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Abstract 

Long noncoding RNAs (lncRNAs) are emerging as key regulators of cellular processes 

and are commonly found to be misregulated in many human pathologies, including cancer. 

Glioblastomas (GBM) and lower-grade gliomas (Grade II and III) are aggressive, difficult to 

treat brain tumors that have high mortality rates. Although much of the research into glioma 

biology has focused on identifying the molecular drivers of oncogenesis, these efforts have 

primarily focused on alterations in protein coding genes and the role of lncRNAs has not been 

sufficiently characterized. This dissertation focuses on expanding our knowledge of lncRNAs in 

gliomas by analyzing their expression globally and more targeted studies examining the role of 

two lncRNAs.  

In our initial study, we analyzed the expression data from over 750 RNA-seq datasets 

from GBMs, Grade III and II gliomas and normal brain tissue. We found that hundreds of 

lncRNAs are differentially expressed in gliomas compared to normal brain tissue. Furthermore, 

many lncRNAs were found to be preferentially expressed within certain GBM and LGG 

subtypes. Using these subtype specific lncRNAs we identified similarities between the highly 

aggressive IDH1/2 wt LGG subtype and mesenchymal GBMs. We also used Cox regression to 

create a survival algorithm that is capable of separating LGG patients into two distinct prognostic 

groups. Lastly, we identified all lncRNAs that are associated with GBM patient survival, to aid 

in identifying which lncRNAs might play critical roles in brain tumors. 

Using our brain tumor lncRNA expression and survival association data, we identified 

two oncogenic lncRNAs, GS1-124K5.4 and LINC00152, for further study. Both LINC00152 and 

GS1-124K5.4 are upregulated in GBMs and aggressive gliomas, and high expression of either 

lncRNAs is associated with negative patient outcomes in GBMs. High levels of LINC00152 has 
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no affect on cell growth but lead to an increase invasion in U87 cells. In contrast, expression of 

GS1-124K5.4 does not affect invasion but high expression of GS1-124K5.4 leads to increased 

cell growth. Secondary structure analysis of LINC00152 suggests that a protein-bound stem-loop 

in the 3’ end of LINC00152 is partially involved in LINC00152’s proinvasive function. 

Furthermore, LINC00152 is upregulated in 10 other tumors types and high expression of is 

associated with a poor prognosis in 7 other tumors. These results suggest that LINC00152 

potentially functions as an oncogene in many cancers. 
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Chapter 1: Introduction 

Gliomas 

Although brain and CNS (Central Nervous System) tumors have the 7th highest incidence 

rate of all adult tumors, brain and CNS tumors are the most common cancer in children and 

adolescents, with the second highest mortality rate in this age group, second only to leukemia [1]. 

Brain and CNS tumors, as well as other tumor types, can broadly be separated into two groups 

based on their malignant potential. Non-malignant brain and CNS tumors are benign tumors that, 

as described by the CBTRUS (Central Brain Tumor Registry of the United States), have an ICDO 

(International Coding for Diseases of Oncology) morphology behavior score of “0” or “1”, 

representing benign or uncertain behavior, respectively [1]. Of the malignant primary brain tumors 

that occur in adults, malignant gliomas are the most common, making up over ¾ of all newly 

diagnosed cases in the United States [1].  

Gliomas are a group of tumors, including glioblastoma, astrocytoma, ependymoma, 

oligodendroglioma, mixed glioma as well as other rarer tumor types, that are believed to be derived 

from glial cells. Glial cells are the non-neuronal supporting cells of the central and peripheral 

nervous system. In the CNS, they play several critical roles in maintaining neurologic function and 

include astrocytes, microglia and oligodendrocytes. Oligodendrocytes are the electrical insulators 

of the CNS, forming lipid rich myelin sheaths around neuronal axons, in addition to releasing other 

trophic factor to support neuronal function [2]. Astrocytes, named after their star like appearance, 

aid in the maintenance of the blood-brain barrier, in the development of neurologic synapses as 

well as maintenance and elimination of existing synapses [3]. Microglia are the resident 

macrophages of the CNS and serve as the main immune cell in the brain, as the brain is traditionally 

considered to be “immune privileged” and relatively devoid of other common immune cells [4]. 
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Glioma Cell of Origin 

As mentioned above, the glioma class of brain and CNS tumors consists of multiple glia 

derived tumors, whose names, astrocytoma, oligodendroglioma, etc, originate from the 

resemblance of each of the tumor types to the corresponding glial cell population, i.e. astrocytes 

and oligodendrocytes, respectively. This association goes beyond mere histological appearances, 

as these tumors share many of the same cellular markers as the glial cell populations, such as 

GFAP (glial fibrillary acidic protein), OLIG2 (oligodendrocyte transcription factor 2) and NG2 

(neural/glial antigen 2) [5–7]. While these correlations have fueled much work speculating the cell 

of origin for the respective tumors, these connections are not as easily drawn for mixed tumor 

types such as oligoastrocytoma, which have both astrocytic and oligodendocytic morphologic 

components [8]. Recent work has focused on two stem cell populations of the brain, NSCs (neural 

stem cells) and OPCs (oligodendrocyte progenitor cells) as potential cells of origin for gliomas. 

Mouse models that specifically inactivate tumor suppressors, including TP53 and PTEN, in 

distinct cell populations or brain region, have provided evidence that both NSC and OPCs can 

serve as the cell of origin for many gliomas [9–11]. 

Symptoms and Risk Factors of Gliomas 

Due to difficulties of performing routine surveillance on the brain, malignant gliomas are 

not typically detected until later in the disease process and commonly present with nonspecific 

symptoms, such as nausea, headaches and changes in cognitive functions [12]. The most common 

presenting symptom in GBMs is headache, while seizures are the most common symptom of grade 

III gliomas. However, depending on the location within the brain, malignant gliomas can present 

with more specific, localized symptoms, like changes in vision, gait or speech patterns [12]. It 

should be noted that most malignant gliomas are located supratentorially, with 40.5% of all 
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malignant brain and CNS tumors arising in the frontal and temporal lobes [1]. In rare cases, patients 

can present with back pain or cranial nerve palsies if the tumor has disseminated throughout the 

meninges [13]. 

Many studies have attempted to identify environmental risk factors that are associated with 

the development of GBMs. One potential risk factor that received a great deal of publicity in the 

lay press, is cell phone usage. Although a few of the initial studies examining the relationship 

between cell phone use and gliomas suggested that there was in fact an association, this correlation 

was later attributed to bias [14,15]. More recent work, including the largest study to date, has found 

that there is no significant increased risk in developing gliomas with cell phone usage [16]. There 

have also been suggestions that gliomas are associated with N-nitroso containing food products, 

head injuries and occupational exposures, but the evidence supporting these claims are ambiguous 

[17]. Exposure to ionizing radiation (IR) is the only risk factor that has been proven to be associated 

with glioma development [18]. The most tragic and famous example of this is the higher incidence 

of gliomas and meningiomas in survivors of the nuclear bomb explosion in Hiroshima, which 

correlated to the level of exposure to IR [19,20]. There is also an increased risk of developing a 

glioma with exposure to therapeutic doses of IR [20]. Interestingly, multiple studies have found 

an inverse correlation between having a history of allergies and high titers of serum IgE with the 

development of gliomas [21–24]. 

In addition to environmental risk factors, a few hereditary syndromes are associated with 

a higher risk of developing gliomas, such as Turcot Syndrome and type 1 and type 2 

neurofibromatosis [18,25]. These conditions are however rarely seen in glioma patients, and some 

studies report less than 1% of glioma patients were diagnosed with a hereditary syndrome [26]. 

Furthermore, glioma patients do not typically have a family history of gliomas. GWAS (genome 
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wide association studies) have found links of glioma formation to SNPs (single nucleotide 

polymorphisms) in genes involved in DNA repair pathways and cell cycle regulation, including 

ERCC1, ERCC2, MGMT and PRKDC [27–30]. However these studies were carried out on 

relatively small sample sizes and future work is needed to determine the reliability of the GWAS 

gene predictions. 

Lower-Grade Gliomas 

The Cancer Genome Atlas (TCGA) designated grade II and III gliomas as lower-grade 

gliomas (LGG) [31]. It should be pointed out that a grade III glioma is by no mean “low grade”, 

however for the purposes of this dissertation, it will be grouped with grade II gliomas and called 

LGGs. LGGs are a composite of multiple histological classes, including the ones mentioned earlier 

(astrocytoma, oligodendroglioma etc.), and prognosis within the same grade of gliomas can vary 

greatly [1]. IDH1 and IDH2 (IDH1/2) mutations are the most common genomic alteration found 

in LGGs, with nearly 80 % of LGGs having a mutation in either gene [31]. Mutations to IDH1/2 

are exclusively found in the active site of isocitrate dehydrogenase and lead to a gain of function 

and the production of the oncometabolite 2-hydroxyglutarate (2HG) instead of the normal Krebs 

cycle metabolite, α-ketoglutarate (αKG) [32]. 2HG acts as an oncometabolite by inhibiting 

enzymes within the cell that normally use αKG as a substrate, and this inhibition leads to 

oncogenic transformation of mutated cells [32]. 

Beyond tumor grade, scientists have determined that LGGs can be separated into three 

distinct subgroups based on 2 commonly occurring genomic alteration in gliomas, IDH1/2 

mutational status and codeletion of 1p19q [33]. These subgroups, IDH 1/2 wild type (IDH 1/2 wt), 

IDH 1/2 mutant (IDH 1/2 mut), and IDH 1/2 mut 1p19q codeletion (IDH 1/2 mut 1p19q codel), 

were also independently identified by integrating multiple high throughput sequencing/array 
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modalities which assessed mRNA and microRNA levels, DNA methylation and DNA copy 

number [31]. Through these sequencing efforts, we now know that each of the LGG subtypes are 

associated with different histological classes and groups of mutations. For instance, the IDH 1/2 

mut 1p19q codel are most frequently found in oligodendrogliomas and disproportionately have 

mutations in CIC and FUBP1 as well as activation of telomerase [31]. The IDH 1/2 mut subtype 

is more commonly found in astrocytomas and oligoastrocytomas and almost invariably have 

deactivating mutations in the p53 pathway and are rarely found to have TERT activation. This is 

in contrast to IDH 1/2 mut 1p19q codel gliomas, suggesting a possible mutational divergence from 

an initial IDH 1/2 mutated cell. Also, IDH 1/2 wt gliomas have a higher mutational burden 

compared to the other LGG subtypes, and more closely resemble the mutational spectrum seen in 

GBMs, with activation of the EGFR pathway and deactivation of PTEN. Importantly, the subtypes 

are associated with different patient outcomes, with IDH 1/2 mut 1p19q codel gliomas having the 

best prognosis, median survival of 8 years, and IDH 1/2 wt having the worst prognosis, median 

survival, 1.7 years  [31]. 

Glioblastoma 

Glioblastoma is the most common malignant brain tumor, comprising 46% of all malignant 

brain and CNS cancers [1]. The incidence rate of glioblastoma is highest in Caucasians, with an 

incidence rate of 3.45/100,000, over two fold higher than the nearest race [34]. GBM are highly 

invasive tumors and invariably recur following standard treatment. GBMs have a very poor 

prognosis, with a median survival time of 1 year [35]. Unlike other tumor types such as colon 

cancer or breast cancer, whose increasing disease stages are viewed as being part of a disease 

continuum, i.e. stage 1 tumors progress to stage 2 tumors which then progresses to stage 3 and so 
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on, GBMs are not typically viewed in this way [31]. As mention earlier, IDH1/2 are mutated in 

80% of all LGGs whereas they are rarely found to be mutated in primary GBMs [31]. 

While tumors of a given cancer type were once thought of as a homogeneous disease, we 

now know that there is considerable heterogeneity between tumors as well as within tumors. 

Indeed, through high throughput sequencing efforts led by the TCGA, it was discovered that in 

GBMs, there are 4 distinct tumor subtypes, termed Neural, Proneural, Classical and Mesenchymal. 

In addition to differences in transcriptional profiles, each GBM subtype is associated with specific 

mutations. Over half of proneural GBMs have mutations of p53 and are more likely to have 

mutations in IDH1/2. Interestingly, classical GBMs are devoid of p53 mutations, but often have 

the activating EGFR rearrangement EGFRvIII. Mesenchymal GBMs are more likely to have 

mutations in NF1, similar to IDHwt LGGs [31,36]. Importantly, these subtypes are associated with 

clinical parameters, such as response to intensive therapy. Classical and mesenchymal GBMs have 

prolonged survival following intensive therapy, where as proneural and neural GBMs do not have 

better response rates following aggressive therapy. More work is needed to understand if the GBM 

subtypes display preferential sensitivity to targeted therapies. 

Treatment of GBMs 

Following diagnosis, standard treatment for GBMs consists of maximal surgical resection, 

in cases where surgical resection is possible (due to location in the brain), adjuvant radiation 

therapy and treatment with Temozolomide, a DNA alkylating agent [37,38]. Response to 

temozolomide is strongly associated with methylation at the MGMt (O-6-methylguanine-DNA 

methyltransferase) promoter, a gene which encodes a protein involved in repairing the alkylated 

DNA adducts formed by temozolomide [39]. Patients with methylated MGMT promoters have 

much better outcomes with temozolomide treatment compared to unmethylated MGMT, with a 
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two-year survival of 49% and 15%, respectively [40]. The standard of care has extended overall 

survival for GBM patients, but patients almost always have tumor recurrence and the 5 year overall 

survival is 10% [40]. 

Other treatments have been tested in GBM patients, with mixed results. The use of a 

portable device that produces low-intensity alternating electric fields directed towards the original 

tumor location has been examined for patients with recurrent and primary GBMs, and although 

controversial, was shown to increase overall survival and progression-free survival [41]. Other 

studies have examined the use of carmustine wafers, a DNA interstrand crosslinking agent, at the 

surgical site, but the clinical trial have shown no statistically significant increase in overall survival 

for GBM patients [42]. In another string of clinical trials, bevacizumab, the anti-VEGF antibody, 

initially showed promise in a set of phase II clinical trials [43,44], but these results were not 

validated in subsequent randomized trials and as a result is not recommended for use in newly 

diagnosed GBM patients [45,46]. Although new therapeutics are in development and new clinical 

trials are ongoing, the targeted therapeutic approaches have not proved extremely effective. It is 

important to investigate emerging fields of biology to possibly identify novel therapeutic targets 

or to find tumor markers that single out tumors that are susceptible to current or novel therapies. 

ncRNAs 

The central dogma of molecular biology posited that there is a natural flow of genetic 

information, from DNA to RNA and ultimately leading to the production of proteins. Proteins 

were long thought to be the major functional effectors of the cell until relatively recently when the 

role of RNAs, other than rRNAs and tRNAs, have begun to be appreciated for their roles in various 

cellular processes. Exceptions to the central dogma began to appear in the 80’s, when it was 

discovered that a large portion of the nuclear RNAs had 5’ caps and were polyadenylated but did 
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not contribute to the cell’s pool of coding transcripts (1). In the early eighties, the discovery of two 

non-coding transcripts, H19 and XIST, stirred up a great deal of excitement for the role of ncRNAs 

in normal cellular processes (2,3). However, over the next decade following their discovery, 

relatively little progress was made in the way of identifying and characterizing new non-coding 

RNAs. The advent of high-throughput sequencing transformed basic science research and in 

particular, truly revolutionized the noncoding RNA field. Through the ENCODE (Encyclopedia 

of DNA Elements) project as well as other global sequencing initiatives, it became clear that up to 

76% of the mappable human genome is transcribed and a large number of these transcripts do not 

code for proteins (4,5,6). While the exact number of ncRNAs is debated, these sequencing efforts 

have shown that ncRNAs are ubiquitously expressed, with numbers rivaling those of coding 

RNAs. As the examples of ncRNAs increased, they began to be subdivided into distinct categories. 

One subcategory is long non-coding RNAs (lncRNAs), somewhat arbitrarily defined as RNA 

species greater than 200 bp, which do not code for proteins (7). LncRNAs can be further 

subdivided based on their relative position to neighboring genes. Antisense lncRNAs are lncRNAs 

that are transcribed from the opposite strand of a protein-coding gene, lncRNAs located within the 

introns of protein coding genes are termed intronic lncRNAs, and lncRNAs that lie in regions of 

the genome between genes are called lincRNAs (long intervening non-coding RNAs). More 

recently, new sub-classes of lncRNAs have emerged called eRNAs (enhancer RNAs) and 

circRNAs (circular RNAs).  

lncRNAs 

The newfound enthusiasm for the lncRNA field was not without controversy. Several 

skeptics pointed out that a large fraction of the ncRNA transcripts identified in high-throughput 

datasets were not evolutionarily conserved and could be artifacts of transcriptional noise that serve 
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no functional role in cells (9). As criticism mounted, a landmark paper by Guttman et al. sought 

to tackle this issue by applying similar standards used for protein coding genes to lncRNAs. 

Coding genes were known to have a “H3K4-K36 signature” pattern, where H3K4me3 marks gene 

promoters and H3K36me3 covers gene bodies (10). When these same genomic features were used 

to define intergenic lincRNAs, Guttman et al. found that these lncRNAs were in fact evolutionarily 

conserved to a greater extent than 5’ and 3’ UTRs of protein coding genes, although less so than 

the coding regions of mRNA (11). However, the relatively lower level sequence conservation of 

lncRNAs is most likely due to the fact that RNA secondary structure is more resilient to mutations 

than that of protein coding genes. This allows lncRNAs a greater degree of evolutionary flexibility 

and could more rapidly give rise to new functional roles in the cell. 

Although lncRNAs do not produce functional proteins, it is quite common for a lncRNA 

to have an open reading frame (ORF). LncRNAs are on average 500 bp in length and a large 

percentage of lncRNAs are over 2 kb. By random chance, a 2 kb lncRNA will have, on average, a 

200nt ORF. It is therefore critical to distinguish between true protein coding ORFs and those ORFs 

that are not translated and are only present by chance. There are several characteristics of protein 

coding genes that help distinguish between these two possibilities. Firstly, protein-coding genes 

will typically have annotated protein domains and the translated ORFs will usually share sequence 

homology to proteins in protein sequence databases. The second metric used is based on the 

observation that in protein coding regions, the evolutionary mutations in codons are not randomly 

distributed (i.e. there is a bias for silent substitutions), whereas the position of mutations in 

lncRNAs are randomly distributed within a given ORF (12). Over the years, several computational 

tools and sequencing assays have been developed to help determine the coding potential of a 

lncRNA [47,48]. One tool that has recently been adopted by the lncRNA field to measure the 
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coding potential of a lncRNA in silico is CPAT (coding potential assessment tool). CPAT 

combines 4 metrics: 1. ORF length, 2. ORF length relative to size of transcript, 3. Codon bias, 4. 

Hexamer usage bias (i.e. how frequently one sees two adjacent codons in a protein coding 

transcript). This tool has proven extremely effective in predicting the coding potential of a lncRNA 

[48].  

High throughput sequencing of polysome associated RNAs found that many lncRNAs 

actually interact with the ribosome and this led many to speculate about the coding potential of 

lncRNAs. Newer methodologies used ribosome RNase footprinting followed by high throughput 

sequencing, Ribo-seq (Ribosome profiling), to find not only which RNAs are interacting with 

ribosome but how ribosomes are located along the transcript. This is important as actively 

translated mRNA have ribosomes preferentially located over the coding region and sequencing 

read peaks are staggered at 3 nt (nucleotide) intervals, consistent with the size of a codon. Analysis 

of Ribo-seq data has shown that although some lncRNAs do in fact interact with ribosomes, the 

pattern of ribosome association is not consistent with that of actively translated RNAs. 

As mentioned earlier, the two classic examples of lncRNAs are Xist and H19. H19 is a 2.3 

kb lncRNA which is highly expressed in the developing embryo in endodermal and mesodermal 

lineages. After birth, H19 expression is rapidly shut down and residual H19 transcripts are only 

detected in skeletal muscle. Interestingly, the paternal H19 locus is imprinted during development 

and H19 is therefore only transcribed from the maternal allele (2). Recently, studies have shown 

that H19 also encodes a microRNA, miR-675, which is involved in muscle development and 

differentiation (13). Perhaps the most studied lncRNA to date is Xist, the “Mother of all lncRNAs”. 

Xist is a 17- to 20-kb lncRNA involved in X-chromosome inactivation, which allows for equal 

expression of X-linked relative to autosomal genes in both males and females, although the latter 



 11 

have two copies of the X chromosome per cell. The process of X-chromosome inactivation is a 

beautiful example of the interplay between multiple lncRNAs that act in both cis- and trans-. Early 

during development, a short 1.6 kb Xist isoform, RepA, is produced and recruits PRC2, a 

repressive histone methyltransferase complex, to the Xist promoter (14). Interestingly, PRC2 is 

unable to bind to the Xist promoter due to the production of Tsix, Xist’s antisense transcript. It is 

only when Tsix expression is repressed, that PRC2 is able to dock to the Xist promoter. PRC2 

docking is also dependent on the presence of the transcription factor YY1, which is only localized 

on the future inactive X-chromosome (15). The trans- acting lncRNA Jpx is then recruited to the 

Xist promoter and promotes the expression of Xist (16). Newly transcribed Xist then binds PRC2 

and deposits repressive methylation marks along the length of the inactive X-chromosome, 

shutting down gene expression (14). Other work has suggested that Xist interacts with SHARP 

and silences transcription through HDAC3 [49]. 

Due to the explosion in next generation sequencing, the number of predicted lncRNAs 

quickly increased, while the reports of characterized lncRNAs lagged behind. This began to change 

in the 2010’s, when multiple studies began to appear in the literature that showed detailed 

mechanisms as well as associations between lncRNAs and a wide variety of pathologies. Through 

these functional characterizations, the functional diversity of lncRNAs has begun to be fully 

appreciated. It is helpful to think of the various ways a lncRNA might function based on the cellular 

compartment that it preferentially resides in. Broadly speaking, one can separate lncRNAs into 

mainly nuclear or mainly cytoplasmic, and I will discuss mechanistic examples of each in the 

following sections. 

Function of  Nuclear LncRNAs 

Nuclear lncRNAs are traditionally thought of as gene expression regulators that carry out 
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their functions in cis or in trans through recruiting chromatin modifying complexes to target gene 

promoters. One of the most iconic lncRNA is HOTAIR, which is best known for being the first 

and best characterized example of an lncRNA playing a role in oncogenesis. HOTAIR is a 

lincRNA transcribed from the HOX loci that was first identified as being drastically deregulated 

in breast tumors [50]. HOTAIR is significantly overexpressed in breast cancer metastases and its 

expression level is associated with overall survival and risk of secondary metastatic events. In vitro 

studies have shown that HOTAIR interacts with PRC2 and promotes invasion in breast cancer cell 

lines. When overexpressed in breast cancer cells, HOTAIR is capable of relocating PRC2 on a 

genome-wide scale and induces a transcriptional profile similar to a more undifferentiated 

phenotype (17). Many other reports have shown that in addition to PRC2, lncRNAs interact with 

a wide variety of chromatin modifying complexes, such as PRC1, AR (androgen receptor) and 

LSD1, to regulate target gene expression [51](18,19). Initially, it was argued that nuclear lncRNAs 

primarily act in cis, only affecting the expression of genes in relative close proximity to their 

transcription site. This assertion was based on observations that there is significant correlation 

between the expression levels of lncRNAs and their adjacent protein-coding genes (20). However, 

subsequent studies have found that the correlations in gene expression seen with lincRNAs are 

similar to those found with protein-coding genes (21). In fact, a recent report which examined the 

expression profiles of embryonic stem cells following knockdown of over 140 lincRNAs showed 

that the vast majority of the lincRNAs (~95%) had minimal effects on neighboring gene 

expression, suggesting that most lncRNAs function in trans (22).  

 Although many of the characterized primarily nuclear lncRNAs function in this way, there 

is a growing body of evidence that lncRNAs function in other capacities, including acting as a 

molecular decoy for steroid receptors, regulating gene expression by promoting chromatin looping, 
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and altering mRNA splicing [52–54]. GAS5 (growth arrest-specific 5 noncoding RNA) is highly 

upregulated in serum- or nutrient-starved growth arrested cells [55]. Interestingly, GAS5 up-

regulation is important to increase the cells susceptibility to undergo apoptosis. Through a yeast 

two-hybrid screen, the 5’ end of GAS5 was found to interact with the DBD (DNA binding domain) 

of GR (Glucocorticoid receptor), which is also a key player in apoptotic cell fate decisions [52,56]. 

Further supporting this association, cytoplasmic GAS5 translocates to nucleus along with GR 

following treatment with dexamethasone. Surprisingly, the secondary structure of GAS5 is 

predicted to form several stem loops that resemble a GRE (glucocorticoid response element), 

which is critical for the GAS5-GR interaction. Through this interaction, GAS5 acts as a GRE decoy 

and inhibits many GR regulated genes [52]. Another function of lncRNAs is facilitating and 

augmenting chromosomal architecture. FIRRE (functional intergenic repeating RNA element) was 

first identified in a loss-of-function screen for lncRNAs involved in adipogenesis, and it is encoded 

on the X-chromosome, where it escapes X-chromosome inactivation [57]. FIRRE is localized in 

the nucleus and forms a roughly 5 MB domain surrounding its own gene locus. FIRRE also 

interacts with 5 other gene loci on different chromosomes, however these chromosomal loci are in 

close 3-dimensional proximity in the nucleus. Importantly, the spatial proximity of these disparate 

gene loci is dependent on FIRRE and hnRNPU, a nuclear matrix protein that interacts with FIRRE 

in one of its 156 base repeating RNA domains [54]. A separate example of a nuclear lncRNA 

function is asFGFR2, an antisense lncRNA that is on the opposite strand of FGFR2 (Fibroblast 

growth factor receptor 2). FGFR2 displays cell type-specific splicing patterns, with exonIIIb  

included in epithelial cells but excluded in mesenchymal cells. The inclusion of exonIIIb in 

epithelial cells is dependent on asFGFR2, which when expressed, interacts with and recruits PRC2 
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and KDM2a to the FGFR2 loci and deposit H3K27me3 along the gene body, leading to a 

chromatin environment that facilitates the inclusion of exonIIIb [53]. 

Functions of Cytoplasmic LncRNAs 

There are many examples of lncRNAs that function in diverse cellular processes in the 

cytoplasm. As with mainly nuclear lncRNAs most of the characterized cytoplasmic lncRNAs carry 

out their function through base-pairing with a target RNA, although several notable exceptions 

exist (REF). Perhaps the best known role for cytoplasmic lncRNAs is acting as ceRNAs 

(competitive endogenous RNAs), by titrating away microRNAs from other transcriptional targets 

[58]. More recently, newer functions of cytoplasmic lncRNAs have been characterized, including 

increasing the efficiency of target mRNA translation, preventing ribosome binding on target 

mRNAs, increasing mRNA half-life and inhibiting signaling pathways through steric hindrance of 

signaling substrates [59–61]. 

Uchl1-as is an antisense lncRNA that partly overlaps with the protein coding gene Uchl1, 

that is highly expressed in ventral midbrain of mice and is downregulated in both in vitro and in 

vivo models of Parkinson’s disease [61,62]. Uchl1-as is primarily located in the nucleus under 

basal conditions, however under stress conditions, Uchl1-as translocates to the cytoplasm and base 

pairs with a complementary region in the 5’end of Uchl1. This interaction enhances the 

translational efficiency of Uch1 mRNA by promoting polysome formation through an embedded 

inverted SINEB2 element on Uchl1-as [61]. Another example of a lncRNA effecting protein levels 

of a target gene is lincRNA-p21, which is a 3 kb lncRNA located 15 kb upstream of p21 [63]. 

lincRNA-p21 interacts with target RNAs including CTNNB1 and JUNB and decreases their 

protein levels by lowering their association with polysomes in a Rck dependent manner [64]. 

lincRNA-p21 levels are carefully regulated by the RNA binding protein HuR, which recruits 
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Ago2-let7, leading to the lincRNA-p21degradation [64]. 

One unique example of a cytoplasmic lncRNA that does not function through base-pairing 

with a target RNA is NKILA (NF-kB interacting lncRNA) [59]. NKILA is upregulated in response 

to many inflammatory stimuli that act through the NF-kB pathway. Interestingly, through binding 

p65, NKILA interacts with the NF-kB-IkB signaling complex. By binding this signaling complex, 

NKILA blocks the IKK phosphorylation site of IkB and inhibits the phosphorylation. In this way, 

NKILA plays an important role in a negative feedback loop to tamp down NF-kB signaling, 

following an initial boost in signaling. Furthermore, NKILA is commonly repressed in breast IDC 

(invasive ductal carcinoma) and patients with lower expression of NKILA have a worse prognosis 

compared to patients with high expression of NKILA [59]. 

 TINCR (terminal differentiation-induced ncRNA) is a lncRNA that is critical in the 

epidermal differentiation of human keratinocytes, that was originally identified through a 

comparative transcriptomic screen in differentiating keratinocytes [60]. TINCR is primarily 

located in the cytoplasm (over 80% present in the cytoplasm) and knockdown of TINCR causes a 

dramatic decrease in keratinocyte differentiation. TINCR’s role in epidermal differentiation is 

mediated by STAU1 (staufen1), an RNA binding protein involved in mRNA turnover (REF). 

Global analysis of RNAs that interact with TINCR found a 25-nt “TINCR-box” motif that was 

enriched in all TINCR-STAU1 interacting RNAs. The TINCR-STAU1 complex promoted 

increased stability of TINCR-box containing target RNAs, including some mRNAs that are known 

to function in epidermal differentiation [60]. TINCR further illustrates the functional versatility of 

lncRNAs as a novel medium for cellular regulation. In addition to the canonical lncRNAs 

mentioned above, newer classes of lncRNAs have been identified that play a role in many 

biological properties, including circRNAs and eRNAs. 
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eRNAs 

eRNAs are noncoding RNAs that are transcribed from enhancers, defined as regions of the 

genome distal to coding genes that are occupied by p300 and RNA polymerase II, and typically 

contain stretches of H3K4 mono-methylation (H3K4me1). Recent transcriptome studies have 

found that many of these regions, which were long thought to be transcriptionally silent, are 

actually sites of active transcription to produce eRNAs. In contrast to typical lncRNAs, eRNAs 

mostly lack a poly-A tail, although this is not a steadfast rule. Furthermore, many eRNAs display 

changes in expression in response to specific stimuli, suggesting that they may not be 

transcriptional noise and in fact have regulatory  capacity [65]. eRNAs have been shown to 

function in a couple of contexts, although it should be mentioned that it can be experimentally 

difficult to separate the function of the actual enhancer and the eRNAs that are transcribed from 

them. Examining ‘de novo’ enhancers, Kaikkonen et al. demonstrated that the act of an RNA 

polymerase traversing an enhancer is necessary to deposit the requisite “enhancer” chromatin 

marks, independent of an actual transcript being produced initially [66]. Other work has shown a 

direct role of the eRNA transcript itself in regulating its neighboring gene expression by promoting 

the formation of chromatin loops through interactions with cohesion and the mediator complex 

[67,68].  

MUNC (MyoD upstream noncoding RNA) is a ncRNA that arises from the DRR (distal 

regulatory region) of the key muscle transcription factor MyoD, and falls under the conventional 

definition of an eRNA [69,70]. Interestingly, knockdown of MUNC leads to a decrease in MyoD 

RNA. However MyodD RNA could be induced when MUNC was exogenously overexpressed, 

arguing that MUNC can function in trans. Furthermore, knockdown or overexpression of MUNC 

causes changes in a large array of genes, which further argues for MUNC acting in trans [69]. The 
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trans action of eRNAs is not purely limited to MUNC, as another group identified KLK3-eRNA, 

an eRNA from KLK3 (kallikrein related peptidase 3) enhancer that functions in trans [71]. MUNC 

and KLK3-eRNA, illustrates the issue of the definition of eRNAs being purely geographic (i.e. 

arise from genomic enhancers) and not necessarily being coupled to its function. In this way, the 

functional distinctions between some “eRNAs” and “lncRNAs” can become difficult to ascertain 

[69,70]. Indeed, there are new attempts to subdivide eRNAs into three categories based on their 

function; class I eRNAs have no known function associated with the act of their transcription or 

the RNA molecule derived from the enhancer; class II eRNAs are eRNAs whose function is solely 

derived from their transcription; class III eRNAs functions are mediated through the actual eRNA 

transcript [72]. More work is needed to fully understand the functional distinctions between 

“lncRNAs” and “eRNAs”.  

circRNAs 

 CircRNAs (circular RNAs) are a species of covalently closed lncRNA that originates from 

RNA polymerase II pre-mRNAs transcript back-splicing events [73]. A few examples of circRNAs 

were first described in the early 90s and thought to be rare byproducts of faulty splicing events 

[73–75]. More recently, high throughput sequencing of non-polyadenylated RNAs has found that 

circRNAs are more abundant then originally believed [76–78]. Some have argued that because 

circRNAs are present at such low levels,  they don’t have a functional role in the cell and are 

merely erroneous back-splicing of exons that occur stochastically during pre-mRNA processing. 

Several lines of evidence argue against these claims. Firstly, although it is true that most circRNAs 

are present at low levels, some circRNAs are highly expressed and are actually present at a higher 

abundance than their “properly” processed mRNA counterparts [79]. Secondly, the abundance of 

a given circRNA is not correlated with the levels of its parental transcript, arguing against 
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circRNAs being produced through stochastic processes [79–81]. Lastly, many circRNAs display 

cell-type-specific expression patterns that are comparable to the levels of cell-type specific 

expression seen in mRNAs [79,82]. 

 Even though circRNAs are derived from mRNA exons and present primarily in the 

cytoplasm, endogenous circRNAs have not been found to be translated or associated with the 

ribosome [81]. The functional relevance of circRNAs has long been questioned, but recent work 

has identified a role for circRNAs in sponging microRNAs away from their parental transcripts, 

and presumably other transcripts with seed sequences to the sponged microRNA [76]. ciRS-7 is a 

circular RNA derived from CDR1 (cerebellar degeneration protein 1), and contains more than 60 

binding sites for mir-7 and is strongly associated with Ago. ciRS-7 is highly expressed in the brain 

of mice and overexpression ciRS-7 in the brain of zebrafish leads to defects in midbrain 

development [76]. Other examples of circRNAs have shown that they can promote transcription 

in cis and in trans [83]. circRNAs represent a new field of lncRNA biology with promising 

implications for normal cell physiology and pathology, although more work is needed to determine 

how pervasive the functional relevance of circRNAs actually is. 

Role of lncRNAs in the Nervous System 

 Several groups have examined what role if any, lncRNA play in the nervous system. One 

group identified 36 lncRNAs that were consistently downregulated when human ESCs (embryonic 

stem cells) were differentiated to NPCs (neural progenitor cells). Of these lncRNAs, three were 

found to be critical for differentiation of ESCs to NPCs, two of which,  carry out this neurogenic 

role through interactions with REST and SUZ12 [84]. Another group performed an shRNA screen 

for lincRNAs that play a role in maintaining mESCs in a pluripotent state. From this initial screen, 

they identified TUNA (Tcl1 Upstream Neuron-Associated lincRNA, also named megamind) as 
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being a lincRNA that is critical for proper commitment to the neural lineage. TUNA’s neurogenic 

role is mediated through interactions with hnRNP-K, NCL, and PTBP1 and recruiting this complex 

to the promoters of neural genes, including Sox2, and Fgf4  during mESC differentiation. TUNA 

is also highly conserved and has a homolog in zebrafish, that when knocked down causes 

impairments in locomotor function [85]. 

 One of the first mechanistic description of a neural specific lncRNA, was EVF2. EVF2 is 

a Shh (sonic hedgehog) regulated lncRNA that is located in the highly conserved Dlx-5/6 enhancer 

[86]. EVF2 functions both in cis, by forming anti-sense complementarity with DLX6 and trans by 

regulating the localization of DLX and MECP2 at the Dlx5/6 promoter. Furthermore, mice with 

impaired production of EVF2 have fewer GABAergic interneurons in various regions of the brain 

[87]. PNKY is another example of a conserved lncRNA that plays a critical role in neurogenesis 

and neural differentiation. PNKY was first identified by RNA-seq of various mouse brain regions 

and was found to be specifically expressed in the SVZ (subventricular zone) of adult mice, a region 

of the brain that is rich with NSCs [88,89]. Interestingly, knockdown of PNKY in NSCs in both 

an in vitro system and in vivo in SVZ NSCs, demonstrated a dramatic effect on stem cell dynamics, 

with a large reduction in the NSC population and an increase in transit-amplifying neuronal 

precursor population. The control of neuronal stem cell fate governed by PNKY appears to be 

mediated through its association with the RNA splicing protein, PTBP1, and altering the 

expression and splicing of genes involved in controlling cell lineage phenotypes [90]. 

 In addition to controlling cell fate decisions in neuronal precursors, lncRNAs also play a 

role in developing neuronal connections. BDNF-AS is an antisense lncRNA that partially overlaps 

(over 200 bp)  the gene for the neurotrophin, BDNF (brain-derived neurotrophic factor) [91,92]. 

BDNF-AS regulates BDNF protein levels through RNA-RNA interactions and when this 
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interaction is disrupted, BDNF protein levels increase by as much as 7 fold. Blocking or degrading 

BDNF-AS in vitro and in vivo resulted in an increase in neuronal outgrowth, survival and 

proliferation [92]. Another well characterized example is BC1/BC200, a lncRNA first identified 

in rats that is expressed almost entirely in the brain [93,94]. Following transcription, BC1/BC200 

is actively transported from the neuron soma to the dendrites, due to a 62 nucleotide signal 

sequence in the 5’ region of BC1/BC200 [95]. Once in the dendrites, BC1/BC200 decreases local 

translation by interacting with components of the translational machinery, eIF4a and PABP (polyA 

binding protein) [96]. The ultimate outcome of this translational inhibition is local control of 

synapse turnover and loss of BC1/BC200 in animal models leads to neuronal hyperexcitability and 

susceptibility to epileptogenic stress [96,97]. Furthermore, BC1/BC200 null mice have increased 

anxiety and display reduced exploratory behavior [98]. Taken together, these lncRNAs 

demonstrate the profound role that lncRNAs play in nervous system development and plasticity in 

zebrafish, mice and presumably humans. 

lncRNAs in Noncancerous Brain Pathologies 

 In addition to being important in normal physiological processes, a growing body of work 

has provided evidence for lncRNAs being involved in several neural pathologies. Although there 

are some mechanistic studies implicating lncRNAs, much of the work associating lncRNAs to 

brain pathologies has been through GWAS (genome-wide association studies) and RNA-seq 

analysis.  A GWAS analysis for SNPs associated with ASD (autism spectrum disorders) identified 

multiple variants near MSNP1AS (moesin pseudogene 1, anti-sense), a lncRNA that shares a large 

degree of sequence complementarity with MSN (moesin), a protein involved in neuronal 

architecture [99,100]. MSNP1AS interacts with MSN through direct RNA-RNA interactions and 

increases MSN protein level. Importantly, the GWAS hits were all associated with changes in 
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MSNP1AS expression levels, and MSNP1AS and MSN are found at higher levels in the brains of 

ASD patients, relative to normal brain controls [99]. A different example of a lncRNA involved in 

brain pathology is BACE1-AS. BACE1-AS is an evolutionarily conserved lncRNA that is 

antisense to BACE1 (β-secretase-1), an aspartic acid protease that is involved in cleavage of APP 

(amyloid precursor protein) leading to the production of amyloid-β 1-40 and by extension plays a 

direct role in the Alzheimer disease process [101]. BACE1-AS is upregulated in response to many 

cellular stresses, including amyloid-β cleavage products in-vitro. BACE1-AS expression levels 

are positively correlated with BACE-1 RNA and protein levels in vitro and in vivo. Interestingly, 

BACE1-AS stabilizes BACE1, through base pairing interactions, which spans a miR-485-5p target 

site on BACE1. By base pairing with BACE1, BACE1AS occludes the microRNA binding site 

and increases the half-life of BACE1 mRNA [102]. Furthermore, BACE1-AS is present at a higher 

abundance in Alzheimer’s disease patient brains [103].  

lncRNAs in Gliomas 

 LncRNAs are involved in many disease processes including gliomagenesis and recent 

studies have begun to show how lncRNAs are functioning in gliomas. HIF1A-AS2 (hypoxia-

inducible factor 1 alpha-antisense RNA 2) is a lncRNA found to be highly expressed in 

mesenchymal subtype GSCs (GBM stem-like cells) compared to the other three GBM subtypes. 

Knockdown of HIF1A-AS2 caused a decrease in mesenchymal GSCs cell growth and neuroshpere 

formation in vitro and reduced xenograft tumor size in mice. Interestingly, HIF1A-AS2 is 

upregulated following hypoxic stress in mesenchymal GSCs but not proneural subtype GSCs. 

HIF1A-AS2 interacts with IGF2BP2 and DHX9 and this interaction is critical for the expression 

of HMGA1, a direct transcriptional target of both IGF2BP2 and DHX9. Another example of a 

lncRNA that plays an important role in gliomas is HULC (highly up-regulated in liver cancer). 
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HULC was first identified in a screen to identify deregulated genes in hepatocellular carcinoma 

[104]. Subsequent work has shown that HULC is dysregulated in a wide variety of tumors 

including esophageal carcinoma and pancreatic adenocarcinoma [105–108]. HULC is upregulated 

in gliomas, with GBM and grade III gliomas having the highest expression. HULC expression is 

positively correlated with angiogenesis associated factors ESM-1and VEGF, and HULC levels 

were positively correlated with microvessel density in patient tumors [105]. HULC knockdown 

has dramatic effects on many oncogenic phenotypes, including decrease in cell growth, colony 

formation, invasion adhesion and migration. HULC seems to alter the PI3K/AKT/mTOR signaling 

pathway through changing the levels of TGF-β1, although there is no clear mechanistic 

understanding on how HULC is actually doing this [105]. 

Several tumor suppressive lncRNAs have also been identified that play a role in glioma 

development. MEG3 is an imprinted, maternally expressed, lncRNA that is highly expressed in 

normal brain [109,110]. MEG3 is commonly downregulated in gliomas and its down-regulation is 

associated with worse patient outcomes. Reestablishing MEG3 expression in glioma cell lines 

results in a decrease in cell proliferation and increased apoptotic cell death, which is partly due to 

activating the p53 pathway by suppressing MDM2 [111]. Moreover, MEG3 knockout mice show 

over vascularization in fetal brains, suggesting that MEG3 downregulation in gliomas may not 

only function to increase cell growth but may also have pro-angiogenic functions [112]. GAS5 is 

another example of a tumor suppressive lncRNA in gliomas. GAS5 is strongly downregulated in 

GBM cell lines and overexpression of GAS5 results in cell death due to increases in bmf (Bcl-2-

modifying factor) and subsequent activation of apoptosis. Interestingly, unlike previous reports of 

GAS5 acting as DNA-element decoy, in this context, GAS5 acts as a ceRNA by titrating mir-222, 

which directly targets bmf [52,113].  
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Since the early 80’s when lncRNAs were first discovered, scientists have steadily made 

progress in increasing our understanding of their expression and function. Indeed, detailed 

descriptions of lncRNAs have broadened our understanding of cellular regulation and physiology. 

While progress has been made in many fields of lncRNA biology, relatively little progress has 

been made in identifying and characterizing lncRNAs in gliomas. Indeed, much work is still 

needed to fully catalog the lncRNAs that are deregulated in gliomas and to functionally 

characterize those associated with patient survival. This thesis will detail our work to 

comprehensively identify deregulated lncRNAs in gliomas and begin to functionally understand 

how a subset of these lncRNAs play a role in glioma tumor biology. 
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Abstract 

Background 

Each year, over 16,000 patients die from malignant brain cancer in the US. Long noncoding 

RNAs (lncRNAs) have recently been shown to play critical roles in regulating neurogenesis and 

brain tumor progression. To better understand the role of lncRNAs in brain cancer, we performed 

a global analysis to identify and characterize all annotated and novel lncRNAs in both grade II 

and III gliomas as well as grade IV glioblastomas (glioblastoma multiforme [GBM]). 

Methods and Findings 

We determined the expression of all lncRNAs in over 650 brain cancer and 70 normal brain 

tissue RNA sequencing datasets from The Cancer Genome Atlas (TCGA) and other publicly 

available datasets. We identified 611 induced and 677 repressed lncRNAs in glial tumors relative 

to normal brains. Hundreds of lncRNAs were specifically expressed in each of the three lower 
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grade glioma (LGG) subtypes (IDH1/2 wt, IDH1/2 mut, and IDH1/2 mut 1p19q codeletion) and 

the four subtypes of GBMs (classical, mesenchymal, neural, and proneural). Overlap between the 

subtype-specific lncRNAs in GBMs and LGGs demonstrated similarities between mesenchymal 

GBMs and IDH1/2 wt LGGs, with 2-fold higher overlap than would be expected by random 

chance. Using a multivariate Cox regression survival model, we identified 584 and 282 lncRNAs 

that were associated with a poor and good prognosis, respectively, in GBM patients. We 

developed a survival algorithm for LGGs based on the expression of 64 lncRNAs that was 

associated with patient prognosis in a test set (hazard ratio [HR] = 2.168, 95% CI = 1.765–

2.807, p < 0.001) and validation set (HR = 1.921, 95% CI = 1.333–2.767, p < 0.001) of patients 

from TCGA. The main limitations of this study are that further work is needed to investigate the 

clinical relevance of our findings, and that validation in an independent dataset is needed to 

determine the robustness of our survival algorithm. 

Conclusions 

This work identifies a panel of lncRNAs that appear to be prognostic in gliomas and provides a 

critical resource for future studies examining the role of lncRNAs in brain cancers. 
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Introduction 

Malignant gliomas are the most common aggressive primary brain tumor, with nearly 

23,000 new cases diagnosed each year in the US [1]. The most aggressive malignant gliomas, 

anaplastic astrocytoma and glioblastoma multiforme (GBM), have 5-y survival rates of 23% and 

5%, respectively. World Health Organization grade II and III gliomas are less aggressive than 

grade IV glioblastomas (GBMs), and have been grouped together by The Cancer Genome Atlas 

(TCGA) as lower grade gliomas (LGGs). Once thought to be a single disease, GBMs are now 

recognized as having a considerable level of intertumor heterogeneity, and studies have found 

that GBMs can be subdivided into four subtypes, proneural, neural, classical, and mesenchymal, 

based on their transcriptional profile [2,3]. Importantly, these subtypes are associated with 

differing clinical outcomes, including varying responses to intensive therapy and differences in 

overall survival [3]. Similar to GBMs, LGGs can be categorized into distinct subtypes, IDH1/2 

mut, IDH1/2 mut 1p19q codeletion, and IDH1/2 wt, based on IDH1/2 mutational status and the 

presence of a codeletion of 1p19q [4]. Each subtype has distinct clinical phenotypes, with the 

IDH1/2 wt subtype being the most aggressive and dissimilar to the other LGG subtypes [4,5]. 

Although knowledge of tumor subtype has clinical utility, the best prognostic indicator for 

patients with glial tumors is the mutational status of IDH1 and IDH2 [6]. In LGGs, patients with 

wild-type IDH1/2 have a median survival of 1.7 y, while those with mutant IDH1/2 have a 

median survival between 6.3 and 8.0 y. In GBMs, the corresponding median survival estimates 

are 1.1 and 2.1 y for wild-type and mutant IDH1/2, respectively [4]. 

Proteins have been thought to be the primary functional effectors of cells until relatively 

recently, when the roles of noncoding RNAs (ncRNAs) began to be appreciated for their 

contributions to most biological processes. Spurred by large sequencing consortia such as 
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ENCODE and FANTOM, interest in ncRNAs has grown rapidly, in part due to the discovery 

that the vast majority of the mammalian genome is transcribed and that most of the resulting 

transcripts do not code for proteins [7–9]. Long noncoding RNAs (lncRNAs) are a class of 

ncRNAs greater than 200 bp in length that do not code for a protein. lncRNAs have 

mechanistically diverse functions in the cell, and in the nucleus have been shown to regulate 

gene expression either in cis or in trans by recruiting chromatin-modifying complexes to 

promoters of target genes [10,11]. Also, lncRNAs have been found to regulate gene expression 

by promoting long-distance genomic interactions [12]. Other, mainly cytoplasmic, lncRNAs 

have been shown to regulate the protein concentrations produced from target genes in part by 

affecting mRNA stability or the translational efficiency of an mRNA [13–15]. 

Recent work has shown that lncRNAs play a critical role in various biological pathways 

including the immune system [16], muscle differentiation [17,18], neural lineage commitment, 

lineage specification, and synaptogenesis [19–23]. In addition to their role in normal 

physiological processes, lncRNAs are also important regulators of disease processes [24,25]. In 

cancer, lncRNAs can act as either tumor suppressors or oncogenes, and have been shown to 

regulate tumor growth and metastasis in breast, prostate, and liver cancer [10,26–28]. Although 

some lncRNAs have been linked to brain tumor development and pathogenesis, the overall study 

of lncRNAs in brain tumors has lagged behind [29–32]. In this study, we sought to categorize all 

dysregulated lncRNAs in glial tumors and to identify lncRNAs that are associated with patient 

prognosis. 

Methods 

Ethics Statement 
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All patient samples, including 15 primary GBM specimens and five normal brain 

specimens, were obtained from consented patients undergoing surgical treatment at the 

University of Virginia and were acquired in accordance with a protocol approved by the 

University of Virginia’s institutional review board. 

Planning the Analysis 

There was no protocol or prospective analysis plan for the study. Unaligned sequencing 

reads for TCGA GBMs and LGGs were downloaded from the Cancer Genomics Hub. Normal 

brain sample SRA files (SRP033725, SRP045638, SRP044668, and SRP048683) [33–36] were 

downloaded from the Sequence Read Archive (SRA) database on October 4, 2014. Most RNA 

sequencing (RNA-seq) samples in TCGA originate from patients from the US; however, TCGA 

collects patient samples from other countries as well, including Canada, Russia, and Italy. The 

LGG survival algorithm was devised in November 2015; 70% of patients were used as a test set, 

and 30% were retained for a validation set. Following suggestions by a reviewer in September 

2016, this division was subsequently changed to 60% of patients in the test set and the remaining 

40% in the validation set. 

Identification of Novel lncRNAs and Quantification of lncRNA Abundance 

The aforementioned SRA files were converted to fastq files using the SRA Toolkit 

v2.3.5. All fastq files were aligned to the hg38 reference genome with Tophat2 using default 

settings [37]. Novel transcripts (transcripts not found in reference transcript annotation files: 

GENCODE and RefSeq) were identified in each sample using Cufflinks2 de novo assembly [38]. 

A consensus transcript assembly was generated using Cuffmerge. Novel transcripts whose 

genomic coordinates did not intersect with known transcripts from a custom GTF file consisting 



	 41	

of transcripts from GENCODE v21, RefSeq, and Cabili et al. [39] were kept for further 

validation. 

We determined the coding potential for each novel transcript using CPAT (Coding-

Potential Assessment Tool) and intersection with a mass spectrometry database. First, the in 

silico coding potential of each novel transcript was assessed using CPAT [40], and any 

transcripts with a CPAT score above 0.5242 were considered transcripts of unknown coding 

potential and were not included in downstream analysis. Second, we mapped all unique peptides 

from the ProteomicsDB [41] mass spectrometry database to all known proteins. All potential 

ORFs within each novel transcript were translated, and all unmapped peptides were mapped on 

the translated ORFs. Any novel transcript with more than one mapped peptide was not 

considered for downstream analysis. All novel transcripts that met these criteria were considered 

as novel lncRNAs and added to our finalized GTF file. Using the finalized GTF file, the 

expression of all genes was quantified using Cuffquant and Cuffnorm. 

Validating lncRNA Expression in Clinical Samples 

Fresh-frozen GBM and normal brain tissue samples were obtained from the University of 

Virginia, and RNA was isolated using Trizol (Thermo Fisher). RNA treated with DNase (RQ1 

Promega, Thermo Fisher) was used for reverse transcription with SuperScript III (Thermo 

Fisher). Quantitative real-time PCR (RT-PCR) was performed on tissue cDNA using SYBR 

Green (Thermo Fisher), and the expression of LINC00152, TUNAR, and LINC01476 was 

normalized to that of the housekeeping gene encoding actin. 

Identifying Differentially Expressed lncRNAs and lncRNAs Associated with Mutation 

Status and Subtype 
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To identify differentially expressed lncRNAs, we selected only lncRNAs with a median 

expression greater than 0.5 fragments per kilobase of exon per million fragments mapped 

(FPKM); 4,288 lncRNAs in LGGs and 3,297 lncRNAs in GBMs met this threshold and were 

used in our downstream analysis. Expression values for each lncRNA in 170 GBM samples, 497 

LGG samples (we removed 16 samples from our initial pool of 513 LGGs due to >15% of 

transcripts having expression values three standard deviations above or below the mean 

expression for all LGGs), and 78 normal tissue samples were used to calculate the Kolmogorov-

Smirnov test (KS test) statistic [42]. lncRNAs with a Benjamini-Hochberg-corrected false 

discovery rate (FDR) [43] of <0.05 and a fold change greater than or equal to four were 

considered differentially expressed. The correlation between copy number variation (CNV) and 

lncRNA dysregulation was determined by calculating the Spearman correlation coefficient 

between lncRNA expression and the copy number segment mean (Tier 3 TCGA data accessed 

from the Broad GDAC Firehose; https://gdac.broadinstitute.org) of the genomic region that gives 

rise to each lncRNA. lncRNAs with Spearman correlation coefficients greater than or equal to 

0.2 were considered to be correlated. The overlap between GBM and LGG differentially 

expressed lncRNAs was measured using the Jaccard index, a statistic that compares the 

similarity and divergence of two datasets, defined as the intersection of two datasets divided by 

the union of the datasets:  

To identify lncRNAs associated with individual somatic mutations, we separated patients into 

two groups based on the presence of nonsynonymous mutation or a non-inframe insertion or 

deletion in commonly mutated protein-coding genes (prevalence of 5% or greater). Differential 

expression was measured using the same statistical method mentioned above, with a log2 fold 

change of greater than 0.5 as a cutoff. 
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Subtype-associated lncRNAs were selected by separating tumors into groups based on 

their subtype and using the KS test statistic to determine if the expression of a given lncRNA 

was different in a specific subtype (FDR < 0.05). Specifically, a lncRNA was considered subtype 

specific only if its expression was statistically different from each other subtype in a paired 

comparison. GBMs were separated into subtypes based on predesignated subtyping (Cancer 

Genome Browser). LGGs subtypes were determined by identifying the mutational status of 

IDH1 or IDH2 from TCGA’s preprocessed mutation calling data and identifying LGGs with 

1p19q deletions from TCGA’s preprocessed CNV data. The statistical significance of the overlap 

between GBM and LGG subtype-specific lncRNAs was determined by comparing the observed 

lncRNA overlap to the overlap obtained through 1,000 random iterations of the two sample sets, 

keeping the number of lncRNAs in each sample equal to that in the observed subtype-specific 

lncRNA sets. 

LGG Survival Prediction 

To create a lncRNA survival model for LGGs, we first randomly selected 60% of patients 

to serve as a test set and reserved the remaining 40% of patients for independent validation. 

Random subsamples of 66% of the test set of patients were subjected to a multivariate Cox 

regression [44] survival model. This was repeated with 100 random subsamples from the test set 

of patients. Age, grade, sex, IDH1/2 mutational status, and inverse normalized lncRNA 

expression levels were used as variables in the LGG survival model. In total, 64 lncRNAs had 

statistically significant Cox coefficients in 80% of the 100 subsamples and were included in our 

survival algorithm. To combine the predictive power of the prognostic lncRNAs, the following 

steps were taken. For every patient in our test set, the expression of each prognostic lncRNA was 

compared to the average expression of that lncRNA in patients from the test set. If the absolute 
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value of the expression Z-score of a given lncRNA was ≥1, the median Cox coefficient of that 

lncRNA from the 100 subsamples was added to a summed Cox coefficient, and this was repeated 

for each of the prognostic lncRNAs (S2 and S3 Figs). Patients were divided into two groups 

based on whether the summed Cox coefficient was positive (poor prognosis) or negative (good 

prognosis), consistent with the interpretation that a Cox coefficient > 0 indicates a poor outcome 

and a Cox coefficient < 0 indicates a good outcome. The survival differences of the groups were 

displayed on a Kaplan-Meier survival curve. We independently applied this survival algorithm, 

as mentioned above, to the validation patient set (the retained 40% of patients). 

lncRNAs Associated with Survival in GBM and GBM Subtypes 

Prognostic lncRNAs were identified using a Cox proportional hazard model similar to 

that stated above, except that we included age, sex, and inverse normalized lncRNA expression 

in the survival model. lncRNAs that were associated with prognosis (p-value < 0.05) were then 

separated based on whether they predicted a poor or good prognosis. We predicted the possible 

pathways that each lncRNA is involved in using guilt-by-association analysis, as previously 

described [45]. To identify lncRNAs that predict survival in each subtype, we performed Cox 

regression for each lncRNA in a given subtype (based on subtypes specified by the Cancer 

Genome Browser) and selected only lncRNAs with a p-value of ≤0.05. 

Results 

Identifying Novel lncRNAs 

In order to identify and catalog all novel lncRNAs (unannotated lncRNAs) in brain 

cancers, we used the Tuxedo Suite [37,38] to align, assemble, and quantify the expression of 

novel and annotated transcripts from 170 GBMs and 497 LGGs originating from TCGA and 78 

normal brain samples from both TCGA and publicly available datasets (Fig 1A). We initially 



	 45	

filtered all novel transcripts from the consensus transcriptome that (1) overlapped with any 

annotated transcript, (2) were less than 200 bp, or (3) did not contain a splice junction. We next 

assessed the coding potential of all novel transcripts using both in silico predictions as well as 

intersection with a human proteome database with peptide data from over 100 cell lines and 60 

tissues that, importantly, includes brain tissue [41]. 

CPAT (Coding-Potential Assessment Tool) determines the coding potential of a novel 

transcript based on relative ORF size, codon bias, and nucleotide hexamer bias. Any transcripts 

with a CPAT score ≥ 0.5242—a threshold that separates noncoding RNAs and protein-coding 

genes [46]—were removed from further consideration (Fig 1B). We next sought to determine if 

there was any biological evidence of protein products derived from the novel transcripts by 

parsing data from ProteomicsDB [41]. Peptides from the database were first aligned to all known 

proteins, and any unaligned peptide was then aligned to all translated ORFs within the novel 

transcripts. Any transcript with two or more mapped peptides, suggesting that it could potentially 

be a novel protein-coding gene, was removed from downstream analysis. Only seven novel 

transcripts had more than two aligned peptides and were removed from our downstream analysis, 

which is in line with other studies reporting low levels of spurious ribosomal associations with 

ncRNAs [47]. After filtering our list of novel transcripts, we identified over 2,700 novel 

lncRNAs. After cataloging the novel lncRNAs expressed in LGGs, GBMs, and normal brain, the 

analyses were carried out with the entire pool of lncRNAs (both novel and annotated) whose 

average expression was greater than 0.5 FPKM. 

Similar to protein-coding genes, lncRNAs are often transcribed by RNA polymerase II 

and share similar active chromatin marks of H3K4me3 on their promoters. We therefore tested 

whether H3K4me3 was located at the promoters of the novel lncRNAs identified in this study, 
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using H3K4me3 ChIP-seq data from U87 cells. The promoters of the novel lncRNAs were 

enriched in H3K4me3 chromatin marks relative to a randomized genomic control, although to a 

lesser extent than the promoters of protein-coding genes (Fig 1C). 

Dysregulation of lncRNAs in Brain Cancers 

Although recent work has begun to address the role of lncRNAs in brain tumors, very 

few lncRNAs have been found to be dysregulated in glial tumors [30,48]. Therefore, we sought 

to form a comprehensive list of all lncRNAs whose expression is significantly altered in brain 

tumors. TCGA RNA-seq data for glial tumors have very few accompanying normal brain 

samples, making comparisons between normal and tumor groups difficult due to a lack of 

adequate sample size. To bolster our ability to identify dysregulated lncRNAs in glial tumors, we 

included RNA-seq data from publicly available normal brain samples that were obtained from 

regions of the brain where glial tumors commonly arise (e.g., cortex, and excluding regions such 

as hippocampus and cerebellum; see Methods). 

Using our normal brain samples as a comparison, we tested whether any lncRNAs were 

over- or underexpressed in GBMs or LGGs relative to normal brain. We identified 454 

upregulated and 642 downregulated lncRNAs in GBMs and 403 upregulated and 340 

downregulated lncRNAs in LGGs that all had FDRs of <0.05, a statistic that takes into account 

errors that may arise from multiple testing (see Methods), and had fold changes greater than four. 

Of these dysregulated lncRNAs, over 80 were newly identified in this study. We tested whether 

the expression differences of the dysregulated lncRNAs could be explained by genomic CNV in 

GBMs and LGGs. Consistent with previous studies [49], only a fraction (19% and 20% from 

GBMs and LGGs, respectively) of the differentially expressed lncRNAs were associated 

(Spearman correlation coefficient of 0.2 or greater) with tumor CNV (S1 Fig). This suggests that 
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other mechanisms, in addition to CNV, play a role in regulating the changes in lncRNA 

expression observed in glial tumors. 

We have highlighted several differentially expressed lncRNAs in GBMs and LGGs in Fig 

2A and 2B, respectively. Of note, our analysis confirmed previous work that identified a 

lncRNA, CRNDE, that is upregulated in a number of tumors, including GBMs [29]; in our 

analysis, CRNDE is upregulated over 40-fold in GBMs compared to normal brain (Fig 2A). 

Furthermore, we also identified TUNAR as being severely downregulated in all glial tumors, 

almost 45-fold in GBMs and 14-fold in LGGs (Fig 2A and 2B). This is interesting, as other work 

has shown that TUNAR is a crucial positive regulator of neuronal development and 

differentiation in zebrafish, mice, and humans, which suggests that brain tumors require the 

downregulation of TUNAR in order to gain oncogenic properties and escape the restrictions on 

neuronal cell growth [50,51]. In order to further validate our analysis, we measured by RT-PCR 

the expression of one lncRNA, LINC00152, which is upregulated 20-fold in GBMs in TCGA 

data (Fig 2A). Using normal brain and GBM tumor tissue from patients at the University of 

Virginia, we validated the altered expression of three lncRNAs, LINC00152, TUNAR, and 

LINC01476. LINC00152 was found to have 3-fold higher expression in tumor tissue relative to 

normal brain tissue (Fig 2C). TUNAR and LINC01476, which both have lower expression in 

GBMs relative to normal brain tissue in TCGA, were found to have 12-fold and nearly 100-fold 

higher expression in normal brain tissue compared to GBM tissue, respectively (Fig 2C). 

We next tested whether there is any overlap between the differentially expressed 

lncRNAs in GBMs and LGGs. Interestingly, there was a large degree of overlap in both the 

upregulated and downregulated lncRNAs, with a Jaccard index (described in Methods) of 0.4 

and 0.45, respectively (Fig 2D). Unlike other tumors, whose tumor grades are more commonly 
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viewed as being along a disease continuum, GBMs and their grade II and III counterparts are not 

typically regarded as being different stages of a single disease [49]. However, our results suggest 

that there is a great deal of similarity in the lncRNA profile of GBMs and LGGs. Some of the 

overlap could be due to the need of glial tumors to downregulate genes related to the 

differentiation of glia or neurons, though it is unlikely that such de-differentiation would account 

for such a high degree of overlap between LGGs and GBMs. 

lncRNAs Associated with Patient Tumor Mutation Status 

Somatic mutations are well-known drivers of tumorigenesis, and their profound effects 

on the cell’s transcriptional landscape have been well characterized [52–54]. Although most 

studies have focused on changes in protein-coding gene expression, recent work has begun to 

show that somatic mutations can lead to large alterations in lncRNA expression as well [55–57]. 

Through the TCGA consortium, many recurrent somatic mutations have been identified in 

GBMs and LGGs, many of which are shared between the two groups [4,58]. In order to 

determine what effect these mutations might have on the lncRNA transcriptome, for each 

commonly mutated gene, we separated patients into groups based on their tumor mutational 

status and then tested whether the expression of any lncRNA is altered in GBMs and LGGs 

harboring each common somatic mutation. 

We identified hundreds of lncRNAs that were differentially expressed (as described in 

Methods) in mutated versus non-mutated GBMs and LGGs (Fig 3A and 3C). Interestingly, in 

GBMs there was little overlap in the differentially expressed lncRNAs between different somatic 

mutation groups (Fig 3B). In contrast, LGGs had a higher degree of overlap between mutation-

associated lncRNAs (Fig 3D). 

lncRNAs Associated with Cancer Subtypes 
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Work by TCGA and others has found that both GBMs and LGGs are not homogenous 

collections of tumors, but can rather be categorized into separate subtypes [2–5]. Each of the 

glial tumor subtypes is clinically distinct, and understanding the lncRNAs associated with a 

particular subtype could help to better distinguish between the groups or possibly identify novel 

therapeutic targets. To this end, we separated patients based on their tumor subtype and 

determined whether there were any lncRNAs that were specifically expressed in a given subtype. 

We identified 64, 211, 95, and 71 lncRNAs that were specifically up- or downregulated in 

neural, proneural, mesenchymal, and classical GBMs, respectively (Fig 4A). Thirteen of these 

lncRNAs were novel lncRNAs identified in this study. Furthermore, 1,357, 1,216, and 466 

lncRNAs were specifically up- or downregulated in IDH1/2 wt, IDH1/2 mut, and IDH1/2 mut 

1p19q codeletion LGGs, respectively (Fig 4B). 

Traditionally, GBMs and LGGs have been viewed as distinct oncological entities; 

however, recent work has begun to suggest that IDH1/2 wt LGGs might be more similar to 

GBMs than to their IDH1/2 mut LGG counterparts [49]. In order to better understand these 

similarities, we tested whether there is significant overlap (as described in Methods) between the 

differentially expressed genes (DEGs) of the IDH1/2 wt LGGs and the DEGs for each GBM 

subtype. Although there was no statistically significant overlap in DEGs between the neural 

GBM subtype and the IDH1/2 wt LGG subtype, the proneural GBM subtype had much less 

overlap with the IDH1/2 wt LGG subtype than would be expected by random chance (Fig 4C). 

This finding is consistent with the fact that proneural GBMs frequently have point mutations in 

IDH1/2 [3]. There was a slight increase in the overlap between classical GBM subtype DEGs 

and IDH1/2 wt LGG DEGs compared to the random model; however, this difference was not 

statistically significant (p = 0.055). Surprisingly, DEGs in mesenchymal GBMs had much higher 
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overlap with DEGs in IDH1/2 wt LGGs compared to the random model (Fig 4C). We next 

determined whether the overlap between mesenchymal GBMs and IDH1/2 wt LGGs is specific 

to this LGG subtype or is found with the other LGG subtypes, by measuring the overlap of 

mesenchymal differentially expressed lncRNAs with differentially expressed lncRNAs from 

each LGG subtype. In contrast to the greater degree of overlap with the IDH1/2 wt subtype, both 

the IDH1/2 mut and IDH1/2 mut 1p19q codeletion subtypes had less overlap than would be 

expected by random chance (Fig 4D). These similarities in the lncRNA profiles of IDH1/2 wt 

LGGs and mesenchymal GBMs suggest that LGGs with wild-type IDH1/2 may progress to 

mesenchymal GBMs. 

lncRNA Expression and Survival in LGG Patients 

The main prognostic variable for patients with glial tumors is the mutational status of 

IDH1 or IDH2. In LGGs, recent work has shown that patients whose tumors also harbor 1p19q 

codeletions have a slightly better overall survival than patients with IDH1/2 mut tumors without 

1p19q codeletions [4]. We decided to test whether the expression of lncRNAs can be used to 

separate patients into distinct survival groups, independent of IDH1/2 mutational status. To this 

end, we performed survival analysis utilizing a multivariate Cox proportional hazard model that 

included IDH1/2 mutational state, age, sex, tumor grade, and lncRNA expression as independent 

variables in the survival model. It is common to find extreme outliers in large RNA-seq datasets, 

which can negatively impact survival regression analysis. In order to correct for these outliers, 

the expression values for each lncRNA were inverse normal transformed, a procedure that 

increases the sensitivity and specificity of regression analysis using RNA-seq expression values 

[59]. To attempt to separate patients into distinct prognostic groups using lncRNAs, we 

randomly assigned 60% of LGG patients with complete clinical data (269 patients) to a test set, 
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on which we performed Cox regression to identify lncRNAs associated with survival in this 

patient cohort. We then selected all lncRNAs that were significantly associated with survival and 

created a survival algorithm with variables for each lncRNA that were weighted based on each 

lncRNA’s contribution to overall survival (see Methods). This survival algorithm was then 

applied to the remaining 40% of patients (180 patients) who constituted the validation set 

(Figs 5A, S2 and S3). 

After performing Cox regression on our test set, we identified 64 lncRNAs that were 

consistently associated with survival. These lncRNAs were included in our survival algorithm, 

which was then applied to the test set. Each patient received a score, based on how many 

prognostic lncRNAs met our expression cutoff (see Methods), and patients were then divided 

into two groups, good prognosis and poor prognosis. Our algorithm separated the test set into 

groups of 85 and 184 patients with median survival times of 1,209 and 4,084 d, respectively (HR 

= 2.168, 95% CI = 1.765–2.807, p < 0.001) (Fig 5B). We next applied this survival algorithm to 

the validation set and were successfully able to separate patients into distinct groups of 66 and 

114 patients with median survival times of 2,235 and 4,412 d, respectively (HR = 1.921, 95% CI 

= 1.333–2.767, p < 0.001) (Fig 5C). 

Identifying lncRNAs Associated with Survival in GBMs 

We next sought to identify all lncRNAs that were associated with overall survival in 

patients with GBMs. Using Cox regression we identified 584 lncRNAs that were associated with 

a poor prognosis and 282 lncRNAs that were associated with better survival outcomes. A subset 

of these lncRNAs were independently used to separate GBM patients based on lncRNA 

expression levels in the top third and bottom third of patients (55 patients), and Kaplan-Meier 

plots show that these groups were associated with prognosis with statistical significance (Fig 6A 
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and 6B). Patients with high expression of RP11-334C17.6 had a median survival time of 485 d, 

while patients with low expression had a median survival time of 380 d (HR = 0.728, 95% CI = 

0.6011–0.883, p = 0.00122) (Fig 6A). Patients with high and low expression of BTAT10 had 

median survival times of 335 and 485 d, respectively (HR = 1.298, 95% CI = 1.0881–1.548, p 

= 0.00374) (Fig 6B). However, unlike in the LGGs, we have not yet succeeded in combining the 

individually predictive lncRNAs into a survival algorithm that can predict prognosis in GBMs 

with statistical significance. 

Unlike for proteins, ascertaining the function of a lncRNA based on sequence 

composition is extremely difficult. However, studies have shown that it is possible to infer what 

biological pathways a lncRNA might function in using guilt-by-association analysis, a technique 

that infers association of a lncRNA with a biological pathway based on the pathway enrichment 

of protein-coding genes whose expression is highly correlated with the lncRNA [45]. We used 

guilt-by-association analysis to determine what biological pathways are enriched in our positive 

and negative prognostic lncRNA groups. Interestingly, lncRNAs that are associated with a better 

prognosis in GBMs are more likely to be associated with signaling pathways, showing 

enrichment in protein kinase and phosphorylation pathways as well as signal transduction 

pathways. Conversely, lncRNAs that are associated with poor patient outcomes are highly 

associated with cell cycle pathways, immune response, and chromosome organization (Table 1). 

We next subdivided all of the GBM tumors into their respective subtypes and performed 

Cox regression with all lncRNAs in each subtype: 165, 128, 88, and 385 lncRNAs were 

associated with prognosis in classical, mesenchymal, neural, and proneural GBM subtypes, 

respectively. Given the transcriptional, clinical, and phenotypic differences between the 

subtypes, we then tested if there was any overlap in the identities of the positive and negative 
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prognostic lncRNAs between subtypes. There was very little overlap noted between the 

prognostic lncRNAs in each subtype (Fig 6C and 6D), consistent with the hypothesis that the 

GBM subtypes arise from distinct mutational backgrounds and have very different biology. 

Discussion 

Our analysis of RNA-seq data for grade II, III, and IV brain tumors and normal brain 

tissue has identified hundreds of dysregulated lncRNAs in glial tumors, many of which are 

associated with tumor subtype or mutational status. Using Cox regression, we identified a panel 

of 64 lncRNAs that are associated with survival in LGG patients. We also identified lncRNAs 

that are similarly associated with prognosis in each GBM subtype and found remarkably little 

overlap of prognostic lncRNAs between GBM subtypes. 

The growing appreciation for the important roles that lncRNAs play in tumor 

development and progression necessitates having a means of prioritizing which lncRNAs should 

be studied in a given cancer type. Global analyses have been performed for tumor types other 

than GBMs and LGGs, such as squamous cell lung carcinomas and adenocarcinomas, as well as 

meta-analyses of all tumors within TCGA [46,57,60]. Although meta-analyses of lncRNAs are 

extremely important, they have not been especially informative for brain tumors for several 

reasons. First, due to the broad nature of the analyses, it is not possible to focus on the specific 

nuances of each tumor type (i.e., subtypes). Second, due to the limited number of normal brain 

samples in TCGA, GBMs and LGGs were not included in many of the meta-analyses, which 

relied on comparisons with a reference panel of normal tissues. Lastly, the effect of lncRNA 

expression on survival in individual tumor types was not a main focus of the studies [46,60]. 

This is important because, depending on the tumor context, a given lncRNA may act as a tumor 

suppressor or oncogene [61,62]. By focusing specifically on brain tumors and including over 70 
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normal brain tissue samples, our analysis provides unique insights into the roles of lncRNAs in 

aggressive brain cancers. 

In addition to studying the roles of annotated lncRNAs, we identified 2,706 novel multi-

exon lncRNAs that are present in either normal brain tissue or brain tumors, but are not 

annotated in the commonly used lncRNA databases (GENCODE and RefSeq). Many of these 

novel lncRNAs were differentially expressed in brain tumors and were associated with clinically 

relevant mutations. Although the exact mechanisms leading to altered lncRNA expression are 

not known, roughly 20% of differentially expressed lncRNAs were weakly correlated with 

chromosomal amplifications and deletions. We also identified several hundred lncRNAs that 

were associated with GBM and LGG subtypes. It is well known that IDH1/2 wt LGGs have 

clinical phenotypes and genomic alterations similar to those of primary GBMs [5]. Interestingly, 

the intersection of subtype-associated lncRNAs between GBMs and LGGs revealed 

transcriptional similarities between IDH1/2 wt LGGs and mesenchymal GBMs. Although our 

analysis suggests an evolutionary link between mesenchymal GBMs and IDH1/2 wt LGGs, it 

does not preclude other tumor evolutionary pathways leading to the formation of mesenchymal 

GBMs. Other groups have found evidence that suggests non-GCIMP (non-glioma-CpG island 

methylator phenotype) mesenchymal GBMs evolve from a proneural GBM precursor [63]. 

However, this evolutionary pathway does not explain the origin of all mesenchymal GBMs. Our 

analysis suggests that some mesenchymal GBMs might arise from undetected IDH1/2 wt LGGs, 

which at clinical presentation would appear to be mesenchymal GBMs. 

There are several limitations to this analysis. One limitation is that, because RNA-seq 

data from TCGA were derived from bulk tumor specimens, we are unable to decipher whether 

the differences in expression that we have identified are a reflection of alterations in tumor cells’ 
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transcriptional programs or a reflection of tumor heterogeneity and changes in the stromal 

composition of each individual tumor. Furthermore, although we validated the expression 

changes of some lncRNAs using independent patient-derived samples, more work is needed to 

confirm the expression differences we identified for lncRNAs between gliomas and normal 

brain, and among tumor subtypes and tumors of different mutational status. Another limitation is 

that the generation and testing of our survival algorithm were performed on the same dataset. 

Although the “validation” dataset was blinded in the algorithm generation, further validation of 

our survival analysis in a truly independent dataset is needed to determine the significance and 

robustness of the survival algorithm. Independent validation of lncRNAs that are associated with 

survival in GBMs and GBM subtypes is also needed. 

As stated earlier, IDH1/2 mutational status is the primary prognostic indicator for glial 

tumors. Using multivariate survival analysis, we have shown that a panel of lncRNAs can be 

used to separate LGG patients into distinct prognostic groups. This group of lncRNAs could 

potentially be used to help identify at-risk patients who might require more intensive therapies, 

although further validation in an independent dataset is needed to fully test the utility of the 

survival algorithm. Furthermore, we have also found several hundred lncRNAs that are 

prognostic in GBMs as a whole, as well as in individual subtypes. In summary, we have 

performed the first global analysis, to our knowledge, of lncRNAs in LGGs and GBMs. Our 

analysis can serve as a valuable resource for those working in the field to prioritize which 

lncRNAs to study in brain cancers. 
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Fig 1. Identification of novel lncRNAs in glial tumors and normal brain RNA-seq samples.
(A) Overview of analysis pipeline for identifying novel lncRNAs and determining their associations 
with clinically relevant phenotypes. (B) Cumulative distribution function plot of CPAT scores 
demonstrates that the majority of novel transcripts are predicted to not code for proteins (CPAT score 
< 0.5242). (C) Metagene plot of H3K4me3 ChIP-seq data from U87 cell samples shows enrichment 
in promoters of protein-coding genes and novel lncRNAs but not in a randomized genomic control. 
GBM, glioblastoma multiforme; LGG, lower grade glioma; lncRNA, long noncoding RNA; RNA-
seq, RNA sequencing.
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Fig 2. Large alterations in lncRNA expression in glial tumors.
(A) Boxplot of ten candidate lncRNAs that are differentially expressed in GBMs compared to normal 
tissue (blue = upregulated, red = downregulated, grey = no change). (B) Boxplot of nine candidate 
lncRNAs that are differentially expressed in LGGs compared to normal tissue (blue = upregulated, 
red = downregulated, grey = no change). (C) Real-time PCR of LINC00152, LINC01476, and 
TUNAR in 15 GBM and five normal brain samples confirms upregulation of LINC00152 and 
downregulation of LINC01476 and TUNAR in GBMs compared to normal brain. Expression values 
for each lncRNA are normalized to that of the gene encoding actin. (D) Large overlap in differentially 
expressed lncRNAs between GBMs and LGGs. GBM, glioblastoma multiforme; LGG, lower grade 
glioma; lncRNA, long noncoding RNA.
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Fig 3. Many lncRNAs are associated with common mutations in GBMs and LGGs.
(A) Stacked bar graph of mutation-associated lncRNAs in GBMs. (B) Minimal overlap between 
mutation-associated lncRNAs in GBMs (red = upregulated, blue = downregulated, grey = no change). 
(C) Stacked bar graph of mutation-associated lncRNAs in LGGs shows robust deregulation depending 
on tumor mutational background. (D) Moderate overlap between mutation-associated lncRNA 
expression trends in GBMs; however, each group of mutation-associated lncRNAs represents a 
distinct set of GBMs (red = upregulated, blue = downregulated, grey = no change). GBM, 
glioblastoma multiforme; LGG, lower grade glioma; lncRNA, long noncoding RNA.
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Fig 4. Identification of subtype-associated lncRNAs reveals similarities between GBM and LGG 
subtypes.
(A) Heatmap of all lncRNAs in GBMs with subtype-specific expression patterns demonstrates large 
expression differences between GBM subtypes. (B) Heatmap of all lncRNAs in LGGs with subtype-
specific expression patterns demonstrates large expression differences between LGG subtypes. (C) 
Overlap of IDH1/2 wt LGG subtype-specific lncRNAs with GBM subtype-specific lncRNAs reveals 
similarities between mesenchymal GBMs and IDH1/2 wt LGGs. (D) Overlap of GBM mesenchymal 
subtype-specific lncRNAs with each group of LGG subtype-specific lncRNAs reveals similarities 
between mesenchymal GBMs and IDH1/2 wt LGGs. * p < 0.00005, ** p < 0.00001. GBM, 
glioblastoma multiforme; LGG, lower grade glioma; lncRNA, long noncoding RNA.
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Fig 5. Expression of a subset of lncRNAs is associated with survival in LGG patients.
(A) Schematic of survival analysis: 60% of LGG patients were randomly selected to be the test set used to 
find survival-associated lncRNAs using Cox regression analysis. A summed Cox coefficient derived from 
64 survival-associated lncRNAs (selected as in S3 Fig) was used to stratify patients in the test set into two 
survival groups. This same set of 64 lncRNAs was then used to derive the summed Cox coefficient in the 
validation set to separate them into two survival groups. (B) Survival plot shows the effective separation of 
patients from the test set into two distinct survival groups, good prognosis (GoodProg) and poor prognosis 
(BadProg), based on each patient’s summed Cox coefficient of the 64 lncRNAs (hazard ratio [HR] = 2.168, 
95% CI = 1.765–2.807,p < 0.001). (C) The summed Cox coefficient for the same 64 lncRNAs is capable of 
separating patients from the validation set into two groups with very distinct survival probabilities (HR = 
1.921, 95% CI = 1.333–2.767, p < 0.001). LGG, lower grade glioma; lncRNA, long noncoding RNA.
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Fig 6. Survival-associated lncRNAs in GBMs and GBM subtypes.
(A and B) Representative survival plots of lncRNAs that predict survival in GBMs: RP11-334C17.6 
(HR = 0.728, 95% CI = 0.6011–0.883,p = 0.00122) (A) and BTAT10 (HR = 1.298, 95% CI = 
1.0881–1.548, p = 0.00374) (B). (C and D) lncRNAs associated with a poor prognosis (C) and good 
prognosis (D) in individual subtypes show minimal overlap between subtypes. GBM, glioblastoma 
multiforme; HR, hazard ratio; lncRNA, long noncoding RNA.
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Table 1. Enriched biological pathways associated with prognostic lncRNAs by guilt-by-
association analysis.
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S1 Fig. Association of dysregulated lncRNA expression and tumor copy number variation.
(A) Histogram of Spearman correlation coefficients for lncRNAs and CNV in GBMs. (B) Histogram 
of Spearman correlation coefficients for lncRNAs and CNV in LGGs. Red lines indicate Spearman 
correlation coefficient greater than or equal to 0.2. Blue lines indicate non-correlated lncRNAs.
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S2 Fig. Schematic of patient separation for survival algorithm development and validation.

69



S3 Fig. Schematic for creating survival algorithm using lncRNA expression and Cox regression.
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Abstract 

Glioblastomas (GBMs) are the most common type of primary malignant brain tumor and 

is extremely aggressive, with median survival times of less than 16 months [1]. Long noncoding 

RNAs (lncRNAs) have increasingly been shown to contribute to oncogenesis in a wide variety of 

tumors, however their roles in brain cancers are not as well characterized. Here, we identify 

LINC00152 as being upregulated in GBMs and aggressive IDH1/2 wt grade II and III gliomas. 

High expression of LINC00152 is also associated with poor patient outcomes in both these tumor 

types. LINC00152 is a mainly cytoplasmic, evolutionarily conserved lncRNA, with a distant 

homolog present in mouse. Inhibition of LINC00152 expression results in a decrease in cellular 

invasion in vitro and overexpression of LINC00152 leads to a reciprocal increase in cellular 

invasion. RNA-seq revealed that genes that are increased following LINC00152 knockdown are 

enriched in ribosome and translation pathways. Secondary structure analysis of LINC00152 

reveals a protein bound stem loop that contributes to LINC00152 invasive properties. Through 
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analyzing TCGA expression data, we have shown that LINC00152 is upregulated in over 10 

cancer types and is associated with a poor prognosis in 7 tumor types. Taken together, this 

suggests that LINC00152 is associated with aggressive tumors perhaps by promoting cellular 

invasion. 
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Introduction 

 GBM (glioblastoma) are highly aggressive grade IV gliomas and are the most common 

type of malignant glioma, with 10,000 new diagnoses each year [2]. GBMs are a heterogeneous 

group of tumors that can be separated into four different subtypes, mesenchymal, classical, 

proneural and neural, based on their transcriptional profile. Most of the focus on understanding 

glioma tumor biology has been on studying protein coding genes and microRNAs [3]. These 

efforts have led to identifying commonly altered signaling pathways in GBMs, including 

mutations in EGFR, p53 and mTOR signaling [4,5]. Furthermore, microRNAs have been shown 

to play a role in many of the oncogenic phenotypes of GBMs, such as invasiveness and stemness 

of GBM stem cells [6,7]. Although there has been much effort on creating new targeted therapies 

for GBMs, focusing on some of the aforementioned pathways, most have not been effective and 

the standard of care therapy, a combination of maximal surgical resection, radiotherapy and 

Temozolomide, still leaves patients with an abysmal 5-year survival rate of roughly 10% [8]. 

High throughput sequencing efforts have revealed that a majority of the human genome, 

which was long thought to be transcriptionally silent is actually expressed. Indeed, when 

surveyed across many different cell types it was found that nearly 80% of the human genome is 

actually transcribed [9]. Many of these newly discovered transcripts are lncRNAs (long 

noncoding RNAs). LncRNAs are a class of ncRNAs that are longer than 200 bases in length and 

can be further subdivided into several subclasses based on genomic positioning relative to other 

genes as well as whether or not the lncRNA locus overlaps with an enhancer or other genomic 

regulatory element. One subclass of lncRNAs are lincRNAs (long intergenic noncoding RNAs) 

which reside in the intergenic genomic space and do not overlap with any other gene. LincRNAs 

have been shown to play many different functional roles in the cell, in part through regulation of 
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transcription, mRNA stability and mRNA translational efficiency [10–12]. Most of the research 

into the role of ncRNA in GBMs has been on microRNAs, with relatively few studies on 

lncRNAs. This leaves a crucial gap in our understanding of glioma pathogenesis. Indeed, 

lncRNAs have been shown to function in critical roles in a variety of tumor types, e.g. HOTAIR 

in breast cancer, SChLAP1 in aggressive prostate cancer,MALAT1 in lung cancer and DRAIC in 

seven different cancer types [12–15]. 

 LINC00152 is a lincRNA that was first identified as being hypomethylated during 

hepatocellular carcinoma tumorigenesis [16]. Since its initial discovery in hepatocellular 

carcinoma, it has been shown to be dysregulated in gastric cancer and esophageal squamous cell 

carcinoma [17,18]. However, there are conflicting reports on exactly how LINC00152 functions 

to promote the invasive phenotype. One study has argued that LINC00152 directly interacts with 

EGFR and affects AKT signaling while others have suggested that LINC00152 acts as a ceRNA 

through titrating miR-18a-5p [19,20]. Recently, we identified LINC00152 through an in-depth 

genomic analysis of gliomas as being highly expressed in GBMs [21]. In this study we 

characterize LINC00152’s association with GBM clinical features, tumor cell invasion as well as 

begin to functionally characterize LINC00152 structurally and identify potential protein 

interaction partners. Furthermore, we found that LINC00152 is overexpressed in 9 other tumor 

types compared to matched normal tissue and high LINC00152 expression is associated with a 

negative prognosis in 5 of these tumors. 

Expression of LINC00152 in Aggressive Gliomas 

 We first identified LINC00152 from a comprehensive analysis of lncRNAs in gliomas 

[21]. LINC00152 was one of the most differentially expressed lncRNAs in GBMs compared to 

normal brain tissue, however it is not upregulated in grade II and III gliomas (Fig 3.1a and Sup 
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Fig 3.1a). We have validated the upregulation of LINC00152 in an independent set of patient 

GBMs compared to normal FFPE brain tissue [21]. It should be noted that LINC00152 is a close 

homolog of another lncRNA on chromosome 2, MIR4435-2HG, and both have nearly identical 

sequences (98.8% sequence overlap) (Sup Fig 3.2a). It is therefore extremely difficult to discern 

whether the expression differences we are detecting through RNA-seq and RT-PCR are a 

reflection of LINC00152, MIR4435-2HG or both lncRNAs expression levels.  

 We tested whether LINC00152 is preferentially expressed in a particular GBM subtype, 

but that did not appear to be the case.  The differences in LINC00152 expression between the 

subtypes were not statistically significant, although the median expression of LINC00152 is 

lowest in the proneural GBM subtype (p<0.1) (Sup Fig 3.1b). Interestingly, LINC00152 is more 

highly expressed in the IDHwt LGG subtype and even though LINC00152 is not upregulated in 

LGGs as a whole, this LGG subtype expresses 4 times as much LINC00152 as normal brains (p 

< 0.00001) (Fig 3.1b). This is interesting, because IDHwt LGGs are far more aggressive than the 

other LGG subtypes and display clinical properties similar to GBMs [22]. We next wanted to 

determine whether LINC00152 is conserved across species by looking at the syntenic region in 

mouse, but we were not able to identify a mouse homolog in this region. However, we were able 

to identify a mouse homolog, Gm14005, located in the MIR4435-2HG syntenic region that has 

64.9% sequence identity to LINC00152, demonstrating that LINC00152 is evolutionarily 

conserved (Fig 3.1c and Sup Fig 3.2b).  

LINC00152 Expression Predicts Survival in GBMs and LGGs 

 Because LINC00152 is upregulated in brain tumors compared to normal brain tissue, we 

next asked whether LINC00152 expression can be used to predict survival in GBM and LGG 

patients. To do this, we analyzed RNA expression and clinical data from the TCGA for both 
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GBMs and LGGs. We then separated patients into two equal groups, the top 50% “High 

Expressers” and the bottom 50% “Low Expressers”, based on the expression levels of 

LINC00152. In GBMs, patients who had high expression of LINC00152 had a worse prognosis 

(p = 0.0039) compared to the Low Expressers group, with a median survival of 11.9 and 15.4 

months, respectively (Fig 3.2a). Furthermore, LINC00152 expression was also able to separate 

patients into two distinct prognostic groups in LGGs. LGG patients with high expression of 

LINC00152 had a median survival of 62.1 months, while the low expressing group had a median 

survival 98.2 months (p = 1.4 e-5) (Fig 2b). These results demonstrate that not only is 

LINC00152 overexpressed in gliomas, but that this overexpression is associated with worse 

patient outcome. 

LINC00152 Expression Controls GBM cell Invasion 

 We next sought to determine whether the upregulation of LINC00152 seen in GBMs is 

associated with any cancer phenotypes in GBM cell lines. LINC00152 has previously been 

shown to affect multiple cellular phenotypes, including cell growth, migration, invasion and 

epithelial-to-mesenchymal transition (EMT) [20,23,24].We knocked down LINC00152 

expression using two separate siRNAs and found that LINC00152 knockdown did not affect cell 

growth (Fig 3.3a). We next assayed whether LINC00152 expression was associated with tumor 

cell invasion using a transwell migration assay. Knockdown of LINC00152 in U87 cell lines led 

to a statistically significant reduction in cell invasion with both siRNAs targeting LINC00152 

(Fig 3.3b). To further validate the role of LINC00152 in GBM cell invasion, we measured 

invasion in U87 cells stably overexpressing LINC00152 and found that overexpression of 

LINC00152 led to an increase of over 2 fold in the amount of invaded cells (Fig 3.3c). We also 

found that LINC00152 is primarily localized in the cytoplasm of U87 cells (Sup Fig 3.3). These 
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findings suggest that LINC00152 upregulation in GBMs could in part be promoting the invasive 

phenotype that is commonly seen in patient tumors. 

LINC00152 Expression Profile   

 In order to better understand how LINC00152 affects cellular invasion we performed 

RNA-seq on U87 following knocking down of LINC00152 using two different siRNAs. Knock 

down of LINC00152 lead to large changes in gene expression, with 184 RNAs being upregulated 

and 130 downregulated (Fig 3.4a). Examination of the differentially expressed gene list did not 

reveal any immediate insights into potential pathways that LINC00152 might affect. In order to 

get a better understanding of what pathways LINC00152 might affect, we performed GSEA 

(gene set enrichment analysis), a method that can identify pathway enrichment from RNA-seq 

and microarray [25,26]. Surprisingly, 9 of the top 15 significantly enriched gene sets were 

positively associated with the ribosome (e.g. genes upregulated by LINC00152 knock down were 

enriched in ribosome gene sets), suggesting that LINC00152 might be involved in regulating 

translation (Fig 3.4b and Sup Table 3.1).  

Secondary Structure Components of LINC00152 

 Unlike proteins, which for the most part are composed of several well characterized 

domains, lncRNAs do not have well defined structural domains. This can complicate the 

interpretation of lncRNA structure function studies because a given deletion mutant could lead to 

misfolding of the RNA and subsequent misinterpretation of the functional significance of a 

particular region of the lncRNA. Over the past decade several new technologies have been 

developed to examine the secondary structures of lncRNAs on a global basis, one such technique 

is PARIS (psoralen analysis of RNA interactions and structures) [27]. PARIS is based on 

reversibly crosslinking RNA duplexes (stems of stem loops) and gentle digestion with a 
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ssRNase, S1 nuclease, to cut looped single stranded portions of an RNA’s secondary structure. 

The surviving RNA duplexes from the stems are then ligated to each other and subjected to high 

throughput sequencing. RNAs containing stem-loops will have sequencing reads corresponding 

to the stems with gaps (corresponding to the loops) that do not overlap with a splice site. We 

analyzed publicly available PARIS data from HeLa and 293T cells to determine whether 

LINC00152 contains any secondary structure elements that could be detected by PARIS. 

Following alignment, we identified reads with a 2-nt gap that were present in both of the HeLa 

PARIS libraries, but not in any of the 293T samples (Sup Fig 3.4a). These reads are positioned 

from position 284 to 373 of the 496 nt long LINC00152, with a small 2 base gap starting at 

position 342. Sequence analysis of this region revealed a modest degree of complementarity, 

suggesting that this region might in fact form a stem loop structure (data not shown).  

 We next sought to get a better understanding of overall LINC00152 secondary structure. 

To do this, we used publicly available RNA secondary structure prediction tool, RNAstructure, 

to identify secondary structure predictions for LINC00152 that are consistent with a stem-loop 

being present from 284-373 [28]. The top 2 secondary structures with the lowest free energy 

differed in their exact base-pairing, but the overall stem loop structure was largely the same. 

Importantly, both structures were consistent with a stem loop being present from position 284 to 

373 (Fig 3.5a, Sup Fig 3.5a & b). Furthermore, the resulting loop from the stem formation is 

rather small, 4 nt, which is consistent with the small 2 nt gap seen by PARIS.  

 We next asked if we could use a separate method to independently validate the hairpin 

formation in LINC00152. Ribo-seq (Ribosome profiling) is a technique that has been used to 

identify RNAs that interact with the ribosome and how the ribosome is distributed across those 

RNAs [29]. This information has in part been used to ascertain that while some lncRNAs are 
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associated with ribosomes, the ribosome distribution is not consistent with a pattern of 

translating ribosomes[30]. Recently it was determined that the experimental preparation of 

isolating polysomes for Ribo-seq does not remove all other RNA-protein complexes  and often 

have traces of other RBPs (RNA binding proteins) and their bound RNAs. This resulting RNA 

footprints from the RBPs can be detected in Ribo-seq and can be used to determine sites of non-

ribosome bound proteins to the RNAs [31]. To determine if we could identify RBP-RNA 

footprints from LINC00152 we analyzed publicly available Ribo-seq data from normal brain 

samples [32]. In two out of the three normal brain Ribo-seq samples we detected an RBP 

footprint at positons 300-335 of LINC00152. In addition, in one of the samples there was an 

RBP footprint from 354-380 (Fig 3.5a and Sup Fig 3.4b). These two peaks are located at the 

same stem loop that was detected by PARIS, and peaks from both techniques overlap almost 

entirely (Fig 3.5a).  

LINC00152 Structure Function Studies 

 In order to determine whether the newly identified, potentially protein bound, stem loop 

plays a role in LINC00152 function, we created two deletion constructs. The first removed the 

minimal amount of the protein bound stem loop, nts 280-401 (M2), and another that removed the 

stem loop and the remaining 3’ end (M3) (Fig 3.5a). The sites of the deletions were chosen based 

on PARIS and Ribo-seq analysis as well as identifying unbase-paired regions of LINC00152 that 

were consistent between two in silico predicted structures of LINC00152 (Fig 3.5b and Sup Fig 

3.4a & b). We next assessed whether overexpression of the mutants was able to effect U87 cell 

invasion. Overexpression of M2 led to an increase in cell invasion, however the increase was less 

than what was seen with full-length LINC00152 (p < 0.05) (Fig 3.5c). In addition, 

overexpression of M3 also led to an increase in cell invasion but to a lower extent then full-
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length LINC00152 and M2 (Fig 3.5c). These results suggest that the stem-loop plays a partial 

role in the invasive properties of LINC00152, but there are other elements in the 5’ end of 

LINC00152 that also contribute to its invasive functions. 

LINC00152 in other Cancers 

 In addition to playing a role in GBM invasion, other studies examining the function of 

LINC00152 have found that it is involved in cell growth and invasion in other tumor types as 

well [23,24]. Furthermore, other groups have shown that LINC00152 is overexpressed in gastric 

cancer and hepatocellular carcinoma [17,23]. We next wanted to ask how frequently is 

LINC00152 upregulated in cancers compared to their respective normal tissues. To do this, we 

compared the expression of LINC00152 in all TCGA tumor samples with paired normal and 

tumor RNA-seq data. Surprisingly, LINC00152 is upregulated in nearly every tumor type we 

analyzed, including breast invasive carcinoma, colorectal carcinoma, head and neck squamous 

cell carcinoma, renal clear cell and papillary, hepatocellular carcinoma, stomach 

adenocarcinoma, uterine carcinoma, lung adenocarcinoma and thyroid carcinoma (Fig 3.6a-j). 

Prostate adenocarcinoma was the only tumor type that had statistically significant decrease in the  

levels of LINC00152 in the tumor samples compared to normal (data not shown).  

Since LINC00152 is overexpressed in the majority of tumors that we have analyzed, we 

next wanted to determine whether LINC00152 expression is associated with patient survival in 

the TCGA tumors that had higher levels of LINC00152 compared to the paired normal samples. 

To do this, we performed Kaplan Meier analysis for each tumor type by separating patients into 

two groups, the top quartile LINC00152 expressing tumors and the lowest quartile LINC00152 

expressing tumors. From the original list of tumors, LINC00152 expression was associated with 

poor patient outcome in head and neck squamous cell carcinoma, renal clear cell carcinoma, 



	 81	

hepatocellular carcinoma and lung adenocarcinoma (Fig 3.7 a-d). The poorer outcome of patients 

with renal papillary carcinoma was not statistically significant comparing the top and bottom 

quartiles of LINC00152 expression (p = 0.1), but the poorer outcome was statistically significant 

(p = 0.014) when we compared patients in the top third and bottom third based on LINC00152 

expression (Sup Fig 3.6a). 

Although LINC00152 was not overexpressed in LGGs relative to normal brain, it was 

upregulated in an aggressive subpopulation of LGGs (those with IDH wild type) and was 

associated with poor patient outcome.  This made us realize that even if a tumor type does not 

overexpress LINC00152 globally relative to normal tissue, overexpression of the lncRNA in 

specific tumors may still be associated with poor outcome. We therefore examined other TCGA 

tumors which did not show a global increase of LINC00152 expression in the cancers relative to 

normal tissue for the predictive value of the expression of this lncRNA. Interestingly, even 

among these tumors, LINC00152 expression was associated with poor patient outcome in 

pancreatic adenocarcinoma and acute myeloid leukemia, when we comparing the tumors in the 

top quartile and bottom quartile for LINC00152 expression (Sup Fig 3.6b and c). These results 

highlight the fact that in nine tumor types (GBMs, LGGs, head and neck squamous cell 

carcinoma, renal clear cell carcinoma, hepatocellular carcinoma, lung adenocarcinoma, renal 

papillary carcinoma, pancreatic adenocarcinoma and acute myeloid leukemia) LINC00152 

appears to function as an oncogene whose expression is associated with a poor patient outcome.   

Discussion 

 The human genome was once thought to be mainly dormant and that most of the 

transcription was devoted to producing protein coding genes. We now know that the genome is 

transcriptionally vibrant and only a small fraction of the expressed genome, roughly 2%, encodes 
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for protein coding genes. GWAS and high throughput sequencing studies have found that many 

of the genomic lesions and expression alterations seen in cancer and other pathologies fall within 

non-protein coding regions of the genome and may lead to dysregulation of ncRNAs [33–36]. 

Furthermore, there is a growing body of evidence implicating lncRNAs in playing a direct role in 

normal cellular physiology, as well as driving pathogenesis in a variety of disorders, including 

cancer [37–41]. Indeed, recent work has illustrated the critical role that lncRNAs play in cancer, 

including iconic examples such as HOTAIR in breast cancer and HULC in hepatocellular 

carcinoma and DRAIC in seven different cancer types [12,15,42].  

In this study we have shown that LINC00152 is a lincRNA that is upregulated in many 

different cancer types and is highly upregulated in GBMs. Although LINC00152 is not 

upregulated in all LGGs relative to normal brain tissue, it is upregulated in the highly malignant 

IDHwt LGG subtype, further supporting LINC00152’s association with aggressive tumors. This 

raised the interesting possibility that in tumors where LINC00152 is not differentially over-

expressed or is moderately upregulated in the tumor population relative to normal tissue, 

LINC00152 could still be highly upregulated in a more aggressive subgroup of the tumors. This 

was indeed found to be true in Pancreatic Adenocarcinomas and Acute Myeloid Leukemias. 

LINC00152 expression is associated with patient survival in nine different cancer types, 

including GBMs and LGGs. LINC00152 expression promotes cell invasion, which is consistent 

with its association with poor patient outcomes. 

LINC00152 is an evolutionarily conserved lincRNA that appears to be the product of a 

gene duplication from MIR4435-2HG, as the latter has synteny with the mouse homolog, 

Gm14005. Although we cannot rule out that the phenotypes that we observe with siRNA 

directed towards LINC00152 are acting in part through knocking down the highly similar 
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MIR4435-2HG, we do not believe that affecting MIR4435-2HG levels fully explains 

LINC00152 effect on invasion. Firstly, we see an increase in cell invasion when we exogenously 

express LINC00152, arguing that it is an inherent effect of LINC00152 and not MIR4435-2HG. 

Secondly, although LINC00152 is nearly 99% identical to MIR4435-2HG, the mouse homolog 

shares more sequence homology with LINC00152 than MIR4435-2HG, even though it lies in the 

syntenic region of the human genome (data not shown). Also, note that the reads aligning to 

LINC00152 in RNA-seq and Ribo-seq experiments matched with LINC00152 even at the 

positions not shared with MIR4435-2HG, arguing that LINC00152 is expressed in the tumors 

and cell lines and is being directly measured in the PARIS and Ribo-seq datasets. Interestingly, 

GSEA of RNA-seq from LINC00152 knocked down cells revealed that LINC00152 might be 

involved in translation. Although, RNA-seq of LINC00152 overexpressed cells is needed to 

better understand and validate this connection. 

In conclusion, we have identified LINC00152 as being strongly upregulated in GBMs 

and aggressive LGGs as well as 10 other cancers. Furthermore, we have shown that LINC00152 

expression is associated with survival in many of these tumors. In GBM cell lines, LINC00152 is 

involved in promoting cellular invasion, in part through a protein-bound stem loop in its 3’ end. 

Our data supports the notion that LINC00152 functions as an oncogenic lincRNA in GBMs and 

potentially plays a critical oncogenic role in a wide variety of cancer types. LINC00152 could 

also serve as a tumor biomarker or a target for future cancer therapeutics.  

Materials and Methods 

Expression of LINC00152 in TCGA datasets and Survival Analysis 

 The expression of LINC00152 in GBMs and LGGs compared to normal brain and 

tumor subtypes was performed as previously described [21]. Expression of LINC00152 in all 
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other TCGA tumors was determined by comparing expression data of only those tumors that had 

a matched normal tissue sample. Statistical significance was determined using a paired t-test. 

TCGA patient survival data for GBMs and LGGs were retrieved from cBioPortal 

(www.cbioportal.org) and survival data from the remaining tumor types were retrieved from 

OncoLnc (www.oncolnc.org) on 12/2016 [43–45]. The expression threshold used to separate 

patients are outlined in the main text. Kaplan Meier plots and p-values were generated using the 

‘survminer’ package for R. 

Cell growth and Invasion Analysis 

U87 cells were treated with two different siRNA against LINC00152 (siL152-2: 5’- 

UGACACACUUGAUCGAAUA-3’, siL152-3: 5’-CCGGAAUGCAGCUGAAAGA-3’) or a 

nonspecific siGL2 control siRNA during two sequential rounds of transfection. Each 20 uM of 

siRNA was first reverse transfected into U87 with 2 ul of RNAimax transfection reagent 

(ThermoFisher). 24 hours later, we performed a second round of transfections using the same 

quantities of reagents except doing conventional transfections. 24 hours after the final 

transfection, cells were harvested and used for subsequent analysis.  For transiently 

overexpressing LINC00152 or LINC00152 mutants in U87 cells, 1 ug of plasmid was transfected 

into U87 cells with 2 ul of Lipofectamine 2000 reagent (ThermoFisher). Cells were harvested 

after 48 hours for downstream analysis. For measuring cell growth, 2,000 cells were plated in 

quadruplets in 96 well plates and cell growth was measured using standard MTT reagent 

(Promega). To measure invasion, 105 U87 cells in serum free media were seeded into 24-well 

Matrigel Invasion Chambers (BD Biosciences) and the bottom was filled with media and 10% 

FBS as the chemoattractant. Cells were allowed to invade for 8 hours and then fixed and stained 
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with crystal violet/methanol and invaded cells were counted. LINC00152 subcellular localization 

was determined using Protein and RNA Isolation System (ThermoFisher). 

RNA-seq Analysis 

 U87 cells were treated with siRNA as mentioned earlier and total cell RNA was isolated 

using TRIzol and subsequently purified using RNeasy Isolation kit (Qiagen). Sequencing 

libraries were generated using NEB NEXT Ultra directional RNA Library prep kit and samplers 

were barcoded with NEBNext Multiplexing oligos per standard manufacturer protocols. 

Libraries were sequenced with 50 bp paired-end reads on an Illumina HiSeq 2500. Sequencing 

reads were aligned to the hg38 reference genome using HISAT2 [46]. The two LINC00152 

siRNA treated datasets were treated as replicates and gene abundances and identification of 

differentially expressed genes were performed using and DESeq2 [47,48]. GSEA analysis was 

performed on preranked gene list based on fold change (siLINC00152/siGL2) with 1000 

permutations against the GO gene sets [26]. 

LINC00152 Structure Predictions 

 Secondary structure predictions of LINC00152 were determined using RNAstructure 

[28]. The two structures with the lowest predicted free energies were selected for comparisons 

with PARIS and Ribo-seq. For PARIS data analysis of LINC00152, raw sequencing data from 

Lu et. al. was aligned to the hg19 genome using STAR (spliced transcripts alignment to a 

reference) with the alignment parameters outlines in Lu et. al. [27,49]. Aligned reads were then 

processed to identify gapped mapping to LINC00152 and visualized with IGV [50]. We used 

ribosome profiling data from Gonzalez et. al. and aligned reads to the hg19 genome using 

HISAT2  [32]. We then examined reads that mapped to LINC00152 for their distribution along 

the message to ensure that they were not legitimate ribosome footprints using IGV [50]. The 
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predicted secondary structure elements and protein bound region were then compared to the in 

silico secondary structure predictions. 
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Exon	1 Exon	2

LINC00152

Conservation

Figure 3.1. LINC00152 is an evolutionarily conserved lncRNA upregulated in aggressive 
gliomas. A) Boxplot of LINC00152 expression in GBM, G3 (grade 3 glioma), G2 (grade 2 
glioma) and normal brain tissue. B) Boxplot of LINC00152 expression in LGG subtypes and 
normal brain tissue. C) Snap shot of exon 1 and 2 of LINC00152 from the UCSC genome 
browser with the vertebrate conservation track highlighted. *** p-value < 0.0001 
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A B

Supplemental Figure 3.1. LINC00152 is not differentially expressed in LGGs globally or 
between GBM subtypes. A) Boxplot of LINC00152 expression in G3 (grade 3 glioma), G2 
(grade 2 glioma) and normal brain tissue. B) Boxplot of LINC00152 expression in GBM 
subtypes. 
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A B

Supplemental Figure 3.2. LINC00152 is highly similar to the lncRNA MIR4435-2HG and has 
an evolutionarily conserved homolog in mouse. A) Sequence alignment of LINC00152 and 
MIR4435-2HG. B) Sequence alignment of LINC00152 and mouse homolog Gm14005
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A B

Figure 3.2. LINC00152 expression is associated with patient prognosis in GBMs and LGGs. 
A) Kaplan Meier of GBM patients separated into the 50% highest expressing LINC00152 
cohort and the lower 50% expressing cohort. B) Kaplan Meier of LGG patients separated into 
the 50% highest expressing LINC00152 cohort and the lower 50% expressing cohort.
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Figure 3.3. LINC00152 expression promotes cell invasion. A) Cell growth analysis of U87 
cells treated with siRNA against LINC00152. B) U87 cell invasion after treatment with 
siRNA against LINC00152. C) U87 cell invasion with U87 cells stably overexpressing 
LINC00152 
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Supplemental Figure 3.3. LINC00152 is primarily localized in the cytoplasm. A) Western blot 
of Lamin and a-Tubulin, markers of the nucleus and cytoplasm, respectively. B) RT-PCR of 
LINC00152 and a cytoplasmic RNA marker, GAPDH, and a nuclear RNA marker, MALAT1.
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A B

Figure 3.4. LINC00152 regulates many genes that are involved in translation. A) MA plot of 
differentially expressed genes following knockdown of LINC00152. Red dot are genes that 
were differentially expressed (FDR < 0.05). B) Representative enrichment plot from GSEA 
analysis of LINC00152 changed genes. 
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Gene Ontology	Terms NES FDR	q-value
GO_ESTABLISHMENT_OF_PROTEIN_LOCALIZATION_TO_ENDOPLASMIC_RETICULUM 2.84 >	0.001
GO_CYTOSOLIC_RIBOSOME 2.83 >	0.001
GO_RIBOSOMAL_SUBUNIT 2.8 >	0.001
GO_TRANSLATIONAL_INITIATION 2.77 >	0.001
GO_PROTEIN_LOCALIZATION_TO_ENDOPLASMIC_RETICULUM 2.67 >	0.001
GO_PROTEIN_TARGETING_TO_MEMBRANE 2.65 >	0.001
GO_CYTOSOLIC_LARGE_RIBOSOMAL_SUBUNIT 2.62 >	0.001
GO_MULTI_ORGANISM_METABOLIC_PROCESS 2.59 >	0.001
GO_NUCLEAR_TRANSCRIBED_MRNA_CATABOLIC_PROCESS_NONSENSE_MEDIATED_DECAY 2.58 >	0.001
GO_RIBOSOME 2.56 >	0.001
GO_STRUCTURAL_CONSTITUENT_OF_RIBOSOME 2.56 >	0.001
GO_CYTOSOLIC_SMALL_RIBOSOMAL_SUBUNIT 2.56 >	0.001
GO_LARGE_RIBOSOMAL_SUBUNIT 2.55 >	0.001
GO_SMALL_RIBOSOMAL_SUBUNIT 2.54 >	0.001
GO_RRNA_METABOLIC_PROCESS 2.46 >	0.001

Supplemental Table 3.1. Table of the top 15 most positively enriched gene sets following 
LINC00152 knockdown
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Figure 3.5. A protein-bound stem loop in LINC00152 is involved in U87 invasion. A) 
Predicted secondary structure of LINC00152 and the stem loop and protein bound regions 
identified by PARIS and Ribo-seq, respectively. B) LINC00152 mutant maps. C) U87 cell 
invasion after overexpression of LINC00152 or the deletion mutants.
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Supplemental Figure 3.4. IGV view of reads mapping to LINC00152 from PARIS and Ribo-
seq A) A 2-bp gapped read is present in both HeLa PARIS libraries that maps to exon 2 of 
LINC00152. B) IGV view of RNA-seq and Ribo-seq reads that map to exon 2 of LINC00152. 
Beige shaded areas show regions of overlap between A and B.
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Supplemental Figure 3.5. Secondary structure predictions of LINC00152. A and B) The two 
lowest free-energy structures of LINC00152, predicted by RNAstructure.
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Figure 3.6. LINC00152 is upregulated in many cancer types. A – J) Expression (RSEM) of 
LINC00152 in tumors and matched normal tissue from the TCGA in head and neck squamous 
carcinoma, renal papillary tumor, hepatocellular carcinoma, colorectal carcinoma, renal clear 
cell carcinoma, breast invasive carcinoma, stomach adenocarcinoma, uterine carcinoma, 
thyroid carcinoma and lung adenocarcinoma, respectively. 
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Figure 3.7 High levels of LINC00152 expression is associated with negative patient 
outcomes. A-D) Kaplan Meier plots of the highest LINC00152 expressing quartile and lowest 
LINC00152 expressing quartiles for head and neck squamous carcinoma, lung 
adenocarcinoma, renal clear cell carcinoma, and hepatocellular carcinoma, respectively.
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C

Supplemental Figure 3.6 High levels of LINC00152 expression is associated with negative 
patient outcomes. A-C) Kaplan Meier plots of the top third of LINC00152 expressing patients 
and the bottom third of LINC00152 expressing patients in renal papillary tumor, pancreatic 
adenocarcinoma, and acute myeloid leukemia, respectively. 
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Chapter 4 

Discussion and Future Directions 

Summary of Global Analysis of lncRNAs in Brain Cancer 

We began this work to gain a comprehensive understanding of the extent to which 

lncRNAs are dysregulated in brain cancer as well as create a resource for future work 

investigating the role of lncRNAs in gliomas. To this end, we analyzed over 700 RNA-seq data 

from grade II, III and IV gliomas from the TCGA and normal brain tissue. Through our analysis, 

we identified over 2000 novel lncRNAs, many of which were differentially expressed in gliomas 

compared to normal brain tissue. Furthermore, we identified hundreds of lncRNAs that were 

preferentially upregulated or downregulated in specific LGG or GBM subtypes. In addition, we 

found similarities between the subtype specific lncRNAs in mesenchymal GBMs and IDH wt 

LGGs. Using multivariate survival analysis, we created a survival algorithm based on the 

expression of 64 lncRNAs that was capable of separating LGG patients into two distinct 

prognostic groups in both a test and validation patient data sets. We also identified lncRNAs that 

were associated with prognosis in specific GBM subtypes. Taken together, this work provides a 

unique and valuable resource that can aid in prioritizing which lncRNAs most likely play a role 

in gliomas and should be studied in more detail. However, there are still many improvements 

that can be made to help identify the lncRNAs that are most likely to be involved in glioma 

oncogenic phenotypes as well as create a more powerful survival algorithm. I will discuss 

several of these changes as well as the role of computational predictive algorithms in patient care 

in the following sections. 

lncRNA Resource for Brain Tumors 
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 One of the big contributions of our analysis of lncRNAs in GBMs and LGGs is that is 

creates a comprehensive list of lncRNAs that are associated with many GBM and LGG specific 

subtypes and genomic alterations. Previous studies have performed global meta-analyses that 

sought to identify lncRNAs deregulated in most of the cancer types with RNA-seq data from the 

TCGA [1,2]. Although these resources have provided a great resource for studying lncRNAs in 

cancer biology broadly, they are not as beneficial for studying lncRNAs in brain tumors for 

several reasons. Firstly, unlike many of the other tumors analyzed by the TCGA, GBMs and 

LGGs do not have many matched normal tissue RNA-seq data. This is due to the complication of 

biopsying normal brain tissue compared to other tissues such as liver and kidney. The lack of 

normal samples led to GBMs and LGGs being withheld from several of the analyses which 

relied on comparing to normal tissue. To address this issue, we included over 70 publicly 

available normal brain RNA-seq datasets to allow us to make these types of comparisons. 

Secondly, because the studies focused on many tumors, it prevented them from analyzing the 

association of lncRNAs with tumor specific characteristics such as subtypes and common 

somatic mutations. Our analysis fills this void by providing lists of lncRNAs associated with the 

aforementioned characteristics as well as list lncRNAs that were associated with patient survival. 

With these elements, the scientific community is now able to prioritize the lncRNAs that they 

study by examining their expressions in gliomas compared to normal tissue and whether or not 

they are associated with patient survival.  

Survival Prediction in Cancers 

 In our study, we also designed a survival algorithm that can separate LGGs into two 

distinct survival classes based on the expression of a panel of 64 lncRNAs [3]. Although this 

application of lncRNAs expression and Cox regression in LGGs is novel, this is not the first 
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example of lncRNA or protein coding gene expression being used as a means to separate tumors 

into distinct subtypes or prognostic groups. Using transcriptomics to subdivide tumors is in many 

respects analogous to what the experimental pathology community has been doing for decades. 

Tumors are still categorized based on various attributes including cellular morphology, tumor 

cell heterogeneity, nuclear pleomorphism, mitotic activity and IHC (immunohistochemistry) 

staining, and clinical stage among other features. In fact, in many cases the histologic features 

are a direct reflection of the cell of origin or the genomic alterations that gave rise to the tumor 

(i.e. a reflection of the underlying transcriptomic alterations). Transcriptomic classification 

approaches have yet to be widely accepted, but transcriptome based analysis of breast cancer is 

gradually being accepted in regular clinical practice [4,5]. 

High throughput sequencing has revolutionized the way scientists conduct research and 

has broadened our understanding of fundamental biological processes. At its inception, genome 

sequencing technologies were extremely expensive, with the first human genome sequence 

costing nearly 3 billion dollars [6]. Since the onset of high throughput sequencing, the cost of 

genome sequencing has decreased exponentially and the throughput has increased sufficiently to 

make it available for commercial and clinical use. Indeed, in addition to commercial entities such 

as Foundation Medicine, many large comprehensive cancer centers now offer to sequence patient 

tumors to glean prognostic information as well as potential therapeutic targets. In response to the 

wealth of information that these efforts have created, basket trials have become a growing area of 

clinical trials, which are a type of clinical trial where treatment of a tumor is based on the 

presence of specific “actionable” mutations irrespective of the type of tumor they occur in [7,8]. 

In addition to prioritizing therapeutic options, the advances in sequencing have also aided in 
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expanding on the initial tumor classification efforts and provided more robust transcriptomic 

based biomarkers such as the PAM50 and OncoType Dx for breast cancer [9,10]. 

Predicting Survival in Gliomas 

There are currently several genetic biomarkers that are used in the clinic to identify a 

glioma’s susceptibility to conventional chemotherapy as well as glean prognostic information 

from the tumors genomic background. As mentioned earlier, IDH1 and IDH2 mutational status is 

one of the best predictors of overall survival in glioma patients, however the presence or absence 

of an IDH mutation does not change therapeutic treatment [11]. In addition, mutations in the 

TERT promoter has been shown to have clinical significance, as patients with mutational 

alterations in the TERT promoter have a worse prognosis in IDH 1/2 wt tumors. This can 

especially inform therapeutic strategies in low grade glioma patients that have favorable 

prognostic attributes. 1p19q co-deletion is pathognomonic for oligodendroglioma tumors and can 

be used to distinguish from other LGG histologic classes [12]. Moreover, clinical trials 

examining the role of procarbazine, CCNU/Lomustine and vincristine in addition to radiation 

therapy found that patients with 1p19q co-deletions had a better response rates compared to non-

deleted tumors [13,14]. MGMT promoter methylation is also a well defined biomarker for 

gliomas that is used to predict a patient’s response to standard of care chemotherapy, 

Temozolomide. 

Beyond single gene or genomic site alterations, more recent work has found connections 

between clinical outcomes and transcriptional signatures. Indeed, the classical and mesenchymal 

GBM subtypes have increased response rates to intensive treatment, as opposed to proneural and 

neural subtypes [15]. However, this association has not been reproduced in an independent 

dataset, so it is unclear how strong the correlation between subtype and response to intensive 



 109 

therapy actually is. Nonetheless, it illustrates the potential that transcriptional profiling of 

gliomas could play in future patient care. Furthermore, with the more widespread use of high 

throughput sequencing of patient tumors at academic cancer institutes, having better prediction 

methods to identify patients more at risk or more likely to respond to specific types of therapies 

will be extremely helpful. Our survival algorithm provides a preliminary example of the type of 

computational tools that could be used to identify more at risk glioma patients.  

Improvements in the Survival Algorithm 

Although our initial results show great promise, there are several changes and validation 

steps that should be done to increase its future clinical utility. One of the obvious modifications 

that could be made to our survival algorithm that would potentially improve its predictive value 

is to include mRNAs in addition to lncRNAs during the initial algorithm design. Many studies 

have used mRNA expression profiles to predict survival in a variety of tumors [16,17], including 

a study I participated in on LGG [18]. Including mRNAs in our survival prediction would most 

likely be beneficial as it would increase the initial pool of RNAs that are used to create the 

prognostic gene panel, allowing us to identify new prognostic genes. These new RNAs would 

hopefully capture some additional survival information that is not present in the current 64 

lncRNA gene set, leading to a better, more robust survival model. 

During the initial phase of designing our survival algorithm, we performed cox regression 

for all lncRNAs independently, and included the following variables into our multivariate 

analysis: tumor grade, gender, age, IDH mutational status and the expression for that particular 

lncRNA. We did not include the expression for all lncRNAs into one cox regression algorithm 

because increasing the amount of variables to over 2000 (total number of lncRNAs assayed), 

decreases Cox regression’s ability to accurately identify individually prognostic lncRNAs [19]. 
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As a consequence, although we identified 64 lncRNAs that consistently predicted patient 

survival, it is possible that many of these prognostic lncRNAs have expression patterns that 

strongly correlate or anti-correlate with each other, leading to unnecessary redundancy in the 

survival model. One way to simplify the algorithm would be to identify the groups of correlated 

and anti-correlated lncRNAs and take representative members from each correlation cluster to 

remove the redundancy. We could either select a single lncRNA from each correlation group that 

had the strongest association with survival (i.e. highest Cox coefficient) or we could create a 

composite score for each correlation group that takes into account the cox coefficients of all the 

lncRNAs within a given group. 

Another modification that could be used to improve our survival algorithm would be to 

use machine learning to aid in the algorithm design. Machine learning is a type of data analysis 

that relies on a computer’s ability to learn information about a given dataset without being 

explicitly told what to focus on. Machine learning has recently been gaining in popularity in the 

field of survival prediction, because of its ability to find hidden connections between desired 

outputs (i.e. survival) and a set of complex multi-variable inputs (i.e. gene expression, tumor 

grade, histological features, etc.). There are various machine learning methodologies, including 

Neural Networks (NN) and Support Vector Machines (SVM), which have been applied to predict 

patient survival in many cancer [20–23]. We could also employ SVM or NN in the generation of 

a new LGG survival model in conjunction with using an independent validation data set to test 

whether this methodology would create a more robust then our original 64 lncRNA survival 

algorithm.  

Survival LncRNAs in Multiple Cancers 
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We designed our survival algorithm based on expression data from LGGs and have 

shown that it is capable of predicting survival in LGGs. However, we have not tested whether 

this survival algorithm is capable of predicting survival in other tumor types. Due to the 

heterogeneity within a given tumor type it is difficult to say whether our algorithm will be 

globally applicable to other cancers, but it will be interesting to see whether to what degree the 

LGG lncRNA panel is able to predict survival in tumors more broadly. Prior to testing our LGG 

lncRNA panel in other tumors it is extremely important to test the survival algorithm in a truly 

independent group of grade II and III glioma patients. Even though we initially validated the 

algorithm against a set of patients that were blinded from the initial algorithm design, the test 

patient set and the validation patient set were all from the TCGA cohort, which could bias the 

algorithm. After validation in an independent dataset, it will be interesting to see whether it can 

be used to predict survival in GBMs, as this tumor type is most similar to LGGs. Following this 

analysis, it will be interesting to see how well the LGG survival algorithm could be applied to 

other non-glial tumors. In addition to using the algorithm to separate patients into distinct 

survival cohorts, it would be interesting to compare lists of lncRNAs that are associated with 

patient prognosis across tumors to potentially identify key lncRNA oncogenes or tumor 

suppressors, similar to what we found with DRAIC and LINC00152 [24]. This type of analysis 

would be extremely beneficial for identifying which lncRNAs should be prioritized for 

experimental investigation and could be potential targets for future anti-tumor therapeutics. 

Levels of Expression of LncRNA and Predictive Ability 

 For experimental studies it is best to focus on lncRNAs that have a reasonable level of 

expression, so that manipulation of lncRNA level (both down and up-regulation) can be carried 

out with ease.  For this reason, I have plotted the cox coefficients of lncRNAs in predicting GBM 
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survival against their expression levels (Fig 4.1).  Based on this chart and accompanying table 

(Table 4.1), the following lncRNAs should be prioritized for experimental manipulation in 

glioma cell lines in the future; RP11-521B24.5, CRNDE, RP11-571M6.7, CTD-3185P2.1, CTD-

2336O2.1, AF127577.10, RP11-338K17.8, RP11-660L16.2, GS1-124K5.4 and LINC00663. To 

demonstrate the utility of this approach, we tested whether GS1-124K5.4, which is upregulated 

in both GBMs and LGGs compared to normal tissue and associated with survival in GBMs, 

expression affects any oncogenic phenotypes (Fig 4.2a and b). Indeed, knock down of GS1-

124K5.4 led to a decrease in U87 cell growth and overexpression of exogenous GS1-124K5.4 

resulted in increased cell proliferation (Fig 4.2c and d). These preliminary results highlight the 

benefits of using our lncRNA resource for prioritizing candidate lncRNAs for further study. 

Summary of LINC00152 and GS1-1245K.4 

 From our original global analysis of lncRNAs in gliomas, I selected two lncRNAs, 

LINC00152 and GS1-124K5.4 to study in greater detail because both lncRNAs are significantly 

upregulated in GBMs and aggressive LGGs compared to normal brain tissue and high expression 

levels of each lncRNA is associated with negative patient outcomes. Furthermore, 

overexpression of LINC00152 or GS1-124K5.4 results in increasing invasion and cell growth, 

respectively, while knocking them down has the reciprocal effect. Initial secondary structure 

analysis of LINC00152 suggests that a stem-loop in its 3’ end is partially involved in its invasive 

properties. Although our initial studies into the function of these two lncRNAs suggest that they 

might play key roles in gliomas, an understudied area of lncRNA research, more work is needed 

to fully understand how they function mechanistically in this aggressive tumor type.   

Assessing the Oncogenic Role of LINC00152 and GS1-124K5.4 in vivo 
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Perhaps most important for cancer biology, stable up- or down-regulation of these two 

lncRNAs in U87 and A172 GBM cell lines should be tested in xenografts where the tumor cells 

are injected into the brains of nude mice to ascertain whether increase of these lncRNAs leads to 

a more malignant tumor.  The cells will be marked by the stable expression of luciferase before 

injection.  We can measure rate of growth of tumor volume, time to death (or sacrifice), 

angiogenesis, local invasion, distant metastases in these mice and determine whether increase of 

either of the two lncRNAs leads to a more malignant phenotype.  If distant metastases are 

difficult to get from intracranial xenografts, we can inject the engineered cancer cells 

intravenously into the tail vein of nude mice and measure the extent of lung seeding of the 

tumors (by luciferin imaging in live mice, histology of lung sections and Q-PCR for human Alu 

DNA repeats after purification of mouse lung DNA).  

FISH, RAP or RNA-IP and sequencing interacting RNAs 

Although not a steadfast rule, a lot can be gleaned from a lncRNA’s subcellular 

localization. As mentioned before, knowing where a lncRNA preferentially resides can help one 

prioritize potential functional pathways that a lncRNA effect. Using traditional cellular 

fractionation techniques, we have shown that LINC00152 is primarily located in the cytoplasm 

of U87 cells (Sup Fig 3.3). One issue with traditional cellular fractionation protocols is that 

fractionation is not always clear and nuclear proteins or RNAs can leak into the cytoplasmic 

fractions, leading to an incorrect interpretation of a lncRNAs localization. Furthermore, even if 

an RNA is correctly determined to be in the cytoplasm or nucleus, these types of fractionation 

techniques do not give detailed information on how they are localized within a given cellular 

compartment. Single-molecule RNA FISH (fluorescence in situ hybridization) is a technique that 

can be used to identify the location of individual RNA molecules [25]. Indeed, a study 
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performing single molecule FISH on lncRNAs identified 5 distinct localization patterns [26]. 

Two of the localization patterns were for lncRNAs primarily present in the cytoplasm, and the 

other was for lncRNAs present in both the cytoplasm and the nucleus. Interestingly, nuclear 

lncRNAs have 3 main localization patterns, either diffusely scattered throughout the nucleus, one 

or two large nuclear foci, or a few large foci in the nucleus with other small molecules dispersed 

throughout the nucleus [26]. Performing single-molecule RNA FISH on LINC00152 and GS1-

124K5.4 will be very informative towards future comprehensive characterization efforts. 

 LncRNAs functions are mechanistically diverse, although most have been found to 

operate, in part, through base-pairing with DNA or RNA [27]. Identifying which DNA sequences 

or RNA transcripts a lncRNA interacts with is critically important for understanding how it 

functions. Although recently more appreciation has been directed toward lncRNA-RNA 

interactions, traditionally most of the studies characterizing lncRNA function was geared toward 

identifying where along the genome a lncRNA binds. In fact, many of the methodologies that are 

now used to find lncRNA RNA interaction partners are adaptations of techniques that were 

originally designed to identify interacting genomic DNA, such as ChIRP-seq (chromatin 

isolation by RNA precipitation) and RAP (RNA antisense purification) [28,29]. Now, several 

methods exist that identify RNA-RNA interactions globally or in a targeted manner towards  a 

specific transcript’s RNA interactome [30–32]. Indeed, this is the same methodology that was 

used to characterize the role of TINCR role in the cytoplasm and led to the discovery that it 

stabilizes several mRNAs through interacting with a 25-bp motif [32]. By performing targeted 

LINC00152 and GS1-124K5.4 pull-downs followed by RNA-seq to identify interacting RNAs, 

we will gain a better understanding of how both of these transcripts function. 

Further Structure Function Elucidation of LINC00152 and GS1-124K5.4 
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 In the early days on mammalian lncRNA research, there wasn’t a huge focus on defining 

secondary structure elements of a particular lncRNA, due to the reliance on in vitro secondary 

structure mapping. Moreover, many recent studies blindly make deletion mutations in a lncRNA 

without giving weight to where the deletion boundaries might fall within the secondary structure, 

which can lead to faulty interpretations about the influence of a particular section of the 

lncRNAs on its function. More recently, newer technologies have been developed that map in 

vivo RNA secondary structure in a high throughput manner [33–37].  One drawback of these 

methodologies is that in order to get sequencing data for a specific RNA, it must be expressed at 

relatively high levels. Indeed, using PARIS data we were able to identify a secondary structure 

element in the highly expressed LINC00152, but could not for GS1-124K5.4, which is present at 

much lower levels compared to LINC00152 (Sup Fig 3.4) [31]. Furthermore, we could only 

identify secondary structure information for a single region of LINC00152 but not for the 

remaining 80% of its sequence. One way to get around this limitation would be to perform 

PARIS, or one of the other in vivo secondary structure mappings and then perform targeted 

sequence capturing using biotinylated oligos complementary to LINC00152 or GS1-124K5.4 

pull-down and enrich secondary structure elements that are derived from those RNAs. This 

enrichment step should greatly increase the amount of sequencing reads that come from 

LINC00152 or GS1-124K5.4. By performing this type of secondary structure analysis, we 

should get a more precise and comprehensive map of LINC00152 or GS1-124K5.4 folding. This 

in turn improves our ability to make deletion mutant constructs and better probe structure 

function relationships in these lncRNAs. 

Identifying LINC00152 and GS1-124K5.4 Interacting Proteins 
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One of the largest hurdles to characterizing a lncRNA’s function is to identify interacting 

proteins. Nearly every example of mammalian lncRNAs have been demonstrated to function 

through interacting with some protein effector. Traditionally, interacting proteins have been 

identified through in vitro pull-down assays that rely on the use of a tagged or chemically labeled 

RNA [38–40]. Although these in vitro association assays have led to critical insights in lncRNA 

function, they can often lead to non-physiologic interactions or preferential pulling-down of 

highly abundant proteins [41,42]. More recently, several techniques have been developed to 

identify lncRNA interacting proteins in vivo that do not rely on the use of RNA tags or labeling 

[43,44]. Most of these methods use antisense nucleic acids to isolate RNA-protein complexes, 

either under native conditions or in denaturing conditions for samples that have been cross-

linked [44]. Performing these types of unbiased in vivo interaction studies would help shed light 

on how LINC00152 and GS1-124K5.4 function. Furthermore, using more refined secondary 

structure information, the protein binding sites can be mapped using lncRNA deletion mutants 

and in vitro pull-down assays. Gaining a better appreciation of the LINC00152 and GS1-

124K5.4 protein interaction repertoire will help improve our understanding out how these 

oncogenic lncRNAs are functioning in brain cancer. 

 Potential Therapeutic Applications of Targeting lncRNAs 

In addition to using lncRNAs as biomarkers, recent work has speculated on the clinical 

utility of actually targeting lncRNAs as part of a comprehensive treatment regimen for patients 

[45–47]. There are several different technologies that could be used to target lncRNAs 

therapeutically, including siRNAs, molecules that bind lncRNAs or chemicals that can augment 

the expression of lncRNAs. siRNAs have already been used in clinical trials in various diseases 

to lower target gene expression [48,49]. LncRNAs are perfect candidates for siRNA based 
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therapies because most siRNAs target RNA levels, which is the final functional unit of a 

lncRNA, unlike proteins where a single mRNA can give rise to many proteins. This signal 

amplification may necessitate higher levels of RNA knockdown to achieve a clinical response, 

compared to lncRNAs. Modarresi et al. intracranially administered siRNA targeting the lncRNA 

BDNF-AS in mice and saw significant decrease in expression and increased neuronal outgrowth 

[50]. The main issue with siRNA based therapies is the difficulty of targeting a specific tissue, 

however recent advances in siRNA delivery systems have demonstrated that siRNAs can be 

delivered to specific tissues [51]. 

There are currently many compounds that are used in the clinical setting that target RNA-

protein complexes. The most famous of which are antibiotics, such as streptomycin and 

tetracyclines, that target the bacterial ribosome [52,53]. Another example of small molecules 

used to target RNAs is a group of compounds that bind a crucial HIV RNA element, TAR 

(transactivation response element) [54]. These small molecules bind to TAR with high affinity 

and prevent it from interacting with its protein binding partner [54]. In addition to using 

compounds to directly bind a lncRNA, they could also be used to alter the expression of 

lncRNAs by targeting proteins that regulate their stability or expression. An example of such a 

compound is I-BET151, which is a selective BET (bromodomain and extraterminal) 

bromodomain inhibitor [55]. BETs such as BRD2, BRD3 and BRD4, which are upregulated in 

GBMs, play a critical role in regulating gene expression [56]. I-BET151 strongly inhibits GBM 

cell growth both in vitro and in vivo, by affecting the expression of many lncRNAs including 

HOTAIR  [57]. Indeed, re-expressing HOTAIR is sufficient to restore cell growth during I-

BET151 treatment [57]. These studies illustrate various methodologies that can be used to target 
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lncRNAs in cancer and future research into designing newer lncRNA targeted small molecules 

or siRNAs could increase our therapeutic arsenal to target cancer and other diseases.  
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Figure 4.1. Volcano plot of lncRNAs separating them based on expression (FPKM) and cox 
coefficient. Blue points are those that are statistically significant (p value < 0.05).
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lncRNA Cox	Coefficient Median	Expression	(FPKM)
AGAP2-AS1 0.3544 11.3359
RP11-571M6.7 0.3543 145.893
RP11-74C13.4 0.3241 8.564445
CRNDE 0.2847 15.824
RP11-542C16.1 0.2927 7.973685
RP11-792A8.4 0.2806 19.0665
LINC01503 0.2752 9.52096
RP11-762H8.4 0.2844 7.49609
Cabili_2815 -0.2393 6.59275
CADM3-AS1 0.2646 21.677
RP11-334C17.6 -0.2635 4.20283
RP11-6N17.4 0.2533 12.00405
SOX21-AS1 -0.254 3.99134
LGG_LOC027071 0.2554 6.949825
AC068580.6 0.2316 3.85752
RP11-809N8.2 0.2375 8.292035
MIR497HG 0.2174 17.8172
RP11-359E10.1 0.2234 3.88899
SEMA6A-AS1 -0.2029 5.64052
CTB-31O20.9 -0.19873 7.971485
CTD-2336O2.1 0.222 24.58065
RP11-361L15.3 0.2295 20.9118
GCSHP3 -0.20565 6.592755
AC006116.24 -0.203 7.947185
LINC01057 0.2161 4.354855
RP11-1143G9.4 0.2304 23.64535
CTD-3185P2.1 0.206 11.67795
LGG_LOC040572 0.218 15.16545
GS1-124K5.4 0.2055 10.4736
RP11-27M24.1 0.2155 6.563745
RP11-644F5.11 0.198 6.48367
RP11-458J1.1 0.1897 4.3336
RP11-841O20.2 0.2092 9.061345
RP11-309L24.2 0.1844 3.796985
CTB-51J22.1 0.1967 4.81081
LINC00663 -0.1923 5.18596
STARD7-AS1 -0.1799 6.149375
RP11-660L16.2 -0.193 8.212445
RP4-665J23.1 0.1923 7.515495
RP11-338K17.8 0.2011 13.7827
GBM_LOC047769 -0.17648 4.19428
CTD-2583A14.8 -0.1725 3.719905
AF127577.10 0.1853 15.5451
CTD-2303H24.2 -0.1812 5.208445
BMS1P20 -0.1767 5.78431
ARSD-AS1 0.1782 9.81168
MIR22HG 0.1841 7.705755
RP5-1021I20.5 -0.1944 4.985235
RP11-521B24.5 -0.1935 20.5905
GBM_LOC002313 -0.19121 5.9063

Table 4.1. List of top lncRNAs associated with GBM patient prognosis that do not have low expression 
levels.
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Figure 4.2. GS1-124K5.4 upregulated in GBMs and LGGs, associated with patient prognosis in GBMs 
and regulates U87 cell growth. A) Boxplot of LINC00152 expression in GBM, LGGs and normal brain 
tissue. B) Kaplan Meier plot of GBM patients comparing the top eight percentile of GS1-124K5.4 
expressing patients with the remaining patients. C and D) U87 cell growth following knockdown or 
overexpression of GS1-124K5.4, respectively. *** p-value < 0.0001
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Appendix 
 
Scientific Contributions in other Studies 
 
In addition to the work that I have outlined in the above chapters, I have also made contributions 
to following scientific work.  
 
 
 
 
Mueller AC1, Cichewicz MA1, Dey BK1, Layer R1, Reon BJ1, Gagan JR1, Dutta A2. MUNC, a 
long noncoding RNA that facilitates the function of MyoD in skeletal myogenesis. Mol Cell 
Biol. 2015 Feb;35(3):498-513 

- I performed microarray analysis of MUNC knockdown in growth media and 
differentiation media in C2C12 cells. I identified differentially expressed gene 
clusters associated cell growth and muscle differentiation. 

 
 
Sakurai K1, Reon BJ1, Anaya J1, Dutta A2. The lncRNA DRAIC/PCAT29 Locus Constitutes a 
Tumor-Suppressive Nexus. Mol Cancer Res. 2015 May;13(5):828-38 

- I performed the initial bioinformatics analysis that led to the identification of the 
tumor suppressive lncRNA, DRAIC. 

 
 
Anaya J1, Reon B2, Chen WM3, Bekiranov S2, Dutta A2. A pan-cancer analysis of prognostic 
genes. PeerJ. 2016 Feb 16;3:e1499.  

- I helped analyze the RNA-seq data for LGGs which was used to find survival genes 
in LGGs. 

 
 
Reon BJ1, Dutta A2. Biological Processes Discovered by High-Throughput Sequencing. Am J 
Pathol. 2016 Apr;186(4):722-32. 
 

- Co-wrote review article with Dr. Anindya Dutta 
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MUNC, a long noncoding RNA that facilitates the function of MyoD in skeletal myogenesis. 
Mueller AC1, Cichewicz MA1, Dey BK1, Layer R1, Reon BJ1, Gagan JR1, Dutta A2. 
 
Mol Cell Biol. 2015 Feb;35(3):498-513. doi: 10.1128/MCB.01079-14. Epub 2014 Nov 17. 
 
Abstract 
An in silico screen for myogenic long noncoding RNAs (lncRNAs) revealed nine lncRNAs that 
are upregulated more than 10-fold in myotubes versus levels in myoblasts. One of these 
lncRNAs, MyoD upstream noncoding (MUNC, also known as DRR(eRNA)), is encoded 5 kb 
upstream of the transcription start site of MyoD, a myogenic transcription factor gene. MUNC is 
specifically expressed in skeletal muscle and exists as in unspliced and spliced isoforms, and its 
5' end overlaps with the cis-acting distal regulatory region (DRR) of MyoD. Small interfering 
RNA (siRNA) of MUNC reduced myoblast differentiation and specifically reduced the 
association of MyoD to the DRR enhancer and myogenin promoter but not to another MyoD-
dependent enhancer. Stable overexpression of MUNC from a heterologous promoter increased 
endogenous MyoD, Myogenin, and Myh3 (myosin heavy chain, [MHC] gene) mRNAs but not 
the cognate proteins, suggesting that MUNC can act in trans to promote gene expression but that 
this activity does not require an induction of MyoD protein. MUNC also stimulates the 
transcription of other genes that are not recognized as MyoD-inducible genes. Knockdown of 
MUNC in vivo impaired murine muscle regeneration, implicating MUNC in primary satellite 
cell differentiation in the animal. We also discovered a human MUNC that is induced during 
differentiation of myoblasts and whose knockdown decreases differentiation, suggesting an 
evolutionarily conserved role of MUNC lncRNA in myogenesis. Although MUNC overlaps with 
the DRR enhancer, our results suggest that MUNC is not a classic cis-acting enhancer RNA (e-
RNA) acting exclusively by stimulating the neighboring MyoD gene but more like a 
promyogenic lncRNA that acts directly or indirectly on multiple promoters to increase myogenic 
gene expression. 
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The lncRNA DRAIC/PCAT29 Locus Constitutes a Tumor-Suppressive Nexus. 
Sakurai K1, Reon BJ1, Anaya J1, Dutta A2. 
 
Mol Cancer Res. 2015 May;13(5):828-38. doi: 10.1158/1541-7786.MCR-15-0016-T. Epub 2015 
Feb 20. 
 
Abstract 
Long noncoding RNAs (lncRNA) are emerging as major regulators of cellular phenotypes and 
implicated as oncogenes or tumor suppressors. Here, we report a novel tumor-suppressive locus 
on human chromosome 15q23 that contains two multiexonic lncRNA genes of 100 kb each: 
DRAIC (LOC145837) and the recently reported PCAT29. The DRAIC lncRNA was identified 
from RNA-seq data and is downregulated as prostate cancer cells progress from an androgen-
dependent (AD) to a castration-resistant (CR) state. Prostate cancers persisting in patients after 
androgen deprivation therapy (ADT) select for decreased DRAIC expression, and higher levels 
of DRAIC in prostate cancer are associated with longer disease-free survival (DFS). Androgen 
induced androgen receptor (AR) binding to the DRAIC locus and repressed DRAIC expression. 
In contrast, FOXA1 and NKX3-1 are recruited to the DRAIC locus to induce DRAIC, and 
FOXA1 specifically counters the repression of DRAIC by AR. The decrease of FOXA1 and 
NKX3-1, and aberrant activation of AR, thus accounts for the decrease of DRAIC during 
prostate cancer progression to the CR state. Consistent with DRAIC being a good prognostic 
marker, DRAIC prevents the transformation of cuboidal epithelial cells to fibroblast-like 
morphology and prevents cellular migration and invasion. A second tumor-suppressive lncRNA 
PCAT29, located 20 kb downstream of DRAIC, is regulated identically by AR and FOXA1 and 
also suppresses cellular migration and metastasis. Finally, based on TCGA analysis, DRAIC 
expression predicts good prognosis in a wide range of malignancies, including bladder cancer, 
low-grade gliomas, lung adenocarcinoma, stomach adenocarcinoma, renal clear cell carcinoma, 
hepatocellular carcinoma, skin melanoma, and stomach adenocarcinoma. 
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A pan-cancer analysis of prognostic genes. 
Anaya J1, Reon B2, Chen WM3, Bekiranov S2, Dutta A2. 
 
PeerJ. 2016 Feb 16;3:e1499. doi: 10.7717/peerj.1499. eCollection 2015. 
 
Abstract 
Numerous studies have identified prognostic genes in individual cancers, but a thorough pan-
cancer analysis has not been performed. In addition, previous studies have mostly used 
microarray data instead of RNA-SEQ, and have not published comprehensive lists of 
associations with survival. Using recently available RNA-SEQ and clinical data from The 
Cancer Genome Atlas for 6,495 patients, we have investigated every annotated and expressed 
gene's association with survival across 16 cancer types. The most statistically significant harmful 
and protective genes were not shared across cancers, but were enriched in distinct gene sets 
which were shared across certain groups of cancers. These groups of cancers were independently 
recapitulated by both unsupervised clustering of Cox coefficients (a measure of association with 
survival) for individual genes, and for gene programs. This analysis has revealed unappreciated 
commonalities among cancers which may provide insights into cancer pathogenesis and 
rationales for co-opting treatments between cancers. 
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Biological Processes Discovered by High-Throughput Sequencing. 
Reon BJ1, Dutta A2. 
 
Am J Pathol. 2016 Apr;186(4):722-32. doi: 10.1016/j.ajpath.2015.10.033. Epub 2016 Jan 30. 
 
Abstract 
Advances in DNA and RNA sequencing technologies have completely transformed the field of 
genomics. High-throughput sequencing (HTS) is now a widely used and accessible technology 
that allows scientists to sequence an entire transcriptome or genome in a timely and cost-
effective manner. Application of HTS techniques has led to many key discoveries, including the 
identification of long noncoding RNAs, microDNAs, a family of small extrachromosomal 
circular DNA species, and tRNA-derived fragments, which are a group of small non-miRNAs 
that are derived from tRNAs. Furthermore, public sequencing repositories provide unique 
opportunities for laboratories to parse large sequencing databases to identify proteins and 
noncoding RNAs at a scale that was not possible a decade ago. Herein, we review how HTS has 
led to the discovery of novel nucleic acid species and uncovered new biological processes during 
the course. 

 


