fixed value ŝk. Note also that the mean and variance of
(A.6) are evaluated at the clean CDT values (as opposed to times tk). The mean, S(ŝk) and variance Σ(ŝk)
in (A.8) are found by interpolating S(tk), Σ(tk) respectively.
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Appendix B

Supplementary Materials for Chapter 3

B.1 Additional Facts and Remarks
Observation 1: Let c ̸= p be two class labels, and S(c) and S(p) be defined as in eq. (9). Assume that for any
φ
(c)
j ∈ S(c), f

j,φ
(p)
w

/∈ span
{(
G(p)w

)−1
}

for any w = 1, ...,Mp where (f
j,φ

(p)
w

)′φ
(c)
j (fj,φw

) = φ
(p)
w , it follows

that V̂(p)
w ∩ Ŝ(c) = ∅ for any w = 1, ...,Mp.

Proof. Assume by contradiction that there exists some φ
(c)
j ∈ S(c) such that φ̂(c)

j ∈ V̂(p)
w ∩ Ŝ(c). By the

composition property and the definition of f
j,φ

(p)
w

above, we have that f−1

j,φ
(p)
w

◦ φ̂(c)
j = φ̂

(p)
w and hence

φ̂
(c)
j = f

j,φ
(p)
w
◦ φ̂(p)

w . Since by assumption φ̂
(c)
j ∈ V̂(p)

w , it follows that f
j,φ

(p)
w
∈ span

{(
G(p)w

)−1
}

, which is
a contradiction.

Remark 1: The last argument above follows from the simple fact that V̂(p)
w = span

(
Ŝ
φw,G(p)

w

)
=
{ k∑

i=1

βif
(p)
i,w◦

φ̂
(p)
w : βi ∈ R

}
=
{
f ◦ φ̂(p)

w : f ∈ span
(
G(p)w

)−1
}

.

Remark 2: By the disjointness assumption about different signal classes, i.e., S(p) ∩ S(c) = ∅ for c ̸= p,
it follows that f

j,φ
(p)
w

/∈
(
G(p)w

)−1
for all p = 1, ...,Mp. This property intuitively says that signals in S(c)

differs “significantly” from the template φ
(p)
w in the sense that they can not be recovered using φ

(p)
w under

deformations in G(p)w . Recall that
(
G(p)w

)−1
=
{ k∑

i=1

αif
(p)
i,w : αi ≥ 0

}
, which differs from span

{(
G(p)w

)−1
}

in the sense that the latter has no restriction on the αi’s. We comment loosely that the assumptions in
Observation 1 is not unreasonable when signals in class (c) are ”significantly” different than templates in
class (p) and the deformation sets are reasonably “small” in the sense that f

j,φ
(p)
w

/∈ span
{(
G(p)w

)−1
}

.

B.2 Dataset
Fig. 3.6 of Chapter 3 shows some examples of the ten datasets used to evaluate the proposed classification
method. We have included few more examples from the datasets in this appendix (Fig. B.1-B.10).
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Figure B.1: Dataset: GesturePebbleZ2

Figure B.2: Dataset: InsectEPGRegularTrain

B.3 Data Efficiency of the Proposed Method
Section 3.4.4 of Chapter 3 shows that the proposed method is data efficient in comparison with the CNNs and
provides two examples. Fig. B.11 shows the results from same experiment setup for four other datasets.
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Figure B.3: Dataset: PLAID
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Figure B.4: Dataset: UWaveGestureLibraryAll

Figure B.5: Dataset: Wafer
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Figure B.6: Dataset: StarLightCurves

Figure B.7: Dataset: TwoPatterns

Figure B.8: Dataset: ECG5000
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Figure B.9: Dataset: ECG (MLII)

Figure B.10: Dataset: Sonar
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Figure B.11: Accuracy as a function of number of training samples per class for different classification
methods.
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Appendix C

Supplementary Materials for Chapter 4

C.1 Generative Model for Convection-Diffusion Equation
1D convection-diffusion equation (PDE) initialized with the initial condition u(x, 0) is given by:

u̇(x, t) = νux(x, t) +Duxx(x, t), x ∈ Ωx , t ∈ R+, (C.1)

Initial condition: u(x, 0) =
1√
4π

e−
x2

4 ,

where ν and D denote the wave speed and the diffusion coefficient, respectively. A solution to the PDE
defined in eq. (C.1) can be derived as:

u(x, t) =
1√
4πDt

e−
(x−νt)2

4Dt . (C.2)

The expression for the sensor data s(t) at location x = xm is given by:

s(t) =
1√
4πDt

e−
(xm−νt)2

4Dt , (C.3)

which can be represented using the transport generative model as:

s(t) = ġν,D(t)φν,D(gν,D(t)), gν,D ∈ Gν,D, (C.4)

where an inhomogeneous template ϕν,D(x , t) : Ωx × R+ → R and a warping function in time are:

φν,D(t) = fxm
(t)e−t, (C.5)

gν,D(t) =
(xm − νt)2

4Dt
,

xm, ν,D > 0, t >
xm

ν
.

Note that the condition t > xm

ν ensures gν,D(t) to be monotonically increasing, i.e., ġν,D(t) > 0. Then, we
can choose a support of time t as:

sup(t) :=
[
t0 =

xm

ν
+ a , t1

]
:= Ωt , (C.6)

for a > 0 and a large enough t1 > t0. Here, fxm
(t) is an arbitrary function which will be derived later.

First, we derive the inverse of the warping map, i.e., g−1
ν,D(t). To distinguish between the warping map and

its inverse, we replace the independent variable t in g−1
ν,D(t) with another variable z. Meaning, g−1

ν,D(z) is
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defined by letting:

z = gν,D(t) =
(xm − νt)2

4Dt
(C.7)

⇔ ν2t2 − 2 (xmν + 2Dz) t+ x2
m = 0 (C.8)

A condition of existence for solution is:

∆ := (xmν + 2Dz)
2 − ν2x2

m = 4
(
D2z2 + νDxmz

)
> 0 .

Since ν > 0, we have ∆ > 0, i.e. equation (C.8) always have two solutions. Note that if ν < 0, then for
ν < −xm

t , the condition becomes (for xm , z > 0):

∆ > 0 ⇔ − Dz

xm
< ν < −xm

t
,

In conclusion, this quadratic form has 2 solutions:

t± :=
1

ν2

(
xmν + 2Dz ±

√
(xmν + 2Dz)

2 − ν2x2
m

)
. (C.9)

Under the condition that gν,D and g−1
ν,D are one-one increasing functions, we choose the inverse of the warping

map to be,

g−1
ν,D(z) =

1

ν2

(
xmν + 2Dz +

√
(xmν + 2Dz)

2 − ν2x2
m

)
. (C.10)

Eq. (C.10) can be written as a function t instead of z such that

g−1
ν,D(t) =

1

ν2

(
xmν + 2Dt+

√
(xmν + 2Dt)

2 − ν2x2
m

)
. (C.11)

Let, the family of the functions g−1
ν,D forms a set G−1

ν,D which is non-convex. However, in section 4.4.3 of
Chapter 4, we demonstrated that the set G−1

ν,D can be approximated as a convex set with respect to D. Here,
we aim to derive a similar approximation of G−1

ν,D which is convex with respect to the parameter ν.

Convexify set of inverses of warping maps: Similar to 4.4.3, we aim to convexify the set G−1
ν,D by tak-

ing the 1st order Taylor expansion of the function g−1
ν,D with respect to ν at ν0 (since, we assume ν ∼

U (ν0 − ϵ , ν0 + ϵ)):

g−1
ν,D(t) ≈g−1

ν0,D
(t) +

∂g−1
ν,D(t)

∂ν

∣∣∣
ν=ν0

(ν − ν0)

=
1

ν20

(
xmν0 + 2Dt+

√
(xmν0 + 2Dt)

2 − ν20x
2
m

)

− 1

ν20

xm +
4Dt

ν0
+

2

ν0

√
(xmν0 + 2Dt)

2 − ν20x
2 − 2Dtxm√

(xν0 + 2Dt)
2 − ν20x

2
m

 (ν − ν0)

:=g̃−1
ν,D(t) .
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We then evaluate the g̃−1
ν,D(t) at the boundary values of ν, i.e., ν = ν0 ± ϵ to obtein:

g−1
ν0±ϵ,D(t) ≈g̃−1

ν0±ϵ,D(t)

=
1

ν20

(
xmν0 + 2Dt+

√
(xmν0 + 2Dt)

2 − ν20x
2
m

)

± 1

ν20

xm +
4Dt

ν0
+

2

ν0

√
(xmν0 + 2Dt)

2 − ν20x
2 − 2Dtxm√

(xν0 + 2Dt)
2 − ν20x

2
m

 ϵ

=g−1
ν0,D

(t)± 1

ν20

xm +
4Dt

ν0
+

2

ν0

√
(xmν0 + 2Dt)

2 − ν20x
2 − 2Dtxm√

(xν0 + 2Dt)
2 − ν20x

2
m

 ϵ,

which is convex with respect to ϵ. It indicates that the set G−1
ν,D is convex with respect to ν ∼ U(ν0−ϵ, ν0+ϵ)

for a given D.

Derive template φν,D(t): To derive the template φν,D(t) defined in eq. (C.5), we need to find an expression
for the function fxm(t). We choose fxm(t) such that:

1

4D

(
ν2 − x2

m

t2

)
fxm

(
(xm − νt)2

4Dt

)
e−

(xm−νt)2

4Dt =
1√
4πDt

e−
(xm−νt)2

4Dt .

The above equality holds if we choose fxm
(t) in such a way that:

1√
4πDt

=
1

4D

(
ν2 − x2

m

t2

)
fxm

(
(xm − νt)2

4Dt

)
⇔ fxm

(
(xm − νt)2

4Dt

)
=

√
4D

π

t
3
2

ν2t2 − x2
m

⇔ fxm
(t) =

1

ν

√
4D

π

(
(xmν + 2Dt) +

√
(xmν + 2Dt)

2 − ν2x2
m

) 3
2

(
(xmν + 2Dt) +

√
(xmν + 2Dt)

2 − ν2x2
m

)2

− ν2x2
m

.

Thus, the template is given by:

φν,D(t) =
1

ν

√
4D

π

(
(xmν + 2Dt) +

√
(xmν + 2Dt)

2 − ν2x2
m

) 3
2

(
(xmν + 2Dt) +

√
(xmν + 2Dt)

2 − ν2x2
m

)2

− ν2x2
m

e−t . (C.12)
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