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Abstract 

Variable selection is a key step in the development of predictive models. When the size of the 

dataset is relatively small, greedy algorithms such as stepwise selection perform well in the 

selection of informative variables. However, as the size of the dataset increases, the challenges 

faced by such variable selection methods increases rapidly. The addition of interaction terms 

drastically increases the complexity of the variable selection problem, rendering greedy 

stepwise selection ineffective.  

Past research on the topic has seldom included the effect of interaction terms on predictive 

modeling. Part of the reason may be the aforementioned difficulty involved in the variable 

selection process when considering a large dataset. Another possibility is the tradeoff between 

model accuracy and complexity, where the benefits from including interaction terms may be 

marginal. However, in certain applications such as medical diagnosis models, any marginal 

increase in predictive ability may lead to significant improvements in terms of lives saved. In 

addition, information obtained during the variable selection process such as which interaction 

terms are significant may serve as a guide for future research efforts to explore why such 

interaction terms exist among certain primary predictors.  

A genetic algorithm (GA) is developed in this study to handle the expanded search space of 

primary and interaction terms for variable selection. While GAs have been used for variable 

selection in the past, the chromosome formulation and selection process must be modified to 

accommodate interaction terms in large datasets.  The GA framework is highly flexible and is 

able to handle a large variety of different models simply by choosing the appropriate fitness 

function. Experimental runs show that there is benefit to including interaction terms in large 

datasets in addition to main effects.  
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Chapter 1 - Developing the Genetic Algorithm Framework 

1.1 Introduction 

Since time immemorial, people have sought to understand what affects the world around 

them. As people began to use predictive modelling to help understand complex processes, it 

became apparent that the choice of which variables to use in a model is a vital step. A modeler 

could choose to simply include every piece of information available. While such a model may 

perform well on the specific dataset it was built on, due to the variance-bias tradeoff it is likely 

to not be easily applicable to other datasets. On the other hand, if too few variables are chosen 

there could be valuable information left out of the model that could greatly increase 

performance. 

Most models try to adhere to the principle of Occam’s Razor: the simplest solution is often the 

correct one. Thus, modelers should try to design the simplest models (with the fewest 

predictors) that still perform adequately. As a consequence, much work has been done to 

develop variable selection methods that aim to provide information on which predictors should 

be included in a given model. However, despite being well-studied, the myriad complexities 

involved in modelling make it difficult to determine optimal variable selection methods. For 

example, different models can often have different performance measures, which will affect 

the efficacy of various variable selection techniques. As a result, most variable selection 

methods are heuristics which seek to evaluate candidate variables according to some statistical 

metric. Stepwise selection [1], which is one of the most commonly used variable selection 

methods, ranks candidate variables according to the marginal benefit of including said variable 

using Akaike’s Information Criterion (AIC) [2], Bayesian Information Criterion (BIC) or Mallows 

Cp. [3]. Ensemble methods, such as random forests [4], have also become increasingly popular. 

The recent focus on Data Science has generally been a boon to modelers by providing a wealth 

of data with which to develop models. Previously, one of the most common obstacles faced by 

modelers was the lack of reliable data to develop accurate models. However, we are now 

beginning to encounter problems where we face problems at the other end of the spectrum : 



2 
 

too much data is available and current variable selection methods are not well-designed to 

handle them. 

An important note is that most of the common variable selection techniques are greedy 

algorithms. In general, such methods rank each potential variable according to the marginal 

benefit of including the variable in the current model (evaluated based on the chosen criterion), 

and choose to include the variable that provides the most benefit at that point. However, these 

methodologies are unable to account for situations where a variable provides a greater benefit 

when included together with one or more other specific variables. There are many real world 

cases where such “the whole is greater than the sum of its parts” phenomena can be observed. 

Models may account for such effects by the inclusion of “interaction terms”, additional 

variables that indicate the joint effect of 2 or more primary terms. However, simply considering 

all possible 2-way interactions (joint terms for all possible pairs of variables) will cause the 

search space to increase in a combinatorial fashion.  A model with 100 potential primary 

variables results in a potential search space of 5050 variables (100 + 4950 possible 2-way 

interactions). Therefore, we can see that modern Data Science problems can quickly cause 

scalability issues with most common variable selection methods, which now need to evaluate 

the marginal benefit of many more variables at each step in the process. 

Compounding the problem is the fact that the detection of interaction terms is by itself also a 

complex problem with no standard methodology for definitely detecting significant 

interactions, causing modelers to be unable to easily pre-screen potential interaction terms. As 

an exhaustive search of all possible combinations of interaction terms is often not feasible even 

for a small number of variables, most modelers rely on expert knowledge or careful pre-

processing and examination of the data in order to pick out potential interaction terms for 

inclusion in candidate models. In both cases, the efficacy decreases significantly as the number 

of variables increases. For models with hundreds of variables, it is possible that even domain 

experts may not be aware of potential interaction effects. Furthermore, one of the potential 

benefits of modeling with Data Science techniques is to gain knowledge about the problem 

space, such as discovering previously unforeseen interactions amongst predictor variables. 
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Relying on expert knowledge to predetermine “sensible” interaction terms would necessarily 

exclude such discoveries. It also becomes increasingly difficult to manually examine data for 

potential interaction terms as the number of variables grows. Common methods, such as 

examining data visualizations to spot correlations, quickly become very unwieldy and are also 

highly subjective.  

It quickly becomes apparent that a better methodology for traversing the search space of 

potential predictor variables is required. Genetic algorithms (GAs) present a possible solution. 

GAs are a class of evolutionary algorithms that emulate the biological process of natural 

selection via “survival of the fittest”. There are numerous examples in the literature where GAs 

have been used for variable selection in various models, as one of the advantages of the GA 

approach is that it is independent of the actual model used. Herrero and Ortiz [5] examine the 

use of GAs for variable selection with partial least squares regression of various polarographic 

and stripping voltammetric data sets and conclude that GAs  often provide improved predictive 

power, as well as some qualitative information on the problems considered. Gayou et al [6] 

applied a genetic algorithm for variable selection in a logistic regression model to predict 

radiotherapy treatment outcomes.  However, there exists a gap in the literature pertaining to 

utilizing GAs together with interaction terms. One possible reason is the aforementioned desire 

to keep models as sparse as possible. The inclusion of interaction terms greatly increases the 

solution space, and depending on the data set may not necessarily yield significant 

improvements in predictive capability while greatly increasing the computational cost.  

Recently, two factors have come into play that warrant taking a closer look at the potential 

benefits of exploring the interaction terms in the search space. Firstly, the increasing availability 

of large scale computing computer using parallelization and cloud computing means that it is 

relatively inexpensive to perform large scale (but not necessarily complex) calculations such as 

exploring the expanded set of potential predictors including interaction terms. Secondly, there 

is an increasing number of very large and complex datasets becoming available that may 

contain unforeseen, yet significant, interactions between variables. With a larger number of 

predictors comes a larger chance that some of those predictors may boost the predictive 
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capabilities of the model when included together as a subset. In certain fields, such as 

medicine, even a relatively small increase in model performance can mean the difference 

between life and death for some patients. These two factors considered in conjunction may 

warrant taking a closer look at improving predictive models by actively searching for interaction 

terms that may provide a slight increase in performance. 

1.2 Genetic Algorithms 

Genetic algorithms were first proposed by John Holland [7]. While not originally focused on 

optimization, it has become a common heuristic used for optimization purposes. As an 

evolutionary algorithm, GAs incorporate two key concepts from the biological process of 

natural selection: mutation and crossover. It uses these concepts to iteratively explore the 

solution space and exploit candidate solutions that perform well by pitting a number of 

candidate solutions (the population) against each other in successive generations.  

The first step in setting up a GA is encoding potential solutions into a chromosome. A 

chromosome is a vector that contains information about the key parameters in a candidate 

solution. For example, a GA used for variable selection in a logistic regression model could have 

a chromosome represented by a string of binary values of length n, where n is the total number 

of possible variables. A value of 0 at string index i would indicate that the ith variable is not 

included, while conversely a value of 1 would indicate that the ith variable is included in the 

candidate solution. For example, Figure 1.1 below shows a sample chromosome for a model 

with 6 potential variables. The sample chromosome represents a model with the 2nd, 3rd, and 

6th variables included. 

Figure 1.1 : Sample chromosome for main effects variable selection 

0 1 1 0 0 1 

 

After formulating the chromosome structure, a number of chromosomes are generated to form 

the initial population. The generation of the initial population can be performed using a variety 
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of methods, the most common being random generation by selecting each bit value in each 

chromosome according to a random distribution. The population can also be seeded with 

“good” solutions found through alternative methods in order to reduce the time spent 

exploring the solution space for viable solutions. Pre-seeding the population also weights the 

process more towards exploitation rather than exploration.  

Once the initial population has been created, the algorithm proceeds to modify the individual 

chromosomes in succeeding generations via natural selection. In each generation, the 

performance of each member chromosome is evaluated using a fitness function. The fitness 

function is independent from the rest of the GA, hence making the GA a robust tool that can be 

used in a variety of models. For example, in a linear regression model the fitness function could 

be the adjusted R2, the AIC, the BIC or even a weighted combination of the previous 3 

measures.  

After determining the fitness levels of all members of the population, a selection procedure is 

then used to choose several parent chromosomes. One common selection method is 

tournament selection, where candidates are chosen randomly to participate in a “tournament” 

during which the fitness values of competing chromosomes are compared, with the winner 

being selected as a parent chromosome. This parallels the biological process of natural 

selection where more fit individuals in a population have a greater chance of reproducing and 

passing on their genes to their offspring. Other selection methods include randomly selecting 

parent chromosomes with increasing probability corresponding to increasing fitness values, or 

simply ranking the candidate chromosomes and using the top performers as parents. 

Once parent chromosomes have been selected, the crossover operation is used to generate 

offspring, or child chromosomes. Again, there are various forms of crossover operators used 

with the underlying notion of combining the genes from multiple (usually two) parent 

chromosomes into a single offspring. The most basic crossover operator is a fixed point 

crossover, with the crossover point usually being the midpoint of the chromosome. Figure 1.2 

below shows a simple example of a fixed point crossover with two parent chromosomes A and 

B, with the crossover point being the chromosome midpoint.  



6 
 

Figure 1.2 : Fixed point crossover 

 

The underlying notion behind the crossover operator is that a high-performing parent 

chromosome should contain certain elements that contribute to its fitness score. In the case of 

a variable selection problem, it could be that high performing chromosomes contain a larger 

ratio of the “correct” variables. By combining the chromosomes of two parents, the crossover 

operator attempts to generate children which also have a high likelihood of equal or improved 

performance. This concept is related to the “building block hypothesis” [8] which postulates 

that over time, a GA will perform well by combining multiple short chromosome segments 

(which have high fitness) into longer, better performing chromosomes. The crossover operator 

can be applied according to a predefined probabilistic parameter setting. For example, a 

crossover probability of 0.5 would indicate that a pair of parents would have their 

chromosomes combined half the time. The other half of the time would see both parents being 

passed on to the next generation without mixing their chromosomes, similar to elitist selection.  

The mutation operation is similar to neighborhood search or hill-climbing methods, where a 

small change is made to an existing candidate solution in order to explore solutions that are 

near the original solution in the search space. It is also necessary as a way to introduce novel 

solutions into the population, as otherwise after several generations the population would lose 

diversity by consisting only of various recombinations of the original population members. 

Similar to the crossover operator, the mutation operator is usually applied according to a 

predefined probabilistic parameter setting but is set to be much lower than that of crossover in 

order to avoid excessive disruption to the chromosome.  
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Figure 1.3 : Random mutation of single bit 

 

The processes of selection, crossover and mutation taken together form the heart of most GAs. 

When viewed from the framework of exploration vs exploitation, crossover and mutation serve 

to explore the solution space in various degrees (crossover provides larger scale changes while 

mutation can adjust individual bits in the chromosome) while the selection process promotes 

exploitation of the best currently found solutions by using them as jump off points for 

exploration. The balance between exploration and exploitation must be adjusted for every 

application of the GA.  

1.3 Interaction terms 

The primary motivation in this study of using GAs in variable selection is to handle the inclusion 

of interaction terms in large scale datasets. For a regression model with a set of predictors X = 

{x1,x2,x3}, a model with only main effects terms against the response Y is shown in Equation 1.1 

below: 

𝑌 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3                                             (1.1) 

The abovementioned model allows for the effect of each predictor to be isolated and analysed. 

However, it is possible that the true model contains joint effects that cannot be isolated and 

can only be modeled using interaction terms. For first order interaction terms, this results in the 

following fully expanded model in Equation 1.2: 

  

𝑌 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥1,2 + 𝛽5𝑥1,3 + 𝛽6𝑥2,3                      (1.2) 
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In the expanded model, xi,j is the interaction term representing the joint effect of variables xi 

and xj. Interaction terms are symmetric, thus xi,j and xj,i are equivalent.  

Thus far, interaction terms have been relatively neglected when it comes to Data Science 

modelling. Part of the reason could be that Data Science models inherently have to deal with 

many scalability problems that are greatly amplified by including interaction terms. With a 

small set of predictors, it is relatively simple to consider all possible interaction terms and 

eliminate non-significant terms with common methods such as stepwise selection or even 

exhaustive search. However, as the predictor set becomes larger the set of potential interaction 

terms grows combinatorially (for k-way interactions with n predictors, the number of 

interaction terms is (
𝑛
𝑘
) =

𝑛!

𝑘!(𝑛−𝑘)!
 ), quickly outstripping the ability of modelers to manually 

detect potential interactions using expert judgement or data visualization. The expanded set of 

variables can also cause problems for some common variable selection methods which try to 

evaluate the marginal benefit of including each variable, as a much larger number of variables 

have to be considered at each step. A second reason could be that interaction effects are often 

minor compared to the effects of primary predictors, thus including them is not cost effective in 

terms of the tradeoff between improved accuracy and model sparsity. 

Despite the abovementioned complications, it is clear that there are some situations where it 

would still be worthwhile to search for potential interaction terms. One example would be in 

the field of medicine. If the accuracy of a diagnostic model to determine the onset of a heart 

attack could be improved by 0.01% by including an interaction term that was previously 

excluded, that represents a chance to save an additional life out of every 10,000 patients. With 

computing power growing cheaper and cheaper, such a tradeoff becomes increasingly 

worthwhile.  

Another benefit to developing methods that automatically select interaction terms in Data 

Science problems is in providing further information to researchers about the problem 

structure. The larger and more complex the problem in terms of the number of potential 

variables, the less likely it is for researchers to have a complete understanding of the underlying 

dynamics. As such, the identification of even relatively minor interaction effects can provide 
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valuable direction for further research if there is no known theoretical basis for such effects. In 

the past, the main goal of variable selection methods was to find the minimum number of 

variables which provided the most information to the model, i.e. the focus was largely on the 

variables that contributed the most and weeding out variables that contributed relatively little. 

However, with model size no longer as limiting a constraint, perhaps we should expand our 

focus to exploring the variables which provide incremental benefits. 

1.4 Including interaction terms in the GA framework 

The biggest challenge in the inclusion of interaction terms in variable selection problems is the 

dramatic increase in the solution space. For now, we constrain ourselves to only considering 

second order interaction terms, i.e. only pair-wise interactions. For n main effects terms, this 

adds (𝑛
2
) second order interaction terms. For relatively small n the additional terms can still be 

handled using the traditional GA variable selection chromosome (a single vector of 0-1 bits of 

length n+(𝑛
2
) to indicate all possible variables), but this implementation quickly becomes 

unwieldy. For 100 variables an additional 4,950 interaction terms are added, and for 200 

variables this jumps to 19,900. Thus for problems with hundreds of variables a new 

chromosome formulation is needed. 

In order to solve the scalability issue, we propose some modifications to the original 

chromosome formulation. While only second order interaction terms are examined here, the 

basic technique for extending the GA framework remains applicable for higher order 

interactions at the cost of greatly increased computation time. Firstly, a maximum chromosome 

length l is defined. This allows the modeler to specify an upper bound for model sparsity, as in 

many instances modelers may not be interested in creating a model with thousands of 

variables. Secondly, instead of each bit in the chromosome simply being 0-1 to indicate the 

absence or presence of a variable, each bit now stores the index number of a variable to be 

included, and 0 if the bit is a “dummy bit”. Dummy bits are placeholder bits within the 

chromosome that reserve space for a potential variable to enter the model. This formulation 

allows for chromosomes representing models with a differing number of included variables 
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while still allowing chromosome length to be homogenous within the population, which 

simplifies the crossover operation. 

 

Figure 1.4 : Chromosome with dummy bits 

 

The chromosome in Figure 1.4 shows a chromosome of length 6 with 3 dummy bits, with 

variables 1,5 and 26 included in the model. Each new chromosome is initialized with dummy 

bits in all positions, and the number of initial variables is chosen uniformly between 1 and L 

(maximum number of variables). Pre-seeded variables can also be utilized instead of random 

selection. The index positions of these variables are also chosen by sampling without 

replacement from the available L positions, after which the variables (either randomly chosen 

or pre-seeded) are then filled into their respective index positions on the chromosome. 

The current chromosome formulation can handle an arbitrary number of main effects terms in 

addition to interaction terms as long as the modeler specifies a maximum number of variables. 

As the chromosome length is homogenous, the aforementioned single point crossover operator 

still works on the modified chromosome, with some additional checks to ensure that duplicate 

variables are removed. However, the mutation operator now has to be separated into two 

types, a deletion mutation and an addition mutation. The deletion mutation replaces a random 

non-dummy bit with a value of 0, converting it to a dummy bit and removing the selected 

variable from the model. The addition mutation replaces a random dummy bit with a randomly 

selected variable that is currently not included in the model. Both types of mutation occur 

independently with probabilities Pa and Pd specified by the modeler. Both mutations occur 

simultaneously with probability Pa*Pd , resulting in one variable being switched out for another.  

In addition, the GA framework ensures the model obeys strong hierarchy. Each time an 

interaction term enters the model through either recombination or the addition mutation, a 
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No 

check has to be performed to ensure that the corresponding main effects terms are also 

included. If not, the missing main effects terms are inserted into random dummy bit positions. 

If a main effect term is deleted through the deletion mutation, then all interaction terms that 

include the aforementioned main effect term are also deleted.  

Lastly, in order to prevent selection of models that over-fit the data, all fitness functions are 

evaluated using 10-fold cross-validation. The data is partitioned into ten folds, with the models 

being successively tested on a single fold and trained on the other nine folds. The final fitness is 

then obtained by averaging the model fitness over all ten test folds. With this process, there is 

never any overlap between data used for training models, and data used for evaluating the 

fitness. Figure 1.5 below outlines the high level process flow for the genetic algorithm variable 

selection framework. 

Figure 1.5 : Genetic algorithm for variable selection process flow 
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1.5 Advantages and disadvantages of the GA framework 

Many methods already exist to perform variable selection, some of which are able to handle 

the inclusion of interaction terms for datasets of varying sizes. Some examples of common 

methods are stepwise selection [1], random forests [4] and lasso [5]. Each of these methods 

comes with their own pros and cons. For example, stepwise selection has been criticized for 

violating assumptions of certain statistical tests involved in the process [9], and that the process 

reports narrower confidence intervals [10] and lower p-values than it should [11].  

The GA framework for variable selection has several advantages (and of course disadvantages) 

compared to some of the other methods. The first advantage is that the GA framework is 

independent of the fitness function, meaning that the same variable selection process can be 

used for a large variety of models and for a large variety of predictor variables, as long as the 

appropriate fitness function is provided.  

The second advantage is that the fitness function can be easily tailored towards a particular 

metric of interest. Many other variable selection procedures use statistical measures to try to 

quantify the importance of a variable when deciding whether said variable should be included 

in the model. However, despite these statistical measures being based on valid theoretical 

foundations, they may not perfectly coincide with the performance measure being applied to 

the resulting model. For example, a modeler may choose to use AIC when performing variable 

selection for a model, but choose to evaluate the candidate models according to classification 

error or the area under the ROC (AUC). Thus, while the variables selected are perfectly valid, 

the candidate models may not include the true best model (in terms of the chosen evaluation 

metric) as the selection procedure is not necessarily optimizing over the final model 

performance measure. For example, consider a model being developed for medical diagnosis of 

a life-threatening disease to which a statistical variable selection procedure is applied. The 

modeler could be interested primarily in the true positive rate of the classification model, and 

thus wish to find a model that maximizes the true positive rate (TPR). As the TPR is not a 

parameter that is being directly optimized by any statistical procedure, it is possible that there 

exists a model outside of the set of candidate solutions returned by the statistical variable 
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selection procedure that has a higher TPR, which therefore would be preferred by the modeler 

over any of the currently obtained candidate solutions. Using a GA to perform variable selection 

would allow the modeler to choose a combination of variables that result in higher TPR by 

specifying the model TPR as the fitness function, allowing for a direct link between the variable 

selection process and the final performance metric. 

Lastly, the GA framework is inherently able to handle complex problem structures as it does not 

rely on any assumptions regarding the problem space, unlike some other methods. Methods 

which involve quantifying the marginal benefit of each variable work best when the variables 

being considered are not correlated and can be considered independently. However, when the 

problem space is complex and include significant interactions, it can be difficult for such 

algorithms to find global optimums which may only be found multiple “steps” away from local 

improvements. 

That said, using a GA also comes with some disadvantages. First and foremost is that the GA is a 

search heuristic that does not have any theoretical guarantees of convergence or optimality. 

GA’s have been shown to be able to find optimal solutions in many test applications. However, 

for problems in which the optimal solution is unknown there is no real way to validate if the GA 

solution is indeed optimal. There is also no way to determine if the obtained solution is globally 

or locally optimal. However, as the candidate solutions present in the population are all valid at 

each generation, the resulting best solution is also valid despite non-guaranteed optimality. 

Thus, as long as the resulting solution has a satisfactory fitness level it can be said that the GA 

has found a good solution. If optimality is not a primary concern (and for many Data Science 

problems it can be difficult to find optimal solutions due to the scale of the problem) then a GA 

can be utilized successfully despite not being guaranteed to converge to a global optimum 

solution. 

The second disadvantage of the GA approach is that it tends to have a long run time compared 

to other methods. In some of the test sets which our GA was implemented on, the run time was 

measured in days. Part of the issue is that there is a lot of room for improvement in terms of 

optimizing the GA code we used. However, it is undeniable that a GA is a very computationally 
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intensive approach that may not be feasible when response time is an important consideration. 

This disadvantage has lately been mitigated by the increasing availability of cheap computing 

power. The GA approach also naturally lends itself easily to parallelization. Each member of the 

population can be evaluated individually, and all recombination and mutation operations can 

be easily performed in parallel as they do not affect any other members of the population. 

Thus, despite the run time being much longer for smaller scale problems, the GA is able to 

handle (albeit fairly slowly) very large scale problems that would cause memory issues for some 

other methods. The GA can also be terminated early if no improvement has been found for a 

certain number of generations, thus potentially saving some computation time. However, there 

is always the risk that the GA could have been caught in a local optima and was terminated 

before it could break out and find a better solution. 

1.6 Experimental runs 

The GA above was applied to several data sets to evaluate the benefits of including interaction 

terms. The statistical package R was used for the main GA code, with the RWeka package [12] 

being used to evaluate several fitness functions. The RWeka package allows the use of many 

types of machine learning models found in Weka [13], an open source machine learning 

software package, which increases the flexibility of the GA framework. Experimental work done 

so far has focused on logistic regression models, using either classification accuracy or area 

under the ROC curve as the fitness function. Tournament selection was used for all 

experimental runs (with the highest fitness solution being preserved), along with single point 

crossover. However, alternative selection methods should be explored for each application of 

the GA framework to a new dataset as there is no theoretical guarantee that tournament 

selection is the optimal selection method. 

Both crossover and mutation (addition and deletion) are applied with a variable probability 

across the GA’s run time. A minimum and maximum probability is defined for each operator 

(the same parameters apply to both types of mutation). The probabilities for each operator are 

adjusted each generation so as to vary from minimum to maximum or vice versa. The crossover 

probability pc is initialized to pc_max = 0.5 at generation 0, and then varies across each 
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generation i according to Equation 1.3 below until finally reaching pc_min = 0.2 after maxgen 

iterations.   

𝑝𝑐(𝑖) =  𝑝𝑐_𝑚𝑎𝑥 − (
𝑖

𝑚𝑎𝑥𝑔𝑒𝑛
) (𝑝𝑐_𝑚𝑎𝑥 − 𝑝𝑐_𝑚𝑖𝑛)   (1.3) 

The mutation probability pm (for both addition and deletion) is initialized to pm_min = 0.01 and 

varies linearly throughout the run until it reaches pm_max = 0.2 after maxgen iterations, as shown 

in Equation 1.4. 

𝑝𝑚(𝑖) =  𝑝𝑚_𝑚𝑖𝑛 + (
𝑖

𝑚𝑎𝑥𝑔𝑒𝑛
) (𝑝𝑚_𝑚𝑎𝑥 − 𝑝𝑚_𝑚𝑖𝑛)  (1.4) 

These varying probabilities are chosen to obtain a higher chance of crossover with less 

mutation at the beginning of the GA run (increased exploration of solution space), and a lower 

chance of crossover with more mutations at the end of the run (increased exploitation of good 

solutions in population). 

1.6.1 Simulated data 

To first verify the ability of the modified GA framework as a search methodology, a simulated 

test dataset was created. The test dataset consisted of 100 rows of 3 variables (X1, X2, X3), with 

Xi ~ N(0,1) for i=1,2,3. A variable Y was created such that y = x1 + x2 + x1*x2, with the predictand 

being a factor (class) satisfying the following condition: 

𝑐𝑙𝑎𝑠𝑠(𝑦) = {
0, 𝑦 < 2
1, 𝑦 ≥ 2

 

A logistic regression model was created as a fitness function for the GA. The new GA framework 

was able to select the correct variables in less than 20 generations, demonstrating that the 

methodology is indeed able to determine the globally optimum solution. 

1.6.2 Flu dataset 

A second small dataset was used to evaluate the efficacy of the GA framework. The flu shots 

data [14] consists of 159 patients with 3 predictor variables (age, health awareness, and sex). 

Age and health awareness are numeric discrete variables, while sex is a binary factor (0 
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representing females and 1 representing males). The predictand is a binary factor indicating 

whether the patient received a flu shot (1 representing yes and 0 representing no). The data is 

first pre-processed by centering the age and health awareness variables. 

Utilizing stepwise selection (using AIC) on the data yields a model with only age and awareness 

as significant predictors. The GA also returns the same model if AIC is used as the fitness 

function. However, if the AUC is used as the fitness function the GA returns a different model. 

The AUC of the model returned by stepwise selection is 0.763. By optimizing over AUC, the GA 

returned a model with awareness, sex, and awareness:sex as predictors with an AUC of 0.803. 

While sex and awareness:sex were not significant predictors based on p-values at a 0.05 

significance level, the performance of the model based on cross-validated AUC was better 

(conversely, AIC was slightly higher for this alternative model). This can be seen as an example 

where the GA approach is highly flexible due to the customizable fitness function and is able to 

open up more choices for the modeler to consider. If the improvement in performance 

(measured by AUC) is not judged to be significantly higher, the modeler may prefer a model 

that may be more generalizable in that the predictors have better statistical properties. 

However, if there is a marked improvement in performance then the modeler may choose to 

utilize the GA solution despite the higher p-values of the predictors, especially if concerns of 

overfitting data have already been addressed through cross-validation or other methods. 
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Chapter 2 - Searching for interaction terms in high-dimensional 

datasets : an application of a GA framework for variable selection 

2.1 Introduction 

Much work has been done in developing variable selection techniques to help develop 

informative models. However, the detection and exploitation of interaction terms has been 

relatively neglected in these studies. In most cases, interaction terms are only included if the 

modeler has prior knowledge that certain interactions are expected to be significant predictors.  

Part of the reason may be that interaction terms are often only marginally beneficial compared 

to main effects terms. In the interests of model sparsity, such terms may not be deemed worth 

the tradeoff of including additional predictors into the model. Furthermore, many commonly-

used variable selection methods either do not include interactions or do not scale well with the 

inclusion of interaction terms. This is because interaction terms cause the potential predictor 

space to expand in a combinatorial fashion. With the increasing prevalence of very large data 

sets, this increase can be upwards of tens of thousands of additional variables. Compounding 

the issue is a lack of a definitive methodology to detect interaction terms. Most modelers rely 

on data visualization and domain expertise to identify possible interaction terms. With tens of 

thousands of variables, such methods become harder to implement and there is a greater 

possibility of missing out on potentially beneficial terms.  

However, in recent years the rapid growth in available computing power as well as the 

increasing prevalence of very large rich datasets has changed the traditional approach to 

predictive modelling.  Previously, modelers had to work with limited datasets from which they 

tried to build simple models by extracting variables with the most predictive power. We now 

have datasets large enough to build larger, more complex models with less fear of over-fitting 

and computers powerful enough to handle larger models and more complex algorithms. This 

allows modelers to focus more on data exploration and incremental improvements in model 

performance. 
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Our previous work in Chapter 1 introduced a variable selection framework utilizing a genetic 

algorithm (GA) that is designed to be able to deal with the inclusion of interaction terms in 

high-dimensional datasets. The GA framework provides several advantages over some of the 

more commonly used variable selection methods. Firstly, the GA can be modified to use any 

quantitative measure as the fitness function, rather than being tied to a certain measure such 

as AIC, BIC, area under the ROC etc. This allows the modeler to directly optimize over any 

measure of interest, instead of performing variable selection according to one measure and 

evaluating model performance based on another. Secondly, the GA formulation is inherently 

scalable. The number of potential predictors increases the size of the solution space, but other 

than perhaps increasing the required number of iterations or population size the basic 

methodology does not differ. This is in contrast to greedy algorithms which try to compute the 

marginal benefit of each potential predictor in isolation, an approach which may not be 

appropriate for very high dimensional problems with complex solution spaces. Lastly, the GA 

formulation is not a strictly greedy algorithm, compared to methods such as stepwise selection 

or random forest’s variable importance metric. As such, the GA is more likely to be able to find 

solutions that are not local optima even when the solution space is relatively complex.  

However, it should be noted that the final solution returned by the GA should not be treated as 

a definitive “optimal” solution. Just as with many other variable selection methods, the efficacy 

of the GA can vary depending on the structure of the dataset it is applied to. However, the GA 

framework’s flexibility allows it to be easily applied to a wide variety of datasets and models. 

While the GA’s optimal parameters (population size, number of generations, mutation and 

crossover probabilities) are difficult to determine theoretically, the GA’s performance in terms 

of model fitness is fairly robust to these parameter settings as well, with the major difference 

being the run time (or number of generations needed to achieve similar fitness levels). In other 

words, if computation time is not a major concern the GA can be allowed to run for an 

arbitrarily large number of generations and obtain good results without needing to optimally 

tune the GA’s parameters for each dataset specifically. Thus, the GA solution can be used as a 

good starting point for complex problems which are difficult to solve optimally, after which the 

insights obtained from the GA solution can be used to further refine the model. 
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Our initial study analyzed the GA framework’s performance using a simulated small dataset and 

a small toy problem as a proof of concept. The GA was able to find the same solution as other 

established variable selection methods, while retaining the flexibility to optimize over a 

different performance measure if desired. To test the efficacy of the GA in a practical setting, 

the GA variable selection framework was applied to logistic regression models built on two real-

world medical datasets. 

2.2 Heart arrhythmia dataset 

In order to evaluate the efficacy of a genetic algorithm for variable selection in a large dataset 

with potential interaction terms, the methodology was applied to a heart arrhythmia dataset 

from the UCI Machine Learning Repository [1]. The dataset contains 279 attributes (mostly ECG 

readings) with 452 observations. The predictors consist of a mix of categorical, real and integer 

variables. Each observation also has a classification ranging from 1 to 16. Class 1 indicates 

normal ECG, classes 2-15 indicate various classes of arrhythmia and class 16 is unclassified.  

For this experiment, classes 2-16 were combined to transform the problem into a binary 

classification problem (normal vs abnormal). Out of the 452 observations, there were 207 

normal patients and 245 patients with some form of arrhythmia. Additional pre-processing was 

performed on the data to remove attributes where more than 90% of the observations had a 

value of 0, and missing values were replaced by the medians. From there, the predictors were 

centered and scaled in order to reduce multi-collinearity effects. 

The resulting dataset contained 261 main effect predictors (all numeric) along with the binary 

classification attribute. The addition of all possible 2-factor combinations of the predictors 

resulted in 33930 additional predictors being added to the solution space. While many of these 

interaction terms may not be informative, the sheer number of potential predictors presents 

difficulties for using data visualization techniques and/or expert judgement to pre-select 

interaction terms to be included for consideration. However, in order to even begin utilizing 

some of the more common variable selection techniques, a significant amount of data pruning 

would first have to be done to try to reduce the dimensionality of the problem. In this instance, 
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the statistical package R ran out of memory attempting to perform forward selection on a 

logistic regression model with all 34,191 main effects and pair-wise interaction terms. Similarly, 

backwards selection could not be performed as the full model could not be created. While data 

pre-processing is a necessary step in almost every modelling process, the larger the potential 

number of predictors the larger the possibility for unknowingly leaving out predictors that may 

provide some benefit in model performance despite appearing to be insignificant.  

The area under the ROC curve (AUC) was chosen as the primary metric for model performance 

in the GA as it is a measure that is widely used and understood in the medical community. 

2.2.1 GA variable selection 

The GA framework was applied using a logistic regression model to the same data for 5 runs 

with different initial random seeds. For each run, a population size of 30 was used, with each 

candidate solution having a minimum of 5 predictors and a maximum of 100. The GA was set to 

terminate after 250 generations to allow sufficient time to find good solutions. Although the GA 

has a termination clause to stop the algorithm after a predetermined number of generations 

without improvement in the best fitness value, in this case the termination clause was disabled 

as the long run time is not a concern and we wish to maximize the possibility of finding a 

globally optimal solution.  

To achieve a good mix of recombination and mutation, the recombination and mutation 

probabilities were set to vary as each run progressed, with a high starting probability of 

recombination (pcombine = 0.5) and a low starting value of mutation (pmutate = 0.01). These values 

allow for a higher chance of exploration at the initial stage of the GA. As the GA nears the 

maximum number of generations, the recombination probability is decreased gradually to 

pcombine = 0.2 and the mutation probability is increased gradually to pmutate = 0.2. The higher 

chance of mutation and lower chance of recombination allows for more exploitation of existing 

good solutions, rather than introducing new untested solutions.   

After 5 runs, the best solution found after 400 generations by the GA had an AUC of 0.922 with 

an associated 95% confidence interval of [0.896, 0.947] which is comparable to the stepwise 
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and random forest solutions. The GA solution contained 45 main effects predictors and 10 

interaction terms, of which 2 had significant p-values in the logistic regression model.   

Figure 2.1 : GA maximum fitness values over 400 generations 

 

Figure 2.1 shows the change in the maximum fitness values across generations for the best GA 

solution. It can be seen that there are much larger jumps earlier on due to the increased 

probabilities of recombination resulting in a larger variety of solutions. Despite becoming 

relatively stagnant between approximately generation 30 to generation 90, the GA is eventually 

able to find markedly improved solutions and improve the AUC to 0.922. It must be noted that 

there is no guarantee that 0.922 is the global optimum and increasing the run time could result 

in further improvements in the AUC. However the purpose of this study is to investigate the 

feasibility of the GA framework on a large dataset with interaction terms, and not to find a 

specific solution with a globally maximal AUC. Thus, the solution obtained was deemed 

acceptable for our purposes. 

For comparison purposes, two other models were built and evaluated based on AUC. The first is 

a logistic regression model using stepwise selection with only main effect variables included in 
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the model as R was unable to handle the inclusion of all possible interaction terms. The main 

effects model contained 39 predictors after stepwise selection, with 23 of those predictors 

having p-values below 0.05. The AUC obtained using 10-fold cross-validation was 0.887 with an 

associated 95% confidence interval of [0.854, 0.920]. For a second comparison, a random forest 

was built using the randomForest package [2] in R with 500 trees. The random forest model 

performed slightly better than stepwise selection with only main effects, obtaining an AUC of 

0.907 with an associated 95% confidence interval of [0.879, 0.935]. 

Figure 2.2 summarizes the mean cross-validated AUC for the three methods outlined above, 

along with the bounds of the 95% confidence intervals. All three methods result in comparable 

AUCs as the confidence intervals overlap, although the GA solution generally performs better. 

As expected the model returned by stepwise selection using only main effects possesses the 

lowest mean AUC.   

Figure 2.2 : Mean cross-validated AUC and 95% confidence intervals for stepwise selection, 

random forests and GA selection 

 

While the AUC gives a useful measure of a model’s performance over various thresholds, in 

many medical datasets the true positive rate is also of great import to modelers. When 

considering a potentially life-endangering condition, the consequences of a false negative (or 
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alternately speaking, missing a true positive case) are likely worse than a false positive. Figure 

2.3 summarizes the confusion matrix for all three models. While the GA fitness function is not 

explicitly optimizing for a higher true positive rate (although this is also possible using the 

flexibility of the GA framework), the GA solution in this dataset provides a balance between a 

high AUC as well as a high TP rate. 

Figure 2.3 : Confusion matrix for stepwise, random forest and GA selection 

 
TP TN FP FN ACC TPR TNR PPV 

Stepwise 226 173 34 19 0.8827 0.9224 0.8357 0.8692 

RF 208 159 48 37 0.8119 0.8490 0.7681 0.8125 

GA 222 176 31 23 0.8805 0.9061 0.8502 0.8775 

 

The results show that the GA framework performs fairly well on the arrhythmia dataset with 

minimal tuning and data pruning needed. It was able to handle a large expanded solution space 

with the inclusion of interaction terms and find solutions with a high AUC and acceptable true 

positive and true negative rates and the best positive predictive value, while not being subject 

to the criticisms against stepwise selection procedures. The random forest solution also 

performed well in terms of AUC, but has a poorer true positive and true negative rate, although 

this could be improved by further refining the random forest parameters. However, while the 

random forest solution is also able to handle interaction terms, it is also less interpretable as 

the interaction effects are encoded in the tree structure instead of explicitly defined as in a 

logistic regression model. This leads to random forest models being harder to use for data 

exploration.  

2.3 Physionet MIMIC II Clinical database 

The GA framework was also applied to a second dataset obtained from PhysioNet [3]. The 

MIMIC II clinical database contains clinical records for 4000 patients in ICUs. The dataset 

contains a total of 44 mostly numeric predictors (3 factor predictors) with the predictand being 

death. However, not every predictor is included for each patient. Furthermore, the clinical 

records for each patient can contain repeated measures where a clinical measurement is 
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performed over time. Out of the 4000 patients, 554 patients eventually passed away while the 

remaining 3446 survived. 

In order to encapsulate the information from the repeated measures into a single numeric 

variable, for each predictor the median, standard deviation and 25th and 75th percentiles were 

calculated and used as predictors. These predictors were chosen to provide information on the 

average value of each measure, the variability in the measurements, as well as the extremes of 

the measurements. As part of our study, we also examined the use of entropy as a summary 

statistic of complexity. We compared sample entropy and permutation entropy against the runs 

test and permutation test for randomness on a variety of datasets and found that in many cases 

the entropy measures and tests for randomness ranked the test datasets in the same order of 

complexity (high degree of randomness being considered equivalent to low complexity, and 

vice versa). In particular, there was a high degree of similarity between permutation entropy 

and the permutation test in terms of both theoretical formulation as well as experimental 

results. The paper is included in Appendix 2A. Measures such as sample entropy, permutation 

entropy or the permutation test are possible alternatives to handle repeated measures such as 

those found in the MIMIC II dataset. 

Missing data was replaced with median values and the data was scaled by subtracting the 

mean. This resulted in 146 main effect predictors. The inclusion of all pairwise interaction terms 

results in an additional 10585 variables.  

2.3.1 GA selection 

The GA framework was applied to the MIMIC II dataset using a logistic regression model with 

AUC as the fitness function. Once again, 5 runs were performed using different seeds. The GA 

parameters used were similar to those used for the arrhythmia dataset, with a population size 

of 30 and each candidate solution having a minimum of 5 predictors and a maximum of 100. 

250 generations was chosen as the termination criteria.   

Likewise, the recombination and mutation probabilities were again varied throughout the 

length of each GA run, with pcombine ranging from 0.5 to 0.2 and pmutate ranging from 0.01 to 0.2. 
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Figure 2.4 shows the change in maximum fitness over the generations for the best found GA 

solution. The final AUC obtained was 0.859, with a 95% confidence interval given by [0.844, 

0.874]. The logistic regression model contained 52 main effects terms and 30 interaction terms 

(of which 21 had p-values < 0.05).  

Figure 2.4 : GA maximum fitness over 250 generations 

 

Similar to the arrhythmia dataset, a stepwise selected logistic regression model and a random 

forest model was used as a comparison with the GA selected model. In this instance, R was able 

to perform stepwise selection on the full model including interaction terms. The resulting 

model contained 29 main effects terms and 74 interaction terms, with an AUC of 0.839 and a 

95% confidence interval of [0.820, 0.859]. For the second model, a random forest was used 

with 500 trees. The resulting model had an AUC of 0.833 and a 95% confidence interval of 

[0.817, 0.850]. 
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Figure 2.5 : Mean cross-validated AUC and 95% confidence intervals for stepwise selection, 

random forests and GA selection 

 

Figure 2.5 above summarizes the mean cross-validated AUC and associated 95% confidence 

intervals for the three models evaluated. The GA solution performed slightly better when 

evaluated using AUC. In contrast with the arrhythmia dataset, the logistic regression model 

from stepwise selection had a higher mean AUC than the RF solution. This is likely due to the 

smaller total number of variables in the MIMIC II dataset allowing stepwise selection to include 

interaction terms. 

Figure 2.6 : Confusion matrix for stepwise selection, random forest and GA selection 

  TP TN FP FN ACC TPR TNR PPV 

Stepwise 208 3366 80 346 0.8935 0.3755 0.9768 0.7222 

RF 67 3409 37 487 0.8690 0.1209 0.9893 0.6442 

GA 178 3345 101 376 0.8808 0.3213 0.9707 0.6380 

 

A look at the confusion matrix for these models (shown in Figure 2.6 above) shows that the GA 

again provides a balance between mean AUC and a good true positive rate. The random forest 

model performed much worse in terms of the true positive rate on this dataset, correctly 

predicting only 67 out of 554 total deaths. The GA solution was also more parsimonious than 
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the solution presented by stepwise selection (82 vs 103 predictors respectively) and more easily 

interpretable than the random forest model in terms of data exploration.  

2.4 Discussion 

The GA framework was applied to two complex medical datasets with a large number of 

predictors. The GA selection procedure was able to handle the large number of interaction 

terms and generate solutions that were improvements (measured by AUC) over those obtained 

by stepwise selection and random forest. These results also demonstrate the advantage of the 

GA framework using a customizable fitness function, as the variable selection method is able to 

directly optimize the candidate model according to the same metric used for model evaluation, 

instead of using a proxy statistical measure of variable importance such as AIC etc. Most 

importantly, the GA was also able to identify interaction terms that provided some significant 

benefit to the model, which could be difficult to determine using standard variable selection 

methods if the set of potential predictors is large enough.  

However, it should be noted that the GA selection procedure would be most effective when 

used in conjunction with other variable selection methods. As the GA does not penalize model 

complexity, the GA solution can tend to include extraneous variables. However, the GA solution 

can be used as a pruned subset of variables, upon which other variable selection methods (e.g. 

lasso for regression models) can be applied to further reduce model complexity. Alternative 

variable selection methods can also be used to generate good initial solutions for the GA, which 

could help guide the GA by starting out in high fitness areas in the solution space.  

Thus, the main benefits of the GA approach to variable selection can be summarized as follows:  

1) Scalability : The GA is able to handle datasets with an arbitrarily large number of 

predictors (including interaction terms) with minimal changes to its parameters, as long 

as run time is not a limiting factor 

2) Flexibility : The GA is able to use custom fitness functions to better align the selection 

process with model evaluation, and the same framework can be applied to a variety of 

different models with different predictor types 
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3) Ease of use : The parameters used in the GA do not require extensive tuning, and the GA 

framework can be integrated with other variable selection methods to obtain better 

solutions  
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Abstract 

Entropy measures have become increasingly popular as an evaluation metric for complexity in the 

analysis of time series data, especially in physiology and medicine. Entropy measures the rate of 

information gain, or degree of regularity in a time series e.g. heartbeat. Ideally, entropy should be able 

to quantify the complexity of any underlying structure in the series, as well as determine if the variation 

arises from a random process. Unfortunately current entropy measures mostly are unable to perform 

the latter differentiation. Thus, a high entropy score indicates a random or chaotic series, whereas a low 

score indicates a high degree of regularity.  

This leads to the observation that current entropy measures are equivalent to evaluating “how random” 

a series is, or conversely the degree of regularity in a time series. This raises the possibility that existing 

tests for randomness, such as the runs test or permutation test, may have similar utility in diagnosing 

certain conditions. 

This paper compares various tests for randomness with existing entropy-based measurements such as 

sample entropy, permutation entropy and multi-scale entropy. Our experimental results indicate that 

the test statistics of the runs test and permutation test are often highly correlated with entropy scores 

and may be able to provide further information regarding the complexity of time series. 

Keywords : entropy, sample entropy, permutation entropy, multi-scale entropy, tests of randomness, 

runs test, permutation test, time series complexity 
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1. Introduction 

Entropy measures have gained widespread use in the analysis of complex real-world data. The term 

“entropy” first originated in the field of thermodynamics and can be interpreted as the amount of 

information needed to completely specify the physical state of a system. A very orderly and regular 

system has a low entropy value. An example of this is a system consisting of a container of hydrogen and 

helium molecules where all the hydrogen molecules are on one side of a divider and all the helium 

molecules are on the other side. In contrast, a system where the hydrogen and helium molecules are 

uniformly distributed throughout the container has very high entropy as the position of each molecule 

has to be completely specified in order to describe the state of the system.  

The concept of entropy was further developed in the field of non-linear dynamic analysis and chaos as a 

measure of the complexity of a system. In Shannon’s [1] seminal work on information theory, he defined 

entropy as the ”information content” of a system. However, the concept of entropy remained largely 

theoretical until Pincus [2] developed Approximate Entropy (ApEn) as a measure of changing complexity 

which could be applied to real-world data sets. Following on from Pincus’s work, various other entropy 

measures have been proposed for the same purpose. Richman and Moorman [3] introduced Sample 

Entropy (SampEn), a modified version of ApEn, to correct for the self-match bias in ApEn and to improve 

on several other statistical properties. Bandt and Pompe [4] proposed Permutation Entropy (PermEn) as 

an alternative measure of complexity for time series. Costa et. al. [5] developed Multi-Scale Entropy 

(MSE) to account for structural interactions across multiple time scales. 

However, the abovementioned entropy measures all share a common attribute in that a maximal 

entropy score is assigned to completely random data, i.e. white noise. In that sense, entropy can be 

considered to be a measure of the degree of regularity in data where the presence of underlying 

structure will reduce the entropy score from the maximal value.  

By extending on this premise, it should be possible to obtain similar information by utilizing existing 

statistical tests for randomness such as the Runs test and permutation test [6]. The rest of this paper 

explores the efficacy of such tests as compared to the abovementioned entropy measures. Section 2 

outlines the basic framework of each entropy measure and test for randomness that was utilized in the 

experimental runs. Section 3 contains the experimental results for various test data sets, while section 4 

discusses the conclustions from the experiments.  

2. Experimental methods  
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2.1 Entropy measures 

Sample Entropy(m,r) 

As presented by Lake, Richman, Griffin and Moorman in their study of neonatal heart rates [7], SampEn 

is the negative natural logarithm of the conditional probability that a dataset of length m, given that it 

has repeated itself for m points (within a tolerance limit r that is commonly based on the standard 

deviation of the data), will repeat itself for m+1 points. SampEn can be calculated using the following 

equation: 

𝑆𝑎𝑚𝑝𝐸𝑛 = −𝑙𝑜𝑔
𝐴

𝐵
 

where A is the number of pairs of vector subsets of length m+1 which have a distance function less than 

r, while B is the number of pairs of vector subsets of length m which similarly have a distance function 

less than r. The main difference between SampEn and ApEn is that SampEn does not allow self-matching 

of points while ApEn does, meaning that ApEn always has a value of at least 1 for A and B. 

For our experiments, the parameter m = 2 was chosen and r was set to be 0.2 times the standard 

deviation of the test data. A SampEn score of 0 indicates linear or highly regular data, while randomly 

generated data returns a SampEn score between 2.2 and 2.3. 

Permutation Entropy(n) 

PermEn was developed to handle the presence of noise in real-world data. For a time series {x0, …, xN-1} 

the PermEn algorithm splits the data into overlapping n-tuples, where n is the embedding dimension. 

Each n-tuple is then sorted in ascending order, which generates a “permutation type” π according to the 

ordering of the sorted data. As an example, consider the 3-tuple {x0, x1, x2} = {3,5,1}. The sorted tuple is 

{x2, x1, x0) which leads to a π = 2,1,0.  For embedding dimension n there are n! possible permutation 

types. The relative frequency p(πi) is determined for each πi , for 1 ≤ 𝑖 ≤ 𝑛! , according to the following 

equation: 

𝑝(𝜋𝑖) =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑡𝑦𝑝𝑒 𝜋𝑖

𝑁 − 𝑛 + 1
 

The permutation entropy H(n) is then calculated as follows: 
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𝐻(𝑛) =  −∑𝑝(𝜋𝑖)log 𝑝(𝜋𝑖)

𝑛!

𝑖

 

H(n) ranges from 0 to log n!, with 0 indicating a series that is monotonically increasing or decreasing and 

log n! indicating a completely random series. In the experimental portion, H(n) is rescaled by dividing by 

log n!, thus normalizing H(n) to return values between 0 and 1 with 0 indicating highly regular data and 1 

indicating maximal entropy. The parameter n = 5 was used for the calculation of H(n). 

Multi-Scale Entropy (m,n) 

In their paper [5], Costa, Goldberger and Peng observed that most entropy measures only consider a 

one-step difference and thus only measure entropy based on the smallest scale. Multi-Scale Entropy 

(MSE) down-samples the original time series {x1, …, xN} according to a scale factor Τ. The new time series 

{yT} is obtained using the formula 𝑦𝑗
𝑇 = 

1

𝑇
 ∑ 𝑥𝑖

𝑗𝑇
𝑖=(𝑗−1)𝑇+1 , 1 ≤ 𝑗 ≤

𝑁

𝑇
. In effect, the original series is 

partitioned into N/T disjoint sets. The mean of each disjoint set then forms a data point in the new 

series {yT}. Sample entropy is then calculated while varying T and the resultant values plotted against T.  

Since the MSE methodology revolves around the resampling process, in our experiments the resampling 

process was used before applying the various methodologies examined. Scale factors {2,3,4,5,10} were 

evaluated, with scale factor 1 being excluded as the down-sampled series would be identical to the 

original series.  

2.2 Tests for randomness 

Permutation test (t) 

The permutation test for randomness [6] should not be confused with the permutation tests involving 

reshuffling of data to obtain more accurate test statistics. The permutation test for randomness is 

performed by first partitioning the original time series into groups of t elements. In the event that the 

original time series is not perfectly divisible by t, the remaining data points are discarded. The elements 

of each group are then sorted to obtain an ordering of the element indices. As there are 𝑡! possible 

orderings in each group, a chi-square test can then be performed with t! categories and the assumption 

that the probability of each distinct ordering is 1 𝑡!⁄ . The chi-square statistic is interpreted as the 

distance from the expected value given the null hypothesis that the input data is uniformly distributed. 
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Thus, a high value indicates a high degree of regularity (conversely, departure from randomness) while a 

low value indicates a high likelihood of the null hypothesis being true.  

It should be noted that the algorithm for the permutation test for randomness is very similar to that for 

calculating permutation entropy as presented in section 2.2. The main differences are that the partitions 

in the permutation test do not overlap, and that instead of summing the chi-square test statistic for 

each permutation the permutation entropy algorithm calculates H(n). In our experiments, a partition 

size of t=5 was chosen, in part to be consistent with the tuple size for permutation entropy.  

Runs test 

The runs test [6] examines the time series for the length of sequences that increase or decrease 

monotonically. The underlying basis for the runs test is that a non-random series will tend to have either 

more or less frequent runs than expected under a purely random distribution. For the purposes of our 

experimental analysis, the R function runs.test() in the “lawstats” package [8] was used to calculate the 

two-sided runs test statistic and p-values.  

Similar to the permutation test statistic, the runs test statistic can also be interpreted as the distance 

from the expected value given a null hypothesis of a random originating distribution. A large difference 

from the expected value indicates a large degree of regularity in the series. Conversely, a difference 

close to zero indicates a high probability of the null hypothesis being true.  

3.  Experimental results 

Entropy measures are primarily used to provide quantitative comparisons between various time series. 

By themselves, the various entropy scores are not sufficient to determine if a series is chaotic. However, 

entropy scores can be used to rank multiple time series according to the degree of regularity exhibited.  

Conversely, tests for randomness have traditionally been used to provide probabilistic likelihoods of 

whether the input series is randomly distributed. Thus, the main focus of these tests has been on the p-

values, or probability of encountering such an input series given the assumption that the null hypothesis 

is true (the series is randomly distributed) rather than the actual values of the test statistic. However, 

when used as a comparative measure among multiple time series the test statistic may also be able to 

give pertinent information, in a fashion similar to comparing entropy scores. 
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In our experiments, we evaluated the performance of Sample Entropy (SampEn), Permutation Entropy 

(PermEn), the permutation test chi-square test statistic (p.test) and the runs test statistic (runs.test). In 

certain cases, the Multi-Scale Entropy (MSE) framework was applied by downsampling the original series 

and evaluating the changes in the various metrics as the scale factor T increases. 

3.1 Random data 

The first test performed compared three time series (each with 1000 data points) generated from 

random distributions. The first series was generated from a Uniform(0,1) distribution, the second series 

from a Normal(0,1) distribution, and the third series from an Exponential(1) distribution. In each case, 

30 replications of 1000 data points were generated and the mean score recorded. Figures 1a to 1c 

below show the resulting scores from SampEn, PermEn, the permutation test chi-square statistic and 

the runs test statistic. All scores for the various metrics are rescaled to be between 0 and 1 for better 

comparison. In addition, the inverse of the natural log is applied to the chi-square statistic from the 

permutation test, while the inverse of the absolute runs test statistic is shown. This was done to invert 

the plots to better correspond with the interpretation of the entropy measures, i.e. a high value 

corresponds to low regularity and a low value corresponds to high regularity. Detailed results of the 

tests, including p-values, can be found in Table 1. 

Figure 1a     Figure 1b 

 

Figure 1c 
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Table 1 : MSE analysis for random data 

Uniform 

Scale factor 1 2 3 4 5 10 

SampEn(2) 2.238808 2.32396 2.100495 2.089392 2.374906 1.856298 

PE(5) 0.987112 0.973145 0.946222 0.951224 0.917653 0.860831 

Perm test(5) 108.3935 120.7855 130.3399 117.9717 145.9562 111.9328 

Perm test(5) p-val 0.7471 0.437094 0.224877 0.509409 0.04717 0.664233 

Runs test -0.8859 -0.44766 0.547999 -0.63373 -0.42533 -1.80916 

Runs test p-val 0.3757 0.654397 0.583693 0.526258 0.670593 0.070426 

Normal 

Scale factor 1 2 3 4 5 10 

SampEn(2) 2.168564 2.155924 2.27835 2.197225 2.083466 2.261763 

PE(5) 0.988476 0.971931 0.968727 0.942845 0.92731 0.884947 

Perm test(5) 117.9929 130.3844 119.4328 132.3682 163.9508 111.9328 

Perm test(5) p-val 0.5089 0.224066 0.471603 0.189728 0.003987 0.664233 

Runs test -0.6328 0.089532 -0.3288 -1.26746 -0.56711 -0.60305 

Runs test p-val 0.5269 0.928659 0.742307 0.204991 0.570638 0.546473 

Exp 

Scale factor 1 2 3 4 5 10 

SampEn(2) 1.669779 1.665106 1.768694 1.650423 1.836711 1.581786 

PE(5) 0.98541 0.985588 0.959452 0.953136 0.930561 0.873627 

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 10

Scale factor 

Exponential(1) series 

Rescale
SampEn

Rescale
PermEn

Rescale p.test

Rescale
runs.test



38 
 

Perm test(5) 93.9944 127.9846 123.0685 108.374 109.967 111.9328 

Perm test(5) p-val 0.9561 0.270497 0.380607 0.74757 0.711414 0.664233 

Runs test -0.5062 -2.68597 -0.8768 0.633729 -0.14178 -1.20611 

Runs test p-val 0.6127 0.007232 0.380596 0.526258 0.887255 0.227776 

 

It can be seen that both PermEn and the permutation test show very high degrees of randomness for all 

three series. For the exponential series, while the rescaled SampEn score is consistently high through all 

scale factors, the absolute score shows a decrease in complexity when compared to the Uniform and 

Gaussian series. In most cases the p-values for both the permutation test and the runs test are well 

above common significance thresholds, correctly indicating that these series cannot be rejected as being 

random. However, there are several outliers highlighted in Table 1 where the p-values are below 0.05, 

which would lead to a rejection of the null hypothesis at a 0.05 significance level. In particular, there is 

significant variation in the runs test statistic compared to the other three test metrics.  

We were unable to replicate the results of Costa et. al. [5], which found that the SampEn score 

monotonically decreases as T increases for series containing pure white noise. For SampEn, the 

permutation test statistic and the runs test statistic there was no discernible trend for varying T. 

However, the PermEn score did decrease monotonically as T increased. 

3.2 Logistic Map 

The second set of time series used was generated using the logistic map 𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛). The orbit 

of the logistic map is shown below in Figure 2 for values of r ranging from 1.5 to 4. Five separate time 

series were generated from the logistic map. The first three series consist of 1000 points generated 

using x=0.3, with r taking values 3.5, 3.7 and 3.9 respectively. To remove transient effects, 5000 points 

were generated and the last 1000 used for the analysis.  
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Figure 2 : Logistic map for increasing r 

 

As can be seen from Figure 2, with r=3.5 the series has period 4, while for r=3.7 and r=3.9 the series 

results in deterministic chaos and appears much more random. Theoretically, the series with r=3.9 

should exhibit a higher degree of chaos compared to the series with r=3.7. For the last time series in the 

set, the data from the periodic series with r=3.5 was used as the base and a random Gaussian(0,0.1) 

noise was added to each of the points. The plots of these four time series are shown in Figure 3. 

Figure 3 : Time series from logistic map 
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The same scores from the preceding section were calculated for these 4 time series, with the same 

parameter values. Figure 4 shows the rescaled scores while the raw data is provided in Table 2. 

Figure 4 : Comparison for logistic map 

 

Table 2 : Scores for logistic map 

 
r=3.5 r=3.7 r=3.9 

r=3.5 with 

N(0,0.1) noise 

SampEn(m=2) 0.0000 0.3479 0.4883 1.4431 

PermEn(5) 0.2896 0.4978 0.6185 0.6781 

Perm. test(5) 5799.6520 2781.8331 1200.3280 936.3438 

Perm. test(5) p-val 0.0000 0.0000 0.0000 0.0000 

Runs test 31.5753 26.9561 14.3252 28.2849 

Runs test p-val 0.0000 0.0000 0.0000 0.0000 

 

SampEn, PermEn and the permutation test chi-square statistic are all able to detect the increase in 

chaos in the series. The runs test statistic does not display as much consistency as the other 3 measures, 

but the p-values for both the permutation test and the runs test enable us to easily reject the null 

hypothesis of a random process for all four series.  

The MSE framework was then applied to the data sets with r=3.7 and r=3.5 with Gaussian(0,0.1) noise to 

evaluate the effects of increasing scale factor. Figure 5 shows that all four metrics generally vary in the 

same fashion for increasing scale factor. 
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Figure 5 

 

 

Table 3: MSE analysis for logistic map 

Logistic map r=3.7 

Scale factor 1 2 3 4 5 10 

SampEn(2) 0.3479 0.7899 1.0515 1.3852 1.2181 2.1832 

PE(5) 0.4978 0.8134 0.8494 0.9134 0.8667 0.8239 

Perm test(5) 2781.8331 262.3685 181.2398 127.5694 133.9598 123.9256 

Perm test(5) p-val 0.0000 0.0000 0.0002 0.2791 0.1649 0.3601 

Runs test 26.9561 -17.2798 11.2888 -9.1257 6.2382 0.2010 

Runs test p-val 0.0000 0.0000 0.0000 0.0000 0.0000 0.8407 

Logistic map r=3.5 with N(0,0.1) noise 

Scale factor 1 2 3 4 5 10 

SampEn(2) 1.4431 2.2351 1.8983 2.3735 2.2532 2.2824 

PE(5) 0.6781 0.9561 0.7941 0.9449 0.8389 0.8578 

Perm test(5) 936.3438 103.9875 246.6824 103.5751 169.9490 123.9256 

Perm test(5) p-val 0.0000 0.8349 0.0000 0.8421 0.0015 0.3601 

Runs test 28.2849 2.1488 10.3024 -1.3942 4.2533 -0.4020 

Runs test p-val 0.0000 0.0317 0.0000 0.1633 0.0000 0.6877 
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The MSE analysis in table 3 shows a general increase in each metric as the scale factor increases. This is 

to be expected as the logistic map is originally deterministic. The downsampling procedure breaks the 

correlation between successive points, leading to a loss of regularity. As the logistic map with r=3.5 is 

periodic with period 4, the results for even scale factors (2,4) can be seen to differ greatly from the 

results for odd scale factors (1,3,5). If the results are separated into even and odd categories, it is again 

evident that increasing the scale factor leads to a decrease in the regularity of the series. 

3.3 Santa Fe Time Series Competition – Set A 

A univariate time series was obtained from set A of the Santa Fe Time series competition [9]. The time 

series consists of 1000 intensity measurements from a laser in a physics experiment that varies from 

periodic to chaotic pulsations. Additional time series were generated by adding a Gaussian noise 

component with mean 0 and standard deviation equal to the standard deviation of the original laser 

intensity series multiplied by 0.1, 0.2 and 1. Plots of the four time series are shown in Figure 6 below. 

Figure 6 : Santa Fe time series competition – Set A 

 

 

The original series exhibits heteroskedasticity and has varying regularity. Despite this, all four methods 

used were able to detect the increase in chaos with the addition of noise of increasing variance. 
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Figure 7 : Comparison for Santa Fe data 

 

 

Table 3 : Scores for Santa Fe data 

 clean sd/10 noise sd/5 noise 1 sd noise 

SampEn(m=2) 0.7570 1.0441 1.3147 2.1233 

PermEn(5) 0.5809 0.6933 0.7631 0.9529 

Perm. test(5) 1562.7060 1045.5370 817.5509 198.3881 

Perm. test(5) p-val 0.0000 0.0000 0.0000 0.0000 

Runs test -15.3711 -14.9967 -14.6170 -6.7707 

Runs test p-val 0.0000 0.0000 0.0000 0.0000 

 

The test statistics for all four measures show increasing chaos in the time series. However, the entropy 

statistic returned by SampEn and PermEn for the series with 1 standard deviation noise are so high that 

it would be difficult to distinguish between the noisy data and a purely random series. On the other 

hand, both the permutation test and the runs test have negligible p-values which would lead to rejection 

of the null hypothesis that the data originated from a random process.  

MSE analysis was performed on the original clean series as well as the series with 0.2*standard 

deviation noise, with the results shown in Figure 8. As the original data is clearly periodic, it is again 

expected that the downsampling procedure will result in increasing scores as the scale factor increases, 

due to the reduction in correlations between successive points. 
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Figure 8 

 

Table 4 : MSE analysis for Santa Fe data 

Santa fe - clean 

Scale factor 1 2 3 4 5 10 

SampEn(2) 0.7570 0.5752 0.6507 0.6111 0.6406 1.4328 

PE(5) 0.5809 0.6306 0.6316 0.5927 0.7528 0.7734 

Perm test(5) 1562.7060 622.3253 610.2527 540.2703 181.9454 183.8897 

Perm test(5) p-val 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001 

Runs test -15.3711 1.7011 10.5226 11.6606 2.4102 3.4173 

Runs test p-val 0.0000 0.0889 0.0000 0.0000 0.0159 0.0006 

Santa fe with N(0,0.2*sd) noise 

Scale factor 1 2 3 4 5 10 

SampEn(2) 1.3401 1.1230 1.1285 1.1460 1.2615 2.2513 

PE(5) 0.7443 0.7534 0.7135 0.6995 0.8386 0.8236 

Perm test(5) 939.9436 415.9501 381.2034 348.3164 157.9526 135.9184 

Perm test(5) p-val 0.0000 0.0000 0.0000 0.0000 0.0098 0.1376 

Runs test -14.8702 1.5221 10.3024 10.9002 2.9773 3.4173 

Runs test p-val 0.0000 0.1280 0.0000 0.0000 0.0029 0.0006 

 

Table 4 shows that the scores generally increase as the scale factor increases, indicating the detection of 

a loss in regularity caused by the downsampling process. While the runs test statistic again displays a 

large variation as the scale factor is varied, it has the advantage of returning a very low p-value even 
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with a scale factor of 10, whereas the other 3 metrics return scores that are similar to those from a 

random series. 

3.4 ARMA processes 

The ARMA data set consists of 3 time series obtained by simulating several ARMA processes. The first 

series comes from an ARMA(2,2) process with AR coefficients of (0.9, -0.2) and MA coefficients of (-0.7, 

0.1). The second series is an ARMA(1,1) process with an AR coefficient of 0.7 and MA coefficient of -0.2. 

The third and last series is an AR(1) process with coefficient 0.9. 1000 points were generated from each 

series, the plots which are shown below in Figure 8. 

 

Figure 9 : Plots of varying ARMA processes 

 

 

From inspection of the plots, increasing regularity can be seen when comparing the time series from the 

ARMA(2,2) process to the ARMA(1,1) process to the AR(1) process. Thus, the measures should show 

decreasing rescaled scores, as validated in Figure 10. 
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Figure 10 : Comparison for ARMA processes 

 

 

Table 4: Score for ARMA data 

 ARMA(2,2) ARMA(1,1) ARMA(1,0) 

SampEn(m=2) 2.2286 2.0238 1.4650 

PermEn(5) 0.9833 0.9795 0.9173 

Perm. test(5) 126.3924 147.9911 236.7858 

Perm. test(5) p-val 0.3041 0.0369 0.0000 

Runs test -3.9865 -10.9470 -21.8939 

Runs test p-val 0.0001 0.0000 0.0000 

 

The test statistics for all four measures indicate a decreasing measure of randomness or complexity. 

SampEn, PermEn and the permutation test are unable to distinguish between an ARMA(2,2) process and 

a purely random process, while the runs test is able to do so with a very small p-value. SampEn and 

PermEn still have problems with an ARMA(1,1) process, while the permutation test is able to reject the 

null hypothesis of a random process at a 0.05 significance level.  
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The MSE analysis of all 3 processes is shown in Figures 11a – 11c. Both the permutation test statistic and 

permutation entropy show minimal change as the scale factor increases, whereas there is significant 

variation in the sample entropy score and the runs test statistic.  

Figure 11a     Figure 11b 

 

Figure 11c 

 

Table 5 : MSE analysis for ARMA models 

ARMA(2,2) 

Scale factor 1 2 3 4 5 10 

SampEn(2) 2.1533 2.2500 2.0808 2.0424 2.1864 1.7383 

PE(5) 0.9846 0.9758 0.9559 0.9497 0.9235 0.8329 

Perm test(5) 131.1921 89.5892 126.7042 151.5636 115.9652 123.9256 

Perm test(5) p-val 0.2096 0.9797 0.2974 0.0235 0.5616 0.3601 
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Runs test -4.4927 -1.8802 -2.0824 -1.3942 0.5671 0.8041 

Runs test p-val 0.0000 0.0601 0.0373 0.1633 0.5706 0.4214 

ARMA(1,1) 

Scale factor 1 2 3 4 5 10 

SampEn(2) 2.0238 2.0806 2.1228 2.2407 2.0680 2.8134 

PE(5) 0.9795 0.9608 0.9486 0.9348 0.9217 0.8586 

Perm test(5) 147.9911 135.1838 141.2470 108.3740 109.9670 111.9328 

Perm test(5) p-val 0.0369 0.1474 0.0802 0.7476 0.7114 0.6642 

Runs test -10.9470 -6.8045 -4.1648 -3.2954 -0.9924 -1.0051 

Runs test p-val 0.0000 0.0000 0.0000 0.0010 0.3210 0.3149 

AR(1) 

Scale factor 1 2 3 4 5 10 

SampEn(2) 1.4650 1.6371 1.7735 1.8615 1.8197 2.7300 

PE(5) 0.9173 0.8782 0.8527 0.8691 0.8503 0.8322 

Perm test(5) 236.7858 269.5677 184.8755 161.1613 157.9526 111.9328 

Perm test(5) p-val 0.0000 0.0000 0.0001 0.0061 0.0098 0.6642 

Runs test -21.8939 -15.2205 -10.8504 -7.6048 -6.6636 -1.8092 

Runs test p-val 0.0000 0.0000 0.0000 0.0000 0.0000 0.0704 

 

Examination of table 5 reveals that similar to the case with random data, the permutation entropy score 

decreases almost monotonically as scale factor increases. Sample entropy and the permutation test 

statistic do not display any obvious trend with the change in scale factor. 

3.5 Congestive Heart Failure – Normal Sinus Rhythm data 

Entropy measures are commonly used in the analysis of physiologic time series. For the final evaluation 

of entropy measures against tests for randomness, two separate inter-beat (RR) interval time series 

were evaluated1. The first series is comprised of measurements from 44 patients with congestive heart 

failure (CHF)[10], while the second series is comprised of measurements from 54 patients with normal 

sinus rhythm (NSR). The series length varies from 75,546 data points to 147,880 data points for the CHF 

group, and from 76,927 data points to 136,528 data points for the NSR group.  

                                                           
1
 Provided by Douglas E. Lake, UVA Department of Medicine 



49 
 

SampEn, PermEn, the permutation test and the runs test were applied to each of the time series in both 

groups. Similar to the previous experiments, for SampEn the parameters m=2 and r=0.2 was chosen, 

while for PermEn and the permutation test the tuple size was set to 5. Figures 12a-d show the results of 

the various measures on CHF patients (red box plot) and NSR patients (blue box plot). 

Figure 12a : SampEn    Figure 12b : PermEn 

 

    Figure 12c : Permutation test       Figure 12d : Runs test  

 

It is readily apparent that SampEn scores are markedly different between the two groups, with a lower 

mean score and much lower variance. This suggests that the NSR patients have more regular inter-beat 

interval times. The scores for PermEn and the permutation test are not markedly different between the 

two groups, again highlighting the similarity between these two measures. Lastly, the runs test statistic 

provides similar results as the SampEn score, except to a lesser degree. The absolute value of the runs 

test statistic for NSR patients is larger, again suggesting that NSR patients have inter-beat interval times 

that are more regular. The variance of the runs test statistic is also lower, similar to what was found for 

SampEn. 

A two-sample t-test of the scores from both groups quantifies the difference shown in the box plots. For 

both SampEn and the runs test, we are able to reject the null hypothesis that the two samples have the 

same mean at a 0.05 significance level, whereas for PermEn and the permutation test we are unable to 

reject the null hypothesis at a 0.05 significance level.  
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4. Discussion and future work 

Entropy based methods such as sample entropy and permutation entropy are able to quantify the 

degree of regularity present in a series and utilize this measure as a means of comparing the complexity 

of different time series. In a similar fashion, established tests for randomness such as the permutation 

test and the runs test examine a series for the presence of underlying structure in order to determine 

the likelihood of the series originating from a random distribution.  

Experimental analysis shows that the test statistics of the permutation test and the runs test vary in a 

fashion that is highly correlated to SampEn and PermEn scores. Thus, these tests may be able to provide 

similar information regarding the complexity of time series when comparing multiple data sets. 

Furthermore, such statistical tests also have the advantage of having well-known statistical distributions 

which can provide probabilistic information on the likelihood of the originating process being random. In 

comparison, a measure of entropy from SampEn and PermEn by itself may not provide enough 

information to make the aforementioned distinction, even with the application of the MSE framework. 

In some cases, the p-values from the permutation test and the runs test can provide additional 

information that is not detectable by changes in SampEn and PermEn.  

Further study should be carried out on the potential applications of various other tests for randomness 

in conjunction with entropy-based measures to gain further insight into the complexity of time series, 

which may provide additional predictive power.  
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Chapter 3 : Developing an ICU scoring system with interaction 

terms using a genetic algorithm 

Abstract 

ICU mortality scoring systems attempt to predict patient mortality using predictive models with 

various clinical predictors. Examples of such systems are APACHE, SAPS and MPM. However, 

most such scoring systems do not actively look for and include interaction terms, despite 

physicians intuitively taking such interactions into account when making a diagnosis. One 

barrier to including such terms in predictive models is the difficulty of using most variable 

selection methods in high-dimensional datasets. 

A genetic algorithm framework for variable selection with logistic regression models is used to 

search for significant two-way interaction terms in a clinical dataset of adult ICU patients. The 

dataset is also split according to category of diagnosis upon admittance to the ICU, and 

separate models are built for each category. The models had good discrimination across all 

categories, with a weighted average AUC of 0.84 (and > 0.90 for several categories) and the 

genetic algorithm was able to find many significant interaction terms, some of which may be 

able to provide greater insight into mortality prediction for health practitioners. The GA 

selected models had improved performance against stepwise selection and random forest 

models, and provides greater flexibility in terms of variable selection by being able to optimize 

over any modeler-defined model performance metric instead of a specific variable importance 

metric. 

Keywords: ICU scoring system, predictive modelling, genetic algorithm, variable selection, 

interaction terms 

3.1 Introduction 

Predictive modelling in healthcare is a rapidly growing field. Recent innovations in information 

systems use in hospitals has resulted in a massive increase in the availability and accuracy of 

patient electronic health records (EHRs) and other sources of medical data. This Data Science 

boom has enabled the development of more predictive analytics tools to aid health 
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practitioners in tasks such as diagnosing illnesses, assessing the likelihood of patient 

readmission, and predicting patient mortality. 

Many predictive scoring systems for adult ICU patient mortality have been developed. Among 

the most popular are the Acute Physiology and Chronic Health Evaluation (APACHE) score, the 

Mortality Probability Models (MPM) and the Simplified Acute Physiology Score (SAPS). Most of 

these predictive models are built using physiological, clinical or therapeutic variables that are 

routinely collected in the ICU, either as a first day snapshot or dynamically updated throughout 

a patient’s ICU stay. Furthermore, most such scoring systems are based on a form of logistic 

regression to predict a patient’s probability of mortality. 

The Acute Physiology And Chronic Health Evaluation (APACHE) score was developed by Knaus 

et. al. [1] to assess the severity of illness of critically ill adult patients admitted to the intensive 

care unit (ICU). The first APACHE model consisted of 34 physiologic predictors selected using 

expert judgement. Further refinements to the APACHE model have followed with APACHE II, III 

and IV. APACHE II has been widely used in many hospitals and healthcare facilities for 

benchmarking purposes [2].  

The APACHE II score is based on several clinical and physiologic measurements taken when a 

patient is first admitted to the ICU [3]. For APACHE II, the score is calculated from the following 

13 predictors : age, alveolar-arterial gradient (A-aO2) or partial pressure arterial oxygen (PaO2) 

depending on the fraction of inspired oxygen (FiO2),rectal  temperature, mean arterial pressure 

(MAP), arterial pH, heart rate, respiratory rate, sodium (serum), potassium (serum), creatinine, 

hematocrit, white blood cell count and Glasgow Coma Scale score. First, each predictor value is 

mapped to a numeric integer score according to where the value falls in various pre-

determined ranges of possible values. For example, the score for age is determined according 

to the following function: 

𝑠𝑐𝑜𝑟𝑒_𝑎𝑔𝑒 =  

{
 
 

 
 

0 𝑖𝑓 0 ≤ 𝑎𝑔𝑒 ≤ 44
2 𝑖𝑓 45 ≤ 𝑎𝑔𝑒 ≤ 54
3 𝑖𝑓 55 ≤ 𝑎𝑔𝑒 ≤ 64
5 𝑖𝑓 65 ≤ 𝑎𝑔𝑒 ≤ 74
  6 𝑖𝑓 75 ≤ 𝑎𝑔𝑒 ≤ 130
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After each predictor is mapped accordingly, the sum of all predictor scores is used in a logistic 

regression model to predict mortality. APACHE III expanded on APACHE II by including five 

additional physiologic predictors to the APS component, and included three two-way 

interaction terms as well [4]. The latest version, APACHE IV, uses a multivariate logistic 

regression model with a much larger dataset (110,588 patients) compared to its predecessors 

[5].  

The Simplified Acute Physiology Score (SAPS) was originally based on the APS predictors 

included in APACHE [6]. Expert judgement was used to reduce the number of predictors to 13 

physiologic variables and patient age.  SAPS II later included 4 additional demographic variables, 

bringing the total up to 17 (12 physiologic, 5 demographic) [7]. The predictors were assigned a 

score depending on the range (similar to APACHE), with the sum of scores then being used in a 

logistic regression for patient mortality. 

The Mortality Probability Model (MPM) scoring system was developed using 12 variables in a 

multi-variate logistic regression model [8]. Initially based only on data at the time of admission, 

further studies incorporated data taken 24 hours and 48 hours after admission. MPM II was 

later developed which included models built for data at admission, after 24 hours, after 48 

hours and after 72 hours [9]. Two-way interaction terms were considered in MPM II, but were 

eventually rejected for not satisfying the author’s criteria for inclusion. 

The aforementioned ICU scoring systems have been validated with good performance in 

numerous studies [10]. However, a common point among these scoring systems is that they are 

mainly developed using predictors selected by subject matter expert judgement and mostly do 

not include interaction terms (APACHE III and possibly APACHE IV are exceptions). However, 

intuitively when predicting patient mortality, it is likely that the existence of certain conditions 

in conjunction may pose a much greater health risk than when these conditions exist 

independently. Many physicians would naturally take into account the interplay of all 

physiologic variables when making a diagnosis, instead of considering each variable 

independently. In a complex problem such as predicting mortality, there may be many 

interaction effects that can give additional power to the model. In many cases, health 



55 
 

practitioners are aware of such effects based on their experience and judgement but have no 

way of quantifying the strength of the interactions due to the lack of research into the inclusion 

of interaction terms. Thus, for the sake of model parsimony interaction terms are often omitted 

(e.g. the MPM II model rejected interaction terms if there was no “clinical plausibility” behind 

them [9]). However, it is also possible that beneficial interaction effects exist which are 

currently unknown to health practitioners and therefore would not be included in a model 

designed mainly using expert knowledge.  

Thus, this exploratory study aims to develop a prototype ICU mortality scoring system using 

machine learning methods (a genetic algorithm) for variable selection instead of relying solely 

on expert knowledge. By evaluating the efficacy of models with interaction terms included, we 

aim to explore the potential benefits of using a variable selection method that can handle a 

large number of interactions to develop such models and hopefully find novel interactions that 

may not be well-known to health practitioners.  

3.2 ICU mortality dataset 

For this study, we obtained a dataset of 224,418 patient records with 12 binary comorbidities, 5 

categorical clinical predictors, and 2 numeric predictors2. A similar dataset was used to evaluate 

APACHE IV against APACHE III [5]. Table 1 below summarizes the list of predictors included in 

the dataset. 

 

 

 

 

 

 

                                                           
2
 Private communication with Dr. Andrew Kramer, formerly of the Cerner Corporation. 
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Table 3.2.1 :  Predictors in ICU dataset 

Binary predictors Categorical 

predictors 

Numeric 

predictors 

operative, emergency, aids, 

myeloma, lymphoma, 

cirrhosis, 

tumorwm, immunosup, 

hepfail, 

copd, diabetic, dialysis 

visit 
priorloc 
gender 
ethnic 

dx_group 

age 

APS 

 

The first two binary predictors represent whether a patient is in the ICU for an operative or 

emergency procedure. The remaining binary predictors represent the absence or presence (0 or 

1 respectively) of the listed comorbidities in the patient upon being admitted to the ICU. For 

the numeric predictors, “age” lists the patient’s age in years (integer) while the Acute 

Physiology Score (APS)  is an integer score based on a regression model using 12 clinical 

predictors, some of which are included in the list of APACHE II predictors.  

The first categorical predictor, “visit”, indicates how many times the patient has been admitted 

to the ICU and ranges from 1 to 9. “Priorloc” indicates the patient’s location prior to entering 

the ICU, e.g. home, other hospital ICU etc. “Gender” and “ethnic” indicate the sex and ethnicity 

(6 levels) of the patient respectively. “Dx_group” stores the patient’s diagnosis code, which is 

given by a physician upon admittance to the ICU. The diagnosis code is assigned based on the 

physician’s diagnosis of the patient’s condition. The diagnosis code is a factor (with 122 levels in 

this dataset) which can be grouped into 16 categories. Note that a patient being admitted to 

the ICU can exhibit multiple conditions, e.g. head trauma and intercerebral hemorrhage. 

However, only a single primary condition (as judged by the attending physician) is recorded in 

the data. Thus, each patient can only be associated with a single “dx_group” value.  
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Unfortunately, while the ICU dataset was closely related to the data used to develop the 

APACHE models, several key variables were omitted (Glasgow Coma Scale, AaDO2/PaO2, pH 

arterial, potassium). Thus, we were unable to calculate the APACHE II score (or any of the other 

commonly used ICU scoring systems) for the patients in the dataset as a baseline comparison. 

3.3 Data preprocessing 

The dataset included two binary predictands, “icudead” and “hosdead”. These labels represent 

whether the patient passed away in the ICU or subsequently in the hospital after being 

discharged from the ICU. For the purposes of this study, we only considered patient mortality in 

the ICU as there could be multiple complicating factors involved in hospital mortality that are 

not captured in the dataset. Thus, all patients who passed away in the hospital were removed, 

leaving only patients that survived or passed away in the ICU. Records that contain missing data 

in the categorical/binary predictors were removed, while records with missing data in the 

numeric predictors were replaced by the mean. As a result, the final dataset used for the 

analysis consisted of 154,281 patient records. 

Several issues arose during the initial analysis of the dataset. Firstly, the APS predictor is an 

aggregate measure of several clinical predictors. Thus, it provides a general indication of the 

patient’s health condition but does not provide information on the factors contributing to the 

score. While it performed adequately as an input to the original APACHE formulation, in order 

to explore potential interaction terms (especially with comorbidities) it would be more 

meaningful to expand the APS into its constituent components. Doing so added 12 additional 

numeric predictors to the dataset. These numeric predictors, together with the age of the 

patient, were scaled to have mean 0 and variance 1 in order to reduce the effects of multi-

collinearity.  

Secondly, the “visit” variable was changed from a 9 level factor to a 2 level factor indicating 

whether the patient was a first time visitor to the ICU, or a repeat visitor. Repeated visits to the 

ICU could be indicative of additional health complications or a poor health condition in general, 

leading to higher risk of mortality. However, the vast majority of patients had “visit” levels of 
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either 1 or 2 (>98%), with a small minority having more than 2 visits. As such, we could combine 

all “visit” levels 2 or greater into a single level, greatly reducing the complexity of the model 

while retaining most of the predictive power.  

Lastly, the “dx_group” predictor with 122 levels resulted in a very sparse matrix with many 

diagnosis codes belonging to very few patients, or none at all. In addition, consultations with 

subject matter experts (physicians working in the University of Virginia Hospital ICU) revealed 

that in many cases the initial diagnosis is subjective and the diagnosis code assigned to the 

patient can vary substantially from physician to physician. Thus, the existing data on diagnosis 

codes is likely to be fairly noisy. However, there is less contention regarding the category of 

diagnosis. For example, it may be unclear whether a patient is suffering from bacterial 

pneumonia or viral pneumonia, but most physicians would categorize the diagnosis as a 

respiratory condition. Following this line of reasoning, the various diagnosis codes were 

aggregated into the following 12 categories :  

Table 3.3.1 : Diagnosis categories in ICU dataset 

Category # of patients 

Cardiovascular 
diagnosis 

52,630 

Cardiovascular surgery 9,690 
Respiratory diagnosis 23,047 
Respiratory surgery 3,478 

Neurologic diagnosis 20,222 

Neurologic surgery 6,510 
Gastrointestinal 

diagnosis 
11,422 

Gastrointestinal surgery 8,975 
Trauma diagnosis 6,869 
Trauma surgery 2,261 

Metabolic diagnosis 6,839 
Genitourinary diagnosis 2,338 

Total 154,281 
 

Furthermore, our discussion with subject matter experts suggested that it would likely improve 

model performance to subset the data according to the categories shown above. A patient 
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admitted to the ICU for trauma injuries could have a very different set of mortality predictors 

than a patient admitted for respiratory problems. Many of the original ICU scoring systems 

were intentionally designed for ease of use with pen and paper calculations, and developing 

different models for different diagnosis codes would have greatly complicated the scoring 

process. However, with the widespread use of information technology in hospitals it should no 

longer be a requirement to be constrained to a single aggregated model for all patient 

conditions. By developing a model for each diagnosis category, we are also able to better 

explore potential interaction terms without the confounding effects of other conditions. 

Appendix 3A lists the final predictors considered in the models, while Appendix 3B shows the 

descriptive statistics for categorical predictors from each subset. 

For each subset, logistic regression models were used to fit the data to predict ICU mortality. 

This choice was informed by several factors. Firstly, logistic regression models are widely used 

in the medical community and are well-understood by physicians, allowing for easier 

acceptance of the resulting models. Predictions from logistic regression models are also easier 

to calculate without special software and can be performed using spreadsheets or mobile apps, 

compared to models such as random forests or artificial neural networks. Secondly, many 

studies of ICU mortality have used logistic regression models with similar predictors and 

demonstrated good performance. One of the primary concerns with logistic regression models 

is the possible presence of non-linear predictors, which are common in medicine due to the 

prevalence of homeostatic processes in living organisms. However, empirical results show that 

logistic regression models perform well on many medical datasets even without first applying 

transformations to non-linear predictors. Lastly, logistic regression models are easily 

interpretable, especially with regards to interaction terms. Interaction terms are explicitly 

defined in logistic regression models and thus their effects can be more easily isolated and 

evaluated. 

After deciding on the model, we now have to determine the appropriate quantitative metric to 

use for model evaluation. As the GA provides great flexibility in the choice of fitness function, 

there are many possible options. The area under the Receiver Operating Characteristic (ROC) 
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curve is a metric that is commonly used in machine learning for model comparison and has also 

seen widespread use and acceptance in the medical community. The ROC curve is derived by 

using the model’s predictions to plot the true positive rate (TPR) against the false positive rate 

(FPR) for various values of the decision threshold. The area under the ROC curve (AUC) can 

therefore be used as a metric of a model’s discriminative power, with a larger AUC indicating 

that a model has a higher probability of ranking a randomly chosen positive instance higher 

than a randomly chosen negative instance. It should be noted that the AUC alone should not be 

taken as a definitive measure of a model’s effectiveness. A model with a higher AUC does not 

necessarily perform better than another model with a lower AUC, as the AUC represents the 

models’ performance across all possible thresholds. When a model is used for classification a 

specific threshold has to be chosen in order for a class prediction to be made, and the relative 

performance of the models at that specific threshold could well differ from their AUC rankings. 

Nevertheless, we chose to use AUC as the model evaluation criteria as the AUC serves well as a 

general indicator of model performance and has been used extensively in evaluating APACHE, 

SAPS and MPM.  

For each diagnosis subset of the ICU dataset, the GA framework was used to perform variable 

selection for a logistic regression model, using AUC as the fitness function. Each subset was split 

into ten folds for cross-validation using random sampling without replacement, with the size of 

folds 1-9 being set to floor(
𝑁

10
), where N is the total number of records in the subset. Fold 10 

contains the remaining records after folds 1-9 have been drawn. Each candidate solution 

consists of a set of predictors, which are then evaluated on each test fold in turn after being 

trained on the remaining nine folds. The ten resulting AUC scores are then averaged to obtain 

the overall AUC score. For all subsets, the GA’s parameters were set to the following: 
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Table 3.3.1 : GA parameter settings 

Population size 30 

Min/Max number of predictors 5/100 

Maximum number of generations 250 

Recombination probability 0.5 to 0.2 

Mutation probability 0.01 to 0.2 

 

For a detailed account of the GA procedure, please refer to Chapter 1. For each diagnosis 

subset, 5 runs were performed using different initial random number generator seeds, and the 

best performing GA result was chosen. The following section describes the results from each 

subset, as well as provides some comparisons with other modelling methods. 

3.4 Results 

Due to the limitations of the variables provided in the dataset, we were unable to compare the 

AUC of the GA selected model against other ICU scoring systems like APACHE, SAPS II and MPM 

II. To provide a comparison, for each subset we developed a logistic regression model using 

stepwise selection according to AIC and a random forest model with 500 trees. The same ten 

folds used for the GA selection process were used to evaluate the AUC with each of the 

stepwise selected logistic regression models and random forest models. Table 3.4.1 below 

shows the mean AUCs obtained for the stepwise-selected logistic regression model, the random 

forest model, and the GA-selected logistic regression model respectively. For each subset, the 

standardized mortality ratio (SMR) of the GA-selected logistic regression models was not 

significantly different from 1.0, indicating no major differences between the observed number 

of deaths and the expected number of deaths.  
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Table 3.4.1 : Mean AUC for logistic regression (stepwise), random forest and logistic regression 

(GA) 

 

Stepwise 
Random 

forest 
GA GA vs Step GA vs RF 

 
AUC AUC AUC p-vals p-vals 

Cardiovascular diagnosis 0.8187 0.8605 0.8300 0.003906 0.001953 

Cardiovascular surgery 0.8614 0.8684 0.8921 0.01367 0.08398 

Respiratory diagnosis 0.7719 0.7761 0.7852 0.001953 0.1602 

Respiratory surgery 0.8290 0.8213 0.9159 0.009766 0.005859 

Neurologic diagnosis 0.7824 0.8390 0.8050 0.01367 0.001953 

Neurologic surgery 0.8833 0.8678 0.9200 0.001953 0.001953 

Gastrointestinal 
diagnosis 

0.8265 0.8383 0.8426 0.003906 0.4922 

Gastrointestinal surgery 0.8199 0.8545 0.8692 0.01367 0.001953 

Trauma diagnosis 0.8170 0.8805 0.8597 0.003906 0.08398 

Trauma surgery 0.8383 0.8896 0.9065 0.003906 0.1934 

Metabolic diagnosis 0.8560 0.8580 0.8952 0.001953 0.009766 

Genitourinary diagnosis 0.7844 0.7855 0.8599 0.001953 0.02734 

 

It can be seen that the discrimination of the GA-selected model is fairly good, ranging from 

0.7852 to 0.9200 across the various subsets. The GA-selected model significantly outperformed 

the stepwise selected model in all 12 categories (at a 0.05 significance level), while the random 

forest model was better in 2 categories and worse in 5 categories. In particular, the GA-selected 

model performed markedly better than both stepwise selection and random forest in the 

“respiratory surgery” and “genitourinary diagnosis” categories. 

Tables 3.4.2 and 3.4.3 below summarize the significant predictors in each category. Each 

column represents a diagnosis category, while the rows represent the main effects terms. A 

highlighted cell in a column indicates that the main effect is included in the model for the 

indicated diagnosis category. The numbers in each cell indicate the variables with which the 

term has significant pair-wise interactions. For example, in the model for cardiovascular 

diagnosis the “visit” term is a significant main effect with no interaction terms, while the “age” 

term has significant interactions with “dialysis”, “temp”, “sodium” and “album”. 
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Table 3.4.2 : Model summary for diagnosis categories 1-6 

  

Cardio diag 
Cardio 

surg 
Resp diag Resp surg Neuro diag 

Neuro 
surg 

1 visit   4,20 20,28     26 

2 ipriorloc 12,18   11,14   4,16,21   

3 gender           23 

4 age 16,18,25,28 1,26 11   2,22,24   

5 operative             

6 emerg   29       19 

7 aids             

8 myeloma 25       12,23   

9 lymphoma             

10 cirrhosis         24   

11 tumorwm   18 2,4,12       

12 imm.sup 2   11   8,28   

13 hepfail 26,27   28   25   

14 copd 19,22   2,26   22   

15 diabetic 22,27 16   21 25,27 22 

16 dialysis 4,26 15,21,26 26   2   

17 ethnic 18,25 24     19   

18 temp 2,4,19,20,27 11,28 19 20 20,22,26,28 
19,22, 

29 

19 map 
20,21,22,25,

27 
20 

18,20,21,23,
26 

  17,21,28,29 6,18,23 

20 hr 23 1,19,21 1,19 18,21 18   

21 rr 25 29 19 
15,20,22,25,

27 
2,19,22,23,27   

22 urine 27     23 
4,14,18,21,23,24,

25 
15,18 

23 wbc 26,28   29 22 8,21,22,24 3,19 

24 hcrit 26 17     4,10,22,23 25 

25 sodium 4,8,17,19       13,15,22   

26 creat 13,16,23,24 4,16 14,16,19   18,27 1 

27 gluc 
13,15,18,19,

22 
      15,21,26,28   

28 album 4,23 18 13,29   12,18,19,27   

29 bili   6,21 23,28     18 
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Table 3.4.3 : Model summary for diagnosis categories 7-12 

  

Gastro 
diag 

Gastro 
surg 

Trauma diag 
Trauma 

surg 
Meta 
diag 

Genito 
diag 

1 visit 15       24   

2 ipriorloc 22,25 13 28       

3 gender   18 18,23 26 28 22 

4 age 22   22,25 19,21,27 11   

5 operative             

6 emerg       22     

7 aids             

8 myeloma             

9 lymphoma             

10 cirrhosis           15 

11 tumorwm 22   22,24,27   4   

12 imm.sup 23         27 

13 hepfail 28,29 2,23         

14 copd     15,23 26,28     

15 diabetic 1,26   14     10 

16 dialysis 24,25,26 22 20 20   27,28,29 

17 ethnic     18       

18 temp   3,22,24 3,17,19,21,23 26 24,26   

19 map 20 23 18,23,25 4,23,26 20,22,28 20 

20 hr 19,23   16,21,25,27 16,25,29 19 19 

21 rr     18,20,25,29 4,25   22,28 

22 urine 2,4,11 16,18 4,11 6 19,27 3,21 

23 wbc 12,20 13,19 3,14,18,19,28 19 25,26   

24 hcrit 16 18 11   1,18   

25 sodium 2,16,27   4,19,20,21 20,21 23   

26 creat 15,16,29     3,14,18,19 18,23   

27 gluc 25   11,20,29 4 22 12,16 

28 album 13   2,23 14 3,19 16,21 

29 bili 13,26   21,27 20   16 

 

The current implementation of the GA does not directly select for model sparsity in the fitness 

function, which results in the GA-selected models having a fairly large number of predictors. 

While a penalty for model size could be added to the fitness function, doing so comes with 

significant downsides. Firstly, such a penalty function could interfere with the GA selection 
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process by forcing the GA to become too greedy and prematurely weed out predictors that may 

initially provide little improvement to the AUC, but would improve the fitness in the presence 

of certain other predictors. Secondly, the determination of the appropriate penalty function is 

non-trivial and has a significant effect on the GA’s performance. However, it should be noted 

that the larger size does not necessarily translate to a larger burden on data collection, as the 

majority of the additional variables are interaction terms derived from the original 29 main 

effects variables which are already routinely collected. Furthermore, the GA-selected models 

can be further refined using expert judgement or other variable selection methods, both of 

which become more viable once the number of potential predictors has been reduced using the 

GA.  

As expected, the models for each diagnosis category differ substantially. However, the patient’s 

age, number of visits and various APS predictors generally are significant in almost every 

category, which is consistent with the findings of other ICU scoring systems. The presence of 

diabetes and whether the patient is on dialysis are also significant in several models, while the 

presence of AIDS, myeloma, cirrhosis, and whether the patient was admitted for operative 

purposes is relatively insignificant. Further examination of the models also reveals some 

interesting observations. Firstly, the “emergency” predictor is significant in most of the 

diagnosis categories pertaining to surgery. Secondly, most of the models include significant 

interactions amongst the APS predictors (together with significant APS main effects terms). 

These interaction effects have not been included in other ICU scoring systems that use the APS 

score as an aggregate predictor. Thirdly, the GA was able to identify several interactions in the 

dataset that could potentially be avenues for further study. For example, the ethnicity of the 

patient is significant in several categories (cardiovascular diagnosis, neurological diagnosis, 

trauma diagnosis) along with interactions with APS predictors such as sodium and temperature. 

The gender of the patient also has significant interactions with APS predictors in various 

diagnosis categories. 
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3.5 Discussion and future work 

The results of the study show that there is potential benefit in utilizing machine learning 

methods, in this case a genetic algorithm for variable selection, in developing ICU scoring 

systems which include interaction terms. Using AUC as a measure of model performance, the 

GA-selected logistic regression models had comparable or better discrimination than stepwise-

selected logistic regression models or random forest models. We also show that developing 

different models for various diagnosis categories rather than using a single model for all ICU 

patients may yield improved model performance as well as provide insight in the form of 

significant interaction terms for each particular diagnosis category. Thus, the GA selection 

process can serve as a useful first step in developing models to support physicians in predicting 

patient mortality.  

However, the GA-selection procedure also comes with some notable drawbacks. The first is the 

procedure run-time, which can be very significant compared to other variable selection 

methods. On the other hand, the GA selection procedure is able to deal with an arbitrarily large 

number of potential predictors, unlike several common variable selection procedures. 

Furthermore, the long run-time is only applicable during model development (or updating) not 

during patient classification.  

Secondly, there is no theoretical guarantee that the GA will find globally optimum models that 

generalize well. The models returned by the GA should be validated on another dataset that 

should ideally contain the same predictors used in other ICU scoring systems, which would 

allow a better comparison of the models with interaction effects. The GA could also be coupled 

with other variable selection procedures to try to prune the final number of predictors, which 

could make the models more generalizable to other datasets. 
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Appendix 3A : List of predictors and descriptions 

Name Description Type 

visit # of times patient has been 
admitted to ICU 

Factor (1-9) 

ipriorloc Prior location of patient 
 

Factor (emergency department, 
other floor, home, ICU transfer, 
other hospital, other hospital 
ICU, other, SDU, telemetry) 

gender Male or female Factor (0 = Male, 1 = Female) 

age Patient age in years Numeric 

operative Procedure is operative Binary 

emerg Procedure is emergency Binary 

Aids Presence of Acquired Immune 
Deficiency Syndrome (AIDS) 

Binary 

myeloma Presence of myeloma (cancer of 
plasma cells) 

Binary  

lymphoma Presence of lymphoma (cancer 
of lymphatic system) 

Binary  

cirrhosis Presence of cirrhosis  Binary  

tumorwm Presence of tumor with 
metastasis 

Binary  

immunosup Presence of immunosuppressive 
disorder 

Binary  

hepfail Presence of hepatic failure Binary  

copd Presence of chronic obstructive 
pulmonary disease 

Binary  

diabetic Presence ofdiabetes Binary  

dialysis Patient is on dialysis Binary 

ethnic Ethnicity of patient Factor (other unknown, African 
American, Asian, Caucasian, 
Hispanic, Native American) 

temp Temperature Numeric  

map Mean arterial pressure Numeric 

hr Heart rate Numeric 

rr Respiratory rate Numeric 

urine Urine output  Numeric  

wbc White blood cell count Numeric  

hcrit Hematocrit Numeric 

sodium Sodium level Numeric 

creat Creatinine level Numeric 

gluc Glucose level Numeric  

album Albumin level Numeric  

bili Bilirubin level Numeric  
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Appendix 3B : Descriptive statistics of diagnosis subsets  

(only categorical predictors as numeric predictors have been scaled to have mean 0 and 

variance 1) 

Cardiovascular diagnosis 

class     VISIT     gender   aids     myeloma   lymphoma  tumorwm   immunosup 
 0:13217   1:14121   0:8213   0:14950   0:14739   0:14840   0:14361   0:13804   
 1: 1783   2:  879   1:6787   1:   50   1:  261   1:  160   1:  639   1: 1196   
 
 hepfail   copd      diabetic DIALYSIS  
 0:14829   0:12563   0:9802   0:13770   
 1:  171   1: 2437   1:5198   1: 1230   
 
              ethnic            IPRIORLOC    
 Other.Unknown   :  376   ED         :6162   
 African.American: 2790   OHOSP      :2714   
 Asian           :  201   FLOOR.OTHER:2667   
 Caucasian       :11205   SDU        :1426   
 Hispanic        :  271   TELEMETRY  : 830   
 Native.American :  157   OHOSPICU   : 637   
                          (Other)    : 564   

 

Cardiovascular surgery 

class   VISIT   gender   emerg   aids    myeloma  lymphoma tumorwm  immunosup 
 0:9421  1:9388  0:5879  0:8268   0:9682   0:9639   0:9648   0:9574   0:9470    
 1: 269  2: 302  1:3811  1:1422   1:   8   1:  51   1:  42   1: 116   1: 220  
   
 hepfail  copd     diabetic DIALYSIS 
 0:9673   0:8157   0:6885   0:9285   
 1:  17   1:1533   1:2805   1: 405   
 
              ethnic        IPRIORLOC    
 Other.Unknown   : 234   ICUTRANS:  50   
 African.American: 765   OPROOM  :5952   
 Asian           : 102   RR      :3688   
 Caucasian       :8396                   
 Hispanic        : 161                   
 Native.American :  32    
  

Respiratory diagnosis 

class     VISIT     gender   aids     myeloma   lymphoma  tumorwm   immunosup 
 0:13558   1:13271   0:7657   0:14933  0:14746   0:14836   0:14003   0:13183   
 1: 1442   2: 1729   1:7343   1:   67  1:  254   1:  164   1:  997   1: 1817  
  
 hepfail   copd      diabetic  DIALYSIS  
 0:14848   0:11253   0:10183   0:14297   
 1:  152   1: 3747   1: 4817   1:  703   
 
              ethnic            IPRIORLOC    
 African.American: 2681   ED         :5530   
 Asian           :  170   FLOOR.OTHER:3877   
 Caucasian       :11425   OHOSP      :2193   
 Hispanic        :  216   SDU        :1415   
 Native.American :  149   TELEMETRY  : 994   
 Other.Unknown   :  359   OHOSPICU   : 494   
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                          (Other)    : 497   
  

Respiratory surgery 

class   VISIT    gender   emerg   aids    myeloma  lymphoma cirrhosis tumorwm  
 0:3402  1:3285   0:2124   0:3159  0:3468  0:3443   0:3444   0:3444    0:3030   
 1:  75  2: 192   1:1353   1: 318  1:   9  1:  34   1:  33   1:  33    1: 447   
 
 immunosup hepfail  copd     diabetic DIALYSIS 
 0:3110    0:3465   0:2827   0:2795   0:3426   
 1: 367    1:  12   1: 650   1: 682   1:  51   
 
              ethnic        IPRIORLOC    
 Other.Unknown   :  82   ICUTRANS:  14   
 African.American: 363   OPROOM  :1493   
 Asian           :  49   RR      :1970   
 Caucasian       :2901                   
 Hispanic        :  55                   
 Native.American :  27  

 

Neurologic diagnosis 

class     VISIT     gender    aids      myeloma   lymphoma  cirrhosis tumorwm   
 0:18872   1:19596   0:10391   0:20153  0:20106   0:20151   0:19891   0:19590   
 1: 1350   2:  626   1: 9831   1:   69  1:  116   1:   71   1:  331   1:  632   
 
 immunosup hepfail   copd      diabetic  DIALYSIS  
 0:19438   0:20096   0:18338   0:16087   0:19758   
 1:  784   1:  126   1: 1884   1: 4135   1:  464   
 
              ethnic            IPRIORLOC     
 African.American: 3387   ED         :11229   
 Asian           :  361   OHOSP      : 4725   
 Caucasian       :14916   FLOOR.OTHER: 2175   
 Hispanic        :  560   SDU        :  890   
 Native.American :  225   OHOSPICU   :  413   
 Other.Unknown   :  773   TELEMETRY  :  383   
                          (Other)    :  407   
   

Neurologic surgery 

class   VISIT   gender   emerg   aids    myeloma  lymphoma tumorwm  immunosup 
 0:6350  1:6148  0:3244  0:5454  0:6495  0:6458   0:6463   0:5900   0:6120    
 1: 157  2: 359  1:3263  1:1053  1:  12  1:  49   1:  44   1: 607   1: 387  
   
 hepfail  copd     diabetic DIALYSIS 
 0:6492   0:6012   0:5340   0:6430   
 1:  15   1: 495   1:1167   1:  77   
 
              ethnic        IPRIORLOC    
 African.American: 745   ICUTRANS:  20   
 Asian           : 172   OPROOM  :2573   
 Caucasian       :5120   RR      :3914   
 Hispanic        : 151                   
 Native.American :  66                   
 Other.Unknown   : 253   
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Gastrointestinal diagnosis 

class     VISIT     gender  aids      myeloma   lymphoma  tumorwm   immunosup 
 0:10653   1:10683   0:6441  0:11385   0:11287   0:11339   0:10813   0:10598   
 1:  769   2:  739   1:4981  1:   37   1:  135   1:   83   1:  609   1:  824   
 
 hepfail   copd     diabetic DIALYSIS  
 0:10502   0:9909   0:8099   0:10779   
 1:  920   1:1513   1:3323   1:  643   
 
              ethnic           IPRIORLOC    
 African.American:1883   ED         :5027   
 Asian           : 188   FLOOR.OTHER:2494   
 Caucasian       :8636   OHOSP      :2353   
 Hispanic        : 253   SDU        : 547   
 Native.American : 154   TELEMETRY  : 389   
 Other.Unknown   : 308   OHOSPICU   : 387   
                         (Other)    : 225   
  

Gastrointestinal surgery 

class   VISIT    gender  emerg   aids    myeloma  lymphoma tumorwm  immunosup 
 0:8546  1:8469   0:4488  0:6003  0:8959   0:8917   0:8910   0:8122   0:7964    
 1: 429   2: 506  1:4487  1:2972  1:  16   1:  58   1:  65   1: 853   1:1011    
 
 hepfail  copd     diabetic DIALYSIS 
 0:8675   0:7738   0:6655   0:8697   
 1: 300   1:1237   1:2320   1: 278   
 
              ethnic           IPRIORLOC    
 African.American:1030   FLOOR.OTHER:   1   
 Asian           : 110   ICUTRANS   :  67   
 Caucasian       :7398   OPROOM     :3987   
 Hispanic        : 115   RR         :4920   
 Native.American :  96                      
 Other.Unknown   : 226    
  

Trauma diagnosis 

class   VISIT    gender  aids    myeloma  lymphoma tumorwm  immunosup hepfail  
 0:6441  1:6836   0:4506  0:6861  0:6839   0:6856   0:6784   0:6767    0:6836   
 1: 427  2:  32   1:2362  1:   7  1:  29   1:  12   1:  84   1: 101    1:  32   
 
 copd     diabetic DIALYSIS 
 0:6432   0:5895   0:6786   
 1: 436   1: 973   1:  82   
 
              ethnic           IPRIORLOC    
 African.American: 663   ED         :5509   
 Asian           : 133   OHOSP      : 566   
 Caucasian       :5335   HOME       : 409   
 Hispanic        : 234   FLOOR.OTHER: 178   
 Native.American :  91   SDU        : 100   
 Other.Unknown   : 412   OHOSPICU   :  42   
                         (Other)    :  64   

 

Trauma surgery 

class   VISIT   gender  emerg   myeloma lymphoma cirrhosis tumorwm  immunosup 
 0:2119  1:2190  0:1472  0: 718  0:2254  0:2254   0:2230    0:2241   0:2233    
 1: 142  2:  71  1: 789  1:1543  1:   7  1:   7   1:  31    1:  20   1:  28  
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 hepfail  copd     diabetic DIALYSIS 
 0:2249   0:2067   0:1940   0:2229   
 1:  12   1: 194   1: 321   1:  32   
 
              ethnic        IPRIORLOC    
 African.American: 260   ICUTRANS:   9   
 Asian           :  43   OPROOM  :1129   
 Caucasian       :1722   RR      :1123   
 Hispanic        :  75                   
 Native.American :  47                   
 Other.Unknown   : 114     
  

Metabolic diagnosis 

class    VISIT   gender  aids    myeloma  lymphoma tumorwm  immunosup hepfail  
 0:6670  1:6539  0:3344  0:6815  0:6787   0:6807   0:6656   0:6500    0:6757   
 1: 169  2: 300  1:3495  1:  24  1:  52   1:  32   1: 183   1: 339    1:  82   
 
 copd     diabetic DIALYSIS 
 0:6134   0:2293   0:6184   
 1: 705   1:4546   1: 655   
 
              ethnic           IPRIORLOC    
 African.American:1852   ED         :4558   
 Asian           :  93   FLOOR.OTHER: 930   
 Caucasian       :4488   OHOSP      : 692   
 Hispanic        : 205   SDU        : 271   
 Native.American :  48   TELEMETRY  : 198   
 Other.Unknown   : 153   OHOSPICU   :  78   
                         (Other)    : 112   
 

Genitourinary diagnosis 

class   VISIT   gender  aids    myeloma lymphoma cirrhosis tumorwm  immunosup 
 0:2199  1:2239  0:1257  0:2326  0:2302  0:2315   0:2217    0:2212   0:2112    
 1: 137  2:  97  1:1079  1:  10  1:  34  1:  21   1: 119    1: 124   1: 224    
 
 hepfail  copd     diabetic DIALYSIS 
 0:2275   0:1959   0:1331   0:2122   
 1:  61   1: 377   1:1005   1: 214   
 
              ethnic           IPRIORLOC    
 Other.Unknown   :  63   ED         :1075   
 African.American: 479   OHOSP      : 489   
 Asian           :  32   FLOOR.OTHER: 445   
 Caucasian       :1703   SDU        : 119   
 Hispanic        :  42   TELEMETRY  :  73   
 Native.American :  17   OHOSPICU   :  72   
                         (Other)    :  63  
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Chapter 4 : Summary and future research 

4.1 Summary 

In this thesis, a new genetic algorithm framework for variable selection is proposed. The main 

advantage of the methodology described is that it can handle an arbitrary number of potential 

predictors, making it well-suited for Data Science problems and especially applications where 

the modeler suspects the presence of significant interaction terms. Many variable selection 

algorithms can struggle in high-dimensional problems and the inclusion of interaction terms 

expands the potential predictor space in a combinatorial fashion, which amplifies this 

weakness. To make matters worse, the detection of interaction terms is a complex problem 

that often boils down to a modeler’s subjective judgement and subject matter knowledge. This 

process is once again greatly hindered by high-dimensional problems.  

Aside from the difficulties posed by high-dimensional problems for many variable selection 

procedures, in many cases the benefits of including interaction terms in the model are relatively 

marginal compared to the contribution of main effects terms. Thus, in the interests of model 

parsimony the study of interaction terms has often been relegated to a secondary priority 

unless there is a strong presupposed basis for their inclusion. However, the increasing 

availability of larger and more complex datasets for predictive modeling also increases the 

likelihood that significant interaction terms may be found in such datasets, allowing the 

opportunity for models to improve predictive performance by actively searching for and 

including interaction terms.  

The use of a genetic algorithm for variable selection also provides great flexibility to the 

modeler. The GA is able to operate without any assumptions regarding the problem space 

structure and the selection process is independent of the model used and the measure used for 

evaluating fitness. Thus, the modeler is able to choose a fitness measure that best suits their 

purpose (i.e. AUC, classification accuracy, adjusted R2 etc.) and the variable selection process 

will directly optimize over the chosen fitness measure. This is in contrast to other variable 

selection methods which evaluate variables using a predefined statistical metric of variable 

informativeness, e.g. AIC, BIC, MSE. While such measures have proven to perform well in terms 
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of selecting informative variables, there is no guarantee that a model with optimal AIC will also 

have, for example, an optimal AUC score if that is the performance metric that is the modeler’s 

primary concern. 

In chapter 1, the GA framework is used on several small toy problems to demonstrate that the 

algorithm is able to find the optimal solution. In chapter 2, the methodology is applied to two 

high-dimensional medical datasets using logistic regression models (with AUC as a fitness 

function) and compared to logistic regression models with stepwise selection and random 

forest models. The GA selected models compared favorably to both stepwise selection and 

random forest models and were able to find significant interaction terms despite having a very 

large number of potential predictors. In chapter 3, the GA selection framework was used to 

develop a prototype ICU scoring system that included interaction terms. While data was 

unavailable for a comparison with existing ICU scoring systems, the new system achieved good 

discrimination, with a weighted average AUC of 0.84 across all diagnostic categories and 

markedly better performance (AUC > 0.9) in certain categories. 

These studies show that the proposed GA formulation is able to effectively perform variable 

selection in high-dimensional datasets, and can help modelers in exploratory data analysis to 

find significant interaction terms which may lead to further insights into the problem being 

examined. 

4.2 Future research 

4.2.1 Improving algorithm run-time 

One of the biggest concerns with using a genetic algorithm approach is that it is 

computationally expensive compared to other methods of variable selection. This does not 

pose a problem when the algorithm run-time is not a critical concern, for example when the 

variable selection process only needs to occur infrequently during model specification. 

However, it does mean that the GA framework suffers in a dynamic, time-critical environment. 

There exist multiple avenues for improving the GA’s run-time. One possibility is in optimizing 

the code to take full advantage of massively parallel computation tools such as utilizing GPUs. 
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Another is in fine-tuning the GA’s meta-parameters for each individual application, or exploring 

other schemes for recombination, mutation or selection. For example, instead of selecting 

variables to be included in the chromosome according to a uniform distribution, a weighted 

distribution function can be used to increase the likelihood of selecting interaction terms when 

at least one of the corresponding main effects terms is already in the chromosome. Using 

multiple recombination points could also increase the GA’s exploration rate. 

4.2.2 Model generalizability 

Another concern with GA methods is that they are susceptible to over-fitting the training data. 

In this case, cross-validation was used in the fitness function to reduce this tendency. 

Nevertheless, the models returned by the GA are not necessarily generalizable to other 

datasets and further study is required to validate these models. In particular, the ICU scoring 

system models should be tested on another dataset of ICU patients, preferably with the ability 

to compare the scores for each patient with scores from other ICU scoring systems such as 

APACHE, SAPS or MPM.  

4.2.3 Model simplification 

The models returned by the GA selection method can be further refined as the selection 

method does not overtly penalize a large model size. Further study needs to be done to 

determine an appropriate penalty function to prune the resulting models without constraining 

the GA’s ability to effectively search the solution space for predictors which increase model 

fitness.  
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