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Abstract

Current computational property prediction methods are limited in the number of

molecules they can test at once. To predict properties for thousands or millions of

molecules at once, new techniques must be developed with efficient computational

scaling in the number of molecules simultaneously tested. In this dissertation, I develop

a general approach to carry out computational alchemical free energy calculations

using a variance minimized linear basis function approach. This approach provides

a means to collect data for statistical free energy estimates that scales efficiently

with the number of thermodynamic states or tested molecules. I achieve efficient

scaling by splitting the potential energy function into a sum of pairs of basis functions

and alchemical switches, so that energy is computed through matrix multiplication

instead of simulation force code. The basis function approach allows construction of

optimized, minimal variance alchemical switches from a single simulation, entirely in

postprocessing, removing the need to optimize through iterative simulations. This

is possible because each set of alchemical switches only changes the distribution of

samples over the sampled thermodynamic space. I used this novel technique to find

the variance minimized alchemical pathway to be: coupling Weeks-Chandler-Andersen

decomposed Lennard-Jones forces with a capped repulsive nonbonded basis function,

removing the fully coupled cap once the probability of observing atoms within the

capped region is zero, and then coupling electrostatics through linear scaling. I show

this pathway is just as statistically efficient as common soft core alchemical pathways
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on small organic solutes in water.

I extend the basis function approach to look at atomic parameter searches in

multiple parameter dimensions. The relative solvation free energy differences are

computed for over 130,000 nonbonded parameter combinations of an ion. This system

provides a simple problem where only one particle is alchemically modified to better

focus on development of multidimensional sampling techniques. The computational

effort of generating energies needed for free energy analysis drops from over a thousand

CPU years to tens of CPU seconds because of my basis function approach. I compute

free energies, entropy, enthalpy, and radial distribution functions of arbitrary parameter

combinations using only the data from 203 sampled states. This work also creates an

adaptive sampling process to generate mutual phase space overlap. The phase space

overlap of sampled states is monitored alongside the mean and maximum uncertainty

to determine convergence in a multidimensional space.

I develop a method to predict solvation properties of a combinatorial number

of molecules simultaneously from a single simulation by combining the computa-

tional efficiency of the basis function approach with the multidimensional free energy

convergence techniques. I estimate solvation free energies of 103 molecules combi-

natorially constructed by independently mutating 30 R-groups on a benzene core

with separate basis function sets, creating 30 alchemical dimensions to sample. This

is a practical system where the multi-atom R-groups are alchemically changed at

different rates, creating complex interactions between R-groups and the solvent. I

sample the large chemical space through Hybrid Monte Carlo (MC) and λ-dynamics

to avoid pre-populating MC moves in 30D space, and to avoid numerical instabilities

associated with λ-dynamics. The basis function analysis provides up to 145,000x

speed-up over relying on simulation force code to compute energies required for free

energy estimation.
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Computers aid us in nearly every modern engineering design problem from airplanes

such as designing, assembling, and simulating the flight of the entire Boeing 777 [1];

to space shuttle flight maneuvers and computational fluid dynamics simulations of

re-entry [2], to placing over half a billion transistors on computer processors in a way

that efficiently dissipates heat [3], or to laying out chemical plant piping [4–6]. So why

do we not hear about “computer designed molecules?”

Several areas of chemical engineering have been advanced by computers. Engineers

are modeling gas diffusivities and solubilities in polymeric membranes more frequently

in computers [7, 8]. Simulations allow mechanical property estimation and prediction

of nanoparticle coatings [9, 10]. The drug design field has been developing a wide array

of computational methods such as free energy perturbation, docking, structure-based

design, and pharmacophore identification to name a few [11–14]. Despite all these

advancements, there are many challenges to large-scale computational chemical design.

A major challenge in chemical design is the immense number of molecules that

could be created. For instance, there are over 1060 possible small organic molecules

weighing less than 500 Daltons [15]. Methods like high-throughput screening can

analyze a combinatorially large set of molecules to find new chemicals and materials

for given applications [16, 17]. However, these screening methods become too costly

as the chemical complexity increases, and successful chemicals from these methods

have been relatively rare and still mostly serendipitous [18]. That same amount of

money could be put towards computing time on readily available computers. Thus as

computing becomes cheaper, computational prediction techniques will become cost

competitive with, or reduce the cost of, leading experimental techniques. For instance,

the United States Government reports that computational techniques have reduced

the cost of drug development by $130 million on top of reducing the average research

time by one year [19, 20].

There have been a number of hardware developments in the last decade or so
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which have vastly improved our predictive capabilities. The proliferation of multi-core

CPUs on desktop computers and clusters have greatly increased serial and parallel

computational power. Specialized ANTON processors allow us to simulate milliseconds

of simulations within two months [21]. The advent of GPUs have added an order

of magnitude of speed to simulations, modeling, visualizations and more due to the

GPU’s ability to handle massively parallel processing [22–25]. Distributed and cloud

solutions such as Folding@Home [26], Amazon AWS [27], and Google Exacycle [28]

has made cost-effective resources available to everyone which used to take dedicated,

self-maintained hardware.

Molecular simulation software developers have taken advantage of these hardware

advancements to develop more powerful chemical simulation software. More complex

chemical interactions are being included in models such as polarization in AMOEBA [29–

32], and hydrocarbon and transition metal catalyzed reactions in ReaxFF [33, 34].

We are also seeing nearly every classical force field relying on quantum mechanical

calculations to improve their accuracy. Molecular simulation software is being made

available to the public such as GROMACS [35–38], OpenMM [32, 39], HOOMD-

blue [40–42], and TINKER [29, 31, 43]. We are also seeing releases of commercial

software for industrial computational drug design in FEP+ [44]. These advances have

given us a strong platform with which to accurately and straightforwardly simulate a

given molecule. Now, the bottleneck is no longer the hardware and software. Instead,

the new bottleneck is efficiently estimating properties on many different molecules to

determine which ones to synthesize.

The few exiting techniques for looking at chemical properties in large chemical

spaces do not scale well beyond very simple changes in molecular structure. Virtually

all publications for chemical property estimation look at the properties of a single

molecule type in a single surrounding environment per simulation. Simultaneously

gathering data from multiple chemically distinct molecules currently requires running
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independent parallel simulations. Outside of the drug design field, only data mining

techniques have met with moderate success for simultaneous multi-molecule type

property predictions [45–47]. They unfortunately require substantial reference data

and are very prone to over fitting as small changes in molecular structure can result

in large changes to thermodynamic properties, even for approaches which couple

data mining with experimentation to fill in the gaps [48]. Within drug design, the

methods of simultaneously estimating properties in chemical spaces are limited to

either compounds which roughly share the same volume [49, 50], or can only scale

to a few molecular structure changes before computational time becomes a limiting

factor [51, 52]. There is substantial room for improvement in developing new methods

for estimating properties across large chemical spaces. The hardware and software

advances over the last decade have reach the point that those methodological advances

can now be developed.

My dissertation work develops a method of estimating thermodynamic properties in

a combinatorially large chemical space by taking advantage of powerful statistical tools

alongside GPU accelerated molecular simulations. This method allows one to compute

the properties of thousands of molecules simultaneously from a single simulation, and

could be straightforwardly extended to millions or more. This approach bridges the

current gap in computational property prediction by designing a statistically efficient

simulation, sampling multiple molecules simultaneously, and analyzing those samples

in computationally efficient ways. This dissertation focuses on classical molecular

simulations as they are better suited to sampling many configurations the molecules

can adopt orders of magnitude faster relative to quantum simulations [53]. The

application of this approach to chemical property prediction required the development

of several pre-requisite methods, covered in the upcoming chapters.

This work specifically focuses on predicting the relative free energy of solvation for

small, organic molecules. However, the methods are relatively general and would work
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for infinite dilution scenarios in any solvent. A large number of other thermodynamic

properties can be derived from various derivatives in free energy, and a free energy

difference itself provides information about binding affinity, equilibrium partitioning,

and activity (from excess free energy). I choose to look at the solvation free energy

difference as it can be a more difficult thermodynamic property to experimentally

measure, but easier to estimate in simulation with the right statistical tools.

This dissertation is organized into the following way. The remainder of this chapter

establishes the statistical mechanics and current computational techniques to predict

molecular properties in classical condensed phase simulations. Chapter 2 designs

a basis function method to simulate molecules in a statistically efficient way which

minimizes the number of required samples, and in a computationally efficient way

to reduce the computational time needed to estimate thermodynamic properties.

Chapter 3 explores different designs and practical sampling options for the basis

function method to identify the optimal parameters for simulating with real molecules.

Chapter 4 applies the basis function method to the problem of determining optimal

ion parameters and shows how the methods can compute thermodynamic properties

for hundreds of thousands of parameter combinations in a computationally efficient

manner. Chapters 2-4 are my current publications modified slightly to fit in as

a chapter [54–56]. Chapter 5 applies the basis function method to the solvation

properties of multiple molecules built combinatorially from a common structure. This

last chapter covers implementing the basis functions in a simulation package, applying

the basis functions to sample combinatorial chemical space from a single simulation,

analyzing the simulation to compute thermodynamic properties at multiple chemicals,

and the current implementation limitations as well as how improvements could be

made in the future.
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1.1 Estimating Properties by Computer Simula-

tion

Computer simulations provide an attractive supplement or precursor to laboratory

experiments. Simulations allow prediction of physical, thermodynamic, transport

and other properties for chemicals or materials of arbitrary complexity, including

mixtures, with moderate accuracy [57–63]. Data from simulations can help estimate

molecular properties without a chemical laboratory space or requiring synthesized

chemicals. Simulations cannot completely replace laboratory testing, but instead

provide better starting points for experimental efforts. The drug discovery field, for

instance, uses simulations to identify sets of favorable leads and pharmacophores which

can then be synthesized and tested in a laboratory, ruling out many structures along

the way [12, 13, 53, 64]. Chemists can generate hundreds to thousands of molecules

from these leads, speeding up the design process.

Physics or statistics based molecular simulations can provide property estimates

when knowledge based or semi-empirical methods cannot. Group contribution methods

such as UNIQUAC [65] and UNIFAC [66] cannot capture all the subtle interactions

between the different molecules such as multi-residue proteins interacting with complex

drug molecules [67]. The quantitative structure-activity relationships (QSAR) method

helps predict properties for biological molecules similar to group contribution methods.

QSAR methods examine the response that molecular fragments induce in a biological

system and determine the entire molecule’s interaction by the sum of its parts [68–70].

However, QSAR requires a large number of synthesized molecules which can be screened

in a laboratory to determine the response in a biological system, limiting effectiveness

in searching novel, unsynthesized chemicals. Molecular dynamics (MD) or Monte

Carlo (MC) simulations capture all of the detailed interactions by calculating the

interatomic forces of each particle on every other particle. Simulations can be run on
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both synthesized, and unsynthesized molecules, providing a way to test any conceivable

chemical. The force field describing the interatomic forces is frequently applicable to

a specific class of molecules, such as organic and pharmaceutical molecules [71–76].

Even the quality of property estimates of simple systems which are generally well

described by group contribution methods can be enhanced by simulations [77, 78].

Estimating molecular properties requires varying degrees of sampling per molecular

system. For instance, computing the heat capacity of a system will take several

orders of magnitude more samples than computing the internal energy to the same

precision [79]. The number of required samples also depends on which molecule is

being studied. Computing accurate protein folding kinetics can require nanoseconds

(ns) to milliseconds (ms) and higher of simulation, depending on the protein [80].

1.1.1 Computational Free Energy Methods

Estimating thermodynamic properties by simulation requires defining the physical

interactions in the molecular system. A simulation must define a set of atoms,

the Hamiltonian, the statistical ensemble being sampled, and all ensemble constant

properties such as pressure, temperature, and simulation volume. The Hamiltonian

consists of the all atomic interactions defined by the force field and external forces

acting on the atoms such as position restraints or magnetic fields. For example,

consider simulating a single methane in a box of water under a constant number

of particles (N), pressure (P ), and temperature (T ); also known as the isobaric-

isothermal ensemble (NPT ). The defined physical interactions are all of the atoms for

the water and methane, all bonded and nonbonded forces, and finally, the pressure and

temperature the simulation should be kept at. We refer to this collection of physical

interactions as “the thermodynamic state” which differs slightly from the standard

macroscopic thermodynamic state since we must specify interatomic interactions as

part of our model.
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We can compute useful thermodynamic properties through derivatives in the free

energy or free energy differences. The free energy alone does not provide useful property

estimates as it can only be computed up to an additive constant in simulation. If the

potential energy of a system was shifted by a constant amount, the free energy would

also be shifted by that amount. Fortunately, only free energy differences or derivatives

provide useful thermodynamic estimates, so this additive constant cancels out when

computing thermodynamic properties. Computing accurate free energies between two

states requires generating samples which connect the states in a statistically low error

manner.

Statistical mechanics provides formulas to compute thermodynamic properties

from molecular models. Virtually all of these formulas depend on statistical averages

estimated from the phase space of the thermodynamic state. The phase space of any

thermodynamic state is the complete set of position and momentum, or “configurations,”

that the atoms in that state can access. The phase space of all configurations can be

counted in continuous space and related to the partition function, Z, in a simplified

form as

Z =

∫
Γ

exp (−u(x)) dx (1.1)

u is the reduced potential energy function, x is a given configuration, and
∫

Γ
is an

integral over the phase space volume, which is over all positions and momentum of all

particles in the system.

The reduced potential provides a convenient function to generalize the definition

of partition function and thermodynamic property estimates. I define the reduced

potential energy function in Eq. (1.1) as

u(x) = β [U(x) + PV (x) + µN(x)] (1.2)

where β = 1/(kBT ), U is the potential energy function, V is the volume, and µ is
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the chemical potential. The exact form of Eq. (1.2) used in Eq. (1.1) depends on the

sampled statistical ensemble. For instance, in the canonical ensemble, held at constant

T , constant V and constant N (NV T ) only the U(x) term appears in the reduced

potential, but in the NPT ensemble, the PV (x) term will also appear. Eq. (1.1)

assumes the particle masses are constant, allowing an analytical solution to the kinetic

energy contribution to the partition function. This simplification generates a leading

constant which has been omitted for simplicity. The reduced potential can be used to

estimate either the Helmholtz (A) or Gibbs (G) free energy depending on the sampled

ensemble. I generalize this choice by defining a general free energy, F , and computing

it from the partition function as

F = −kBT lnZ, (1.3)

with a free energy difference computed as

Fj − Fi = (−kBT lnZj)− (−kBT lnZi) (1.4)

∆Fij = −kBT ln

(
Zj
Zi

)
. (1.5)

Generally, we cannot directly compute the partition function, but we can compute

a ratio of partition functions [81]. However, estimating this ratio requires statistical

information about the relation between the two states, and this requires phase space

overlap.

Accurate free energy estimates require phase space overlap between states of

interest. The phase space overlap is a measure of how many configurations from a

given state are observable in another state. This measure provides a relationship

between two states, allowing more accurate estimate of the partition function ratio. If

there is little to no phase space overlap between the states, we cannot compute accurate

free energy differences [81]. We can sample at multiple states along a thermodynamic
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path connecting the target states to generate phase space overlap through a series

of overlapping states. As an example, Fig. 1.1 shows a case where I draw samples

from harmonic oscillators with different centers. Little to no phase space overlap

exists when I only draw samples from the end states as in Fig. 1.1b. If I sample along

multiple intermediates, Fig. 1.1a, I create a path of good phase space overlap, and

thus make it possible to calculate a better estimate of the free energy difference.
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Figure 1.1: Sampling multiple intermediate states creates phase space overlap between
the end states. Shown is the unnormalized probability of generating a given x-
coordinate for a set of harmonic oscillators whose centers are distributed along the
x-axis, shown as different colors. The harmonic oscillators in (a) create a path of
overlapping phase space, shown by hatches. No such phase space overlap exists in (b),
so estimates of the free energy difference will be poor.

Since free energy is a state function, the free energy difference between two target

states can be estimated as the sum between any series of states, i.e.

F1 − FN = −kBT ln

[(
Z1

Z2

)(
Z2

Z3

)
· · ·
(
ZN−1

ZN

)]
. (1.6)

Those running free energy simulations frequently choose computationally efficient

thermodynamic paths to lower the computational costs of the free energy calculations.

The thermodynamic path we choose does not have to be physically re-creatable in a

laboratory, since free energy is a state function. A commonly chosen non-physical path
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is to change the atomic interaction parameters such as bond lengths, Lennard-Jones

parameters, and charge so at one end of the path state A is represented, and state

B is represented at other end. Linearly scaling the potential energy along the path

provides this transformation and can be represented with

u(r, λ) = (1− λ)uA(r) + λuB(r) (1.7)

where r is the interatomic distance, and λ is the transformation variable. For example,

consider the relative solvation free energy between benzene (state A) and phenol

(state B). At state A, the OH group does not interact with its surroundings so uB

does not contribute to the energy and is effectively not present in the system. As

λ goes from 0→1, one of benzene’s hydrogens contributes less to the potential and

the OH group contributes more until only the OH group is present. Researchers in

molecular simulation have designed many thermodynamic paths between molecules or

for inserting molecules into dense fluids [14, 57, 81–89], each with their own strengths

and weaknesses [90–92]. There has also been limited effort in designing paths to

directly maximize phase space overlap [54, 55, 84, 93–97]. Estimating the free energy

from these paths is also done with any number of methods [81, 93, 98–101], where

each method also has its own strengths and weaknesses [60, 102]. Although significant

effort has been put into computationally efficient paths, these only make it faster to

carry out estimates of single free energy differences. But making single calculations

faster does not reduce the scaling of the exponentially large problems of searching

through chemical spaces.
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1.1.2 Current Limitations in Simulation-Based Estimates of

the Free Energy

Although computer power and accuracy is rapidly increasing, we mostly only estimate

free energy for a limited number of molecules per simulation. One of the major

limiting factors to estimating multiple molecules’ properties is representing them in

simulations. Consider again the benzene to phenol example, there is a clear set of

atoms whose interactions change along a thermodynamic path. However, how would

we transform between all the different amino acids in a single simulation? A few

researchers have designed thermodynamic paths connecting multiple molecules through

multidimensional paths [51, 52], shared volume methods [49, 50], and iteratively

updating the thermodynamic path [91, 103, 104]. The researchers implementing these

methods have been able to generate free energy differences for 2 to 103 structurally

similar molecules, with more theoretically possible [50]. As the number of target

molecules, and thus thermodynamic states, increases, the computational cost of

generating the statistical information required for free energy estimates also increases.

Free energies estimators require the potential energy of each configuration evaluated

at multiple thermodynamic states. The number of potential energies required for free

energy estimates depends on which estimator is chosen. Sophisticated free energy

estimators such as the Weighted Histogram Analysis Method (WHAM) [99, 100] or the

Multistate Bennett Acceptance Ratio (MBAR) [101] operate by analyzing the mutual

phase space overlap between all states simultaneously. Analyzing all mutual phase

space overlap provides higher accuracy estimates for the free energy than methods

which only estimate free energy differences from two states such as the Bennett

Acceptance Ratio (BAR) [105] or from a single state such as Exponential Averaging

(EXP) [98]. The free energy estimated by MBAR, the lowest bias estimator [101], is
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computed by

Fi = − ln
K∑
j=1

Nj∑
n=1

exp (−ui(xjn))∑K
k=1Nk exp (Fk − uk(xjn))

(1.8)

where k loops over all sampled states, j loops over all states (sampled and unsampled),

n loops over all Nj samples in state j, and ui indicates the reduced potential energy

from state i. ui(xjn) and uk(xjn) indicates that the potential energy of every collected

sample must be re-evaluated at every thermodynamic state, not just the state the

configuration was drawn from.

Figure 1.2: Reweighting methods determine the probability of observing any config-
uration in any state. Configurations (colored circles) are generated in two separate
states (outline shapes) and the potential energy for each configuration is evaluated in
thermodynamic state A and thermodynamic state B. These potentials provide the
statistical information necessary to estimate free energies.

The process of re-evaluating potential energy is visually represented in Fig. 1.2. The

figure shows two states and two configurations we want the potential energies of. We

evaluate the potential energy for each configuration, generated from its own state, at

both states. All the free energy estimators mentioned previously require us to carry out

the re-evaluation process multiple times. Re-evaluating potentials for BAR, WHAM,

and MBAR helps estimate the statistical weight each sample has to adjacent (BAR)

or all other (WHAM, MBAR) states, this process is known as reweighting. Once

samples are reweighted, the free energy can be estimated from the desired method.
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The next chapters look at my designs for thermodynamic paths which apply these

fundamental statistical mechanics to minimize the computational cost of the energy

re-evaluation and minimizing the samples required to reach a target statistical error.
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Designing Basis Functions to

Compute Thermodynamic

Properties
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2.1 Introduction

This chapter has previously been published [54] as: L. N. Naden, T. T. Pham, and

M. R. Shirts. Linear Basis Function Approach to Efficient Alchemical Free Energy

Calculations. 1. Removal of Uncharged Atomic Sites. J. Chem. Theory Comput.,

10:1128-1149, 2014.

Designing new molecules with desired thermodynamic properties requires effi-

cient prediction methods to explore even a small fraction of combinatorial chemistry

space. [15] Accurate simulation-based methods allow us to predict thermodynamic

properties sensitive to small molecular changes, making them highly valuable for large

chemical space screening. Two thermodynamic properties that have been studied

most intently by simulation methods are the free energy of solvation and ligand

binding free energies, as these quantities can provide insight in to the efficacy of drug

candidates. [106] There are also many other properties of physical interest that can be

related to free energies, including solubilities [107] and membrane permeabilities. [108]

“Alchemical” transformations are common computational methods for calculating

free energy differences. In these methods, the free energy is estimated along a

computationally efficient, often nonphysical thermodynamic path connecting the end

states of interest. Estimating the free energy along such a path can be performed

with several methods each having their own advantages and disadvantages. [60, 102]

Choosing a statistically efficient pathway, however, is a non-trivial issue. [84–88, 95–97]

In virtually all methods, we must simulate intermediate states along the coupling

pathway to obtain a free energy with acceptable statistical error. Some methods

require the potential of a configuration to be evaluated at neighboring states along the

pathway, such as the Bennett acceptance ratio (BAR) [105] or free energy perturbation.

Multistate methods require the potential of a configuration from one state to be

evaluated at every other state, such as the Weighted Histogram Analysis Method

(WHAM) [99, 100] or multistate BAR (MBAR). [101] Thermodynamic integration
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(TI) requires derivatives along the coupling path to be computed at the simulated

state.

The challenge for rapid calculation of free energies is that the cost of generating

enough samples to obtain sufficiently accurate estimates can become prohibitively

large if there are numerous intermediate states along the path or if the systems have

long correlation times at some or all of the intermediate states. To help overcome

this problem, we can select coupling pathways that have high overlap in configuration

space among neighboring states along the path to reduce the amount of simulation

required for a given statistical error tolerance. [84, 85, 95] The number of intermediate

states required along a pathway will depend on the specific molecular transformation,

the statistical tolerance for the problem, and the computational budget.

Increasing the overlap in configurational phase space along a path is equivalent to

minimizing the statistical variance of free energy calculations along the pathway using

TI. More precisely, the error in the free energy estimation using TI is proportional to

the square root of the variance over the number of samples taken. [84, 97] The variance

is an intrinsic property of the path along which the transformation is performed,

independent of the number of samples, and determined by the thermal fluctuations

around equilibrium at states along the pathway. [96] The variance of each point along

the pathway can also be thought of as the square of the Riemannian metric used

to measure thermodynamic length along that pathway. [93, 94, 96] Minimizing the

thermodynamic length between states will maximize their phase space overlap, and

reduce statistical error in free energy calculations. This relationship is exact for TI,

but can be shown to be approximately true for other free energy methods. [84]

A common approach which produces a fairly statistically efficient alchemical path

for the disappearance or appearance of molecules with Lennard-Jones site potentials
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is the “soft core” potential, with the most general form [82–84]

U(r, λ) = 4εijλ
a

[(
1

α(1− λ)b + (r/σij)c

)12/c

−
(

1

α(1− λ)b + (r/σij)c

)6/c
]

(2.1)

where U(r, λ) is the pairwise nonbonded potential depending on radial distance r

between two atoms and the alchemical coupling variable λ. a, b, and c are positive,

usually integer, constants, α is a positive free parameter that can be optimized, and

εij and σij are the Lennard-Jones (LJ) parameters. Potentials of this type provide

a relatively good phase space overlap between neighboring states which in turn

reduces the variance. [82–84, 105] As λ goes from fully coupled to decoupled, soft

core potentials cause the excluded volume region in the pair interaction to gradually

decrease in energy, allowing solvent molecules to “leak” into the excluded volume of

the solute, until the solute excluded volume disappears completely. The correct choice

of constants can reduce the total variance summed over all intermediate states for this

class of potentials. The original version of soft core potentials had a = 1 or a = 4,

b = 2, c = 6, and α = 0.5. The choice of a = 1, b = 1, c = 6, and α = 0.5 is about

30% more efficient; [58, 84] we will refer to this choice as the “1-1-6” potential. A soft

core potential which is near minimal over all possible pair potentials of r and λ has

recently been developed with parameters a = 1, b = 1, c = 48 and α ≈ 0.0025, which

we will refer to as the “1-1-48” potential. [84, 97]

Soft core potentials increase the difficulty of implementing free energy methods

on new, highly parallelized architectures. Developing new, generalized algorithms on

architectures such as GPUs or Many Integrated Core (MIC) platforms has been of

large interest to the molecular simulation community. Coding generalized algorithms

on these platforms is a non-trivial task and soft core potentials add complexity

as configuration and alchemical information must both be passed to the platform

calculating the inner force loop due to the nonlinear coupling of the two variables.
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For free energy methods requiring derivatives, the derivative would also need to

be calculated on the platform, further increasing difficulty in quickly writing new

code. Eliminating the need to code alchemical transformation-specific information in

the accelerated inner loops would reduce the time needed to implement free energy

methods on new platforms, which has lagged compared to the implementation of other

molecular mechanics functions on these platforms.

We can reduce the difficulty in coding free energy on new platforms and remove

the free energy calculations from the inner loops if we write the potential energy as

U(r, λ) =
N∑
i=1

hi(λ)ui(r) + uunaffected(r) (2.2)

where hi(λ) are alchemical switching functions depending only on λ, and ui(r) are

pairwise potential basis functions depending only on r. In this equation, N is the

total number of basis function and alchemical switch combinations, and uunaffected

is the portion of the potential energy of the system not dependent on the coupling

parameter. For example, to insert a single solute site from a box of solvent, we could

write

U(r, λ) = h1(λ)

Nsolvent atoms∑
j=1

ULJ(r) + h2(λ)

Nsolvent atoms∑
j=1

Uelectrostatic(r) + Usolvent-solvent(r)

(2.3)

with h1(λ) = (2λ)4 for 0 < λ < 1/2 and 1 for 1/2 < λ < 1, and h2(λ) = 0

for 0 < λ < 1/2 and 2λ − 1 for 1/2 < λ < 1. This would be equivalent for a

workable, though not particularly statistically efficient pathway of first turning on the

Lennard-Jones interaction with a λ4 dependence, and then turning on the electrostatic

interaction with linear dependence. We can certainly construct a more efficient path,

as we will show, but this provides an example how existing approaches fit into this

general formalism.
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Using this method, the terms needed for different free energy methods can then

be calculated outside of the inner loop. We only need to compute the potential

energy of the basis functions ui(r) once for all intermediate states, with the rest of the

required calculations involving manipulations of the coupling functions hi(λ) outside

the force calculation of the inner loop. Additionally, no special code for the inner

loop is required to compute ∂H/∂λ, the derivative of the Hamiltonian, as it can be

calculated directly from the basis function terms with minor post-processing.

Some instances of such linear potentials have been studied previously, so the

functional form itself is not entirely novel. For example, initial free energy applications

often multiplied the entire potential energy of the molecule disappearing with a single

linear scaling term, of the form U(λ, r) = (1 − λ)Uinitial(r) + λUfinal(r). However,

these simplest linear combination potentials are generally no longer used for problems

involving changing numbers of atomic sites because they lead to highly inaccurate,

numerically diverging free energies. [82, 83, 85, 95, 109] This occurs because r−n terms

common in many intermolecular potentials create an infinite potential, or singularity,

at r = 0 for all λ except λ = 0. The sudden jump of the potential from infinity to zero

when approaching λ = 0 causes the thermodynamic expectation of 〈∂u/∂λ〉 to diverge,

giving large variances and uncertainties. [95] This problem is sometimes called the

“endpoint catastrophe.” [85, 109] As discussed, soft core potentials avoid this problem

as the singularity is replaced by a truncated core potential at r < σ that gradually

disappears as the coupling parameter reaches the decoupled state.

Many simulation packages have moved away from linear interpolation and im-

plement some form of soft core method for free energy calculations. For example,

GROMACS, [110] GROMOS, [86, 87] CHARMM, [111] and AMBER [112] all imple-

ment a variant of soft core potentials to carry out free energy calculations with an

option to do simple linear interpolation. Some of the packages allow interpolation

with a power such that U(λ, r) = (1− λn)Uinitial(r) + λnUfinal(r), which removes the
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endpoint catastrophe for n ≥ 4, but can still have simulation stability issues for

some systems and time steps. [85] GROMOS allows defining products of an arbitrary

function of λ, similar to our hi(λ), times the soft core equation (Eq. 2.1). However,

these functions still involve the soft core functional form, leaving r and λ coupled. In

all packages, the choice of “best” path is left to the user. The basis function approach

we present here differs from all soft core methods in that it requires that r and λ be

decoupled from each other in separate functions and it differs from traditional linear

interpolation since more complex switch functions than λn are permitted. Despite

this limitation on the basis functions, we will show that a near optimal path can be

found to minimize statistical error with this basis function approach.

Recent work has tried to identify new potential formalisms that can avoid the

endpoint catastrophe while still keeping the advantages of a linear basis potential, such

as the form described by Buelens and Grubmüller. [88] This approach can be written

as single basis function from Eq. (2.2) as U(r, λ) = λ
∑

affected pairs u(r) but avoids the

infinite potential at r = 0 by setting a maximum finite value for the basis function

u(r) and creating a polynomial switch from the LJ function to this cap. However, it is

unclear what the statistical efficiency of this approach is, as it was not directly tested,

and the fact that significantly more intermediates are required near λ = 0 than near

λ = 1 indicates it is not a particularly statistically efficient path. [88] Additionally,

the approach requires conditionals to be evaluated with every pair potential to check

for the needed for caps, which could prove problematic in some highly vectorized

implementations.

The goal of this work is to present a formalism for developing low-variance pathways

for molecular transformations based on linear combinations of more than one coordinate

basis set. This chapter combines the implementation simplicity of the linear basis

potential approach and the statistical efficiency of optimized soft core potentials. We

will follow this approach to propose statistically efficient linear basis pathways that
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work in general cases of removing molecules from dense fluids. We can minimize the

variance of families of linear basis potentials with the methods we have previously

developed, [84, 97] resulting in a family of highly statistically efficient alchemical paths

that also reduce the cost of re-evaluating potentials and can simplify implementing

free energy code.

2.2 Theoretical

We can write the most general version of the linear basis potential as:

U(r, λ) = h(λ)uT (r) + uunaffected(r) (2.4)

which is a vectorized version of Eq. (2.2). Here, the vector functions h(λ) =

[h1(λ), h2(λ), . . . , hN(λ)], and u(r) = [u1(r), u2(r), . . . , uN(r)] replace the individual

components in the previous equation. λ can vary from 0 to 1 and each of the N

hi(λ) is a monotonic function of λ which has endpoints hi(0) = 0, resulting in a fully

noninteracting ui(r) term, and hi(1) = 1 which results in a fully interacting ui(r)

term. The only requirements we place on the hi(λ) that they are continuous and that

dhi(λ)/dλ ≥ 0 i.e. it is monotonic, although we allow some of hi(λ) to be fixed while

the others change. This formalism means that λ can be thought of as a curve through

the N -dimensional alchemical space mapping the single [0, 1] domain to the N hi(λ)

which span a N× [0, 1] range. A key to our linear basis potential approach is that there

are multiple hi(λ) and multiple basis functions which together can produce a broad

range of functions that can be adjusted to create a highly statistically efficient pathway

with minimum variance. We will occasionally leave off the explicit dependence of hi(λ)

on λ and write hi in some equations for simplicity.

Computing the potential energies at different values of λ becomes trivial if the

basis function energies are tabulated, and can be done either in code (but outside the
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inner loop) or in post-processing, as long as the energies of each basis function are

stored at each configuration of interest. The derivative ∂u/∂λ can also be computed

trivially using the basis function energies, because:

∂U(r, λ)

∂λ
=

N∑
i

∂U(r, λ)

∂hi

∂hi
∂λ

=
N∑
i

∂hi
∂λ

ui(r) = h′(λ)uT (r) (2.5)

where h′(λ) = [∂h1/∂λ, ∂h2/∂λ, . . . ].

There are two main choices that must be made to design a linear basis potential

representation of some pathway through alchemical space.

1. Choosing the basis functions, u(r)

2. Choosing the alchemical switching functions, h(λ)

The basis functions must be chosen to match the potential function at the end states

as well as avoid the endpoint catastrophe. Beyond that, there is significant freedom in

the choice of basis functions. Given a set of basis functions satisfying the conditions

at the endpoints, the alchemical switching functions can be chosen to minimize the

variance of the path along λ. The statistical uncertainty of a simulation performed

along this path is a function of both the choice of basis and the choice of switches.

However, given a choice of basis, there exists a single set of switches that minimizes

the variance of the path.

There is one complication we encounter while determining the alchemical switches

given a set of basis function. As we will see, approaches to minimize the variance

over all the switches simultaneously break down when one or more of the hi(λ)

functions are zero while the others change. Unfortunately, many of the pathways

most straightforward to implement may have this feature; for example, in Eq. (2.3),

we change the Lennard-Jones and electrostatic energy terms sequentially. We will

therefore separately consider the “alchemical schedule,” the choice of the ranges of
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λ where each hi(λ) is changing or constant, and treat this as a third choice we must

make to determine the pathway.

To help visualize what we mean by a schedule, Fig. 2.1 shows a few sample

schedules that could be taken connecting initial and final states. All schedules will by

definition give the same free energy between end states, but some alchemical schedules

are larger variance pathways than others, and some may give completely divergent

answers. For example, turning on attractive electrostatic interactions before turning

on any repulsive Lennard-Jones interactions will lead to negative infinite potential

energies and crashing simulations.
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Figure 2.1: Different alchemical schedules can be used to carry out the
same free energy transformation, each with different variances. An example
of different choices of the alchemical schedule is shown for when only two hi(λ) are
present. Both hi’s could change simultaneously (black) as with attractive and repulsive
components of soft core potentials. Each hi could be changed one at a time (blue or
green) such as the common case when decoupling electrostatics before other forces.
Alternately, a custom schedule (red) could be chosen to improve sampling at the
corresponding states. All pathways yield the same end states and thus the same values
for state functions. However, some paths may be more statistically efficient than
others.

Due to the complexity in general design of a linear basis set, we will use a single

simple schedule throughout this chapter and focus on the logic of the other design

choices. We will leave the selection of best schedule for a specified choice of basis

functions to Chapter 3. We will also focus primarily on determining statistically

efficient paths for solute-solvent nonbonded interactions. Solute-solute interactions,

both bonded and nonbonded, will behave differently because of the strong couplings

in intramolecular degrees of freedom.
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2.2.1 Fixing the Alchemical Schedule

The three main nonbonded interactions used by most pairwise force fields are repulsive,

van der Waals dispersion, and electrostatic forces. In this chapter, we assume the

electrostatic interactions are fully decoupled using the linear alchemical switch defined

by helectrostatic(λ) ∝ λ before any alchemical modifications of the attractive or the

repulsive interactions. This linear electrostatic switch is a common choice that has

been found to be quite statistically efficient and often considered best practice. [58, 85,

113, 114] The correct amount of simulation effort to devote to turning off electrostatic

interactions will depend on the contribution to the statistical error of the electrostatic

versus Lennard-Jones terms, which will depend on the magnitude of the partial

charges. We will leave the further optimization of this choice for Chapter 3, and

instead concentrate on the more challenging removal of Lennard-Jones terms. After

the electrostatics are decoupled, helectrostatic(λ) will be 0 for the remainder of the

transformation, e.g. we would set h2(λ) = 0 for all λ shown in our example Eq. (2.3).

For this chapter, we also choose for both the repulsive and the attractive forces

to be modified simultaneously with alchemical switches hrepulsive(λ) and hattractive(λ)

respectively. These switches will change together only after helectrostatic = 0. Because

the electrostatics are assumed to already be off, any solvation free energy differences

presented in this chapter will be of the uncharged molecules. This allows us to

directly compare to the magnitude of statistical error computed using soft core

simulations. [84, 97] For simplicity, we will also rescale λ to represent only this non-

electrostatic part of our schedule such that hrepulsive(λ = 0) = hattractive(λ = 0) = 0

and hrepulsive(λ = 1) = hattractive(λ = 1) = 1.

This particular choice of schedule and electrostatic alchemical switch is reasonable

because the disappearance of Lennard-Jones terms is usually the largest contribution

to the statistical uncertainty of free energy calculations. [84] Further optimizing

the components of the linear combination potential for molecules with significant
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electrostatic interaction, as well as examining more general choices for alchemical

schedules will be addressed in a Chapter 3.

2.2.2 Selecting Accurate Basis Functions without Singulari-

ties

The singularity in the basis functions can be avoided by setting a maximum finite

potential referred to here as a “cap.” If the cap on the potential is large enough, then

the probability of observing atoms within the capped region of the potential energy

surface will be effectively zero. This capped potential method was also explored by

Buelens and Grubmüller [88] who examined a linear coupling parameter, but we wish

to generalize the potential in our more general linear basis potential formalism.

Using a capped repulsive potential function as one of our basis functions for a

minimum variance path is very strongly suggested by inspecting the shape of the

optimized soft core potential, as shown in Fig. 9 of Pham and Shirts. [84] In the 1-1-48

form of the soft core potential, at intermediate states, for r < 0.8σij, the potential

becomes almost completely flat with respect to r, looking very much like a capped

potential in r with a capping distance independent of λ. This capped portion of the

potential is then scaled to zero as λ→ 0.

If the capped potential is used as the end state of the simulation, then the capped

potential at the fully coupled state must be high enough such that the probability

of observing a pair of atoms in the capped region is statistically zero on the time

scales of any simulation. We wish to quantify the deviation that would result from

replacing the full repulsive potential with a cap. Because the largest contribution

to the variance in introducing an atomic interaction site comes from two-particle

repulsive interactions, [84] we can approximate the radial distribution function g(r, λ)
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when two particles are very close by the zeroth-order approximation

g(r, λ) ≈ e−βU(r,λ) (2.6)

where β = 1/kBT and T is the temperature. If this RDF approximation for the capped

Lennard-Jones potential and the uncapped potential are sufficiently well matched,

the basis functions should be statistically identical to other potentials at the fully

coupled end state. We will eventually find that there are problems with using an

approximate capped end state. However, we will also show that any deviations caused

by the capping procedure can be addressed with minimal additional complexity.

To keep with the basis function formalism, we treat the short-range repulsive

forces and the long-range attractive forces separately by applying the Weeks-Chandler-

Andersen (WCA) decomposition [115] to our capped potential. The decomposition

provides us two differentiable potential basis functions and is written as

Uwca(r) = uR(r) + uA(r) (2.7)

where the subscripts R and A denote the repulsive and attractive terms respectively.

Denoting uLJ(r) as the full Lennard-Jones potential, the individual terms of the WCA

potential can be written as

uR(r) = uLJ(r) + εij for r < 21/6σij

= 0 for r ≥ 21/6σij (2.8)

uA(r) = −εij for r < 21/6σij

= uLJ(r) for r ≥ 21/6σij. (2.9)

The WCA decomposition avoids the unrealistic negative singularity from the attractive

van der Waals forces brought on from capping only repulsive interactions. Setting
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an arbitrary negative cap is an alternative, [88] however, this adds extra parameters

which we wish to avoid for simplicity.

To make the function continuous, the repulsive potential must be capped smoothly.

We choose a smooth polynomial function defined over the transition region. This

polynomial should be monotonic to avoid creating artificial minima, as well as not

imposing an excessive deviation in the force from the normal Lennard-Jones potential.

We avoid these problems by setting a quartic polynomial to match the potential energy

values and derivatives at either end of the transition region, and the second derivative

of the potential at the higher r endpoint. The second derivative condition on the

quartic polynomial was chosen to keep the polynomial monotonic over the transition.

Cubic polynomials sometimes fail to be monotonic over the transitions we tested with

different Lennard-Jones parameters. Applying these changes to the repulsive basis

function gives

uR,cap = ucap for r < fcapσij

= Ar4 +Br3 + Cr2 +Dr + E for fcapσij ≤ r < fswitchσij

= uLJ(r) + εij for fswitchσij ≤ r < 21/6σij

= 0 for r ≥ 21/6σij (2.10)

where fcap is the fraction of σij over which the capping region extends and where the

switch starts and fswitch is the fraction of σij at which the switch ends and the normal

Lennard-Jones function resumes. ucap = uR(fcapσij) is the capped, constant potential,

the constants A-E are fit to meet the conditions at either end of the transition region,

and the choice of the constants of fcap and fswitch will be discussed in the next section.

The two basis functions we use in the vector u(r) are thus Eq. (2.10) for the repulsive

term and Eq. (2.9) for the attractive term.
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The final potential energy term, with alchemical switches is then

uWCA(r, λ) = hR(λ)uR(r) + hA(λ)uA(r) + hC(λ)uC(r). (2.11)

Deviation of the Capped Potential from a Fully Coupled Lennard-Jones

Potential

The thermodynamic difference between the capped WCA potential and a normal

Lennard-Jones potential will depend on how large the cap is. The value of the cap will

depend on the choice of the transition region between fcap and fswitch in Eq. (2.10).

If the cap is high enough, i.e. small fcap, then there will be no statistical difference

between the capped potential and the Lennard-Jones potential, as the energy barrier

will prevent pairs of atoms from being closer than fcapσij. However, large caps will

be less statistically efficient for decoupling, as disappearing a large barrier will have

larger variances. Capped potentials with smaller barriers will be more statistically

efficient to decouple, but will be thermodynamically different than the Lennard-Jones

potential.

We can add a step into the alchemical schedule to account for any thermodynamic

difference between the capped and the Lennard-Jones potentials. This modifies our

alchemical schedule to become a three-step process in turning on the interactions

between a molecule and its surroundings. First, we turn on the capped repulsive and

van der Waals attractive forces. Second, we linearly transition between the capped

repulsive potential and the original repulsive term of the WCA decomposition. [115]

Finally, we turn on the electrostatics of the solute. This schedule still fits perfectly

within the context of the linear basis function approach and the basis function

representation for this additional step is

Ucapping(r, λ) = λ (uR(r)− uR,cap(r)) + uR,cap(r). (2.12)
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The value of fcap will determine magnitude of the cap and the statistical efficiency of

this step. If fcap is too large, the variance for disappearing the infinite potential will

be large since the low barrier does not prevent pairs of atoms from ‘leaking’ into the

core.

After some experimentation, we chose a transition region where fcap = 0.8 and

fswitch = 0.9 for this chapter. Examining the 1-1-48 potential with several combinations

of εij and σij, we found that the transition from a scaled Lennard-Jones potential to

the capped potential generally takes place in this region. One might expect naively

that the ideal height would correspond to a potential energy of several times kBT ,

since the probability of single pairwise interactions become negligible with only a few

kBT . However, this neglects the fact that shorter contact distances can easily be

overcome by multiple positive interactions in the rest of the system. This means that

to be completely thermodynamically indistinguishable from a Lennard-Jones particle,

this cap must be higher, between 20 and 50kBT for solute-solvent interactions, as will

be detailed below.

The thermodynamic difference between the capped WCA-decomposed potential

and a normal Lennard-Jones potential should be small to prevent large variances when

switching between the full r−12 repulsive term and the capped potential. Fig. 2.2

shows the zeroth-order RDF for the Lennard-Jones potential and the capped potential.

The two curves are identical for r ≥ 0.9σij by design and only notably differ in the

transition region between 0.8σij and 0.9σij. Because this potential energy difference

is small, the Boltzmann weights of the two curves will also be small and the curves

will have good phase space overlap. Later in this chapter, we will examine variance of

transition regions larger and smaller than the 0.8σij-0.9σij range, and will demonstrate

problems with using both of these ranges, though we must first introduce additional

tools to diagnose this. The remainder of the chapter will assume this transition region

between 0.8σij and 0.9σij unless otherwise noted.
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Figure 2.2: A capped potential should be statistically similar to an uncapped
potential at the fully coupled state. The zeroth-order RDF comparison of a
Lennard-Jones potential and the capped Weeks-Chandler-Andersen potential for UA
Methane interacting with a TIP3P water are shown. Green box in inset highlights
the enlarged region. The region of interest is r = 0.8σij to r = 0.9σij where the two
potentials differ. The capped potential is large enough to be indistinguishable from a
normal Lennard-Jones potential below 0.8σij and only slightly different in the switch
region. This difference has low enough Boltzmann weight that it should have minimal
affect on the simulation.

2.2.3 Designing Low Variance Alchemical Switching Func-

tions

We next must choose the alchemical switches corresponding to the repulsive and

attractive basis functions, with the goal to minimize the total variance of the transfor-

mation. To minimize the variance along the path, we take the approach presented

by Pham and Shirts. [84, 97] We wish to minimize the objective function of the total

variance, which can first be estimated by evaluating a zeroth-order approximation to
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the RDF as:

Var (∆F ) ≈ 4πρ

β

∫ 1

0

∫ ∞
0

(
∂U(r, λ)

∂λ

)2

exp(−βU(r, λ))r2 dr dλ (2.13)

where ρ is the solvent number density, and F is either the Helmholtz or Gibbs

free energy, depending on the ensemble sampled, with an additional PV term in the

Boltzmann weight if examining the Gibbs free energy. Although this approach assumes

thermodynamic integration (TI), previous research has shown that the optimal TI

pathway is also (to within statistical error) the minimum variance pathway for BAR

and MBAR, [84] so additional theories for those methods need not be developed.

We know that the soft core 1-1-48 potential has near minimum variance among the

family of all pairwise paths. [84, 97] If the RDF of our linear basis potential pathway

closely matches the RDF for 1-1-48 in both λ and r space, then the variances must

also closely match as well. The zeroth-order RDF is a suitable alternate to directly

matching the shape of U(r, λ) because it is fully described by the pairwise potential

and finite everywhere. This approximated RDF also allows comparison of capped

potentials like our WCA-decomposed potential and soft core 1-1-48.

Eq. (2.13) can be generalized to a set of hi(λ) components by rewriting it as a

path integral

Var (∆F ) ≈ 4πρ

∫ 1

0

∫ ∞
0

∑
i,j

(
∂U

∂hi

∂U

∂hj
exp [−βU(r, λ)] r2

)
∂hi
∂λ

∂hj
∂λ

dr dλ. (2.14)

Up until now, we have used a zeroth-order approximation to the RDF. If the potential

can be decomposed into basis functions and alchemical switches, the variance can be

derived exactly without any assumptions about the RDF in terms of the potential
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energy by starting from the equation for TI as:

∆F =

∫ 1

0

∑
i=1

〈
∂H
∂hi

〉
∂hi
∂λ

dλ (2.15)

Var (∆F ) =

∫ 1

0

∑
i,j

Cov

(
∂U

∂hi
,
∂U

∂hj

)
∂hi
∂λ

∂hj
∂λ

dλ. (2.16)

Defining the N ×N covariance matrix of u as Cov (u,u), we can rewrite the variance

at a specific λ as

Var (∆F ) (λ) = h′(λ) · Cov (u,u) (λ) · h′T (λ). (2.17)

The total variance over the entire transformation is then the integral:

Var (∆F ) =

∫ 1

0

h′(λ) · Cov (u,u) · h′T (λ) dλ. (2.18)

These equations are derived in Appendix A.1. For the derivation of initial alchemical

switches, we will focus on the zeroth-order RDF approximation, Eq. (2.14), as no

simulations are required and optimizations can be carried out in seconds. Once we

have an initial estimate, the zeroth-order RDF approximation will not be needed since

we will have full potentials and can calculate the variance directly from Eq. (2.18).

To obtain the variance at any arbitrary point in state space given simulation data

at one or multiple states, we use Eq. (2.18), with the covariance matrix estimated using

MBAR [101]. The total potential and Boltzmann weights of any point in state space

are straightforward to evaluate using Eq. (2.4). To compute the covariance matrix

with reasonable accuracy, we must have some phase space overlap between the state of

interest and the simulated state. For a single type of schedule, we can reparameterize

pathways to maximize phase space overlap, as will be shown below, essentially always

guaranteeing good phase space overlap as long as our initial simulations also had good
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phase space overlap.

We know that the soft core 1-1-48 potential has near optimal variance in the space

of all pairwise potentials for the disappearance of Lennard-Jones particles, [97] and

that the two-body interactions that create excluded volume contribute the most to

the variance of particle insertion. We therefore examine Eq. (2.1) and its zeroth-order

RDF in Fig. 2.3 to see if we can identify basis functions and alchemical switches that

are near optimal.
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Figure 2.3: There are two distinct dependencies on λ for soft core 1-1-48
which suggest two basis functions and switches describing low variance
paths for removing or inserting Lennard-Jones interactions. Shown are the
predicted zeroth-order radial distribution function (RDF, (a) and (b)) and potential
energy at constant r ((c) and (d)) along the soft core “1-1-48” pathway for alchemically
appearing a united atom (UA) methane site in TIP3P water. The colored lines highlight
λ dependence at r = 21/6σij for the green line and r = 0 for the blue line. In a region
where r/σij < 1, (c), the potential increases rapidly approaching infinity since soft
core models converge to Lennard-Jones at λ = 1. When r/σij > 1, (d), there is a
linear dependence on λ.

Fig. 2.3 shows that the potential energy has two very distinct types of dependence

on λ depending on the distance between particles. From the minimum of the potential

and larger r, we observe that the potential is linear in λ, but at short range we observe

a more complicated relation. This decomposition is also clear when directly examining
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Eq. (2.1) and the ratio (r/σij)
c. When this ratio is greater than 1, the λ dependence

is only significant in the prefactor. When r/σij is less than 1, the denominator is

controlled by λ resulting in a more complex equation. We also observe that when

r/σij < 1, the RDF and the potential of 1-1-48 are mostly insensitive to r.

The two distinct regions of λ dependence suggest two alchemical switch and basis

function pairs, one for r < σij and another for r > σij. The two basis functions

naturally come from the WCA decomposition, as this decomposition closely matches

the behavior in the two regions seen in the 1-1-48 potential. We would prefer simpler

alchemical switches for these two basis functions to simplify the overall calculation.

Since the long range dependence seen in Fig. 2.3 is linear in the soft core 1-1-48

potential, a natural choice for the basis derived for the attractive component of the

WCA decomposition is simply hi(λ) = λ.

The repulsive basis must be treated differently, as the behavior of the plateau

region in the 1-1-48 potential, shown in Fig. 2.3 as a blue line, is a more complicated

function of λ. Additionally, the potential goes to infinity in the limit of λ→ 1, so we

cannot match this potential with a simple alchemical switch as we did the linearly

scaled attractive interactions. Considering the physical constraints of the problem we

can derive an approximate formula for the dependence on λ of a low variance pathway

as:

hi(λ) =
Kλ − 1

K − 1
(2.19)

where K is a positive optimization constant greater than 1 (see Appendix A.2 for

derivation). Additional trial and error exploration of the inequalities derived in

Appendix A.2 yields a second possible alchemical switch:

hi(λ) = λ

[
p+ (1− p) exp

(
−
(

1− λ
s

)2
)]

(2.20)

where 0 ≤ p ≤ 1, s is positive, and both are parameters that can be adjusted to
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minimize the variance. This switch was designed to approximate the short range 1-1-48

dependence on λ by being predominately linear in λ at small values, and transition to

a mostly Gaussian shape at larger λ. The first switch, Eq. (2.19), will be referred to as

“Switch A” and the second switch, Eq. (2.20), will be labeled “Switch B.” Many other

equations are possible, but having near optimal switches allows us to start to explore

the linear basis pathways. We emphasize that in the end, we will be able to derive

the optimal choice of switching function, without the RDF or any approximation to

it, and these functions are simply starting points in the process.

2.3 Simulation Methods

Molecular dynamics simulations of united atom (UA) methane, UA anthracene, and

all-atom (AA) 3-methylindole were carried out with YANK [116, 117] which was

built on GPU accelerated OpenMM v4.1.1 [25, 39, 118, 119] in explicit TIP3P water.

OpenMM allows for rapid and simple deployment of arbitrary nonbonded potentials,

making it straightforward to implement arbitrary basis functions. YANK provides

the capability to do alchemical solvation free energies as well as Hamiltonian replica

exchange to improve sampling [120] with modifications to improve computational

efficiency. [121, 122]

Molecular input files were constructed using AMBERTOOLS’s LEaP [112] with

OPLS-AA force field parameters for all atoms except UA anthracene, where parameters

were taken from Pitera and van Gunsteren. [90] Starting molecular geometries were

acquired from the supplementary material from Mobley et al. [89] and the molecules

were solvated in a periodic cubic box of TIP3P water with boundaries 1.2 nm from

the solute in keeping with the source’s setup. This lead to 620, 874, and 961 water

molecules for UA methane, UA anthracene, and AA 3-methylindole respectively.

Two additional molecules which were not part of Pham’s test set [84] were also
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tested. AA n-decane and a Lennard-Jones (LJ) sphere with a larger radius than

Pham evaluated were tested. These two molecules allow validating the basis function

approach on more asymmetric as well as larger molecular shapes. The n-decane

was generated using the same steps as AA 3-methylindole. The large LJ sphere’s

σi was chosen to be 5.23 Å, the radius of buckminsterfullerene (C60); εii was chosen

the same as UA methane, with the mass for molecular dynamics set to that of C60.

Mixing rules were kept the same as the other molecules in AMBERTOOLS such that

σij = 0.5(σii + σjj) and εij = (εiiεjj)
1/2. Because no previous data are available for

variances of solvating molecules with these parameters we can only compare variances

between switches and not to soft core pathways.

All molecules in all pathways except 1-1-48 decoupled their repulsive and attractive

forces together with sampling at YANK’s default values of λrepulsive = λattractive =

{1.0, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0}. (r/σij)
48 of Eq. (2.1) exceeds the

numerical precision of the OpenMM kernel which handles arbitrary potentials, so the

variances were taken from earlier studies. [84] Because of this, direct comparisons of

free energy difference and error in free energy between the 1-1-48 potential and the

others will not be possible. However, variance can still be compared as explained

below.

Simulations were carried out under isothermal-isobaric (NPT ) conditions at 298 K

and 1 atm. Every state was simulated for 2 ns with a 2 fs time step, samples collected

every 1 ps, and Hamiltonian replica exchange between all states attempted every

1 ps. Although replica exchange is not required for these systems, there is negligible

penalty for performing with it in YANK. The potential energy of every state was

collected as well as the potential evaluated for every state’s configuration re-evaluated

to all other state’s potentials; this information was analyzed by MBAR [101] for

evaluating free energy and expectation values. Errors in variance were obtained using

200 bootstrap samples. [123] 3-methylindole’s and n-decane’s bonded hydrogens were
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constrained by the SHAKE algorithm [124] and water was constrained by the SETTLE

algorithm. [125] Pressure control was handled by a Monte Carlo barostat [126, 127]

and temperature control through Langevin dynamics. The nonbonded cutoff was 9

Å and interactions outside this cutoff were handled by PME with an error tolerance

of 5× 10−4. Dispersion corrections were not calculated [57, 128] however, they will

only shift the free energy differences of a given molecule by a constant amount for all

configurations at each value of λ, thus not affecting comparison of variance pathways.

2.4 Results

We are interested in answering five main questions while examining these linear basis

function potentials:

• Is the implementation performed correctly, and do the free energy differences of

the linear basis potentials from simulations converge to the same value as using

the 1-1-6 pathway?

• What are the variance minimizing parameters for Switch A and Switch B derived

from the zeroth-order RDF?

• Do these new linear basis potentials have comparable or lower variance than the

standard 1-1-6 and optimized 1-1-48 soft core potentials?

• Can we identify the set of alchemical switches with the lowest possible variance

over all sets of alchemical switches given these basis functions?

• Are these low variance switches specific to the molecules they are developed

with, or are they generalizable to other molecular transformations involving

removal of Lennard-Jones sites?
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2.4.1 Estimated Variances and Optimal Basis Function Pa-

rameters

UA methane is the simplest place to start for estimating optimal function parameters.

These parameters can be tested with other molecules to determine if these parameters

are sufficiently general. The zeroth-order RDF approximation is the most accurate

in the case of UA methane, since there is a single interaction site and the molecule

is isotropic. A comparison of the variance and 〈∂u/∂λ〉 using the zeroth-order RDF

between Switch A, Switch B, soft core 1-1-6, soft core 1-1-48, and a pure linear

decoupling of the UA methane from solvent is shown in Fig. 2.4. The area under

the curves gives total variance, the objective function we wish to minimize. The

curves shown in Fig. 2.4 were created with the optimized parameters for our proposed

switches, and a list of the parameters with the total variances is shown in Table 2.1.

The alchemical switches hi(λ) used in generating Fig. 2.4 are shown in Fig. 2.5 and

compared to a scaled 1-1-48 at r = 0 to show similarities in shape.
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Figure 2.4: Predicted variances using a zeroth-order RDF approximation
for insertion using linear basis function paths are lower than the common
soft core 1-1-6 potential, and near the minimal variance soft core 1-1-48
potential. This optimization was carried out for inserting a united atom methane
site in TIP3P water for two linear basis potentials, the two soft core potentials, and
a purely linear transformation pathway. Optimized parameter(s) for Switch A are
K = 35 and for Switch B are p = 0.22 and s = 0.284. This path only shows Lennard-
Jones types interactions and assumes repulsive and attractive forces were appearing
together. Total variance is found by integrating under these curves and variance for
both switches falls between 1-1-6 and 1-1-48 soft core potentials.
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Table 2.1: Optimal parameters and variances from zeroth-order RDF predictions
for basis functions, soft core potentials, and linear alchemical transformations. Vari-
ances are in units of (kcal/mol)2. Soft core potential parameters follow convention in
Eq. (2.1), Switch A’s parameter is for Eq. (2.19), and Switch B’s parameters are for
Eq. (2.20). The linear transformation has no parameterization and its variance was
large enough to be considered not converged (NC) by numeric integration. Transforma-
tion is for appearing a single united atom methane site in TIP3P water. Simulations
of corresponding switch or soft core potentials were run with these parameters.

Alchemical Path Parameters Variance

Linear — NC

Soft Core 1-1-6 a = 1, b = 1, c = 6, α = 0.5 8.52

Soft Core 1-1-48 a = 1, b = 1, c = 48, α = 0.0025 5.84

Switch A K = 35 7.03

Switch B p = 0.22, s = 0.284 7.04

Fig. 2.5 suggests that nearly matching the 1-1-48 potential form at λ < 0.5 is

a key factor in minimizing the variance. The predicted parameters were found to

be insensitive to εij and σij for both switches, meaning the switches are likely to be

applicable to a wide range of atom types.
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Figure 2.5: Alchemical switches matching soft core 1-1-48 for λ < 0.5 is an
important key to minimizing total variance. Switch A and Switch B compared
to the soft core 1-1-48 pathway at r = 0. The potential for 1-1-48 was normalized to its
value at r = 0 and λ = 0.99 to compare the shape of 1-1-48 with the switches. All the
curves have a near linear dependence at low λ and a more complex relation at larger λ.
Constants for the curves came from minimizing the variance of the zeroth-order RDF
approximation for a single UA methane interacting with TIP3P water on a schedule
where repulsive and attractive interactions change together.

Ideally, the basis functions should have lower overall statistical variance than the

soft core 1-1-6 potential to be worth using. Previous work has shown [84] that the

ordering of total variances of paths estimated with the zeroth-order RDF approximation

is almost always the same as the ordering of total variance in the actual simulations

carried out without approximation. According to the prediction, Switch A and

Switch B should have lower variances (and therefore lower statistical error in free

energy calculations) than soft core 1-1-6 but not quite as low as 1-1-48.
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2.4.2 Variances and Free Energies from Simulations

Validating against Previously Studied Molecules

In Fig. 2.6 we show the 〈∂u/∂λ〉’s and variances as a function of λ taken from

simulations of the three test molecules for the switches discussed so far (“Switch O”

curves in Fig. 2.6 will be discussed later). Free energies for the three molecules are

reported in Table 2.2. The soft core variances have been replotted from the figures

in Pham [84] as ∂u/∂λ information required for soft core variance is not collected by

OpenMM and cannot be evaluated by Eq. (2.18). Both Pham’s variance and the basis

function variance are computed directly from the simulated data. The derivation of

both approaches is shown in Appendix A.1.
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(b) Variance UA methane
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(d) Variance UA anthracene
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Figure 2.6: Caption on following page
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Figure 2.6: The linear basis function approach has variances lower than com-
mon soft core potentials and approach the lower limit among all pairwise
potentials. This is demonstrated for multiple molecules by the 〈∂u/∂λ〉 and variance
of alchemical solvation from simulation in TIP3P water for a series of different coupling
pathways for Lennard-Jones decoupling. Errors are shown with dashed lines around
the curves and were estimated by 200 bootstrap samples; error is often less than
thickness of the curve. Soft core data taken from Pham. [84] Switch A and Switch B
have comparable or lower statistical efficiency than soft core approaches, with the
optimized Switch O even lower. Reweighting using the linear basis approach allows
the entire smooth curve to be calculated from only 10 to 12 sampled states. Note a
strong qualitative similarity to predicted curves in Fig. 2.4.
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Table 2.2: Simulated free energy of solvation and variance in TIP3P water. Free
energies are in kcal/mol and variances are in (kcal/mol)2. Free energies for 1-1-48 path
not shown as data are taken from Pham [84] who ran with a Hamiltonian including
a λ dependent constant offset resulting in a different overall free energy. However,
the variance of the paths can be compared and serves as a target variance. Error
estimates for free energy estimated by MBAR [101] and for variance by 200 bootstrap
samples. “NC” denotes that the variance did not converge. † indicates data taken from
Pham. [84] Statistical error of variance for † involved more samples, but it is the value
of variance, not its uncertainty that determines the statistical error of simulations.
“LJ to Capped“ is the free energy of changing from capped to uncapped potential and
not included in individual free energy of switches.

Alchemical Pathway Solvation Free Energy Variance

UA Methane

Linear 1.761± 0.114 NC

Soft Core 1-1-6 1.727± 0.028 16.93± 0.09†

Soft Core 1-1-48 — 9.03± 0.09†

Switch A 1.764± 0.027 10.80± 0.17

Switch B 1.742± 0.026 11.96± 0.19

Switch O 1.748± 0.026 10.97± 0.16

LJ to Capped −0.002± 4× 10−4 0.001± 4× 10−4

UA Anthracene

Soft Core 1-1-6 −0.277± 0.067 78.49± 0.53†

Soft Core 1-1-48 — 49.29± 0.53†

Switch A −0.275± 0.060 53.95± 1.02

Switch B −0.397± 0.056 48.57± 0.84

Switch O −0.334± 0.054 45.95± 0.81

LJ to Capped −0.021± 0.001 0.008± 8× 10−4

AA 3-methylindole

Soft Core 1-1-6 1.790± 0.065 63.79± 0.40†

Soft Core 1-1-48 — 40.25± 0.40†

Switch A 1.751± 0.061 48.09± 0.99

Switch B 1.771± 0.055 44.66± 0.81

Switch O 1.930± 0.050 42.92± 0.70

LJ to Capped −0.050± 0.004 0.26± 0.06
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The calculated variance is statistically identical between our data collected with

OpenMM and Pham’s data previously collected with GROMACS. [38, 84, 110] Differ-

ences in the 〈∂u/∂λ〉 curves in Fig. 2.6a, c, and e are entirely due to the dispersion

correction. The variances in Fig. 2.6b, d, and f are independent of differences in the

applied dispersion correction in the two simulations. [57, 128]

The linear basis potentials and the linearly scaled variances were only sampled at

twelve λ values. However, the properties were then estimated at 101 total λ points to

construct the curves, producing smooth curves with low uncertainty. This immediately

demonstrates another advantage of the linear basis potential approach: once we collect

the values of the basis functions at some values of λ, we can estimate the derivatives

and variance at any point along the curve without needing to recalculate any additional

energy terms. We can make this calculation because we only require the basis function

potential energies to calculate 〈∂u/∂λ〉 at any state, which can be done using Eq. (2.5)

as long as the values of the basis functions at each sampled state are recorded. The

Boltzmann factor of the configurations changes at each state, but depends only on

the total potential at that state and can be easily calculated from the computed

basis functions outside of any inner loops. MBAR [101] was used to estimate the

expectation at each state reweighted to the correct ensemble. The statistical error of

these expectation calculations will depend on how close in phase space our sampled

states are to the states we estimate the observables at, but we will see that assuming

we are comparing using a single schedule, lack of overlap is never a problem.

The linear basis function implementation gives free energies statistically consistent

compared with the 1-1-6 pathway implemented in OpenMM. The ranking of the total

variance of the different pathways (linear, 1-1-6, 1-1-48, Switch A and Switch B) using

the estimated zeroth-order RDF predictions compared to actual simulations are indeed

the same for UA methane, though switches A and B are reversed for UA anthracene

and AA 3-methylindole, larger molecules for which the approximation to the radial
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distribution function approach starts to break down. The zeroth-order RDF thus aids

the design process of low variance initial optimal switches which can later be refined

with actual simulation data. Importantly, when performing the actual simulations,

the proposed linear basis potential approaches still have lower statistical error and

variance than 1-1-6, though not as low as 1-1-48 as predicted by the zeroth-order RDF.

The more precise results using simulation confirm that these alchemical switches can

be just as statistically efficient as soft core methods.

The purely linear scaling path for the Lennard-Jones terms (h(λ) = λ) has large,

unconverged variances and the largest relative free energy error, as anticipated. The

linear transformation was simulated only for UA methane to validate the zeroth-order

RDF prediction. Since the linear transformation will virtually always have higher

errors and variances for appearing atomic sites in dense fluid, [82, 83, 85] it was not

considered for the other molecules.

Validating against Large and Asymmetric Molecules

The simulated variances and free energies for n-decane and the large LJ sphere are

shown in Table 2.3. Since no previous data are available for these molecules, the free

energies and variances are shown for the basis function approaches, but only the free

energy is shown for the soft core 1-1-6 pathway because the full 〈∂u/∂λ〉 curves cannot

be generated.
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Table 2.3: Simulated free energy of solvation and variance for n-decane and a large
Lennard-Jones (LJ) sphere in TIP3P water to validate the approach in the cases of
a long, non-hydrogen bonding, nonrigid molecule and a very large molecule. Free
energies are in kcal/mol and variances are in (kcal/mol)2. Error in variance was
found by 200 bootstrap samples. The large LJ sphere was sampled with three extra
intermediate states and every 4 ps instead of every 1 ps due to long correlation times at
intermediate λ; ‡ was not sampled at the three extra states to show how lower variance
can reduce required samples to achieve a target statistical precision. — indicates that
no data are available. “LJ to Capped“ is the free energy of changing from capped to
uncapped potential and not included in individual free energy of switches.

Alchemical Pathway Solvation Free Energy Variance

AA n-decane

Soft Core 1-1-6 4.409± 0.072 —

Switch A 4.473± 0.068 68.56± 1.35

Switch B 4.368± 0.069 63.84± 1.26

Switch O 4.435± 0.060 60.94± 1.14

LJ to Capped −0.110± 0.005 0.560± 0.09

Large LJ Sphere

Soft Core 1-1-6 16.127± 0.116 —

Switch A 15.935± 0.103 65.70± 1.56

Switch B 16.300± 0.102 64.53± 1.51

Switch O 15.956± 0.089 59.80± 1.41

Re-optimized Switch O 16.043± 0.090‡ 45.74± 1.40‡

LJ to Capped −0.006± 0.001 0.007± 3× 10−4

The large LJ sphere was sampled with additional states at λ = {0.55, 0.45, 0.35}

due to large changes in the variance in that region and with samples taken every 4

ps instead of every 1 ps because correlation times were found to be greater than the

original sampling rate of 1 ps. Because we are sampling less frequently to obtain

uncorrelated samples, we have larger statistical error in the results, but all the free

energies are statistically consistent.
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How Significantly Do Capped Potentials Affect the Thermodynamics of

the End States?

We must examine whether we can use our fully coupled capped end states with

transition window between 0.8σij to 0.9σij as the end state of the transformation, or if

there are remaining errors. For some molecules, the free energy difference is negligible,

less than 0.01 kcal/mol, but for other larger molecules, it is as large as 0.1 kcal/mol.

For improved robustness, we thus also recommend including a last step of changing

from the capped potential to the full repulsive potential.

Calculating the free energy difference between our initial choice of the capped

potential and uncapped potential is statistically efficient. The variance and free energy

of turning on the cap are reported in Table 2.2 and Table 2.3 in the “LJ to Capped”

entry with a switching region of 0.8σij to 0.9σij. Because this transition window is

defined in terms of σij, the width and height of the cap will depend on the molecular

parameters. We thus must compare transition windows by examining the range of

cap magnitudes. Interactions with small atoms like hydrogen will have small caps

while larger atoms such as carbon and oxygen will have larger caps based on εij.

This transition window provided caps between 3.5kBT and 8.8kBT for our systems

with an average of 6.2kBT . We find that the variance of this final transformation

step contributes a negligible amount to the total uncertainty over all molecules, as

it is at least two orders of magnitude smaller than the insertion. The most efficient

pathway guaranteeing correct thermodynamics involves a basis function with a capped

potential with switch between 0.8σij and 0.9σij and then changing linearly to the full

Lennard-Jones potential.

Entirely eliminating the extra step of switching from a full potential to a capped

function would require a repulsive basis potential with a larger cap, which requires a

transition starting at r < 0.8σij. For results that are truly independent of the cap,

we would like the free energy difference between the capped potential and uncapped
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potential at least one order of magnitude less than the statistical error of the full

solvation free energy. The higher value the cap, the closer the capped WCA potential

comes to the unmodified potential, preventing solute atoms from “leaking” into the

capped region of the potential. For the molecules studied here, the transition region

which provided a statistically identical free energy was between 0.70σij and 0.75σij.

This provided a cap between 20 and 50kBT with an average of 36.7kBT over all atom

types for our systems.

There is a moderate loss in statistical efficiency when using a harder cap over the

entire transformation. Simulating with parameters for Switch A of K = 165.5 and

Switch B of p = 0.064, s = 0.31 which have been reoptimized for this harder cap, we

found that using this cap increased statistical uncertainty in free energy estimates by

3% for UA methane, but up to 41% for the large LJ sphere. Essentially, disappearing

an average cap of ≈ 35kBT is too similar to a linear decoupling of an uncapped

Lennard-Jones potential.

If harder caps than our initial guess yield larger variance, could we use softer

caps than our initial guess as long as the last step coupling to the full potential is

retained? Softer caps here are defined by a transition region that starts at r > 0.8σij.

However, we find that using a smaller potential energy cap can introduce large errors

as the cap is insufficiently repulsive. Fig. 2.7 shows several choices of soft transition

regions for 3-methylindole. Very large variances near λ = 0 start to appear with a

very small adjustment to the window spacing, in many cases becoming a significant

percentage of the total statistical uncertainty. The average magnitude of the cap at

0.85σij is 2.5kBT and is low enough to have very little phase space overlap with a

fully coupled Lennard-Jones potential, which causes the large increase in variance.

Softer caps should therefore be avoided as such low caps can cause diverging variances,

making any optimization of switch severely error prone. We would need an additional

capping basis function to bridge this phase space uncertainty, which adds far too much
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complexity given that we are already close to the provably minimum variance pathway

for most molecules without this additional basis function.
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Figure 2.7: Variances and uncertainty are large if the cap on a potential
function is too soft. This is shown here with the variance of linearly transforming
from capped to uncapped potential with different transition regions for 3-methylindole.
Curves labeled based on fraction of σij of the transition region in a capped WCA
potential. The variance is shown on a logarithmic scale to better visualize the rapid
increase in variance from small changes in the transition region. The variance of
the transition region between “0.85-0.95” (red) did not converge for λ < 0.01 and is
truncated. Removing the singularity at λ = 0 results in more statistical error as the
cap becomes softer. Errors estimated by 200 bootstrap samples.

We conclude that the error introduced from disappearing the positive singularity

from the fully coupled state must be balanced between bringing the infinite potential

to a capped one, and decoupling the capped potential from the system. We find that

this balance is achieved with a transition region of 0.8σij to 0.9σij with the mean cap

of 6.2kBT with respect to atomic pairs in the systems. This choice of capped potential

we use for the reminder of the chapters.
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2.4.3 Variances and 〈∂u/∂λ〉 Predicted over Alternate Paths

from a Single Simulation

It is possible to predict the expectations along any pathway, including the total

statistical variance, with any arbitrary set of switches, g(λ), given only the data from

a single simulation with a known set of monotonic switches, h(λ). A single simulation

can therefore be used to find the optimal alchemical switch over the space of all

possible h(λ) functions using data from only a single initial simulation. In fact, we

did not necessarily need to identify two putative low variance switching functions.

Once we performed simulations with a single linear basis potential, we can recalculate

all observables of interest with any other alchemical switching function using the

same basis functions in post-processing. If the simulated and predicted simulations

involve different alchemical schedules, then our ability to predict the variance of the

proposed pathway will depend on the phase space overlap. If the trial simulation

involved the same alchemical schedule as the initial simulation, however, then we can

always guarantee that we will have good sampling for the trial simulation if the initial

simulation also had good sampling. This optimization is possible because all of the

thermodynamic information for any set of switches is contained in every other set of

switches. We examine two example switches in Fig. 2.8 to demonstrate this logic.
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Figure 2.8: Thermodynamic information about a pathway using an arbitrary
alchemical switch is contained within any sampled switch. An example of
how to map from a sampled pathway (left) to an unsampled pathway (right) is shown.
Monotonic switches both sample the [0, 1] range and scale the potential energy over
the λ = [0, 1] domain. As an example, any thermodynamic property, X, of the
unsampled path, Xg at the state λ = 0.61 can be found by evaluating the sampled
pathway’s Xh at its λ = 0.05 state; similarly, Xg (g(λ = 0.79)) = Xh (h(λ = 0.25))
and Xg (g(λ = 0.89)) = Xh (h(λ = 0.50)). This mapping is not affected by properties
which require derivatives since the derivative with respect to λ do not participate
in evaluating expectation values such as the variance. The explicit mapping here is
h = g6, but a similar invertible mapping exists for other paths even if not analytically
calculable.

Consider a single basis function simulated with switch h(λh) at a set of λ values

λh.; also consider an unsampled switch g(λg) with a different set of λ values λg.

Because the basis function is independent of the alchemical switch, the potential

of a fixed configuration is identical when h(λh) = g(λg) as seen in the tie lines of

Fig. 2.8. Generalizing the equality to multiple basis functions and alchemical switches,

potentials will be the same for fixed basis functions when h(λh) = g(λg).

Examining Eq. (2.17), we must have a map of the Cov (u,u) of the basis potentials
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sampled from h to the covariance computed at the unsampled states g. Expectations

and covariances will be dependent explicitly on h and only implicitly on λ, so the

covariance can be denoted as a function of h as Cov (u,u) (h). The shared domain of

h and g means

Cov (u,u) (h) = Cov (u,u) (g) if h = g (2.21)

which is the required map. We extended this map to be explicitly defined by λh and λg

since sampling is generally done by explicit statement of λh rather than h. The inverse

of the components of h must be evaluated to determine the λh corresponding to the

state defined by the arbitrary λg. This inverse is not a matrix inverse, but a component-

wise functional inverse, and will be denoted as h−1(λ) =
[
h−1

1 (λ), h−1
2 (λ), . . . , h−1

n (λ)
]
;

we will assume that h−1(·) is a complete set of λ instead of writing λh = h−1(·) to

conserve space in the equations. We can now write the variance of the unsampled

path as

Var (∆F ) (λg) = g′(λg) · Cov (u,u) (λg) · g′T (λg)

= g′(λg) · Cov (u,u)
(
h−1 (g (λg))

)
· g′T (λg). (2.22)

where Cov (u,u) (λg) is the covariance matrix of the unsampled path, and Cov (u,u) (h−1(·))

is the covariance matrix of the sampled path.

Eq. (2.22) is an important result of this chapter as an optimization routine can

be written around it that can run entirely in post-processing and only needs a

single simulation’s worth of data, not a series of iterative simulations with changing

parameters.

A consequence of the linear combination is that the covariance is only explicitly

dependent on h(λh) and not on h′(λh). If the covariance depended explicitly on h′(λh)

instead, then no map could be made since the domain of h′(λh) is not necessarily

that of g′(λg) and no one-to-one map may exist. 〈∂u/∂λ〉 along the alchemical path



2.4 Results 58

defined by the set of switches g can be predicted from Eq. (2.5) to get

〈
dU

dλ

〉
= g′λ ·

〈
uT
〉 (

h−1 (g (λg))
)

. (2.23)

Predicting the variance of unsampled alchemical switches has some complications.

The first inherent problem with this prediction is that the λh found by the inverse

may not be exactly any of the sampled λh. However, the expectation value of the

potential energy at this unsampled λh can easily be estimated as was done to estimate

the intermediate λ points of Fig. 2.6. Assuming that there was reasonable overlap

between the sampled λh states, then any interpolated values between these will also

have good overlap. The second limitation is that the basis functions in u(r) must

be known. One simulation must therefore be run for each unique molecular system

before predictions can be made about other alchemical switches; we cannot make

exact estimates from simulations of a different molecule. This prediction method

clearly takes advantage of the properties of linear basis potentials, meaning variances

from a soft core potential like 1-1-48 at arbitrary points cannot be predicted by this

method. Soft core potentials instead require separate evaluations of potential energies

or derivatives of the potential at each individual configuration sampled.

The predicted covariance matrix will depend on each alchemical switch described

by the alchemical path. The total potential affects the Boltzmann weight, which affects

the covariance of predicted path. Each switch must be evaluated at the predicted

states, even if it is not being varied. Fixing the alchemical schedule will help determine

how unmodified switches are changing with respect to the switch being predicted.

As a demonstration of the power of this approach, we can see that both the

variances and 〈∂u/∂λ〉 of Switch A can be predicted with high accuracy using data

from the Switch B simulation and vice versa along the entire range of λ, shown in

Fig. 2.9. Although Switch B does not have an analytical inverse, it is monotonic on
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the domain so its inverse was found numerically. Clearly, all deviations between the

predictions and the validation simulations are very small and are within statistical

noise.
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Figure 2.9: 〈∂u/∂λ〉 and variance of an alchemical switch can be accurately
predicted from data collected exclusively from another switch. In this case,
the properties of Switch A and Switch B for solvating 3-methylindole are estimated
from data taken using the other switch. Error bars for simulation shown as dashed
lines around the solid, error for prediction shown as capped vertical bars from the
diamond; error is often less than thickness of the curve or diamond. The figures show
that variance and 〈∂u/∂λ〉 can be predicted with extremely high accuracy from only
one set of simulation data, implying that an optimal switch can easily be designed in
post-processing. Only a limited number of prediction values are shown, but they can
be generated at any intermediate, just as simulated values can be.

We can perform simple optimizations on the parameters of Switch A and Switch B as

an intermediate step in the process of optimizing potentials over all possible alchemical

switching functions. We found that the lowest variance of “Switch A form” potentials

is obtained with K = 10.8 when predicting with data from Switch A’s simulation,

which was performed with the optimized value from the zero-RDF approximation,

K ≈ 35. When attempting to predict the minimum variance parameters for Switch A

using a simulation performed with Switch B, we obtain minimum variance for Switch A

with K ≈ 10.9, validating the optimization of one transformation pathway using data

collected from another pathway.
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Selecting the Optimal Alchemical Switch

We next examine the case of the lowest variance set of alchemical switch functions h

for a given set of basis functions. Such functions must satisfy hi(0) = 0, hi(1) = 1,

and be monotonic, but may be of arbitrary mathematically complexity, rather than a

pre-defined form like Eq. (2.19) or Eq. (2.20). For the purpose of optimization, we

represent the family of possible switches with a monotonic spline.

An optimal hi(λi) for the repulsive basis function was created with a constrained

optimization using the BY linear approximation (COBYLA) [129] routine to enforce

monotonic spline knots using SciPy’s [130] optimization module. Monotonic, cubic

Hermite splines [131, 132] were generated to enforce the monotonic interpolating

splines between these knots. After this optimization, we then approximate the splined

curve with a single best fit polynomial for implementation simplicity. We select the

lowest order polynomial possible, provided that the variance between the spline and

the polynomial differed by less than 0.5% and was monotonic on the [0, 1] domain.

We are able to accurately fit to our splined minimum variance switch with a quartic

polynomial of the form

hi(λ) = Aλ4 +Bλ3 + Cλ2 + (1− A−B − C)λ (2.24)

with only three fitting terms because we enforce the conditions hi(0) = 0 and hi(1) = 1.

The parameters for this optimized switch function, which we will call “Switch O,” are

A = 1.62, B = −0.889, and C = 0.0255. For comparison, all three switches (A, B,

and O) and the optimized Hermite spline are shown in Fig. 2.10. These Switch O

parameters were found by taking the data from 3-methylindole’s simulated Switch A

with K = 35 and optimizing to find the minimum variance switch, which is labeled in

Fig. 2.11 as “Switch O predicted by Switch A.”
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Figure 2.10: The largest impact to the overall variance is determined by the
slope of the alchemical switch when λ < 0.5. The alchemical switching functions
and the optimal Hermite spline compared to soft core 1-1-48 (normalized by the
potential at r = 0 and λ = 0.99) are shown. Zoomed in view in (b) highlights how
the curves differ at small λ. This optimized switch is the best possible given the set
of basis functions and fixed alchemical schedule. Different schedules with other basis
functions would be required to lower the variance further.
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Figure 2.11: The thermodynamic properties of the optimal switch can be
predicted with high accuracy as seen with the minimized variance switch,
Switch O, for 3-methylindole compared to Switch A. Switch O was fit to a
constrained quartic polynomial and found to have lower variance than other simulated
alchemical switches. Error for each curve was found by 200 bootstrap samples and
shown as dashed lines around the solid curve; error is often less than thickness of the
curve. The predicted and simulated results are on top of each other, supporting the
theory that an optimal switch can be developed from a single simulation.
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Results from this predicted Switch O (using the Switch A simulation) are in

excellent agreement compared to observables computed from simulations performed

using this Switch O with 3-methylindole, labeled “Switch O Simulation” in Fig. 2.11.

The variance of the prediction is 42.53± 1.20 (kcal/mol)2 and the simulated variance

of 42.92 ± 0.70 (kcal/mol)2. The free energy of solvation for this transformation

using the optimized switch at twelve intermediate points is 1.930± 0.050 kcal/mol,

which has the lowest statistical uncertainty of all the reported methods in the table,

demonstrating it is indeed an optimal path. Variances and 〈∂u/∂λ〉 for Switch O are

plotted in Fig. 2.6 and all free energies are shown in Table 2.2.

We can probe the shape of this alchemical pathway to understand more about

which regions contribute most to the variance. We find that the region of 0 ≤ λ ≤ 0.5

shown in Fig. 2.10b, specifically the slope of the function in this region, has the largest

impact on total variance. If the slope in this region is too large, then the variance

will be significantly increased at that point in the path. If the slope is too low in this

region, then a large slope is needed at λ ≥ 0.5 to reach the hi(1) = 1 condition, also

resulting in a large overall variance. We find that the exact polynomial constants

found from Eq. (2.24) are somewhat sensitive to the data set used to perform the

optimization, but the shape of the switch itself is much more robust.

We can also test the robustness of the optimized alchemical switch with respect to

change of molecule. Fig. 2.12 shows the polynomial fits to the optimized curves found

from data generated with Switch A and Switch B for all molecules in this chapter.

3-methylindole and UA anthracene converge to approximately the same optimized

curve with data sets from both Switch A and B. However, UA methane converges

to a slightly different curve. The polynomial fit parameters shown in Fig. 2.12 vary

considerably with data set and initial guess points of the optimization, however as can

be seen in the figure, the curves remain essentially the same for 3-methylindole and UA

anthracene. The optimization also converges to nearly the same curve for the same
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molecule, regardless of starting point. The RMSD between Switch A and Switch B

for UA methane, UA anthracene, and 3-methylindole in Fig. 2.12 is 0.00097, 0.017,

and 0.0055 respectively, and can be qualitatively seen in the overlapping dashed and

solid lines for each molecule. Although the optimal alchemical switch for UA methane

is different than the switches for the other molecules, the variance-optimized curves

derived for the other molecules still give free energies with lower variance than either

Switch A or B for UA methane as seen in Table 2.2. Additionally, we note in Fig. 2.6

that all switches behave more robustly than the 1-1-48 switch for 3-methylindole, as

there is no large change in the variance near λ = 1. Keeping the variance consistent

across the entire range of molecular shapes is useful for purposes such as Hamiltonian

replica exchange that strive to keep the exchange rate roughly constant across the

transformation. [94] Indeed, in Table 2.2, we see that for UA anthracene, the total

variance is slightly less than the 1-1-48 curve, which is possible since the 1-1-48 curve

is minimal variance only for UA methane.
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Molecule Predicting Switch Coef. A Coef. B Coef. C RMSD

UA Methane
Switch A 3.43 −4.35 1.72 0.0503

Switch B 3.34 −4.19 1.64 0.0502

UA Anthracene
Switch A 1.86 −1.21 0.128 0.0107

Switch B 0.796 0.562 −0.679 0.0092

AA 3-Methylindole
Switch A 1.62 −0.889 −0.0255 0.0000

Switch B 1.28 −0.298 −0.275 0.0055

(b) Switch O coefficients and deviation from simulated Switch O for each optimization

Figure 2.12: The optimal switch’s shape for different molecules is robust,
even when the polynomial coefficients are not. A comparison of optimal fitting
curves found starting from Switch A and Switch B for several test molecules. The root
mean square deviation (RMSD) in dimensionless units is between each switch and the
optimized Switch O generated from the parameters from 3-methylindole and Switch A,
over 101 uniformly distributed points on each curve. Switches for the same molecules
optimized from differing starting points are almost identical, and switches optimized
from different molecules are very similar. Even though UA methane does not have
the same optimal alchemical switch, there is little improvement in the variance when
using this different curve.
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For n-decane, Switch O from the 3-methylindole data appears to be near optimal,

though further optimization reduces the variance by about 7% from Switch O. However,

for the large LJ sphere (with buckyball radius) we find that Switch O has a very large

increase in the variance for λ between 0.4 and 0.6 (Fig. 2.13), requiring additional

sampling between at λi = {0.55, 0.45, 0.35} to obtain an accurate free energy. We

applied the optimization routine to the large LJ sphere using the Switch A simulation

to obtain a re-optimized switch which significantly reduced the peak in and the total

variance (also Fig. 2.13). The re-optimized switch was then simulated without the extra

sampling at λi = {0.55, 0.45, 0.35} and gave a simulated free energy of 16.043± 0.090

kcal/mol and a variance of 45.74± 1.40 (kcal/mol)2; this is approximately 25% lower

variance compared to other results in Table 2.3. This re-optimized alchemical switch

is flatter in the region λ = 0.4 to λ = 0.6 as seen in Fig. 2.13c, meaning the flat

cap in the large excluded volume region changes more slowly to maximize the phase

space overlap between neighboring states. This extreme case of a C60-sized sphere

is a practical example of both how a single optimized switch (Switch O) derived

from a single example molecule is better than standard simulation methods and near

optimal, but also how easily even this pathway can be improved with a small amount

of post-processing.
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Figure 2.13: Extreme peaks in variance can be reduced by a simple post-
processing re-optimization procedure. Here is shown 〈∂u/∂λ〉, variance, and
the switches for a large Lennard-Jones sphere for Switch A, Switch B, Switch O, and
a re-optimized Switch O specifically for this molecule. The re-optimized switch was
created by predicting the optimal switch from sampled data of Switch A. Having
a nearly flat hi(λ) in the regions of large variance can drastically reduce the total
variance as seen in (c). Errors are shown with dashed lines around the curves and were
estimated by 200 bootstrap samples; error is often less than thickness of the curve.

In summary, although slightly improved paths can be determined for particularly

extreme cases (such as very large or very small molecules), a single optimized switch

for the repulsive core has nearly minimal variance for all molecules, with a range of

sizes from methane to a buckyball, and asymmetries as large as n-decane. If required,

optimization for individual molecules requires only a single initial simulation (using,
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for example, the general Switch O) and then a simple reoptimization using only this

simulation data.

2.5 Discussion

Our optimized linear basis potentials for all tested molecules have total variances, and

thus statistical efficiencies between the total variances of the 1-1-6 and 1-1-48 soft

core potentials, even for the initial guesses, Switch A and Switch B, as anticipated.

The most efficient possible alchemical switches are somewhat dependent on the

molecular identity, though the switches optimized from single molecule are better for

all tested molecules than the initial guessed switches or the 1-1-6 soft core potential. If

the calculation is performed for a ligand-protein binding process, instead of solvation,

the magnitude of the variance will change, but the relative efficiency of variance

pathways will not change significantly. The ranges of λ with large variance will not

significantly change along the same path since adding a protein to the solvent will not

significantly change the density of the fluid around the ligand. We have illustrated

this in Appendix A.3 as an example, though an in-depth comparison of variances in

both protein binding and solvation is beyond the scope of this chapter.

Our variance prediction equation, Eq. (2.22), is a powerful tool for optimizing paths

of lower variances. Switch O has lower variance with all tested molecules compared to

the soft core 1-1-6 pathway, although a re-optimized switch was needed to obtain the

lowest possible variance for the large LJ sphere. The extra sampled states and longer

correlation times for the large LJ sphere are not unexpected due to the excluded

volume being more than twenty times larger than UA methane. Although Switch O is

slightly different than the minimum variance path in this extreme case, the simplicity

of our variance minimization procedure allows a more optimal switch to be easily

obtained. In this case, increasing the number of basis functions may allow an even
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lower variance path for turning off such a molecule and their optimal switches could

easily be generated with the methods described in this chapter.

For general molecular transformations, we recommend a capped potential with a

transition region of 0.8σij to 0.9σij and transforming from an uncapped, full Lennard-

Jones potential to a capped potential in a single step. This cap with a typical value of

6.2kBT provides a statistically efficient balance of contributions to the variance from

these two steps. We find that harder and softer caps do not reduce statistical error over

the entire transformation and should be avoided. Application-specific considerations,

such as high temperature systems, may need different transition windows to adjust

the caps for lower variance in those situations.

Expanding the variance optimization routine to a high number of basis functions

simultaneously is a non-trivial matter. The number of terms in the covariance matrix

quickly increases with multiple basis functions. This can cause the optimization

routine to fail or be very prone to initial conditions as the covariance becomes less

well behaved. These problems will be compounded if multiple switch optimizations

are attempted at once. For this reason, we do not recommend optimizing more than

one or two switches at a time, depending on how many total basis functions there are,

and explore more general optimizations in the next chapter.

2.5.1 Improvements and Implementation of the Basis Func-

tion Approach

Our method requires that alchemical switches be monotonic to make it possible

to invert them. However, this is not a particularly limiting requirement. When

considered as a path, the variance of an alchemical switch is directly proportional to

the curvature of the switch and its thermodynamic length [93, 94, 96] as is derived

in Appendix A.1. Monotonic switches will have less curvature than an otherwise

similar non-monotonic switch, so intuitively should have lower variance. Additionally,
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any sequence of sampled λ states which would require a non-monotonic switch can

be reordered to be monotonic. For example, if samples are taken in the sequence

hi(λ) = {0.4, 0.5, 0.3, 0.6}, one could just as easily sample the sequence hi(λ) = {0.3,

0.4, 0.5, 0.6} without loss of information; any repeated hi value is equivalent to more

samples at that state. For these reasons, assuming monotonic switches is much easier

and is not a practical limiting factor in the approach.

Although the curves match very well with previous results of Pham and Shirts, [84]

the total error in our variance estimations is somewhat larger, as can be seen in

Table 2.2. This is because we sampled with many fewer states using shorter simulations,

and would need about 2 to 6 times more sampling to reach the level of uncertainty

obtained in the previous study. However, the uncertainties in our estimates of total

variance are still small enough to reach the conclusions in this chapter.

Specific applications may require changing the basis functions themselves or simu-

lation along other alchemical schedules. Such changes could involve different basis

functions instead of the capped WCA decomposition, adding one or more additional

basis function terms in Eq. (2.4), or using a different schedule with repulsive and

attractive terms turned off separately. For example, one could add a second capped

repulsive term with a cap at r > 0.8σij and add a step to transform between different

capped basis functions. This may improve phase space overlap as the core is softened,

but may also require more intermediate states. However, increasing the number of

basis functions could lead to overfitting and increased complexity. Any increased

complexity in the potential energy function may not be worthwhile to implement

if there are not sufficient gains in statistical efficiency. In all of the wide variety of

molecular shapes and sizes examined, the procedure presented here gave variances at

most 25% larger of the previously found 1-1-48 minimum variance pathway, [84, 97]

and is lower in one case. It is thus unlikely that the increase in complexity would be

worth the marginal improvement.
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Removing the free energy calculations from the force evaluation loop can make

the simulation more easily adaptable to new software or computing paradigms. This

linear basis approach makes this removal much easier. Free energy calculations require

either the potential energy of configurations evaluated at other thermodynamic states,

or require an analytic computation of the derivative of the Hamiltonian with respect

to the coupling parameter. Traditional soft core potentials such as Eq. (2.1) require

modifying the λ value and evaluating the potential and/or its derivative for each

configuration in the inner loop. With the basis function approach, one would only

have to evaluate each basis function, ui(r) in Eq. (2.4), once for a configuration and

store them temporarily in memory. Evaluating the configuration’s potential at other

thermodynamic states can then be done by calculating all the hi(λ) of that state, then

evaluate the products with the corresponding stored basis function and summing over

all terms. If only the total potential is stored, the value of the basis functions can be

solved through linear algebra by evaluating configurations at multiple states. ∂u/∂λ

can also be computed external to the inner loop using the basis function energies

along with knowledge of h′(λ).

2.6 Conclusions

This chapter develops an approach for designing pathways for statistically efficient free

energy calculations involving removing or inserting molecules into dense fluids. We seek

to retain functions which are easier to parallelize to new architectures than soft core

potentials while still keeping the low variance of these approaches. We can achieve both

of these objectives using the formalism of linear basis function potentials, consisting

of linear combinations of basis functions with alchemical switches to represent the

nonbonded potential energy function. The linear basis potential form is shown to

greatly simplify the math needed to do potential energy re-evaluation or calculating
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derivatives of the potential, making it simple to estimate the potential energy at other

states. This simplified math allows for potential energy re-evaluation to be carried out

entirely in post-processing. One generally applicable set of basis functions and three

sets of alchemical switches, one of which is provably optimal for the choice of basis

set, were presented as examples and were all shown to have lower total variance, and

therefore lower statistical uncertainty, than the soft core 1-1-6 alchemical pathway for

a diverse molecule set.

The simplicity and power of predicting variance and 〈∂u/∂λ〉 from the basis

potential energies makes it possible to easily find an optimal alchemical switch like

Switch O that is simple enough for general usage in other molecular simulation

packages. The fact that only one simulation is needed for a given system to find the

optimal switch is a large improvement over optimizing pathway parameters requiring

multiple, iterative simulations. Indeed, the entire 〈∂u/∂λ〉 curve can be generated for

arbitrary points along any other alchemical path as long as the original path is sampled

sufficiently finely for the initial simulation, with 10-12 states generally enough.

From this chapter, we can recommend a four basis function approach for decoupling

small molecules from dense fluids like water. The basis consists of electrostatic, capping,

attractive, and repulsive basis functions. The electrostatic basis function is simply the

standard electrostatic term, and is turned off before the other three basis functions

using a simple linear coupling, although the optimal switch for this transformation

was not examined in this chapter. The potential is then transformed in a single step

to a capped WCA-decomposed potential composed of the attractive and repulsive

basis functions to avoid quickly disappearing a singularity at r = 0. These two terms

are turned off simultaneously using a linear term for the attractive function, and

the three-parameter quartic polynomial of Switch O for the repulsive term, or a

similarly shaped alchemical switch. Further improved pathways may be possible, but

the procedure described in this chapter gives more efficient pathways compared to
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standard approaches currently used. Further analysis of the alchemical schedule and

alternate ways to include electrostatics will be the focus of Chapter 3.
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3.1 Introduction

This chapter has previously been published [55] as: Naden, L. N.; Shirts, M. R.

Linear Basis Function Approach to Efficient Alchemical Free Energy Calculations.

2. Inserting and Deleting Particles with Coulombic Interactions, J. Chem. Theory

Comput., 11:2536-2549, 2015.

Calculations of free energy differences by computer simulation can provide valuable

insight into molecular thermodynamics without experimental measurements. Rigorous

statistical methods allow computer simulations to estimate free energy differences

through clearly defined thermodynamic states and sampling schemes. [133] Alchemical

transformations are a common computational technique which provide the difference of

free energies at two end states along a thermodynamic path connecting them. Sampling

this path provides the information needed for statistical analysis and estimation of the

free energy difference. A popular application of alchemical methods is the computation

of drug binding in order to understand the molecular details of drug action or to

reduce the number of molecules required to be synthesized. [12, 106, 109, 134–136] But

there are a wide range of other applications for alchemical methods where knowledge

of the chemical potential of a small molecule in some environment may be useful, such

as estimating membrane permeability or solubility.

There can be significant computational costs associated with alchemical free energy

calculations due to the number of intermediate states along the thermodynamic

pathway that must be sampled to achieve sufficiently high precision. Intermediate

states are chosen to provide larger phase space overlap between adjacent states which

reduces the uncertainty in evaluating free energies and thermodynamic expectation

values. A range of methods can be used to estimate free energies including exponential

averaging (EXP), [98] thermodynamic integration (TI), the Weighted Histogram

Analysis Method (WHAM), [99, 100] the Bennett acceptance ratio (BAR), [105] and

its multistate version (MBAR). [101] Each of these methods has their own advantages
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and disadvantages. [60, 102] Estimating free energies of solvation and absolute binding

affinities typically require numerous intermediate states because the phase space

overlap is low between the state where the entire, large solute is fully interacting with

its environment and the state where the solute is fully non-interacting.

A way to reduce this computational cost is to design thermodynamic paths which

improve the phase space overlap between intermediate states. [84, 85, 94, 95, 97] The

“soft core” approach is one way to define a pathway of potential energy functions from

a fully interacting state to a fully non-interacting state. [82, 83] The pathways in

potential energy space that can be described by this approach provide decent phase

space overlap between neighboring states, which reduces the statistical uncertainty

of free energy calculations performed along path and thus the number of samples

needed to obtain a given level of precision. [105] Minimizing the statistical uncertainty

of calculations performed along an alchemical path is equivalent to minimizing the

thermodynamic length of the path. [54, 84, 93, 94, 96, 97] The path which minimizes

the total uncertainty for the transformation is one which has an equal contribution

to the uncertainty across every point along the path. However, the minimum not

necessarily achievable via pairwise potentials [97].

To clarify the objectives of the chapter, we must introduce some statistical defi-

nitions. Using thermodynamic integration (TI) to calculate free energy differences

involves calculating the average of ∂u/∂λ at each value of λ, and then integrating

this average numerically from λ = 0 to λ = 1 to obtain the total free energy of the

transformation. In the standard case when simulations at each state are performed

independently, the variances in the mean of ∂u/∂λ, which are statistically independent,

weighted by the scalar factors used in the numerical integration method, will add in

the square to produce the variance of the total calculation of the free energy difference.

The square root of this variance is the standard deviation of the overall calculation.

By adjusting the pathway of potential energy functions that connect the end states,
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we can lower the variance of the overall calculation by increasing the overlap between

individual Hamiltonians simulated.

When comparing pathways, the most statistically efficient path is roughly inde-

pendent of the method performing the analysis such as TI, BAR, or MBAR [54, 97]

Since the variance of the mean in ∂u/∂λ at any simulated state will be proportional

to the number of samples at that state, the overall variance of the entire process will

also be proportional to the number of samples used for the entire process at all states,

assuming fixed proportion of samples per state and samples that are statistically

decorrelated. We can thus normalize this variance in the calculation by the total

number of decorrelated samples used in the calculation to obtain a measure of the

statistical efficiency of the pathway that is independent of the length of the simulations.

We will call this measure the variance of the pathway (or variance of the path).

Choosing the most statistically efficient pathway (i.e. the path with lowest variance

of the pathway) through alchemical space is non-trivial. A number of efforts have been

made to minimize the variance of the soft core path by changing the parameters in

the potential energy function. [58, 84–88, 95, 96] and an efficient formalism has been

developed for calculating minimal variance paths within a given function space. [54,

84, 97]

The functional form of the soft core potentials adds significant complexity when

implementing free energy methods on new, highly parallelized architectures such as

GPU’s or Many Integrated Core (MIC) platforms. As described in Chapter 2 and

our previous study, [54] soft core methods require writing special code to handle

the alchemical modifications to atoms and implementing these modifications on

new platforms have lagged behind the implementation of other molecular mechanics

methods. If the alchemical-specific code can be removed from the inner force loop of

molecular simulations, the time needed to implement free energy methods on these

new platforms could be drastically reduced.



3.1 Introduction 77

As shown in Chapter 2, representing the thermodynamic path with a linear

combination of basis functions makes it possible to remove alchemical specific code

from inner force loops. [54] The basis function approach splits the potential energy

into basis functions involving only the spatial coordinates of a system, and alchemical

switches depending only on the transformation coordinate. We also showed how

this basis function approach made it possible to find a near statistically optimal

thermodynamic paths to be computed from a single trial simulation entirely in post-

processing. This optimized linear basis function method was just as statistically

efficient as soft core methods for uncharged Lennard-Jones particles.

Chapter 2 looked only at the introduction and removal of Lennard-Jones interac-

tions. This chapter examines the most statistically efficient way to couple electrostatics.

It also identifies the lowest uncertainty sequence in which all nonbonded forces can be

coupled to the rest of the system, as this order becomes an additional variable when

there are multiple basis functions. To complete the analysis of the transformation of

alchemical nonbonded components, the following design questions must be addressed:

1. What combination of basis functions and alchemical switches produces the

minimum variance pathway to modify the charge of a molecule, including

reducing the charge to zero?

2. In which sequence should the entire set of nonbonded interactions be alchemically

coupled to the environment to give minimum variance pathways for insertion or

deletion of a charged molecule?

The answers to these questions extend the low variance linear basis function

approach to nearly all nonbonded alchemical changes. This chapter looks at the

statistically efficient way to alchemically couple electrostatics to the environment by

analyzing the charging of ions with a fully repulsive core, inversion of charge on a

dipole, and turning on the charges in ethanol and 1,4-butanediol molecules in water.
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This chapter also answer the question of which is the most statistically efficient order in

which the nonbonded forces are coupled. This order, or “schedule” as referred to here,

becomes variable in the process when forces can be alchemically changed separately

and can be successfully implemented in many separate ways. [85, 92, 109, 114, 137, 138]

This chapter identifies the most statistically efficient schedules across different sets of

basis functions and compares them to a soft core scheme in which all forces are coupled

together using the tryptophan side chain analog, 3-methylindole. This chapter focuses

on inserting and deleting entire atomic sites as this class of alchemical transformation

is the most challenging. [82, 83, 85, 95, 109]

Results for optimal charging pathways are valid for both absolute and relative free

energy calculations. Although we only benchmark the approaches for introduction of

deletion of sites with absolute free energy calculations in water, the same pathways will

also be efficient for insertion or deletion into other dense fluids. The same principles

will apply for relative free energy calculations in which multiple heavy atoms are

inserted, as the fluid density around these sites is mostly independent of the fluid

density around the unchanging parts of the molecule. The proposed transformations

may not be maximally efficient for relative free energy calculations with small changes,

but such calculations require many fewer intermediate states and thus require much

less optimization.

3.2 Theory

The notation is identical in this chapter and the previous chapter, [54] with only

the addition of notation for electrostatic terms. σij and εij are the Lennard-Jones

parameters between sites i and j, and qi and qj are the charges of particle i and j

respectively. ε0 is the permittivity of vacuum. Subscripts E, R, A and C denote

electrostatic, Lennard-Jones repulsive, Lennard-Jones attractive, and capping potential
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energy terms respectively, e.g. uE(r) is the electrostatic basis function. The capping

potential is the basis function which transitions from uncapped repulsive potential to

a capped repulsive near r = 0.

The theory presented here relies on the variance minimization theory laid out in

sections 2.2 and 2.4.1.

3.2.1 Selecting a Statistically Efficient Alchemical Schedule

An alchemical “schedule” is defined by what order the nonbonded forces are coupled

to the environment. Chapter 2 assumed a schedule where the Lennard-Jones repulsive

and attractive interactions changed simultaneously, so hR(λ) varied with hA(λ) along

the entire 0 ≤ λ ≤ 1 interval in Eq. (2.17), followed by a small step where hC(λ) was

fully coupled to complete the process. Changing interactions independent of each

other causes each hi(λ) to change at different rates with λ, such as when decoupling

electrostatics before decoupling Lennard-Jones. Examples of two different schedules

are illustrated in Fig. 3.1. The upper schedule shows attractive (hA) and repulsive (hR)

switches being fully coupled before electrostatics (hE), and the lower schedule shows

repulsive force coupling continuously as electrostatic and attractive are alternating

coupled. The height of each line shows the value of the respective hi(λ). Some

interactions may become fully coupled before λ = 1 as is the case for hR in the upper

schedule and hA in both schedules.
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Figure 3.1: Two examples of alchemical switches with different schedules. Switch
labels are shown to the left of each plot. Each switch is allowed to change over different
ranges of the λ parameter. Height of each line is a relative value of hi(λ). The upper
schedule shows full coupling of repulsive and attractive forces before electrostatics. The
lower schedule has the repulsive potential continuously increasing but electrostatics
and attractive switches alternating.

The variance between separate alchemical schedules cannot be mapped by Eq. (2.22)

as the phase space is not shared between schedules. Consider trying to map an

electrostatic switch hE(λh) from a sampled λh where the repulsive interaction is

present to a λg where the repulsive force is removed. There will be little to no phase

space overlap between these two systems. hE(λh) will therefore not contain all the

thermodynamic information about hE(λg), making the mapping process impossible to

use. Once an alchemical schedule is chosen, then a minimal variance pathway can be

computed.
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Choosing Reasonable Alchemical Schedules

To simplify the analysis, we first identify schedules which provide converged numerical

answers and are reasonable to implement. As a first simplification, the alchemical

schedules assume that each type of interaction is fully coupled or decoupled over

a single, continuous space of λ monotonically. This assumption ignores some less

likely possibilities; e.g. removing half of the charge, removing the attractive term,

then removing the other half of the charge; or removing the attractive term, and

then decreasing the charge while increasing the attractive term. Section 3.2.1 revisits

these non-monotonic pathways and argues that they cannot substantially improve the

statistical error associated with each pathway.

Examining the possible orders to couple the three types of interactions (repulsive,

attractive, and electrostatic), either sequentially or simultaneously, leads to 24 possible

permutations of alchemical schedules. As an example of these permutations, for the

upper schedule of Fig. 3.1, the first set of switches is {hR,hA} followed by {hE}. Other

alternatives include changing the switches simultaneously, {hR,hA,hE}, or each switch

could be changed one at a time, with six possible orderings.

This chapter distinguishes the separate schedules with a shorthand notation. A

sequence of letters denotes the schedule along which force is coupled to the environment,

and stages in the schedule are separated by a slash (/). Electrostatic, repulsive, and

the attractive switches are denoted by capital E, R, and A respectively. Additionally,

each schedule must have a step to remove the cap on the repulsive potentials imposed

by the linear basis approach, denoted by C. As the soft core methods do not have a cap

stage, they will not have a C in their schedule. Although the schedules, derivations,

and discussions shown here are for coupling, the process of decoupling is equivalent

and would simply be the reverse ordering of the schedules. For example, the upper

schedule in Fig. 3.1 would be a soft core schedule and denote AR/E since there is no

explicit removal of the cap. All three forces in soft core changing together would be
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denoted by AER which is equivalent to RAE, EAR, and so forth.

We can quickly eliminate many of the 24 possible permutations. Basis function

schedules must have a separate stage for coupling C, so AER would be invalid for the

basis function approach. As an example linear basis function approach with a cap:

coupling electrostatics, then attractive, then the capped repulsive, and lastly removing

the cap would be denoted E/A/R/C. The repulsive force is always capped when it

is coupled, then uncapped in the next step, i.e. C will always be in the stage after

R. Such an ordering of R and C is required to have well-converged results. Adding

these requirements reduce the 24 permutations to 13 unique ones. These unique

permutations are summarized in Table 3.1 and grouped into classes discussed in the

Appendix B.1.

Table 3.1: Only a finite number of alchemical schedules are reasonable to use. Permu-
tations of coupling electrostatics (E), attractive (A), and repulsive (R) forces with
a cap (C) and logical arguments allow reducing the 13 unique permutations down
to 4 reasonable ones. This table shows the unique permutations and categorizes
them. The schedules can be Reasonable, Attractive Core where a negative infinite
potential can be generated at r = 0, or Large Coupling Variance where the cap
required on the repulsive interaction [54] is large enough to generate a high variance to
decouple it. Schedules are shown by order of coupling e.g. R/C/EA fully couples the
repulsive interaction, then removes the cap on the repulsive force, then fully couples
the electrostatic and attractive interactions together. ∗ indicates that this schedule is
only reasonable using the WCA decomposition.

Reasonable Attractive Core Large Coupling Variance

AR/C/E∗ A/E/R/C ARE/C

R/C/AE A/ER/C E/AR/C

R/C/A/E A/R/C/E ER/C/A

R/C/E/A AE/R/C E/R/C/A

E/A/R/C

Further analysis shows that there are only 4 of the 13 unique schedules that need

to be examined in detail to identify the lowest variance pathways, which are R/C/A/E,
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R/C/E/A, R/C/AE and AR/C/E. These are all paths in which the capped repulsive

basis is first turned on, then the cap is removed, then the electrostatics can be turned

on. The only difference is the timing of the addition of the Lennard-Jones attractive

term. It could be turned on between the capping term and electrostatics term, after

the electrostatics term, or during either the capped repulsive basis or the electrostatics

term. The details of the logic restricting our search to these four sequences is given in

Appendix B.1.

Non-monotonic or non-sequential pathways will have larger variances than

monotonic and sequential pathways

We argue that we need only consider monotonic changes of λ. The large curvature

of non-monotonic switches increases the variance of any pathway, independent of

alchemical schedule. The variance of each schedule is directly proportional to the

curvature in ∂u/∂λ, [54, 93, 94, 96] which itself is a function of ∂2hi/∂λ
2. Any force

controlled by a non-monotonic switch would naturally have more curvature, and

thereby pathway variance, than any monotonic switches. The 13 unique schedules

in Table 3.1 assume that each force is fully coupled to the system in one stage then

remains fully coupled, and the alchemical switch controlling that force is monotonic.

We also must consider whether it might make sense to couple a single force over

multiple stages. The lower schedule in Fig. 3.1 shows a process where the electrostatics

are coupled only halfway in the first stage of the transformation, held constant in the

second stage, and then coupled the remainder of the way in the last stage. This is

in contrast to all of the suggested schedules where each force is coupled in a single

stage. We can remove the need to test schedules where individual forces are coupled

in multiple stages with two logical arguments.

• The repulsive force must be fully coupled in the first stage. The

previous section and Appendix B.1 argued that electrostatics should be coupled
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only after the repulsive force is fully coupled. The attractive force can only be

coupled with the repulsive force if the potential has a WCA decomposition, but

the repulsive force must still be the first stage to prevent an attractive core from

forming.

• Identifying non-intuitive covariance terms would be the only way to

lower the variance below fully coupling a force in a single stage. Since

electrostatics and repulsive must be coupled separately from each other, the

only force which could be coupled in multiple stages is the attractive force. Any

reduction in variance from coupling the attractive force in multiple stages would

come from the covariance terms in Eq. (2.17) The attractive component can

only be coupled with the repulsive force in the WCA decomposition, and we

will show contributes a small amount to the variance in this case. As such, any

Cov (uR, uA) terms will only provide small reductions in the total variance of the

pathway. Since electrostatics can have both attractive and repulsive interactions,

Cov (uE, uA) is system dependent so no general trend can be established for

changing hA(λ) in non-monotonic ways.

Because coupling the attractive force across multiple stages will only provide marginal

reduction in the variance at best, and because repulsive and electrostatic forces must

be coupled separately, we believe there is not enough value in designing schedules

where any force is coupled over more than one stage.

3.2.2 Basis Functions for Electrostatics and Alternate Lennard-

Jones Basis Functions

The standard form of a pairwise electrostatic interaction for point charges is the

basis function studied here. Since this chapter is not examining schedules which

require capped electrostatics, there is no need to create a cap as is done for the WCA
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decomposed Lennard-Jones basis functions. [54] This makes the electrostatic basis

uE(r) =
qiqj

4πε0r
. (3.1)

The corresponding, minimal pathway variance alchemical switch, hE(λ), still needs

designed, but this can be done with a trial switch, Eq. (2.22), and the method

summarized in Section 2.4.1.

Decomposing the electrostatics requires implementation based considerations. If

the electrostatics are decomposed into short- and long-range contributions such as

reaction field or particle mesh Ewald (PME), [139] then additional basis functions

may be required. Specifically for PME, there is a term in the potential energy

which scales as h2
E(λ) which cannot be neglected due to long-range interactions of

each alchemical atom with other alchemical atoms in periodic copies. Because the

alchemical implementation may be different based on software, a general solution

cannot be provided here, but this chapter’s specific implementation is discussed in

Appendix B.3.

Exploring an alternate set of basis functions to the WCA decomposition of Lennard-

Jones interactions can help generalize the basis function method. In Chapter 2 and

Section 3.2.1, a capped WCA decomposition was assumed which takes the form of

Eqs. (2.17) -(2.8). An alternate set of Lennard-Jones functions can be defined which

splits the repulsive and attractive interactions based on their respective exponent of

r−n. These 12-6 basis functions can be written as

u12-6(r) = u12(r) + u6(r) (3.2)
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where the subscripts 12 and 6 denote the repulsive and attractive terms respectively.

The 12-6 basis functions are simply

u12(r) =
4εijσ

12
ij

r12
(3.3)

u6(r) =
−4εijσ

6
ij

r6
. (3.4)

The u12 basis will need to be capped in the same way as the WCA decomposed basis

functions and is defined as

u12,cap = ucap for r < fcapσij

= Ar4 +Br3 + Cr2 +Dr + E for fcapσij ≤ r < fswitchσij

= u12(r) for r ≥ fswitchσij (3.5)

where ucap = u12(fcapσij), fcap = 0.82, and fswitch = 0.92 to keep the cap height

between 3.5kBT and 8.8kBT and minimize the variance in the pathway from switching

between an infinite potential and the capped potential. [54] The constants A–E are

determined by εij , σij , fcap, and fswitch in the same way as the constants of Eq. (2.10).

This set of basis functions is numerically stable for all schedules in Table 3.1 except

AR/C/E as denoted since the attractive interaction is not capped. Each schedule

will be affixed with either “-WCA” or “-12-6” in its name to distinguish between the

WCA and 12-6 and basis functions respectively.

3.3 Experimental Design

Molecular dynamics for solvation of molecules with electrostatic interactions were

carried out with YANK [116, 117] which was built on GPU accelerated OpenMM

v4.1.1 [25, 39, 118, 119, 122] in explicit TIP3P water. This includes the charging

of positive and negative ions, dipole inversion, charging of all-atom (AA) ethanol,
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charging of AA 1,4-butanediol, and insertion of the AA side-chain analog to tryptophan,

3-methylindole. OpenMM provides a platform to rapidly implement arbitrary basis

functions and alchemical switches. However, it does not directly compute derivatives

of the energy with respect to the coupling parameter, which are required to calculate

variance in the mean at each point. In the case of a basis function pathway, these

derivatives can easily be recomputed from the potential energy differences. This is

not possible for the soft core approach and so soft core alchemical simulations with

all forces changing at once were carried out with GROMACS v4.6.4. [35, 38] The

validation that the thermodynamic properties being computed are comparable between

the two simulation packages is discussed below.

Solvation free energy simulations and charging-only transformations were tested

with a variety of different molecules. Charging of a molecule was carried out on Na+,

Cl−, a dipole made from united atom (UA) ethane with +0.5/-0.5 charge, AA ethanol,

and AA 1,4-butanediol. Full insertion of a molecule with partial charges was tested

with AA 3-methylindole. The charged species were chosen to test if opposite signs

have different optimized paths in a polar solvent such as water. Ethanol was chosen

to see if asymmetric charge density changes the optimized switch. 1,4-butanediol was

selected as a molecule with strong propensity to internally hydrogen bond in vacuum,

which would be disrupted by the introduction of polar solvent. 3-methylindole was

selected as it is the small molecule analog of the largest protein side chain.

All molecules were initially constructed using AMBERTOOLS’s LEaP with OPLS-

AA force field parameters for all molecules except the dipole. The dipole’s starting

geometries were from taken from Paliwal and Shirts [60]. 1,4-butanediol structure was

imported from PubChem (CID 8064). 3-methylindole’s starting molecular geometry

was acquired from the supplementary material from Mobley et al. [89]. All molecules

were inserted in a periodic cubic box of TIP3P water with boundaries 1.2 nm from

the solute. The number of waters in ion systems were 633 and 707 for Na+ and Cl−
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respectively. The UA ethane dipole had 1405 waters, the ethanol system had 769

waters, the 1,4-butanediol system had 872 waters, and the 3-methylindole system had

961 waters.

YANK simulations were carried out under isothermal-isobaric (NPT) conditions

at 298 K and 1 atm. Each state was simulated for 2 ns with a 2 fs time step, samples

collected every 1 ps, and Hamiltonian replica exchange [120] between all states

attempted every 1 ps with Gibbs sampling to improve replica mixing efficiency. [121].

3-methylindole’s bonded hydrogens were constrained by the SHAKE algorithm [124]

and water was constrained by the SETTLE algorithm. [125] Pressure control was

handled by a Monte Carlo barostat [126, 127] and temperature control through

Langevin dynamics. The nonbonded cutoff was 0.9 nm and interactions outside this

cutoff were handled by PME with a relative error tolerance of 5 · 10−4. Although

Hamiltonian replica exchange was not required for these systems, there was negligible

computational effort to running with it in YANK.

GROMACS simulations were run with binaries compiled in double precision. NVT

equilibration was carried out for 100 ps followed by NPT equilibration for 500 ps

before NPT production simulations of 6 ns per simulated state. Temperature was

held at 290 k and maintained through Langevin dynamics. Pressure (for NPT) was

maintained at 1 atm with a Parrinello-Rahman barostat, [140, 141] a time constant of

5 ps, and a compressibility of 4.5 · 10−5 bar−1. Alchemical sampling for the soft core

path was done at 21 evenly spaced λ values from λ = 0 to λ = 1. Replica exchange

was not done with GROMACS, however, only decorrelated samples were examined in

both simulations which should provide the same thermodynamic results.

The two simulation packages were validated to ensure the thermodynamic properties

being computed are directly comparable. The potential energy from an NVE trajectory

in OpenMM was computed by both GROMACS and OpenMM and was found to

be identical to machine precision with the simulation settings used in this chapter.
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Although thermostats and barostat were different, only algorithms preserving the

correct energy distributions were used [142] so that ensembles were directly comparable.

Different thermostats do affect the correlation time of samples, so all trajectories were

decorrelated before comparison. [143]

The analysis code and our implementation of the linear basis function method for

OpenMM and YANK can be found on GitHub [144].

3.4 Results and Discussion

3.4.1 Coupling Electrostatics

Linear coupling of electrostatics is almost exactly as statistically efficient as the

minimum variance optimal path. Fig. 3.2a and Fig. 3.2b shows the sample variance

of ∂u/∂λ, 〈∂u/∂λ〉, and optimized alchemical switches for coupling the electrostatics

of the Na+ and Cl− ions. The optimized switch is recalculated in post-processing

with the technique from Section 2.4.1 and detailed in the Chapter 2. There is no

significant difference in the shape between the optimized switches of the two ions, and

virtually no difference between either optimized alchemical switch and the simplest

linear switch h(λ) = λ. The variances of the pathway using these optimized switches

are nearly flat and approach the theoretical minimum of a perfectly flat variance of

the path over the transformation. [84, 97] Total variance for the optimized path is

less than 0.5% lower than linearly coupling the electrostatics Thus, there is no reason

to use anything other than linear coupling of electrostatics for ions given how little

reduction there is in the variance of the pathway, especially given the fact that the

optimized switch would require implementing some more complicated functional form.
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(a) Charging a sodium ion, Na+
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(b) Charging a chlorine ion, Cl−

20
22
24
26
28
30
32
34
36

V
ar

( ∂u ∂λ
)

−30

−20

−10

0

10

20

30

〈 ∂u ∂λ
〉

0.0 0.2 0.4 0.6 0.8 1.0

λ

−1.0

−0.5

0.0

0.5

1.0

h
E
(λ

)

Linear Optimal

(c) Dipole inversion

Figure 3.2: A linear alchemical switch is nearly optimal for coupling charged particles.
The variance, 〈∂u/∂λ〉, and electrostatic alchemical switch for charging ions and
inverting a dipole are shown. Simulations were run with a linear switch (blue curves)
and the minimized variance curve computed in post-processing (red curves). In all
three cases, the minimal variance was nearly flat, indicating an approach to minimum
variance over all possible (even non-pairwise) potentials. The optimized switches
did not change significantly from a linear switch. Total variance reduction using an
optimized path is less than 0.5%. This implies a linear switch is sufficiently nearly
optimal for simple particles. Units are (kcal/mol)2 for variance and kcal/mol for
∂u/∂λ; error is shown as dashed lines around curves.

The dipole inversion behaves similarly to the ion solvation in that the linear

coupling path has nearly the same pathway variance in the calculation as the minimal

variance path. The sample variance in ∂u/∂λ, 〈∂u/∂λ〉, and electrostatic switch for

the dipole inversion are shown in Fig. 3.2c. This transformation is symmetric around
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λ = 0.5 as required by the symmetry of the system. The total variance along the

optimized path is only marginally better than the linear transformation, reducing

the total variance by only 0.5% with respect to the linear path. We again conclude

that alchemically changing the charge with a linear switch will be suitable for most

applications involving changes in charge of simple particles.

The optimized charging path for molecules with a more complicated charge distri-

bution again results in only a small reduction in variance of the pathway compared

to the linear path. Unlike the ions or the dipole, the optimized path for charging

ethanol and 1,4-butanediol is not as close to linear as shown in Fig. 3.3a and Fig. 3.3b.

However, the minimum variance switch still reduces the variance less than 5% from

the linear switch in both cases. Implementing this optimized switch could probably

be done with some sort of low dimensional polynomial, but it is also not clear how

this polynomial might change on a system-by-system basis. We note that in the

cases of ethanol and 1,4-butanediol, the total variance in ∂u/∂λ associated with the

charging calculation is rather small compared to the variance of charging a large dipole,

and even smaller than the removal of a repulsive site. [54] This is likely because any

nonlinear terms relate to the higher moments of the charge distribution, which will

contribute less energy than the monopole and dipole components. As such, the rest of

the analysis will be carried out assuming a linear switch for electrostatic coupling, as

the additional marginal efficiency gained will never be worth the complication.
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(a) Charging ethanol
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(b) Charging 1,4-butanediol

Figure 3.3: A linear switch is near minimal variance, even for molecules which strongly
interact with the solute and itself. The variance in ∂u/∂λ, 〈∂u/∂λ〉, and electrostatic
alchemical switch for charging ethanol and 1,4-butanediol are shown. The linear switch
(blue curves) is not as close to the minimal variance switches (red curves) as is the
case in the charging ions and dipole inversion. The theoretical minimal variance is
approached as seen from the flat variance, however, the improvement in variance is
less than 5% for the ethanol and less than 4.4% for the 1,4-butanediol. Since this is
not a significant reduction in variance, the best general purpose alchemical switch is a
linear one when considering that linear switches are also nearly optimized for particles
carrying full charge. Units are (kcal/mol)2 for variance of ∂u/∂λ and kcal/mol for
〈∂u/∂λ〉; error is shown as dashed lines around curves.

3.4.2 Identifying the Optimal Alchemical Schedule

The variance of pathway to calculate the free energy difference is not simply the sum

of the sample variances in ∂u/∂λ at each point. Because the sample variance in ∂u/∂λ

and free energy are estimated along a TI path, the variance of the calculation of free

energy is computed by adding variances in the mean of ∂u/∂λ, weighted by the scalar

factors used in the numerical integration. Up to this point, the variances of ∂u/∂λ

discussed have simply been the sample variances. For example the sample variances

in ∂u/∂λ computed for the AR/C/E-WCA path are shown in Fig. 3.4.
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Figure 3.4: The sample variance of ∂u/∂λ in each stage of the transformation is not
additive on its own. The variance in ∂u/∂λ and 〈∂u/∂λ〉 (lower) for the AR/C/E-
WCA basis are shown. Only by dividing by the number of samples drawn from each
can the variances shown be added. Each stage in the transformation is given by
its shorthand letter above the column described in the text. The capping stage (C)
contributes very little to the total variance, even without dividing by the number of
samples drawn. Error is shown as dashed lines around the figure and often smaller
than the thickness of the line.

The integral of such a variance curve is related to the thermodynamic length, or

Riemannian length (L), [54, 84, 93, 94, 96, 97] between the states. The thermodynamic

length can be computed by

L =

∫ 1

0

√
Var

(
du

dλ

)
. (3.6)

The variance minimization efforts up to this point have focused around minimizing

this length, which happens when the sample variance in ∂u/∂λ is flat. However, as the

number of decorrelated samples from each schedule is different, and the distribution of
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states is different between the basis functions and the soft core path, we cannot compare

the sample variances in ∂u/∂λ alone to claim which path is the most statistically

efficient.

A fair comparison of thermodynamic pathways requires distributing discrete sam-

ples in a statistically optimal manner for that path. If sampling is done at discrete

states, the variance of the total calculation of the free energy, Var (∆F ) is related to

sample variance in ∂u/∂λ, s2, as

Var (∆F ) ≥
Nstage∑
i=1

Ki∑
j=1

w2
i,js

2
i,j

ns,i
(3.7)

where i loops over each of the Nstage stages in the transformation, j loops over each

of the discrete Ki states in stage i, and s2
i,j is the sample variance from state j in

stage i. ni,j is the number of samples drawn from state j and stage i. wi,j are the

weights of the quadrature method used in the TI integration to calculate the free

energy. [145] By choosing a consistent distribution of states and samples to each state,

a fair comparison between each schedule can be made by comparing the variance of

the overall free energy calculation from Eq. (3.7).

There are two limiting cases to consider when distributing samples between states

for a fair comparison of the alchemical methods. In the maximally efficient case, sam-

pling is done proportional to the anticipated sample standard deviation of ∂u/∂λ. [94]

This choice will maximize statistical efficiency of the entire calculation. However, this

requires a priori knowledge of the sample variance, which is generally only partially

known by analogy to other similar systems at the time of the simulation. This method

is nearly mathematically equivalent to adjusting the spacing between states along

the path. As ∆λ between states is reduced, additional samples are placed in nearby

state space, ideally in the regions of high variance. The switch optimization procedure

adjusting hi(λ) is also an equivalent process to adjusting the spacing between states
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since flattening hi(λ) results in additional sampling at the same intermediate states,

also effectively increasing sampling at states with high sample variance. Given that the

switch optimization procedure effectively adjusts the spacing between states, we will

only look at uniformly spaced states along λ and instead distribute discrete samples

to each state.

The other extreme case is simply performing uniform sampling at all states, which

is a fairly common approach as it requires no additional knowledge beforehand. The

realistic case is between these two situations, as some sense of the λ with large sample

variance is often qualitatively known.

Finally, a fair comparison of statistical efficiency requires methods eliminating

bias from free energy differences and analyzing only uncorrelated samples. Since

each alchemical method and schedule are estimating the same transformation, the

free energy differences should be within error of each other. If the free energy

differences are not within error of each other, it indicates insufficient sampling and

poor estimates at best, or fundamental implementation issues at worst. The value

of the free energy differences in this chapter are correctly within statistical error of

each other and tabulated in Table B.1 of Appendix B.2. This statistical efficiency

comparison relies only on uncorrelated samples, so each trajectory is subsampled to

extract only uncorrelated samples using the timeseries functions of the pymbar Python

module [101]. The computational cost to draw uncorrelated samples from the different

states will be addressed later in this chapter.

Comparison of Statistical Efficiency from Different Sampling Schemes

The maximum number of samples to distribute among alchemical states will be fixed

for each schedule and alchemical method. The different sampling schemes will assume

21000 uncorrelated samples are distributed to each schedule for both limiting cases.

This number was chosen so that 1000 samples can be uniformly distributed to the 21
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sampled states in the soft core electrostatics case. Samples are distributed to a fixed

number of states in each schedule. The basis function path has 101 evenly spaced

states at each stage since we can estimate the variance at arbitrary λ values. [54]

There is an overlapping state between each stage of a schedule so care must be taken

not to double count these states, e.g. in the AR/C/E schedule, the thermodynamic

state defined by hR(λ) = hA(λ) = 1 is identical to the state hC(λ) = 0. The soft

core electrostatics pathway will only be estimated at the 21 sampled states as sample

variance data is only available through direct simulation at each state. Eq. (3.7) is

valid even if the spacing is not uniform, though it will be held uniform in this chapter.

Both the AR/C/E-WCA and the R/C/AE-WCA paths have nearly the same

statistical efficiency as the soft core electrostatics path within error when sampled

proportionally with the sample standard deviation. Fig. 3.5 shows the variance of

the calculation of free energy for each pathway for both uniform sampling (green, left

most bars), and proportional sampling with the sample standard deviation (orange,

right most bars) along with total error in the estimate of the variance of the free

energy shown with the error bar at the top. The middle bars (purple) are a hybrid

sampling scheme and will be discussed below. As expected, proportional sampling

is more statistically efficient than uniform sampling, seeming to imply the sample

variance must be known ahead of time for the basis function approach to be as efficient

as soft core.
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Figure 3.5: A hybrid sampling scheme with 3-step, WCA basis functions is as statisti-
cally efficient as soft core methods. The variance of the calculation for free energy is
shown for three sampling schemes applied to all tested basis function schedules and the
soft core path. Samples were distributed either uniformly, proportional to the sample
standard deviation, or in a hybrid approach which is uniform except for the capping
stage, where only endpoints are sampled. The hybrid scheme provides comparable
variance of the calculation to uniformly sampled soft core methods. “WCA” and
“12-6” labels distinguish the Lennard-Jones basis functions and “SC” soft core method
applied to all forces with 1-1-6 parameterization.

However, most of this reduction in uncertainty can be gained by simply moving

samples out of the capping stage to other stages. Because sampling at intermediates

states of the cap contributes near negligible uncertainty as seen in Fig. 3.4, sampling

only the endpoints allows distributing more samples into the repulsive and electrostatics

stages. These endpoints also overlap with the AR, R, E, and/or AE stages and must

be sampled anyways. In this “hybrid” sampling, the C step is only sampled at the

endpoints, but other stages are uniformly sampled. This hybrid pathway lowers the

variance of the calculation in free energy for the AR/C/E-WCA and R/C/AE-WCA

pathways to nearly the same statistical value as the soft core electrostatics (shown
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in Fig. 3.5) but without the need for a priori knowledge of all the sample variance

curves. Sampling proportional to the standard deviation still provides lower variance

of the calculation, but at most by 13% for the AR/C/E-WCA and R/C/AE-WCA

pathways. Neglecting sampling the C stage does introduce a small amount of numerical

integration error. However, the numerical bias introduced is less than 3% of the total

variance of the free energy calculation, so makes statistically no change in the results.

The 12-6 and the four-step basis function schedules have significantly larger

variances in the free energy than the three-step WCA basis function schedules. Because

of this, there appears to be little benefit to splitting up the Lennard-Jones forces in

the 12-6 basis unless the contribution from the individual dispersion and repulsion

components is of interest to the study.

The larger variance of free energy calculation on the 12-6 schedules is due primarily

to the uncapped attractive component, which contributes significantly more to the

variance than the capped WCA attractive component. The attractive component in

the 12-6 pathways will contribute more to the numerator in Eq. (3.7) for the uniform

case, and reduce the number of samples available to the repulsive step, decreasing the

denominator of Eq. (3.7) in the proportional case. Any of the four-step processes also

suffer from having fewer samples available for the denominator in the repulsive step,

which causes an increase in variance of the calculation as well.

The contribution of each stage to the variance of the calculation in Fig. 3.5 can be

visualized in Appendix B.2 in Fig. B.8. The tabulated variance at each stage, free

energy, sampled uncertainty, and numeric values for variance of the calculation from

each sampling scheme are also included in Appendix B.2 in Table B.1 and Table B.2.

In summary, there are four heuristics we can make about sampling with the basis

function approach. From these heuristics, a schedule and sampling scheme can be

chosen without explicit knowledge of the basis function sample variances.
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1. Couple attractive Lennard-Jones forces simultaneously with either the repulsive

or electrostatic term.

2. A WCA decomposition of Lennard-Jones terms is somewhat more efficient than

a 12-6 decomposition.

3. Only the end states of the capping stage need to be sampled.

4. Uniform distribution of states to every stage and uniform sampling of each

state for all stages except for the capping stage will provide a low statistical

error, approximately as low as a soft core pathway where all forces (including

electrostatics) are coupled simultaneously.

3.4.3 Decorrelation times along the soft core pathway are

somewhat longer than the basis function pathway

The cost of generating uncorrelated samples is an additional constraint that we must

also consider when looking at the efficiency of a schedule. Some states might have

intrinsically slower configurational sampling. An extreme case was noted by Pham

et al., [84] where the provably lowest variance path actually resulted in extremely

slow kinetics for transitioning between two dominant sets of allowed configurations,

requiring tens or hundreds of nanoseconds. This resulted in a recommendation to

sample a somewhat higher variance path with much faster conformational sampling

between the resulting configurations, as the computational efficiency of this approach

outweighed the statistical inefficiency.

The two limiting cases in the comparison of schedules in the previous section

assumed that a fixed number of uncorrelated samples were available to distribute

across states, but the simulation time required to generate those uncorrelated samples

will be different depending on the conformational dynamics created by the potential

function. To explore how the correlation time of the sampling affects the efficiency
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of these schedules, we will look at the recommended AR/C/E-WCA and the soft

core electrostatics paths, using ideas from the difficulty index method introduced by

Schultz and Kofke for comparing methods accounting for statistical uncertainty and

computational time. [79]

The difficulty index method proposes a difficulty, D, to compute a given property

as

D = t1/2σ (3.8)

where t is a specified required time to compute a property, and σ is the uncertainty in

that property, after time t. The difficulty index is the logarithm of the difficulty, scaled

by a normalizing factor to compare the net computational effort required to compute

different properties, accounting for both statistical efficiency and time to calculate of

the property. As the same property is being compared here, only the difficulty, not

the difficulty index, will be examined. σ in this case will be the standard deviation of

the free energy, computed as the square root of the values in Fig. 3.5, tabulated in

Appendix B.2 as Table B.2. Assuming that identical hardware and software is used to

generate these samples, the only difference between time to collect an uncorrelated

sample is the correlation time. This removes any differences in CPU-clock time from

different software, enhanced sampling method such as replica exchange, and hardware

such as different processors or GPU vs. CPU. For this chapter, the units of difficulty

will be ps1/2 kcal/mol.

Correlation times were calculated by running a NVE simulation of both the

AR/C/E-WCA basis function pathway, and the soft core electrostatics pathway. Using

NVE simulation removes any effect temperature or pressure coupling has on the

correlation time, [146] which is particularly important since GROMACS and OpenMM

are being compared, and have somewhat different implementations of the thermostats

used for these simulations. Since energies computed by both simulation packages is

identical to machine precision in NVE, the differences between correlation times will
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only be due to the different pathways in an NVE simulation.

The AR/C/E-WCA simulation, selected as one of the two best basis function-based

paths and simulated in OpenMM, was run without replica exchange to match the soft

core electrostatic simulations run in GROMACS. The autocorrelation time [143] of

the ∂u/∂λ time series was computed for each method. The autocorrelation time of the

u(r, λ) time series in the fully coupled and fully decoupled states should be the same

between both OpenMM and GROMACS simulations, and is path independent, so it

was used as a validation check. Because sampling was only done at a limited number of

states, the correlation for the basis function time series is shown as a total progress of

the entire coupling process, and not separated by individual stages. Because there will

be two values of ∂u/∂λ at a state where basis function stages overlap, the maximum

autocorrelation time of the two was chosen to be conservative.

More sampling is required near the decoupled state of the soft core path relative

to the basis function path for a practical implementation as shown by Fig. 3.6. The

correlation times at the end states for the u(r, λ) (bottom) time series agree within

10% showing the two simulation packages are generating comparable dynamics, as

they should. At most intermediates, the correlation times in the two pathways are

similar. However, the correlation time of ∂u/∂λ (top) for the soft core electrostatic

path is almost four times that of the basis function path at the decoupled state. Since

the remainder of the correlation times are comparable, this state at λ = 0 will be

used to compute difficulty. From Eq. (3.8), the difficulty of the soft core path near

the decoupled state is 0.38 whereas the basis function difficulty is 0.12. Although the

decoupled state may take 3.5 times additional CPU effort for the soft core method, the

remainder of the sampled states will take roughly equal CPU effort between the soft

core and linear basis function approaches. This increased computational effort at the

end state will result in a moderate overall increase in simulation time for simulating

with the soft core approach instead of the basis function approach.
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Figure 3.6: The basis function method has lower correlation times than soft core
electrostatics. Correlation times of soft core electrostatics (solid lines) and a AR/C/E-
WCA schedule (dashed lines) sampled from NVE simulations are shown. The basis
function curve shows all three stages along a single λ parameter. Top image show the
correlation time for ∂u/∂λ and bottom show the correlation time for u(r, λ), which
allow us to validate that the simulation packages are generating the same dynamics at
the coupled and decoupled states. The decoupled state for the soft core electrostatics
would require nearly four times as many samples relative to the basis functions to
generate the same number of uncorrelated samples. Correlation times for u(r, λ) and
∂u/∂λ are roughly equal for λ > 0.5 and are shown as separate plots for clarity. Lines
are drawn between discretely sampled states and serve to guide the eye only.

Finally, and most importantly, we note that the correlation time for calculations

of complex systems, such as protein-ligand binding, is dominated by the large scale

motions of the system, which are independent of the much shorter timescale of

these alchemical changes. Reducing the variance of the path reduces the number of

uncorrelated data points that must be collected for a given accuracy of calculation,

where the correlation times are those of the longest timescale motions of interest in

the system, which are usually not the ones involving the alchemical transformation.
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3.5 Conclusions

We have incorporated and tested electrostatics into our linear basis function formalism.

Alchemical electrostatic methods in their current form are easily included in the basis

function formalism when the charge is coupled after Lennard-Jones type interactions.

We have shown in this chapter the most statistically efficient switch for charging is

nearly linear, and provides too marginal (5% maximum) a reduction in variance for

the pathway (and therefore statistical uncertainty) too small to justify the complexity

of implementing improved switches. Simply turning on charges linearly appears to be

the most effective option in essentially all cases.

We recommend either the AR/C/E-WCA or R/C/AE-WCA basis functions with

linear charging be considered for future implementations of alchemical transformations.

We have carefully examined multiple basis function coupling methods and compared

them to soft core electrostatics in terms of statistical and computational efficiency.

Several heuristics that do not rely on explicit knowledge of the variance were provided

which should help those wishing to implement the basis function method. The

overall statistical efficiency for the basis function with the heuristics is comparable

to traditional soft core methods, however, the basis functions are slightly more

computationally efficient. The basis functions have the added benefit of being able to

remove the alchemical forces from the inner force loop of the simulation and quickly

compute energies at unsampled states, as well as avoiding code to explicitly compute

the analytical derivative with respect to the coupling parameter.
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4.1 Introduction

This chapter has previously been published [54] as: Naden, L. N.; Shirts, M. R.

Rapid Computation of Thermodynamic Properties over Multidimensional Nonbonded

Parameter Spaces Using Adaptive Multistate Reweighting, J. Chem. Theory Comput.,

12:1806-1823, 2016.

Many applications of molecular simulations require searching over large parameter

spaces to predict or match physical observables. Molecular simulation parameters such

as charges, Lennard-Jones dispersion and repulsion parameters, as well as bonds, angles,

and torsion force constants determine the energies and probabilities of configurations

in simulations, and thus in turn, determine what thermodynamic properties will be

observed. The ability to accurately estimate thermodynamic properties without the

need for laboratory experiments has the potential to save both time and resources in

fields such as polymer [147] and solvent [148] design as well as drug discovery. [12–14]

This time and cost savings is important both in the design of new molecules, where

properties are unknown, and ’reverse property prediction’ where a model or molecule

is designed to match specific experimental targets, such as designing metal-organic

frameworks (MOFs) with specific gas loadings. [149]

Assigning parameters in a molecular simulation to fit experimental data becomes

more difficult as the number of free parameters increases. Some experimental pa-

rameters, such as bond lengths and angles, are relatively easy to estimate using

small-molecule crystallographic structures and quantum chemistry. However, non-

bonded parameters, such as partial charges and dispersion terms, are much more

difficult to assign as they are model parameters that do not directly correspond to

laboratory observables. Instead, possible nonbonded parameters are constrained by

sets of experimental observables such as transfer free energies, heats of vaporization,

densities, and heat capacities. Assigning nonbonded parameters is even more difficult

for coarse grain models since no single atoms correspond to the coarse grain beads,



4.1 Introduction 106

making parameters much less transferable.

Identifying nonbonded model parameters consistent with a set of experimental

thermodynamic values requires expensive iterative, self-consistent simulations, gradient

optimizations, [150] or quantum mechanical simulations. [71, 151–153] Most condensed

phase force fields [71–73, 75, 76, 154, 155] are parameterized by iterative fitting to a

training set of experimental thermodynamic data for a small set of molecules chosen

to represent a broader spectrum of similar molecules. [156, 157] Accurate fits are

required to predict properties of biological systems or complex mixtures where group

contribution methods such as UNIQUAC [65] and UNIFAC [66] are inadequate.

Some of the most computationally expensive properties to estimate involve the free

energy differences between two states, such as the solvation free energy, which is the free

energy difference of two systems as one solute molecule moves from solution to vapor, or

activity coefficients, which measure the deviation of the chemical potential of a species

from ideality. Accurately computing free energy differences (or equivalently, chemical

potential differences) also provide a way to compute many other thermodynamic

properties as they can be derived from the derivatives of the free energy with respect

to temperature (T ), pressure (P ), volume (V ), and number of particles (Ni).

Estimating the free energy difference between two thermodynamic states accurately

requires designing a thermodynamic path between the states. Thermodynamic paths

connect two or more states through a series of smaller steps along a parametric path

whose free energy can be calculated more easily. [95, 158]

Paths that are both computationally and statistically efficient, especially for full

deletion or insertion of a molecule into a dense fluid, are nontrivial to design and

must often include a number of non-obvious, nonphysical intermediates. [54, 55, 57,

81, 84–90, 92, 95–97] The end states and multiple intermediate states along the

thermodynamic path must be sampled to create good configuration space overlap

between the end states, which is required to accurately estimate free energy differences
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between the endpoints. [14, 81, 105, 159–161] Technically, we require good overlap

in the full phase space, both configurations and velocity, but because velocities are

thermalized in essentially all systems of thermodynamic interest, it is the configuration

space that we must generally worry about when connecting states together.

If one wishes to compute free energies of solvation for many different parameteriza-

tions of the same molecule, the direct approach of estimating properties by sampling

along a thermodynamic pathway connecting all parameter choices is extremely expen-

sive for highly accurate calculations. Accurately calculating the differences in free

energies due to a small change of parameters is particularly difficult because we must

take the differences between two similar numbers with independent statistical error.

Reweighting methods can help solve both the problem of expense and the prob-

lem of cancellations of errors. In a recent study, our group showed how multistate

reweighting can directly calculate the ∆∆G between two different long-range inter-

action approaches, with very small uncertainties for relatively low computational

cost. [162] The expense is lowered by constructing thermodynamic cycles directly

connecting Hamiltonians with similar parameters and thus significantly overlapping

configurational spaces. These small uncertainties are possible because multistate

reweighting methods such as the Multistate Bennett Acceptance Ratio (MBAR) [101]

can directly calculate the covariances between the two free energies through analyzing

all potential energy differences, rather than only uncorrelated calculations. This same

approach can be applied to small changes in parameters.

Estimating properties with reweighting methods requires constructing a thermo-

dynamic path between the different parameterizations. It also requires potentially

significant computational resources to perform simulations with parameters that have

properly overlapping configurations. The combination of these two requirements adds

theoretical and practical limitations to simultaneously searching large, multidimen-

sional nonbonded parameter spaces.
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1. The space of nonbonded parameters is often at least multiple dimensions per

particle or particle type. For example, the nonbonded parameters of charge (q)

and at least two Lennard-Jones-like terms (εij, σij) can result in at least three

parameter dimensions per particle type.

2. There is no obvious way to define computationally efficient thermodynamic

paths between any two points in these multidimensional spaces or select a

prior simulation points in this space that give rise to low error estimates of

thermodynamic properties across the entire space.

3. Reweighting methods requires computing energies from the sampled configu-

rations to other sampled states, and any unsampled state of interest. This

re-computation typically requires re-running the simulation force loops over all

generated configurations for each combination of parameters of interest. The

computational cost to search such a multidimensional space of nonbonded pa-

rameters scales, at best, linearly with the number of samples, and at worst

quadratically with the number of parameter combinations, since data may be

collected with simulations at each parameter combination. [54]

Designing efficient thermodynamic paths through arbitrary thermodynamic states

is a challenging task, [54, 55, 84] but designing paths in multidimensional parame-

ter spaces adds additional complexities. An example in Fig. 4.1 demonstrates the

challenges of identifying low-uncertainty paths in multiple dimensions. This figure

shows two arbitrarily defined thermodynamic states in a two-dimensional parameter

space and attempts to draw pathways between them with high mutual configuration

space overlap, providing low error estimates. However, the choice of which path to

sample is not immediately obvious. The shortest Euclidean path in parameter space

has large uncertainty, but two alternative paths have low uncertainty. This sort of

multidimensional space raises questions with no obvious answers: How can we a priori
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identify which paths have more mutual configuration space overlap, and consequently

result in simulations with lower uncertainty, without exhaustively sampling the system?

Could samples drawn from both paths but with different proportions provide lower

uncertainty than sampling either path by itself?
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Figure 4.1: Defining the “best” thermodynamic path between arbitrary
states is a nontrivial problem. This figure shows several multidimensional ther-
modynamic paths connecting two states, and the relative uncertainty of each pathway
shown by a gray scale gradient of each curve. The path with shortest Euclidean
distance in parameter space (λ1, λ2) has a large uncertainty, and at least two of
the other paths have lower uncertainty. However, it is unclear if sampling a single
“best path,” or a combination of multiple low variance paths will have the highest
computational efficiency for a target statistical error. The most computationally
efficient sampling scheme may not be along any single path at all, and instead may
be achieved by sampling non-parameterized states in a multidimensional parameter
space.

Previous research on identifying low-variance paths along a single coupling param-

eter used local minimization of total variance along the path. [54, 55, 84] However,

in multiple dimensions, since multiple potential low-variance paths could exist, local

optimization is unlikely to identify the most efficient path between arbitrary states,

nor whether it would be more optimal to sample multiple paths. The identification of
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an optimal path choice is made more complicated if we are interested in all the mutual

free energy differences between multiple states, since we must identify a path or a

network of paths connecting all of the states, with samples collected along each path.

One would ideally want ad hoc rules estimating the computational efficiency of these

paths, determined a priori to avoid unnecessary sampling. Defining such rules for a

diverse set of chemical systems becomes increasingly complex as the dimensionality

and the number of states increases. Removing the need to define these difficult

multidimensional paths significantly lowers these barriers to searching through large

parameter spaces for optimal parameters.

We can remove the need to explicitly define or sample along thermodynamic

paths between states in multiple dimensions with multistate reweighting methods.

These methods, such as the MBAR [101] and the Weighted Histogram Analysis

Method (WHAM), [99, 100] allow samples taken from anywhere in the parameter

space to contribute to the estimate of properties anywhere else in the space, without

the need to define which thermodynamic states are adjacent as is needed for the

original Bennett Acceptance Ratio (BAR). [105] MBAR has the important advantage

over WHAM in that sampled configurations do not need to be binned along a pre-

defined thermodynamic path for the analysis which is particularly important in

multidimensional spaces, where it becomes increasingly difficult to populate histogram

bins. Any given combination of nonbonded parameters will share a high degree of

configuration space overlap with slightly perturbed parameters, though it is not clear

a priori how large the perturbation can be. MBAR uses the probability of observing

samples drawn from one state in any other state to estimate the effective ratio of

partition functions between any two states, with or without samples, to provide free

energy differences with uncertainty estimates. Therefore, with moderate sampling

at the right parameter combinations, we can estimate thermodynamic properties at

a large number of parameter combinations, even without explicit sampling of every



4.1 Introduction 111

parameter combination, so long as for each choice of parameters there is some degree

of configuration space overlap with some combination of sampled parameters.

With the limitation of explicitly defining a thermodynamic path removed, we

can focus on decreasing the computational cost of computing the energy of every

drawn sample in every sampled state and unsampled state we care about. These

energies are required to compute the probability of every sample in every state. We

define “state of interest” as a shorthand for any thermodynamic state that we want

to estimate thermodynamic properties at. Each thermodynamic state is defined here

by the parameter combination and thermodynamic ensemble. Reweighting methods

require the energy of each sampled configuration to be known at each state of interest

to compute free energy differences and other properties between states. Computing

a configuration’s energy multiple times with different energy functions is a time

limiting step for calculating thermodynamic properties across large parameter spaces.

Collecting the energy of each configuration at each state usually requires running

the simulation code, or at least the inner force loop of simulation code, multiple

times on each configuration. If we only are interested in reweighting the properties

from a single sampled state, [98] we would only have to carry out this computation

once per configuration (N) drawn at a sampled state (Ks), per unsampled state

of interest (Ku). This results in energy calculations that scale as O (N(Ku +Ks)),

assuming equal sampling per sampled state. However, such estimates are known to be

statistically inefficient and prone to substantial bias when configuration overlap is not

substantial. [60, 102, 163] Multistate methods, like MBAR, [101] require calculating

the energy for each configuration at each sampled state as well as each state of interest,

so the scaling is quadratic in the number of sampled states as O (N(Ku +K2
s )). This

is not a burdensome task for a small number of states along a single thermodynamic

path, making it well worth using multistate simulations regardless of how expensive

recalculating the energies of the configurations are. However, as tens or hundreds of
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thousands of states of interest and hundreds of sampled states are considered, this

scaling becomes a computational bottleneck that must be overcome.

We can reduce the cost to compute energies at thermodynamic states to com-

putationally trivial vector multiplication by defining the energies using linear basis

functions. [54, 55, 88] Energies calculated using a basis function approach can be most

generally written as

u(r, λ) =
n∑
i

hi(λ)ui(r) + uunaffected(r) (4.1)

where u(r, λ) = βU(r, λ) is the reduced energy (the energy scaled by β) as a function

of both the configuration r and some (possibly multidimensional) alchemical coupling

parameter λ; hi(λ) are a set of nonphysical, alchemical switches that are independent

of configuration; ui(r) are the basis functions; n is the total number of basis function

and alchemical switch pairs; and uunaffected(r) is the system’s potential energy not

dependent on the alchemical variables. This approach computes the energy of a

configuration at any thermodynamic state by scalar multiplication of the configuration

dependent basis functions, which only have to be computed once per configuration.

The vector multiplication can eliminate the need to run the inner force loop on a

configuration more than once, reducing the computational cost of evaluating energies

from O (N(Ku +K2
s )), to O (NKs), which is simply the total number of sampled

configurations. The alchemical switches can take any form, so long as r remains part

of the basis functions and not the switches. This form of the potential energy is in

contrast to forms such as the soft core form of Lennard-Jones interactions [82, 83],

which cannot be represented as sums of separable combinations of r and λ.

In this chapter, we combine multistate reweighting methods with a linear basis

function approach to compute thermodynamic properties over a large nonbonded

parameter space. To demonstrate the process, we look at the Lennard-Jones parameters
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εii and σii, and partial charge, qi, for a single particle in explicit solvent. This approach

could can aid in future large parameter space searches to quickly find a range of

nonbonded parameters and fine tune a fitting or optimization procedure. The relative

free energy, enthalpy, and entropy of solvation are explored as these are some of the

most computationally expensive properties to estimate. We also estimate the Born

solvation free energy of charging, compare our results to specific ion free energies

computed from others, and compute radial distribution functions. The techniques

shown here are generalizable to other thermodynamic properties. Single particle

solvation is intended as a demonstration of the approach. The same approach could

be used for problems as general as exploring the nonbonded parameters of multiple

atomic sites for improved force field parameterization or exploring coarse-grained

potentials so long as the potential energy can be represented as Eq. (4.1).

The techniques presented provide a novel alternative to standard methods for

searching parameter space. If one merely requires a single optimal set of parameters

under some criteria, the approach here will not be as useful as a standard optimization

method. However, this approach allows researchers to estimate properties over an

entire parameter space at once, eliminating the need to perform additional simulations

to compute the free energy or other thermodynamic properties at different parameter

choices. This approach makes it easy and efficient to probe theories which make

predictions over a wide parameter range, and are thus not easily amenable to brute

force calculations. We demonstrate this efficiency in a comparison of Born solvation

theory to explicit solvent simulation.

We explore both a two-dimensional and a three-dimensional parameter space. We

first estimate free energies in a 2-D parameter space of εii and σii to demonstrate

the ability to estimate properties in a wide parameter space, easily visualize the

results, and identify how reducing uncertainty in the property estimates is non-trivial.

Secondly, we estimate multiple properties in a larger, 3-D parameter space in εij,
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σii, and qi and iteratively generate new simulations to reduce the statistical error in

the estimate of solvation properties across the entire range of parameters. This 3-D

parameter search looks at a more practical parameterization with particle charge, but

focuses on the issues of reducing uncertainty in the entire parameter space through

adaptively drawing samples requiring minimal user input.

4.2 Theory

The notation in this chapter is as follows. σii and εii are the Lennard-Jones parameters,

and qi is the charge of a particle. ε0 is the permittivity of vacuum. u(r) are basis

functions of the potential energy function and h(λ) are the alchemical switches.

Subscripts E, R, and A denote an electrostatic, Lennard-Jones repulsive, and Lennard-

Jones attractive term respectively, e.g. uE(r) is the electrostatic basis function. The

subscripts i, j, and k on nonbonded parameters denote arbitrary atoms, and subscripts

X, Y , and Z denote an explicit set of parameters with fixed values which define a

thermodynamic state, but their values not explicitly defined to be general. Subscript

S denotes a solvent particle. The subscript ` will be used for summation indices, and

C represents a collection of constants.

4.2.1 Representing nonbonded parameter space with basis

functions

We generalize the potential energy to simplify writing the energy of any potential in

multidimensional space. The three nonbonded parameters explored here lead to a

pairwise nonbonded potential energy between two point particles a distance r apart

u(r) = β

[
4εijσ

12
ij

r12
+
−4εijσ

6
ij

r6
+

qiqj
4πε0r

]
. (4.2)
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Eq. (4.2) can be more generally written as

u(r) =
C12

r12
+
C6

r6
+
C1

r
(4.3)

=
∑
`

(
Cn
rn

)
`

(4.4)

where n takes discrete values of 12, 6, or 1 depending on the index of ` and each

Cn corresponds to the power of r−n. The energy of a configuration at any point in

parameter space is found by adding an alchemical switch, hn(λn), to each term of

Eq. (4.3) and then adding the remainder of the pairwise interactions not affected by

the alchemical changes. Each λn can vary independently from each other, allowing

a multidimensional representation of the energy in terms of the parameters. The

alchemical switches scale each of the 12, 6, and 1 terms to produce each of the target

thermodynamic states. The total potential is then

u(r, λ) = uunaffected(r) +
∑
`

(
hn(λn)Cn

rn

)
`

. (4.5)

Computing the basis functions can be done either directly in code or in post-

processing with fixed reference states. The most computationally efficient way to

compute the basis functions would be to have the simulation package provide them

at run time. However, most simulation packages will not allow the user direct access

to the basis function values without heavily modifying its code, since usually only

the total potential energy or the total λ-dependent energy is required. An alternative

solution which avoids any code modification is to choose two fixed reference states and

compute the basis functions as a difference in energy, as was done in this chapter and

explored below. This alternative approach means we must run the force calculations at

least three times for any sampled configuration: once while the samples are generated,

and once for each reference state.

The potential can be represented as linear combination of alchemical perturbations
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around a fixed reference particle at state X with respect to a second reference particle

at state Y as

u(r, λ) = uunaffected(r) +
∑
`

[
(1− hn(λn))Cn,X(r) + hn(λn)Cn,Y (r)

rn

]
`

= uunaffected(r) + uX(r) +
∑
`

[
hn(λn)∆Cn,XY (r)

rn

]
`

(4.6)

where ∆Cn,XY (r) = Cn,Y (r)−Cn,X(r) and uX(r) is the complete nonbonded pairwise

potential for particle X alone. The computed basis functions are then calculated as

the energy difference between the two reference particles, and the unmodified potential

energy of particle X becomes part of uunaffected(r). The potential energy at arbitrary

state Z can now be computed using this perturbation. This reference state approach

makes computing the basis functions possible without major simulation code changes.

The numerical error should be monitored for any round off error since two similar

energies are subtracted, as we discuss in Section 4.4.5.

Unlike with standard alchemical transformations between λ = 0 and λ = 1, the

accessible parameter space is not bounded by the reference states. Consider an

arbitrary state, Z, with parameters outside the range of the parameters Cn,X and Cn,Y .

The values of alchemical switches defining Z would then fall outside the standard

[0, 1] domain. States which fall outside this domain still have physical meaning in

this context, unlike states with λ outside [0, 1] have no meaning for particle insertion

or deletion simulations. For example, the expanded domains in Chapters 2 and 3

served no practical purpose since hn(λn) < 0 represented a state where particles had

an attractive atomic center, and hn(λn) > 1 represented a state “more than fully

coupled.”

The number of terms in Eq. (4.6) will increase quadratically as the number of

interaction sites in the solute increase, increasing the number of εij and σij terms.

However, geometric mixing rules can avoid such a large increase in terms. Details of
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how geometric mixing rules allow hn(λn) terms to be solvent-independent are given in

supplementary material in section C.1.

The perturbed energy representation of the thermodynamic space is more compu-

tationally efficient than re-running simulation force loops. The optimal computational

cost for this perturbed energy function is only O (3NKs), which scales much better

than O (N(Ku +K2
s )) as Ku and Ks increase. We note that the O (3NKs) computa-

tional effort is only optimal if one can separate the individual terms in the potential.

This is sometimes possible if, for example, the energy terms are one nonbonded term

and one bonded term. Simulation packages like GROMACS [35, 38] return the bonded

and nonbonded contributions separately. In our work here, our true computational

effort is O ((1 + 2B)KsN) = O (7KsN) where B is the number of basis function

terms since we must solve for each basis function through linear algebra. We also

perturb only one atom type, keeping computational cost low. The computational

costs increases roughly proportionally with the number of perturbed atom types. We

emphasize that the O (7KsN) scaling, even when considering the number of perturbed

atom types, is still less computational effort than O (N(Ku +K2
s )) as we are designing

for hundreds of thousands of unsampled states.

The methods outlined here should be applicable for more generalized parameter

dimensions and thermodynamic spaces so long as the energy can be written as a

linear combination of basis functions as in Eq. (4.1). The case of appearance and

disappearance of multiple atoms or molecules in a system traditionally is done with soft

core energy functions. [82, 83] However, we detail in our previous work basis functions

for particle removal which are as statistically efficient as soft core paths. [54, 55] Since

we are not appearing or disappearing atoms in the dense fluid, we do not need the

soft core basis functions and can use the perturbed Lennard-Jones and Coulombic

terms of Eq. (4.6).
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4.3 Experimental Design

Molecular dynamics (MD) simulations of a single particle in 1195 TIP3P water

molecules were carried out with GROMACS 4.6.5 [35, 38] compiled in double precision.

NVT equilibration was carried out for 100 ps in a 36.238 nm3, followed by NPT

equilibration for 500 ps, followed by NPT production simulations of 6 ns per simulated

parameter combination. Temperature was held at 298 K and coupled through Langevin

dynamics with a time constant of 5 ps. Pressure (for NPT simulations) was held at

1 atm and coupled with a Parrinello-Rahman barostat, [140, 141] with a time constant

of 5 ps, and a compressibility of 4.5 · 10−5 bar−1.

Solvation properties were estimated over a grid of nonbonded parameters for

the particle. For the 2-D case, the parameter ranges are 0.0239 kcal/mol ≤ εii ≤

0.8604 kcal/mol (0.1 kJ/mol ≤ εii ≤ 3.6 kJ/mol) and 0.25 nm ≤ σii ≤ 1.2 nm. This

range was chosen to include the largest possible particles in the OPLS-AA force

field. [71, 72] with additional parameters to test the limits of the reweighting methods.

Solvation properties were calculated on a square grid of εii and σii with 151 grid points

in each dimension for 22,801 total parameter combinations. Grid points and initially

sampled states were distributed uniformly in εii and uniformly in σ3
ii so that sampling

was done approximately proportional to the free energy of cavitation. [164, 165] The

eleven initial sampled states were at σii = {0.250, 0.573, 0.712, 0.811, 0.891, 0.958,

1.017, 1.070, 1.118, 1.162, 1.200} nm with εii = {0.0239, 0.0502, 0.0765, 0.1028, 0.1291,

0.1554, 0.1816, 0.2079, 0.2342, 0.2605, 0.2868} kcal/mol. Relative solvation properties

were computed from the reference parameters εii = 0.1816 kcal/mol, σii = 1.0170 nm

so the reference was roughly in the middle of the σ3
ii space. An additional state was

drawn to reduce overall uncertainty at σii = 0.300 nm and εii = 0.1921 kcal/mol.

For the 3-D case, the parameter ranges are 0.0239 kcal/mol ≤ εii ≤ 0.8604 kcal/mol,

0.25 nm ≤ σii ≤ 0.958 nm, and −2.0 ≤ qi ≤ +2.0 in units of elementary charge with

each dimension having 51 points for 513 grid points in the parameter space and a



4.3 Experimental Design 119

total of 132,651 parameter combinations. To improve resolution in some of the images,

101 uniformly spaced σii states were estimated for 101 · 512 grid points for 262,701

combinations. The reference state chosen for this set test was εii = 0.0502 kcal/mol,

σii = 0.5732 nm, and qi = 0.0. This set covers particles in the OPLS-AA force

field from hydrogen (bound to a carbon), through the largest ions. The reference

state was chosen to show how properties with low uncertainty can be estimated to

particles of very different sizes and charges through iteratively selecting new parameter

combinations to simulate. The spacing for initial sampling for εii and σii remains

unchanged from the 2-D case and the initial sampled states at q = 0 were the first

six points from the 2-D case plus the additional state to reduce uncertainty. These

initial points were chosen for the q = 0 plane as we knew these initial points would

provide low uncertainty estimates for the uncharged particles. Additional sampling

in qi was done proportional to q
1/2
i in keeping with Born theory for the free energy

of solvation of charged spheres. This choices resulted in initial sampling at charges

±2.0000, ±1.8516, ±1.6903, ±1.5119, ±1.3093, ±1.0690, ±0.7559, and 0.0000, all

with the reference state choices of εii and σii. Starting molecular geometries were

generated with AMBERTOOLS’s LEaP [112] and initial equilibration was carried

out with the reference state parameters. All other solutes started their equilibration

process from the final frame of the reference ion’s NPT equilibration step.

Details about specific algorithm to compute basis functions with GROMACS and

all input files are included in Appendix C and the online supplementary information

for this article. [56] The analysis code can be found on GitHub. [166]
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4.4 Results and Discussion

4.4.1 Solvation properties over a 2-D parameter space

With the combination of methods described above, we can efficiently and accurately

calculate the free energy of solvation and other thermodynamic properties over mul-

tidimensional parameter spaces. Figure 4.2 shows the free energy, and error in free

energy of uncharged Lennard-Jones spheres evaluated at 1512 combinations of εii and

σii. The free energy differences were estimated using MBAR implemented in the

pymbar package. [101] One of the main keys to making this calculation feasible is

that the linear basis function approach allows rapid calculation of potential energies

in post-processing. Reconstructing the potential energies required for free energy

estimates through vector operations takes only seconds on a single core of a desktop

computer’s CPU. The same evaluation of energies would have to be run through the

inner force loops at all 1512 states without the linear basis function method, scaling as

O (N(Ku +K2
s )). We ran each sampled state’s trajectory through single point energy

calculations with GROMACS estimating the potential under every other sampled

state thermodynamic conditions to quantify the computational cost. Each simulation

of 30000 samples took over 1500 CPU seconds to re-evaluate the energies of the given

trajectory. For reference, the average time to run the simulation on the same hardware

was 25 CPU hours. If we make a conservative calculation and assume each re-run

of the inner force loop took the minimum 1500 CPU seconds, the 12 sampled states

would have taken 13 CPU years to run each configuration through the 1512 parameter

combinations. This computational cost illustrates the primary speed improvement

over re-running the inner force loop code, since time required to collect samples and

estimate free energies is not affected by how the potential energies are computed in

post-processing.
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(a) Original 11 sampled states

(b) Naive additional sampling at 12 states and spot checks of Lennard-Jones

spheres

Figure 4.2: Caption on following page
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Figure 4.2: The free energies at any combination of nonbonded parameters
can be predicted in post-processing and regions of large uncertainty can
be quickly found. Shown is the free energy (top panels) and statistical error in the
free energy (bottom panels) for 1512 parameter combinations of εii and σii with no
charge. Samples were drawn at locations shown by an X and the drawn line is to
guide the eye. The free energies are all relative to the reference state shown by the
diamond. (a) shows the estimates drawing samples from 11 states only. A large region
of uncertainty is seen at small σii. (b) A 12th state was sampled in the region of high
uncertainty, reducing the uncertainty in the whole region. The relative free energy
of solvation was compared to chemically realistic spheres through soft core particle
insertion simulations and is within error of the δ∆G. Free energy is shown in units of
kcal/mol.

Estimating properties in the 2-D parameter space, regions of large uncertainty

can quickly be identified by visual inspection, and we can draw additional samples

to reduce uncertainty. Fig. 4.2a shows the estimates of the solvation free energy

when sampling from only 11 equivolume spaced states. We can see in the figure that

parameter combinations with roughly σii < 0.5 nm have high estimated uncertainty

with respect to the reference state. We can naively sample by a single additional state

in this region which drastically reduces the error in our estimation across this range

as shown in Fig. 4.2b. The error is a much steeper function of σii than εii in these

ranges since large particles share virtually no configuration space overlap with small

particles in a dense fluid due to changes in the packing of solvent particles around

small solutes.

The linear basis functions approach reproduces the results from direct fixed-

parameter solvation simulations. Fig. 4.2b is annotated to show where several chemi-

cally realistic Lennard-Jones spheres fall in the parameter space. Soft core solvation

simulations were run for the parameters of united atom (UA) methane, [60, 72, 163]

neopentane [167], and a sphere roughly the size of a C60 molecule. [54] The relative

free energies are statistically indistinguishable between the direct solvation simulations

and those computed in Fig. 4.2b. The exact numbers and methods for the solvation

simulations are shown in the supplementary material in Section C.2.
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4.4.2 Solvation properties over a 3-D parameter space

Even visualizing the thermodynamic properties and their uncertainties in 3-D space is

a nontrivial task. Iterative determination of optimal states to sample is significantly

harder in this higher dimension space. Fig. 4.3 shows the relative solvation free

energy in the 3-D parameter space for three slices of fixed qi, and samples drawn from

the initial 21 states. Because the reference state is an uncharged particle, there is

large uncertainty in the relative solvation free energy to charged particles, as seen by

Fig. 4.3a and Fig. 4.3c. We show the entire 3-D space of solvation free energy as a

function of the three force fields parameters in an animated movie provided in the

supplementary material. [168]
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(a)

(b)

(c)

Figure 4.3: Caption on following page
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Figure 4.3: The free energies in a multidimensional nonbonded parameter
space can be estimated and visualized rapidly. Shown are slices of the 3-D
parameter space cube at fixed qi with the initial sampling of 21 states. Because the
reference state is an uncharged particle, the error to charged parameters is large. The
lack of configuration space overlap causes the uncertainty in the error estimate to be
large and unconverged. (a) and (c) show samples of the free energy on either side
of q = 0. (b) shows a discontinuous jump in uncertainty between the nearby charge
q = −1.52 in (a), an artifact of poor configuration space overlap. Animated movies
showing the full free energy and uncertainty across the whole parameter space for
initial and final samplings are included in the supplementary materials. [168] Free
energy is shown in units of kcal/mol.

Regions of poor configuration space overlap and large uncertainty can be visually

identified in the initial simulations. Fig. 4.3a and Fig. 4.3b are taken from two nearby

values of charge. One would expect the uncertainty to change smoothly with the partial

charges differing by only 0.08, however the magnitude of the uncertainty changes by a

factor of nearly two, causing a visual artifact. These sorts of artifact indicates that

there is little configuration space overlap, and thus both the free energies themselves

as well as the estimate of the uncertainties have not converged. In order to improve

our estimates, additional samples must be drawn at new parameter combinations to

improve the configuration space overlap between our reference point and parameter

regions such as the ones in Fig. 4.3b. However, deciding exactly where to put these

new samples cannot be easily done by visual inspection as in the 2-D case. We must

identify an algorithmic ways of placing these new points that can be easily automated,

rather than having to do time-consuming manual trial-and-error simulations.

4.4.3 Adaptive sampling in 3-D parameter space and improv-

ing configuration space overlap

We need to create an algorithmic way to draw a minimal number of total samples

from multiple states in thermodynamic space and create low error estimates of the free

energy and other thermodynamic properties. We use as a metric of convergence the
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extent of overlap of configurations between every state in the thermodynamic space

since high overlap provides low uncertainty estimates. We start by defining the concept

of the network of thermodynamic paths in multidimensional space, followed by defining

the configuration overlap along such a network. Our algorithm detects when there

is insufficient configuration space overlap between sampled states, then adaptively

choose new states to sample to maximize the overlap. We briefly summarize the

algorithm here, with additional details of the algorithm covered in the supplementary

material [168] in section C.3. The implementation used is available online. [166]

Explicit thermodynamic paths need not be directly defined by the user if property

estimates are made by reweighting samples spanning the configuration space of

all parameters being searched. A multistate statistical analysis method such as

MBAR [101] takes into account the configuration space overlap from all samples

relative to the state of interest. The concept of a single “path” is now obsolete since

any two states are now connected through a network of configuration space overlap and

connected states. In order to have low statistical error estimates, we need to ensure

our algorithm generates sufficient configuration space overlap through the network of

sampled states to connect the two states we want free energy estimates between.

We define two types of configurational space overlap that help us better describe the

lack of overlap our algorithm detects. We define the local configuration space overlap

as the set of configurations shared between simulations performed at an arbitrary

parameter combination, and other nearby parameter combinations up to some finite

δp away in parameter space, where p is one of the parameter we are searching through.

We also define global configuration space overlap as the extent to which all states of

interest in the parameter space are connected to all other states in this parameter

space through a connected network of regions with local configuration space overlap.

We will need the algorithm to detect boundaries of local configuration space overlap

and extend them until global configuration space overlap is created.
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A key issue in sampling multidimensional parameter spaces is that the most

naive adaptive sampling will lead to improving local configuration space overlap,

but will not extend the boundaries around sampled states, and thus will not create

global configuration space overlap. The intuitive place to put additional samples

to improve uncertainties is the parameter combinations where uncertainties are the

largest. However, sampling only the largest uncertainty point may improve the local

configuration space overlap for states near this sampled state, but does not necessarily

create networks of local configuration overlap boundary yielding global configuration

space overlap. In this case, the uncertainty in relative solvation free energy differences

between states inside a region of local configuration space overlap becomes smaller, but

uncertainty to the reference state, or any other state outside of the local configuration

space overlap, will still be large. The presence of local overlap but not global overlap

is easy to identify when sampling along a 1-D path, since it is easy to tell where along

the path there are insufficient samples. Global overlap is harder to identify or create

in higher dimensional space since it is much less obvious where new samples should

be placed by visual inspection. We need not place samples in all places where there

are no samples; we instead must design our algorithm to extend local configuration

overlap boundaries and automatically construct a network of overlapping states.

We now present our algorithm to adaptively choose new states to sample. The

algorithm is designed to minimize the number of samples needed to create a network

of local configuration space overlap connecting to the reference state. Further details

of the algorithm can be found in the supporting information. [168]

We first identify regions of local configuration overlap with a clustering algorithm

and image processing tools. Local configuration space overlap is identified in the 513

grid by clustering adjacent points having nearly identical statistical uncertainty relative

to the reference state with a density-based clustering algorithm, DBSCAN. [169] Lack

of configuration space overlap between two clusters results in a nearly constant, large
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uncertainty estimate between any two points in either cluster. Therefore, as we

examine the free energy difference as a function of parameter, the estimate of the

statistical uncertainty to the reference state changes discontinuously at the cluster

edge. We then treat each cluster as a volume-occupying shape in the parameter space

using SciPy’s [130] multi-dimensional image processing module ndimage.

We then enlarge each local configuration space overlap cluster to better connect

with its neighbors. We first choose a new state to sample at random inside each local

configurational cluster as we may have no samples in this cluster of local configuration

overlap. We then generate a complete, weighted graph where the state chosen inside

each cluster’s volume are vertices, and edges of the graph are the lines connecting

these states and the reference state.

The weight of each edge is computed by numerically integrating the uncertainty at

an equal number of uniformly spaced points along each edge. The algorithm estimates

the uncertainty of each integration point by multidimensional interpolation from

nearby grid points since many integration points are not on the 513 grid. A minimum

spanning tree (MST) is created from this complete weighted graph using Kruskal’s

algorithm [170] implemented in SciPy’s sparse graph routines, with the weight used

as the distance between clusters. The MST provides the directions along which each

cluster’s volume is expanded. The intersection of the edge with the cluster’s boundary

is detected by the Sobel boundary detection algorithm [171] implemented in SciPy

since the uncertainty changes discontinuously at the boundary. We then draw new

samples at the randomly chosen vertex states, and states defined by the parameters

at the intersection of the each graph’s edge with the cluster boundaries. This graph-

theoretic approach scaling to arbitrary N -dimensions, as direct visualization of higher

dimensional spaces becomes increasingly difficult.

Statistical uncertainties in the free energy differences between states are reduced

by two orders of magnitude even though the amount of sampling is only increased by
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nine times (21 to 204 states), because this adaptive algorithm generates good global

configuration space overlap. Fig. 4.4 shows the same three slices of the 3-D parameter

space as Fig. 4.3, now with 203 sampled parameter combinations, all adaptively chosen

except for the initial 21 combinations. We estimated properties at 101 σii points

for the figure to improve image quality. All time comparisons are made assuming

513 parameter combinations. During this process, the maximum error in relative

solvation free energy differences was reduced from 53.405 kcal/mol to 0.631 kcal/mol

and the mean error was reduced from 16.162 kcal/mol to 0.118 kcal/mol. However,

the initial uncertainty is a misleading underestimate as much of the parameter space

had no global configuration space overlap with the reference state, meaning the error

estimates are unconverged.
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(a)

(b)

(c)

Figure 4.4: Caption on following page
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Figure 4.4: Adaptive sampling allows reduction of the uncertainty in the
whole multidimensional nonbonded parameter space. Shown are slices of the
3-D parameter space at the same fixed qi as in Fig. 4.3. The total uncertainty has
been reduced by more than an order of magnitude with only a few adaptive iterations
and a total of 203 sampled states. (a) and (c) have significantly reduced error relative
to their counterparts in Fig. 4.3. (b) no longer has the discontinuous uncertainty as it
did in Fig. 4.3. Animated movies showing the full free energy and uncertainty across
the whole parameter space are included in the supplementary materials. [168] Free
energy is shown in units of kcal/mol.

The consequences of the poor configuration space overlap can be seen in Fig. 4.5

where the maximum and mean uncertainty jumps at certain iterations. The jumps in

uncertainty indicate that a new region of poor configuration space overlap has been

identified and partially sampled. Ways to monitor when global configuration space

overlap has been reached are discussed in Section 4.4.6.
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Figure 4.5: Discovery of regions of poor configuration space overlap appear
as sudden jumps in the maximum uncertainty from between two iterations,
but these regions are joined by sampling adaptively. The mean (solid) and
maximum (dashed) uncertainty in the free energy for the 3-D nonbonded parameter
combinations are plotted as function of iteration of the algorithm. The algorithm
reduces the uncertainty of the largest areas of uncertainty before moving to others,
where it can find regions of no configuration space overlap. Once some configuration
space overlap is found through adaptive sampling, the uncertainty jumps as a more
converged estimate can be made. The iterative process improves configuration space
overlap and lowers overall uncertainty. Uncertainty in free energy is shown in units
of kcal/mol and shown using a logarithmic scale to show changes at both large and
small maximum uncertainty.

The adaptive sampling algorithm correctly places samples to reduce regions of

poor configuration space overlap. Fig. 4.6 shows all of the sampled states in a scatter

plot of the 3-D parameter space. Subsequent adaptive iterations are shown in color

scale ranging from blue for the initial iterations to red in the final iteration. The

large clustering of points is expected at small σii, small εii, and large qi, because the

TIP3P water’s hydrogens can tightly rearrange around the particle due to very large

Coulombic interactions and nearly no Lennard-Jones repulsion against the water’s
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oxygen. The tightly packed water arrangements share little to no configuration space

overlap with any other parameter combinations, so many samples at these states are

needed to accurately estimate properties.

Figure 4.6: The adaptive sampling algorithm samples the entire parameter
space. The sampled states are shown as a scatter plot with successive iterations
moving from initial (blue) to final (red) as a function of the 3-D parameter space. The
initial sampled points are projected onto the σii − εii plane (green) connected with
a green vertical line to help distinguish them from points chosen adaptively. Many
new states are selected at small σii as large uncertainty in the region is identified
from successive iterations. Fewer samples states are needed at intermediate σii as the
configuration space overlap to states already sampled is high. The reference state is
shown as an X.

The bottleneck of computing the energies is completely removed with the linear

basis function approach. There are more than five times more states in the 3-D

parameter (132,651) space than the 2-D space (22,801). Despite this, computational

cost to compute the energies in 3-D space only increases to less than 30 CPU seconds for

21 sampled states, and just over 50 CPU seconds for 203 sampled states. Taking again
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the conservative average of 1500 CPU seconds needed to evaluate each trajectory’s

configuration energies at a new state, energy evaluations at the 132,651 parameter

combinations would have taken over 132 and 1280 CPU years for 21 and 203 sampled

states, respectively. Optimized code to explicitly calculate the basis functions at the

time of the force calculation would allow even faster vectorized calculations than the

post-processing used here, allowing this method to scale to even larger multidimensional

spaces. After removing this bottleneck, the main cost is in performing the 203

simulations at sampled states and estimating properties with MBAR. Our simulations

took an average of 25 CPU hours per simulation to run, and MBAR calculations

took 108 CPU hours to compute properties. We would need to invest the time to run

simulations and compute properties with MBAR, independent of how the energies

were computed.

The algorithm could be further optimized depending on the relative cost of the

simulations and of MBAR over very large numbers of states. In this case, simulations

were relatively cheap compared to MBAR. If the simulations were more expensive,

then shorter simulations could be run between iterations. Additionally, more proposed

states for simulation could be generated at each step to reduce wall time. For example,

instead of 10 new states run for 10 ns, 20 new states could be run for 5 ns each. In

general, shorter cycles of simulation plus analysis are expected to improve performance

within well-sampled regions, the error in free energy estimates scales approximately as

N−1/2. Adding significant configuration space overlap between regions that are not

connected will scale significantly better.

Shorter cycles can reduce the uncertainty more quickly than simply drawing more

samples at fewer states. To show this, we truncated the data from 203 states after 3

ns of simulation and performed the analysis again. This truncation gives roughly the

same number of samples as the 103 state iteration, though ignores the fact that the

predicted location of new sampled states may be slightly different with half as much
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data collected at each iteration. The mean uncertainty between the truncated 203

states of data and 103 states of data was 0.157 and 0.251 kcal/mol and the maximum

uncertainty was 0.787 and 0.716 kcal/mol, respectively. The fact the mean uncertainty

is lower for the truncated set at 203 states but the maximum was lower for the

103 states can be resolved by looking at the convergence of the algorithm by direct

measurement of the configuration space overlap. We show that the truncated 203 states

has better configuration space overlap and thus connectivity than the equal-sample

103 sate case, and is therefore a more reliable estimate, in our convergence discussion

in section 4.4.6.

Non-adaptive sampling of the parameter space would be vanishingly unlikely to

have provided accurate estimates with reasonable statistical uncertainty. Figure 4.6

shows that significantly more samples were needed at smaller σii in order to yield low

statistical error in this region, which would not have happened with either random or

uniform sampling without significantly more sampled states. Additionally, to yield

reasonable answers throughout space, any sampling scheme requires a connected

network of global configuration space overlap. It is unlikely that the correct bridging

states connecting sampled regions of space could be placed randomly, and these

bridging states do not exist along any rectangular grid. Given these considerations,

simpler non-adaptive sampling schemes would almost always have higher uncertainty

estimates for an equal number of samples, and were not directly tested in this work.

We want to emphasize that searching this parameter space is theoretically pos-

sible with pre-defined paths, but computationally impractical. In Chapters 2 and 3,

optimizing the alchemical switches to identify the most statistically efficient pathways

worked well to optimize alchemical paths in one dimension. Analyzing the sample

variance in thermodynamic integration (TI) along paths and optimizing the hn(λn) to

reduced this variance identified the lowest error pathway. However, since we need a

network of connected states in multidimensional space, optimizing TI would require
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mapping the multidimensional space to 1-D and connecting each state along a fixed

path, Since there are many possible ways to connect states in multidimensional space,

optimizing TI in this multidimensional space would require connecting each state to

every other state along a fixed path, resulting in (513)!, more than 10105 , possible

overlapping paths, assuming the paths were restricted to visiting each state only once.

We can instead use the adaptive method outlined here to sample discrete states in

the multidimensional space that creates a global configuration space overlap network

over the entire space, then analyzing the configuration space overlap between pairs of

states with MBAR. [101]

4.4.4 Computing Other Thermodynamic Properties and Com-

paring to Reported Results

Estimating properties over the entire multidimensional parameter space at once

can provide thermodynamic information which would otherwise require extensive

simulations to compute at each thermodynamic state. This section looks at estimating

five properties where significant simulation is required when sampling each state

individually: the relative solvation entropy and enthalpy, the absolute solvation free

energy of ions, the radial distribution function (RDF) focusing on the first hydration

shell, and the difference between the Born solvation free energy and the simulation

estimate in the free energy of charging a particle. In this section, we show how we

can compute the enthalpy and entropy from the same collected data as used for free

energies, compare ion parameter free energies to show accuracy and limitations in our

approach, estimate RDFs without generating trajectories at the target parameters,

and identify trends in the deviation of solvation free energies from the Born solvation

approximation.

We can estimate thermodynamic observables at any parameter combination so long

as the observable is an equilibrium property. Observables of equilibrium properties
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are estimated by the statistical expectation value of the observable. Computing an

equilibrium expectation value of some observable, A, with MBAR [101] is

〈A〉a =
N∑
n=1

WnaA(xn) (4.7)

where the summation runs over all samples in all states, Wna are the statistical weights

from reweighting each nth drawn sample in the ath state, the A(xn) are the observed

values from sample n and are functions of the configuration, x. The weight MBAR

assigns to each sample n is [101]:

Wna =
efa−ua(xn)∑K

k=1 Nkefk−uk(xn)
(4.8)

where fa is the reduced free energy (βA or βG) of state a, ua(xn) is the reduced

internal energy (βU) of the configuration xn in state a, and Nk is the number of

samples collected from state k. These equations are what allow us to estimate any

equilibrium thermodynamic property at any state from our collected samples.

Relative Solvation Entropy and Enthalpy

We can estimate the relative solvation entropy and enthalpy alongside the relative

solvation free energy without additional sampling. The relative solvation enthalpy

is the difference in solvation enthalpy, ∆Hsolv, between the reference state X and

any other state j in the multidimensional parameter space. We compute the relative

enthalpy difference, ∆ (∆HXj), as

∆ (∆HXj) = 〈∆UXj〉 (4.9)
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since ∆UXj contains the configuration potential energy and the PV contribution.

Similarly the relative solvation entropy, T∆ (∆SXj), is computed as

−T∆ (∆SXj) = ∆ (∆GXj)−∆ (∆HXj) (4.10)

where ∆ (∆GXj) is the relative free energy of solvation. In all cases, we report the

difference in thermodynamic properties with respect to the reference state, subscript

X. These properties we estimate have such large uncertainty from only the initial 21

states due to poor sampling that any number we report is essentially meaningless.

Computing relative enthalpies and entropies generally requires significantly more

samples to compute than relative free energies, [162, 172, 173] as only samples with

local configuration space overlap to the states of interest significantly contribute to

the precision of expectations of observables such as the enthalpy.

Additional sampling reduces the uncertainty in the estimates of relative solvation

entropy and enthalpy by orders of magnitude, but not to the same extent as the

uncertainty in the free energy. This is because whether or not there is good global

configuration space overlap does not ensure that a given state has good local configura-

tion space overlap with its neighbors. Fig. 4.7 shows the relative solvation entropy and

enthalpy estimations, along with uncertainty at 203 sampled states. The uncertainty

smoothly transitions between adjacent states, suggesting the estimates are numerically

converged. However, the maximum uncertainty is several orders of magnitude larger

than the relative solvation free energy. The maximum uncertainty in relative solvation

entropy changes from an uncertain estimate to 0.193 kcal/ (mol ·K), and the relative

solvation enthalpy’s maximum uncertainty drops to 57.5 kcal/mol. The mean uncer-

tainty for relative solvation entropy and enthalpy fall to 0.0147 kcal/ (mol ·K) and

4.37 kcal/mol, respectively. Although these error estimates are still too large to make

practical predictions of solvation entropies, the estimates of the errors from the 203
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states are well-defined, which is a marked improvement over the initial sampled states.

The whole configuration space has been sampled, and all states now have at least

moderate local configuration space overlap with its neighbors. Once decent estimates

of properties are found, we can run additional simulations on states that have the

most desirable preliminary estimates of properties.

(a) (b)

(c) (d)

Figure 4.7: Uncertainty in entropy and enthalpy are also reduced with the
uncertainty in the free energy. The enthalpy H, ((a) and (b)) and entropy S,
((c) and (d)) are computed from 203 total sampled states and reported in kcal/mol
and kcal/ (mol ·K) respectively. The uncertainty in both properties now smoothly
transitions between adjacent states. The uncertainty is still significantly larger than
that of the free energy, which is expected as these properties require more sampling
to compute accurately than the free energy. Additional samples or other means of
computing these properties would be required to reduce error further.
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Ion Solvation Free Energies

We compare the results from our analysis to a detailed ion parameter study by

Joung and Cheatham. [74] Their study parameterized Li+, Na+, K+, Rb+, Cs+, F−,

Cl−, Br−, and I− in several water models including TIP3P and compared them to

experimental and computational studies from others. They parameterized the ions

based on several experimental observables, including free energy of solvation. We

compared their absolute solvation free energies to absolute solvation free energies we

computed from our method in Table 4.1. The table shows the ion parameters and

free energy of solvation, ∆G, estimated from their work and our approach. The table

also shows the first hydration shell (FHS) location which will be discussed in the next

section. We compute absolute solvation free energies for our work by adding the free

energies from the relative free energy evaluations to those from a single set of solvation

simulations of the reference particle along a soft core potential [82, 83] and a 1-1-6

parameterization. [54, 84] These simulations were run with the same conditions as

described in section 4.3 at 11 states uniformly distributed along λ from 0 to 1 of the

soft core path. We note that these particular choices of ion parameters we directly

compare to represent only the smaller particle / higher charge density fraction of the

parameter space. However, we showed in the 2D search that the large, uncharged

particles were correctly described by rapid parameter scans. The fact that the results

for these extreme cases match direct simulation strongly suggest other cases, such

as large ions with correspondingly lower charge density, will also match more direct

calculations of the free energies.
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Table 4.1: Absolute solvation free energies and first hydration shell (FHS) locations compared from this work and from Joung
and Cheatham. [74] Ion σii were back calculated from Lorentz-Berthelot to geometric mixing rules for ion/oxygen interactions.
εii and ∆G are in kcal/mol; σii and FHS location are in nm. Error in this work’s FHS computed by 200 bootstrap samples [123]
with a discretization of ±0.0075 nm.

Ion σii εii
∆G FHS

Joung and Cheatham This Work Joung and Cheatham This Work

Li+ 0.1965 0.0280 -115.6 -105.26 ± 0.54 0.196 0.211 ± 0.016

Na+ 0.2479 0.0874 -90.6 -90.63 ± 0.44 0.238 0.234 ± 0.015

K+ 0.3039 0.1937 -72.6 -72.42 ± 0.36 0.275 0.279 ± 0.016

Rb+ 0.3231 0.3278 -67.6 -67.31 ± 0.35 0.292 0.294 ± 0.030

Cs+ 0.3532 0.4065 -62.5 -62.13 ± 0.35 0.311 0.309 ± 0.021

F- 0.4176 0.003364 -121.6 -120.91 ± 0.45 0.263 0.257 ± 0.016

Cl- 0.4617 0.0356 -91.5 -90.99 ± 0.36 0.313 0.309 ± 0.028

Br- 0.4825 0.0587 -84.8 -84.48 ± 0.36 0.329 0.333 ± 0.015

I- 0.5396 0.0537 -75.9 -75.89 ± 0.34 0.351 0.347 ± 0.017
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We re-computed parameter values and adjusted the reported free energies to make

the values from Joung and Cheatham [74] comparable to this work. Their ion σii

was calculated for Lorentz-Berthelot mixing rules. We back calculated the σii for

geometric mixing rules in Table 4.1 by setting the σij between the ion and the oxygen

in water equal in both mixing rules, giving the relation

σion-ion, geo =
(σion-ion, LB + σOW-OW)2

4σOW-OW

(4.11)

where σion-ion, geo is the reported ion σii in Table 4.1, σion-ion, LB is σii for the Lorentz-

Berthelot mixing rule reported by Joung and Cheatham, and σOW-OW is the TIP3P

oxygen-oxygen σjj which we assumed was constant between the mixing rules. The

solvation free energies from Joung and Cheatham were adjusted by -1.9 kcal/mol to

remove the correction they added for ideal gas expansion when comparing simulations,

carried out with gas-phase standard states at 1 M, to experimental results, where

gas-phase standard states are typically 1 atm. [74, 174]

The solvation free energies from our work and Joung and Cheatham’s work are

within statistical error. The free energies from this chapter appearing in Table 4.1

are within two standard deviations of Joung and Cheatham [74] for all ions except

Li+, which is outside the parameter range studied. The comparable accuracy of our

results to those of Joung and Cheatham provide validation for the free energies we

report. Our method has the added benefit of computing the solvation free energy for

arbitrary parameter combinations. The ability to compute properties for arbitrary

parameter combinations comes from sampling only 203 states plus 11 for the absolute

solvation free energies. Joung and Cheatham carried out 12-13 simulations for each of

the 9 ions, resulting in 108-117 simulations for comparison. We were able to compute

properties at roughly 14,000 times the number of parameter combinations, for only

double the simulation cost.
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Our method breaks down if the parameter combination falls outside the defined

range. The parameters for the Li+ ion in Table 4.1 fall significantly outside the range

we searched, namely, the σii is less than the 0.25 nm minimum. The estimated free

energy for this parameter combination is not within statistical error for that of Joung

and Cheatham. [74] The estimated value for any thermodynamic property at this

ion will likely be inaccurate as the estimation is now an extrapolation instead of a

thermodynamically-consistent interpolation between sampled states. Estimates on

parameter combinations falling just outside the searched range, such as the Na+ ion,

appear to still be accurate, so the range of convergence of these calculations outside

of sampled parameters is not zero.

Estimating Radial Distribution Functions

We can estimate the radial distribution function (RDF or g(r)) of a specified parameter

combination without explicitly sampling that combination. The first hydration shell

and the water RDF are properties that many have tried to compute accurately and

compare to experiment. [74, 175–182] Traditionally, a RDF is generated by measuring

the distances between two specified atomic groups (e.g. ion-water, water oxygen-water

oxygen, etc.) generated over a trajectory, counting the number of pairs that are within

a shell of size r+ δr, then average over the shell volume and whole trajectory. The fact

that the RDF is an average property and dependent only on the configuration implies

it is a thermodynamic equilibrium property which can be computed as a statistical

observable. The observable for computing the RDF is the discrete count of pairs

within a specified r + δr shell normalized by the shell radius and the number volume

ρ = Nparticles/V . We must estimate the RDF at multiple shell volumes in order to

generate a complete RDF curve.

We expect the RDFs we estimate to have noticeably more noise than an RDF

computed by direct simulation at a given parameter combination. Samples with
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local configuration space overlap to the target parameter combination contribute

substantially more to the precision of expectation values than samples from further

away. Because we sampled a wide breadth of parameter space, many of the samples

are very far from the ion parameter combination, so the effective number of samples

available to estimate an RDF is much lower than would be available from direct

simulation. This lower number of effective samples will add noise to the RDF which

is why we have chosen to focus on the more strongly defined first hydration shell. We

will show however, that we can still qualitatively recover the remaining RDF features.

The first hydration shells (FHS) are accurately predicted by the RDF estimation.

Fig. 4.8 shows the RDF estimated for the Li+ and the Cl− ions from Joung and

Cheatham. [74] The RDF is estimated at 160 discrete bins (0.0075 nm spacing) from

r = 0 to r = 1.2 nm along with the error in that estimate. The black curves in Fig. 4.8

are the estimates from MBAR computed purely from data collected at our 203 states,

and not from any data drawn at the ion’s parameters. Error in the MBAR estimate is

shown as dashed lines and is two standard deviations of the uncertainty in the RDF,

also computed by MBAR. To validate the MBAR results, the green curves in Fig. 4.8

show the RDF computed from simulations at the given ion’s parameters. The data

from these direct simulations of the ions were not used in the MBAR estimate. The

error in the green curves is taken from 200 bootstrap samples [123] of the RDF for each

ion. The Li+ ion RDF is shown in Fig. 4.8b to again emphasize that estimates made

outside the parameter range tend to break down, evidenced by the erratic behavior in

the RDF.
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Figure 4.8: Radial distribution functions (RDF) can be estimated at any pa-
rameter combination inside the parameter search range. The ion-oxygen RDF
in TIP3P water is shown for Cl− and Li+ with Joung and Cheatham parameters. [74]
The RDFs are estimated without sampling the explicit parameter combinations using
160 discrete bins. Estimates made from parameters inside the parameter range, Cl−

(a) are accurate as the first hydration shell is predicted within error to Joung and
Cheatham. [74] in Table 4.1. Estimating parameters which fall outside the searched
parameter range, Li+ (b), are inaccurate. Error is shown dashed lines of two standard
deviations, computed by MBAR for the black curves and 200 bootstrap samples for
the green curves.

The Cl− ion in Fig. 4.8a shows an example where we can estimate solvation

structure and improve future simulations. We further validated the RDF calculation

by determining the peak of the first hydration shell for every ion from Joung and

Cheatham as the bin with highest occupancy [74] and compared our results to theirs

in Table 4.1. The peaks we estimate and those from Joung and Cheatham are in

agreement with each other, within the error of our bin width of 0.0075 nm. The RDF

curves generated using reweighting are not as smooth as the RDF curves from other

studies, and we do not expect them to be smooth with the range of parameters we

searched. However, all features are well preserved. This approach can be used to

broadly search parameter space and generate approximate RDF’s, until those that

replicate the RDF or hydration shell properties of interest are identified. Further

simulations could then be run around the sets of properties which gave the RDF
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replicating the target properties to make more accurate estimates, resulting in searches

over a much narrower parameter space than examined through here. A complete set

of the RDFs estimated via reweighting and direct simulation for every ion is included

in the supplementary material. [168]

Born Approximation to Solvation Free Energy

The Born approximation to solvation free energy measures the effort to transfer

a charged particle between two dielectrics. The free energy differences for this

approximation of transferring a hard sphere particle between vacuum and a fluid is

∆G =
q2

4πε0Rij

(
1

εd
− 1

)
(4.12)

where εd = 92 is the estimated dielectric constant of our fluid, TIP3P water [183], and

Rij is the Born radius.

We can estimate the Born radius of any particle in our search space from our

sampled states. Choosing the correct Born radius, or effective hard sphere (EHS)

radius is a nontrivial task. However, we can estimate the EHS radius with our RDF

calculation. We first compute the RDF for a given parameter combination, g(r), then

compute the EHS radius by determining an r0 where the following conditions for the

oxygen-ion g(r) are met:

g(r0 − δr) = 0 (4.13)

g(r0) = 0 (4.14)

g(r0 + δr) > 0 (4.15)

to a tolerance of 10−5. r0 can be interpreted as the point on g(r) where the probability

of finding a particle changes from zero to nonzero. We set Rij = r0 for the Born

solvation calculations.
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We applied correction terms to our estimated free energies to remove errors intro-

duced by our choice of simulation settings and water model. These corrections allow a

comparison of free energy between different methods without having a methodological

dependence. These corrections required us to additionally compute the average box

length of the simulations, found by estimating mean volume, 〈V 〉, at each parameter

combination through Eq. (4.7) and Eq. (4.8). All of the corrections we applied are

detailed in Hünenberger and Reif [184] and we go through explicit detail of which

corrections we applied and why in the supplementary material [168] in section C.6.

There are a number of reasons the Born approximation is not perfect for our

particle-water system. These imperfections come from not simulating a truly infinite

medium, the water model having an asymmetric charge distribution, Lennard-Jones

terms affecting the free energy of transfer, and the fact that Rij may change on

charging since we have soft particles. We are interested in identifying deviations from

the Born approximation with our method, given that we fully expect deviations from

these imperfections.

The Born approximation to the solvation free energy is the free energy of transfer-

ring a charged hard sphere with radius Rij, not for the free energy of solvating the

uncharged particle. To remove this dependence on the cavitation free energy, [184] we

estimate the Rij from the RDF as described above for each uncharged combination

of σij and εij, then calculate the free energy difference to the same values of σij and

εij but with a charge. This allows us to compare our free energy of charging to the

Born approximation to the free energy of charging, and identify deviations between

the model and our simulation. We do not recalculate Rij at the end state.

Both trends and failures of the Born approximation can be easily visualized for the

entire parameter space. Fig. 4.9 shows the difference between the Born approximation

(∆GBorn) and this work’s estimate for the charging free energy (∆GTW). Any deviation

from ∆∆GTW-Born = 0 indicates nonidealities relative to the Born approximation to
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the free energy of charging. There are several deviations which can be seen in the figure.

The first deviation is the Born free energy generally predicts less favorable solvation free

energy for both signs on the charged particles (∆GTW < ∆GBorn < 0). However, this

deviation is asymmetric as the deviation from Born theory of the positively charged

particle at q = +2 is up to −152.1 kcal/mol, but the negatively charged particle only

deviates up to −78.5 kcal/mol at q = −2. The charging free energy more strongly

depends on σii for the positive particle as the ∆ (∆G) in Fig. 4.9a spans 13.7 kcal/mol

from σii ≈ 0.5 to σii ≈ 0.95 on average, whereas in Fig. 4.9b the span 27.6 kcal/mol

on average in the same range of σii. We can also observe the opposite case where the

Born estimate is more favorable than the observed estimate (∆GBorn < ∆GTW < 0) in

Fig. 4.9a where ∆ (∆G) > 0 at small σii and εii. This opposite case occurs because the

negatively charged particle attracts the TIP3P water’s hydrogens, which do not have

Lennard-Jones interactions, and would be able to approach much more closely than

the Born model predicts with its hard sphere approximation. Simply estimating free

energy at a few states in the parameter space would have been insufficient to observe

these broad trends as a significant degree of interpolation, or worse extrapolation,

would have been required.
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(a) (b)

Figure 4.9: Trends and failures in approximations can be visualized over
wide parameter space. The deviation of the Born hydration free energy from the
computed solvation free energy is shown for two fixed slices of qi. Explicitly shown
is the Born free energy minus this work’s free energy estimates: ∆GBorn − ∆GTW.
Free energy difference estimates for each combination of σii and εij are relative to the
same combination at qi = 0 as to approximate only the contribution of charging a
given sphere in solvent. (a) and (b) show the deviations with the solute carrying a ±q
charge. The Born model generally predicts a more favorable interaction relative to
the simulation. An exception to this trend is at very small σii and εii for a negatively
charged particle where it predicts a less favorable interaction than the simulation
as the TIP3P water hydrogens can tightly pack around the particle. Animated
movies showing the full free energy and uncertainty across the whole parameter space
are included in the supplementary materials. [168] Free energy is shown in units of
kcal/mol.

A full animation showing ∆∆GTW-Born at combination in the parameter space is

included in the supplementary material. [168]

4.4.5 Monitoring numerical bias

The numerical bias caused by the process of calculating energies from perturbations

of reference states can be minimized. Eq. (4.6) and in the supplementary material

Eq. (C.5) involve the addition and subtraction of many small numbers, depending on

reference states X and Y . This can lead to rounding errors which may propagate to the

simulation package and be made worse by the software’s precision. Choosing reference
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states with larger ∆Cn,XY can help reduce accumulation of error. If the software

natively allows access to the basis function values, then this source of numerical error is

eliminated. However, we must quantify our numerical error here since the perturbation

approach was chosen.

We find that rounding errors do not propagate from the perturbed basis function

representation to the thermodynamic properties for these calculations. The rounding

errors for this system were checked by evaluating the energy of each sampled configu-

ration at every sampled state as though we did not use the basis function approach.

The energies of every configuration evaluated at every sampled state computed from

directly from GROMACS were compared to the energies computed from the basis

functions and any deviation was a result of numerical bias. The energies computed

from basis function calculations and the energies directly from GROMACS reruns

differed by less than 0.002%. This very small relative error does not assure that errors

themselves are negligible, since large energies have large absolute errors. The largest

absolute error in all 203 simulations was 11.804 kcal/mol, which at first appears is likely

to have a significant effect in the final answers. However, these large absolute errors do

not affect any of the property estimates. This is because these large rounding errors

occur when the trajectory from a particle with small σii is evaluated in a force field

for a particle with large σii. This often resulted in the oxygen of TIP3P water being

within the large particle’s excluded volume, resulting in a highly repulsive interaction.

Every configuration with rounding error in this chapter had a Boltzmann weight,

exp (−βU(r, λ)), indistinguishable from zero at machine precision, and thus these

errors do not contribute to any of the properties of interest. The energies calculated

using reference states thus give results that are sufficiently close to those from direct

evaluation of the energies for all uses.



4.4 Results and Discussion 151

4.4.6 Convergence and alternate algorithm conditions

Examining the uncertainty estimate from the reference state alone is insufficient to

determine convergence of the calculations. The multidimensional space initially has

almost no global configuration space overlap, which causes unconverged estimates

of the properties and their uncertainties. Poor overlap implies that the mean and

the maximum uncertainty alone are not appropriate gauges for convergence since the

error does not consistently decrease with number of samples as observed in Fig. 4.5.

A network of overlapping configuration space between all states required for accurate

estimate of properties and quantification of the uncertainties in these properties, and

we need a way to diagnose whether this network has been created at a given stage of

our adaptive algorithm.

The configuration space overlap can be analyzed through a multidimensional

extension of the Overlapping Distribution Method. [81, 185] This method can quantify

the overlap between states by considering the probability of each sample occurring

in every state. The unnormalized probability of a sample can be computed from its

Boltzmann weight. Just as each sampled configuration carries a Boltzmann weight

for the state in which it was drawn, the configurations can be reweighted to all other

states to determine what the relative Boltzmann weights are in the other sampled

states. [99–101, 105, 186] MBAR [101] stores each sample’s weights as a matrix W

whose entries are the Wna of Eq. (4.8). The pairwise probabilities can be assembled in

the “overlap matrix,” constructed from the matrix of weights. This multidimensional

overlap matrix is calculated from the weights as

O = WTWN (4.16)

where N is a diagonal matrix with each ith entry equal to the number of samples

from the ith state. [101, 187] The individual elements of the overlap matrix, Oij, can
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be read as the probability of a sample generated in state j being observed in state i.

Since O is a Markov matrix, it can be shown that O will have at least one eigenvalue

of 1, which is also the maximum over all eigenvalues. All other eigenvalues will be

real and positive. [187] However, multiple eigenvalues of 1 in O indicate that there

are discontinuous regions of sampled configuration space and O can be rearranged

to a block diagonal matrix that illustrates which states are and are not connected.

Thermodynamic property measurements made between the discontinuous configuration

spaces will have undefined uncertainty, which numerically can show up as either NaN

or very large numbers that change dramatically with small changes in sampling. [187]

Monitoring both the eigenvalues of the overlap matrix and maximum uncertainty

can provide good guidance as to when converged property estimates have been reached.

Monitoring exclusively the eigenvalues of O is insufficient to determine convergence

over the entire parameter space since O only involves the sampled states. However, if

the sampled states are well-enough dispersed such that the estimated uncertainties

of all the unsampled states are low, and simultaneously all the sampled states are

connected as demonstrated by having a single eigenvalue with value 1 for O, we can

have high confidence that the uncertainty estimates are reliable.

We therefore defined our property estimates as converged once there were no

repeated eigenvalues of 1 in O, and once no further clusters of uncertainties in

the relative free energy above the target threshold are found, i.e. the clustering

algorithm can not find new adjacent grid points with large uncertainty. If desired, the

uncertainty can be iteratively reduced by lowering the error threshold of the algorithm.

The deviation of the five largest eigenvalues from 1 are shown for each iteration in the

supplementary material in Table C.2.

We have given a practical example in our data where the eigenvalues of the overlap

matrix provide more information than the mean and max uncertainty alone. We

showed an example in section 4.4.3 where we compared truncated data from 203
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sampled states to the roughly equal number of total samples from the 103 sampled

states. The mean uncertainty was lower in the truncated 203 sampled state case,

but the max uncertainty was lower in the 103 sampled states case. If we look at the

second eigenvalue of the overlap matrix from each case (since the first eigenvalue is

1), we can determine how connected the samples are. The second eigenvalues are

0.9998 and 1.000 for the truncated 203 and 103 states respectively. The fact that the

103 states’ eigenvalue is 1 to machine precision and the truncated 203 states is not

indicates that there are still regions of discontinuous local configuration space overlap

in the 103 sampled state and that the algorithm is further from convergence. This

further indicates that our estimate for the maximum uncertainty in the 103 sampled

states is less reliable than the estimate in the truncated 203 states. This practical

example shows why the mean and max uncertainty alone are insufficient metrics of

convergence.

The proposed adaptive sampling algorithm could be improved by changes to this

algorithm. For example, the algorithm discussed here and detailed in the supplementary

information [168] identified clusters of high relative uncertainty by counting the number

of grid points in the cluster. This resulted in many states being chosen adaptive at

larger σii due to the density of grid points, despite the fact that most of the regions

with no configuration space overlap were at σii < 0.35 nm. Although states were

eventually placed at small σii, one improvement could be to place points in regions

with the largest integrated uncertainty, using the uncertainty as a weighting on the

overall number of grid points. This improvement would still favor the larger clusters,

but to a lesser extent as new pockets of poor configuration space overlap are identified

and the uncertainty jumps back up as in Fig. 4.5.

This chapter was used to determine high accuracy free energies over entire large

parameter range, and this chapter’s range of nonbonded parameters will likely ex-

ceed many practical applications. However, this parameter search method could be
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adaptively shrunk to hone in on specific property estimates. Instead of determin-

ing the thermodynamic properties for a large set of starting parameters, a desired

thermodynamic property could be provided and a set of parameters which generate

this property are searched for, as is the case for reverse property prediction. In this

case, the initial grid spacing could be larger, and a rough estimate of the property

surface can be acquired, spending less simulation time per iteration. Each subsequent

iteration would then narrow the search area and reduce the grid spacing, seeking

the target value. States from previous iterations outside the narrowed search space,

can still be included in the analysis, preventing discarded information. Alternatively,

computational time can be saved by excluding these outlier states if analysis of O

shows that these states are not actually connected to the states ultimately of interest.

Thermodynamic property estimates are not limited to relative solvation free

energies, entropies, and enthalpies. Once the simulations are converged, further

thermodynamic properties can be derived from derivatives and fluctuations with

respect to V , P , and T , [188–190] as well as any other property computed from

statistical expectation values. [101]

4.5 Conclusion

We have shown how one can rapidly estimate thermodynamic properties in a multi-

dimensional nonbonded parameter space by combining two time saving advantages.

Computing the energies required for estimating thermodynamic properties can be

accelerated with linear combinations of basis functions instead of re-running simula-

tion force loops. Estimating the thermodynamic properties in the multidimensional

parameter space is possible with the binless, multidimensional, path-free statistical

method, MBAR. With these methods, properties are estimated at all states of interest

simultaneously without needing to define how any state is connected to any others
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beforehand.

Converged results can be acquired by adaptively sampling the multidimensional

parameter space, creating a network of globally-connected configuration space overlap

between all states. Simply adding samples in regions of large uncertainty does not

necessarily create configuration space overlap to all states, as the uncertainty of

differences to other states is not reduced. Regions of poor configuration space overlap

can be identified by examining the overlap matrix between all sampled states, and

the maximum uncertainty in the unsampled states. The parameter space is then

adaptively sampled until configuration space overlap is created between the reference

state and all other states of interest, and uncertainties are pushed sufficiently low for

the purpose at hand.

The methods shown here can help speed up future thermodynamic property

searches in multidimensional parameter space. So long as the energy functions can

be computed with vector operations, and do not require re-running the simulation

force loops, these methods can scale to even higher dimensionality and extend to

other thermodynamic properties. Re-writing the simulation code to directly provide

the required basis functions would allow even faster energy evaluation, potentially

removing the need to ever compute the energy of a configuration more than once.
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5.1 Introduction

This chapter describes an approach to estimate thermodynamic properties of a combi-

natorial set of molecules from a single simulation in a computationally efficient way.

We extend the basis function method described in Chapters 2 and 3 to modify the

interactions of fragments of a molecule along multidimensional alchemical pathways, as

opposed to alchemically modifying the interactions of a single, complete molecule along

a single alchemical pathway. We apply the multidimensional convergence tests from

Chapter 4 to check our confidence in the estimates of thermodynamic properties. The

majority of the effort is in designing a simulation approach which correctly simulates

a molecule representing a combinatorial chemical space. We also design the simulation

to collect the potential energies of each molecular fragment as opposed to just total

potential energy of all molecules.

We can reduce molecular design costs by reducing the number of chemicals we have

to synthesize and test in a laboratory setting. The cost to purchase chemical building

blocks can range from $1/gram for simple chloroformates to more than $1000/gram

for complex primary amines, and that is with optimized synthesis procedures [191,

192]. The actual cost to create a new molecule will then require time to develop a

new synthesis procedure, wet lab operational costs, and finally the cost to measure

thermodynamic properties, all on top of raw material costs. We want to reduce the

costs of designing molecules by reducing the size of the chemical space we have to

test in a wet lab. We can use computational methods to estimate thermodynamic

properties without synthesis, and filter out chemicals before we ever have to physically

make them. Computational methods can only help reduce the number of molecules

that need to be synthesized, and will never replace the need for a laboratory. Free

energy differences are a particularly helpful property to compute as they provide

information such as chemical partitioning, activity coefficients, binding affinities and

other properties from their first and second derivatives. If we can predict free energies



5.1 Introduction 158

over large chemical spaces, we can filter out molecules with undesirable thermodynamic

properties, reducing the number of molecules that have to be synthesized.

Previous attempts to estimate properties in large chemical space are limited in the

diversity of their chemicals or must make a number of assumptions to obtain accurate

result. Semi-empirical methods like UNIFAC and UNIQUAC provide estimates for

many non-ideal liquids, however, they are based on empirical observations with limited

statistical mechanics support, making them unable to provide quantitative estimates for

complex biological systems such as membranes and drug binding [65, 66, 77, 78]. The

more computationally expensive, but more statistical mechanically exact simulation

methods, can predict properties in more complex molecular systems, but do not scale

well to large chemical spaces. Shared volume methods and iterative thermodynamic

paths updates are limited by the diversity of molecules they can explore [49, 50, 91,

103, 104]. The most recent advances in multidimensional thermodynamic paths have to

carefully choose parameters to avoid simulation instability and make approximations

at the paths’ end states [51, 52]. These statistical mechanics simulation methods share

a fundamental issue in that their computational effort scales at an inefficient rate

proportional to the number of thermodynamic states, which increase with the size of

the chemical space.

The current statistical mechanical simulation free energy estimation methods

described above are computationally demanding and thus require prohibitive effort

to predict accurate thermodynamic properties over a large chemical space. These

estimate the free energy differences between thermodynamic states by estimating the

ratio of partition functions from drawn samples. The accuracy of the estimation,

previously detailed in section 1.1.1, depends on how much phase space overlap exists

between states. Chapter 4 shows the difficulty in generating phase space overlap

for large chemical spaces, but we recap here to emphasize the computational effort

required to estimate properties in such spaces. The phase space overlap is generated
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by sampling along thermodynamic paths connecting the end states. The MBAR [101]

free energy estimator allow us to estimate properties without explicitly defining

thermodynamic paths, but requires the energy of every sampled configuration we

collect to be computed at every sampled state, and every end state. The most

traditional way to get all these energy evaluations is to run every sampled atomic

configuration through a simulation software’s force code to evaluate the energy at

every state. These evaluations scale computationally as O (N(Ku +K2
s )) where N are

the number of samples, Ks is the number of sampled states, and Ku are the number of

unsampled states. The previously mentioned methods for estimating free energies over

larger chemical spaces are prohibitively slow at this scaling for thousands to millions

of end states. Example timing and further details of this are covered in Chapter 4.

This chapter presents our method to estimate the solvation free energy difference

over a combinatorially large chemical space in a computationally and statistically

efficient way. We reduce the computational scaling to estimate energies at all states

through the basis function method we developed in Chapters 2 and 3. This lowers

the energy evaluation computational scaling down to roughly O (NKs) as energy

re-evaluation is handled through matrix multiplication instead of relying on simulation

force evaluations. The basis function method also maximizes the phase space overlap

along a single path to maximize statistical efficiency. Here, we extend the basis

function method to multidimensional thermodynamic paths to sample combinations

of end states at the same time. Chapter 4 looked at how to explore large multidi-

mensional chemical space and use MBAR in tandem with the basis functions to show

multidimensional property prediction could be done with computational efficiency.

This work specifically combines our basis function method with λ-dynamics [51, 52]

and Hybrid MC [193, 194] to preserve the correct thermodynamic ensemble, run stable

simulations, and explore a multidimensional chemical space. In this implementation,

we only look at 103 end state molecules, but this method could scale to systems with
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orders of magnitude more end states.

5.2 Theory

5.2.1 Defining the Chemical Space

We describe how to construct a simulation object that can physically model all

molecules of interest. The chemical space we examine is a series of molecules con-

structed combinatorially from a common core. We start with the highly symmetric

benzene ring as our core and mutate the R-groups at the 2, 4, and 6 carbons while

fixing a hydrogen at the 1, 3, and 5 carbons. Changing which R-groups are interacting

with the surrounding atoms at each site allows us to sample a combinatorially large

set of molecules, while having a means to self-consistently validate our results as

many of the combinations will be chemically identical to other combinations. We

will have every R-group present in our simulation at the same time, but the extent

to which all the atoms interact will be controlled by a dual topology approach [12].

The atoms on the same core carbon site but different R-groups will never interact to

avoid steric collisions and simplify the chemical space we sample. Further details of

atomic interactions are discussed in section 5.2.2. A model of our molecule is shown

in Figure 5.1 in a 2D model, and a 3D representation as it will appear in a simulation.

We call this molecular construct “the examol” as the size of the chemical space we

would eventually like to explore is on the “exa-” (1018) scale.
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(a) Sketch version of examol

(b) Sketch version of examol

Figure 5.1: The examol molecule has all possible combinations of substituents present
at the same time. The core structure, an aromatic ring, has multiple R-groups at each
mutating site. (a) shows a sketch of each R-group and where it attaches. (b) shows all
the R-groups attached as it would be seen in simulation. The simulation adjusts the
extent to which each R-group interacts with its surroundings to tune exactly which
state, and corresponding chemical, we sample at any given time.

For this test R-groups are chosen to occupy different volumes, have varying degrees

of flexibility, and have wide ranging water solubilities. Figure 5.1a shows the core

benzene ring and the 10 substituents: hydro-, hydroxyl-, methyl-, ethyl-, amino-,
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bromo-, fluoro-, phenyl-, nitro-, and allyl ether. The bulky groups, like phenyl-, will be

difficult to solvate in free energy simulations due to the size of the group [12]. Contrast

this to the hydroxyl- group which has a small excluded volume in comparison, but

has hydrogen bonding ability creating favorable interactions with a water solvent.

Other substituents like the methyl- and amino- groups make for common R-groups in

medicinal chemistry of drugs. This set of R-groups will provide a practical challenge to

this method to test its viability on a diverse set of molecules. In practical application,

the R-groups do not have to be as diverse as we are testing here. Due to the symmetry

of the benzene core, with these 10 R-groups on the three sites, there are 220 unique

molecules although there are 1000 combinations.

We represent the chemical space with a unique alchemical dimension for each

R-group that we can sample independently. We first index each common core site

with i for Ni = 3 total sites. We then index each R-group on each site with j for

Nj = 10 R-groups. The jth index for any R-group type is the same, e.g. the hydro-

group is always j = 1, the hydroxyl- group is always j = 2, etc. We will alchemically

couple each R-group along its own independent λ variable, giving Ni · Nj = 30

alchemical dimensions. This means that only a subset of atoms on the examol are

alchemically coupled with any one λ. Contrast this to what we did in Chapters 2-3

where a complete molecule was alchemically coupled [54, 55] and Chapter 4 where we

alchemically changed a single type of nonbonded interaction [56]. We will apply the

basis function method from Chapters 2-3 to maximize statistical efficiency [54, 55].

Each individual alchemical dimension is represented by a 1-D λ variable which is also

indexed by i and j. The collective symbol for all these variables is λ.

The examol represents a realistic molecule when a single λi,j = 1 on every ith site,

where all other λi,k 6=j = 0. For instance, if the methyl- is j = 3 and the hydro- is

j = 1, the case where λ1,3 = 1, λ2,1 = 1, λ3,1 = 1, and all other λ = 0 is toluene.
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5.2.2 Atomic Interactions

The examol requires a complex set of rules governing which atomic interactions are

active. These rules are significantly more complicated than a standard alchemical free

energy simulation that only controls what forces are coupled in what order. We detail

the general rules here with specifics in Appendix D.

We exclude atomic interactions between atoms on different R-groups on the same

ith carbon site. These interactions will cause steric collisions and having two or more

R-groups fully coupled on the same core carbon site is a non-physical molecule which

is not part of our chemically realistic end states. The pairs of excluded atoms ignore

all nonbonded, angular, and torsional interactions between each other. We discuss

how to avoid needlessly sampling states where these interactions would occur if we

allowed them in section 5.2.4.

The common core benzene structure is not alchemically decoupled from the solvent

like the R-groups are. This includes all six carbons and the three hydrogens at the 1,

3, and 5, positions. Only the Lennard-Jones repulsion and dispersion interactions are

not alchemically changed as the partial charges depend on the R-groups. How the

partial charges are assigned is discussed below.

We classify each pair of interacting atoms into one of three categories. Each category

is treated differently to ensure the end states correctly represent real molecules while

keeping the implementation as simple as possible.

• Alchemical/non-alchemical

• Alchemical/alchemical

• Non-alchemical/non-alchemical

We note that all harmonic covalent bonded terms are left fully coupled, regardless

of interaction category. The persistent harmonic bonds ensure the examol does not
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drift apart in the decoupled state, and the free energy differences from having excess

harmonic energies can be corrected using vacuum simulations [195].

Alchemical/non-alchemical interactions are controlled through our minimal variance

basis function approach. The alchemical/non-alchemical interactions include R-group

interactions with the solvent and R-group interactions with the common core. It

should be noted that intra-R-group interactions fall under the non-alchemical/non-

alchemical category as we decouple the R-groups from their surroundings as opposed

to annihilating all of the R-group’s interactions. The nonbonded interactions are

controlled by the R/C/AE-WCA basis function pathway [54, 55]. Just as we did in

Chapter 3, each λij has a [0, 1] domain and acts as a 1-1 map to each of the individual

forces along the basis function path. These forces are the Weeks-Chandler-Andersen

decomposed Lennard-Jones repulsive and attractive forces [115], our statistically

efficient capped repulsive Lennard-Jones force, and the electrostatic force. Angular

and torsional interactions between atoms on an R-group and common core atoms

are controlled through linear scaling the force with λij, which also fits a generalized

basis function form, but does not cause simulation instability as linearly changing

nonbonded terms might [54, 55, 82, 83, 85, 95, 109, 195].

Alchemical/alchemical interactions are controlled through linear scaling of all forces

simultaneously. This class of interactions are cross-R-group nonbonded interactions

and electrostatics of the common core as the partial charges of the core atoms is a

function of all R-groups. We theorize that linear scaling will be acceptably efficient for

the cross alchemical terms as the atoms will infrequently occupy the same excluded

volume, thus avoiding singularities in the energy. The purpose of the capped basis

functions and the soft core potentials is to avoid such singularities when appearing or

disappearing atoms in dense fluid [54, 55, 82, 83, 85, 95, 109, 195]. However, these

atoms on separate R-groups will not reside on top of each other very often and will

have to overcome the barriers of the solvent and all the interactions of other R-groups
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from the same site repelling the R-groups on other sites. We have also found through

short simulations that the linear coupling path does not cause simulation instability,

and reduces the computational effort due to having fewer basis functions to compute.

It should be noted we could control this class of interactions through a capped basis

function pathway, which may have been required if all six core benzene sites could be

mutated. For these interactions, the effective λ parameter, λeff, which is passed to the

linear alchemical switch is

λeff = λi,j · λk,l for i 6= k (5.1)

where λi,j and λk,j are the two alchemical parameters assigned to the R-groups

interacting. i 6= k is required since R-groups on the same site do not interact. However,

j and k can take any of the Nj values, including j = k.

The non-alchemical/non-alchemical interactions have the simplest rules and are

identical to non-alchemical simulations. The atoms in this set are the solvent/solvent

interactions, the intra-R-group interactions, and the common core Lennard-Jones

interactions with solvent and itself. These are controlled through standard bonded,

12-6 Lennard-Jones, and point-charge electrostatic forces. No modification to these

are needed as these interactions are not alchemically controlled.

The partial charge on the core changes with the thermodynamic state of the

R-groups. To determine the partial charge of the core, we approximate the charge

as a linear combination of the partial charges if each R-group was present by itself.

We start with the core where we have neutralized at all but one mutation sites. The

other mutation sites are treated as a united atom carbon site. We then attach a single

R-group at the mutation site and assign charges with the AM1-BCC [196] method. We

then repeated this process for every R-group at every site. The partial charge of the

core at any point in the simulation is then the sum of each step of this process, scaled
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by hE(λi,j|E) which is a map of the 1-D variable λi,j to the electrostatic switch. This

keeps a net neutral molecule which retains neutrality as each λ changes independently.

5.2.3 Chemical Sampling with λ-dynamics

We sample the examol with multiple-time step hybrid MC/λ-dynamics simulations; for

shorthand, we call it “λ-dynamics for Examol,“ or ”λDX.“ This carries out dynamics

in both chemical and Cartesian space at the same time. The energy is described by

both the coordinates of the atoms, and the current chemical state. Proposed Monte

Carlo (MC) moves would therefore depend on spaces. Chemical space MC moves

must be small (only fractions of the path between molecular end states) if they are

accepted with reasonable probability [61, 121, 197–201]. Given the coupled nature of

Cartesian and chemical spaces, and the difficulty of changing chemical state by itself,

we choose to propose moves in both simultaneously.

We propose moves through λ-dynamics [51, 52, 202] where both Cartesian coor-

dinates, and chemical coordinates are updated at the same time. Each λ variable is

assigned a fictitious mass and is subject to a Hamiltonian of

H(λ|r) =
∑
i

∑
j

mi,j

2
λ2
i,j + U(r,λ) (5.2)

where mi,j is the fictitious mass assigned to each λ variable and U(r,λ) is the potential

energy. We note that H(λ|r) shows this is the Hamiltonian acting only in the chemical

space, and that the full Hamiltonian acts in both Cartesian and chemical space.

Because the λ variables have a mass, they can be treated just like another particle in

the system: they experience force, have a velocity, and have a position. This allows the

λ variables to be updated alongside Cartesian variables. We constrain our λ-dynamics

positions by reflective boundary conditions with hard walls at λi = [0, 1]. This keeps

the λ coordinates within their domains without us having to define an oscillating
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function such as λi = f(θi), −∞ < θ < ∞ which would bias values away from a

uniform distribution of λ sampling.

We wrap a MC move around the λ-dynamics simulations to improve simulation

stability. Hybrid MC (HMC) is a technique where the proposed MC move is taken after

a short series of molecular dynamics (MD) time steps [193, 194, 203]. Rejections in

HMC reject the entire MD series and reset positions to before the MD steps were taken.

HMC helps reduce numerical instability from finite MD step while also preserving

the correct thermodynamic ensemble, regardless of step size. λ-dynamics has known

simulation instability and error in free energy estimates based on the choice of the

fictitious alchemical mass [51, 52]. HMC allows us to overcome both of these issues

and the alchemical mass now becomes a HMC acceptance rate tuning parameter. A

larger mass causes slower changes in chemical state, and thus slower energy changes,

increasing acceptance rate. Smaller masses allow faster energy changes, and thus lower

acceptance rates. We tune the alchemical mass to try and approach the optimal HMC

acceptance rate of 65.1% [204].

We accelerate our simulation by simulating with a multiple time step MC. λ-

dynamics adds additional computational overhead in that we have to compute a force

with respect to each alchemical parameter, ∂u/∂λ, on top of computing a force in the

Cartesian directions. One way to accelerate this process is to evaluate alchemical force

on a smaller subset of atomic interactions. We choose to sample from an ’approximate’

potential [205] to carry out MD with fewer atomic interactions, then analytically

correct for the approximation with an additional MC step. This approximate MC

sampling is evaluated in the following way: The initial non-approximate energy is

evaluated, EO. We then evaluate the same configuration under the approximate

energy, which we label with a primed notation (′), E
′
O. We carry out any type of MC

sampling as an inner loop under the approximate potential and generate a new state

with energy E
′
N . The inner MC moves are accepted with the standard Metropolis
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criteria of

α
′

O→N = min
(

exp
[
−β(E

′

N − E
′

O)
]
, 1
)

= min
(

exp
[
−β∆E

′
]
, 1
)

(5.3)

where β = (kBT )−1. We can then ensure the correct thermodynamic ensemble under

the full energy is preserved by evaluating the full energy after the inner moves, EN ,

and accepting the whole procedure with the probability

αO→N = min (exp [−β∆E] exp [+β∆E ′] , 1) = min (exp [−β(∆E −∆E ′)] , 1) . (5.4)

The derivation for Eq. 5.4 is general for any type of inner MC, including HMC [205], so

this approach will work for our Hybrid MC/λ-dynamics sampling. We also never have

to evaluate ∂u/∂λ for the full energy with this scheme since the outer MC evaluation

only needs the total energy, not the force.

The approximate MC sampling becomes multi-time step sampling with the correct

choice of approximate potential. If we choose our approximate potential to be only

alchemical/non-alchemical and non-alchemical/non-alchemical type interactions, we

only have to compute λ-dynamics forces on the alchemical/non-alchemical interactions.

This means that we do not have to worry about computing the chain rule derivative

from the alchemical/alchemical interactions due to Eq. (5.1). We theorize that

alchemical/alchemical interactions are small in magnitude and do not frequently

interact strongly, meaning they vary more slowly than the alchemical/non-alchemical

interactions. If this theory is correct, the approximate MC sampling effectively turns

this process into a multiple time step procedure.

Our λDX method overcomes the limitations with each of the individual sampling

techniques that construct it. Sampling in chemical and Cartesian space simultaneously

with λ-dynamics lets us avoid pre-populating MC moves in chemical space. The HMC

move turns the λ-dynamics of the fictitious mass in chemical space into an acceptance
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rate tuning parameter. Finally, the multiple-time step sampling of the approximate

MC sampling lets us reduce computational overhead from computing derivatives with

respect to λ while still sampling the correct ensemble.

5.2.4 Biasing Potential

The multidimensional nature of the examol implies sampling by diffusing through

chemical space alone will take excessive computational time. If we assume that each λ

can only take 11 uniformly spaced values on a [0, 1] domain, a random walk simulation

will take an expected > 5 · 1032 steps to visit each state in our 30 dimensional space

once [206, 207]. This number of steps assumes equal probability of visiting each state,

and does not account for natural kinetic barriers which appear in simulations of real

molecules. We do not want to sample the chemical space where λi,j and λi,k are both

large, meaning two R-groups on the same site are coupled. We propose two types of

biases: a free energy bias to overcome the free energy barriers, and a fixed flat-bottom

multidimensional harmonic bias to reduce the chemical space we need to sample.

A free energy bias along each R-group enhances sampling by reducing the time we

spend kinetically trapped in low free energy states. We estimate the free energy at

regular intervals during the simulation and approximate the bias on a cubic spline in

each λ variable by itself. We then estimate the bias anywhere in the chemical space

as a linear combination of each spline. Our free energy bias is then

BF (λ) = −
Ni∑
i

Nj∑
j

Fi,j(λi,j)|λ=0∀λ 6=λi,j (5.5)

That is the free energy bias, BF (λ), is the sum of free energies over all λi,j when all

other λ = 0. We show this free energy bias in Fig. 5.2 where our approximation is

the middle pane. This approximation is a compromise between the two extremes of

free energy bias. If we wanted to be exact, we would estimate the free energy at every
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combination of λ, as shown on the right pane of Fig. 5.2. However, this would be

computationally taxing as this problem scales with the curse of dimensionality and we

do not know the exact values of λ that λ-dynamics will sample a priori. The other

extreme, as was implemented by the original multisite λ-dynamics publications [51, 52]

and shown on the left pane, linearly scales the free energy at the end state of each λ

so the bias is λi,jF (1). Although this is computationally efficient, it can be woefully

inaccurate as shown in our example figure. We feel our choice is a decent compromise

since we do not need to bias with the exact free energy to escape kinetic traps, but

we do still want to capture some features of the free energy surface.

Figure 5.2: The bias of any point in chemical space is the linear combination of the
free energy along each axis in chemical space. Shown are several ways to handle the
bias for two λ. The left pane shows an extreme approximation where the bias is a
linear scaling of fully coupled free energy, λi,j · F (1). The right is an exact calculation
where the free energy surface is computed at every combination of λi,j and λk,l. The
middle is a compromise where the free energy is computed along each λ assuming all
other λ = 0, then the free energy in the middle is the linear combination of the two,
as in Eq. (5.5). We compute our free energy bias with the middle plot’s method as a
trade off between accuracy and computational effort.

We do not need to sample all of the possible chemical space to estimate free energies

at the real molecule end states. The free energy bias lets the simulation escape kinetic

wells, but we also want to limit what regions of chemical space to sample. Simply

excluding the interactions between R-groups on the same common carbon site does not

prevent the λ-dynamics from sampling a state where multiple λ on the same site are
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large. If anything, excluding the interactions reduces the kinetic barriers to sampling

those states since steric collisions no longer occur.

We do not want to sample states where multiple R-groups are fully coupled on one

site as doing so generates configurations which share little phase space overlap with the

end states. When multiple R-groups are coupled on the same site, there are additional

angular and torsional forces the core experiences. We observed that these extra forces

overcome the rigidness of the planar aromatic ring and cause ring puckering. This

puckered benzene ring would virtually never be observed with any end state, and

thus would share little phase space overlap. Multiple coupled R-groups also cause a

concentration of sites where nonbonded interactions occur. These sites cause excessive

solvent packing (in the case of favorable interactions), or solvent depletion around (in

the case of unfavorable interactions). As we observed in Chapter 4, tight packing or

depletion of solvent drastically reduces the phase space overlap to a reference state

and takes significant more samples in these outlier states to converge simulations.

Lastly, the basis functions were designed to be minimum variance moving from the

decoupled state to the fully coupled state, so we theorize that moving through the

decoupled state to chemically realistic molecules would take the most advantage of

that design.

We prevent our simulation from sampling states where multiple R-groups are fully

coupled on a single site by a flat-bottom harmonic restraint. Our bias is 0 near the

decoupled states so we can better sample the decoupled region of chemical space. To

sample the chemically realistic end states, we apply a harmonic bias when two λi,j on

the same site become large to improve sampling when one λ is large, but not multiple.

We propose two forms of the flat-bottom harmonic bias equations, each with their

own strengths and weaknesses:

BH,1(λ) =

Ni∑
i

Nj∑
j

H (λi,j − λmin1)

Nj∑
k 6=j

KH (λi,k − λmin2) (λi,k − λmin2)2 (5.6)
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and

BH,2(λ) =

Ni∑
i

Nj∑
j

H (λi,j − λmin1) (λi,j − λmin1)2

×
Nj∑
k 6=j

KH (λi,k − λmin2) (λi,k − λmin2)2 . (5.7)

H is the Heaviside step function, K is a constant bias in units of energy per λ2 (or

per λ4 for BH,2). If one R-group is near the fully coupled state (λi,j ≥ λmin1), other

R-groups on the same site approaching the fully coupled state become disfavored

(λi,k ≥ λmin2), driving the system away from the fully coupled state of multiple R-

groups. We show an example of both biases in Fig. 5.3. This figure shows how the bias

drives the λ-dynamics walkers towards either the decoupled state, or to the chemically

realistic end states.
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(a) Harmonic Bias 1

(b) Harmonic Bias 2

Figure 5.3: The flat-bottom bias keeps the simulation near realistic chemical species
and along the pathways the linear basis functions were derived from. However, the bias
only applies to λ on the same core site. The white lines show where the flat-bottom
thresholds are located. (a) is a bias which creates hard walls at the thresholds to
ensure no sampling is done above the two thresholds. (b) is a bias with steady, first
derivative continuous walls above the thresholds, but requires a large force constant
to avoid sampling just above the thresholds.
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The first bias shown in Fig. 5.3a, BH,1, creates strong walls at the thresholds and

ensures minimal to no sampling is done anywhere above the thresholds. However, this

bias is not first derivative continuous and MC moves which propose a state above

the thresholds may have large rejection rates due to the sudden jump in energy. The

second bias shown in Fig. 5.3b, BH,2, smoothly increases above the threshold so small

MC proposals above the thresholds will be accepted more often than BH,1. The second

harmonic bias will sample a larger chemical space near the decoupled regions as can

be seen near the intersection of the white lines in Fig. 5.3b. In both cases, K should

be chosen such that the free energy bias cannot overcome the flat-bottom harmonic

bias so we retain control over the chemical space we sample. Note the actual value of

K used to create Fig. 5.3b was chosen to better see the shape of the bias and lower

than what would be done in simulations. Both the flat-bottom harmonic biases and

the free energy bias have analytical derivatives in ∂u/∂λ so we can evaluate the force

in each λ direction.

We run our simulations with the first harmonic bias, BH,1, to ensure we sample

the minimal chemical space. If the MC rejection rate caused by BH,1 is too large,

we theorize we can restart simulations from the decoupled state to sample near the

decoupled state and possibly new end states from our λDX walkers. The increase

in chemical space that BH,2 introduces would be too large for practical sampling.

Consider the case of λmin1 = λmin2 = 0.2 of Eq. (5.7), then increasing the threshold

by 0.1. The accessible volume which could be sampled would increase by a factor of

(0.3/0.2)30 > 1.9 · 105. We feel the trade off of more MC rejections is better than the

increased accessible volume.

5.2.5 Free Energy Calculation

Free energy differences are evaluated in a separate process from the λDX simulation.

The simulations generate samples which we analyze in MBAR [101] to compute the
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free energy. The potential energy of every sample is evaluated at every sampled state

through linear algebra under our basis function approach [54, 55].

The free energy analysis provides both the adaptive bias and the chemically realistic

end state free energies. Once MBAR is solved, we can generate the NNi
j combinatorial

end state free energy differences. These free energy differences (and their uncertainty)

provide insight into the convergence of our simulation. Beyond ensuring we have

global phase space overlap of our sampled states (see Chapter 4) [56], we can ensure

we have sufficient sampling once chemically identical molecules have the same free

energy differences when constructed from the same R-groups on different core carbon

sites. We also can solve for the free energy biases needed for Eq. 5.5 which we can

write to file, and have the running λDX simulation update its internal biases on the

fly.

5.3 Simulation Setup

The exact implementation details of our λDX simulation can be found in the appendices.

Here we cover the general details, omitting exact code modifications.

The λDX simulation was implemented in a modified version of OpenMM 7.0 [32, 39].

The examol was constructed by building a single R-group on a core benzene ring

inside Maestro from the Schrödinger company. Partial charges were assigned by

AM1-BCC [196]. The common cores of each R-group were aligned and the R-groups

were then attached to a single common core inside OpenMM. All atomic parameters

were taken from the GAFF force field [73] except for partial charges. The examol was

solvated in TIP3P water with built-in OpenMM methods so there was at least 1.2 nm

of water between any edge of the examol and the simulation box edge.

Simulations were carried out in the NVT ensemble at 298 K. The MD steps of the

inner HMC loop were carried out under NVE ensemble, then velocities were drawn
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from the Maxwell-Boltzmann distribution to preserve temperature after an outer MC

evaluation, regardless of acceptance. This process differs from the massive Andersen

thermostat [126] in that velocities were also drawn for the alchemical particles for

λ-dynamics. A custom time integration algorithm was written to carry out the

λ-dynamics.

The simulation was carried out with a mixture of PME and reaction field electro-

statics. The water electrostatics were handled by PME with a relative error tolerance

of 5 · 10−4. Electrostatics of the examol were handled with a reaction field electrostat-

ics [208] with a dielectric of 78.3. Due to implementation restrictions, the contribution

of the PME method’s long range, reciprocal space electrostatic interactions of the

examol with periodic copies could not be isolated for basis function analysis, so reaction

field electrostatics were employed instead. We would have been able to separate out

the basis function reciprocal space electrostatics for a single R-group as we had done

previously [54, 55] but not for all the different alchemical/alchemical interactions in

this case. The cutoff for all nonbonded interactions electrostatics was 9Å. The water

hydrogens were constrained by the SETTLE algorithm [125] and all other bonded

hydrogens were constrained by the SHAKE algorithm [124].

Short simulations were run to determine the parameters which maximize the mean

∆λ constrained by the 65% optimal HMC acceptance rate [204]. The alchemical mass

was set to 50 amu · Å2
for each parameter. Proportional distribution of mass was found

to have a smaller ∆λ. The harmonic bias force values were K = 50 kJ/mol λ2 and

λmin1 = λmin2 = 0.3. 10 MD steps were taken per MC evaluation for the inner HMC

steps, and 1 inner HMC evaluation was evaluated per outer MC evaluation of the

full potential. MD time steps were 1.25 fs and 500 total MD time steps were drawn

between each recorded sample to better capture decorrelated samples [143].

Initial positions of the λDX simulation were taken from an equilibration simulation

at fixed λ. An equilibration simulation was run with only MD to generate a relaxed
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starting conformation. λ = 0.5 was set and fixed for all λ in this simulation and 2

ns of the equilibration simulation was run. The relaxation period of this simulation

was evaluated with the timeseries module packaged with MBAR [101, 143] and the

configuration which was closet to the mean energy post-relaxation was used as the

starting configuration for production simulations.

5.4 Discussion

The basis function method is many orders of magnitude faster at computing energies

at all states over traditional simulations. For the purposes of analysis, we report data

from N = 10133 drawn samples at a total of Ks = 5896, we also choose a reference

state of all R-groups fully decoupled for measuring free energy differences. We draw

the timing for traditional energy evaluation of running simulation code force loops

from Chapter 4. This gives a conservative estimate of 30000 energy evaluations in 1500

CPU seconds and equates to 0.05 seconds per energy evaluation. We analyzed our data

at Ku = 103 chemically realistic end states. N(Ks + Ku) energy evaluations under

traditional means would take 40.44 CPU days. Our implementation’s computational

effort scales with the number of basis functions so is a rough function of Nλ. At

Nλ = 30, it took 43.77 CPU seconds to evaluate NKs energies, at a rate of 0.00742

CPU seconds per state. Making our total N(Ks + Ku) effort 51.17 CPU seconds,

or 68,281x speed-up over traditional methods. If we had instead simulated with all

six core carbon sites mutable, we get Nλ = 60 and Ku = 106. With this scale up

traditional simulations would take 16.15 CPU years to evaluate N(Ks +Ku) energies.

Our basis function method slows to 0.0309 CPU seconds per state for a total time of

8.63 CPU hours, which is a still 16,396x speed-up over traditional methods. These

timings assume that we have not pre-populated the value of the alchemical switches

at each state. If we assume that the switches are pre-computed while the simulations
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are running, the time to evaluate N(Ks +Ku) energies with our approach decreases

to 3.42 CPU seconds (145,924x speed-up) and 3.469 CPU hours (40,564x speed-up)

for Nλ = 30 and Nλ = 60 respectively. So we are significantly more computationally

efficient compared to traditional energy evaluation methods. It is worth noting these

speed-ups are independent of the convergence problem as a traditional simulation

would still have lacking global phase space overlap with the same samples. If anything,

our accelerated analysis means we can update the biases, and thus drive the simulation

to escape kinetic barriers to sampling, faster than traditional simulations.

Adding in the time to generate samples, our λDX implementation is still a faster

option than traditional simulations for predicting free energies in this large chemical

space. Because we are performing λDX simulations, we have extra computational effort

to generate a sample compared to traditional MD in the form of HMC calculations and

force derivatives in λ dimensions. The mean time to generate a simulate a single time

step (and sample) on traditional MD simulations is 0.029 CPU seconds, computed

from the raw simulation data of Chapter 4. Our λDX simulations take an average of

0.926 seconds (wall clock, running on GPU) to generate a sample. This means our

simulations execute 31.6x slower than traditional simulations. However, including

the analysis time, which must be done no matter how the sample was generated,

our method is still faster by 53.7x at worse, and 12,623x at best for the numbers

stated above. Although comparing GPU wall clock time is not equal to parallelized

CPU time, this is the closest comparison we can make as we assume each simulation

package’s code is optimized for the hardware we simulate on. Recall that traditional

methods scale by O (N(Ku +K2
s )) and the basis function method scales optimally as

O (NKs). So as more samples are drawn, the more proportional time will be spent

on analysis than sample generation. Finally, we desire to approach “exa-” scale in

unsampled states, Ku, meaning our method will scale even better to larger systems.

The large chemical space will take more samples than we have currently drawn to
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converge. At the time of writing, the simulations had not converged by our metrics.

We stress again that choice of λDX over traditional simulations for either simulation or

analysis does not effect the convergence assuming the exact same samples were drawn.

However, the λDX methods have the advantage in that the samples drawn are from a

limited chemical space and the basis functions the λDX simulations are built around

help reduce the number of samples that will be needed to converge [54, 55]. The

eigenvalues of the overlap matrix for our drawn samples have repeated 1’s to machine

precision [101, 187], indicating that insufficient samples have been drawn to say we

have global phase space overlap and better confidence in property estimations [56].

Fig 5.4 shows the free energy difference between our reference state and every realistic

chemical end state that can be made in multiple combinatorial ways. The x-axis is

the free energy difference of each unique molecule and the y-axis is the free energy

difference of the chemically identical molecules constructed in a different combinatorial

way. A converged simulation would have every point along the y = x curve as

chemically identical molecules should have the same free energy differences. The

average difference between the x and y value of these points is 29.430 kT with an

average uncertainty of 4.84 kT, with outliers discarded (and not shown) which would

dominate the mean values. We do, however, observe that increasing samples does

shrink the uncertainty. Initial estimates of the same plot with 5x fewer samples showed

an average free energy difference > 80 kT with uncertainty on the same order of

magnitude.
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Figure 5.4: Many chemically identical molecules do not have the same free energy
differences. This figure shows the free energy difference for each unique molecule
combination on the x-axis and compares it to the free energy difference of other
chemically identical molecules on the y-axis, made up of the same R-groups on
different sites of the core. The reference state is the common benzene core with no
coupled R-groups as an example. The shaded area shows molecules who’s free energy
difference to the reference state is positive for at least one of its combinations. Error
bars are not shown for visual clarity.

The biases we apply reduce the chemical space while allowing the simulation to

escape kinetic traps. Fig 5.5 shows the λ values from two different simulations. The

λ lines are shaded based on what common core site the R-groups they represent are

attached to, e.g. every shade of green line is attached to the 4 position on the benzene

ring. The figures shows that simulations occasionally get kinetically trapped and all

MC moves are rejected, as indicated by flat lines in the graphs. This is especially

predominant in simulations without the adaptive free energy bias, an example of which

is shown in Fig. 5.5a. The simulation becomes trapped towards the end for a large

number of time steps. Contrast this with simulation where we have applied the free

energy bias in Fig. 5.5b where the instances of trapped samples are much shorter. We
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also see that the harmonic bias keeps walkers below the λ = 0.3 threshold as another

walker on the same site approaches λ = 1, indicated by the fact that only one or two

of the same base color are large at any one time. Once a λ approaches the coupled

state though, it tends to remain stuck there. This is due to the HMC moves which

move walkers above the harmonic bias threshold causing a sudden jump in energy,

and thus are a rejected move. These rejections slow the speed at which we converge

by limiting the extent of global phase space overlap we have between the reference

state, and the end states. Specifically, the rejections reduce the number of samples

we collect from any λ variable between 0.5 and 0.8, when the electrostatics are being

coupled. Ways to address this problem are discussed in section 5.4.1.
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(a) Early Simulation w/o FE bias
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(b) Later Simulation w/ FE bias

Figure 5.5: The λ parameters move through a chemical space controlled by the two
types of biases. Each figure shows all 30 λ walkers over different simulations. The line
colors indicated which common core site the R-group corresponding to each walker
is attached to. Red, green, and blue lines show λ for R-group walkers on the 2, 4,
and 5 site respectively, with intermediates colored lines between the three shades
distinguishing between the R-groups on the same site. (a) shows a simulation with
no adaptive free energy biases where the walkers get trapped towards the end of the
simulation and all MC moves are rejected (flat line at > 400 samples) as there is no
free energy bias to escape the kinetic traps. (b) shows a simulation where adaptive
free energy biases are applied and ensure that a larger chemical space is sampled near
the decoupled state (indicated by the spread of the walkers), and traps can be escaped
more quickly as the kinetic barriers are reduced.

We can analyze the unconverged simulation data for screening purposes and as the
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start of an optimization procedure from qualitative determinations. Points inside the

shaded region of Fig 5.4 indicate a free energy difference > 0 relative to the reference

state for any of the chemical combinations. In the drug design field, chemists typically

would not want to synthesize drugs with low binding affinities and would instead focus

on drugs with free energy differences < 0, rejecting all the molecules in the shaded

region of the picture (within error). Although we only looked at solvation simulations,

drug binding simulations would only cost 5-10x the length of simulation time relative to

solvation properties [136], and solvation simulations are needed regardless for accurate

and computationally efficient binding free energies. The binding simulations would

also be run separately and through their own analysis code, so both solvation and

binding simulations can run in tandem. Consider also liquid-liquid extraction where

one would want positive solvation free energy differences between the carrier and the

solvent, but negative solvation free energy differences between the solute and the

solvent. A scatter plot like Fig 5.4 could be used to plan out which solvent to run,

although the fluid in simulation should be the carrier fluid (instead of water here).

The simulations could be modified to bias away from sampling molecules with have

unfavored free energy, depending on application. Doing such biasing would shrink the

chemical space we desired property estimations over, additionally reducing how much

phase space overlap is needed. Our method works as a qualitative screening process

so far, and will provide quantitative free energy, and other thermodynamic property

estimate, as the property estimates converge.

5.4.1 Improving the simulation and convergence

The first harmonic bias, BH,1 of Eq. (5.6), is too strong in the current λDX implemen-

tation. Fig 5.5 shows that once a λ walker approaches λ = 1, it becomes very hard

for another λ to approach. The harmonic bias being the cause for this observation

is enforced by Fig. 5.3. The sharp jumps in energy at the λmin lines create a barrier
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of at least 9.89 kT if one λ = 1, which causes a large rejection rate in the HMC

moves. Although we do avoid sampling the chemical space where multiple λ > λmin

as seen in Fig. 5.5, we have virtually no samples for λ > 0.5 in any λ. Our next

step will therefore be to apply the second harmonic bias, BH,2 of Eq. (5.7). BH,2 will

allow smoother energy increases as multiple walkers pass over the thresholds, which

should improve our MC acceptance rate. We will need to choose a new K constant to

minimize the increase of accessible parameter volume.

Additional adaptive bias components would steer the simulations away from

undesired molecules. As discussed above, one could add an additional bias potential

which reduces the likelihood of sampling molecules with large, positive free energy

differences (or negative, depending on application). Even something as simple as a

harmonic bias on the end state itself, reducing the available chemical space to sample.

We are working with the OpenMM developers to implement parts of our approach

as native functions within the software. The largest of these features is evaluating

∂u/∂λ for each λ variable. The approximate MC sampling [205] procedure is effectively

required in our implementation since evaluating ∂u/∂λ for the alchemical/alchemical

interactions adds 6.6x computational effort per MD time step with unoptimized code.

We are working to add the ability to handle these derivatives natively, instead of

our current implementation which requires us to effectively halt the simulation and

to compute alchemical forces. The additional features will allow us to simplify the

code defining the forces themselves, which will reduce the overhead in evaluating

Cartesian force as well, further speeding up our simulations. Code simplification will

not only speed-up the simulation, but it will also lower the barrier for someone else to

implement our method in their own work.
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5.5 Conclusions

We have developed a method to sample and estimate thermodynamic properties over

a combinatorial chemical space that is both computationally and statistically efficient.

This method required developing the basis function method to compute energies

at any thermodynamic state through matrix multiplication instead of re-running

simulation force code, a development which had been previously discarded by other

computational free energy researchers because of low statistical efficiency. We overcame

those statistical limitations and made a technique which can sample increasing larger

chemical spaces with better computational efficiency than any previous multi-molecule

sampling method. We also had to develop a way to represent a combinatorial chemical

space inside a simulation with our examol. Multiple R-groups were combined onto

a single core structure without unstable steric collisions. Finally, we created a new

time integration algorithm to sample the chemical space by combining λ-dynamics,

Hybrid Monte Carlo, and multiple time step MC sampling to explore only the subset of

chemical space that represented real molecules in a computationally efficient manner.

Each of these methods helps overcome the limitations brought on by the others to

make stable simulation better suited to exploring large chemical spaces.

Our method has the potential to perform analysis in chemical spaces several orders

of magnitude faster over traditional means. We have shown that our basis function

method provides several orders of magnitude faster analysis than using traditional

simulation methods to estimate energies. We have shown in Chapter 4 that the MBAR

statistical estimator is one of the only reliable means of estimating thermodynamic

properties over a large chemical space from a limited number of simulations. No matter

how samples are drawn, analysis with MBAR requires specific energy evaluations, and

our method is far superior at computing those energies. Although one could simply

run 103 or 106 simulations, one for each chemical, our method lets us gather the same

information from a single simulation. Furthermore, even though our simulations are
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slower, they are still computationally faster than traditional simulations due to the

time we save in analysis.
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The basis function approach presented in this dissertation provides a computation-

ally and statistically efficient way to estimate chemical thermodynamic properties in

simulations. I have shown in Chapter 2 how the basis function method can provide

a computationally efficient way to estimate thermodynamic properties on a single

free energy difference calculation by reducing the cost of energy reweighting to simple

matrix multiplication. The approach has the added benefit of being on equal statisti-

cal efficiency of the current best soft core methods. Chapter 3 generalized the basis

function approach to develop the most efficient thermodynamic path for connecting

end states, applying the basis functions to all types of nonbonded forces.

We can estimate properties over large parameter spaces with the basis functions

and multistate reweighting techniques. By combining the basis function method with

MBAR, Chapter 4 showed how to compute thermodynamic properties over vast atomic

parameter space. Not only did the combination of the two methods allow efficient

property estimates at over 260,000 parameter combinations, but the two methods

provided an algorithm that creates global phase space overlap, a necessary component

to accurate chemical property estimations. We must have good phase space overlap

before we can make any accurate property estimate since even the uncertainty in our

estimate is itself an estimate, and affected by the extent of phase space overlap.

Finally, this dissertation looked at extending the basis function approach to begin

estimating thermodynamic properties over large chemical spaces. Hardware and

software advancements have made estimating properties in chemical space possible,

but there have been a lack of methods to do so. Chapter 5 developed a method to

efficiently estimate properties over a combinatorial number of chemicals by applying

the basis functions to a unique molecular representation. I developed the rules of

atomic interactions, designed a special simulation protocol, and created an analysis

procedure which takes advantage of the basis function approach to estimate free

energies over a large number of molecules faster than any currently existing methods.
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Even though additional simulation is required to generate quantitative estimates, I

have shown how the basis function approach provides a way to start exploring the

large chemical spaces we need to overcome the chemical engineering challenges of our

modern world.
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A.1 Derivation of linear basis function variance

In this section, we derive the variance of the free energy using the linear basis function

approach with thermodynamic integration (TI) in the general case of multiple λi and

multiple basis functions dependent only on coordinates as discussed in sections 2.2.3

and 2.4.3. This is an extension of the case with a single λ considered in previous

work. [84]

Starting from the TI equation for the total free energy, with all λi parameterized

by λ,

∆F =

∫ 1

0

dF

dλ
dλ

=

∫ 1

0

∑
i=1

∂F

∂λi

∂λi
∂λ

dλ

=

∫ 1

0

∑
i=1

〈
∂H
∂λi

〉
∂λi
∂λ

dλ

where H is the Hamiltonian, and F is either the Gibbs or the Helmholtz free energy,

depending on the ensemble sampled. At a single point λ along this path, we can write

an estimator for dF/dλ as

dF

dλ
=
∑
i=1

〈
∂H
∂λi

〉
∂λi
∂λ

=

〈∑
i=1

∂H
∂λi

∂λi
∂λ

〉
. (A.1)

Since we can write the estimator of dF/dλ in terms of an ensemble average of some

quantity, we can write the variance as

Var

(
dF

dλ

)
=

〈(
N∑
i=1

∂H
∂λi

∂λi
∂λ

)2〉
−

〈∑
i=1

∂H
∂λi

∂λi
∂λ

〉2

=
∑
i,j=1

Cov

(
∂H
∂λi

,
∂H
∂λj

)
∂λi
∂λ

∂λj
∂λ

.

This can be compared to Eq. 5 of Crooks, [96] Eq. 2 of Shenfeld et al., [94] and
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Eq. 42 of Gelman and Meng [93] to see that this total covariance is the square of the

Riemannian metric used to measure thermodynamic length as:

L =

∫ 1

0

√
Var

(
dF

dλ

)
.

To avoid cross correlation terms from expanding (∂H/∂λi)2 in terms of pair potentials

such as
∑

k,l(∂uk/∂λi)(∂ul/∂λi), we can rewrite the covariance in terms of pairwise

functions. For ease of derivation, we first define the canonical partition function

Q(λ) =
∫

Γ
exp(−βH(x, λ)) dx, where coupling variables λi are functions of the single

parameter λ and we then note that:

∂

∂λi
Q−1 = −Q−2∂Q(λ)

∂λi

= −Q−2

∫
Γ

∂

∂λi
exp(−βH(x, λ)) dx

= −Q−2

∫
Γ

−β∂H(x, λ)

∂λi
exp(−βH(x, λ)) dx

= βQ−1

∫
Γ

dH(x,λ)
dλi

exp(−βH(x, λ)) dx

Q

= βQ−1

〈
∂H
∂λi

〉
.

Although we use the canonical partition function Q, the results are equivalent in NPT

or µV T ensembles as long as the paths only change the Hamiltonian, not the external

thermodynamic parameters. We then examine the derivative ∂
∂λi

〈
∂H
∂λj

〉
to obtain the
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covariance

∂

∂λi

〈
∂H
∂λj

〉
=

∂

∂λi

(∫
Γ

∂H(x, λ)

∂λj
exp [−βH(x, λ)]Q−1 dx

)
∂

∂λi

〈
∂H
∂λj

〉
=

∫
Γ

∂2H
∂λi∂λj

exp [−βH(x, λ)]Q−1 dx

+

∫
Γ

−β∂H
∂λi

∂H
∂λj

exp [−βH(x, λ)]Q−1 dx

+

∫
Γ

β
∂H
∂λj

〈
∂H
∂λi

〉
exp [−βH(x, λ)]Q−1 dx

∂

∂λi

〈
∂H
∂λj

〉
=

〈
∂2H
∂λi∂λj

〉
− β

〈
∂H
∂λi

∂H
∂λj

〉
+ β

〈
∂H
∂λi

〉〈
∂H
∂λj

〉
.

This can then be arranged to form:

β

〈
∂H
∂λi

∂H
∂λj

〉
− β

〈
∂H
∂λi

〉〈
∂H
∂λj

〉
=

〈
∂2H
∂λi∂λj

〉
− ∂

∂λi

〈
∂H
∂λj

〉
Cov

(
∂H
∂λi

,
∂H
∂λj

)
= β−1

(〈
∂2H
∂λi∂λj

〉
− ∂

∂λi

〈
∂H
∂λj

〉)
.

Since Cov (x, y) = Cov (y, x), and the partial derivatives of state functions are equal,

we must also have

∂

∂λi

〈
∂H
∂λj

〉
=

∂

∂λj

〈
∂H
∂λi

〉
.

Therefore, the total variance for the calculation of ∆F , assuming equal sampling

at each point along the path, is

Var (∆F ) =

∫ 1

0

∑
i,j

Cov

(
∂H
∂λi

,
∂H
∂λj

)
∂λi
∂λ

∂λj
∂λ

dλ (A.2)

= β−1

∫ 1

0

∑
i,j

(〈
∂2H
∂λi∂λj

〉
− ∂

∂λi

〈
∂H
∂λj

〉)
∂λi
∂λ

∂λj
∂λ

dλ. (A.3)

We will assume from here that the masses of all molecules are independent of

λ. This makes the Hamiltonian’s dependence on λ entirely through its potential

energy, U , so 〈∂H/∂λi〉 = 〈∂U/∂λi〉 as the kinetic energy can be exactly accounted
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for analytically. The variance can then be rewritten in terms of the complete radial

distribution function (RDF) (i.e. not approximated) as

Var (∆F ) = β−1

∫ 1

0

∑
i,j

(〈
∂2U

∂λi∂λj

〉
− ∂

∂λi

〈
∂U

∂λj

〉)
∂λi
∂λ

∂λj
∂λ

dλ

= 4πρβ−1

∫ 1

0

∫ ∞
0

∑
i,j

[
∂2U

∂λi∂λj
g(r, λ)r2 − ∂

∂λi

(
∂U

∂λj
g(r, λ)r2

)]
∂λi
∂λ

∂λj
∂λ

dr dλ

(A.4)

where g(r, λ) is the RDF and ρ is the solvent number density. Applying the zeroth-

order approximation of the RDF of g(r, λ) ≈ exp [−βU(r, λ)] to the second term

gives

∂

∂λi

〈
∂U

∂λj

〉
≈ 4πρ

∂

∂λi

∫ ∞
0

∂U

∂λj
exp [−βU(r, λ)] r2 dr

= 4πρ

∫ ∞
0

∂2U

∂λi∂λj
exp [−βU(r, λ)] r2 − β ∂U

∂λi

∂U

∂λj
exp [−βU(r, λ)] r2 dr

=

〈
∂2U

∂λi∂λj

〉
−
∫ ∞

0

4πρβ
∂U

∂λi

∂U

∂λj
exp [−βU(r, λ)] r2 dr. (A.5)

Substituting Eq. (A.5) into Eq. (A.4) gives the approximated variance equation of

Var (∆F ) ≈ 4πρ

∫ 1

0

∫ ∞
0

∑
i,j

(
∂U

∂λi

∂U

∂λj
exp [−βU(r, λ)] r2

)
∂λi
∂λ

∂λj
∂λ

dr dλ (A.6)

which reduces to Eq. (2.13) for one λi.

When the potential is represented with basis functions, we can replace all λi

directly with hi. Derivatives in hi can also be removed from the covariance because

they do not participate in the expectation integrals. We define a shorthand such that

hi is equivalent to hi(λ) and

∂U(r, λ)

∂hi
=
∂hi
∂hi

ui(r) +
∑
j 6=i

∂hj
∂hi

uj(r) = ui(r).
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Eq. (A.2) then simplifies to

Var (∆F ) =

∫ 1

0

∑
i,j

Cov

(
∂H
∂hi

,
∂H
∂hj

)
∂hi
∂λ

∂hj
∂λ

dλ

=

∫ 1

0

∑
i,j

(〈
∂U

∂hi

∂U

∂hj

〉
−
〈
∂U

∂hi

〉〈
∂U

∂hj

〉)
∂hi
∂λ

∂hj
∂λ

dλ

=

∫ 1

0

∑
i,j

〈
∂hi
∂hi

ui(r)
∂hj
∂hj

uj(r)

〉
−
〈
∂hi
∂hi

ui(r)

〉〈
∂hj
∂hj

uj(r)

〉
∂hi
∂λ

∂hj
∂λ

dλ

=

∫ 1

0

∑
i,j

∂hi
∂λ

∂hj
∂λ

[〈ui(r)uj(r)〉 − 〈ui(r)〉 〈uj(r)〉] dλ

=

∫ 1

0

∑
i,j

∂hi
∂λ

∂hj
∂λ

Cov (ui, uj) dλ. (A.7)

Defining the covariance matrix for u as

Cov (u,u) =


Var (u1(r)) Cov (u1(r), u2(r)) · · · Cov (u1(r), un(r))

Cov (u2(r), u1(r)) Var (u2(r)) · · · Cov (u2(r), un(r))
...

...
. . .

...

Cov (un(r), u1(r)) Cov (un(r), u2(r)) · · · Var (un(r))

 ,

allows the variance for basis functions to be written in condensed, matrix form as

Var (∆F ) =

∫ 1

0

h′(λ) · Cov (u,u) · h′T (λ) dλ (A.8)

where h′(λ) = [∂h1/∂λ, ∂h2/∂λ, . . . ]. This equation is also Eq. (2.18).

〈∂u/∂λ〉 can also be simplified by applying the basis functions to Eq. (A.1) and

assuming the Hamiltonian’s dependence on λ entirely through its potential energy as
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was done earlier. The result is

dF

dλ
=

〈∑
i=1

∂H
∂hi

∂hi
∂λ

〉

=

〈∑
i=1

∂hi
∂hi

ui(r)
∂hi
∂λ

〉

=
〈
h′(λ) · uT

〉
= h′(λ) ·

〈
uT
〉

.

Extending this equation to predict the expectation of an unsampled switch yields

Eq. (2.23).

A.2 Deriving an efficient short range basis func-

tion

A rule of thumb for the short-range alchemical switch can be derived from Eq. (2.13)

by assuming that when r is small, ui(r) for repulsive interactions will be a large, finite,

and nearly constant value because of the capped potential. As seen in Eq. (2.13), the

variance is a function of the product of (∂u/∂λ)2 and g(r). To minimize this product,

we must have, in the two body regime, that:

(
∂U(r, λ)

∂λ

)2

exp [−βU(r, λ)] r2 < V (B.1)

Where V is approximately constant. If we assume that the potential and thus the

variance do not change greatly with r2 because of the cap, then this will be satisfied

with: (
∂U(r, λ)

∂λ

)2

exp [−βU(r, λ)] < V ′ (B.2)
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where V ′ is a new constant. We assume the energy is dominated by the repulsive

term near r = 0, allowing us to rewrite the equation in terms of the repulsive basis

function, uR, and repulsive alchemical switch, hR, as:

(
∂hR(λ)

∂λ

)2

uR(r)2 exp [−βhR(λ)uR(r)] < V ′. (B.3)

We can move the exponential to the right hand side and, because the variance must

always be positive, take the square root considering only the positive inequality. We

then apply a Taylor series expansion to the first order of the zeroth-order RDF term

and get

∂hR(λ)

∂λ
uR(r) < V ′′

[
1 +

βhR(λ)uR(r)

2

]
(B.4)

where V ′′ is another modified constant. Since we assumed uR(r) is large, 1/uR(r) is

small and we divide by uR(r) to obtain a condition for the hR(λ) of the repulsive term

depending only on λi:

∂hR(λ)

∂λ
< V ′′′hR(λ) (B.5)

with V ′′′ again absorbing other constants. If we make the rule of thumb inequality an

equality and apply the boundary conditions on hi(λ), we obtain a solution to Eq. (B.5)

hi(λ) =
Kλ − 1

K − 1
(B.6)

where K is a positive free parameter that can be optimized. This equation is also

Switch A, Eq. (2.19).
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A.3 A brief comparison of variances in solvent

and complex environment

Low variance paths for alchemical solvation should also be low variance paths for

alchemical protein binding. Whether a ligand is surrounded by water or protein, the

local density of fluid and therefore the number and size of excluded volume sites is

roughly the same. The increased enthalpy of binding configurations would suggest that

the variances might be somewhat greater, but the general shape will be determined

primarily by the excluded volume and the number density around the solute, which

remains roughly independent of the liquid environment.

A full examination of the difference of the variance of pathways in protein and

solution does not appear to have been performed. There appears to be a general

acceptance that the pathway that is most efficient for one composition will be most

efficient for the other. Finding the most statistically efficient pathway to alchemically

modify a ligand is frequently done only in one environment [57, 84, 85, 87, 88, 95,

97, 109] and the other environment is not extensively examined. Many simulation

packages with soft core alchemical transformations assume a single pathway for soft

core transformations, up to user specifications, regardless of the composition of the

system. [86, 87, 110–112]

We examine a simple comparison of variance between pure solvent and host-guest

systems here. This will not be a full study of the minimal variances between complex

and solvent, but simply evidence that the low variance pathways developed here for

solvent should be low variance paths in complex. We re-examine data from host-guest

systems from Monroe and Shirts [209] where the guest molecule is alchemically solvated

and alchemically removed from the host structure in separate simulations. Further

experimental details and system information are provide in the reference.

Shown in Fig. A.1 is the variance of the coupling the repulsive and attractive



A.3 A brief comparison of variances in solvent and complex environment 198

interactions with a soft core 1-1-6 interaction for several guests to the same host.

Lines on the figure are drawn connecting data points, and unlike many of the graphs

in this paper using the linear basis approach, should not be read as information about

unsampled states.
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Figure A.1: Low variance paths will be similar for solvation and protein
binding. The shape of the variance curve will be similar since adding a protein to the
solvent will not significantly change the system density or response of fluid to the ligand.
Shown here is the variance for solvating and binding three ligands in a host-guest
system where the alchemical path and solute are held constant between environments.
Lines are drawn to guide the eye and provide a shape of the variance curve but do
not represent data between sampled points. Data are only available at points where
error is estimated with 200 bootstrap samples. The variance is only shifted slightly in
between the environments along λ, so regions of large variance are shared between
environments. The magnitude of the variance and number of uncorrelated samples
are different in complex than solution but the overlapping peaks means any variance
minimization method will minimize the variance in both environments. Data for this
figure generated from Monroe and Shirts. [209]

The regions of high variance overlap between solvent and complex environments.

In the cases of Guest 25 and Guest 30, the maximum in the variance curve is almost
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at the same λ, and for Guest 12, the peak is only shifted by a small δλ. A full proof

would show that this very close correspondence between the shape of the variance

peak hold for all pathways, not just a single pathway. However, the fact that the

shapes are the same up to scaling factor expected because of the larger magnitude

of ligand binding energies suggests that the shape of the variance curve for a pure

solvent system is the similar to that of the ligand bound system.

The variance minimization procedures outlined in Chapter 2 are equally valid for

any environment. If the minimizing the variance in solution environment does not

provide the desired statistical efficiency, one can run a short, trial simulation with

the system of interest and use Eq. (2.22) to find a low variance path. Attempting to

find a true universally low variance path may not be possible, since changes in the

environment can shift the locations of high variance as seen in Guest 12 of Fig. A.1.

Even so, the flexibility and power of the linear basis method allows low variance

switches to be chosen with ease, simplifying the choice of low variance paths for

arbitrary systems.
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B.1 Narrowing the choices for low variance sched-

ules

B.1.1 The attractive force must be coupled after repulsive

to prevent an attractive core

We note that the core of a particle must have a repulsive interaction to ensure an

infinite attractive core does not form, which would cause integration instabilities. [82–

85, 92, 97, 109] This applies not only at r = 0 but also for any off-atom sites (like

lone pairs or the oxygen charge in 4 point water models) as they are protected by

the repulsive cores of nearby atoms. Any schedule which has the attractive force

coupled before the repulsive force need not be considered further, eliminating schedules

such as AE/R/C or A/R/C/E. However, schedules where repulsive interactions are

coupled simultaneously with attractive interactions (i.e. E/RA/C or RA/C/E) are

retained since they can be decomposed by a Weeks-Chandler-Andersen (WCA) [115]

decomposition which eliminates the infinite attraction of the r−6 term. Schedules

which have attractive cores are categorized in Table 3.1 as “Attractive Core” schedules.

Removing these reduces the total unique schedules to eight.

B.1.2 The repulsive core should be fully coupled before the

electrostatics

The basis functions and schedules must ensure the magnitude of an attractive electro-

static potential never exceeds the magnitude of the Lennard-Jones repulsion at r = 0

to avoid an attractive core causing simulation instability. [92] There are two main ways

to ensure this: cap the electrostatic interaction at finite values, similar to Eq. (2.10),

or only couple electrostatics after the repulsive interactions have been uncapped.

Although capped electrostatics can provide numerically stable simulations, [210–212]
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they do not provide low variance coupling pathways. The total capped potential

must be between 3.5kBT and 8.8kBT at r = 0, in order to provide a low variance

pathway. [54] As both attractive and repulsive electrostatic interactions are possible,

we must design basis functions to handle both, while also keeping the total capped

potential inside the target range.

In order to design numerically stable electrostatic basis functions, we must first

examine how electrostatics are handled in soft core, where repulsive and attractive

interactions are treated identically. Soft core potentials require constrained constants

to maintain numerical stability. Soft core methods must be designed to prevent double

minimum from forming in the potential energy separated by large energy barriers.

The primary cause of this double minimum is the electrostatic cap dominating the

repulsive cap near r = 0 for cases of a soft core alchemical atom interacting with

an atom holding charge, but no Lennard-Jones core, e.g. the hydrogen in TIP3P

water. [92] The soft core Lennard-Jones potential takes the general form

uSC,LJ(r, λ) = 4εijλ
a

[(
1

α(1− λ)b + (r/σij)c

)12/c

−
(

1

α(1− λ)b + (r/σij)c

)6/c
]

.

(B.1)

The electrostatic potential has a soft core form of

uSC,E(r, λ) = λ
qiqj

4πε0 [(1− λ) β + rm]1/m
. (B.2)

In Eq. (B.1) and Eq. (B.2), a, b, c, and m are positive, usually integer, constants, and

α and β are positive free parameters. Choosing a = b = 1 is a statistically efficient

choice, [84] leaving the other constants free for variance minimization and numerical

stability analysis. In order to prevent a double minimum from forming using both
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soft core equations together, the following constraints must be true [92]:

c = m (B.3)

α1/cσij ≤ β1/m (B.4)

The basis functions must also prevent double minimum potentials, but have

arbitrary functional form. Contrary to the soft core potentials, the basis functions do

not require any specific functional form. However, a single set of basis functions is better

than multiple system dependent sets, for simplicity in both use and implementation.

Since a capped electrostatic potential is required to use with the capped repulsive

basis function, the functional form for the electrostatics should be similar to Eq. (2.10)

and is controlled by the same fcap and fswitch, removing the option to define different

parameters for different systems. This constraint could be removed, but then separate

potentials would need to be defined for attractive and repulsive electrostatic interactions

as will be shown.

To determine the necessary parameter values, and therefore the magnitude of the

cap, we examine the limiting case of Li+ and Fl− ions interacting. These ions have

small σij terms, but also carry full ±1 charges. The small σij will allow the particles

to approach closer, and therefore feel a stronger electrostatic force than typical solute-

solvent systems with larger atom cores and partial charges. The required cap height in

this extreme case will be more than sufficient for almost all other physically relevant

systems.

The parameter fcap must be smaller with an electrostatic cap than with a repulsive

cap alone to for the transformation to have low statistical error. The OPLS-AA

parameters for Li+ are σii = 2.13 Å, εii = 0.0183 kcal/mol, and for Fl− are σii = 2.73

Å, εii = 0.720 kcal/mol. [71] Choosing the basis functions for attractive and repulsive

Lennard-Jones interactions as Eq. (2.9) and Eq. (2.10) respectively, the potential of
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the cap for either the repulsive Lennard-Jones or electrostatic potential is

ui,cap = ui(fcapσij) (B.5)

where i is either R or E, ui is the uncapped basis function for the respective force.

The standard point charge interaction formula is chosen for the electrostatic basis

such that

uE(r) =
qiqj

4πε0r
. (B.6)

With these choices, a cap at fcap ≈ 0.6 is required to preserve a repulsive core at the

capped values. This value ensures the capped repulsive Lennard-Jones interaction

dominates the capped attractive electrostatic potential and keep the total potential in

the target range at r = 0.

Repulsive interactions should be fully coupled with their caps removed before

electrostatic interactions are coupled into the system. Although the total cap for an

attractive electrostatic interaction is within our low variance target range, a repulsive

electrostatic interaction is not. The Li+/Li+ interaction has a total cap of 397kBT at

fcap ≈ 0.6, which can significantly increase the variance of the free energy calculation

along such a path. [54] To correct this issue, a separate fcap and fswitch would be

required to bring the total cap back into the range of 3.5kBT and 8.8kBT . As an

arbitrary system could have both repulsive and attractive electrostatic interactions,

the basis functions would need to be designed and implemented with rules checking

each interaction and using the appropriate parameters. This is a less desirable solution

since it adds complexity to implementation and usability of the basis function method.

It is much simpler if the electrostatics are coupled after the repulsive interactions.
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B.2 Variances and Free Energies of Each Alchem-

ical Schedule

10

20

30

40

50

60

70
V

a
ri

a
n
ce

 i
n
 (

kc
a
l/
m

o
l)
2

R

0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016
0.018

C

7
8
9

10
11
12
13
14
15
16

AE

0.0 0.2 0.4 0.6 0.8 1.0
5

10
15
20
25
30
35
40
45
50

∂u
/
∂λ

i 
in

 k
ca

l/
m

o
l

0.0 0.2 0.4 0.6 0.8 1.0

λ

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.0 0.2 0.4 0.6 0.8 1.0
−50

−45

−40

−35

−30

−25

−20

−15

−10

Figure B.1: Variance and ∂u/∂λ for the R/C/AE-WCA basis function schedule. Error
is shown as dashed lines around the figure and often smaller than the thickness of the
line. Total variance cannot be estimated by adding the integral under each curve as
the number of samples from each stage is not taken into account.
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Figure B.2: Variance and ∂u/∂λ for the R/C/AE-12-6 basis function schedule. Error
is shown as dashed lines around the figure and often smaller than the thickness of the
line. Total variance cannot be estimated by adding the integral under each curve as
the number of samples from each stage is not taken into account.
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Figure B.3: Variance and ∂u/∂λ for the R/C/A/E-WCA basis function schedule.
Error is shown as dashed lines around the figure and often smaller than the thickness
of the line. Total variance cannot be estimated by adding the integral under each
curve as the number of samples from each stage is not taken into account.
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Figure B.4: Variance and ∂u/∂λ for the R/C/A/E-12-6 basis function schedule. Error
is shown as dashed lines around the figure and often smaller than the thickness of the
line. Total variance cannot be estimated by adding the integral under each curve as
the number of samples from each stage is not taken into account.
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Figure B.5: Variance and ∂u/∂λ for the R/C/E/A-WCA basis function schedule.
Error is shown as dashed lines around the figure and often smaller than the thickness
of the line. Total variance cannot be estimated by adding the integral under each
curve as the number of samples from each stage is not taken into account.
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Figure B.6: Variance and ∂u/∂λ for the R/C/E/A-12-6 basis function schedule. Error
is shown as dashed lines around the figure and often smaller than the thickness of the
line. Total variance cannot be estimated by adding the integral under each curve as
the number of samples from each stage is not taken into account.



B.2 Variances and Free Energies of Each Alchemical Schedule 210

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

V
a
ri

a
n
ce

 i
n
 (

kc
a
l/
m

o
l)
2

AER Schedule

0.0 0.2 0.4 0.6 0.8 1.0

λ

−30

−20

−10

0

10

∂u
/
∂λ

i 
in

 k
ca

l/
m

o
l

Figure B.7: Variance and ∂u/∂λ for the AER-SC (soft core) alchemical method.
Sampling was done at discrete states shown as points, and the line connecting points
serves to guide the eye only. Error shown as vertical error bars in both figures and
computed by 200 bootstrap samples. Error bars of variance are doubled and error of
∂u/∂λ is increased by factor of 10 to be visible in the figure.
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Figure B.8: Decomposition of each stages contribution to the variance of the calculation
of free energy for all sampling schemes. Shown is the variance of the free energy
for 21000 samples distributed to all seven basis function paths and the soft core
electrostatic path. Samples were distributed either uniformly (left side bars), uniformly
with capped stages using minimal samples (center bars) or proportional to the sample
standard deviation (right side bars) and total error in the variance of the free energy
is shown as an error bar at the top of a stack. Individual stages are distinguished
by color and stacked in coupling order with green, gray, yellow, and red. E.g. In
R/C/AE, Stage 1 is “R” (green), Stage 2 is “C” (gray), and Stage 3 is “AE” (yellow).
The capping stage, “C” often contributes very little to the total variance and does
not appear in the bar chart at this scale. “WCA” and “12-6” labels distinguish the
Lennard-Jones basis functions and “SC” soft core method applied to all forces 1-1-6
parameterization.
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Table B.1: Sample variance and free energy of solvation for 3-methylindole between seven different basis function pathways
and the soft core electrostatics path. The variances shown here are direct integration of the curves in Fig. 3.4 and Fig. B.1
through Fig. B.6. They are non additive without accounting for the number of samples from each state. Free energies are within
two standard deviations. Direct comparison between statistical uncertainties of each path is not a reliable measure of relative
computational efficiency as each path has different correlation times and an unequal numbers of samples are drawn between
each path. Variance of the calculation of free energy is shown in Fig. 3.5 and Table B.2. Variance is in units of (kcal/mol)2.
Free energy is in units of kcal/mol. Stage number in a column header corresponds to stage in the schedule, e.g. in R/C/AE,
Stage 1 is R, Stage 2 is C, and Stage 3 is AE. “WCA” and “12-6” labels distinguish the Lennard-Jones basis functions and “SC”
single-step soft core method with 1-1-6 parameterization.

Schedule Stage 1 Stage 2 Stage 3 Stage 4 Free Energy

AR/C/E-WCA 42.97 ± 0.793 1.20·10−2 ± 4.04·10−4 10.01 ± 0.230 – -5.678 ± 0.077

R/C/AE-WCA 39.12 ± 0.614 6.32·10−3 ± 1.73·10−4 12.21 ± 0.203 – -5.538 ± 0.061

R/C/A/E-WCA 39.18 ± 0.707 6.41·10−3 ± 2.48·10−4 2.06 ± 0.030 10.04 ± 0.230 -5.810 ± 0.074

R/C/E/A-WCA 38.85 ± 0.681 6.10·10−3 ± 2.33·10−4 8.71 ± 0.170 1.47 ± 0.030 -5.854 ± 0.074

R/C/AE-12-6 44.81 ± 0.740 2.10·10−3 ± 1.08·10−4 19.27 ± 0.423 – -5.696 ± 0.074

R/C/A/E-12-6 44.67 ± 0.750 1.92·10−3 ± 0.97·10−4 7.49 ± 0.111 10.05 ± 0.228 -5.719 ± 0.074

R/C/E/A-12-6 45.10 ± 0.867 2.08·10−3 ± 1.23·10−4 5.73 ± 0.117 7.83 ± 0.197 -5.770 ± 0.090

AER-SC 102.57 ± 5.491 – – – -5.759 ± 0.106
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Table B.2: Variance in the calculation for free energy for coupling 3-methylindole between seven different basis function pathways
and the soft core electrostatics path. The variances here are shown after distributing 21000 samples to evenly spaced states in
each path through two separate means: “uniformly” and “proportional” to the sample standard deviation. These variances are
additive and provide the lower bound estimate of the variance of the free energy of solvation. These numbers are visualized in
Fig. 3.5 and Fig. B.8. A special case, which is a hybrid of the first two, is considered to the basis function paths where uniform
sampling was done, except in the capping stage which was only sampled at the end points. This is denoted by the “Hybrid”
label in the “Sampling” column. Variance is in units of (kcal/mol)2. Stage number in a column header corresponds to stage
in the schedule. E.g. In R/C/AE, Stage 1 is R, Stage 2 is C, and Stage 3 is AE. “WCA” and “12-6” labels distinguish the
Lennard-Jones basis functions and “SC” soft core method with 1-1-6 parameterization. Table appears on next page.
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Table B.2: Caption appears on previous page

Schedule Sampling Stage 1 Stage 2 Stage 3 Stage 4 Total

AR/C/E-WCA

Uniformly 6.23·10−3 ± 1.11·10−4 1.75·10−6 ± 5.89·10−8 1.45·10−3 ± 3.34·10−5 – 7.68·10−3 ± 1.15·10−4

Proportional 3.03·10−3 ± 5.35·10−5 4.84·10−5 ± 1.79·10−6 1.48·10−3 ± 3.35·10−5 – 4.56·10−3 ± 6.32·10−5

Hybrid 4.17·10−3 ± 7.40·10−5 7.30·10−5 ± 1.86·10−6 9.72·10−4 ± 2.23·10−5 – 5.22·10−3 ± 7.74·10−5

R/C/AE-WCA

Uniformly 5.67·10−3 ± 8.91·10−5 9.24·10−7 ± 2.53·10−8 1.77·10−3 ± 2.95·10−5 – 7.44·10−3 ± 9.38·10−5

Proportional 2.90·10−3 ± 4.54·10−5 3.70·10−5 ± 1.15·10−6 1.63·10−3 ± 2.67·10−5 – 4.56·10−3 ± 5.27·10−5

Hybrid 3.80·10−3 ± 5.97·10−5 3.92·10−5 ± 8.95·10−7 1.19·10−3 ± 1.97·10−5 – 5.02·10−3 ± 6.28·10−5

R/C/A/E-WCA

Uniformly 7.65·10−3 ± 1.39·10−4 1.23·10−6 ± 4.82·10−8 4.06·10−4 ± 5.82·10−6 1.95·10−3 ± 4.44·10−5 1.00·10−2 ± 1.46·10−4

Proportional 3.22·10−3 ± 5.80·10−5 4.16·10−5 ± 1.85·10−6 7.49·10−4 ± 1.07·10−5 1.65·10−3 ± 3.72·10−5 5.66·10−3 ± 6.98·10−5

Hybrid 5.66·10−3 ± 1.03·10−4 5.82·10−5 ± 1.73·10−6 3.04·10−4 ± 4.36·10−6 1.46·10−3 ± 3.34·10−5 7.48·10−3 ± 1.08·10−4

R/C/E/A-WCA

Uniformly 7.62·10−3 ± 1.34·10−4 1.19·10−6 ± 4.53·10−8 1.71·10−3 ± 3.33·10−5 2.84·10−4 ± 5.76·10−6 9.61·10−3 ± 1.38·10−4

Proportional 3.07·10−3 ± 5.38·10−5 3.93·10−5 ± 1.71·10−6 1.46·10−3 ± 2.81·10−5 6.01·10−4 ± 1.22·10−5 5.17·10−3 ± 6.20·10−5

Hybrid 5.64·10−3 ± 9.89·10−5 5.79·10−5 ± 1.74·10−6 1.28·10−3 ± 2.49·10−5 2.13·10−4 ± 4.31·10−6 7.19·10−3 ± 1.02·10−4

R/C/AE-12-6

Uniformly 6.49·10−3 ± 1.07·10−4 3.07·10−7 ± 1.58·10−8 2.80·10−3 ± 6.14·10−5 – 9.29·10−3 ± 1.24·10−4

Proportional 3.51·10−3 ± 5.78·10−5 1.16·10−4 ± 1.00·10−5 2.28·10−3 ± 4.84·10−5 – 5.91·10−3 ± 7.60·10−5

Hybrid 4.35·10−3 ± 7.19·10−5 1.18·10−5 ± 4.53·10−7 1.87·10−3 ± 4.11·10−5 – 6.23·10−3 ± 8.28·10−5

R/C/A/E-12-6

Uniformly 8.76·10−3 ± 1.47·10−4 3.73·10−7 ± 1.88·10−8 1.47·10−3 ± 2.18·10−5 1.95·10−3 ± 4.41·10−5 1.22·10−2 ± 1.55·10−4

Proportional 3.99·10−3 ± 6.68·10−5 9.50·10−4 ± 8.32·10−5 1.64·10−3 ± 2.42·10−5 1.90·10−3 ± 4.28·10−5 8.48·10−3 ± 1.17·10−4

Hybrid 6.48·10−3 ± 1.09·10−4 1.70·10−5 ± 6.95·10−7 1.10·10−3 ± 1.63·10−5 1.46·10−3 ± 3.31·10−5 9.06·10−3 ± 1.15·10−4

R/C/E/A-12-6
Uniformly 8.84·10−3 ± 1.70·10−4 4.05·10−7 ± 2.39·10−8 1.12·10−3 ± 2.32·10−5 1.52·10−3 ± 3.81·10−5 1.15·10−2 ± 1.76·10−4

Proportional 3.79·10−3 ± 7.30·10−5 4.59·10−4 ± 4.85·10−5 1.35·10−3 ± 2.73·10−5 1.59·10−3 ± 3.97·10−5 7.18·10−3 ± 1.00·10−4

Hybrid 6.54·10−3 ± 1.26·10−4 1.77·10−5 ± 7.52·10−7 8.40·10−4 ± 1.74·10−5 1.14·10−3 ± 2.85·10−5 8.54·10−3 ± 1.30·10−4

AER-SC
Uniformly 5.06·10−3 ± 2.73·10−4 – – – 5.06·10−3 ± 2.73·10−4

Proportional 4.39·10−3 ± 3.05·10−4 – – – 4.39·10−3 ± 3.05·10−4



B.3 Implementing Long-Range Electrostatic Interactions with PME 215

B.3 Implementing Long-Range Electrostatic Inter-

actions with PME

Electrostatic interactions are frequently decomposed into short-range and long-range

interactions such as with the particle mesh Ewald method (PME). [139] Long-range

forces are computed in an entirely separate procedure than short-range forces to

improve simulation efficiency. There are three components to the PME energy: direct,

reciprocal, and self-energy summations; written as [39, 81]

uE(r) = udir + urec + uself (B.7)

udir =
1

2

∑
i,j

qiqj
erfc(αr)

r
(B.8)

urec =
1

2πV

∑
i,j

qiqj
∑
k=0

exp(−(πk/α)2 + 2πik · (ri − rj))

m2
(B.9)

uself = − α√
π

∑
i

q2
i (B.10)

where α is a function of the error tolerance, k is a vector which is a function of the

lattice vectors in Fourier space, r is the radial position vector of a particle, and m

is the magnitude of k. The electrostatics are decomposed this way because the long

range term converges quickly in Fourier space where as the short range term converges

quickly in real space. This is a very efficient algorithm for systems with periodic

boundary conditions (PBC).

It is often simpler to modify the charge of an atom than it is to modify the

simulation code directly in many simulation packages which support alchemical

transformations. [35, 38, 39, 119] For our implementation, the alchemical switch is

acting directly on qi instead of the product of qiqj . Because of this, there are two types

of alchemical interactions which evolve: solute-solvent interactions which scale as hi(λ),

and solute-solute interactions which scale as hi(λ)2. The solute-solute interactions
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come from non-excluded short-range interactions and long-range interactions with

copies of the solute in other periodic boxes. If we do not wish to scale the long-range

interactions separately from the short-range interactions, we only need to simulate

one extra state to isolate the basis functions scaling as hi(λ)2. If the intramolecular

charges are allowed to interact, as was done in our implementation, then the hi(λ)2

terms are only with periodic copies of the atom and contribute negligible amounts

to the variance. Because we require that the atomic core be fully repulsive before

coupling the electrostatics, there will not be a scenario where a charged, alchemical

atom without a repulsive core overlaps with another atom, ensuring the variance in

the electrostatics is controlled through linear interactions. The potential energy of

the interactions scaling as hi(λ)2 are roughly half of those scaling as hi(λ) in our

simulations, and contribute a non-negligible amount to the total potential energy.

However, the variance in the potential for the interactions scaling as hi(λ)2 are three

to four orders magnitude less than the hi(λ) interactions, so they have negligible

affect on the variance calculations. Therefore, the hi(λ)2 must be included in order to

accurately compute the energy at unsampled states, but do not significantly change

the variance calculations.

It is possible to have separate alchemical switches for long- and short-range

interactions. In this instance, we would need to generate enough states to isolate the

short-range terms as hi(λ) and hi(λ)2, as well as the long-range terms also scaling as

hi(λ) and hi(λ)2. Some simulation packages may allow coding separate alchemical

switches for real space and Fourier space, but only OpenMM will be examined here as

the alchemical switches were not implemented in other packages.
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B.4 OpenMM Implementation of PME-decomposed

Alchemical Switches

OpenMM’s CustomNonbondedForce class [39, 119] does not allow access to the PME

evaluations, but still allows manipulation of the PME switch. The ability to write any

custom expression into OpenMM’s custom nonbonded engine lets us define a set of

equations which calculate the PME components. We separate out the PME interactions

by constructing a two-basis CustomNonbondedForce: one basis subtracting OpenMM’s

direct space calculation, and another to add in in our custom direct space evaluation

with a separate switch. Lastly, we set the charge of the atom to modify the Fourier

space interactions. This CustomNonbondedForce between atom i and j is written as

uE(r, λ) = ualch,dir − Aijudir (B.11)

udir = Ai(hPME)qiAj(hPME)qj
erfc(αr)

4πε0r
(B.12)

ualch,dir = Ai(hE)qiAj(hE)qj
erfc(αr)

4πε0r
(B.13)

where

Aij =


1 if atom i or j is alchemically modified

0 otherwise.

(B.14)

and

Ai(X) =


X if atom i is alchemically modified

1 otherwise.

(B.15)

These equations allow OpenMM’s normal electrostatic evaluation, but cancel out

the direct space evaluation in a controllable method. This allows us to isolate the

long-range evaluations from the short-range evaluations and design a minimal variance

switch for each decomposed term. When a capped potential is applied, we only cap

ualch,dir since OpenMM’s evaluation of udir is still removed from the system to produce
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accurate results.
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C.1 Considerations for solvents with multiple unique

particles

One complication to the linear basis representation approach is when the solvent is

composed of multiple particle types. Situations where this happens includes both

solvents with multiple types of molecules, and solvents where multiple atom types

make up each solvent molecule, such as water. A different set of scalar alchemical

switches, hn(λn), for each unique atom type in the solvent is required to accurately

compute the energies for arbitrary state Z. This is because we are only changing σii

of the solute explicitly, but C12 and C6 will scale as non-linear functions of σij, which

will be different for the interactions with each solvent atom type. One solution is to

compute the basis functions for each solvent atom type interacting with the solute.

However, this can be avoided with geometric mixing rules for both Lennard-Jones

parameters,

εij = (εiiεjj)
1/2

σij = (σiiσjj)
1/2

as opposed to arithmetic mixing rules for σij , where σij = 0.5(σii+σjj). It is important

to note that Eq. (4.6) is still valid for arithmetic mixing rules, but requires a separate

C12 and C6 term for each atom type in the solvent. Alternatively, the arithmetic

mixing rules could undergo binomial expansion as

[
1

2
(σii + σjj)

]n
=

1

2n

n∑
`=0

(
n

`

)
σn−`ii σ`ij (C.1)

and new hn(λn) functions written which scale each σn−`ii term. The potential of any

atom can be computed with geometric mixing rules and two reference points. This

section will denote each Cn explicitly in terms of the reference particles, X and Y ,
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and the arbitrary solvent site S, where S can represent any of the solvent particles as

they will cancel out of the equations.

We can represent Coulombic and geometric Lennard-Jones mixing rules of the Cn

terms by a general form of

Cn,ij = (Cn,iiCn,jj)
m (C.2)

where m takes discrete values of 1/2 or or 1 depending on the index of `. For our basis

functions, the C12 and C6 terms have m = 1/2, whereas the electrostatic basis is m = 1

since its mixing term is qiqj . Representing the mixing rules in this way is beneficial as

the following derivation does not depend on the exact value of m. Eq. (4.6) can be

expanded as

u(r, λ) = uunaffected +
∑
`

[
hn(λn) (Cn,Y S − Cn,XS) + Cn,XS

rn

]
`

u(r, λ) = uunaffected (C.3)

+
∑
`

[
hn(λn) [(Cn,Y YCn,SS)m − (Cn,XXCn,SS)m] + (Cn,XXCn,SS)m

rn

]
`

.

We know that for any arbitrary state Z that

(Cn,ZZCn,SS)m = hn(λn) [(Cn,Y YCn,SS)m − (Cn,XXCn,SS)m] + (Cn,XXCn,SS)m . (C.4)

We can determine what value hn(λn) should take given a Cn,ZZ from Eq. (C.4) by

hn =
Cm
n,ZZ − Cm

n,XX

Cm
n,Y Y − Cm

n,XX

. (C.5)

Because we are using multiplicative mixing rules, Eq. (C.5) does not depend on any

solvent parameter or site. The potential of any configuration evaluated at state Z can

then be computed from the basis functions [54] and Eq. (4.6).
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C.2 Relative free energies for uncharged, chemi-

cally realistic Lennard-Jones spheres

Solvation simulations for chemically realistic Lennard-Jones (LJ) spheres were carried

out to validate the parameter search approach. The LJ spheres tested were united

atom (UA) methane, [60, 72, 163] neopentane [167], and an approximation for a

C60 molecule. [54] This simulations were carried out under the same conditions as in

Section 4.3 with the addition of sampling along a fixed thermodynamic path. Solvation

simulations were carried out per sphere along the a soft core coupling path [82, 83]

with a 1-1-6 parameterization. [54, 84, 97] λ was along this path was sampled at 11

uniformly placed states from λ = 0 to λ = 1.

Table C.1: Relative free energies are statistically indistinguishable between solvation
simulations and those computed from the basis function search of nonbonded parameter
space. The free energy of solvation each particle was simulated (Direct Solvation)
and the relative free energy to the reference state was computed (Relative Solvation).
The Relative Solvation was compared to the relative free energy computed from the
parameter search with 12 states of collected data (Parameter Search). The values for
Relative Solvation are consistent with the statistical uncertainty for the Parameter
Search free energy for the tested particles. Free energy is in units of kcal/mol.

Molecule Direct Solvation Relative Solvation Parameter Search

Reference Particle 10.331 ± 0.128 0.000 ± 0.000 0.000 ± 0.000

UA Methane 2.215 ± 0.149 -8.116 ± 0.197 -7.696 ± 0.083

Neopentane -0.264 ± 0.093 -10.595 ± 0.159 -10.758 ± 0.019

C60 8.175 ± 0.135 -2.157 ± 0.186 -2.318 ± 0.004
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C.3 Adaptive sampling algorithm for 3-D parame-

ter search

Identifying multiple regions of phase space which are locally connected, but not globally

connected is done by clustering grid points in the multidimensional space based on

the relative uncertainty. The algorithm is available on GitHub [166] and details for

the algorithm is as follows:

1. Compute the free energy (∆F ) and uncertainty (δ∆F ) at every grid point in

the multidimensional space with MBAR. [101]

2. Choose the subset of grid points, S, where δ∆F is larger than a threshold

uncertainty. We chose the grid points in S such that δ∆F ≥ 0.5 kcal/mol ∈ S.

3. The DBSCAN [169] clustering algorithm is run on each grid point in S with the

following neighbor and neighborhood criteria

• Neighbor grid point is adjacent to current point, including diagonals

• Relative error in the uncertainty of current point and the neighbor point is

< 10%. This must also be true for the relative error in uncertainty of the

neighbor point with the current point.

• A minimum of 5 points is required to defined a neighborhood, N .

4. Define the number of grid points in each Ni neighborhood as Ci

5. Select the “large” neighborhoods, L, where “large” is defined by Ci/
∑

iCi > 10%.

This is done to minimize sampling small clusters which may be eliminated on

subsequent iterations due to improved phase space overlap from sampling the

large clusters.

In the event no large clusters are identified, the three largest neighborhoods

are selected instead.
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In the event that zero clusters are identified, reduce the error threshold

until 1/3 of the total points are above the threshold. This should allow new

clusters to be found while also continuing to lower the uncertainty. Repeat the

clustering step.

6. Identify the boundaries in each dimension for each Lj cluster. We choose to

use SciPy’s [130] multidimensional image analysis module, ndimage. A separate

index, j, loops over L to account for the fact that L ⊆ N .

7. Select a point inside each Lj to perform additional sampling.

One option is the center of “mass”, where the “mass” is the uncertainty of

each grid point in Lj.

Alternately, a random point can be selected as was done for Chapter 4.

Choosing only the center of mass was observed to improve local phase space

overlap, but be slow at improving global phase space overlap since the center of

mass is often far away from the boundary of Lj.

8. Let each point found in the previous step be a vertex, vj in a graph. Let

the reference state that relative thermodynamic properties are measured with

respect to also be a vertex, R. Define the superset of all vertices, V , such that

V = {v,R}.

9. Create a complete graph of V .

10. Find the minimum spanning tree (MST) of the complete graph of V . This was

done with Kruskal’s algorithm [170] here. Distance is defined by the Euclidean

distance in multidimensional space.

The MST creates a network of edges along where we will expand the local

phase space overlap from each L, while also minimizing total number of edges

required. So long as there is any path of phase space overlap connecting two
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states; converged, low uncertainty estimates of thermodynamic properties can

be made.

11. Compute the error along regularly spaced points on each edge of the MST with

multidimensional interpolation from nearby grid points. The points along the

edge do not have to reside along the regular spaced grid.

12. Run a boundary detection algorithm on each edge in the MST to identify the

boundary of the local phase space overlap. We chose the the Sobel boundary

detection algorithm. [171]

13. The new states to sample are then each point of the vertices, v, and each

boundary found along the edges of the MST.

C.4 Ion Radial Distribution Functions

This section has the estimated radial distribution functions (RDFs, g(r)) for each ion

from the Joung and Cheatham set in TIP3P water. [74] The RDFs are estimated at

160 evenly spaced bins from r = 0 to r = 12 nm from 203 sampled states of data.

We have provided the Python code used to compute the RDFs on GitHub. [166] The

following RDFs are the Ion-Water Oxygen pair distances estimated by MBAR [101]

with error shown as dashed lines around the curve black lines. The green lines are

the RDFs computed by directly simulating the ion and estimating the RDF from the

trajectory. Error in the green lines is shown as dashed lines around the curve and

estimated from 200 bootstrap samples of the simulated data. [123] The data from

these direct simulations were not used in the MBAR estimate. The Li+ and Na+ σii

are are below the searched parameter space, leading to their RDFs appearing erratic

and falling below g(r) = 0.
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Figure C.1: RDF for Li+, this is also Fig. 4.8b
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Figure C.2: RDF for Na+
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Figure C.3: RDF for K+
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Figure C.4: RDF for Rb+
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Figure C.5: RDF for Cs+
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Figure C.6: RDF for F−
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Figure C.7: RDF for Cl−, this is also Fig. 8a
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Figure C.8: RDF for Br−
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Figure C.9: RDF for I−
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C.5 Sampled nonbonded parameter combination, mean and maximum un-

certainty, and eigenvalues per iteration
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Table C.2: All sampled parameters combinations, algorithm iteration from Section C.3, and eigenvalues (λ). Also shown is the
maximum and mean uncertainty in the free energy per iteration. Algorithm attempts to create global phase space overlap to the
reference state and samples regions of large uncertainty adaptively. New regions of low phase space overlap appear as jumps in
the mean and maximum uncertainty and as eigenvalues of 1 to machine precision. Eigenvalues of the overlap matrix have a
maximum of 1 and there will always be at least a eigenvalue of 1. The eigenvalues are shown as 1− λ to show how close each
value is to 1, instead of repeated nines in the decimals. As such, the closer 1− λ is to zero, the closer λ is to 1, indicating a lack
of phase space overlap in sampled states. Uncertainty in free energy is in units of kcal/mol, partial charge (qi) in units of e−, εij
in units of kcal/mol, and σij in units of nm.

Iteration Max. Uncertainty Mean Uncertainty State Number qi εij σij Minimum five 1− λ eigenvalues

Initial 53.405 16.162

1 0.0000 0.0239 0.2500

0 0 7.00·10−08 2.04·10−03 1.22·10−02

2 0.0000 0.0501 0.5731

3 0.0000 0.0764 0.7120

4 0.0000 0.1027 0.8111

5 0.0000 0.1290 0.8906

6 0.0000 0.1553 0.9579

7 0.0000 0.1912 0.3000

8 -2.0000 0.0501 0.5731

9 -1.8516 0.0501 0.5731

10 -1.6903 0.0501 0.5731

11 -1.5119 0.0501 0.5731

12 -1.3093 0.0501 0.5731

13 -1.0690 0.0501 0.5731

14 -0.7559 0.0501 0.5731

15 2.0000 0.0501 0.5731

16 1.8516 0.0501 0.5731

17 1.6903 0.0501 0.5731

18 1.5119 0.0501 0.5731

19 1.3093 0.0501 0.5731

20 1.0690 0.0501 0.5731

21 0.7559 0.0501 0.5731

Continued on next page
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Table C.2: Continued

Iteration Max. Uncertainty Mean Uncertainty State Number qi εij σij Minimum five 1− λ eigenvalues

1 52.786 7.764

22 -1.6798 0.6820 0.4889

0 1.90·10−07 9.88·10−05 5.07·10−04 1.06·10−03

23 -1.4749 0.4091 0.8854

24 -0.8544 0.0790 0.7594

25 1.6595 0.5888 0.6613

26 -0.5981 0.0704 0.7134

27 0.4314 0.1902 0.5986

28 -1.6634 0.6602 0.5463

29 -0.8917 0.0988 0.7682

2 1.141 0.615

30 -0.7029 0.6529 0.8259

0 1.18·10−04 3.30·10−04 6.78·10−04 1.10·10−03
31 1.1703 0.8006 0.6868

32 -0.0984 0.1345 0.6221

33 1.0954 0.7947 0.6935

3 1.175 0.550

34 -0.6410 0.4941 0.4167

0 1.80·10−04 5.52·10−04 9.29·10−04 1.21·10−03
35 1.2092 0.1541 0.9427

36 -0.3846 0.3165 0.4915

37 0.9190 0.1291 0.8801

4 0.959 0.439

38 -1.5202 0.1299 0.6784

0 3.45·10−04 8.54·10−04 1.18·10−03 1.85·10−03
39 1.3982 0.1985 0.7431

40 -1.3074 0.1187 0.6656

41 0.9507 0.1511 0.6975

5 0.785 0.386

42 -1.3734 0.5789 0.7564

0 3.22·10−04 8.33·10−04 1.33·10−03 1.70·10−03
43 1.7199 0.4999 0.9266

44 -1.2360 0.5260 0.7419

45 -1.3115 0.5773 0.7606

6 0.742 0.353

46 -0.9298 0.5189 0.3859

0 3.45·10−04 8.82·10−04 1.59·10−03 1.66·10−03

47 -1.8873 0.0676 0.6959

48 1.9708 0.6180 0.7441

49 -0.9112 0.5095 0.3917

50 -0.2264 0.0522 0.5907

51 -0.8718 0.5209 0.4012

Continued on next page
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Table C.2: Continued

Iteration Max. Uncertainty Mean Uncertainty State Number qi εij σij Minimum five 1− λ eigenvalues

7 0.743 0.293

52 -1.8748 0.4493 0.7703

0 0 4.56·10−04 9.31·10−04 1.54·10−03

53 -1.4899 0.8230 0.3421

54 0.7295 0.6144 0.8865

55 1.5584 0.1116 0.8817

56 0.1870 0.0575 0.6282

57 -1.5284 0.7857 0.4340

58 -1.6665 0.4625 0.7809

59 1.5418 0.1217 0.8818

8 0.698 0.287

60 0.3923 0.7698 0.3943

0 0 4.59·10−04 9.64·10−04 1.31·10−03
61 1.7228 0.1464 0.4531

62 1.6539 0.1425 0.4592

63 0.4455 0.7449 0.3970

9 1.793 0.315
64 1.1971 0.1407 0.3559

0 0 1.04·10−04 4.62·10−04 9.65·10−04

65 1.0055 0.1262 0.4082

10 0.839 0.285
66 1.4059 0.0609 0.2523

0 0 0 4.47·10−04 9.51·10−04

67 0.7310 0.0557 0.4622

11 0.816 0.284
68 1.9054 0.2172 0.2961

0 0 0 0 4.47·10−04

69 1.8673 0.2139 0.3079

12 15.988 0.343

70 -1.8691 0.1965 0.4437

0 0 1.38·10−06 2.18·10−04 6.19·10−04
71 1.3075 0.3699 0.2895

72 -0.5981 0.0970 0.5383

73 1.1244 0.3251 0.3615

13 15.988 0.332
74 -1.9953 0.6150 0.4158

0 0 1.38·10−06 4.99·10−04 8.38·10−04

75 -1.8357 0.5698 0.4330

14 15.987 0.320

76 -1.4563 0.1414 0.4190

0 0 1.38·10−06 5.30·10−03 9.56·10−04
77 1.6046 0.6396 0.3768

78 -1.2524 0.1286 0.4475

79 1.2836 0.5217 0.4317

Continued on next page
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Table C.2: Continued

Iteration Max. Uncertainty Mean Uncertainty State Number qi εij σij Minimum five 1− λ eigenvalues

15 1.549 0.292

80 -1.8182 0.6459 0.3714

0 0 2.79·10−04 4.74·10−04 8.07·10−04

81 -1.0881 0.3692 0.2903

82 1.4854 0.2016 0.3396

83 1.9247 0.4277 0.3114

84 -1.0010 0.3436 0.3349

85 1.3963 0.1925 0.3637

86 -1.7744 0.6293 0.3675

87 1.7226 0.3237 0.3250

16 375.767 2.032
88 -1.8046 0.2576 0.3012

0 0 0 5.90·10−05 2.80·10−04

89 -1.6602 0.2410 0.3426

17 1.534 0.277

90 -1.3695 0.1634 0.2763

0 0 7.98·10−05 4.21·10−04 8.07·10−04
91 -1.2204 0.5042 0.3138

92 -1.3421 0.1612 0.2902

93 -1.3546 0.1975 0.2805

18 1.499 0.277
94 -1.7942 0.8037 0.2658

0 0 6.04·10−05 4.21·10−04 8.07·10−04

95 -1.7583 0.7886 0.2809

19 0.925 0.273
96 -1.3573 0.7020 0.2538

0 0 2.25·10−04 5.76·10−04 8.07·10−04

97 -1.3301 0.6890 0.2705

20 0.782 0.271
98 -1.6690 0.6204 0.2839

0 0 2.53·10−04 6.36·10−04 8.08·10−04

99 -1.5355 0.5748 0.3306

21 0.716 0.251

100 -1.9047 0.0793 0.3256

0 0 2.75·10−04 7.74·10−04 8.12·10−04
101 -0.8341 0.7216 0.9577

102 -1.7905 0.0775 0.3523

103 -0.3003 0.2919 0.7587

Continued on next page
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Table C.2: Continued

Iteration Max. Uncertainty Mean Uncertainty State Number qi εij σij Minimum five 1− λ eigenvalues

22 1.254 0.250

104 -1.9806 0.1162 0.2766

0 0 2.35·10−04 5.36·10−04 7.33·10−04

105 -1.9768 0.7723 0.5198

106 -0.7425 0.5554 0.2759

107 0.8850 0.4370 0.2808

108 -1.9014 0.1136 0.3031

109 0.8673 0.4293 0.2942

110 -1.9028 0.7593 0.5108

111 0.7548 0.4465 0.2804

23 0.811 0.249

112 -1.7238 0.2068 0.2500

0 0 2.33·10−04 6.59·10−04 7.78·10−04
113 -0.8728 0.3653 0.2734

114 -0.7332 0.3148 0.3616

115 -1.5707 0.2353 0.2545

24 45.245 0.308

116 -1.8840 0.5348 0.2500

0 3.40·10−07 2.29·10−04 6.65·10−04 7.94·10−04

117 -2.0000 0.7852 0.8961

118 1.8905 0.3243 0.2500

119 -1.7333 0.4960 0.3088

120 1.8149 0.3133 0.2824

121 -1.8864 0.5398 0.3097

25 0.712 0.235

122 -1.8495 0.0742 0.7687

0 2.20·10−04 5.66·10−04 7.48·10−04 2.12·10−03

123 1.2859 0.1263 0.2500

124 1.1208 0.8537 0.9557

125 1.9858 0.7161 0.2500

126 -0.9987 0.7161 0.2500

127 1.2345 0.1233 0.2824

128 1.5659 0.3622 0.2500

129 1.9858 0.7161 0.2500

Continued on next page
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Table C.2: Continued

Iteration Max. Uncertainty Mean Uncertainty State Number qi εij σij Minimum five 1− λ eigenvalues

26 4.200 0.237

130 -1.7965 0.0761 0.2500

0 1.76·10−05 1.98·10−04 5.19·10−04 6.48·10−04

131 -1.1030 0.1372 0.2500

132 -0.5576 0.0754 0.2500

133 0.6581 0.2799 0.2500

134 -0.5464 0.2799 0.2672

135 0.6318 0.2707 0.2824

136 -1.7410 0.0810 0.2500

137 -1.0048 0.1261 0.2500

27 1.024 0.233

138 -1.5042 0.0268 0.2500

0 1.68·10−04 3.27·10−04 5.22·10−04 6.89·10−04

139 -1.1001 0.0268 0.2500

140 2.0000 0.8516 0.8046

141 -1.0341 0.2125 0.2962

142 1.8800 0.8035 0.7942

143 -1.3829 0.0856 0.2500

28 0.716 0.233

144 -1.7489 0.0677 0.2500

0 1.65·10−04 4.96·10−04 6.38·10−04 1.40·10−03

145 -1.9845 0.2315 0.3688

146 -1.2066 0.0742 0.2500

147 -1.1825 0.0737 0.2672

148 -1.8101 0.1103 0.2909

149 -1.5320 0.0703 0.2500

29 0.641 0.233

150 -1.9604 0.2006 0.2500

0 1.49·10−04 4.66·10−04 6.41·10−04 1.66·10−03

151 -1.1793 0.0288 0.2500

152 -0.7656 0.0534 0.2500

153 0.8766 0.0515 0.2500

154 1.6513 0.0648 0.2728

155 -0.7503 0.0533 0.2672

156 0.8064 0.0514 0.3088

157 -1.3043 0.0563 0.2500

158 -1.0469 0.0367 0.2500

159 0.9076 0.0520 0.2510

Continued on next page
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Table C.2: Continued

Iteration Max. Uncertainty Mean Uncertainty State Number qi εij σij Minimum five 1− λ eigenvalues

30 0.641 0.199

160 0.6764 0.8382 0.3336

0 1.60·10−04 5.41·10−04 1.11·10−03 1.71·10−03
161 1.4891 0.2481 0.9246

162 0.6629 0.8224 0.3424

163 0.4765 0.1135 0.7249

31 0.636 0.168

164 1.8978 0.2442 0.7260

0 1.79·10−04 6.66·10−04 1.49·10−03 1.85·10−03

. 165 -1.6132 0.6120 0.5550

166 -1.2083 0.3974 0.8977

167 0.6832 0.1200 0.6369

168 -1.0002 0.3985 0.5621

169 -1.4755 0.5390 0.5621

32 0.638 0.162
170 1.6020 0.2264 0.4529

0 7.73·10−04 1.51·10−03 1.85·10−03 1.87·10−03

. 171 0.2884 0.0819 0.5552

33 0.636 0.158

172 -1.3653 0.4527 0.9329

0 1.84·10−04 7.97·10−04 1.57·10−03 1.93·10−03
173 1.7108 0.3400 0.3091

174 -0.2731 0.1307 0.6790

175 1.5397 0.3110 0.6790

34 0.634 0.151

176 -1.7402 0.1735 0.2968

0 1.83·10−04 8.48·10−04 1.61·10−03 1.93·10−03

177 0.7764 0.8525 0.9370

178 1.5458 0.1252 0.6505

179 -1.1485 0.1316 0.4332

180 1.0821 0.1028 0.6292

181 1.5304 0.1398 0.6590

35 0.634 0.141

182 -0.8934 0.6479 0.8374

0 1.82·10−04 8.81·10−04 1.64·10−03 2.02·10−03
183 1.6751 0.1045 0.3914

184 -0.5360 0.4088 0.7534

185 1.2396 0.0904 0.4536

36 0.634 0.138

186 -1.2996 0.6071 0.6355

0 1.82·10−04 8.68·10−04 1.63·10−03 1.97·10−03
187 1.8999 0.7088 0.5807

188 -1.1696 0.5514 0.6298

189 1.8360 0.7067 0.5819

Continued on next page
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Table C.2: Continued

Iteration Max. Uncertainty Mean Uncertainty State Number qi εij σij Minimum five 1− λ eigenvalues

37 0.633 0.127

190 -1.7443 0.2920 0.6633

0 1.85·10−04 8.80·10−04 1.67·10−03 2.17·10−03
191 0.5927 0.5728 0.9083

192 -0.1047 0.0647 0.5794

193 0.2188 0.5279 0.8777

38 0.633 0.123

194 -1.9705 0.7639 0.8696

0 1.84·10−04 8.78·10−04 1.66·10−03 2.16·10−03
195 1.7253 0.5893 0.9258

196 0.0345 0.0610 0.5852

197 -1.7487 0.7534 0.8732

39 0.633 0.119

198 -1.6028 0.7917 0.8307

0 1.84·10−04 9.30·10−04 1.68·10−03 2.21·10−03
199 1.3667 0.4290 0.5441

200 0.1093 0.0805 0.5710

201 1.3073 0.4362 0.5533

40 0.631 0.118
202 -1.3977 0.3683 0.5108

0 1.89·10−04 9.21·10−04 1.70·10−03 2.24·10−03

203 -1.0064 0.2793 0.5297
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C.6 Corrections to Simulation Free Energies for

Comparison to Born Solvation Model

The choice of simulation parameters and settings introduces various errors which

will change the free energy estimate in predictable ways. Many of the calculations

performed in Chapter 4 were between simulations carried out under the same boundary

conditions, ensembles, electrostatic treatment, etc. Removing these errors introduced

from the simulation settings would therefore apply to all results, and only shift the

answer, but not the difference in properties, such as free energy differences. If we want

to compare the free energy estimate between methods, we must correct the simulated

results to provide a methodological independent free energy estimate. One example of

these corrections is the ideal gas expansion comparison simulations and experimental

results that we accounted for in the results from Joung and Cheatham in Section 4.4.4.

Comparing our free energy estimates from simulation to the Born approximation

to solvation free energy requires removing the methodological dependence from our

simulations. Hünenberger and Reif provide an excellent account of all the neglected

physical factors in the Born model, and how to remove the methodological dependence

for atomistic simulations. [184] This section details the corrections we applied to our

free energy estimates. The result of the these corrections and the comparison of our

simulation to the Born approximation are shown in Section 4.4.4. We use the similar

terminology and variables as in Hünenberger and Reif, but not exact; as such, we

show which equations and tables in the source material these corrections came from

inside angle braces: e.g. {Eq. 6.1}. As a reminder, we ran with periodic boundary

conditions under a lattice-sum electrostatics scheme.

The free energy of solvation, ∆G is

∆sG = ∆sG
raw
chg + ∆sGcor + ∆sGcav + ∆sGstd (C.6)
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where the subscript s stands for simulation, ∆sG
raw
chg is the free energy estimate of

charging an ion of fixed size from zero charge, ∆sGcor are the correction terms to

remove methodological dependence, and ∆sGstd is the isothermal ideal-gas compression

at standard state {Eq. 6.42}. We have changed from the general free energy F to

the Gibbs free energy G as we sampled with the NPT ensemble. Our comparison to

the Born model was a deviation of the Born model to our results for charging only.

This means that we subtracted off the free energy of the uncharged particle of the

same size for both models, removing the need to calculate ∆sGcav and ∆sGstd as they

would cancel out of the calculation. ∆sGcor for periodic boundary conditions with

lattice-sum electrostatics is

∆sGcor = ∆sGB + ∆sGC1 + ∆sGC2 + ∆sGD (C.7)

where each term on the right hand side corresponds to a different type of correction

{Eq. 6.43} which we detail below.

∆sGB removes the error in solvent polarization introduced from the finite simu-

lated system size and periodicity. This correction is analytical for the spherical ion

surrounded by a periodic lattice-sum solvent and is {Eq. 6.20} of the source material

as

∆sGB = (8πε0)−1NAq
2
(
1− ε−1

d

)
L−1

×

[
αLS +

4π

3

(
Rij

L

)3

− 16π2

45

(
Rij

L

)5
]

(C.8)

where ε0 is the dielectric of vacuum, NA is Avogadro’s constant, q is the charge of

the solute particle in units of elementary charge e, εd = 92 is the model solvent

dielectric for TIP3P water, [183] L is the average box length for the cubic simulation

box evaluated at an uncharged particle of the same size, αLS ≈ −2.837297 is the
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lattice-sum self-term constant {Eq. 3.28}, and Rij is the Born radius which we assume

is the effective hard sphere (EHS) radius as we computed in Section 4.4.4.

∆sGC1 corrects for the error introduced by evaluating the electrostatics of complete

molecules up to a cutoff, instead of evaluating up to a spherical cutoff discarding

atoms outside the cutoff, but bound to a fragment of the molecule inside the cutoff

{Section 3.3.3}. We evaluate this correction by substituting {Eq. 6.27 and Eq. 6.45}

into {Eq. 6.30}

∆sGC1 ≈
−NAq(NS + 1)

6ε0L3

(
1−

4πR3
ij

3L3

)
Q (C.9)

where NS is the number of solvent molecules, and Q = 7.64 · 10−3e · nm2 is the

quadrupole-moment trace of the TIP3P water model {Table 3.1}.

∆sGC2 corrects for the vanishing average potential in the lattice-sum model as

the potential is evaluated towards the edge of the box. This results in an omitted

zero term in the Fourier series and offsets the potential at the solute center. The

lattice-sum correction is {Eq. 6.37} and

∆sGC2 = −NAq
4πR3

ij

3L3

(
χS +

χ̃S−
Rij

)
(C.10)

where χS = 0.73V is the interface potential at a planar air-liquid interface measured

in the air-to-liquid direction, and χ̃S− = −0.11V · nm is a factor characterizing the

near approximate linear dependence of the air-liquid interface potential measured in

the same direction. The values used for χS and χ̃S− are taken from SPC water at

300K as these were the data available, so ∆sGC2 is an approximation for our purposes.

∆sGD corrects for the fact that the solvent model relative dielectric, εd, differs from

the experimental relative dielectric, εe. In the case of water, εe = 78.36 {Table 1.1}.

We compute this correction term as {Eq. 6.41} and

∆sGD =
NAq

2
(
ε−1
e − ε−1

d

)
8πε0Rij

(C.11)
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Finally, combining all of these corrections into our simulated results allows us to

make a methodologically independent comparison between our results and the Born

approximation to solvation free energy.
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D.1 Construction of the Examol

We want as simple a system as we can design while still having enough details to

sample a wide range of molecular types. The following molecules will provide a sound

benchmark

Figure D.1: A common benzene core with six independent R groups all sharing the
same substituent set. With only 3 mutation sites, 103 molecules are possible with
220 unique ones due to symmetry. With all 6 sites mutatable, 106 total molecules are
possible, with only 86,185 unique molecules.

We have in Fig. D.1 a benzene ring as common core with NC = 3 carbon atoms

to attach R-groups to, and NS = 10 substituents per R-group giving NNC
S = 103

possible combinations, but only 220 of the molecules will be chemical unique from

symmetry operations, computed by Burnside’s Lemma. [213]. We can check the

identical molecules as validation that we get the same free energy of solvation from

both of them. These diverse groups provide a diverse set of charges and sizes, as well

as steric hindrances to one another, forcing arrangement between R-groups.

Electrostatics on the common carbons are modified, but their Lennard-Jones terms

will not. None of the R-groups break the aromaticity of the benzene ring, so the

carbons can always be treated as aromatic carbons. However, as chemical identity of
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the examol changes, the partial charges on the common carbon cores may change as

well.

D.1.1 Optional: Simplifying the Examol by Reducing Num-

ber of Interactions

We can tabulate intramolecular nonbonded forces with rigid constraints. Fully rigid

benzene, constraining bonds and torsions, allows tabulating all intramolecular non-

bonded interactions. If only bonds are constrained, small deviations in the torsional

forces may cause complications if we assume they are constant. Imposing these

constrains will allow testing other energy evaluations and sampling methods without

having to worry about intramolecular nonbonded interactions first. The deviations in

free energy from unconstrained should be small given the rigid nature of the molecule.

This option is not exercised in our work.

We chose only to do initial tests with 3 mutatable carbon sites. It is more helpful

for small scale testing to only do the para- substituents (2,4,6), reducing the number

of real molecules down to 103. Only having para- substituents also removes torsions

between different R-groups, simplifying initial setup and data collection.

For simulating a real protein-ligand, we can look at the binders and non-bonded

tested on the T4-Lysozyme molecule. We can look at both the polar and non-polar

site and see if we can construct an Examol which has all the binders as individual

R-groups off the common carbon atoms. This does mean that the non-alchemical

ligand atoms may not be a benzene ring, but instead just two carbons linked together.

So long as we have at least two carbons non-alchemically modified, we will not need

to worry about intramolecular angle forces (explained below).
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D.1.2 Building the Examol in a Simulation

A single super-structure molecule is simulated in OpenMM. Our molecule consists

of the benzene-ring core, then all 10 R-groups coming from each carbon. We create

multiple files, 1 “core file” and 30 “R-files.” The core file is read into OpenMM and

define all the coordinates bonded terms for the core and will not change with state.

Each R-file has the coordinates for the different substituents, e.g. three R-files have

the nitro groups, one at each mutatable site. The R-files also have the common core

present so its easier to build of existing files. The common cores are aligned between

the core file and the R-groups, then the substituent coordinates and bonded terms are

combined into a single molecule with appropriate λ assignment.

D.2 Assigning λ Values to Examol

Substituents on a single R-group do not interact with each other. We define the

Interaction Groups inside OpenMM to prevent these groups from calculating (see

section D.4.1). This reduces the number of energy evaluations and remove overlapping

atom energies.

Each R-group is assigned an i-th index, λi, each substituent is then assigned a

j-th index, λi,j, where i = {0, 1, 2, 3} for Ni = 3 and j = {0, 1, 2, . . . , 10} for Nj = 10.

Each λ falls within the range of

0 ≤λi,j ≤ 1 (D.1)

(D.2)

A total of NCNS = Nλ = 30 λ values are recorded to determine which thermody-

namic state the molecule is in. Each state is defined as a tuple of 30 floats on the

domain [0, 1] since we will divide the λ range into different basis functions.
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We use NB = 4 basis functions per substituent (Electrostatics, LJ to Cap, Repulsive,

and Attractive) with reaction field electrostatics to define most of the alchemical

interactions. This results in NCNSNB + 2 = NU = 120 energies per sampled time

step that must be evaluated and stored. The extra two comes from the energy of the

non-alchemical system, and the total potential energy. This is significantly cheaper

than storing 103 energies plus any intermediate states as would be required with soft

core methods, and the combination of Interaction and Force Groups of OpenMM will

make sure these calculations are quick since we can query each R-group separately.

Disk space required is comparable to storing the coordinates of 40 extra atoms at

each time step. There are additional basis functions to evaluate for alchemical atoms

interacting with other alchemical atoms, however, these are computationally cheap as

they are over much fewer atoms and discussed below.

Energy evaluations will be limited at a certain point. If we try to extend this

method too far, there is a threshold when we are doing more energy evaluations than

soft core. This is reached when

NNC
S < NCNSNB

NNC−1
S < NCNB (D.3)

which will only happen at low NC or NS and/or an unreasonably large NB, the later

of which will not happen. Because we want this method to be used for even larger

systems eventually, this threshold is unlikely to be reached.

Within OpenMM, each lambda will be assigned as a global parameter to its force

and indexed accordingly. There will likely need to be NBNS forces held in memory to

update the parameters, but this should be relatively low cost.
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D.3 Choosing a starting molecular state

The initial state is set to the decoupled state so multiple simulations worth of data all

have a common starting state, and we only have to store one equilibrated starting

structure. Generally high entropy states (small R groups) should be started with to

maximize initial transition rates.

For notation shorthand, “TS” will stand for “Thermodynamic State.”

D.4 Classifying Types of Interactions

Total potential energy is simple enough to evaluate, however the basis functions are

not. The potential energy can be decomposed in the following manner

Utotal = UN(u(r))

+

Ni∑
i

Nj∑
j

UAN(u(r), λi,j)

+

Ni∑
i

Nj∑
j

Ni∑
i2=i+1

Nj∑
j2

UAA(u(r), λi,jλi2,j2) (D.4)

where each term represents the following interaction types:

• UN are the non-alchemically modified interactions, this is dominated by solvent-

solvent interactions. This also includes the common core Lennard-Jones inter-

actions with itself, or intra-R-group interactions as we are only decoupling the

R-groups, not annihilating them.

• UAN are alchemical interactions controlled by a single λ variable. These are

predominantly the solute-solvent interactions, with some additional bonded

R-group/core interactions.
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• UAA are alchemical-alchemical interactions and mainly inter-R-group solute

interactions. These are more complicated to evaluate since we have not previously

defined how they should be computed and are controlled by both a λi,j and a

λi2,j2 . We note that the third summation of the UAA interactions only loops over

a subset of Ni since R-groups on the same site do not interact with each other,

and so as not to double count the interactions.

The following subsection summarizes the OpenMM interaction and force groups

to make computational efficient energy evaluations. Details of each evaluation are in

the sections following the summary.

D.4.1 Summary of OpenMM Force and Interaction Group

Assignments

We expand the number of force groups available to OpenMM but remove the combi-

natorial selection of them. OpenMM natively has 32 force groups that can be selected

in any combination by passing in a 32 bit integer that serves as a bitmask. We

wish to reduce the number of forces and particles called in any energy call so we can

compute ∂u/∂λ efficiently. We expanded the number of available force groups to 512,

but made it so the integer is simply the number of the group, and not a bitmask.

The ForceGroup assigned to any given force was based on why type of alchemical
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interactions were involved according to the logic

Group =



0 for non-alchemical/non-alchemical

1 + i ·Ni ∗ ·j for alchemical/non-alchemical

Ni ·Nj + 1

+
i · (2 ·Ni − i− 1)

2
N2
j

+ j ·Nj · (Ni − i− 1)

+Nj · (i2 − i− 1)

+ j2

for alchemical/alchemical

(D.5)

By assigning different sets of atoms to different force groups, we can query very small

numbers of atoms over which we compute the force energy, after updating the various

λ. Because so few atoms are looped over in any one force group, the computational

efficiency should be faster despite the number of calls to energy evaluations. Note that

there is never any λi,∗ interacting with the same λi,∗ as these interactions should never

be observed. However, there does exist an interaction between atoms on the same λi,j ,

which have been spun off into their own force group as they are a constant with the

change of state. The number of force groups can be reduced, but then more λ must be

updated to evaluate basis functions and more atoms must be looped over every time.

D.4.2 Non-Alchemical/Non-Alchemical Potential Energy Eval-

uation

These energies compose all of UN are straightforward to evaluate. All of the solvent

atoms are added to their own interaction and force groups to speed up the calculation

of this energy. Electrostatics are handled by PME for accuracy, and because we do not

have to worry about computing the long range electrostatic contribution alchemically

as discussed in Chapter 3 and section 5.3. Because our solute core has an alchemically
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changing partial charge, only the only solute interactions in this group are the common

core Lennard-Jones interactions. These interactions do not need run through the

Custom Nonbonded Force and should be very quick to evaluate.

D.4.3 Alchemical/Non-Alchemical Potential Energy Evalua-

tion

The UAN class of interaction computes all of the solvent-solute interactions and is the

most expensive part of the energy evaluation. We create assign a force group for this

type of interaction for each λi,j and the alchemical atoms they control. This way, we

are not excessively looping over and subsequently ignoring through a ×0 multiplier

all the solute-solute and intramolecular interactions. This also excludes atoms on the

same common carbon atom from interacting as they would not in a realistic molecule

anyways, again reducing the number of atoms we must loop over. Electrostatics are

handled by reaction field initially to remove the long range electrostatic interactions

that we observed from Chapter 3 and section 5.3.

This process could theoretically be accelerated if we compute the interactions of

each force group in parallel, but that is beyond the scope of this work.

D.4.4 Alchemical/Alchemical Potential Energy Evaluation

Computing UAA requires its own routine since the number of evaluations is large. Each

intramolecular alchemical/alchemical interaction depends on the pair of (λi,j, λi2,j2)

being evaluated. This means there is an enumerated N2
λ non-unique combinations that

could be evaluated, however, the work load is significantly less than alchemical/non-

alchemical interactions. We make a few assumptions about the interactions and then

simplify the number of energy evaluations we carry out and store.

The following rules are applied to this class of interactions:
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• Atoms controlled by the same λi,j interact fully at all times. E.g. the two

oxygens on a nitro- group always interact fully.

• Atoms on λi,j which share the same common carbon atom with atoms of λi,k 6=j

do not interact.

• The potential energy of evaluating λi,j atoms interacting with λh6=i,∗ atoms is

identical to λh6=i,∗ atoms interacting with λi,j atoms. This follows standard

potential energy rules from most simulation packages.

• The total alchemical potential of atoms on λi,j interacting with atoms on λh6=i,∗

is UAA(r, λi,j, λh.k) = λi,jλh,ku(r), i.e. the non-alchemical potential of the two

sets of atoms scaled by the product of the their λ’s. These pairs use linear

scaling as they should not frequently, if ever, overlap each other as they do with

the solvent. If need be, we can change this to using multiple basis functions if it

improves statistical efficiency.

This scheme means there is a single basis function per unique pair of λi,j and λh,k.

Because there are no interactions between atoms on different λi,∗ but the same common

carbon, our total number of basis functions we need to evaluate is:

NB,intra = N2
S

[
N2
C −

NC (NC + 1)

2

]
(D.6)

which goes to N2
λ/2 in the limit of large NC . For our system of NC = 3 and NS = 10,

this is 300 energies which will require the equivalent disk space of 100 atom coordinates

per iteration.

Evaluating these energies is quicker than first appears. Remember that each

substituent group only has a few atoms on them, and even more complex groups

will have significantly fewer atoms than the entire system. Tryptophan for example

only has 27 atoms and it is unlikely larger alchemical groups will be appeared. This
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means that if we assign all the atoms in a λ group to an interaction group to the other

alchemical atoms, then we are looping over very few atoms for each force evaluation.

If we control this with reaction field electrostatics, then we do not have to worry about

PME complications in the energy evaluation. We further reduce the computational

cost by assigning each pair of (λi,j, λi2,j2) into its own force group, who’s number is

computed by the third condition of Eq. (D.5).

Only one basis function is needed per unique λ pair interaction since solvent would

need displaced first to have the atoms on top of each other. In all physical molecules,

there will never be atoms from two R-groups on top of each other. Any phase space

which has such atomic overlap does not need to be heavily sampled as it shares very

little phase space overlap with the molecules of interest. Further, there is always be

water present which would need to be displaced before such an interaction could occur.

Because we need the water to leak into the atomic sites from different R-groups and

not the R-groups leaking into each other, there is no need for energy decomposition

beyond linear scaling.

D.5 Computing Types of Interactions

This section details the equations used to compute all alchemical interactions.

Harmonic Bonds: ALL

No harmonic bonds are modified to preserve molecular structure.

Harmonic Angle Force: Alchemical/Non-alchemical

Uangle(θ, λi,j) = λi,j
1

2
k(θ − θ0)2 (D.7)

where θ is the angle formed by the three particles, θ0 is the equilibrium angle, and k

is the force constant. At least one particle must be an alchemical particle and one

particle must be common core.
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Harmonic Angle Force: Alchemical/Alchemical

Because we are mutating benzene, there are no angles formed between alchemical

particles on different R-groups. The more general case would use Eq. (D.7) but replace

λi,j with λi,jλi2,j2 .

Periodic Torsion Force: Alchemical/Non-alchemical

Utors(θ, λi,j) = λi,jk (1 + cos (nθ − θ0)) (D.8)

where θ is the dihedral angle formed by the four particles, θ0 is the equilibrium angle,

k is the force constant, and n is the periodicity. At least one particle must be an

alchemical particle and one particle must be common core.

Periodic Torsion Force: Alchemical/Alchemical

Because we are mutating the 2,4,6 positions, there are no dihedral formed between

alchemical particles on different R-groups. The more general case, or if all six sites of

benzene were mutated, would use Eq. (D.8) but replace λi,j with λi,jλi2,j2 .

Nonbonded Force: Alchemical/non-alchemical

These are controlled through the AR/C/E-WCA schedule detailed at length in Chap-

ter 3. Each λi,j variable maps on to the value each hE,C,A,R(λi,j) switch with one-to-one

values.

Nonbonded Force: Alchemical/Alchemical

These are controlled through the AER-WCA schedule with linear scaling. Reasoning

is listed in the previous section and section 5.2.2. Each alchemical switch follows

hE,A,R(λi,jλi2,j2) = λi,jλi2,j2 since the switch is linear. Because each switch has the

same value, there is a single basis function for these interactions, all scaled by λi,jλi2,j2 ,

for a given pair of λi,j and λi2,j2 .
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D.6 λDX Sampling Algorithm

This section details the pseudo-code used in our CustomIntegrator built into OpenMM.

Full code is available on GitHub. [214].

1. Draw Cartesian particle velocities from the Maxwell-Boltzmann distributions

according to

vc =
√
kBT/mc ·N(0, 1) (D.9)

where v is velocity (in 3D), subscript c indicates variables in Cartesian space,

kB is the Boltzmann constant, T is target temperature, m is particle mass, and

N(0, 1) is a draw from a normal Gaussian distribution.

2. Draw alchemical walker velocities from the Maxwell-Boltzmann distributions

according to

vλ =
√
kBT/mλ ·N(0, 1) (D.10)

for each λ variable where the subscript λ indicates variables in λ space.

3. Compute total initial energy, EO including total potential, kinetic energy in

Cartesian space, and kinetic energy in λ space.

4. Disable alchemical/alchemical interactions to switch into approximate energy

space for faster internal MC loops

5. Compute total approximate initial energy, E
′
O

6. Carry out Hybrid MC time steps. We use the following symmetric integration

steps with ∆t the time step symbol, p{c,λ}(∆t) for momentum steps, and q{c,λ}(∆t)

for position steps.

pλ(1/2∆t)pλ(1/2∆t)pc(1/2∆t)qc(∆t)qλ(∆t)pc(1/2∆t)pλ(1/2∆t) (D.11)
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We note that the qλ(∆t) and qc(∆t) are commutable operators. We also

combine the first and last steps of this MD propagation algorithm to reduce the

number of force evaluations without breaking symmetry.

For qλ(∆t): Use hard, reflective walls at λ = 0 or λ = 1 which reverse

momentum in the event that a λ escapes its [0, 1] domain. Ensure the positions

and velocities in λ space are adjusted before a new force call is made.

7. Compute total approximate final energy, E
′
N

8. Accept the MD moves for HMC with acceptance (see also Eq, (5.3))

α
′

O→N = min
(

exp
[
−β∆E

′
]
, 1
)

(D.12)

9. If rejected: reset all positions and velocities in both Cartesian and λ space.

Since we only have one attempted inner HMC move per outer MC move, we

do not have to re-randomize velocities at this point, only reset them.

10. Enable alchemical/alchemical interactions to switch back into full potential and

out of approximate potential.

11. Compute total final energy, EN

12. Accept the entire process with acceptance (see also Eq. (5.4))

αO→N = min (exp [−β(∆E −∆E ′)] , 1) (D.13)

13. Repeat procedure.
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Jeremy C. Smith, Berk Hess, and Erik Lindah. Gromacs: High performance
molecular simulations through multi-level parallelism from laptops to super-
computers. SoftwareX, 1-2:19–25, 2015.

[38] GROMACS. http://www.gromacs.org/ (accessed Dec 02, 2013).

[39] OpenMM. http://simtk.org/home/openmm (accessed Jul 8, 2012), available
through SimTK.

[40] Joshua A. Anderson, Chris D. Lorenz, and A. Travesset. General purpose
molecular dynamics simulations fully implemented on graphics processing
units. J. Comput. Phys., 227(10):5342–5359, 2008.

[41] Jens Glaser, Trung Dac Nguyen, Joshua A. Anderson, Pak Lui, Filippo Spiga,
Jaime A. Millan, David C. Morse, and Sharon C. Glotzer. Strong scaling of
general-purpose molecular dynamics simulations on GPUs. Comput. Phys.
Commun., 192:97–107, 2015.

[42] HOOMD-blue. http://codeblue.umich.edu/hoomd-blue (accessed May 14,
2016).

[43] TINKER Molecular Modeling http://dasher.wustl.edu/tinker/ (accessed
May 5, 2016).



Bibliography 265

[44] Lingle Wang, Yujie Wu, Yuqing Deng, Byungchan Kim, Levi Pierce, Goran
Krilov, Dmitry Lupyan, Shaughnessy Robinson, Markus K Dahlgren, Jeremy
Greenwood, Donna L Romero, Craig Masse, Jennifer L Knight, Thomas
Steinbrecher, Thijs Beuming, Wolfgang Damm, Ed Harder, Woody Sherman,
Mark Brewer, Ron Wester, Mark Murcko, Leah Frye, Ramy Farid, Teng Lin,
David L Mobley, William L Jorgensen, Bruce J Berne, Richard A Friesner,
and Robert Abel. Accurate and Reliable Prediction of Relative Ligand Bind-
ing Potency in Prospective Drug Discovery by Way of a Modern Free-Energy
Calculation Protocol and Force Field. J. Am. Chem. Soc., feb 2015.

[45] Hanna Geppert, Martin Vogt, and Jürgen Bajorath. Current trends in ligand-
based virtual screening: molecular representations, data mining methods, new
application areas, and performance evaluation. J. Chem. Inf. Model., 50(2):205–
16, February 2010.

[46] Lu Wencong. Data Mining and Discovery of Chemical Knowledge. In Mo-
hamed Medhat Gaber, editor, Sci. Data Min. Knowl. Discov. SE - 11, pages
269–317. Springer Berlin Heidelberg, 2010.

[47] Hassan Safouhi and Ahmed Bouferguene. Computational Chemistry. In Mo-
hamed Medhat Gaber, editor, Sci. Data Min. Knowl. Discov. SE - 8, pages
173–206. Springer Berlin Heidelberg, 2010.

[48] Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William David-
son Richards, Stephen Dacek, Shreyas Cholia, Dan Gunter, David Skinner,
Gerbrand Ceder, and Kristin a. Persson. Commentary: The Materials Project:
A materials genome approach to accelerating materials innovation. APL
Mater., 1(1):011002, 2013.

[49] Chris Oostenbrink and Wilfred F. van Gunsteren. Free energies of ligand bind-
ing for structurally diverse compounds. Proc. Natl. Acad. Sci., 102(19):6750–
6754, 2005.

[50] Chris Oostenbrink and Wilfred F. van Gunsteren. Efficient calculation of many
stacking and pairing free energies in DNA from a few molecular dynamics
simulations. Chemistry, 11(15):4340–8, July 2005.

[51] Jennifer L. Knight and Charles L. Brooks. Multisite λ Dynamics for Simulated
StructureActivity Relationship Studies. J. Chem. Theory Comput., 7:2728–
2739, 2011.

[52] Kira a. Armacost, Garrett B. Goh, and Charles L. Brooks. Biasing Potential
Replica Exchange Multisite λ-Dynamics for Efficient Free Energy Calcula-
tions. J. Chem. Theory Comput., 11:1267–1277, February 2015.

[53] Andreas Kukol, editor. Molecular Modeling of Proteins. Springer, New York,
2015.



Bibliography 266

[54] L. N. Naden, T. T. Pham, and M. R. Shirts. Linear Basis Function Approach
to Efficient Alchemical Free Energy Calculations. 1. Removal of Uncharged
Atomic Sites. J. Chem. Theory Comput., 10:1128–1149, 2014.

[55] Levi N. Naden and Michael R. Shirts. Linear basis function approach to
efficient alchemical free energy calculations. 2. inserting and deleting particles
with coulombic interactions. J. Chem. Theory Comput., 11:2536–2549, 2015.

[56] Levi N Naden and Michael R Shirts. Rapid Computation of Thermodynamic
Properties over Multidimensional Nonbonded Parameter Spaces Using Adap-
tive Multistate Reweighting. J. Chem. Theory Comput., 12:1806–1823, 2016.

[57] Michael R. Shirts, Jed W. Pitera, William C. Swope, and Vijay S. Pande.
Extremely precise free energy calculations of amino acid side chain analogs:
Comparison of common molecular mechanics force fields for proteins. J. Chem.
Phys., 119(11):5740, 2003.

[58] Michael R. Shirts and Vijay S. Pande. Solvation free energies of amino acid
side chain analogs for common molecular mechanics water models. J. Chem.
Phys., 122(13):134508, April 2005.

[59] Kai Kadau, John L Barber, Timothy C Germann, Brad L Holian, and
Berni J Alder. Atomistic methods in fluid simulation. Philos. Trans. A.
Math. Phys. Eng. Sci., 368(1916):1547–60, April 2010.

[60] Himanshu Paliwal and Michael R. Shirts. A benchmark test set for alchemi-
cal free energy transformations and its use to quantify error in common free
energy methods. J. Chem. Theory Comput., pages 4115–4134, 2011.

[61] Caroline Desgranges and Jerome Delhommelle. Evaluation of the grand-
canonical partition function using expanded Wang-Landau simulations. I.
Thermodynamic properties in the bulk and at the liquid-vapor phase bound-
ary. J. Chem. Phys., 136(18):184107, 2012.

[62] Yong Zhang and Edward J Maginn. A comparison of methods for melting
point calculation using molecular dynamics simulations. J. Chem. Phys.,
136(14):144116, April 2012.

[63] Hari S Muddana, Andrew T Fenley, David L Mobley, and Michael K Gilson.
The SAMPL4 host-guest blind prediction challenge: an overview. J. Comput.
Aided. Mol. Des., 28(4):305–17, April 2014.

[64] Che-lun Hung and Chi-chun Chen. Computational Approaches for Drug
Discovery. Drug Dev. Res., 75:412–418, 2014.

[65] Denis S Abrams and John M Prausnitz. Statistical thermodynamics of liquid
mixtures: A new expression for the excess Gibbs energy of partly or com-
pletely miscible systems. AIChE J., 21(1):116–128, 1975.



Bibliography 267

[66] Aage Fredenslund, Russell L. Jones, and John M. Prausnitz. Group-
contribution estimation of activity coefficients in nonideal liquid mixtures.
AIChE J., 21(6):1086–1099, 1975.

[67] Abolghasem Jouyban. Handbook of Solubility Data for Pharmaceuticals. CRC
Press, Boca Raton, 2010.

[68] Philip J Hajduk and Jonathan Greer. A decade of fragment-based drug design:
strategic advances and lessons learned. Nat. Rev. Drug Discov., 6(3):211–9,
March 2007.

[69] Paola Gramatica. Principles of QSAR models validation: internal and external.
QSAR Comb. Sci., 26(5):694–701, May 2007.

[70] Alexander Tropsha. Best Practices for QSAR Model Development, Validation,
and Exploitation. Mol. Inform., 29(6-7):476–488, July 2010.

[71] William L. Jorgensen, David S. Maxwell, and Julian Tirado-Rives. Develop-
ment and testing of the OPLS all-atom force field on conformational energet-
ics and properties of organic liquids. J. Am. Chem. Soc., 7863(15):11225–11236,
1996.

[72] George A Kaminski, Richard A Friesner, Julian Tirado-rives, and William L
Jorgensen. Evaluation and Reparametrization of the OPLS-AA Force Field for
Proteins via Comparison with Accurate Quantum Chemical Calculations on
Peptides. J. Phys. Chem. B, 2(105):6474–6487, 2001.

[73] Junmei Wang, Romain M. Wolf, James W. Caldwell, Peter A. Kollman, and
David A. Case. Development and testing of a general amber force field. J.
Comput. Chem., 25(9):1157–74, July 2004.

[74] In Suk Joung and Thomas E. Cheatham. Determination of alkali and halide
monovalent ion parameters for use in explicitly solvated biomolecular simula-
tions. J. Phys. Chem. B, 112(30):9020–41, July 2008.

[75] Chris Oostenbrink, Alessandra Villa, Alan E Mark, and Wilfred F van Gun-
steren. A biomolecular force field based on the free enthalpy of hydration and
solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput.
Chem., 25(13):1656–76, October 2004.

[76] K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim,
E. Darian, O. Guvench, P. Lopes, I. Vorobyov, and A. D. MacKerell Jr.
CHARMM General Force Field (CGenFF): A force field for drug-like
molecules compatible with the CHARMM all-atom additive biological force
fields. J. Comput. Chem., 31(4):671–690, 2011.

[77] Andrew S. Paluch and Edward J. Maginn. Predicting the Solubility of Solid
Phenanthrene: A Combined Molecular Simulation and Group Contribution
Approach. AIChE J., 59(7):2647–2661, July 2013.



Bibliography 268

[78] Andrew S. Paluch and Edward J. Maginn. Efficient Estimation of the Equi-
librium Solution-Phase Fugacity of Soluble Nonelectrolyte Solids in Binary
Solvents by Molecular Simulation. Ind. Eng. Chem. Res., 52:13743–13760,
2013.

[79] Andrew J. Schultz and David A. Kofke. Quantifying Computational Effort
Required for Stochastic Averages. J. Chem. Theory Comput., 10:5229–5234,
November 2014.

[80] Thomas J Lane, Diwakar Shukla, Kyle a Beauchamp, and Vijay S Pande. To
milliseconds and beyond: challenges in the simulation of protein folding. Curr.
Opin. Struct. Biol., 23(1):58–65, February 2013.

[81] Daan Frenkel and Berend Smit. Understanding Molecular Simulation. Aca-
demic Press, San Diego, 2nd edition, 2002.

[82] TC Beutler, AE Mark, and RC van Schaik. Avoiding singularities and numer-
ical instabilities in free energy calculations based on molecular simulations.
Chem. Phys. Lett., 222(June):529–539, 1994.

[83] M. Zacharias, T. P. Straatsma, and J. A. McCammon. Separation-shifted scal-
ing, a new scaling method for Lennard-Jones interactions in thermodynamic
integration. J. Chem. Phys., 100(12):9025, 1994.

[84] Tri T. Pham and Michael R. Shirts. Identifying low variance pathways for free
energy calculations of molecular transformations in solution phase. J. Chem.
Phys., 135(3):034114, 2011.

[85] Thomas Steinbrecher, David L. Mobley, and David A. Case. Nonlinear scaling
schemes for Lennard-Jones interactions in free energy calculations. J. Chem.
Phys., 127(21):214108, December 2007.

[86] Jozef Hritz and Chris Oostenbrink. Hamiltonian replica exchange molecular
dynamics using soft-core interactions. J. Chem. Phys., 128(14):144121, April
2008.

[87] Sereina Riniker, Clara D Christ, Halvor S Hansen, Philippe H Hünenberger,
Chris Oostenbrink, Denise Steiner, and Wilfred F. van Gunsteren. Calcula-
tion of relative free energies for ligand-protein binding, solvation, and con-
formational transitions using the GROMOS software. J. Phys. Chem. B,
115(46):13570–7, November 2011.

[88] Floris P Buelens and Helmut Grubmüller. Linear-scaling soft-core scheme for
alchemical free energy calculations. J. Comput. Chem., pages 25–33, September
2011.

[89] David L. Mobley, Christopher I. Bayly, Matthew D. Cooper, Michael R.
Shirts, and Ken A. Dill. Small molecule hydration free energies in explicit



Bibliography 269

solvent: An extensive test of fixed-charge atomistic simulations. J. Chem.
Theory Comput., 5(2):350–358, February 2009.

[90] Jed W. Pitera and Wilfred F. van Gunsteren. A comparison of non-bonded
scaling approaches for free energy calculations. Mol. Simul., 28(1-2):45–65,
2002.

[91] Sereina Riniker, Clara D. Christ, Niels Hansen, Alan E. Mark, Pramod C.
Nair, and Wilfred F. van Gunsteren. Comparison of enveloping distribu-
tion sampling and thermodynamic integration to calculate binding free ener-
gies of phenylethanolamine N-methyltransferase inhibitors. J. Chem. Phys.,
135(2):024105, July 2011.

[92] Thomas Steinbrecher, InSuk Joung, and David A. Case. Soft-core potentials
in thermodynamic integration: comparing one- and two-step transformations.
J. Comput. Chem., 32(15):3253–63, November 2011.

[93] Andrew Gelman and Xiao-Li Meng. Simulating normalizing constants: from
importance sampling to bridge sampling to path sampling. Stat. Sci., 13(2):163–
185, May 1998.

[94] Daniel Shenfeld, Huafeng Xu, Michael Eastwood, Ron Dror, and David Shaw.
Minimizing thermodynamic length to select intermediate states for free-energy
calculations and replica-exchange simulations. Phys. Rev. E, 80(4):1–4, October
2009.

[95] Arnaud Blondel. Ensemble variance in free energy calculations by thermody-
namic integration: theory, optimal ”Alchemical” path, and practical solutions.
J. Comput. Chem., 25(7):985–993, May 2004.

[96] Gavin E Crooks. Measuring Thermodynamic Length. Phys. Rev. Lett.,
99(10):10–13, September 2007.

[97] Tri T. Pham and Michael R. Shirts. Optimal pairwise and non-pairwise
alchemical pathways for free energy calculations of molecular transformation
in solution phase. J. Chem. Phys., 136(12):124120, March 2012.

[98] Robert W Zwanzig. High-Temperature Equation of State by a Perturbation
Method. I. Nonpolar Gases. J. Chem. Phys., 22(8):1420, 1954.

[99] Shankar Kumar, John M Rosenberg, Djamal Bouzida, Robert H Swendsen,
and Peter A Kollman. THE weighted histogram analysis method for free-
energy calculations on biomolecules. I. The method. J. Comput. Chem.,
13(8):1011–1021, 1992.

[100] Shankar Kumar, John M Rosenberg, Djamal Bouzida, Robert H Swendsen,
and Peter A Kollman. Multidimensional free-energy calculations using the
weighted histogram analysis method. J. Comput. Chem., 16(11):1339–1350,
1995.



Bibliography 270

[101] Michael R. Shirts and John D. Chodera. Statistically optimal analysis of
samples from multiple equilibrium states. J. Chem. Phys., 129(12):124105,
September 2008.

[102] Anita de Ruiter and Chris Oostenbrink. Efficient and Accurate Free Energy
Calculations on Trypsin Inhibitors. J. Chem. Theory Comput., 8(10):3686–
3695, October 2012.

[103] Jed W. Pitera and Wilfred F. van Gunsteren. One-Step Perturbation Methods
for Solvation Free Energies of Polar Solutes. J. Phys. Chem. B, 105(45):11264–
11274, November 2001.

[104] Clara D. Christ and Wilfred F. van Gunsteren. Enveloping distribution sam-
pling: a method to calculate free energy differences from a single simulation. J.
Chem. Phys., 126(18):184110, May 2007.

[105] Charles H Bennett. Efficent Estimation of Free nergy Differences from Monte
Carlo Data. J. Comput. Phys., 268:245–268, 1976.

[106] Peter. Kollman. Free energy calculations: Applications to chemical and bio-
chemical phenomena. Chem. Rev., 93(7):2395–2417, November 1993.

[107] Andrew S. Paluch, Dan D. Cryan, and Edward J. Maginn. Predicting the
Solubility of the Sparingly Soluble Solids 1,2,4,5-Tetramethylbenzene, Phenan-
threne, and Fluorene in Various Organic Solvents by Molecular Simulation. J.
Chem. Eng. Data, 56(4):1587–1595, April 2011.

[108] D Bemporad, C Luttmann, and J W Essex. Computer simulation of small
molecule permeation across a lipid bilayer: dependence on bilayer properties
and solute volume, size, and cross-sectional area. Biophys. J., 87(1):1–13, July
2004.

[109] Yuqing Deng and Benot Roux. Hydration of amino acid side chains: Nonpolar
and electrostatic contributions calculated from staged molecular dynamics
free energy simulations with explicit water molecules. J. Phys. Chem. B,
17:16567–16576, 2004.

[110] Berk Hess, Carsten Kutzner, David van der Spoel, and Erik Lindahl. GRO-
MACS 4 : Algorithms for Highly Efficient , Load-Balanced , and Scalable
Molecular Simulation. J. Chem. Theory Comput., 4(3):435–447, 2008.

[111] B R Brooks, C L Brooks Iii, A D Mackerell, L Nilsson, R J Petrella, B Roux,
Y Won, G Archontis, C Bartels, S Boresch, A Caflisch, L Caves, Q Cui, A R
Dinner, and M Feig. CHARMM : The Biomolecular Simulation Program. J.
Comput. Chem., 30:1545–1614, 2009.

[112] David A. Case, T. A. Darden, Thomas E. Cheatham, C. L. Simmerling,
J. Wang, R. E. Duke, R. Luo, R. C. Walker, W. Zhang, K. M. Merz,



Bibliography 271

B. Roberts, S. Hayik, A. Roitberg, G. Seabra, J. Swails, A. W. Goetz,
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