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THEMETHOD or EQUIPOLLENCES, AND ITS RELATION TO THE CAL-

" cULUS OF QUATERNIONS.

The satisfactory solution of the important question, How to interpret imagi-

nary quantities? belongs to the nineteenth century; and the honor- of being the

author of the most complete and general solution of this question belongs un-

doubtedly to Sir William R. Hamilton, the inventor of the Calculus of Quater-

nions.

These 50--called imaginary or complex quantities seemed for a long time to

form an irresistible barrier to furthe1 piogress "

Wallis, toward the close of the seventeenth century, suggested that the

square root of a negative quantity might be laid off bygGoing out of flu) line, on

which the real quantity would have been measured. This step was especially

useful,1n that it led to a very important one, the consideiation of the [mgt/z and

(fireman of a line independently of one another. '

Finally, at the beginning of the present century, not to mention less piomi-

nent writers on the subject, Mourey gave a geometrical interpretation to imagi-

nary quantities. Argand had formed the same conceptions some years before;

but Mourey, as well as Warren, seems to have made his invention independently.

.But Giusto Bellavitis first established this new system of Analytical Geometry

under a really ilzet/zodz'ml form.

This invention, called by Bellavitis the Method of Equipollences, and founded

on the theory of complex quantities, though a most remarkable and elegant

method for solving plane problems, has no application to tridimensional space.

Sir William R Hamilton was the first to discover the use of 1/:as a

geometric reality, tied down to no particular direction1n space, and this use was

the foundation of the Calculus of Ouaternions. (Tait’s Quaternions, Chap. I).

Bellavitis wrote several works on his new method, one of which, his “Sposzgzone

dd 1Wetodo (idle quzzpollmze," 1854,»was translated into French by Captain Lai-

sant for the Nozwel/es Alma/es az’e JWat/zématz'gm’s, 1873—74 This translation was

afterwards published in book form. Houel has briefly treated the subject in the

second volume of his Calculus.

, Let us now see what are the chief characteristics of the Method of Equipol-

lences.

According to the definition given by Bellavitis, two lines are aquz'pollerzt,

when they are equal1n magnitude, parallel, and drawn in the same direction.

Adopting the notation of Gauss, i is used for 1/——I; and, as in Houel’s

Calculus, 2 represents the conjugate of a complex quantity 6. A straight line  
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4 THE METHOD OF EQUIPOLLENCES,

having the same length as a given straight line and the same inclination, but of

contrary sign, is called the cmg'zzgaz‘cof the first. A line conjugate to a given

line is obtained by simply changing the sign of i wherever it occurs in the given

line.

Thus, the conjugate of the expression-

c=zz+ilz=2ci0

would be

2: a —il7 = ze—z‘fi.

Hence the'modulus of the complex quantity is ,

l. = 1/6 .2.

Frequent use is made of conjugate lines in eliminations and reductions. We

discard, as not necessary, the special sign (a) employed by Bellavitis to denote

that two quantities are equipollent. Instead, we shall use the sign = , with the

meaning “equipollent to,” that is, equal in magnitude and drawn in the same di-

rection, just as in Quaternions the sign = has an extended meaning—is equiva-

lent to. With this understanding, the equipollence 2 == 99(15) indicates both the

curve itself and its law of description. This shows us at once the great advan-

tage this method has over the ordinary methods, giving, as it does, at one time,

both the magnitude and position of diffent parts of the figure. Other advanta-

ges by which the method of equipollences is principally distinguished are

‘ First, The number of theorems that flow at once from the general principle

of the method—“ Every property‘of points of a straight line gives a theorem re—

lative to points of a plane by simply changing the equations into equipollences.”

Second, In forming the equations to curves by this method, we are indepen-

dent of any special system of co-ordinates.

Third, It enables us to apply algebraical operations and transformations to

geometrical complex quantities. '

In this method the equations to curves are most readily and naturally de-

rived by considering their mode *of generation. If we consider a geometric

locus as generated by the motion of a pointz corresponding to the time t, a

term of the form at would express a motion of translation along the direction

02:, or parallel to this direction. Here 0 is supposed to be the origin, and 0x

the iniiial line. A term of the form ac“ would express a motion of rotation of

the straight line it around its initial extremity. Thus

2 = cw!" represents a circle,

2 = 7261'! — 9W represents a epicycloid,

z = (mil represents a spiral of Archimedes.

For other examples, see Houel’s Calculus, Vol. II.
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ITS RELATION TO THE CALCULUS OF QUATERNIONS. 5

Let us now briefly consider some of the fundamental processes of this me-

thod, following in the main Houel. For future use, we must state this rule

(fllét/zode ales quzzfollmccs, Art 10.)

RULE: A, B, C being any three points in a plane, we have always the

equipollence

AB + BC= AC

which takes indifferently the forms

BC= AC —— AB,

AB = AC —- BC,

. AB + BC + CA =: o.

If a is a real constant, the equation

:3 = at

represents the axis 04‘, the equation

.3 = Milli”! = At (1)

represents a line passing through the origin and making an angle ,u with 01:.

Making p =% in (I), it becomes

1-: = iat
(2)

a line through the origin perpendicular to the line 3=at. In adding to each

value of 5 a straight line constant in length and in direction B, we obtain a par-

allel to the line (I), of which the equation is (see Rule)

2 = A2 + B . ' (3)

Having given two lines

6 = (will. 6’ = 6!?”

of which the conjugates are

c=ae—i/1, c’ =lie—‘l7’

the angle [1 —— abetween the two lines c, c’ is given by the equation

I

i:%=€2i(fl—7T)
(4)

“
1

In order that the two lines

x=At+B, 5=A’i+ B’
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6 ’ THE METHOD OF EQUIPOLLENCES,

be parallel, the angular coefficients A A’ must have the same argument, and

hence a real ratio. The condition of parallelism should therefore be

I .

j, = a real quantity.

We can now find the equation to the tangent.

This equation is of the formf = 5 + Ar (see Rule above), where 3 is the 5

of the curve, that is, it is the distance of a point on the curve from the origin,

‘and Ar is a small element measured in the direction of the curve and varying

with 2. Now A ought to be equal to (la multiplied by a real quantity. For dz

represents in magnitude and direction the element of the arc of the curve

a =f(t). As: is an albitiary small quantity, we may suppose this real multi—

plier to be 7;; (a large quantity). Therefore, putting

12’s __ a!

722‘— n!

we have for the equation to tangent at point .5

In like manner the equation to the normal is '

= g + [~I- ‘ (6)

Centre of curvature, Evolute.

In passing from one normal to the next, t and r evidently vary. At the

point of intersection of two normals, I; ought to be the same, and consequently

d: :0. Therefore, to obtain the centre of c'urvature,the intersection of two

normals infimtely near, we differentiate the equation (6) of the normal with

respect to t (of' which 5 and r are functions). Thus, we have

0:'sl1+z§l+w~r <7)

Equating real and imaginary parts of this equation, we deduce the value of z-

and g;- for the point of intersection. Substituting the value of 1' thus found in

(6) the equation to the normal, and in the resulting equation considering t as a

variable, we get the equation to the evolute, the locus of the centres of curvature.

The length of the radius of curvature would be given by the formula

p=Ve—ae—a=aew
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ITS RELATION TO THE CALCULUS OF QUATERNIONS. 7

Next, to obtain the envelops and trajectories, let .

z =fW~) (3)

be the equation to a curve containing an arbitrary parameter Ii. Let us suppose

now that the trajectory sought cuts the lines (8) under a constant angle 19. We

should obtain this condition in placing the angle of two tangents to the line (8),

obtained, the one in supposing/X constant, the other in supposing 2. variable, equal

to 19. Differentiating the equation on the two hypotheses, we find respectively

for the angular coefficients of the two tangents

EE_ [d1] e_ or] (1:1 d2.
a— a' a—La + J

. - ~ a7 _ ,, (ti/f) _ -
or, 1n supposing for brev1ty, [El—l] __ .a , i157. __ ..,,

313_,d.~ ,dz.
___——I,~, —

dt '4; —“ +”1dt

{
Q

We would have, therefore, to determine the angle of these two tangents the for-

mula (equation 4)

{l}.

.5, + 5122 .s’
‘ : 7: = [2].”

~—/ — a" 51

5+aa

or, in making 621'” = m.

_ _ (g), _

(7125’s, — 5’51) 71,-, + (m — I) (5".5’ = o. (9)

7r
. . .

If (9 = 7; or m = -— I, we have, for the equation of orthogonal trajectories

_ _ [1,1 _

(5’s, + :’z,) :22 + 2:’:’ = 0 (10)

Making 19 = o, whence m = I, we have, to determine the envelop, the equation

his :1” _
pal—usl—o

(11)

Deducing from this the value of II, and substituting it in the equation (8), we

would have the equation to the envelop.

The application of these principles to some examples, will show us the re-

markable simplicity and neatness of the method. Let us then derive the equa-

tions and some of the chief properties of the epicycloid and hypocycloid,as an im- 1
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8 THE METHOD OF EQUIPOLLENCES,

perfect continuation of the. articles on the cycloid1n the zl/iz‘lzmlc’ (ZILS Ejztzpolluues.

Here, as elsewhe1e, we refe1 to Laisant’5 French t1anslation of the 01iginal w01k

of Bellavitis. The equations can be derived at once fiom ou1 knowledge of the

law of description of these curves, Which are formed by the composition of two

uniform circular motions. In the one case, the generating circle rolls on the

convex, and1n the other, on the concave, side of the fixed circle. Therefore,

the equation to the eyicycloid would be

.3' 2 Mel.” _ ell/M

where 1181'” = line from centre of fixed circle (the origin) to eentre of generating

circle, and dill” = line from the centre of the latter circle to the paint on its cir—

cumference. See Rule. And the equation to the hypocycloid

S —_— ”will _ L’ — I‘ll!”

These equations may also be derived from the corresponding Cartesian co-ordi-

nates, by using the formula

In Cartesian co-ordinates, the equations to the epitrochoid are

.r=(zz+é)cosd—licos—+b

y=(¢z+b) sind—lzsin———a+éd

The equations to the hypotrochoid are

 x=(tz—é)cosi}+/zcos a— t‘}

y=(a—l2)sin15‘——/isin—a—E~bz9,

Transforming to equipollences

/;

s=(a+&)c"”—/ze‘:”

is equation to epitrochoid;

—l

=(a—b)il”+/ze—iaT f’

is equation to hypotrochoid, and, therefore,
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1T5 RELATION TO THE CALCULUS OF QUATERNIONS. 9

1 —,— d

:02 + 1,).10_ @2—l——o

is equation to epicycloid.

—/I

= (a —- lief" + bc— fir"

is equation to hypocycloid.

To simplify the equation to the epicycloid, let a + b =Izb, then, dividing

th1ough by l) and putting: for %,tthe equation becomes

.3 = Ili’l'” — 6’71" ([2)

Equation to tangent is

: = ”my _ :17sz + [.117 (Eff! __ Bind) (I3)

and equation to normal

: = [will ._ gill” _ )1:- (61.” __ cinfl) (I4)

I Differentiating this last equation

0 = ”2.032.” _. €2.11“) _... ill? (will _. Lily/Ill) _ ll (6):" __ VIII”) 55.; ([5)

Equating real and imaginary parts

——- sin L7 — sin 7215‘ + 7 sin [I +iiztisin m? —— cos I? 3:; + cos m‘} 5—; = 0

cos I? ——- cos m} — 7 cos i} ll? cos m?-—— sin 19d— —— sin 72:?— _-o

+ d} 47}

.4

I+Iz'

normal and reducing, we have the equation to the evolute

 Eliminating 3:72,, we get 7 =

P___11(n— I) 810 fi

"_ n+1 +Il—I—Iem (16)

. an epicycloid in which the radii of the base and generating circles are as u —— I

to I, or as a to b.

For radius of curvature, we have

 

 

= 1' 1/14)? : 2” /l it! __ ”)rmtf w—i/xll... (3—10
1” ,9 71 + I ] (l6 2; )( l )

ll . 72 -— I

=——4—‘Sln-—"—'(9=—4&(a,-Sl+b)

I + n 2 a +25 “26

 

Substituting in (14) the equation to the.
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IO ' THE METHOD OF EQUIPOLLENCES,

Treating the hypocycloid in a similar way, we would find its evolute to be

another hypocycloid.

If the radius of the generating circle be equal to that of the fixed ciicle,

thatIs, ifa—_ [1, in the equation to the epicycloid, we have

a = 21267”? — (26217”

the Cardioid, a curve of the 4th order. The equation to the normal is

5—— 2(1‘11” __ [“1216 _ 2a? ((710 _ [226)

From which, we find the evolute to be

C: 3m1” +3I"(ZL21”

an inverted Cardioid. Also, for radius of curvature

ll _ 8 - 1C.

[i=7] L"£’=-—~(ZSII‘1~—
3 2

If /; = g— the equation of the epicycloid with two cusps, is

the equation to one of the caustics of a ci1cle,w11en the incident 1ays are paIal—

lel to a diameter. The equation to the hypo’hochoid

-—/2

=(a—lv) [10+ lie—7aT 0

becomes for b =

I
o
t
a

.;'-..“[70 + [sz6

. . . a a
the equation to an ell1pse whose semi-axes are ; + la and :2- — lz. An elegant

application of this property of the ellipse to generate it by continuous motion,

was made by Prof. Wallace, for explanation of which see Gregory’s Examples,

page 140.

The equation for the hypocycloid in this case becomes

,3 = ‘25 ([50 + (—27!) = 4 cos 0

a diameter of the base circle.
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ITs RELATION To THE CALCULUS OF QUATERNIONS. . II

‘ i . . (Z

The equatIOn for the hypocyclo1d, when 6 = 3. becomes

5 2 § (wit) + l m: — 310

4 4

corresponding to the Cartesian equation

x3 + 3/3 = (13.

The equation of the tangent to this curve is

.
1
»
:

, . 1 . . . .
= 9. (will + (Em—310 + i,” (,.;11_€_3za) ,-

.
p
.

01‘

L
1
.
)

H
.u a (cosy. + ism/l) + :(cos 3!? -— i sin 3/7)

4
:
-

1

+ iai (cosd + isin/‘l- —- cos 31‘} + isin 319-) I

'For intercept on axis of .r, we must equate the imaginary part of this equa-

tion to zero, and substitute the value of I thus found in the original .equation.

And, for the intercept on axis of y, we must equate the real part to zero, and

substitute the value of 7 thus found in the original equation. Harte/’5 Calculus,

Vol. II, Art. 613. Therefore for intercepts on the axes, we have

  

 

I c I . , . , sin 3:?— 3 sin 1‘}

f, = —(z " cos (9 cos 21/1 — — a 5m 1} — sm 21.) ~———— —
.L 4 (J + J) 4( l— J)COSIy'—COSS/‘}

__ 1 a sin 2:?

2 sin 1‘)-

1 . . I cos (9- — cos “(9

f, = — a (3 5111 1‘} .— sm 3/?) + — it (cos d — cos 3'9')~3~.-~r-——I:T~-I2-.

- 4 > 4 $111 I}- + 5m 3

1 sm 2 (5‘

— a ,

2 cos i}

'Hence,‘/i being the portion of the tangent intercepted by the axes,

[£2 __ y, + ,2 _. (£2 [sin2 2!? sin2 21‘}

—— . , r — _ “-— L--._
' " " ’ sm" cos" i‘}

]=(Z2.'./l=(l

4

and the intercepted portion is constant. Hence, this hypocycloid may be regarded

as the lows of the ultimate intersections of a right line of constant length sliding

between two straight lines at right angles.
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I2 THE METHOD OF EQUIPOLLENCES,

Again, this hypocycloid is the envelop of the ellipses described with co-inci-

dent centre and axes, and having the sum of the semi-axes equal to a constant.

a and b being the semi-axes of the ellipses, a'+ é = c = constant. Hence,

a being a variable parameter, the equation to the ellipses is

z=acosz9+i(c—-—a)sin¢9 (17)

Now for an envelop we must have, as we have seen above,

3’s, —5’5,=0 (II)

FrOm (17) we have

s’=—asin 19+i(c——a) cos (9-, s’='—-asint9—’i(c—a)cos 19

z,=cosd—isind, .'.s—,=cosz}1+isin15l

Substituting in (I I) we get

[—a sin L? + i(c —a)cos (9] (cos 0 + isin i9)

+ [a sin (5* + i(c —(z) cos (9] (cos I? —isin 19) = o

From this

_ a = c c0320

which value substituted in (17) gives for the envelop

a = t cos3 i9 + it smile?

or

. I .
a = gm" + '66—‘370

4 4.

the hypocycloid. Q. E. D.

These examples seem sufficient to illustrate the general method of deriving

the equations and properties of plane curves by the Calculus of Equipollences.

KINEMATICS.

This method may also be readily applied to the problems of Kinematics.

Thus '

S=R®

being the equipollent equation to an orbit

2’ '= r’ (t)

is the equation to hodograph, giving the law of its description as well as its

,
.
¢
.
_
.
,
‘
-
P
.
-
.
<
j
-
~
.
-
-

.
,

.
.
.
.
_
.

.
_
.

 



 

ITS RELATION TO THE CALCULUS OF QUATERNIONS. I3

; form. And this shows that the vector-acceleration of a point’s motion, a” or

{5%, is the vector-velocity in the hodograph. If the motion be in a plane curve,

the equation may be written

: {5‘ = 7‘62"; . (I)

z = 1"?” + ire!" g? (2)

. . . dz? . d 9 2 . . 3i? '
a” = WM + ZUJME — rel” [0,7,] + “To? (3)

Hence, at once from (2) and (3).

. ‘ . (I’I'

The radial veloc1ty _ ll?

| . . (Fr [2’19] 2
The radial acceleration _ [7? ——1 [5,?

The transVersal velocity :7};

. I 0’ Jill]

The transversal acceleration « — ;. 2—2, [7 [7

Compare Art. 311, Vol. III of Price’s Calculus.

For uniform acceleration in a constant direction, the equation of motion is

a”=a  
. ' . 3’ = at + b

hence, hodograph is a straight line

‘l'+ [it

a

Ir—
(J—

m
l

and orbit is a parabola.

If acceleration vary as distance from the origin, we have

”I

, a ’ = —+_— iii-’3

We integrate this by means of the Calculus of Operation, thus

[d2 “7112] e - 0

all? + ” —

.
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I4 THE METHOD OF EQUIPOLLENCES,

Therefore

01‘

(l . cl .

[gt—— ml] [.72 +1111] .. — 0

These give, obvious substitutions being made

.3 = L‘. C]; mt + (l. 5/; mt, a hyperbola;

a = t. cos mt + (2’. sin mt, an ellipse;

where c and ii are, in both cases, semi-conjugate diameters. Differentiating, the

hodograph is a hyperbola or an ellipse

5’ = cm 5/1 1112‘ + (ll/t C/l mt

01‘

5’ = -— cm sin mt + rim cos mt

All the plane theorems of Kinematics and Dynamics, can be solved by this

method; but much more general solutions are made by employing Quaternions, j .

as the motion is then not confined to plane curves. This brings us to the se- '

cond part of our thesis:

THE RELATION OF EQUIPOLLENCES TO QUATERNIONS.

The Calculus of Quaternions is a more complicated system; but, once mas—

tered, it possesses all the advantages that distinguish the Calculus of Equipol-

lences, and is much more powerful, particularly in that it is not limited to plane

problems.

Quaternions may rightly be considered as an extension to space of the

Method of Equipollences; but having some special rules to which Equipollences

are not subjected. A “vector” is a line represented, or supposed to be repre-

sented,- by a complex quantity, and therefore two lines which are equipollent in

the method of Bellavitis, would be represented by the same vector symbol in

Hamilton’s method.

To show the similarity, or rather the sameness of the methods, we take a

well known example from Plane Geometry:

“ If G be the point of intersection of the medians of a triangle, A B C, and

0 be any point whatever in the plane of the triangle, then

0A2 + 0B2+ 0C2=AG2 +BG" + CG" + 300’

1 .
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ITS RELATION TO THE CALCULUS OF QUATERNIONS. IS

First, by Equipollences we have

OB=OG—BG

‘1? , 0A=OG—AG

0C: OG—CG

squaring and adding, we have

i 0A2 + 0B2 + 0C3: 3062 — 206 (AG + BC + CG) + A6“2 + 503 + C02

Now, recollecting that here the sign = means “equipollent to,"

AG+BG+CG=AB+BC+CA=O 
therefore

0A2 + 0135 + 0C3: 3,0632 .+ AG" + BC2 + CG" Q. E. D.

Secondly, by Quaternions,

1 Let, 0A :2: a, 0B =/3, 0C: 7, then, as is easily proved,

, 06=§<a+19+r> <1)

I

j Therefore

1

3 .— + r + + 250/19 + .9; + .0) = 906' (2)

i Now

i .

i" AG=%(—20+/°+f)

l 1

; BG=§(I/.—2,3 + 7’) (3)

l C0=%(a+,9—-2,)

l

i Hence, squaring and adding

A02 + 1202+ 502.30.:- + e +r'3)-—§5(afl +13r + m). (4)

i =§ie+e+r>—3062+§1a2+e+r> by (2).

Therefore,

0A2 + 0132+ 052: AG‘H—BGZ + 602 + 3002 Q. E. 15.

   



16 THE METHOD OF EQUIPOLLENCES,

,The only difference in the methods as here employed, is that the scalar part

(resulting from the fact that multiplication is not commutative in Quaternions)

occurs in the latter; but this, as we see, makes no essential difference. The

proof by Quaternions, however, shows that the proposition is true for the point

0 anywhere in space.

Let us now examine a little more closely the fundamental principles in—

volved in the two methods. Perfect symmetry is attained by Hamilton's method

by Considering all lines as equally imaginary, or rather equally real. The same

symmetry, as far as lines entirely i/i warp/(21w are concerned, seems to be attained

by the method of Bellavitis. For, although there is always a rml initial line ex-

pressed or implied, this fixed line may be taken anywhere in the plane, according

to the requirements of the problem.

In Equipollences, the symbol l/ — I which we have represented by the let-

. . . 0/ . . .

ter 2 is equal to the quotient D7? , of two equal hues at right angles, and it has

the effect of turning a line through 90°, in the plane determined by 0/ and OH.

This symbol, therefore, in a plane problem, performs the same function as the i

(j/e) of Quaternions; but in the latter system, i as an operator must be distin—

guished from i as an operand. if is not the same as ji. This follows at once '

from the unique and fundamental principle of Quaternions, multiplication is not

cOmmutative. Although Hamilton’s i,j, la are each separately equal to 1/———-—1,

their combination by multiplication gives some important and remarkable results.

They take us, as it were, into a higher field of algebraic analysis.

Since , - z'=i/——i, 212—1.

and
./= f _ I) j'2=___ I!

we might expect to find if: — I,but this,as we know, is not the case, for 2]: la,

that is, 1' operating onj turns it through 90° in a plane perpendicular to i, and it

becomes k. Hence we see that in Quaternions, the V1: is to be regarded as

a symbol, rather than as an ordinary algebraic quantity. In Equipollences also,

iis a symbol, but it is calculated exactly as the algebraic imaginary l/TI.

In Hamilton‘s method, the product or quotient of two parallel lines is a

(real) number; the product or quotient of two, lines at right angles to each

other, is a third line perpendicular to both. In Equipollences, in general we can

affirm only one of these statements—the quotient of two parallel linesis a num-

ber. A qualemzimt is the product (or quotient) of two vectors a, )9 not at right

angles, and consists of two parts, a numerical quantity and a vector perpendicu-

‘ 1ar to plane of a, )3 thus

afi=TaTB(—cosfi+esint7) "  



  

 

ITS RELATION TO THE CALCULUS OF QUATERNIONS. I7

The product of two lines in equipollences has a similar form. Let

. 0/1 = mri/l, (98 = psi”

be any two lines not at right angles, then

I 0/1 X 01>7 = mpci (It -l- 7|) = mp [cos (p + 7:) + i sin ([1 + 70]

Here as before the product consists of two distinct parts—a real and an imagi-

nary part, corresponding to the scalar and vector. m and [2 correspond to. the

tensors Tu, T3. 9

Wealso observe that either of these lines, or in fact any line not parallel or

perpendicular to the initial line (such as a = (1 (cos (Y + z'sin I?) ), has a form sim-

ilar to that of the product (1,3 given above.

Considering, therefore, Quaternions as applied .only to plane problems, the

essential difference between the two methods is that, in the one the commutative

law of multiplication holds, while in-the“ other this old law is void.

We might add innumerable examples to show the similarity of the two

methods, as well as to illustrate the great adVantage these Methods have over the

Cartesian system. Instead of multiplying'exampl'e, we refer to the various solu-

tions given in works which treat of these methods, and especially to the examples

in those works which we have beeniable to obtain—viz: Taz't’s szterlzz'ous, “[u-

trozz’uctz'on to letcr/zz'om,” by Kellard and Tait/Willow dds Equipollences by Bel—

lavitis, Articles by Houel in‘the Ararat/allies Arzizales tie JWat/zémaliqzws, july and

August, 1869, and Howl's Calm/Its, Vol.1 I]. ' "For an account of the steps which

led to the invention of Quaternions, we would refer to a sketch of Hamilton’s

life in the Nari/t Brim/z Review for September, 1866.

We think on the whole that plane problems can perhaps be solved more

expeditiously by the Calculus of Equipollences, than by Quaternions. For such

problems, the Method of Equipollences has certainly the advantage of being more

easily understood and more quickly mastered. But the elegance, the logical

simplicity and the extent of its applications, makes the Calculus of ‘Quaternions

immeasurably superior.

In conclusion, it has of course been impossible in these few pages, to give

more than an outline of the Calculus of Equipollences, and its relation to Qua-

ternions; and we can only hope that some of the elegant methods of the former

system, and a few of the more striking points connecting the two systems, have

been accurately presented.

(fair/omit} (3f Va.,]1me, I885.
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ERRATA.

Page 5, bottom line, put 2 for x.

I
a"
.14

»
.
‘
w
k
;

4
.
4
.
,
«
J

,,.I

. Page 7, 14th line, put 2—, for
e-

“I

l Page 8, 12th line, put + for —— before e-im’".

l Page II, 7th line, put 6: for z.

i . Page 15, in equation (3) put CG for C0.

3‘ ' I Page I 7, put Kelland for Kellard.
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