
CS 3240: Advanced Software Development Techniques:
An Evaluation and Proposal for Improvement

CS4991 Capstone Report, 2023

Adam Khan

Computer Science
The University of Virginia

School of Engineering and Applied Science
Charlottesville, Virginia USA

azk7ad@virginia.edu

ABSTRACT
CS 3240: Advanced Software Development
Techniques is offered within the UVA
Computer Science curriculum and is
characterized by a semester-long group
software development project. As a student
and former Teaching Assistant of the course, I
have identified some of its strengths and
weaknesses. The course provides a realistic
simulation of real-world software
development roles and fosters real-world
experience. However, in-class instruction
appears to be insufficient for ensuring success
in the group project. Potential improvements
to enhance CS 3240 include supplementing the
assigned tutorial with in-class instruction and
incorporating a structure that allows for
gradual project progression where smaller
components are developed over time under
guidance. Future work would involve testing
and evaluating the proposed improvements.

1. INTRODUCTION
“Any sufficiently advanced technology is
indistinguishable from magic,” remarked
Arthur C. Clarke, an eminent science fiction
writer. This assertion underpins the essence of
CS 3240: Advanced Software Development
Techniques, a critical course within the UVA
Computer Science curriculum designed to
equip students with the skill set to maneuver
the sophisticated world of software
development. The course, primarily
characterized by its simulation of real-world

software development roles, has ignited
curiosity among students toward the intricate
functionalities of software systems. The
students, under the guidance of Teaching
Assistant Scrum Masters, undertake a
semester-long group project, fostering
invaluable real-world experience that proves
valuable when applying for jobs and
internships.

However, every pedagogical endeavor,
irrespective of its merits, harbors in its
framework room for improvement. This
course, as seen from the perspective of a
former student and teaching assistant, shares a
similar story. The noticeable inadequacy in the
in-class instruction has been discerned as a
vulnerability in the course's framework. The
abridged in-class instruction relating to the
project assignment limits the students’ full
potential, rendering the intricate tasks
demanded by the group project considerably
demanding and stressful. This vital
shortcoming, therefore, poses an essential
question: How can the structural foundation
of CS 3240 be improved?

My proposal critically evaluates potential
opportunities for enhancement. The ultimate
objective is not just to critique, but to propose
substantial improvements, thereby
contributing to the transformation of CS 3240
into an even more insightful and impactful
learning experience for future students. Laying

a part of the path to make the “magic” of
software development decipherable and
successful forms the core of this capstone
endeavor.

2. RELATED WORKS
The profound sentiment of a former student of
CS 3240 highlights the pressing issue of
insufficient class instruction (Anonymous,
2020). According to the student, they felt
“thrown to the wolves,” a statement indicative
of the struggle faced amidst limited guided
learning and instructions where students are
expected to navigate through the complexities
of the course material independently. This
portrayal evidenced a jarring gap between the
in-class instruction provided by the faculty and
the support needed to realize the complex
projects included in the course.

A significant point of concern raised by the
student involved their lack of familiarity with
the primary languages used in the course, as
evidenced in their statement: “I knew nothing
of Django coming into the semester, and I had
never even taken a class that used Python
before.” This comment underscores either a
potential shortcoming in the course
prerequisites, or a missing bridge in the
curriculum that failed to adequately prepare
students for the substantial tasks involved in
this course.

These viewpoints informed my perception of
the course's strengths and weaknesses and
directed my focus toward creating a proposal
that would address these prevailing concerns.
In the effort to bridge the gap described by the
student review, I analyzed the Django tutorial
assessment used in CS 3240 (“Writing your
first Django app,” 2023). The completion of
this tutorial is an assessment in CS 3240.
Instead of fostering a thorough understanding
of Django's inner workings, the tutorial
concentrates more on creating a specific
application—a web app where users can vote
on polls. The result is a superficial

understanding of Django's functionalities and
principles, with learners merely acquiring the
skills to recreate a standard, template-based
project. This approach underprepares students
to tackle unique problems and projects, such as
those encountered in CS 3240. Consequently,
there is a compelling need to reconsider the
efficacy of this training resource within the
context of this course and examine alternatives
or improvements.

3. PROPOSED DESIGN
To enhance the effectiveness of CS 3240 and
ensure students are well-equipped with
essential software development skills, this
section presents a detailed examination of the
current syllabus, identifies key areas for
improvement, and proposes a redesigned
course structure.

3.1 Review of Existing Syllabus
The CS 3240 syllabus outlines a course
structured around agile software development
principles and centered on a semester-long
team project. After introductory topics,
students form project teams and undertake six
sprint cycles to incrementally develop a
complex web application. Sprints have
specific deliverables such as planning
documents, implemented features, and testing
reports. Lectures cover software engineering
concepts like requirements, architecture,
design, quality assurance, security, and ethics.
Assessments include quizzes, a final exam,
graded assignments, and project milestones.
Students are expected to gain hands-on
experience in technologies like Django
through self-directed learning. Lectures
provide supporting conceptual knowledge.

The main issues identified in the current
syllabus are insufficient in-class instruction on
Django, over-reliance on a basic Django
tutorial that does not provide enough depth,
and lack of guided practice applying Django
before starting the group project. These issues
significantly impact students' ability to quickly

gain proficiency in Django fundamentals
beyond basic templating and apply Django to
build non-standard web applications. Solving
these issues would lead to increased student
confidence with core course technologies, a
deeper understanding of Django architecture
and capabilities, and an enhanced ability to
take on unique, complex projects.

3.2 New Syllabus Requirements
While the team project approach provides
invaluable real-world experience, the current
syllabus relies heavily on self-directed
learning of core technologies like Django.
Students have struggled to quickly gain
proficiency in these unfamiliar skills,
hampering their ability to successfully
contribute to the group project in the early
stages when foundational knowledge is still
developing. Additionally, the limited in-class
instruction on Django itself appears
insufficient to instill the deep conceptual
understanding required to properly apply it to
a complex project.

To address these evident gaps in the current
curriculum, the new syllabus should
incorporate expanded Django training
materials and graded assignments during the
initial weeks to provide robust initial exposure.
In-class code reviews, demos, and hands-on
exercises using Django should be scheduled to
reinforce concepts with guided practice.
Especially in early sprint cycles, increased
professor scaffolding and feedback can help
propel student progress. Finally, breaking the
singular large project into smaller milestone
deliverables can provide measurable
accomplishments that motivate students as
they apply new skills. With enhanced support
and supplemental instruction on key
technologies, students can more smoothly
onboard and gain the proficiency needed in
unfamiliar skills that are foundational to
effectively tackling the group project.
Additional touchpoints throughout ensure
continued comprehension while offering

encouragement through incremental
measurable progress.

3.3 New Syllabus Overview
The revised 15-week project timeline could be
structured as:
• Weeks 1-3: Robust Django training

culminating in a coding project
• Weeks 4-6: Short scope sprint cycles with

professor code reviews
• Weeks 7-9: Core feature development

(Project Milestone 1)
• Weeks 10-12: Advanced feature

development (Project Milestone 2)
• Weeks 13-15: Bug fixing, testing, and

polish (Beta Version)

Ongoing Django instruction would continue
through demos and technical labs during the
project phases to bridge theory with practice.
With training upfront and initial practice on
smaller projects, students can gain confidence
before tackling larger milestone objectives.
The professor can provide close guidance in
the beginning, transitioning teams to greater
independence in later sprints. Individual
assignments also hold students accountable for
foundational knowledge and skills.

This proposed syllabus overview aims to
address identified gaps in the current
curriculum through incorporating added
support, segmented project deliverables, and
supplemental hands-on instruction in the
introductory stages. The course still centers on
experiential learning and team collaboration.
However, the inclusion of more robust upfront
training, structured milestones, and
touchpoints is designed to better equip
students with the requisite skills for success in
this capstone project course.

4. ANTICIPATED RESULTS
Students are likely to demonstrate improved
proficiency and confidence with Django since
the new syllabus structure provides expanded
hands-on training upfront before requiring

students to apply these skills to the large group
project. Additionally, students are anticipated
to gain a deeper understanding of software
engineering concepts, as the in-class
instruction on theory can be reinforced
through practical application in guided coding
activities and hands-on exercises.

The syllabus redesign should also lead to
higher quality team project deliverables, as
students will have gained sufficient knowledge
and practice to contribute meaningfully to the
group work, instead of floundering with
unfamiliar skills. Finally, increased course
satisfaction and perceived value are expected
thanks to the incorporated support and
scaffolding leading to fulfilled learning
outcomes. Students are likely to appreciate the
course more with transparency and purposeful
design.

5. CONCLUSION
The proposed enhancements to CS 3240
represent a stride towards academic excellence
in software engineering education. By
addressing the critical gap in practical
instruction and application, the redesigned
syllabus is poised to foster an environment
where students can not only engage but also
master the complexities of software
development. With a syllabus engineered to
provide appropriate scaffolding and
touchpoints, students can fully leverage the
experiential team project model to develop
professional skills. The proposed redesign
aims to set students up for success in this
capstone course.

The value of these improvements extends
beyond academic performance, potentially
elevating the employability of graduates by
equipping them with a more profound and
applied understanding of software engineering
principles. This capstone project, through its
focus on pragmatic teaching methods,
underscores the importance of adaptability and

hands-on experience in the rapidly-evolving
field of technology.

On a personal note, this project has
significantly contributed to my development
as an educator and computer scientist,
deepening my appreciation for the pedagogical
challenges and rewards of fostering technical
acumen within the constraints of an academic
curriculum.

6. FUTURE WORK
The proposed curriculum redesign for CS
3240 is the starting point for a continuous
improvement process. The next phase would
involve the implementation of the new
syllabus, careful monitoring of student
outcomes, and iterative refinement based on
feedback and results. Follow-up studies are
essential to quantify the impact of these
changes on student proficiency and job
readiness. Collaboration with industry
professionals to incorporate real-world case
studies and guest lectures could further enrich
the curriculum.

There is also scope for adapting the proposed
model to other software development courses.
Researchers might explore the pedagogical
effectiveness of this approach, providing the
potential to take this work in new directions,
such as developing an open-source repository
of educational materials, or creating a
framework for peer-led supplemental
instruction.

REFERENCES
Anonymous (2020, April 30). CS 3240
Advanced Software Development Techniques
Sherriff, Mark [Online forum post].
theCourseForum. https://thecourseforum.com
/course/7610/599/

Django (Version 4.2) [Computer Software].
(2013). https://www.djangoproject.com/.

https://thecourseforum.com/course/7610/599/
https://thecourseforum.com/course/7610/599/
https://www.djangoproject.com/

