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Abstract 

In this work, we extend clustering methodologies to find groups in healthcare plan data, 

assessing the extent to which specific coverage practices facilitate or restrict effective 

preventative care for HIV. In doing so, we rely on Gower’s underexplored ideas about weighting 

in distance metrices to create a procedure that handles nested dependencies. Overall, the 

distance metric chosen effectively translates our priorities based on theory into a form that 

works well with common clustering algorithms. Running trials with several algorithms, we find 

convergent structures, settling on a hierarchical approach with three distinct clusters. The 

clusters exhibit distinct contrasts on how plans cover specific benefits that allow for ordinal 

interpretations in terms of plan restrictiveness. Broad level interpretation of the output suggests 

that, across the United States, monthly premiums are not related to plan restrictiveness, prior 

authorization is less likely among plans where individuals accept higher out of pocket payments 

for care, state-wide approaches affect what care residents can access, and variability in markets 

within states, specifically Texas, reflect patterns of discrimination toward individuals at risk of 

HIV. 
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1 Introduction 
 
1.1 Why this Work 
 
Currently, more than 1.2 million Americans live with HIV, a number that grows every year. In 

2018, an estimated 36,400 individuals in the US were newly infected with HIV (Center for 

Disease Control [CDC], 2020). While this increase in people living with HIV (PLWH) is an 

estimated two-thirds of what the yearly infection rate in the US was during the 1980s at the 

height of the epidemic, CDC data suggests that the year-to-year infection rate has held constant 

between 2014 and 2018. During those years, the United States, as a whole, has not made much 

progress against ending the HIV epidemic (CDC, 2021).  

 People living with HIV (PLWH) who achieve undetectable viral loads through use of 

antiretroviral therapy (ART) cannot transmit the virus through sex, a principle known as 

“Undetectable = Untransmittable” or “U=U” (Eisinger, Dieffenbach & Fauci, 2019). Furthermore, 

in 2012, the Federal Drug Administration (FDA) approved TDF/FTC, a combination of two drugs 

traditionally administered as part of antiretroviral therapy (ART) for those diagnosed with HIV, to 

be used as Pre-Exposure Prophylaxis for HIV (PrEP) among those who are at risk of HIV infection 

(FDA, 2019). Daily use of TDF/FTC reduces the risk of acquiring HIV through sex by 99% and by at 

least 74% among people who inject drugs (PWID) (CDC, 2019).  

For the last nine years, we have had the tools to prevent new HIV infections. Yet, there 

are gaps in service provision networks and other structural barriers that have kept powerful 

preventative measures from reaching those who most need them (CDC, 2021). This is the 

motivation for the present work — health coverage has a role to play in ensuring those who 
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need HIV preventative care are both informed and able to acquire it easily. And yet, as an 

opaque and somewhat disparate system, it can be difficult to audit where health insurance 

impedes and where it facilitates effective care. The present work explores quantitative methods 

to accomplish that very task.  

 

1.1.1 Who are Most Affected by New HIV Infections? 
 
Individuals who experience identity-based marginalization on the basis of race, ethnicity, and 

sexual identity are at a far higher risk for HIV infection. A 2021 report by the CDC demonstrates 

significant and increasing disparities in the burden of new infections despite the rate of new 

infections holding constant from 2014. Overall, in 2018, gay and bisexual men who have sex with 

men (MSM) comprised approximately 67% of new infections. The burden of HIV infections was 

highest among African American (26%) and Hispanic/Latino (22%) MSM, among whom the rate 

of infection increased from 2014 to 2018. White MSM comprised the third highest proportion of 

new infections in 2018 (15.6%), but also saw a 20% decrease in new infections from 2014. After 

White MSM, African American Heterosexual Women comprised 9.6% of new infections in 2018. 

Eliminating structural barriers for ending the HIV epidemic is a key tenant of pursuing health 

equity for US racial and sexual minorities. 

Approximately 51% of new HIV cases in 2018 occurred in Southern states (CDC, 2019, 

September). In 2016 and 2017, over half of new transmissions were identified in just 48 US 

counties in addition to Washington D.C. and San Juan, Puerto Rico. Key states including Alabama, 

Arkansas, Kentucky, Missouri, Mississippi, Oklahoma, and South Carolina also reported a 
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heightened burden of new HIV infections among rural populations, emphasizing the importance 

of rural care networks to ending the HIV epidemic. 

 

1.1.2 HIV Preventative Care 
 
As mentioned earlier, acquiring HIV is medically preventable due to the innovation of Pre-

Exposure Prophylaxis for HIV (PrEP). PrEP is a once daily oral drug capable of preventing 99% of 

new infections in MSM and 70% of new infections in people who inject drugs (Harawa, et al., 

2018). When on PrEP, individuals traditionally at risk of HIV can continue to live their lives with 

relative freedom. That said, only 18% of the estimated million American who show indications 

that they could benefit from PrEP are using the medication (CDC, 2021). These gaps are 

heightened among individuals most at risk for HIV including Black and Hispanic MSM and 

transgender women (Zarwell et al., 2020; Finlayson et al., 2019).  

This issue is also exacerbated in the South. Those who use PrEP in the South comprise 

only 30% of the overall population of PrEP users nationally despite the South having 51% of new 

infections each year (Sullivan et al., 2019). As of 2020, PrEP exists in two key formulations, 

TDF/FTC and TAF/FTC. Both are effective among individuals with male biological sex at birth; 

however, TAF/FTC has not yet been validated for individuals born biologically female (FDA, 2019, 

October 3). 

While PrEP is a feasible preventative mechanism for many individuals, being on PrEP 

requires regular monitoring of HIV and potential side effects. The US Preventative Services 

Taskforce, in accordance with evolving CDC guidelines for standards of care, recommends 

routine kidney function testing, serologic testing for hepatitis B & C, routine STI testing, quarterly 
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HIV CD4 counts and viral load screens, and regular pregnancy screenings. It also adds regular 

behavioral counseling as an important preventative measure to assist those at risk of HIV in 

exploring behavior-change based methods for lowering their risk of HIV (Owens et al., 2019).  

 

1.1.3 Ending the HIV Epidemic 
 
In early 2019, the US government outlined a new plan to end the HIV epidemic in the US by 

2030. Ending the HIV Epidemic: A Plan for America (EHE) focuses on diagnosing unknown 

infections — which is estimated to be about 14% of people living with HIV (PLWH) — treating 

known infections with anti-retroviral therapy, and preventing over 250,000 new infections in the 

next 10 years (Fauci et al., 2019). The prevention arm of the EHE plan focuses specifically on 

expanding access to PrEP.  

EHE emphasizes increasing PrEP awareness and demand through community-based 

outreach and education to increase knowledge and counter PrEP-related stigma. It also 

emphasizes increasing PrEP accessibility by educating healthcare providers, expanding TelePrEP 

services, creating clinical guidelines, and offering PrEP at community source locations like STD 

clinics and school health clinics (CDC, 2021). That said, the EHE plan does not directly address the 

role of health coverage providers in facilitating PrEP access.  
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1.2 Outline 
 
Section 1 discusses how specific health coverage strategies can be barriers to effective HIV 

preventative care, introduces issues of comparability between health care plans, reviews past 

efforts to meaningfully describe trends in coverage, and explicitly states the key questions 

addressed by this work.  

 Section 2 introduces the data source informing this study, the HIX Compare; it then 

justifies the variables selected based on key concerns for HIV prevention and explains how they 

are operationalized within the data set. The second half of Section 2 introduces the theoretical 

background for clustering methods. It explains the two-step process of first defining a distance 

metric before running a clustering algorithm. Section 2.4 elaborates on distance metrics, explains 

issues posed by the data set, then selects and justifies a distance metric. Section 2.5 concludes 

by surveying clustering algorithms and laying out the process utilized later to determine an 

optimal clustering solution. 

 Section 3 presents results from the cluster analysis. It walks through preliminary fit 

statistics before reviewing the implications of each model on the data itself. It ends by selecting a 

final model, the three cluster Ward’s solution, and describes the resultant clusters in detail. 

Section 4 evaluates both steps of the clustering process — the distance metric and the 

algorithm — to determine suitability of the methods to the data. It then details the content-

based implications of the three cluster solution on health coverage of HIV preventative care and 

concludes by suggesting research paths for the future.  
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1.3 Health Coverage as a Barrier to Prevention 
 
The most frequently cited barriers to PrEP use include lack of clinicians with PrEP knowledge, 

absence of health insurance, stigma, and underestimation of personal HIV risk; however, the role 

of insurance structures in facilitating (or impeding) access to effective HIV preventative care, in 

specific, is understudied (Skolnik et al., 2020; Siegler et al., 2018; Seidman et al., 2016; Kay & 

Pinto, 2020). That said, there is significant literature investigating how insurance companies 

utilize specific plan factors to guide the choices of those enrolled which we can extend to apply 

to benefits relevant to HIV prevention. We review those here. 

 

1.3.1 Cost-Sharing 
 
Cost sharing is a healthcare payment structure where patients pay a portion of their health 

services out of pocket. All insurance benefits have an associated cost sharing structure. Cost 

sharing is a regulation mechanism used by insurance providers that applies across most variables 

discussed in this analysis.  

From the perspective of health insurers, cost sharing can disincentivize and reduce 

patient usage of non-effective health services (Remler & Greene, 2009). This strategy of value-

based cost sharing, where health insurance companies incentivize lower cost or preventative 

care and disincentivize care that is seen as less effective, is intended to better align insurer and 

patient interests leading to better patient health without increasing costs to insurers (Chernew 

et al., 2010; Thomson, Schang, & Chernew, 2013). Despite this, cost sharing is known to decrease 

overall drug and health services usage among socioeconomically disadvantaged populations, 
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increasing disparities in health care (Lexchin & Grootendorst, 2004; Doshi et al; 2016; Chernew 

et al., 2018).  

Within cost-sharing structures, there are two mechanisms for deferring costs to patients: 

copay models and coinsurance models. In copay models, patients pay a pre-determined fixed 

amount per service (e.g. $15 for a 30 day supply of a drug). In coinsurance models, patients pay a 

pre-determined percentage of the total cost for the service (e.g. 30% of the cost for a 30 day 

supply of a drug). Insurance company usage of coinsurance for cost-sharing as opposed to copay 

is known to reduce patient usage of specialists and inpatient care (Fronstin & Roebuck, 2020). It 

has a measurable effect on preventative care including preventative medication and initiation of 

prescribed specialty drugs (Doshi et al., 2016). A 2010 study by Dor and Encinosa found that 

when participants were assigned to pay an expected $9 flat copay or a coinsurance percentage 

with an expected monetary value of $9 for their preventative medication, 34% of patients under 

copay refilled their medication whereas only 24% refilled under coinsurance. Fronstin and 

Roebuck (2020) hypothesize this is due to the inherent uncertainty in coinsurance payments. 

 

1.3.2 Plan Tiering 
 
Sometimes plans contain tiered structures. Tiered structures occur when a specific subset of in-

network providers are placed on an approved Tier 1 list while a second subset of providers are 

demarcated as Tier 2. The cost sharing for Tier 1 providers is often lower to encourage utilization 

through a process known as Value-Based Cost Sharing (Sinaiko, Landrum, & Chernew, 2017). But 

it is also known to directly limit patient choices of care providers (Frank et al., 2015).  
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1.3.3 Prior Authorization 
 
According to Cigna, one of the major health care providers in the US,  

The prior authorization (PA) process gives your health insurance company a 
chance to review how necessary a certain medication may be in treating your 
medical condition. For example, some brand name medications are very costly. 
During their review the insurance company may decide a generic or another 
lower cost alternative may work equally well in treating your medical condition. 
Other types of medications are dangerous when combined with others you may 
already be taking, others are very addictive, etc (https://www.cigna.com/). 

 
A review of other major insurance websites finds a few key reasons for Prior 

Authorization practices, chiefly that (1) some drugs are unsafe when combined with other 

medications. (2) There may be lower-cost, equally effective alternatives available. (3) Some drugs 

should only be used for certain health conditions. (4) Some drugs are often misused or abused. 

and (5) Some drugs often used for cosmetic purposes which insurances do not cover. 

However, a survey of medical providers agrees that PA is a key barrier to PrEP access and 

adherence (Petroll et al., 2017). It adds a degree of, often unnecessary, friction in an already 

complicated process. In 2017, 35% of PA requests for medication made to Medicare Part D were 

rejected; however, upon appeal, 73% of denials were overturned (Office of Inspector General, 

2019). Patients can easily become frustrated by the process, which adds extra time and can be 

stigmatizing to patients as insurance companies press into their sexual habits and histories. 

Changing plans and formularies can also lead to prescriptions requiring additional physician 

information for release when patients show up arrive at pharmacies to pick up their 

prescriptions (Resnek, 2020).  A 2019 survey suggest that 37% of prescriptions that are rejected 

at pharmacies due to PA complications are later never picked up (ePA National Adoption 

Scorecard, 2019). 
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A 5-10 day delay is sufficient time for acquisition of HIV (Kay & Pinto, 2020). For patients 

already taking PrEP, remembering to request a refill two weeks ahead of time can be difficult. 

This leads to a lapse in protection while waiting for re-authorization. More broadly, physicians in 

general tend to agree that PA creates a barrier to efficient and effective care. In a survey run by 

the American Medical Association in 2018, 91% of physicians reported having observed care 

delays for patients and 74% reported having observed care abandonment because of PA.  

 
1.3.4 Specialty Tiering 
 
Placing PrEP in a specialty tier, a designation traditionally reserved for drugs that require special 

administration or are meant to care for rarer diseases, allows justification for higher cost and 

greater restrictions, whereas placing PrEP on a lower tier indicates a different attitude toward 

the drug on the part of the insurance provider (Lotvin et al, 2014). Specialty Tiering is also a cost-

regulation mechanism as survey data shows that adults are willing to pay higher premium 

amounts to obtain better specialty drug coverage benefits (Romley et al., 2012).  
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1.4 Past Work On Comparing Health Plan Offerings 
 
Health care plan data is complex. To give but a brief example, to calculate the price one expects 

to pay for a year supply of a medication requires first examining the plan formulary to identify 

how the plan categorizes the drug — as a specialty drug, a preferred drug, a non-preferred drug, 

or a generic drug. From there, one must find the corresponding benefit in the plan’s benefit 

listings. The benefit may be covered with a coinsurance or a copay. And the corresponding 

amounts could differ based on when in the year one reached the deductible or if one has hit 

one’s maximum out of pocket amount cap. So, the drug cost really depends on what other 

medical services one has also paid for that year. Comparing projected drug costs between plans 

requires one to make assumptions that may only be reasonably asserted by someone who fully 

understands the system. Because of this, the National Alliance of State and Territorial Aids 

Directors (NASTAD) created a tool called PrEPcost.org to assist individuals in selecting plans.  

Previously research conducted by the McManus Lab at UVA (McManus & Powers et al, 

2020) examined this issue of auditing plans to assess equitable offerings across the country by 

honing in on just one aspect of care — prior authorization for PrEP. Our work demonstrated (1) 

significant geographic disparities in prior authorization requirements for TDF/FTC with prior 

authorization at 13 times the rate in the South as in Northern states and (2) characteristics 

associated with increased cost shifting to patients (economic barriers) were associated with 

decreased prior authorization (administrative barriers) for TDF/FTC.  

 That said, if calculating cost for one drug requires a full website dedicated to determining 

optimal care options and if one dimension — like prior authorization for one drug —can ground 

an entire inquiry, it is easy to see how comparing plans across a matrix of benefits quickly 
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becomes a daunting task. And yet, it is important to understand how certain restrictive actions 

vary together and create multiplicative restrictions. There has been some recent work comparing 

patient satisfaction and health outcomes across plans from patients of different background to 

create scoring systems that rate plans on their commitment to serving high quality care to at-risk 

groups (Agniel et al., 2019; Lyratzopolous et al., 2011). However, those methodologies require in 

depth data collected from patients across plans as a basis for measurement as opposed to trying 

to understand the plans themselves.  
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1.5 Key Questions 
 
In this work, we propose applying clustering methodologies to reduce the dimensions of the data 

into more easily comparable groups. In this vein, we are interested in both methodological and 

content-based questions. Our first question of interest is whether clustering methods can be 

adapted to handle the inherently nested structure of health care benefits data to generate 

results that are useful to evaluating health equity in care accessibility for HIV prevention. We 

hypothesize that this algorithmic approach to auditing will reveal useful patterns in healthcare 

data. This leads into our content-based questions — firstly, what conclusions can we draw about 

how health insurance companies handle preventative care for HIV and secondly, where in the 

United States does healthcare plan design propose a barrier to the uptake of preventative 

services for people at risk of HIV? 
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2 Data & Methods 
 
2.1 Data Source 
 
This study uses data from the Health Insurance Compare (HIX Compare) database created and 

maintained by the Robert Wood Johnson Foundation (https://hixcompare.org/). For these 

analyses, we utilize the 2019 individual state market place files. This data contains plan design 

and benefit details for all plans offered in the United States through ACA-compliant state-wide 

marketplaces in 2019. We linked the HIX Compare data with 2019 plan-level formulary data from 

Vericred (https://vericred.com/) to obtain PrEP coverage details for each plan.  

The HIX Compare 2019 dataset included 17,061 unique plans with complete administrative 

data (Deductible, Maximum out of Pocket, and Premium). Following convention established by 

the Robert Wood Johnson Foundation in the HIX compare data documentation, a unique plan is 

defined as a plan (1) with a unique set of benefits, (2) offered in a specific rating area (3) at a 

specific premium that is (4) not a cost share reduction or child-only derivative of another unique 

plan.1 For the purposes of our study, we restrict our consideration of benefits to in-network plan 

characteristics.  

  

 
1 Cost Share Reductions (CSR) are plans that are available to certain individuals if their income subseeds a specific 
threshold based on the federal poverty line. CSRs are not unique plans because they simply reduce the patient 
contribution by a specific percentage once the benefit is applied as opposed to altering the benefits themselves. For 
low income individuals, cost sharing, premiums, and out of pocket maximums will be proportionally reduced.  

https://hixcompare.org/
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2.2 Variable Selection 
 
When selecting variables for this analysis, we consider two levels of inclusion criteria: (1) What 

benefits correspond to the preventative care necessary for individuals at risk for HIV? And (2) 

what variables quantify the mechanisms insurance companies use to regulate those benefits? 

With regards to the first question, there are two key categories (1) HIV-specific Preventative 

Care Benefits and (2) General Health Care Benefits — like emergency care and primary care —

that support continued physical, emotional, and financial health for people at risk of HIV. Within 

the second, there are three key health insurance mechanisms that regulate access and benefits: 

(1) Plan Maintenance Costs – the factors associated with having a health insurance plan, (2) Cost 

Sharing – a structure that regulates how much out of pocket patients pay for their benefits, and 

(3) Benefit-specific mechanisms such as prior authorization for preventative medications. This 

section first presents Plan Maintenance Costs and Cost Sharing regulatory factors and then 

details HIV-specific and general health care benefits, discussing benefit-specific mechanisms 

alongside the benefits they regulate. 

 

2.2.1 Plan Maintenance Costs 
 
2.2.1.1 Premium 
 
Premiums are the monthly payments individuals make to acquire and maintain a healthcare 

plan. It is the base level amount one pays per year for health insurance. The HIX Compare 

dataset records estimated premiums for individuals of specific ages and family arrangements. 

For the purposes of this project focusing on individuals at risk of acquiring HIV, we include 
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estimated premiums for single individuals aged 27 given the largest percentage of new infections 

in 2018 occurred among the 25 to 29 age group (CDC, 2021). 

 

2.2.1.2 Deductible 
 
A deductible is the amount that a plan requires an individual to pay before the insurance plan 

itself begins to pay; although, oftentimes some services such as yearly check-ups with a primary 

care provider do not require first meeting the deductible. Some plans have a total deductible for 

both Drug and Medical services while other plans have separate deductibles for Drug and 

Medical services. For the purposes of these analyses, we sum Drug and Medical services 

deductibles to create a total deductible for plans that make such a distinction. 

 

2.2.1.3 Maximum Out of Pocket Cost 
 
The maximum out of pocket cost (MOOP) is a cumulative limit set by an insurance company after 

which an individual will no longer pay for their health coverage. Payments toward deductibles, 

copays, and co-insurances contribute toward the MOOP; however, payments toward premiums, 

out of network care, or services that are not covered by the insurance plan are not included in 

the total for MOOP. Some plans have a total MOOP for both Drug and Medical services while 

other plans have separate MOOP for Drug and Medical services. For the purposes of these 

analyses, we sum Drug and Medical services MOOP to create a total MOOP for plans that make 

such a distinction. 

 

2.2.2 Cost Sharing 
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As discussed in Section 1.3.1, cost sharing is an important mechanism that health insurance 

organizations utilize to guide patient behavior and restrict access to care. Coinsurances 

psychologically and financially disincentivize care usage whereas copays provide more 

predictable payment schemes and generally lower financial burdens. Within our dataset, each 

benefit type (e.g. emergency care or specialty drugs) records the cost sharing structure in four 

key variables. For each benefit, there are two variables recording the coinsurance structure and 

two variables recording the copay structure. In the first of each of those variables, the data 

record an indicator variable describing the structure – whether the cost sharing applies before 

the deductible, after the deductible, always, never, or if there is just no charge for the benefit. 

The second column contains the cost information for the benefit – a fixed dollar amount for 

copays and a percentage for coinsurances. For each benefit either the two variables for copay or 

the two variables for coinsurance will be filled. No benefits are covered using both coinsurance 

and copay.  

 

2.2.3 Plan Tiering 
 
For the purposes of our analysis, the presence of tiered benefit structure represents a 

restrictiveness in the plan’s network and is important to account for. However, less than 10% of 

plans in our dataset are multi-tiered. To account for that restrictiveness while also seeking a 

parsimonious set of variables, we include an indicator variable to denote when a plan has multi-

tiered benefit structures, but do not include the full set of Tier 2 benefit details.  

 
2.2.4 Preventative Care for HIV 
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A key component of the Ending the Epidemic Plan is to prevent over 250,000 new HIV infections 

over the next 10 years. This means that facilitating access to preventative care should be a key 

aim of health care plans available to those at increased risk for HIV. The United States 

Preventative Services Task Force strongly recommends the following for the prevention of HIV 

(Owens et al., 2019): 

• Usage of Pre-Exposure Prophylaxis including: 

o Kidney function testing 

o Serologic testing for Hepatitis B & C 

o Routine STI Testing 

o Quarterly HIV CD4 count and Viral Load screens 

o Regular pregnancy screenings  

• Behavioral counseling 

The Ryan White HIV/AIDS program (https://hab.hrsa.gov/) adds the following into its care 

recommendations: 

• Quarterly visits with a primary care provider or infectious disease specialist 

• Mental health screenings 

• Addiction screening and treatment 

The following discusses how these components operationalize onto variables within the HIX 

compare data. 

 
2.2.4.1 PrEP 
 
As discussed in Section 1.1.2, access to PrEP is one of the most important considerations in the 

accessibility of HIV preventative care. As referenced in Section 1.3, prior authorization, specialty 

https://hab.hrsa.gov/
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tiering, and cost-sharing are all relevant to PrEP accessibility. Tiering status, prior authorization 

and cost sharing information are all available in the Vericred formulary data linked to the HIX 

compare individual plan data.  

 

2.2.4.1.1 Cost Sharing Considerations for PrEP 
 
There are a number of external funding sources that will cover the expected patient out of 

pocket costs for PrEP. These include the Gilead Advancing Access program which offers 

individuals up to $7200 in payments, the Patient Advocate Fund which offers up to $7500 per 

year, and State PrEP Assistance programs (NASTAD, 2020). Because of these options, individuals 

may never fully pay for PrEP themselves which mitigates, to some degree, the burden of the 

dollar value of the cost-sharing. That said, we still include an indicator of coinsurance versus 

copay to account for the ways in which uncertainty of pricing may affect patient behavior as 

discussed in Section 1.3.1.  

 
 
2.2.4.1.2 PrEP-Specific Labs 
 
The below listed tests are all covered under diagnostic testing benefits in the HIX compare 

dataset.  

• Kidney function testing: One potential, although limited, side effect of PrEP is risk of kidney 

damage. As a precaution, kidney function is regularly monitored among those taking PrEP 

(Mocroft & Ryom, 2016).  

• Serologic testing for hepatitis B and C virus: People at higher risk of HIV are also at elevated risk 

for contracting Hep B and Hep C. Monitoring these is part of the continuum of care.  
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• Testing for other STIs: Given those who use PrEP are protected from HIV infection, researchers 

have observed higher incidence of condomless sex among MSM on PrEP which may lead to 

higher rates of other STIs (Liu et al.l 2016; Barriero, 2018). 

• Pregnancy testing: Individuals who are pregnant should not continue PrEP treatment.  

Because of US Preventative Service Taskforce gradings guidelines, every year, the first of each 

type of diagnostic test an individual receives may be covered under preventative care benefits 

and, by regulation, have a $0 Copay (www.uspreventiveservicestaskforce.org/). 

 

2.2.4.2 Routine HIV Labs 
 
HIV preventative care requires continual monitoring of HIV status through regular HIV labs. 

These are also covered under Diagnostic Testing Benefits. 

 

2.2.4.3 Behavioral Counseling 
 
The US Preventative service and CDC standards of care recommend behavioral counseling for 

individuals at higher risk of HIV to think through behavioral modifications to limit risk if possible. 

These services are covered under outpatient mental health benefits in the HIX compare data set 

 

2.2.4.4 Quarterly Visits with Primary Care and Infectious Disease Specialists 
 
Preventative care for HIV requires coordination and consistent check in with individuals who 

manage patients’ holistic health and those with specialized knowledge of HIV. Coverage for these 

services will be recorded in primary care and specialist benefits. Qualitative work also suggests 

that full time assistors can increase the likelihood of successful care navigation and lowered 



 25 

costs for PLWH (McManus et al., 2020). PCP coordination is related to higher PrEP usage, 

therefore health insurance must make PCPs accessible (Silapaswan, Krakower, & Mayer, 2017 

 

2.2.4.5 Mental Health Screenings 
 
There are noted correlations between depression, anxiety, and elevated risk of HIV given 

experiences of stigma (Vanable et al., 2006). Mental health screenings should be covered under 

outpatient mental health benefits. 

 

2.2.4.6 Addiction Screening and Treatment 
 
People who inject drugs (PWID) are one population at heightened risk of HIV. Addiction 

screening and services are an important set of benefits to help mitigate risks for this population 

in specific. Coverage for these services should be covered under outpatient substance benefits.  

 

2.2.5 General Benefits 
 
In addition to HIV-prevention specific services, individuals at risk of HIV also require general 

health benefits. Beyond helping individuals care for their general well-being, this mitigates 

unforeseen financial risks which could impact their ability to continue with preventative care 

(Herman, Rissi, & Walsh 2011; Kalousova & Burgard, 2013). In 2012, the US government defined 

the following additional essential health care benefits that are relevant to our population of 

interest (Ford & Spicer, 2012): 

• Emergency services: These are encoded in the HIX compare data as ambulance & 

emergency care benefits. 



 26 

• Hospitalization: Coverage for these services are encoded as inpatient physician care 

benefits within HIX compare. 

• Maternity and newborn care: These services are encoded in Inpatient Birth coverage.  

• Prescription drugs: These benefits are encoded in HIX compare benefits covering generic 

drugs, preferred drug, non-preferred drugs, and specialty drugs.  

• Rehabilitative and habilitative services and devices: These are included in our data set 

through benefits on habilitation services.  
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2.3 Clustering Methods 
 
Clustering is an unsupervised machine learning technique that finds groups of similar data points 

within a larger set. These groups are called clusters. Not only do clustering algorithms group 

similar data points, but they also optimize the distance between dissimilar data points, placing 

them in different clusters. A good clustering algorithm should generate clusters with small 

within-cluster variance and large between-clusters variance. Clustering is content-agnostic, 

meaning that the clustering algorithm itself will only create groups of similar data points based 

on the data inputted into the algorithm. It is up to the individuals using the clustering algorithm 

to qualitatively inspect and name the groupings after they have been created. That said, while it 

is necessary to work with content experts to make sense of clustering output, clustering 

algorithms can help scientists discover underlying groups within large data sets with many 

variables and complex variable interactions (Romesburg, 2004). 

Clustering is particularly useful for this healthcare study where we have over 17,000 

plans, each with its own benefit structure. Historically, clustering has been used in medical 

research to identify patient risk groups and patterns in patient healthcare utilization (McLachlan, 

1992; Liao et al., 2016; Lefèvre et al.). This work shifts the typical paradigm of clustering at the 

patient level to implement clustering at the plan level. This takes the focus off of patient actions 

and places scrutiny on insurance company choices. That said, while the unit of analysis is shifted, 

finding groupings in the types of plans healthcare companies offer to assess equity in their 

geographic distribution is a natural extension from prior work conducted on individual behavior.  

 

2.3.1 Components of Clustering 
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There are two steps to conducting a rigorous cluster analysis: (1) calculating pairwise similarity 

(often distance) between observations and (2) creating clusters based on the similarity matrix. 

While some programmatic implementation of clustering algorithms group both steps into one 

procedure — such as the implementation of K-means clustering in R through the kmeans 

function — this standardizes important decisions which affect the resultant clusters. Recognizing 

that choice of distance measure is just as influential as choice of clustering algorithm results in a 

more thoroughly defensible final product (Shirkhorshidi et al., 2015). 
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2.4 Heterogeneous Distance Functions 
 
Most textbook introductions to clustering analysis rely on the K-Means algorithm which 

iteratively calculates means of possible clusters until it minimizes the distance between points 

and cluster centers and maximizes the distance between points and centers of other clusters. 

The two often unstated but implicitly understood assumptions of K-means, however, are that (1) 

all of the input data is continuous and (2) distances are calculated using the Euclidian distance 

function (Romesburg, 2004). 

But, the health plan data at hand is not entirely continuous. Each benefit has a 

coinsurance or copay distinguisher. PrEP can be listed on one of four drug tiers. As such, we 

cannot calculate a Euclidian distance between adjacent points. Heterogeneous distance 

functions were designed to bridge this very gap.  

A heterogeneous distance function is an algorithm that handles each class of variable — 

whether it be qualitative, ordinal, or quantitative — with its own function. They frequently are 

written as piece-wise functions with specific transformations specified for each variable type. 

Lexically, where quantitative measures of relation tend to be referred to as “distance,” 

heterogeneous measures, which do not translate into a physical coordinate representation of 

proximity as directly, are termed “similarity” measures.  

Heterogenous distance metrics that handle quantitative continuous and qualitative 

variables are typically comprised of two parts: (1) a numeric distance metric and (2) a qualitative 

similarity classifier. As Wilson and Martinez (1997) outline in their seminal paper on 

heterogeneous distance metrics, there are myriad choices of similarity metrics for quantitative 

variables ranging from the canonical Euclidian distance to more data-reliant methods such as 
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Mahalanobis’ distance. One of the most utilized heterogeneous metrics in instance-based 

learning literature, the Heterogeneous Euclidian-Overlap Metric (HEOM), uses the Manhattan’s 

distance, calculated as: 

. 

The Manhattan’s distance forces normalization of variables with respect to their range (Aha, 

Kibler & Albert, 1991; Aha, 1992; Giraud-Carrier & Martinez, 1994). This is in contrast to Euclid’s 

distance which is frequently critiqued for giving preference to larger-scaled variables 

(Shirkhorshidi et al., 2015). 

In regard to qualitative similarity classifiers, the HEOM uses a simple overlap metric 

where the distance contributed by the qualitative variable equals 0 if the variables are equal and 

1 otherwise. However, this can often overweight the qualitative variables in the dataset relative 

to quantitative variables. As Spencer et al. (2010) explain, unequal qualitative variables 

automatically contribute a full 1 point dissimilarity whereas unequal quantitative variables must 

be at the opposites of their range to contribute that significant of a dissimilarity. As such, 

qualitative variables are frequently over-weighted within the HEOM framework. Wilson and 

Martinez (1997) extend this within an instance-based learning framework and suggest replacing 

the overlap metric with the Value Difference Metric (VDM) developed in Stanfill and Waltz 

(1986). The VDM uses the probability of qualitative similarity within the dataset and cluster of 

interest to assign a similarity metric between 0 and 1. While this has proven successful within the 

instance-based learning framework, there is less opportunity to apply the VDM more broadly 

given it assumes the usage of a training set with pre-defined clusters to establish the cluster 

probabilities in the subsequent analysis. While this is crucial to research within instance-based 
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learning, this does not extend to more exploratory analyses where the best option is still the 1/0 

overlap function.  

 

2.4.1 Gower’s Distance 
 
While there may not be a sufficiently more advantageous measure of qualitative similarity for 

exploratory analyses, there are other options to re-balance the over-weighting of qualitative 

variables in heterogeneous distance metrics. John Gower (1971), in his now seminal paper “A 

General Coefficient of Similarity and Some of its Properties” addressed this vary issue in his 

formulation of the Gower’s distance metric.  

Gower’s distance, much like HEOM, uses the range-scaled Manhattan’s distance for 

quantitative variables and the overlap function for qualitative variables. However, while HEOM 

calculates the final distance by taking the square root of the sum of squared individual distance 

calculations, Gower’s distance uses a simple arithmetic mean of the individual distances. 

Gower goes on to say that while the arithmetic mean is a simple and straight-forward 

formulation of his distance metric, it would be entirely reasonable to take a weighted average of 

individual distances based either on a priori theoretic considerations or based on considerations 

from the data itself. That said, despite the current popularity of Gower’s distance, the usage of a 

non-equal weighting scheme has remained largely unexplored since Gower’s article’s 

publication. Writing almost 40 years after Gower first proposed his similarity metric, Pretchey 

and Gaston (2009) go so far as to say that “so little is known about appropriate or inappropriate 

trait weightings that further research seems appropriate, rather than outright rejection of any 

approach at this stage.” Chae et al. (2006) do discuss the usage of weighting to balance the 
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contributions of categorical and numeric data, suggesting that instead of just assigning a value of 

1 to dissimilar categorical variables, practitioners should consider weighting categorical variables 

according to the probability of similarity (i.e. a variable with two levels and a 50% chance of 

concordance might receive a weighting of .5). Montanari and Mignani (1994) also consider 

weighting, evaluating its importance in handle missing data. But, as van den Hoven (2015) notes, 

most articles using Gower’s distance set the weighting scheme to one without explaining why, 

while others do not note the weighting scheme used. A quick review of popular clustering 

tutorials on the well-referenced practical data science blog “Towards Data Science” makes no 

reference of weighting in its few postings on clustering with heterogeneous distance metrics 

(Fillaire, 2018; Shendre, 2020). Weighting Gower’s distance is underexplored in current data 

science practice.  

 

2.4.2 Distance with Hierarchical Structure 
 
One main reason for weighting that Gower explores within his own paper, but that remains 

unaddressed in further literature, is to account for hierarchical structures within the variables. 

Referencing Kendrick and Proctor’s (1964) work on taxonomy, he suggests that weighting can be 

used to ensure that similarity or dissimilarity between second-level characteristics never 

overwhelms similarity or dissimilarity between primary taxonomic distinctions. He provides some 

numerical guidance on how to calculate these weights; however, he does not provide this 

guidance within the context of both quantitative and qualitative variables — only within the 

context of homogenous variable types, presumably qualitative.  
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That said, this thinking is highly relevant to health care plan data given the hierarchical 

structure of benefit schemes. Each benefit first notes whether it is covered by copay or by 

coinsurance and then notes the numeric value of that benefit. The primary distinction between 

plans is whether or not they both utilize copay or coinsurance given the psychological and 

behavioral differences in how clients respond to the different payment schemes. While the 

practical monetary implications noted by the numeric value are important, they do not 

overwhelm the delineation made by being in the copay versus coinsurance category. Because of 

this, we choose to maintain weighting values of one for both the benefit structure qualitative 

and quantitative variables. In the case that two plans are both covered by copay or are both 

covered by coinsurance, they will have 0 distance between them due to the qualitative variable. 

Then, the numeric cost variables will be compared. In the case of variables that are close 

together, $5-10 dollar copay difference or a coinsurance difference of 5-10%, the effect will be 

minimal. The two variables for the benefit will average out to be close to zero. However, if the 

numeric cost variables are maximally distant from each other and the distance contributed by 

the term is equal to 1, then the overall dissimilarity contributed by the benefit would average out 

to .50. This is sufficient to create distinctions between plans who cover the same benefit with 

the same copay or coinsurance strategy.  

 

2.4.3 Copay and Coinsurance Hierarchies as Missing Data 
 
Setting the weights to one for both the qualitative and quantitative variables within each benefit 

is sufficient to create hierarchical distinctions between plans that match on the primary 

qualitative variable. That said, it does not address the case where the primary qualitative variable 
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for a specific benefit is different between two plans. Given that copay value and coinsurance 

value are two different variables with different scales (dollars and percent, respectively), we can 

think about this case as a type of missing data problem. When a benefit is covered by a copay, 

the coinsurance value for that benefit will be missing, whereas when a benefit is covered by 

coinsurance, the copay value for that benefit will be missing. That said, this issue diverges from 

the concept of missingness in that the missing value should not theoretically exist —plans with 

copays should not have coinsurance values nor should plans with coinsurances have copay 

values. As such, methodologies such as imputation to create bounds are inappropriate for this 

study.  

While Gower’s distance does not have a mechanism for handling missing data, HEOM 

does address the issue by suggesting that comparisons with missing values should be set to 1, 

e.g. assumed to be maximally distant. But, setting both the copay and the coinsurance 

quantitative variables equal to one would unduly emphasize the differences between plans due 

to the difference in the primary qualitative variable. In other words, under the HEOM 

framework, a difference in the qualitative plan structure variable (i.e., one plan being 

coinsurance and the other being copay) would result in a total of 3 distance points contributed 

to the numerator and 3 distance points to the denominator, far outweighing potential 

similarities with other plans. 

 

2.4.4 Selected Distance Metric 
 
Therefore, this thesis will use Gower’s proposed weighting variables for hierarchical data to 

adjust for missingness. In the case of qualitative dissimilarity in the primary variable, the weights 
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on the quantitative secondary variables will be set to 0 such that the entire benefit contributes 

only one point of dissimilarity to the numerator and one point to the denominator of the mean 

distance calculation. In cases where there is a qualitative similarity, the benefit will contribute 

zero points to the numerator for the qualitative variable and a decimal number of points 

between 0 and 1 for the quantitative distinction. It will contribute two points overall to the 

denominator. This approach is supported by approaches to multi-state classification advanced in 

Romesburg (2004; 158) wherein dissimilarities in variables that could not possibly align between 

two observations — i.e. coinsurance and copay amounts between one copay using plan and one 

coinsurance using plan — do not contribute to the denominator of the qualitative similarity 

coefficient.   

We operationalize a Gower’s Distance for nested data with a dependency-related 

missingness pattern as follows: 

 

 

 

 

 
 

. 
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2.5 Clustering Algorithms 
 
Once we have a pair-wise distance matrix, the next step is to create clusters of plans that are 

similar in distance to each other but dissimilar to plans in other clusters. There are two main 

types of clustering algorithms which we will test in our analysis, hierarchical and non-

hierarchical. For each, we must consider both how the clusters are created and how we can 

assess the fit of the clusters, including how to choose an optimal number.  

 
2.5.1 Hierarchical Clustering 
 
Hierarchical clustering methods stem from numerical approaches to taxonomy and are the 

context within which Gower first developed his distance algorithm (Felsenstein, 2013). 

Hierarchical methods allow practitioners to view groups within groups and to get a sense 

practically for where different groups may diverge from each other — they also only rely on 

pairwise distance metric relationships between observations and do not place other restrictions 

or requirements on the data (Alpaydin, 2020). Hierarchical methods are useful as well because 

they provide a degree of “predicted distance” between observations by way of tracing paths on 

the tree from one observation to another which provides a more concrete basis to evaluate the 

fit of the cluster model than in other clustering methods (Farris, 1969).  

There are two types of hierarchical clustering method: agglomerative and divisive. In 

agglomerative clustering, smaller groups are joined together based on similarity criterion to form 

larger groups. In divisive clustering, larger groups are divided in half into possible smaller groups. 

Each possible split is compared using a chosen metric, be it cluster variance or distinction 

between clusters, and the split which optimizes that metric is chosen before those groups are 
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split once again (Roux, 2018). Generally, researchers prefer to use agglomerative clustering for 

large data sets like the one in question because of the outsized computational load of divisive 

clustering which traditionally requires fitting many possible splits for each decision point 

(Sasirekha & Baby, 2013). In this work, we restrict our methods to agglomerative clustering. 

When conducting agglomerative clustering, researchers must choose a linkage method to 

determine which clusters to iteratively merge. These linkage metrics are usually a function of the 

distances between objects within the clusters proposed to be joined. There are three main 

distance-based metrics: average linkage, single linkage, and complete linkage. Average linkage 

calculates the average distance between all objects in the clusters proposed to be merged (Sokal 

& Michener, 1958), single linkage calculates the distance between the closest two objects in the 

clusters proposed to be merged (Legendre & Legendre, 1998), and complete linkage calculates 

the distance between the two furthest objects in the clusters proposed to be merged (Sorensen, 

1948). The linkage metric is calculated for all proposed cluster merges and the two clusters with 

the lowest value of the metric are merged. In practice, complete linkage is a conservative but 

strong method to detect clusters because it connects clusters based on the maximum distance 

between them; it is also one of the oldest methods in hierarchical clustering. In contrast, single 

linkage represents an alternative extreme in that it can pull together two observations that are 

more distant from each other but that are both close to a third observation, uncovering 

relationships that are important but perhaps less intuitive.  Average linkage is one of the most 

frequently used methods because it balances the conservative approach of complete linkage 

with the discovery capacity of single linkage (Romesburg, 2004; Roux, 2018). 
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There is a second branch of thought within hierarchical clustering — one where all 

possible cluster joins are performed and the result is chosen based on optimizing a specific 

function. Ward (1963) suggests joining clusters to minimize within-cluster variance and optimize 

between-cluster variance. This method, known commonly today as “Ward’s Method” has been 

validated based on a number of underlying distance metrics (Strauss & von Maltitz, 2017). While 

it does not directly model the underlying distance matrix, Ward’s method is a viable method to 

discover well-defined clusters.   

 
2.5.1.1 Assessing Fit 
 
Clustering is an unsupervised machine learning method and, as such, assessing fit of specific 

clusters can be difficult since its aim is to discover relationships that we did not previously know 

existed. That said, with hierarchical clustering methods, we can assess the fit of the hierarchical 

tree to the underlying distance matrix. In doing so, we answer the question, “do the distances 

between observations when modelled by the tree match the distances between observations in 

the distance matrix?” 

To accomplish this, we need to define the distances between measures predicted by the 

hierarchical clustering tree. In taxonomy, the most used measure is called the cophenetic 

distance. It is defined as the height in the clustering tree where the branches connecting two 

observations connect for the first time (Sneath & Sokal, 1973). Using this, we can create a 

predicted distance matrix of cophenetic distances.  

 

2.5.1.2 Cophenetic Correlation Coefficient 
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From the predicted distance matrix, we can calculate a simple correlation between the original 

distance matrix and the cophenetic distance matrix. This is known as the Cophenetic Correlation 

Coefficient (CPCC) (Farris, 1969; Sokal & Rohlf, 1962) — a 0 to 1 metric that describes the extent 

to which the calculated distances between pairwise data points and the predicted distances 

between pairwise data points on the dendrogram represent similar variation. 

 

2.5.1.3 Index of Agreement 
 
Taking advantage of the cophenetic distance matrix as a prediction for the original distance 

matrix, we can also calculate Willmot’s Index of Agreement (IoA), a coefficient reminiscent of the 

Average Root Mean Squared Error (RMSEA) traditionally used in supervised machine learning 

methods. While the CPCC calculates the extent to which the predictions in the model are 

associated with the underlying data, the IoA, as Willmot (1981) puts it, is a measure of the 

degree to which a model’s predictions are error free. We calculate the IoA for a hierarchical 

model as follows: 

 

, 

 
where Pi is the cophenetic distance, Oi is the observed distance, P*

I = Pi –  and O*
I = Oi - . 

 
Using these fit assessment indices, we can directly compare different methods of 

growing clustering dendrograms based on the same underlying distance matrix. That said, one 

drawback of the Index of Agreement is its emphasis on exactly matching the underlying 

distances to the cophenetic tree-modelled distances. In comparing tree-based methods it is 
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important to review the underlying data to examine the extent to which matching the magnitude 

of distances is important as compared to simply grouping together plans that display similarities. 

 

2.5.1.4 Choosing Clusters 
 
Once we have grown a dendrogram, we have to decide into how many clusters to cut the 

structure. As an unsupervised method, we get to make this decision based both on theory and 

usability of results in addition to quantitative metrics that validate cluster quality and existence. 

For this analysis, we use a metric called silhouette distance to quantify the quality of the clusters 

formed.  The silhouette distance for observation i, as defined by Rousseeuw (1986) is calculated 

as follows: 

 

, 

 
where ai is the average of the distances between observation i and all other observations 

within its own cluster and bi is the average of the distances between observation i and all 

observations in the closest cluster. Here, we can see that si will range between -1 and 1, being 

maximized when the within cluster distances are small relative to the between-cluster distances 

and minimized when the between cluster distances are closer to the within cluster differences. A 

positive s indicates that observations have been assigned to the proper clusters whereas a 

negative s indicates that an observation is likely assigned to the wrong cluster. We can take the 

average across all si to get an average silhouette metric which summarizes the overall quality of 

the clusters. Choosing the number of clusters that maximizes the silhouette distance is a 

common way to decide how to cut a hierarchical cluster dendrogram, particularly in medical 
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research (Clifford et al., 2011). However, it is equally important to consider the contrasts 

between clusters on the underlying data as well.   

 

2.5.2 Non-Hierarchical Clustering and Partitioning Around Medoids 
 
While hierarchical clustering methods assume para– and sub–relationships between and within 

clusters, non-hierarchical methods model the data as distinct clusters without a hierarchy of 

relationships. Since we cannot assume too much about the data generating process by which 

insurance companies generate plans, it is worthwhile to compare our hierarchical models against 

a model with fewer assumptions about data structure.  

There are a number of non-hierarchical partitioning methods, each with their own set of 

assumptions. For this analysis, we compare our hierarchical clustering against the Partitioning 

Around Medoids (PAM) algorithm advanced by Theodoridis and Koutroumbas (2006: 635) 

because it is more robust to noise and to outliers than other methods like the k-means algorithm 

and because it can accept a pre-created distance matrix to cluster mixed-type data (Romesburg, 

2004). PAM works iteratively by randomly selecting a medoid for each cluster, assigning each 

data point to the closest medoid, selecting another point within the cluster and swapping it with 

the medoid to see if it improves fit as defined by average distance, and then continuing the 

process until no more improvements can be made. Unfortunately, PAM is analytically costly and 

the number of clusters (k) must be specified beforehand. Because of this, there is no way to find 

the optimal number of clusters without running the full clustering process a number of times 

across a range of k.  
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Since non-hierarchical methods do not create a dendrogram structure to model the 

distances between points, we do not have predicted distances to calculate CPCC and IoA 

statistics. Because of this, we can only compare clusters created by PAM to hierarchical models 

using the average silhouette.  

 
 
2.5.3 Choosing a Final Clustering Model 
 
We follow a two-step process to choose our final clustering model. First, we fit three distance-

based hierarchical models, one variance-based model using Ward’s method, and one non-

hierarchical model using the partitioning around medoids algorithm. We evaluate these models 

using cluster fit statistics and select a subset for further consideration. Second, we investigate 

the practical implications of each solution by comparing contrasts between clusters on the actual 

dataset of interest. We select a final solution on the basis both of cluster quality and on 

usefulness for practical interpretation. As a reference, the methods section Table 1, on the next 

page, overviews the clustering algorithms employed in this analysis including their strengths and 

weaknesses.  
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Methods Table 1: Clustering Methodologies 
 

Method Procedure Strengths Weaknesses 

    

Hierarchical 
Clustering 

Iteratively joins small clusters to 
form larger clusters on the basis 
of a defined metric. 

Creates an interpretable hierarchical tree. 
An optimal join at a lower level 
may introduce bias later on.  

   Single Linkage 
Joins two clusters based on the 
distance between the most similar 
points between the two clusters. 

Can uncover less-intuitive structures by 
linking two points that are both similar to 
a third point. 

Can result in chaining. Prioritizes 
similarity of individual points over 
homogeneity of the cluster. 

   Complete Linkage 
Joins two clusters based on the 
distance between the least similar 
points between the two clusters. 

Is robust to spurious similarities between 
clusters and priorities within cluster 
homogeneity.  

May avoid needed linkages due to 
outliers on cluster edge. 

   Average Linkage 
Joins clusters based on average 
distance between all points in the 
two clusters. 

More robust to spurious similarities and 
outliers on the edge. 

Regression to the mean creates 
similarities on average but does 
not ensure similarity of individual 
points. 

   Ward's Method 

Joins two clusters based on which 
join will minimize the within 
cluster variance of the new 
cluster. 

Prioritizes cluster homogeneity. 

Computationally demanding. 
Does not prioritize matching the 
cophenetic distances to the 
magnitudes in the distance 
matrix.  

 
   

Non-Hierarchical 
Clustering 

User sets number of clusters. 
Algorithm creates optimal 
assignment. 

Does not assume hierarchy to groupings. 
Directly estimates desired number of 
clusters.  

Clustering process is not 
interpretable.  

   Partitioning    
Around Medoids 

Generates n cluster centers. Sorts 
points to minimize distance to 
cluster centers. Swaps cluster 
center for random point in 
cluster. Re-sorts points to 
minimize within cluster variance. 
Repeats until a minimum in the 
cost function is identified.  

Requires few assumptions and creates 
cluster homogeneity with respect to the 
defined distance matrix. 

Computationally demanding. 
Does not create subgroupings. 
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3 Results 
 
3.1 Descriptive Statistics 
 
The HIX Compare 2019 dataset included 17,061 unique plans with complete administrative data 

(Deductible, Maximum out of Pocket, and Premium). Monthly premiums ranged from less than 

$325/month for the lowest quartile to above $501/month for the highest quartile. There was 

considerable variance in deductible prices which ranged between $2000 and $6500 for the 

middle 50% of plans. Overall, individuals enrolled in the middle 50% of plans were expected to 

pay a maximum out of pocket cost of $6500 to $7900 per year for their care in addition to their 

monthly premium costs and any out-of-network care (see Table 1A). Ten percent of plans guided 

enrollees to specific care providers using multi-tiered structures.  

Table 1A: Plan Characteristics: Administrative Variables 
  

  Q1 Median Q3 

Monetary Variables    
   Deductible 2000 4500 6500 

   Maximum Out of Pocket 6500 7350 7900 
   Premium/Month (Age 27) 325 411 501 
        
  n %   

Plan Factors    
   Contains 2+ Tiers 1788 10.48%   

 
 
3.1.1 HIV Prevention Specific Benefits 
 
3.1.1.1 Pre-Exposure Prophylaxis 
 
Almost all plans covered Pre-Exposure Prophylaxis (98.75%). Thirty-two percent did so with 

coinsurance while 66.2% covered PrEP with a copay. Nineteen percent of plans required 
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enrollees to obtain prior authorization before they could utilize PrEP and 21.5% restricted access 

by placing PrEP on a specialty tier. 

 
3.1.1.2 Access to care 
 
In terms of accessing the care services necessary to for HIV preventative, 52% of plans allowed 

enrollees to pay for Diagnostic Tests with a copay; 54.7% of those copays equaled $0. Seventy-

seven percent of plans allowed enrollees to pay for outpatient mental healthcare with copays. 

For 75% of plans, these payments were less than $40. Eighty-seven percent of plans allowed 

patients to see a primary care physician using a copay, 75% of which charged $35 or less. Plans 

were slightly more restrictive about allowing enrollees to see specialists such as infectious 

disease doctors. Seventy-eight percent provided that coverage through a copay, but 50% of 

those copays were over $50. Finally, all plans used $0 copays to cover routine preventative 

services such as routine blood tests. Variables related to routine preventative services were 

dropped from consideration in all analyses as they did not contribute any variance between 

plans.  

Table 1B: Plan Characteristics — PrEP Variables 

  Number of Plans Percent 

Coverage   
   Covered 16847 98.75 

   Not Covered 214 1.25 

Coverage Strategy   

   Coins 5552 32.54 

   Copay 11295 66.2 

   Not Covered 214 1.25 

Prior Authorization   

   No PA 13610 79.77 

   Requires PA 3237 18.97 

   Not Covered 214 1.25 

Tier   

   Non Preferred Brand 791 4.64 
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   Non Preferred Specialty 3674 21.53 

   Preferred Brand 12382 72.57 

   Not Covered 214 1.25 

 
 
3.1.2 General Benefits 
 
As discussed in Section 2.2.5, individuals at higher risk of HIV infection also need general health 

benefits to ensure financial and general well-being. This facilitates better adherence to 

preventative treatment regimens. Emergency care and the accompanying costs of unexpected 

illness have the greatest potential to create unforeseen expense or disability. Comprehensive 

emergency care includes coverage of Ambulance, Emergency Room, and Inpatient Physician 

services. Overall, we find that plans offering copays for the aforementioned services (AB: 45.7%, 

ER: 65.6%, IH: 46.8%) had lower predicted costs of care given that at least 50%, 25%, and 75% of 

Ambulance, ER, and Inpatient Physician copays, respectively, were free.   

 

Table 1C: Plan Characteristics — Benefits 
Benefit Number of Plans Percent Q1 Median Q3 

      
Ambulance (AB)      
   Not Covered 190 1.11    

   Coins 9047 53.03 20% 30% 40% 
   Copay 7824 45.86 $0  $0  $150  

Diagnostic Tests (DT)      

   Not Covered 3 0.02    

   Coins 8178 47.93 20% 30% 40% 

   Copay 8880 52.05 $0  $0  $50  
Emergency Room (ER)      

   Not Covered 0 0    

   Coins 5868 34.39 20% 30% 50% 

   Copay 11193 65.61 $0  $250  $350  
Generic Drugs (GD)      

   Not Covered 0 0    

   Coins 1782 10.44 20% 30% 40% 

   Copay 15279 89.56 $5  $10  $18  

Habilitation Services (HA)     

   Not Covered 18 0.11    
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   Coins 7553 44.27 20% 30% 40% 
   Copay 9490 55.62 $0  $15  $40  

Inpatient Birth (IB)      

   Not Covered 2 0.01    

   Coins 8518 49.93 20% 30% 40% 
   Copay 8541 50.06 $0  $0  $500  

Inpatient Physician (IH)      

   Not Covered 283 1.66    

   Coins 8798 51.57 20% 30% 40% 

   Copay 7980 46.77 $0  $0  $0  

Outpatient Mental Health (OM)     

   Not Covered 2 0.01    

   Coins 3824 22.41 20% 30% 40% 

   Copay 13235 77.57 $0  $25  $40  
Primary Care Physician (PC)     

   Not Covered 0 0    

   Coins 2225 13.04 20% 35% 50% 

   Copay 14836 86.96 $10  $25  $35  
Preventative Care (PV)      
   Not Covered 0 0    

   Coins 0 0 0% 0% 0% 
   Copay 17061 100 $0  $0  $0  

Specialist (SP)      

   Not Covered 0 0    

   Coins 3745 21.95 20% 35% 50% 
   Copay 13316 78.05 $20  $50  $65  
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3.2 Selecting a Clustering Methodology 
 
Having described our dataset, we evaluate the clusters generated by our distance matrix and 

clustering algorithm trials and choose a solution that helps us better understand healthcare 

offerings for people at risk of HIV. To choose the most useful set of clusters, we follow a two-

step strategy of (1) comparing model fit statistics to select a subset of clusters that plausibly fit 

our data and (2) interpreting those optimal clusters in light of the data itself to select the most 

useful solution.  

 

3.2.1 Preliminary Review of Model Fit Statistics 
 
We review model fit for hierarchical models (complete linkage, single linkage, average linkage, 

and Ward’s methods) first before reviewing the partitioning around medoids algorithm.  

 
3.2.1.1 Complete Linkage 
 
The cophenetic distances from our Complete Linkage hierarchical tree correlated with the 

original distance matrix at 0.734. This means that, on average, the complete linkage model 

separated plans that were distinct from each other and kept together observations that had 

lower distance values. The associated Index of Agreement (Willmott, 1982) was approximately 

.50, which means that the magnitude of the cophenetic distances themselves were well aligned 

to the original distance matrix. The complete linkage method uncovered two distinct clusters 

(Silhouette [see section 2.5.1.4] = .464); however, cutting the tree into more clusters did not 

create groups that held together as well (Silhouettes below .35). Based on these preliminary 
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statistics, we selected the two cluster complete linkage model for consideration in further 

analyses.  

Figure 1: Average Silhouette Distances from Complete Linkage Method  

 

 
3.2.1.2 Single Linkage 
 
The cophenetic distances from our Single Linkage hierarchical tree correlated with the original 

distance matrix at 0.333. This means that, in general, plans that were farther apart in the original 

distance matrix were also farther apart when modeled in the single linkage tree, but this trend is 

relatively weak. The Index of Agreement of 0.428 suggests a moderate amount of prediction 

error between the magnitude of the cophenetic distances and the computed distances. 

Furthermore, the associated plot of average silhouette widths displays weak cluster coherence 

and even misclassification as the number of clusters increases. Because of this, we drop results 

from the Single Linkage model from further consideration. Given the liberality with which the 

single linkage model makes connections — joining clusters by their two closest points — this is 

not a surprising result. A drawback of Single Linkage is that it can result in chaining as opposed 
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effective clustering. However, given its flexibility, single linkage has the capacity to bring together 

less intuitive clustering and so it was still worth exploring.  

 

Figure 2: Average Silhouette Distances from Single Linkage Model 

 

 
3.2.1.3 Average Linkage 
 
The Average Linkage hierarchical model created cophenetic distances between plans that 

correlated with the actual distances at 0.781. Generally, plans that were farther apart in the 

distance matrix were also farther apart in the model. It also modeled the magnitude of those 

distances with high precision (Index of Agreement = 0.868). This accords with expectation, given 

that the average linkage method is robust to cluster outliers and optimizes tree concordance 

with the underlying matrix. However, as shown in the silhouette plot below, the clusters 



 51 

themselves were not highly coherent. Despite this, the two cluster and the five cluster solutions 

showed reasonable definition (Silhouettes > .40) and were explored further in the second step. 

 

Figure 3: Average Silhouette Distances from Average Linkage Model 

 

 
3.2.1.4 Ward’s Method 
 
Growing a hierarchical tree using Ward’s Method of minimum variance created modelled 

distances between the points that were well correlated with the original distances (CPCC = 

0.683). On average, points that were further apart in the distance matrix ended up further apart 

in the hierarchical tree. However, Ward’s method was not highly successful at predicting the 

magnitude of those distances (Index of Agreement = 0.014). This result is somewhat unsurprising 

as Ward’s method focuses on creating well-defined clusters with minimum within-cluster 

variance and not on matching the underlying distance matrix. This means that while it can 
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uncover a compelling cluster structure, it does not account for distances between clusters in the 

same way as average linkage. While the resultant clusters may be useful and points that are 

generally closer to each other may end up closer to each other on the tree, the modelled 

distances may not approximate the original distances in their magnitude. As shown in the 

average silhouette plot below, both the two cluster and three cluster solutions from the Ward’s 

Linkage method were defensible solutions (Silhouette = .463 & .414, respectively). We leave it to 

our content-based investigation in step two to determine if the potential usefulness of these 

clusters overrides concerns about mismatch between the magnitudes of the pair-wise modelled 

distances and the originally calculated ones.  

Figure 4: Average Silhouette Distances from Ward’s Linkage Model 

 
 
3.2.1.5 Partitioning Around Medoids 
 
As the one non-hierarchical method considered, the Partitioning Around Medoids (PAM) 

algorithm does not generate a tree with cophenetic distances. Because of this, we can only 

consider the silhouettes of the resultant clusters as well as their interpretation within the data. 
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Similar to the clusters resulting from Ward’s Method, both the two and three cluster solutions 

from the PAM presented potentially usable results (Silhouettes = .499 and .427, respectively).  

 

Figure 5: Average Silhouette Distances from PAM Algorithm 

 

 
3.2.2 Evaluating Model Fit Using Data 
 
After selecting the following possible models: Complete Linkage 2 Clusters, Average Linkage 2 & 

5 Clusters, Ward’s Linkage 2 & 3 Clusters, PAM 2 & 3 Clusters, we evaluate the models based on 

their practical usefulness and apparent fit to the data. We first consider cluster size and then 

consider cluster contrasts on key variables of interest. 

 

3.2.2.1 Cluster Size 
 
Comparing resultant cluster sizes across methodologies, we immediately found that the 5 Cluster 

Average Linkage Model recovered three core clusters with two additional small clusters that, 
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collectively, only comprised 0.873% of the data. This suggests that the average silhouette widths 

reported for the 5 Cluster Average Linkage Model may be arbitrarily high due to over fitting. For 

this reason, we removed the Average Linkage 5 Cluster model from consideration. Overall, the 

PAM and the Ward’s method models reported similar cluster sizes to each other. The clusters 

were reasonably balanced in the two cluster formulation and were composed of two equal-sized 

clusters and a third smaller cluster in the three cluster formulation. Both the Average and 

Complete Linkage 2 cluster models uncovered one larger cluster and one smaller cluster. These 

clusters were very unbalanced in the Average case (80% to 20%) and moderately unbalanced in 

the Complete case (62% to 38%). 

Table 2: Cluster Sizes by Method  
Method Clusters 1 2 3 4 5 

Average 2 13534 3527    
Average 5 6184 3527 7201 141 8 
Complete 2 10562 6499    
Pam 2 8858 8203    
Pam 3 6322 2838 7901   
Ward 2 9894 7167    
Ward 3 6329 3565 7167     

 

 

3.2.2.2 Cluster Contrasts on Benefit Characteristics 
 
In defining our distance algorithm, we prioritized distinctions between coinsurance and copay for 

each set of plan benefits based on considerations from theory. For this reason, we continued our 

evaluation by considering those distinction in coverage mechanisms. Figure 6 displays the 

distribution of coinsurance usage for each benefit by clustering method and cluster. Practically, 

clustering methods that create more distinct and useful clusters will have coinsurance 

percentages at the extremes — either closer to 100% or 0%. This is because our clusters are only 
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useful to the extent to which knowing cluster membership of a plan provides useful information 

about it. Probabilities of coinsurance near 0 or 1 provide more certainty that an individual plan in 

the cluster takes on a specific characteristic and reduce within-cluster variance, creating more 

useful separations. The first panel of Figure 6 displays the benefit distribution of all plans which 

provides a useful comparison for evaluating the relative restrictiveness of plans in each category.  

Comparing two-cluster models using Figure 6, we found similarities between the average 

and complete cluster methods as well as between Ward’s method and the PAM algorithm. The 

average and complete cluster graphs show comparable bar graph shapes with spikes and dips in 

bars in similar places between them. That said, where the average linkage method placed some 

plans into Cluster 1 to generate higher coinsurance probabilities among benefits including 

Specialty Providers and Outpatient Mental Health, the complete linkage method achieved 

coinsurance probabilities closer to 0 in Cluster 1 by shifting plans into Cluster 2, increasing the 

variance of some of the coinsurance probabilities in Cluster 2.  

The distinctions between the Ward’s method and the PAM algorithm follows a similar 

pattern. While both clustering strategies revealed remarkably similar patterns, the PAM 

algorithm shifted a few plans over to Cluster 2, raising coinsurance probabilities of benefits in 

Cluster 1 — including Ambulance Care, Diagnostic Tests, and Habilitation Services — to be closer 

to 1. In contrast, the Ward’s clustering method maintained coinsurance probabilities even closer 

to 0 among Cluster 2 — particularly for inpatient birth and inpatient physician services — while 

allowing the coinsurance probabilities among Cluster 1 to dip a bit closer toward .5. That said, 

the differences between the two clustering methods are subtle.  
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Overall, the Ward’s and PAM two cluster methods created greater contrasts between the 

clusters than the average and complete methods. The Ward’s and PAM methods isolated a 

cluster of plans that has almost no coinsurance while average and complete methods did not. In 

addition to lowering the within-cluster variance, functionally, being able to label a cluster as 

“least restrictive” across all benefits due to its lack of coinsurance is both useful and easily 

interpretable. Because of these patterns, we found Ward’s method and PAM to be the most 

advantageous moving forward and removed the average and complete linkage methods from 

consideration. 

Distinguishing between the two and three cluster solutions, we see from Figure 6 that the 

Ward’s three cluster solution maintained its least-restrictive cluster (n = 7167 plans) and split the 

more restrictive cluster into two groups — a larger cluster (n = 6329) with increased access and 

decreased variance on Generic Drugs, Outpatient Mental Health, Primary Care, and Specialist 

Physicians and a smaller cluster (n = 3565) with coinsurance probabilities very close to 1 for 

Ambulance, Diagnostic Testing, Habilitation, Inpatient Hospital, Outpatient Mental Health, and 

Specialist benefits. The shifts between the two and three cluster solutions were very similar for 

the PAM algorithm. But, with the PAM, the least restrictive cluster did not stay constant between 

the two —there was a slight shift in probabilities, specifically among inpatient birth and 

habilitation services, toward 0. 
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Figure 6: Percent of Plans Requiring Coinsurance in Each Cluster 

 
 

While we saw from the average silhouette distance plots (Figures 4 and 5) that adding an 

additional cluster to create a three cluster solution decreased the overall cohesion of the 

individual clusters themselves, this makes sense in light of the observed data. In both the PAM 
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and the Ward’s three cluster solutions, the probability of coinsurance for a few benefits in some 

clusters hovered around .5 — such as Emergency Room (Clusters 1 & 2) and Generic Drugs 

(Cluster 2). For a few other benefits the probabilities remained similar between Clusters 1 and 

2— such as Ambulance Care and Inpatient Physician care. This necessarily will increase the 

within-clusters variance while decreasing the between-clusters variance. That said, while there 

were some similarities between Clusters 1 and 2 for both PAM and Ward’s methods, the three 

cluster solution still provided useful — and potentially ordinal — contrasts in terms of plan 

restrictiveness that the two cluster method does not.  

Cluster 2, the most restrictive cluster, had the highest rates of coinsurance. While some rates 

stayed similar between Cluster 2 and Cluster 1, plans in Cluster 1 gained complete access to 

Copays on four key benefits — Generic Drugs, Outpatient Mental Health, Primary Care, and 

Specialty Providers. These are all relevant benefits for HIV preventative care. Moving to Cluster 

3, almost all plans provided access to all benefits using copay. Because of these distinct tiers in 

copay percentage, we believe that, despite the lower silhouette coefficients, the three cluster 

solutions for both PAM and Ward’s method was the most practically useful and had clear 

interpretative value. While the two cluster solutions did provide distinct contrasts, the three-

cluster solution demonstrated the existence of a mid-level tier of restrictiveness that, while 

retaining some similarities with the most restrictive tier, was worth examining as its own distinct 

cluster. 

Having settled on the three cluster model based on practical interpretative value, we had to 

decide between the PAM and the Ward’s cluster method. As previously reported, the 3 cluster 

PAM and Ward’s solutions had average silhouette distances of .427 and .414, respectively. Given 
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that silhouette metrics prioritize spherical-shaped clusters and may not be as robust to the 

nested structure and missingness patterns of our data (Lengyal & Botta-Dukát, 2019), this .13 

difference is not a meaningful distinction. As such, we once again turned to considerations from 

the data itself. In the first cluster, Ward’s method reported coinsurance likelihoods closer to 0 

for Outpatient Mental Health, Primary Care, and Specialist Doctors. In Cluster 3, Ward’s method 

reported coinsurance likelihoods closer to 0 for Inpatient Birth and Inpatient Physician care. 

Having these lower likelihoods, while not substantially different between the two groups, 

cements the ordinal nature of low restrictiveness, moderate restrictiveness, and high 

restrictiveness for Clusters 3, 1, and 2, respectively. For this reason, we believe the 3 Cluster 

solution using Ward’s method has the greatest practical value for understanding healthcare plan 

groupings for preventative HIV care  
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3.3 Ward’s 3 Cluster Solution 
 
Our chosen solution creates three distinct clusters with three distinct and decreasing levels of 

restrictiveness of care.2 Cluster 1, the most restrictive cluster, contains 20.9% (n = 3565) of the 

considered plans. Cluster 2, the moderately restrictive cluster, contains 37.1% (n = 6329) of the 

considered plans. Cluster 3, the least restrictive cluster, contains 42% (n = 7167) of the 

considered plans. 

 

3.3.1 Comparing Benefits 
 
Figure 7 compares percentage of plans using coinsurance, the median coinsurance levels, and 

the median copay amounts for each benefit in each cluster. It also provides the benefit details 

for all plans as a reference. We provide a written overview of each cluster below. Detailed tables 

of cluster characteristics are included for reference in Appendix A. 

 

3.3.1.1 Cluster 1 
 
Plans in Cluster 1, the most restrictive cluster, have coinsurance probabilities that are higher 

than the coinsurance probabilities for the average plan across all benefits. Benefits that are 

important to HIV prevention including Diagnostic Tests (DT), Outpatient Mental Health (OM), 

and Specialist Providers (SP) are restricted through coinsurance usage in more than 90% of plans. 

While access to Primary Care (PC) is not restricted using coinsurance in all plans in the cluster 

(62.19%), it does appear in a far greater percentage of plans in this cluster than in the plans  

 
2 To maintain the ordinality of restrictiveness in our data, we have re-numbered the clusters from those found in the exploratory graphics above. 
From here forward, Cluster 1 refers to the most restrictive cluster, Cluster 2 refers to moderately restrictive cluster, and Cluster 3 refers to the 
least restrictive cluster.  
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Figure 7: Ward’s 3 Cluster Solution Cluster Characteristics — Benefits 

 
The top two rows display Median and IQR Coinsurance and Copay amounts for each cluster. The bottom row displays percentage of 

plans with coinsurance within each cluster. 

 

when considered as a whole (13.04% as reported in Table 1C). This demonstrates an important 

correlation between restricted access to three dimensions important to HIV care (DT, OM, & SP) 

and higher likelihood of restrictiveness for PC.  

Plans in Cluster 1 also defer significant financial risk and cost uncertainty to patients in 

cases of medical emergency. 94.7% cover ambulance care with coinsurance and 98.65% ask 

patients to pay a portion of their inpatient physician hospital bills. While there is more variance 

in coinsurance usage for emergency room visits with 66% of plans taking that strategy, the 
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copays among the remaining 34% of plans require a median payment of $500, which is double 

the median payment among the entire set of plans ($250). 

 

3.3.1.2 Cluster 2 
 

Plans in Cluster 2, the moderately restrictive cluster, relax key restrictions around preventative 

care for HIV and add certainty into payment amounts. But, they still do not facilitate optimal 

financial security and access to the range of services necessary for HIV prevention. Plans in 

Cluster 2 have coinsurance probabilities for Outpatient Mental Health, Primary Care, and 

Specialist Care that are close to 0. That said, the copays used for Specialist Care are generally 

higher than those used for Specialist Care across all plans (Cluster 2 Median [IQR] = $60 [25]; All 

Plans Median [IQR] = $50 [45]).  

In terms of facilitating general patient health and financial stability, plans in Cluster 2 

facilitate increased access to generic drugs with low coinsurance probabilities (.044) and low 

copays (Median [IQR] = $15 [14]). While the probability of coinsurance for Emergency Care 

decreased relative to Cluster 1 (.66 to .55), the copays among the remaining plans were still high 

(Median [IQR] = $350 [250]). Overall, Cluster 2 provides greater access to HIV preventative care 

than Cluster 1 without significantly expanding access to the care necessary for general health as 

well.  

 

3.3.1.3 Cluster 3 
 
Plans in Cluster 3, the least restrictive cluster, almost completely eliminate coinsurance usage 

across all benefits. They also significantly reduce copay amounts, with median copays of $0 for 
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benefits such as Ambulance care, Diagnostic tests, Emergency Room Care, Habilitation Services, 

Inpatient Birth, Inpatient Physician care, and Outpatient Mental Health Care.  

 
3.3.2 Accessibility of PrEP 
 
 

Figure 8: Ward’s 3 Cluster Solution — PrEP 

 
 
 
Figure 8 displays the percentage of plans in each cluster that place specific restrictions on Pre-

Exposure Prophylaxis. Coverage of PrEP was not an influential variable in the clustering process 

given 98.75% of all plans covered PrEP in some way. Because of this, coverage of PrEP does not 

vary significantly between clusters. As expected, given patterns of coinsurance prevalence across 

other benefits, 72.15% of Cluster 1 plans, 42% of Cluster 2 plans, and only 4.45% of Cluster 3 
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plans used coinsurance to cover PrEP. This represents a significant contrast between Cluster 3 

and the other two clusters. Use of specialty tiering for PrEP mirrored the restrictiveness pattern 

and was most prevalent among plans in Cluster 1 (28.0%), but the contrasts were not as stark 

between clusters (Cluster 2: 22.7%; Cluster 3: 17.3%). This suggests that usage of specialty 

tiering for PrEP, while still positively correlated with other variables of restrictiveness, is only 

weakly so. Finally, use of Prior Authorization for PrEP exhibits a completely different pattern 

entirely, spiking in Cluster 2 at 29.4% and appearing in very few plans in Cluster 1 (4.24%). This 

suggests that prior authorization is less likely to be imposed when cost restrictions are higher 

and that “restrictiveness” as captured by coinsurance usage does not correlate positively with  

“restrictiveness” as defined in terms of prior authorization.  

 
3.3.3 Administrative Variables 
 
Figure 9 displays distributions of administrative cost variables by cluster. Overall, plans in Cluster 

3 had the highest median deductible at $6100 as compared to $4000 for Cluster 1 and $3500 for 

Cluster 2. Despite this, Cluster 2 had the highest median maximum out of pocket costs at $7550 

as compared to $7150 for Cluster 3 and $6750 for Cluster 1. This suggests that while Cluster 1 

may be the most restrictive, enrollees paying for high-cost care — such as individuals taking 

preventative medications for PrEP — may actually pay more for their care overall in Cluster 2. 

Finally, monthly premiums were relatively equivalent between the three groups at $401/month, 

$420/month and $406/month for Clusters 1, 2, and 3, respectively. This suggests that, in 

addition to having fewer barriers to care access once enrolled, individuals who are covered by 

plans in Cluster 3 do not pay more than individuals in Cluster 1 or 2 to maintain their enrollment. 
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Finally, as reported in Appendix A, we found that 33% of Cluster 1 plans used a multi-tiered 

structure as compared to 2.64% in Cluster 2 and 5.97% in Cluster 3. 

 
Figure 9: Ward’s 3 Cluster Solution — Administrative Variables 
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3.4 Geographic Distribution of Clusters 
 
Figure 10 displays the proportion of plans in each Rating Area that fall into each cluster Overall, 

we find the highest rates of the most restrictive plans in Wyoming, Virginia, Illinois, Missouri, 

Texas, Georgia, and Oklahoma. Each of these states have rating areas where at least 75% of 

plans offered are in the most restrictive cluster.  

There are no rating areas where more than 75% of the plans offered fall into the 

moderately restrictive cluster. However, the moderately restrictive plans are most prevalent in 

Michigan, Utah, Georgia, Rhode Island, Hawaii, and North Carolina. In each of these locations, 

moderately restrictive plans comprise at least two- thirds of the plans offered.  

In Alabama, there are several rating areas where 100% of plans offered are categorized 

as least restrictive. Other states with rating areas with high prevalence of least restrictive plans 

include Massachusetts and South Carolina. Two rating areas in Arkansas do not offer any of the 

least restrictive plans. This is also the case in three rating areas in Wyoming. One rating area in 

Washington, four in Maine, and one in Tennessee all have markets in which least restrictive 

plans comprise less than 10% of the plans offered.  
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Figure 10: Percent of Plans in Rating Area by Cluster 
 

                               Most Restrictive                                             Moderately Restrictive  

  
Least Restrictive 

 
 
Figure 11 colors rating areas to show places where a specific cluster comprises a majority of 

plans, displaying the degree to which local markets are competitive or dominated by specific 

types of plans. States including Oregon, Nevada, Arizona, Louisiana, Montana, Nebraska, Kansas, 

Minnesota, Iowa, West Virginia, Maryland, and Georgia, have markets with higher degrees of 

heterogeneity. Plans from one cluster do not comprise more than 50% of the market share of 

almost all rating areas in those states. This allows individuals greater agency when tailoring their 

benefits to their needs. In contrast, states like Missouri, Tennessee, Virginia, and Texas have high 
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inter-rating area variability in plan offerings. While less restrictive plans are readily available in 

one rating area, moving to another rating area within the state restricts an individual’s choices. 

Figure 11: Cluster with Majority Share of Plans 

 
Areas that remain white do not contain one cluster that exceeds 50% of plans offered 
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4 Discussion 

4.1 Methodological Performance 

At the outset of this investigation, we asked if clustering methodologies could be reasonably 

extended to handle the inherently nested structure of health plan data. We then, contingent on 

the usability of the methodology, asked content-based questions — what conclusions can we 

draw about how insurance companies cover preventative care for HIV? Is there a geographic 

pattern to that coverage? For this reason, we begin our discussion assessing the performance of 

our methodology and the usability of our results before moving into substantive considerations 

of what our work suggests for the field of health coverage and HIV prevention. 

 

4.1.1 Distance Metric 

The primary methodological innovation of our work was extending Gower’s conception of 

distance and hierarchy to account for the nesting and patterned missingness inherent in health 

plan data (1971). In setting weights for our distance metric, we chose to prioritize categorical 

distinctions between copays and coinsurances due to our belief from theory in the behavioral 

importance of coinsurances with regard to consumer choice. In setting up our metric, we 

defined plans to be maximally distant from each other if one used coinsurance and the other 

used copay for a given benefit. If they used the same coverage strategy, we added an extra term 

to quantify the degree of that distinction. In this way, plans that cover the same benefit with 

copays of different magnitudes could still be distinct from each other, but never maximally 
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distinct. Functionally, using our weighting scheme, we only calculated distances between two 

plans based on the factors they shared in common. 

It is certainly possible to contest this assertion from a theoretical standpoint — should a 

plan with a $400 copay for specialist care share some similarity with a plan that asks for a $5 

copay for specialist care but not with a plan with a 90% specialist care coinsurance just because 

it uses a copay and not a coinsurance? We believe the answer is yes given the empirical work 

reviewed in Section 1.3.1 that suggests individuals behave differently when covered by 

coinsurances as opposed to copays because there is inherent uncertainty in the final cost of care 

even when those costs are equal. However, distinctions in patient behavior between plans with 

low coinsurance and plans with high copay are understudied and could influence theoretical 

considerations for weighting in the future. That said, challenging this assertion is a content-based 

argument not necessarily a methodological one.  

Rather, the contrasts between clusters suggest that the weighting strategy utilized 

effectively operationalized the theoretical distinctions we hoped to encode. Foremost, the 

distinctions between plans in Cluster 3 and those in Clusters 1 and 2 are stark — plans in Cluster 

3 have almost no coinsurance liability whereas those in Clusters 1 and 2 have high percentages. 

In creating a distance metric to prioritize copay and coinsurance distinctions, we recovered 

clusters that do the same.  

Additionally, for benefits with lower rates of coinsurance across the board such as 

Emergency Services, we also recovered contrasts on the copay amounts between clusters. For 

example, where Cluster 2 has a 50% coinsurance rate for Emergency Services, it also has a high 

median copay amount relative to Cluster 3. This suggests that the secondary concern — allowing 
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for contrasts between plans that take similar coverage strategies but have divergent costs for 

those strategies — was also recovered, although with lower priority. But, those contrasts were 

not recovered as significantly across all benefits. We see that for some benefits, like ambulance 

services, that have similar rates of coinsurance between Clusters 1 and 2, the third quartile of 

coinsurances is higher among plans in Cluster 1. This is not true across the board. For example, 

there is little contrast in both the rate and the amount of coinsurance for Inpatient Physician 

services between Clusters 1 and 2. This is reasonable given the clustering methodology 

represents a multivariate analysis. If two benefit characteristics do not covary across plans, it 

may not be possible to create meaningful contrasts on them both at the same time (Romesburg, 

2004).  

This reflection of theoretical considerations within the clusters is encouraging, 

particularly given the amount of data included. As Ronan et al. (2016) discuss, issues of high 

dimensionality in clustering methodologies can easily lead to spurious results since the 

probability of two observations contrasting on a few variables increases with the number of 

variables considered. This reduces the range of the distance metric and creates random 

associations as opposed to recovering meaningful clusters. However, this does not seem to be 

the case within our result. The extent to which the relationships between variables aligns with 

content-based considerations as later discussed in Section 4.2 suggests we are not simply 

uncovering a structure of noise.  

In contrast to Gower’s suggestion of setting weightings based on theory, work from van 

de Hoven (2015) has suggested iteratively constructing the distance matrix weights in 

conjunction with feedback from growing a hierarchical tree, selecting the set of weights that 
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optimizes the cophenetic correlation coefficient. Tuning the weights this way yields a potentially 

interpretable weight matrix that reflects the relative influence of each variable when seeking the 

best possible defined clusters. However, while this process serves the end of discovering 

clusters, it does not necessarily prioritize discovering interpretable clusters that have theoretical 

value. While van de Hoven’s method has inherent value as an exploratory process — i.e. 

discovering unforeseen clusters and the variables that drive their formation — in this work we 

sought to define clusters that comment on the relationships between benefits across plans. As 

such, optimizing the distance matrix to best fit into a hierarchical tree would not have provided 

resultant clusters that account for equal contribution between benefits and would not enable as 

easily the exploration of the multivariate relationships discussed in Section 4.2.  

While algorithmically setting the weights may not have provided the interpretable results 

desired from this analysis, noting the relative lack of contrast between groups on the 

quantitative administrative variables (Deductible, MOOP, and Premium) suggests that a future 

direction for this type of work may be to group variables by type —administrative variables, 

general benefits, and HIV preventative benefits, for example — and set weights to balance 

contributions to the distance metric. Chae, Kim, & Yang (2006) provide such an example of 

balancing the contributions of continuous variables and categorical variables while the 

precedent for grouped weighting extends back to Gower himself (1971).  

Overall, the contrasts on both prevalence and values of copay and coinsurance between 

clusters suggest that our weighting choice accurately encoded key theoretical considerations and 

translated them through the distance matrix into the output. While the theoretical 

considerations themselves can be challenged, the weighting strategy used to translate the 
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nested structure of the data into a usable distance matrix was effective in light of the resultant 

cluster contrasts. 

 

4.1.2 Clustering Performance 

In Section 1.4, we discussed the difficulties of comparing health plan offerings. As the outcome 

of complex decision-making processes within companies, the high dimensionality of and 

dependencies within the data restrict the interpretability of descriptive comparisons. We 

proposed clustering as a possible solution to reduce dimensions and enable more usable 

comparisons. Having carried out the investigation, we must decide if those comparisons are 

viable through our solution. 

Clustering high dimensional data brings with it a number of pitfalls. It is not always robust 

to small perturbations in methodology and has a growing likelihood of detecting spurious results 

as the number of clusters increases (Ronan et al., 2016). This was likely the case in the five 

clustered solution to the average linkage hierarchical tree. Because of this, Ronan, Qi, & Naegle 

(2016) suggest running multiple clustering strategies. Finding convergent structures between 

methodologies provides evidence that clusters uncovered are substantive as opposed to 

spurious. Since Ward’s method and Partitioning Around Medoids (PAM) converged in both the 

two and three cluster solutions, we take this as support that our final solution represents a 

repeatable phenomenon as opposed to an idiosyncrasy of an individual algorithm. 

As previously discussed in the results section, from a mathematical perspective, the 

three-cluster solution chosen is defensible. Albeit, from an absolute perspective, the average 

silhouette distance of .414, while confirmatory of the existence of true clusters, is not indicative 
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of the most well-defined cluster solutions in the field (Lengyel & Botta‐Dukát, 2019). However, 

this does not invalidate the usefulness of the results. The average silhouette width, while widely 

used, was developed as a graphical aid to help researchers visualize how closely together the 

points in their clusters clung (Rousseeuw, 1987). Because of this, there are no explicit rules of 

thumb or cut points — just a general consensus that values near zero suggest clusters may not 

exist within the data and that negative values represent a complete misfit between the data and 

the model (Lengyel & Botta‐Dukát, 2019).  

Interpreting the average silhouette in light of the number of dimensions we incorporated 

into the cluster analysis, it is not necessarily concerning that it is not higher. With so many 

variables, there would need to be significant covariance across all variables between plans to 

create more distinct contrasts. This is why Ronan (2016) also suggests drawing heavily on ideas 

of practical significance. Perhaps not all variables between clusters contrast, but if there are key 

contrasts that provide useful information, then the solution is of value.  

The ordinality of the clustered results — three clusters with generally decreasing 

restrictiveness as discussed in Section 3.3 — provides the most compelling evidence of the 

usefulness of the solution and of the practical distinctness of the clusters even if some variables 

are not well contrasted. The graphical evidence shown earlier in Figure 7 is the most intuitive 

demonstration of this value.  

The ordinality and cluster distinctiveness are not without qualification. Chiefly, benefits 

where coinsurance probabilities are close to .5 — such as Emergency Room in Clusters 1 & 2, 

Habilitation Services in Cluster 2, and Primary Care in Cluster 1 — do not represent as useful 

categorizations. The clusters are useful to the extent that knowing cluster membership says 
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something meaningful about an individual plan. Yes, being able to say that a plan in Cluster 3 

almost assuredly does not have coinsurance for Emergency Room services but that a plan in 

Cluster 2 has about a 55% chance of it is useful. However, we really do not know with any 

certainty better than chance whether a random plan in Cluster 2 will or will not require 

coinsurance for an ER visit. But with so many prevalences close to either 1 or 0 across a number 

of benefits in each cluster, these results support the conclusion that clustering is a useful tool to 

illustrate macro level trends in health insurance and enable plan comparisons.  
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4.2 Insights from Cluster Relationships 

Having concluded that the results are methodologically sound enough to facilitate 

interpretation, we move to examine what the macro-level patterns between the clusters reveal 

about how insurance companies construct healthcare plans. Viewing clustering as a type of 

multivariate analysis, examining which benefits co-occur in plans that are grouped together 

provides insight into how plans are constructed.  

 

4.2.1 Coinsurance and Copay Patterns 

Interpreting the pattern of coinsurances and copays across the three clusters provides key 

exploratory takeaways about how insurance companies construct plans. First, the pattern of 

copays within Cluster 3 suggests that, in general, plans that have less copays on some benefits 

tend to have less restrictive copays on other benefits. There is a whole subset of plans created by 

insurance companies that requires lower cost fixed payments for services that would be more 

easily navigable to a person on a preventative regimen for HIV. This contrasts starkly with the 

conclusions supported by Cluster 1, specifically that insurance companies also create plans that 

have high coinsurance-driven restrictiveness. The existence of these two extreme clustering 

patterns suggests a lot about how insurance companies set benefits, offering either full access or 

more complete restriction. 

Adding in considerations from Cluster 2 further draws the tiered systems of 

restrictiveness into focus. The way in which higher copays for Diagnostic Tests and Emergency 

Care are used for plans that do not impose coinsurance suggests some degree of positive 

covariance between more restrictive copays and higher restrictiveness on other benefits. Given 
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how we set up our distance metric, the only way plans with coinsurance and plans with copay for 

Emergency and Diagnostic Test benefits would end up in the same cluster is if they contained 

similarities on other benefits. What the pattern shows, then, is that, in some plans, coinsurances 

are swapped for high copays while maintaining the same patterns of coinsurance-based 

restrictiveness elsewhere. 

However, the patterns within Cluster 2 support deeper insights as well — specifically that 

when insurance companies choose to lower some restrictions, they prioritize access to Primary 

Care, Specialist Care, Generic Drugs, and Outpatient Mental Health. These benefits are all 

important for individuals who are on preventative regimens to guard against HIV and maintain 

general well-being (Owens et al., 2019). That said, benefits that provide a financial cushion in 

more catastrophic events — Ambulances, Emergency benefits, and Inpatient Hospital care, 

remain highly restricted.  

These patterns of restrictiveness comport generally with the Bronze, Silver, Gold and 

Platinum plan stratifications created by the ACA which intend to balance out-of-pocket costs 

with premium costs (healthcare.gov). We will further explore cost patterns in Section 4.2.3 to 

see if the monetary portion of that balance holds true.  

 

4.2.2 Prior Authorization Patterns 

The pattern of lowest prior authorization for PrEP among the most restrictive group 

suggests enrollee willingness to accept higher out of pocket costs is associated with higher 

agency in initiating PrEP. Patients that were willing to accept greater restrictions and financial 

responsibility elsewhere were less likely to need approval before initiating PrEP drugs. Framing 
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this from an insurance provider perspective as opposed to a consumer agency perspective, this 

finding also suggests that insurance companies feel less need to restrict access using prior 

authorization when there are already cost-based restrictions controlling care. Yet, in plans where 

cost-based restrictions are relaxed, prior authorization is instituted as a control. This runs 

contrary to messaging around prior authorization advanced by insurance companies that prior 

authorization is for patient protection (See Section 1.3.3). In theory, individuals should not be 

able to buy the right to opt out of a regulation designed for their safety, nor should insurance 

companies utilize prior authorization as a restrictive counterbalance to accessible pricing.   

This comports with previous work from McManus et al. (2020) which found that being 

enrolled in a plan that covers PrEP with coinsurance as opposed to copay lowers the odds of PA 

by a factor of 0.51 when other plan factors re held constant. Lower PA was also associated with 

other measures of PrEP restrictiveness such as specialty tiering. The findings from this cluster 

analysis augment those findings to suggest that reduced PA requirements for PrEP are not just 

related to increased restrictions on PrEP but also increased restrictions on all other plan factors 

and that relaxing restrictive plan factors raises likelihood of an insurer instituting PA.  

 

4.2.3 Cost Patterns 

The relative equality of premium prices per month between clusters suggests that contrasts on 

other variables were more useful in determining clusters than contrasts on premiums. It also 

suggests that restrictiveness of benefits across plans may vary more independently from price 

than posited by healthcare.gov and the metal level rating structure referenced in Section 4.2.1. 

This does not mean that premium and restrictiveness are necessarily independent among plans 
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offered by the same insurance company. But it does mean that, across the United States, plans 

with lesser restrictions do not necessarily cost individuals more per month to remain enrolled. 

The implications of this finding for people living with HIV are significant — it is possible for 

insurance companies to provide care that has lowered restrictiveness without raising premiums. 

To End the HIV Epidemic, these are the types of plans that insurance companies should be 

incentivized to offer in key regions of the US.   

That said, plans in Cluster 1 — which required larger and less predictable out-of-pocket 

costs for services — did have lower median yearly maximum out of pocket costs. This enables 

increased certainty when budgeting for maximum medical costs but individuals must have the 

liquidity to pay more unpredictable contributions over the course of the year. While individuals 

enrolled in Cluster 3 plans would have a higher MOOP, they would also have relatively low 

copays and would be less likely to reach the MOOP. The implications of this metric are difficult to 

evaluate without simulating costs for an individual for an entire year. But from a total spending 

perspective, there are benefits and drawbacks to being in either Cluster 1 or 3. Cluster 2, with 

the highest median MOOP and high prevalence of copays among specific benefits while enabling 

easy access to specific types of routine care could quickly become the most burdensome in a 

catastrophic or emergent event.  

 

4.2.4 Policy Implications: Cost Sharing for PrEP  

In 2019, the US Preventative Service Taskforce (USPSTF) gave PrEP a grade A rating for 

preventative care (Owens et al., 2019). Under ACA guidelines, private insurance plans must cover 

services that receive a grade A rating without any cost sharing at all. For PrEP, this shift was set 
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to occur at the start of 2021. Going forward, individuals on all plans should have access to PrEP 

without coinsurance or copay. In line with our discussion of the behavioral implications of 

coinsurance and copay, this shift may help patients be more confident about their ability to 

continue their treatment. However, from a financial perspective, it is not as significant a shift as 

it seems at face value. In the past, PrEP financial assistance programs administered by Gilead — 

the pharmaceutical company that produces PrEP — and by state agencies covered out of pocket 

PrEP medication costs for insured individuals (NASTAD, 2020). Removing cost sharing from PrEP 

across all health plans will allow those financial assistance programs to concentrate their focus 

on the uninsured. But for those who were previously receiving reimbursement for PrEP, it does 

not mitigate some of the most important barriers. The USPSTF recommendation does not make 

it clear what, if any, ancillary services plans have to cover in order to provide the PrEP 

intervention. Firsthand reports from patients who had their PrEP drug costs covered previously 

note that while they could obtain the medication itself, the provider visits and labs required to 

maintain a PrEP regimen presented a financial barrier and, in some cases, led to discontinuation 

(Andrews, 2019 & 2021).  

This is concerning given the patterns of health coverage observed for wraparound services. 

Eliminating cost sharing for PrEP will mainly assist individuals enrolled in plans from Clusters 1 

and 2. And yet, usage of coinsurance and elevated copays remain high for Diagnostic Tests and 

Primary and Specialist care in Cluster 1, in specific. Even with lesser restrictiveness in vital 

services among Cluster 2 plans, costs associated with Diagnostic Tests — one of the most critical 

requirements for maintaining PrEP treatment — remain restrictive. For the US Preventative 
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Service’s regulation to have its intended effect of increasing PrEP access, it must also address 

restrictive cost sharing for associated services. (Kay & Pinto, 2021). 

Finally, with increased competitiveness in the PrEP market as generics, different chemical 

formulations, and long-acting injectable PrEP make their way through the FDA pipeline, more 

policy analysis will be needed to examine how insurance companies react to these innovations 

and continue to interpret the USPSTF mandate (Coelho et al., 2019).  
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4.3 Geographic Insights 

In 2019, the US government identified 57 jurisdictions with increased HIV transmission for 

prioritization in the Ending the HIV Epidemic Plan (EHE). These jurisdictions, shown in Figure 12, 

include areas where individuals are at higher risk of acquiring HIV and emphasize places in which 

there is a higher burden of rural transmission. It is important that these jurisdictions offer plans 

that reduce barriers to accessing PrEP and other preventative services. In general, EHE 

jurisdictions vary in what types of plans are available. Rating areas in Oklahoma, for example, 

have high incidence of plans from the most restrictive cluster while rating areas in South Carolina 

have high incidence of plans from the least restrictive cluster.  

We also observe significant stratification in plan types by state with plans in the moderately 

restrictive cluster occupying the greatest market share overall, specifically in the West, and the 

least restrictive plans concentrating primarily in the Northeast, Indiana, South Carolina, and 

Alabama. This emphasizes the importance of state politics in setting health care priorities. For 

EHE, federal policymakers will have to work with states with differing policy environments to 

harmonize a collective strategy.   

EHE must also focus on reducing prior authorization requirements to make accessing 

PrEP on Cluster 2 and 3 plans both financially and logistically feasible. Finding higher prevalences 

of Cluster 2 and 3 plans in Southern US states, specifically in Florida and Mississippi, compared 

with other regions comports with observations from McManus et al. (2020) that note increased 

prior authorization restrictions in those areas. 
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Figure 12: Ending the HIV Epidemic Priority Jurisdictions 

 

Source: Ahead.hiv.gov 

 

Our finding of within-state variability, particularly in Texas, also gives reason for pause. In 

most rating areas in Texas, individuals have the option to choose between all three types of 

plans. But, those healthcare options solidify in major city areas and guide individuals toward the 

most restrictive options. A 2018 report by the Texas Department of State Health Services notes 

that over 75% of PLWH in Texas, who are overwhelmingly Black and Hispanic MSM, reside in 5 

major urban areas. This means individuals in urban areas are at the highest risk of acquiring HIV. 

This pattern, where care is restricted in places people need it most, is a clear demonstration of 

how healthcare systems discriminate against individuals at risk of HIV and contribute to a lasting 

system of institutionalized racism in healthcare.  
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4.4 Limitations & Future Directions 

This body of work represents a first foray into using clustering methodologies to audit 

healthcare offerings across the US. The methodology generated useful results but is not without 

limitations. Firstly, while the clustering algorithm accounts for as many plan factors as possible, 

this analysis is still limited to in network benefits and does not account for the accessibility of in 

network providers. An individual may be enrolled in a Cluster 3 plan with access to low copays 

for vital services for in network providers, but it is possible the providers in their network are 

over booked or geographically distant. In that case, benefits covering out of network providers 

would provide more accurate information about an individual’s lived experience of finding care.  

Secondly, while there were contrasts between clusters on benefit characteristics, the 

methodology itself does not provide the interpretative value. We drew conclusions about 

restrictiveness and access based on theory about how patients act in response to specific plan 

factors. While our method is expedient in that it requires only administrative data on plan 

designs, it would be strengthened by reported experiences of patients navigating preventative 

care for HIV while enrolled in archetypal plans from each cluster.  

Thirdly, as an exploratory methodology, clustering is difficult to validate. We spent much of 

this work justifying the fit of our solution based on its practical interpretation. And yet, not all 

aspects of it — the marginal contrasts on specialty tiering for PrEP, for example — are of 

practical use. To some degree, this reflects the issue of clustering data with many dimensions 

(Ronan, Qui, Naegle, 2016). But at the same time, it is a reminder that not every dimension falls 

into a neat three category solution of meaningfully decreasing restrictiveness. As an aggregate 

level descriptor of a complicated system, cluster membership does not strictly imply that 



 85 

randomly choosing one plan from each cluster and comparing them will always align with the 

pattern that arises from the whole group.  

Keeping the above in mind, if this type of method is to be used in auditing plan offerings in 

the future, more work is needed to strengthen the theory linking specific plan characteristics to 

the experiences of patients. This could involve analyzing patient satisfaction data across various 

plan types or, with granular longitudinal data, could include investigating linkages between plan 

offerings in rating areas and the uptake of preventative services such as PrEP. This type of 

content-driven work would improve the interpretative value of the methodology. In terms of the 

methodology itself, with increased linkage between plan characteristics and patient outcomes, it 

would be worthwhile to experiment with other weighting matrices that create equal 

contributions between benefits or groups of benefits based on theoretical considerations.  

Overall, clustering health plan data to examine trends in preventative care for HIV is a viable 

method to describe a very complex system. While the results from one clustering may not 

provide the basis for a complete overhaul of policy, obtaining a macro-level view of the entire 

system can help researchers and policymakers identify specific content areas for further 

research and investigation.  
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Appendix A: Ward’s 3 Cluster Solution Cluster Attribute Tables 
Cluster 1 — Most Restrictive 
 

Ward’s Cluster 1 Plan Characteristics — Admin Variables 
 
 
 
 
 
 
 
 
 
 
 

Ward’s Cluster 1 Plan Characteristics — PrEP 
 

 
 
 
  

  Q1 Median Q3 

Monetary Variables    
   Deductible 2250 4000 5500 
   Maximum Out of Pocket 6650 6750 7900 
   Premium/Month (Age 27) 332.87 401 486.61 

    

 n %  
Plan Factors    
   Contains 2+ Tiers 1193 33.46%   

Characteristic Number of Plans Percent 
Coverage   
   Covered 3524 98.85 
   Not Covered 41 1.15 
Coverage Strategy   

   Coins 2572 72.15 
   Copay 952 26.7 
   Not Covered 41 1.15 
Prior Authorization   

   No PA 3373 94.61 
   Requires PA 151 4.24 
   Not Covered 41 1.15 
Tier   

   Non Preferred Brand 91 2.55 
   Non Preferred Specialty 997 27.97 
   Preferred Brand 2436 68.33 
   Not Covered  1.15 



 94 

Ward’s Cluster 1 Plan Characteristics — Benefits 
Benefit Number of Plans Percent Q1 Median Q3 

Ambulance (AB)      

   Not Covered 172 1.01    

   Coins 3378 94.75 20% 30% 50% 

   Copay 151 4.24 $0  $5  $5  

Diagnostic Tests (DT)      

   Not Covered 5 0.03    

   Coins 3560 99.86 20% 30% 40% 

   Copay 4 0.11 $0  $10  $20  

Emergency Room (ER)      

   Not Covered 0 0    

   Coins 2353 66 20% 30% 50% 

   Copay 1212 34 $250  $500  $950  

Generic Drugs (GD)      

   Not Covered 0 0    

   Coins 1489 41.77 20% 25% 40% 

   Copay 2076 58.23 $5  $10  $15  

Habilitation Services (HA)      

   Not Covered 14 0.08    

   Coins 3502 98.23 20% 30% 50% 

   Copay 60 1.68 $20  $30  $35  

Inpatient Birth (IB)      

   Not Covered 0 0    

   Coins 2732 76.63 20% 30% 40% 

   Copay 833 23.37 $500  $850  $850  

Inpatient Physician (IH)      

   Not Covered 191 1.12    

   Coins 3517 98.65 20% 30% 40% 

   Copay 8 0.22 $0  $0  $0  

Outpatient Mental Health (OM)     

   Not Covered 0 0    

   Coins 3472 97.39 20% 30% 40% 

   Copay 93 2.61 $15  $15  $20  

Primary Care Physician (PC)     

   Not Covered 0 0    

   Coins 2217 62.5 20% 35% 50% 

   Copay 1348 37.81 $15  $30  $40  

Specialist (SP)      

   Not Covered 0 0    

   Coins 3284 92.12 20% 30% 50% 

   Copay 281 7.88 $50  $60  $60  
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Cluster 2 — Moderately Restrictive: 
 

Ward’s Cluster 2 Plan Characteristics — Admin Variables 

  Q1 Median Q3 

Monetary Variables    

   Deductible 2000 3500 5900 

   Maximum Out of Pocket 6750 7550 7900 

   Premium/Month (Age 27) 346.95 419.81 502.04 

 
   

 n %  

Plan Factors    

   Contains 2+ Tiers 167 2.64%   

 
 
 
 

Ward’s Cluster 2 Plan Characteristics — PrEP 
  Number of Plans Percent 

Coverage   
   Covered 6224 98.34 

   Not Covered 105 1.66 

Coverage Strategy   

   Coins 2661 42.04 

   Copay 3563 56.3 

   Not Covered 105 1.66 

Prior Authorization   

   No PA 4359 68.87 

   Requires PA 1865 29.47 

   Not Covered 105 1.66 

Tier   

   Non Preferred Brand 308 4.87 

   Non Preferred Specialty 1440 22.75 

   Preferred Brand 4476 70.72 

   Not Covered 105 1.66 
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Ward’s Cluster 2 Plan Characteristics — Benefits 
Benefit Number of Plans Percent Q1 Median Q3 

Ambulance (AB)      
   Not Covered 248 1.45    

   Coins 5164 81.59 20% 30% 40% 
   Copay 1073 16.95 $50  $250  $250  
Diagnostic Tests (DT)      

   Not Covered 0 0    

   Coins 4612 72.87 20% 30% 40% 
   Copay 1717 27.13 $30  $55  $80  
Emergency Room (ER)      

   Not Covered 0 0    

   Coins 3499 55.29 20% 35% 40% 
   Copay 2830 44.71 $300  $InCl   $550  
Generic Drugs (GD)      

   Not Covered 0 0    

   Coins 275 4.35 40% 50% 100% 
   Copay 6054 95.65 $10  $15  $24  
Habilitation Services (HA)      

   Not Covered 16 0.09    

   Coins 3995 63.12 20% 30% 40% 
   Copay 2328 36.78 $30  $40  $50  
Inpatient Birth (IB)      

   Not Covered 0 0    

   Coins 5778 91.29 20% 30% 40% 
   Copay 551 8.71 $100  $500  $750  
Inpatient Physician (IH)      

   Not Covered 442 2.59    

   Coins 5275 83.35 20% 30% 40% 
   Copay 890 14.06 $0  $0  $100  
Outpatient Mental Health (OM)      

   Not Covered 0 0    

   Coins 351 5.55 30% 30% 40% 
   Copay 5978 94.45 $30  $30  $50  
Primary Care Physician (PC)      

   Not Covered 0 0    

   Coins 8 0.13 30% 30% 30% 
   Copay 6321 99.87 $20  $30  $35  
Specialist (SP)      

   Not Covered 0 0    

   Coins 461 7.28 40% 40% 50% 
   Copay 5868 92.72 $50  $60  $75  
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Cluster 3 — Least Restrictive 
 

Ward’s Cluster 3 Plan Characteristics — Admin Variables 
  Q1 Median Q3 

Monetary Variables    
   Deductible 2000 6100 7900 

   Maximum Out of Pocket 6000 7150 7900 

   Premium/Month (Age 27)      303.905 406.11 507.96 

 
   

 n %  

Plan Factors    

   Contains 2+ Tiers 428 5.97%   

 
 
 

Ward’s Cluster 3 Plan Characteristics — PrEP 
  Number of Plans Percent 

Coverage   

   Covered 7099 99.05 
   Not Covered 68 0.95 
Coverage Strategy   

   Coins 319 4.45 
   Copay 6780 94.6 
   Not Covered 68 0.95 
Prior Authorization   

   No PA 5878 82.01 
   Requires PA 1221 17.04 
   Not Covered 68 0.95 
Tier   

   Non Preferred Brand 392 5.47 
   Non Preferred Specialty 1237 17.26 
   Preferred Brand 5470 76.32 
   Not Covered 68 0.95 
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Ward’s Cluster 3 Plan Characteristics — Benefits 

Benefit Number of Plans Percent Q1 Median Q3 

Ambulance (AB)      

   Not Covered 148 0.87    

   Coins 505 7.05 20% 20% 30% 

   Copay 6600 92.09 $0  $0  $0  

Diagnostic Tests (DT)      

   Not Covered 5 0.03    

   Coins 6 0.08 20% 20% 20% 

   Copay 7159 99.89 $0  $0  $40  

Emergency Room (ER)      

   Not Covered 0 0    

   Coins 16 0.22 30% 35% 40% 

   Copay 7151 99.78 $0  $0  $250  

Generic Drugs (GD)      

   Not Covered 0 0    

   Coins 18 0.25 10% 10% 10% 

   Copay 7149 99.75 $0  $10  $15  

Habilitation Services (HA)      

   Not Covered 21 0.13    

   Coins 56 0.78 20% 20% 20% 

   Copay 7102 99.09 $0  $0  $25  

Inpatient Birth (IB)      

   Not Covered 5 0.03    

   Coins 8 0.11 27.50% 30% 30% 

   Copay 7157 99.86 $0  $0  $1  

Inpatient Physician (IH)      

   Not Covered 188 1.1    

   Coins 6 0.08 20% 20% 27.50% 

   Copay 7082 98.81 $0  $0  $0  

Outpatient Mental Health (OM)      

   Not Covered 5 0.03    

   Coins 1 0.01 50% 50% 50% 

   Copay 7164 99.96 $0  $0  $30  

Primary Care Physician (PC)      

   Not Covered 0 0    

   Coinsurance 0 0    

   Copay 7167 100 $0  $20  $30  

Specialist (SP)      

   Not Covered 0 0    

   Coinsurance 0 0    

   Copay 7167 100 $0  $30  $50  
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Appendix B: R Code 
 
Variable Selection: 
 
## --------------------------- 

## Script name: 1 - Variable Selection.R 

## 

## Author:Sam Powers 

## Date Created: 2021-02-17 

## 

## --------------------------- 

## Purpose of script: To create the dataset that will be used in analysis for my thesis on natural groupings in healthcare plan 

coverage for HIV 

##  This is script #1 in the analysis 

## 

## --------------------------- 

## set working directory 

 

setwd("/Volumes/GoogleDrive/My Drive/School/MA/ThesisThinking/Analysis") 

 

## --------------------------- 

## load up the packages we will need: 

 

library(tidyverse) 

options(scipen = 6, digits = 4) # I prefer to view outputs in non-scientific notation 

 

## --------------------------- 

## read in data: 

 

plans2019 <- read_csv("Data/plans_2019_raw.csv") 

 

 

# Data Assumptions -------------------------------------------------------- 

# We are only talking about individuals  

 

# Benefits that we want to consider: 

# HIV- Specific Set 

# - SP: Specialist (Infectious Diseases Dr.) 

# - DT: Diagnostic testing (HIV Labs); STIs, Kidney Function, Pregancy testing 

# - PV: Preventative Care (PV) 

# - OM: Outpatient Mental Health (For Behavioral Change Counseling) 

# - OS: Outpatient Substance 

# - PrEP coverage 

 

## Maybe group on the above and then group on the whole? 

 

# Generally Necessary for Monetary & Peace of Mind Purposes 

# - PC: Primary Care Physician 

# - AB: Ambulance 

# - ER: Emergency Room 

# - IH: Inpatient Physician 

# - GD: Generic Drugs 

# - HA: Habilitation Services 

# - OH: Outpatient Physician Care 

# - IB: Inpatient Birth 

 

 

names(plans2019) 

 

# What do we do with the tiering? 

# Do we want tier 1, tier 2 & out of network considerations? We could just assume that everyone goes in network 

 

plans2019 %>% 

  filter(CSR == 0, CHILDONLY == 0) %>% 

  pull(MULTITIERED) %>% mean() 

 

# Only 10% of the plans are multi-tiered. I don't think that justifies keeping Tier 2 in here. Maybe just keeping an indicator 

for the Multitiered variable 

# In order to account for restrictiveness.  

 

# Maybe we keep in network and out of network? 

reduced_plans <- 

plans2019 %>% 

  filter(CSR == 0, CHILDONLY == 0) %>% 

  select(YEAR,  

         hios_id = PLANID,  

         ST,  

         AREA,  

         CARRIER,  

         PLANNAME,  

         METAL,  

         PLANTYPE,  

         MULTITIERED, 

         PREMI27,  

         PREMI50, 

         NETWORKID,  

         contains(c("SP_", "DT_", "PV_", "OM_", "Ded", "MOOP",  

                    "PC_", "AB_", "ER_", "IH", "GD", "HA", "OM", "IB" # The second set of usefulness 

                    )  

                  ) 
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         ) %>% 

  select( 

    YEAR,  

    hios_id, 

    ST,  

    AREA,  

    CARRIER,  

    PLANNAME,  

    METAL,  

    PLANTYPE,  

    MULTITIERED, 

    PREMI27,  

    PREMI50, 

    NETWORKID,  

    contains("InnTier1"),  

    # contains("InnTier2"),  

    contains("OutofNet"),  

        -contains("Complex"), 

        -contains("Family") 

        )   

 

mean(plans2019$MULTITIERED) 

 

# How do I handle the Deductibles? In the data they can be split into drug and medical.  

 

# Data things to consider 

# Restrictiveness - is there some degree of usefulness in keeping in network, out of network, and  

 

 

# Bring in Truvada Formulary info ----------------------------------------- 

 

truv2019 <- read_csv("./Data/dpf2019_subset.csv") %>%  

  filter(ndc_package_code %in% c("61958-0701-01"))  

 

formulary_plans_2019 <- read_csv("Data/formulary_plans_2019.csv") 

 

formulary_plans_2019_plus_benefits <-  

plans2019 %>% 

  filter(CSR == 0, CHILDONLY == 0) %>% 

  select(hios_id = PLANID, contains(c("ND_", "SD_", "PD_", "GD_", "OS_")) , -contains(c("Tier2", "OutofNet", "LIMITED", "TIERS", 

"Complex") ) ) %>% 

  left_join(formulary_plans_2019) 

 

 

formulary_plans_2019_plus_benefits_plus_truv <- 

  formulary_plans_2019_plus_benefits %>% 

  left_join(truv2019) 

 

prep_coverage <- 

formulary_plans_2019_plus_benefits_plus_truv %>% 

  mutate( 

     

tier = case_when( 

  tier == "not_listed" ~ NA_character_, 

  TRUE ~ tier 

  ), 

     

PrEP_Coverage_Type = case_when( 

  tier == "non_preferred_brand" & ND_CopayInnTier1 %in% c(0,99) & ND_CoinsInnTier1 %in% c(0,99) ~ NA_character_, 

  tier == "non_preferred_brand" & ND_CopayInnTier1 == 0 & ND_CoinsInnTier1 > 0 ~ "Coinsurance", 

  tier == "non_preferred_brand" & ND_CopayInnTier1 >= 0 & ND_CoinsInnTier1 == 0 ~ "Copay", 

   

  tier == "non_preferred_specialty" & SD_CopayInnTier1 %in% c(0,99) & SD_CoinsInnTier1 %in% c(0,99) ~ NA_character_, 

  tier == "non_preferred_specialty" & SD_CopayInnTier1 == 0 & SD_CoinsInnTier1 > 0 ~ "Coinsurance", 

  tier == "non_preferred_specialty" & SD_CopayInnTier1 >= 0 & SD_CoinsInnTier1 == 0 ~ "Copay",     

   

  tier == "preferred_brand" & PD_CopayInnTier1 %in% c(0,99) & PD_CoinsInnTier1 %in% c(0,99) ~ NA_character_, 

  tier == "preferred_brand" & PD_CopayInnTier1 == 0 & PD_CoinsInnTier1 > 0 ~ "Coinsurance", 

  tier == "preferred_brand" & PD_CopayInnTier1 >= 0 & PD_CoinsInnTier1 == 0 ~ "Copay",     

   

  tier == "generic_brand" & GD_CopayInnTier1 %in% c(0,99) & GD_CoinsInnTier1 %in% c(0,99) ~ NA_character_, 

  tier == "generic_brand" & GD_CopayInnTier1 == 0 & GD_CoinsInnTier1 > 0 ~ "Coinsurance", 

  tier == "generic_brand" & GD_CopayInnTier1 >= 0 & GD_CoinsInnTier1 == 0 ~ "Copay", 

   

  TRUE ~ NA_character_ 

 ), 

 

PrEP_Covered = case_when( 

  tier %in% c("non_preferred_brand", "non_preferred_specialty", "preferred_brand", "generic_brand") ~ "Covered", 

  TRUE ~ "Not Covered" 

), 

 

prior_authorization = case_when( 

  PrEP_Covered == "Not Covered" ~ NA_character_, 

  TRUE ~ as.character(prior_authorization) 

) 

 

) %>% 

  select(hios_id, PrEP_Covered, PrEP_Coverage_Type, PrEP_Tier = tier, PrEP_PA = prior_authorization ) %>% 

  unique() 

 

 

# Final HIV Risk Factors Data --------------------------------------------- 

hiv_prevention_benefits <- 

reduced_plans %>% 
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  left_join(prep_coverage) 

nrow(hiv_prevention_benefits) 

 

write_csv(hiv_prevention_benefits, path = "Data/hiv_prevention_plus_general_benefits.csv") 

Distance Metric 
 

## --------------------------- 

## Script name: 2 - Distance Matrix.  

## 

## Author:Sam Powers 

## Date Created: 2021-04-28 

## 

## --------------------------- 

## Purpose of script: To calculate the pairwise distances between plans.  

##    

## 

## --------------------------- 

## load up the packages we will need: 

 

library(tidyverse) 

library(data.table) 

 

## --------------------------- 

## read in data: 

 

hiv_all <- read_csv("hiv_prevention_plus_general_benefits.csv") 

 

names(hiv_all) 

 

# Select only the In Network Benefits 

innet_all <- 

  hiv_all %>% 

  mutate(id = paste0("plan", 1:n())) %>% # create the ID  

  select(-contains("Outof")) %>% 

  mutate( 

    DEDUCTInn = case_when( 

      is.na(TEHBDedInnTier1IndividualA) ~  MEHBDedInnTier1IndividualA + DEHBDedInnTier1IndividualA, 

      TRUE  ~ TEHBDedInnTier1IndividualA 

    ), 

     

    MOOPInn = case_when( 

      is.na(TEHBInnTier1IndividualMOOPA) ~ as.numeric( MEHBInnTier1IndividualMOOPA + DEHBInnTier1IndividualMOOPA), 

      TRUE ~ TEHBInnTier1IndividualMOOPA 

    ) 

  ) %>% 

  select(-contains("EHB")) 

 

 

# Recode the benefits for the nested structure to work 

benefits_recoded <- 

  innet_all %>% 

  select(id, contains("InnTier1")) %>% 

  gather(label, value, -id)  %>%  

  separate(label, c("benefit", "type"), sep = "_") %>% 

  separate(type, c("coverage_type", "value_label"), "Inn") %>% 

  spread(value_label, value) %>% 

  select(-Tier1) %>% 

  spread(coverage_type, Tier1A) %>% 

  mutate(type = case_when( 

    !is.na(Coins) ~ "coins",  

     !is.na(Copay) ~ "copay", 

    TRUE ~ "not covered" 

    ) 

    ) %>% 

  gather(type_vec, values, -id, -benefit) %>%  

  mutate(benefit_code = paste0(benefit, "_", type_vec)) %>% 

  select(-benefit, -type_vec) %>% 

  spread(benefit_code, values) %>% 

  mutate(across(contains(c("Copay", "Coins") ), as.numeric   )) 

 

 

# Get the Administrative Information  ------------------------------------------------------------------ 

plan_info <- 

  innet_all %>% 

  select(id, YEAR, hios_id, ST, AREA, CARRIER, PLANNAME, METAL, PLANTYPE, NETWORKID) 

 

 

# Get clustering Data  --------------------------------------------------- 

plan_data_final <- 

  innet_all %>% 

  select(id, everything(),   -contains("InnTier1"), - YEAR, - hios_id, -ST, -AREA, -CARRIER, - PLANNAME, - METAL, - PLANTYPE, -

NETWORKID, - PREMI50   ) %>% 

  left_join(benefits_recoded) %>% 

  select( -contains("PV")) %>%                 # Remove preventative care because it has no variance to it.  

  mutate(PrEP_PA = as.character(PrEP_PA)) %>% 

  mutate(PrEP_Coverage_Type = str_sub(str_to_lower(PrEP_Coverage_Type), 1, 5) ) %>% 

  filter(!is.na(DEDUCTInn), !is.na(MOOPInn)) 

 

nrow(innet_all)    - 

nrow(plan_data_final) 

 

benefit_types <-     

names(plan_data_final)[grepl("type", str_to_lower(names(plan_data_final))  )] 

 



 102 

# Check for missing data 

map_df(benefit_types, 

       ~  tibble(var = .x, 

                 na = sum(is.na(plan_data_final[, .x]))) 

       ) 

 

map_df(benefit_types, 

       ~  tibble(var = .x, 

                 na = sum(plan_data_final[, .x] == "not covered"  )) 

) 

 

 

map_df(c("DEDUCTInn", "MOOPInn"), 

       ~  tibble(var = .x, 

                 na = sum(is.na(plan_data_final[, .x]) )) 

) 

 

 

 

# Distance calculations --------------------------------------------------- 

trial <- 

  plan_data_final  

 

# Create all pairwise combinations of plans.  

combos <- 

  CJ(1:nrow(trial), 1:nrow(trial), unique = TRUE) %>% 

  filter(V2 > V1) %>% 

  mutate(id = 1:n()) 

 

# Extract the numeric cols 

numeric_cols <- trial %>% 

  select(where(is.numeric)) %>% 

  names() 

 

# Extract the character cols 

character_cols <- trial %>% 

  select(where(is.character), -id) %>% 

  names() 

 

length(names(plan_data_final)) 

length(numeric_cols) 

length(character_cols) 

 

# Get the ranges for the numeric variables  

max_na <- function(x) max(x, na.rm = TRUE) 

min_na <- function(x) min(x, na.rm = TRUE) 

 

ranges <-  

  data.frame(t(apply(plan_data_final[,numeric_cols], 2, max_na ) -  

                 apply(plan_data_final[,numeric_cols], 2, min_na))) 

 

range_numeric <- ranges[rep(1, nrow(combos)), ] # create a matrix of the ranges with the right number of rows equivalent to the 

number of pairwise combinations 

 

numeric_distances <-   # Calculate the range-scaled difference for all of the pairwise combinations.  

  abs(trial[c(combos$V1), numeric_cols] - trial[c(combos$V2), numeric_cols])/range_numeric %>% 

  as_tibble() 

 

categorical_distances <-  # check for equality in the character vals in all possible combos. Set to 0 if equal and 1 if else 

  (1 -  (trial[c(combos$V1), character_cols] == trial[c(combos$V2), character_cols])  ) %>% 

  as_tibble() 

 

sum_na <- function(x) sum(x, na.rm  = TRUE) 

non_na <- function(x) sum(!is.na(x)) 

 

combos$numeric_distance <- apply(numeric_distances, 1, sum_na) # sum of numeric distances 

combos$numeric_denom <-  apply(numeric_distances, 1, non_na)   # denominator of numeric distances 

 

combos$categoric_distance <- apply(categorical_distances, 1, sum_na) # sum of categorical distances 

combos$categoric_denom <-  apply(categorical_distances, 1, non_na)   # denominator of categorical distances 

 

combos$total_distance = combos$numeric_distance + combos$categoric_distance # total distance 

combos$total_denom =  combos$numeric_denom + combos$categoric_denom         # total denominator 

 

combos$distance = combos$total_distance/combos$total_denom  # average distance 

 

# Create the distance matrix 

dist_mat <- 

  combos %>% 

  select(V1, V2, distance) %>% 

  spread(V2, distance) %>% 

  as.matrix() 

 

dist_mat <- dist_mat[,-1] 

 

dist_mat <- cbind( rep(0, nrow(dist_mat)), 

                   dist_mat) 

 

dist_mat <- rbind(dist_mat, 

                  rep(0, ncol(dist_mat)) 

) 

 

dist_mat[is.na(dist_mat)] <- 0 

 

dist_mat_final = dist_mat + t(dist_mat) 
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colnames(dist_mat_final) <- trial$id 

rownames(dist_mat_final) <- trial$id 

 

save(dist_mat_final, file = "distance_matrix_all_benefits.Rdata") 

 

 

Clustering: 
 
## --------------------------- 

## Script name: 3 - Cluster.R 

## 

## Author:Sam Powers 

## Date Created: 2021-04-28 

## 

## --------------------------- 

## Purpose of script: To run the clustering trials with the complete distance matrix.  

##    

## 

## --------------------------- 

## load up the packages we will need: 

 

library(tidyverse) 

library(cluster) 

library(fastcluster) 

library(fpc) 

 

## --------------------------- 

## read in data: 

 

load("distance_matrix_all_benefits.Rdata") 

 

 

# Complete Linkage -------------------------------------------------------- 

 

dist_mat_all <- dist_mat_final 

 

dist_mat_all_use <- as.dist(dist_mat_all) 

 

clust_all <- hclust(dist_mat_all_use) 

 

# Cophenetic Distance 

cc_all <- 

  cophenetic(clust_all) 

 

cc_cor_all  <- 

  cor(dist_mat_all_use, cc_all) 

 

cc_cor_all  #  0.7343951 

# Index of Agreement 

 

IOA <- function(distance, cophenetic_distance) { 

  o_bar <- mean(distance) 

  numerator <- sum((cophenetic_distance - distance)**2) 

  denom <- sum((abs(cophenetic_distance - o_bar) + abs(distance - o_bar))**2 ) 

   

  ioa <- 1 - (numerator/denom) 

   

  print(ioa) 

} 

 

IOA_all <-  

  IOA(dist_mat_all_use, cc_all) 

 

IOA_all #  0.4992368 

 

# selection criteria ------------------------------------------------------ 

 

silhouette_df_all <-  

  tibble( 

    k = 2:20 

  ) %>% 

  mutate( 

    sil = map(k, ~silhouette(cutree(clust_all, k = .x), dist_mat_all_use)), 

    sil_sum = map(sil, ~summary(.x)), 

    avg_sil = as.numeric(map_chr(sil_sum, ~.x["avg.width"][1][[1]])) 

  ) 

 

 

ggplot(silhouette_df_all, aes(x  = k, y = avg_sil)) + 

  geom_point() + 

  geom_line() + 

  labs(x = "Clusters", y = "Average Silhouette Distance") + 

  scale_y_continuous( 

    limits = c(0, .5),  

    breaks = seq(0, .5, .1)  

    ) + 

  scale_x_continuous(limits = c(0, 20), breaks = seq(0, 20, 1)) 

 

silhouette_df_all 

# Okay, so it loads into 2,3 or 4 clusters nicely.  

 

complete_linkage <-  
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map_df(2:4, 

~cutree(clust_all, k = .x) %>% 

  data.frame() %>% 

  rownames_to_column() %>% 

  tibble() %>% 

  rename( 

    plan_id = rowname, 

 #   cluster = `.` 

  ) %>% 

  mutate(algorithm = paste0("complete", .x)) 

) %>% 

  spread(algorithm, 2) 

 

 

table(complete_linkage$complete2) 

table(complete_linkage$complete3) 

table(complete_linkage$complete4) 

 

 

# Try a PAM --------------------------------------------------------------- 

 

# PAM Method 

sil_width_all <- c(NA) 

for(i in 2:10){   

  pam_fit <- pam(dist_mat_all_use, diss = TRUE, k = i)   

  sil_width_all[i] <- pam_fit$silinfo$avg.width   

  print(sil_width_all) 

} 

 

 

plot(1:length(sil_width_all), sil_width_all, 

     xlab = "Number of clusters", 

     ylab = "Silhouette Width") 

lines(1:length(sil_width_all), sil_width_all) 

 

ggplot(tibble(k = 1:length(sil_width_all), avg_sil =sil_width_all ), aes(x  = k, y = avg_sil)) + 

  geom_point() + 

  geom_line() + 

  labs(x = "Clusters", y = "Average Silhouette Distance") + 

  scale_y_continuous( 

    limits = c(0, .5),  

    breaks = seq(0, .5, .1)  

  ) + 

  scale_x_continuous(limits = c(0, 10), breaks = seq(0, 20, 1)) 

 

 

# This is into 2 or 3 max.  

 

pam_fit_2 <- pam(dist_mat_all_use, diss = TRUE, k = 2)   

pam_fit_3 <- pam(dist_mat_all_use, diss = TRUE, k = 3)   

 

pam_fit_2$silinfo$avg.width 

pam_fit_3$silinfo$avg.width 

 

pams <- 

pam_fit_2$clustering %>% 

data.frame() %>% 

  rownames_to_column() %>% 

  tibble() %>% 

  rename( 

    plan_id = rowname, 

    pam2 = 2 

  )  %>% 

  left_join( 

 

pam_fit_3$clustering %>% 

  data.frame() %>% 

  rownames_to_column() %>% 

  tibble() %>% 

  rename( 

    plan_id = rowname, 

    pam3 = 2 

  )  

) 

 

# Try a different hierarchical joining method ----------------------------- 

 

clust_ward <- hclust(dist_mat_all_use, method = "ward.D2") 

#plot(full_clust) 

 

# Cophenetic Distance 

cc_ward <- 

  cophenetic(clust_ward) 

 

cc_cor_ward  <- 

  cor(dist_mat_all_use, cc_ward) 

 

cc_cor_ward  #  0.6830316 

# Index of Agreement 

 

IOA <- function(distance, cophenetic_distance) { 

  o_bar <- mean(distance) 

  numerator <- sum((cophenetic_distance - distance)**2) 

  denom <- sum((abs(cophenetic_distance - o_bar) + abs(distance - o_bar))**2 ) 
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  ioa <- 1 - (numerator/denom) 

   

  print(ioa) 

} 

 

IOA_ward <-  

  IOA(dist_mat_all_use, cc_ward) 

 

IOA_ward # 0.01360921 Ooh, this isnt good.  

 

# selection criteria ------------------------------------------------------ 

 

silhouette_df_ward <-  

  tibble( 

    k = 2:20 

  ) %>% 

  mutate( 

    sil = map(k, ~silhouette(cutree(clust_ward, k = .x), dist_mat_all_use)), 

    sil_sum = map(sil, ~summary(.x)), 

    avg_sil = as.numeric(map_chr(sil_sum, ~.x["avg.width"][1][[1]])) 

  ) 

 

ggplot(silhouette_df_ward, aes(x  = k, y = avg_sil)) + 

  geom_point() + 

  geom_line() + 

  labs(x = "Clusters", y = "Average Silhouette Distance") + 

  scale_y_continuous( 

    limits = c(0, .5),  

    breaks = seq(0, .5, .1)  

  ) + 

  scale_x_continuous(limits = c(0, 20), breaks = seq(0, 20, 1)) 

 

 

ward_linkage <-  

  map_df(2:5, 

         ~cutree(clust_ward, k = .x) %>% 

           data.frame() %>% 

           rownames_to_column() %>% 

           tibble() %>% 

           rename( 

             plan_id = rowname, 

             #   cluster = `.` 

           ) %>% 

           mutate(algorithm = paste0("ward", .x)) 

  ) %>% 

  spread(algorithm, 2) 

 

 

# Try the average method -------------------------------------------------- 

 

clust_avg <- hclust(dist_mat_all_use, method = "average") 

#plot(full_clust) 

 

# Cophenetic Distance 

cc_avg <- 

  cophenetic(clust_avg) 

 

cc_cor_avg  <- 

  cor(dist_mat_all_use, cc_avg) 

 

cc_cor_avg  #  0.7814216 

 

# Index of Agreement 

 

IOA <- function(distance, cophenetic_distance) { 

  o_bar <- mean(distance) 

  numerator <- sum((cophenetic_distance - distance)**2) 

  denom <- sum((abs(cophenetic_distance - o_bar) + abs(distance - o_bar))**2 ) 

   

  ioa <- 1 - (numerator/denom) 

   

  print(ioa) 

} 

 

IOA_avg <-  

  IOA(dist_mat_all_use, cc_avg) 

 

IOA_avg #   0.8680168 this great! 

 

# selection criteria ------------------------------------------------------ 

 

silhouette_df_avg <-  

  tibble( 

    k = 2:10 

  ) %>% 

  mutate( 

    cut_tree = map(k, ~cutree(clust_avg, k = .x)), 

    sil = map(cut_tree, ~silhouette(.x, dist_mat_all_use)), 

    sil_sum = map(sil, ~summary(.x)), 

    avg_sil = as.numeric(map_chr(sil_sum, ~.x["avg.width"][1][[1]])) 

  ) 

 

silhouette_df_avg$cut_tree[[1]] 
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ggplot(silhouette_df_avg, aes(x  = k, y = avg_sil)) + 

  geom_point() + # 5 comes back around 

  geom_line() + 

  labs(x = "Clusters", y = "Average Silhouette Distance") + 

  scale_y_continuous( 

    limits = c(0, .5),  

    breaks = seq(0, .5, .1)  

  ) + 

  scale_x_continuous(limits = c(0, 20), breaks = seq(0, 20, 1)) 

 

average_linkage <-  

  map_df(2:5, 

         ~cutree(clust_avg, k = .x) %>% 

           data.frame() %>% 

           rownames_to_column() %>% 

           tibble() %>% 

           rename( 

             plan_id = rowname, 

             #   cluster = `.` 

           ) %>% 

           mutate(algorithm = paste0("average", .x)) 

  ) %>% 

  spread(algorithm, 2) 

 

# Try the single method -------------------------------------------------- 

 

clust_single <- hclust(dist_mat_all_use, method = "single") 

#plot(full_clust) 

 

# Cophenetic Distance 

cc_single <- 

  cophenetic(clust_single) 

 

cc_cor_single  <- 

  cor(dist_mat_all_use, cc_single) 

 

cc_cor_single  #   0.3326598 

# Index of Agreement 

 

IOA <- function(distance, cophenetic_distance) { 

  o_bar <- mean(distance) 

  numerator <- sum((cophenetic_distance - distance)**2) 

  denom <- sum((abs(cophenetic_distance - o_bar) + abs(distance - o_bar))**2 ) 

   

  ioa <- 1 - (numerator/denom) 

   

  print(ioa) 

} 

 

IOA_single <-  

  IOA(dist_mat_all_use, cc_single) 

 

IOA_single #  0.4281735 t his eh! 

 

# selection criteria ------------------------------------------------------ 

sil <- NULL 

 

silhouette_df_single <-  

  tibble( 

    k = 2:20 

  ) %>% 

  mutate( 

    sil = map(k, ~silhouette(cutree(clust_single, k = .x), dist_mat_all_use)), 

    sil_sum = map(sil, ~summary(.x)), 

    single_sil = as.numeric(map_chr(sil_sum, ~.x["avg.width"][1][[1]])) 

  ) 

 

ggplot(silhouette_df_single, aes(x  = k, y = single_sil)) + 

  geom_point() + 

  geom_line() + 

  labs(x = "Clusters", y = "Average Silhouette Distance") + 

  scale_y_continuous( 

    limits = c(-.5, .5),  

    breaks = seq(-.5, .5, .1)  

  ) + 

  scale_x_continuous(limits = c(0, 20), breaks = seq(0, 20, 1)) 

 

 

# Join them together ------------------------------------------------------ 

cluster_assignments <- 

complete_linkage %>% 

  left_join(pams) %>% 

  left_join(average_linkage) %>% 

  left_join(ward_linkage) 

 

write_csv(cluster_assignments, path = "cluster_assignments.csv") 
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Plots and Tables: 
 
## --------------------------- 

## Script name: 4 - Plots and Tables 

## 

## Author:Sam Powers 

## Date Created: 2021-04-28 

## 

## --------------------------- 

## Purpose of script: To create the plots and tables for the results section of my thesis.  

##    

## 

## --------------------------- 

## set working directory 

 

setwd()  

 

## --------------------------- 

## load up the packages we will need: 

 

library(tidyverse ) 

library(urbnmapr) 

library(sf) 

 

 

## --------------------------- 

## read in data: 

 

plan_data_final <- read_csv("plan_data_final.csv") 

cluster_asignments <- read_csv("cluster_assignments.csv") 

clustered_plans <- read_csv("clustered_plans_final.csv") 

 

# Number of Plans --------------------------------------------------------- 

 

nrow(plan_data_final) 

  

 # Table 1: Benefits ----------------------------------------------------------------- 

benefit_labels <- 

  tibble( 

    benefit  =  

      c( 

        "SP", 

        "DT", 

        "PV", 

        "OM", 

        "OS", 

        "PC", 

        "AB", 

        "ER", 

        "IH", 

        "GD", 

        "HA", 

        "OH", 

        "IB" 

      ), 

    label =  

      c( 

         

        "Specialist",  

        "Diagnostic Tests",  

        "Preventative Care",  

        "Outpatient Mental Health",  

        "Outpatient Substance", 

        "Primary Care Physician", 

        "Ambulance", 

        "Emergency Room", 

        "Inpatient Physician", 

        "Generic Drugs", 

        "Habilitation Services", 

        "Outpatient Physician Care", 

        "Inpatient Birth" 

      ) 

  ) 

 

table1_benefit_codes <- 

plan_data_final %>% 

  select(contains(c("Coins", "Copay")   ), -contains("PrEP")) %>% 

  gather(benefit, value ) %>% 

  separate(benefit, c("benefit", "type"), sep = "_" ) %>% 

  group_by(benefit, type) %>% 

  filter(!is.na(value)) %>% 

  summarize(count = n(),  

            low = quantile(value, .25, na.rm = TRUE),  

            med = quantile(value, .5, na.rm = TRUE),  

            hi = quantile(value, .75, na.rm = TRUE)  

  ) %>% 

  mutate(pct = count /nrow(plan_data_final)   ) %>% 

  group_by(benefit) %>% 

  mutate( `Not Covered` = 1- sum(pct)) %>% 

  spread(type, pct) %>% 

  gather(type, pct, -c(benefit:hi)) %>% 

  arrange(benefit) %>% 

  filter(!is.na(pct)) %>% 
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  ungroup() %>% 

  mutate(count =  

           case_when( type == "Not Covered" ~ round(nrow(plan_data_final)* pct), 

                      TRUE ~ as.numeric(count) 

           ) 

  ) %>% 

  mutate( 

    across( c(low, med, hi), ~case_when(type == "Not Covered" ~ NA_real_, TRUE ~ .x) ) 

  ) %>% 

  distinct() %>% 

  mutate(pct = round(pct*100, 2)) %>% 

  select(benefit, type, count, pct, low, med, hi) %>% 

  split(.$benefit) %>% 

  map_dfr(., ~rbind( c(unique(.x$benefit), NA, NA, NA, NA, NA, NA), .x   ) 

  ) %>% 

  left_join(benefit_labels) %>% 

   

   

  mutate( 

    across(c(low, med, hi), ~case_when(type == "Copay" ~ paste0("$",.x), 

                                       type == "Coins" ~ paste0(.x, "%") 

                                        

       ) 

    ),  

     

    type = case_when( 

      is.na(type)  ~ paste0(label, " (", benefit, ")")  , 

      TRUE ~ paste0("   ",type) 

    ) 

  ) %>% 

  select(-benefit, -label) %>% 

  mutate(across(everything(), as.character), 

         across(everything(), ~case_when(is.na(.x) ~ "", 

                                        TRUE ~ .x)) 

         ) %>% 

  select(Benefit = 1, `Number of Plans` = 2, `Percent` = 3, Q1 = 4, Median = 5, Q3 = 6) 

 

table1_benefit_codes 

write_csv(table1_benefit_codes, path = "table1_benefits.csv") 

 

 

plan_data_final %>% 

  select(DT_Copay) %>% 

  filter(!is.na(DT_Copay)) %>% 

  summarize( mean(DT_Copay == 0)) 

 

 

 

# Table 1: PrEP Characteristics ------------------------------------------- 

 

table1_prep <- 

plan_data_final %>% 

  select(contains("PrEP")) %>% 

  gather(var, level) %>% 

  group_by(var, level) %>% 

  summarize(count = n()) %>% 

  ungroup() %>% 

  mutate(level =  

    case_when( 

      is.na(level) ~ "Not Covered", 

      level == "TRUE" ~ "Requires PA", 

      level == "FALSE" ~ "No PA", 

      TRUE ~ str_to_title(  str_replace_all(level, "_", " ")) 

      ), 

       

      var = case_when( 

        var == "PrEP_PA" ~ "Prior Authorization", 

        var == "PrEP_Coverage_Type" ~ "Coverage Strategy", 

        var == "PrEP_Covered" ~ "Coverage", 

        TRUE ~ str_replace_all(var, "PrEP_|", "") 

      ) 

    ) %>% 

  arrange(var) %>% 

  mutate( 

    pct = round(count/nrow(plan_data_final) *100,2 ) 

  ) %>% 

  split(.$var) %>% 

  map_df(.,  ~rbind(  c( unique(.x$var), NA, NA, NA), .x) 

     

  ) %>% 

  mutate(across(everything(), as.character), 

         across(everything(), ~case_when(is.na(.x) ~ "", TRUE ~ .x)), 

         level = case_when( 

           level == "" ~ paste0(level, var), 

           TRUE ~ paste0("   ", level) 

            

         ) 

         ) %>% 

  select(Characteristic = level, `Number of Plans` = count, Percent = pct) 

   

write_csv(table1_prep, path = "table1_prep.csv") 

 

   

 

# Table 1: Admin ---------------------------------------------------------- 
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plan_data_final %>% 

  select( 

    PREMI27, 

    DEDUCTInn, 

    MOOPInn 

  ) %>% 

  gather(label, value) %>% 

  group_by(label) %>% 

  summarize( 

    low = quantile(value, .25, na.rm = TRUE),  

    med = quantile(value, .5, na.rm = TRUE),  

    hi = quantile(value, .75, na.rm = TRUE)  

  ) 

   

mean(plan_data_final$MULTITIERED) 

sum(plan_data_final$MULTITIERED) 

 

names(plan_data_final) 

 

 

 

# Cluster Sizes ----------------------------------------------------------- 

 

clusters_considered <- 

names(cluster_assignments)[c(2, 5, 6, 7, 10, 11, 12)] 

 

 

cluster_sizes <-  

  map_df(clusters_considered, 

          

         ~  cluster_assignments %>% 

           group_by(cluster = !!sym(.x)   ) %>% 

           count() %>% 

           mutate(cluster_method = .x) %>% 

           spread(cluster, n) 

  ) 

 

cluster_sizes %>% 

  arrange(cluster_method) %>% 

  mutate( 

    number_clust = str_sub(cluster_method, -1, -1), 

    method = str_to_sentence(str_sub(cluster_method, 1, -2)) 

  ) %>% 

  mutate(across(where(is.numeric), as.character))  %>% 

  mutate(across(everything(), ~case_when(is.na(.x) ~"", TRUE ~.x))  ) %>% 

  select(Method = method, Clusters = number_clust, 2:6) %>% 

  write_csv(., path = "cluster_sizes.csv") 

 

 

clustered_plans %>% 

  filter(average5 == 5) %>%  

  View() 

 

(141 + 8)/nrow(clustered_plans) 

 

 

3527/(13534 + 3527) 

6499/(10562 + 6499) 

 

 

# Plan Characteristic Graphics -------------------------------------------- 

 

clusters_considered2 <- c("noclusters1", clusters_considered )[c(1, 5, 2, 3, 4, 7, 8)] 

clusters_considered2 

 

## Coinsurance Prevalence 

coins_copay_data_prep <- 

  clustered_plans %>% 

  select(contains("type"), all_of(clusters_considered2), -PLANTYPE) %>% 

  mutate( 

    across(where(is.character), str_to_lower), 

    across(contains("type"), ~ case_when(.x == "copay" ~ 0, TRUE ~ 1)) 

  )  

 

cluster_results <- map_df(  clusters_considered2,  

                            ~ coins_copay_data_prep %>% 

                              group_by(cluster = !!sym(.x ) )%>% 

                              summarize(across(contains("type"), mean), n = n()) %>% 

                              mutate(grouping_type = .x) %>% 

                              select(grouping_type, cluster, everything()) 

) %>% 

  gather(benefit, coins_pct, -grouping_type, -cluster, -n) %>% 

  separate(benefit, c("benefit", NA), sep = "_") %>% 

  mutate(cluster = paste0("Cluster ", cluster)) %>% 

  mutate( 

    grouping_type =  

      factor( 

        grouping_type, 

        levels = c( 

          "noclusters1", 

          "average2", 

          "complete2", 

          "ward2", 

          "ward3", 
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          "pam2", 

          "pam3" 

           

        ) 

      ) 

  ) 

 

ggplot(cluster_results, # %>% 

         #filter(grepl("pam|noclusters", grouping_type)), 

       aes( 

         x = benefit, 

         y  = coins_pct, 

         fill = as.factor(cluster) 

       )) + 

  geom_col(position = "dodge") + 

  geom_text(aes(x = "IB", y = .7, label = n), hjust = .5       ) + 

  coord_cartesian(clip = "off") + 

  facet_grid(grouping_type ~ cluster) + 

  theme(axis.text.x = element_text(angle = 90)) + 

  labs(x = "Benefit", y = "Plans With Coinsurance, %") + 

  scale_y_continuous(limits = c(0, 1),  

                     labels = function(x) paste0(round(x*100), "%")  

                     ) + 

  theme( 

    legend.position = "none" 

  ) 

 

 

 

# Ward's 3 Cluster Solution ----------------------------------------------- 

 

 

# Get Copay/Coins Amounts  

coins_copay_amounts <- 

  clustered_plans %>% 

  select(contains(c("_Coins", "_Copay")   ), all_of(clusters_considered2)) %>% 

  mutate( 

    across(contains("type"), ~ case_when(.x == "copay" ~ 0, TRUE ~ 1)) 

  )  

 

 

copay_coins_vals <- map_df(  clusters_considered2,  

                             ~ coins_copay_amounts %>% 

                               group_by(cluster = !!sym(.x ) )%>% 

                               summarize(across(contains(c("_Coins", "_Copay")),  

                                                list( low = ~quantile(.x, .25, na.rm = TRUE), 

                                                      med = ~quantile(.x, .5, na.rm = TRUE), 

                                                      hi = ~quantile(.x, .75, na.rm = TRUE) 

                                                       

                                                      # sd = ~sd(.x, na.rm = TRUE) 

                                                )   

                               )   

                               ) %>% 

                               mutate(cluster_strategy = .x) %>% 

                               select(cluster_strategy, everything()) 

)  %>% 

  gather( benefit, number, -cluster_strategy, -cluster 

  ) %>% 

  separate(benefit, c("benefit", "type", "bound"), sep = "_") 

 

 

 

ward3_benefit <- 

  cluster_results %>% 

  filter(grouping_type == "ward3" | grouping_type == "noclusters1") %>% 

  mutate(type = "Plans With Coins, %")  %>% 

  filter(!benefit == "PrEP") %>% 

  mutate(coins_pct = coins_pct *100) 

 

ward3_vals <-  

copay_coins_vals %>% 

  filter(cluster_strategy == "ward3" | cluster_strategy == "noclusters1") %>% 

  mutate(cluster = paste0("Cluster ", cluster), 

         type = case_when( 

           type == "Coins" ~ "Coins Amount, %", 

           type == "Copay" ~ "Copay Amount, $" 

         ) 

            

            

           ) %>% 

  spread(bound, number)  %>% 

  rename( 

    grouping_type = cluster_strategy 

  )  

 

ward3_facts <-  

  ward3_benefit %>% 

  bind_rows(ward3_vals) %>% 

mutate(cluster = 

  case_when( 

    grouping_type == "noclusters1" ~ "No Cluster", 

    cluster == "Cluster 1" ~ "Cluster 2", 

    cluster == "Cluster 2" ~ "Cluster 1", 

    TRUE ~ cluster 

      ) 
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  )%>% 

  mutate( 

    cluster  = factor(cluster, levels = c("No Cluster", "Cluster 1", "Cluster 2", "Cluster 3")) 

  ) 

 

# Copay/Coins Amounts 

ggplot(ward3_facts, aes(x = benefit, color = cluster, fill = cluster)) + 

  geom_col(aes(y = coins_pct) ) + 

  geom_point(aes(y  = med)) + 

  geom_errorbar(aes(ymin = low, ymax = hi)) + 

  facet_grid(type ~ cluster, scales = "free_y", switch = "y") + 

 # scale_y_continuous(position = "right") + 

  coord_cartesian(clip = "off") + 

  labs( y = "", x = "") + 

  theme( 

    legend.position = "none", 

    strip.background = element_blank(), 

          strip.placement = "outside" 

  ) 

  

   

## How they handle PrEP 

clustered_plans$PrEP_PA 

prep_info <- 

  clustered_plans %>% 

  select(contains("PrEP"), all_of(cluster_types)) %>% 

  mutate( 

    across(where(is.character), str_to_lower), 

    across(contains("type"), ~ case_when(.x == "copay" ~ 0, TRUE ~ 1)), 

    across(contains("Covered"), ~ case_when(.x == "covered" ~ 0, TRUE ~ 1)), 

    across(contains("_PA"), ~ case_when(.x == "FALSE" ~ 0, TRUE ~ 1)), 

    across(contains("Tier"), ~ case_when(.x == "non_preferred_specialty" ~ 1, TRUE ~ 0)) 

  )  

unique(prep_info$pam2) 

 

 

prep_results <- map_df(  clusters_considered2,  

                         ~ prep_info %>% 

                           group_by(cluster = !!sym(.x ) )%>% 

                           summarize(across(contains("PrEP"), mean), n = n()) %>% 

                           mutate(grouping_type = .x) %>% 

                           select(grouping_type, cluster, everything()) 

) %>% 

  gather(benefit, pct, -grouping_type, -cluster, -n) %>% 

  filter( 

    grouping_type == "ward3" | grouping_type == "noclusters1" 

  ) %>% 

  mutate( 

    cluster = paste0("Cluster ", cluster), 

  cluster =  

           case_when( 

             grouping_type == "noclusters1" ~ "No Cluster", 

             cluster == "Cluster 1" ~ "Cluster 2", 

             cluster == "Cluster 2" ~ "Cluster 1", 

             TRUE ~ cluster 

           ), 

 

  benefit = case_when( 

    benefit == "PrEP_PA" ~ "Prior Auth", 

    benefit == "PrEP_Coverage_Type" ~ "Coinsurance", 

    benefit == "PrEP_Covered" ~ "Not Covered", 

    benefit == "PrEP_Tier"  ~ "Specialty", 

    TRUE ~ str_replace_all(benefit, "PrEP_|", "") 

 

  ), 

 

  benefit = factor(benefit, levels = c("Not Covered", "Coinsurance", "Prior Auth", "Specialty" )), 

  cluster  = factor(cluster, levels = c("No Cluster", "Cluster 1", "Cluster 2", "Cluster 3")) 

   

) 

   

   

 prep_results 

 

ggplot(prep_results %>% 

         filter(grepl("ward|noclusters", grouping_type)), 

       aes( 

         x = benefit, 

         y  = pct, 

         fill = as.factor(cluster) 

       )) + 

  geom_col(position = "dodge") + 

  # geom_text(aes(x = "IB_type", y = .7, label = n), hjust = .5       ) + 

  coord_cartesian(clip = "off") + 

  facet_grid(~cluster ) + 

  theme(axis.text.x = element_text(angle = 90)) + 

  theme( 

    legend.position  = "none" 

  ) + 

  labs(y = "Plans With Characteristic, %",  x = "" ) + 

  scale_y_continuous( labels = function(x) paste0(x*100,"%")) 

 

 

## Admin Vars 

admin_vars <- 
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deduct_prem %>% 

  gather(cluster_type, cluster_number,-contains(money_vars)) %>% 

  mutate( 

    cluster_strategy = str_sub(cluster_type, 1,-2), 

    num_clusters = str_sub(cluster_type,-1,-1) 

  ) %>% 

  filter(cluster_type == "ward3" | 

           cluster_type == "noclusters1") %>% 

  mutate( 

  cluster = paste0("Cluster ", cluster_number), 

  cluster = case_when( 

    cluster_type == "noclusters1" ~ "No Cluster", 

             cluster == "Cluster 1" ~ "Cluster 2", 

             cluster == "Cluster 2" ~ "Cluster 1", 

             TRUE ~ cluster 

           ), 

     

    cluster  = factor( 

      cluster, 

      levels = c("No Cluster", "Cluster 1", "Cluster 2", "Cluster 3") 

    ) 

     

  )  %>% 

  rename(Deductible = DEDUCTInn, 

         `Premium/Month` = PREMI27, 

         MOOP = MOOPInn) %>% 

  select(Deductible, `Premium/Month`, MOOP, cluster) %>% 

  gather(money, 

         amount, 

         -cluster) 

 

  ggplot(admin_vars, aes(x = cluster, y = amount, fill = cluster)) + 

  geom_boxplot() + 

  facet_grid(money ~ cluster, scales = "free")+ 

    labs(x = "", y = "") + 

    scale_y_continuous(labels = function(x) paste0("$", x)) + 

    theme( 

      legend.position = "none" 

    ) 

   

   

 

# Table 1's for the Clusters ---------------------------------------------- 

 

## Benefits 

clustered_table1_benefit_codes <- 

 map(1:3,    

     

   ~ clustered_plans %>% 

    filter(ward3 == .x) %>% 

    group_by(ward3) %>% 

    mutate(denom = n()) %>% 

    select(contains(c("Coins", "Copay")   ), -contains("PrEP"), ward3, denom) %>% 

    gather(benefit, value,  -ward3, -denom ) %>% 

    separate(benefit, c("benefit", "type"), sep = "_" ) %>% 

    group_by(ward3, denom, benefit, type) %>% 

    filter(!is.na(value)) %>% 

    summarize(count = n(),  

              low = quantile(value, .25, na.rm = TRUE),  

              med = quantile(value, .5, na.rm = TRUE),  

              hi = quantile(value, .75, na.rm = TRUE)  

    ) %>%  

    mutate(pct = count /denom   ) %>% 

    ungroup() %>% 

    select(-denom) %>% 

    group_by(ward3, benefit) %>% 

    mutate( `Not Covered` = 1- sum(pct)) %>%  

    spread(type, pct) %>% 

    gather(type, pct, -c(ward3,benefit:hi)) %>%  

    arrange(benefit) %>% 

    filter(!is.na(pct)) %>% 

    ungroup() %>% 

    mutate(count =  

             case_when( type == "Not Covered" ~ round(nrow(plan_data_final)* pct), 

                        TRUE ~ as.numeric(count) 

             ) 

    ) %>%  

    mutate( 

      across( c(low, med, hi), ~case_when(type == "Not Covered" ~ NA_real_, TRUE ~ .x) ) 

    ) %>% 

    distinct() %>%  

    mutate(pct = round(pct*100, 2)) %>% 

    select(ward3, benefit, type, count, pct, low, med, hi) %>%  

    split(.$benefit) %>% 

    map_dfr(., ~rbind( c(unique(.x$ward3), unique(.x$benefit), NA, NA, NA, NA, NA, NA), .x   ) 

    ) %>% 

    left_join(benefit_labels) %>%  

    mutate( 

      across(c(low, med, hi), ~case_when(type == "Copay" ~ paste0("$",.x), 

                                         type == "Coins" ~ paste0(.x, "%") 

                                          

      ) 

      ),  

       

      type = case_when( 
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        is.na(type)  ~ paste0(label, " (", benefit, ")")  , 

        TRUE ~ paste0("   ",type) 

      ) 

    ) %>%  

    select(-benefit, -label) %>% 

    mutate(across(everything(), as.character), 

           across(everything(), ~case_when(is.na(.x) ~ "", 

                                           TRUE ~ .x)) 

    ) %>% 

    select(Cluster = 1, Benefit = 2, `Number of Plans` = 3, `Percent` = 4, Q1 = 5, Median = 6, Q3 = 7)  

 ) 

   

   

  walk(1:3,  

  ~  write_csv(clustered_table1_benefit_codes[[.x]], path = paste0("cluster", .x, "_table1_benefits.csv")  ) 

  )  

   

   

   

 

### PrEP Characteristics 

   

ward_table1_prep <- 

 map(1:3,    

      

  ~ clustered_plans %>% 

    filter(ward3 == .x)  %>% 

    select(contains("PrEP")) %>% 

    gather(var, level) %>% 

    group_by(var, level) %>% 

    summarize(count = n()) %>% 

    ungroup() %>% 

    mutate(level =  

             case_when( 

               is.na(level) ~ "Not Covered", 

               level == "TRUE" ~ "Requires PA", 

               level == "FALSE" ~ "No PA", 

               TRUE ~ str_to_title(  str_replace_all(level, "_", " ")) 

             ), 

            

           var = case_when( 

             var == "PrEP_PA" ~ "Prior Authorization", 

             var == "PrEP_Coverage_Type" ~ "Coverage Strategy", 

             var == "PrEP_Covered" ~ "Coverage", 

             TRUE ~ str_replace_all(var, "PrEP_|", "") 

           ) 

    ) %>% 

    arrange(var) %>% 

    mutate( 

      pct = round(count/nrow(clustered_plans %>% filter(ward3 == .x) ) *100,2 ) 

    ) %>% 

    split(.$var) %>% 

    map_df(.,  ~rbind(  c( unique(.x$var), NA, NA, NA), .x) 

            

    ) %>% 

    mutate(across(everything(), as.character), 

           across(everything(), ~case_when(is.na(.x) ~ "", TRUE ~ .x)), 

           level = case_when( 

             level == "" ~ paste0(level, var), 

             TRUE ~ paste0("   ", level) 

              

           ) 

    ) %>% 

    select(Characteristic = level, `Number of Plans` = count, Percent = pct) 

 ) 

   

ward_table1_prep 

 

walk(1:3,  

     ~  write_csv(ward_table1_prep[[.x]], path = paste0("cluster", .x, "_table1_prep.csv")  ) 

)  

   

 

 

 

# Admin Variables --------------------------------------------------------- 

 

ward_admin_table1 <- 

map(1:3, 

     

~ tibble( 

  label = "Monetary Variables", 

  Q1 = "", 

  Median = "", 

  Q3 = "" 

) %>% 

  bind_rows( 

 

clustered_plans %>% 

  filter(ward3 == .x) %>% 

  select( 

    PREMI27, 

    DEDUCTInn, 

    MOOPInn 

  ) %>% 
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  gather(label, value) %>% 

  group_by(label) %>% 

  summarize( 

    Q1 = as.character(quantile(value, .25, na.rm = TRUE)),  

    Median = as.character(quantile(value, .5, na.rm = TRUE)),  

    Q3 = as.character(quantile(value, .75, na.rm = TRUE) ) 

  ) %>% 

  mutate( 

    label = case_when( 

      label == "DEDUCTInn" ~ "   Deductible", 

      label == "PREMI27" ~ "   Premium/Month (Age 27)", 

      label == "MOOPInn" ~ "   Maximum Out of Pocket" 

     ) 

    ) 

) %>% 

  bind_rows( 

    tibble( 

    label = c("", "", "Plan Factors", "   Contains 2+ Tiers"), 

    Q1 = c("", "n", "", clustered_plans %>% filter(ward3 == .x)  %>% pull(MULTITIERED) %>% sum()  ), 

    Median = c("", "%", "", paste0(round(clustered_plans %>% filter(ward3 == .x)  %>% pull(MULTITIERED) %>% mean() *100, 2), "%")  

), 

    Q3 = c("", "", "", "") 

    ) 

  ) 

 

) 

 

 

walk(1:3,  

     ~  write_csv(ward_admin_table1[[.x]], path = paste0("cluster", .x, "_table1_admin.csv")  ) 

)  

 

 

 

 

 

# Percentage of plans ----------------------------------------------------- 

clust_sizes <- c(3565, 6329, 7167) 

clust_sizes/sum(clust_sizes) # 0.2089561 0.3709630 0.4200809 

 

 

 

# Map --------------------------------------------------------------------- 

 

rating_county <- read_csv("rating_area_county.csv") %>% 

  rename(AREA = rating_area_id) 

 

nrow(rating_county) # 3190 

length(unique(rating_county$AREA)) # 502 

length(unique(rating_county$fips_code)) # 3142 

 

rating_county %>% 

  select(AREA, fips_code) %>% 

  group_by(fips_code) %>% 

  mutate(count = n()) %>% 

  filter(count >1 )  

 

restrictiveness_data <- 

  clustered_plans %>% 

  select(id, ward3) %>% 

  left_join(plan_info %>% 

              select(id, AREA) 

  ) %>% 

  group_by(AREA, ward3) %>% 

  count() %>% 

  spread(ward3, n, fill = 0) %>% 

  rename(restrictive  = `2`, less_restrictive = `1`, not_restrictive = `3`) %>% 

  mutate( total =  restrictive +  less_restrictive + not_restrictive  ) %>% 

  mutate(across(contains("restrictive"), ~.x/total*100)) %>% 

  left_join(rating_county) 

 

states_sf <- get_urbn_map("states", sf = TRUE) 

counties_sf <- get_urbn_map("counties", sf = TRUE) 

 

 

restrictiveness_map_data <- 

  restrictiveness_data %>%  

  rename(county_fips = fips_code) %>% 

  left_join(counties_sf) %>% 

  st_as_sf() 

 

 

ggplot(restrictiveness_map_data) + 

  geom_sf(aes(fill = restrictive), size = .05, color = "white")  + 

  geom_sf(data = states_sf, fill = NA, size = .1, color = "white")  + 

  scale_fill_binned( 

    low  = "grey", 

    high = "dark red", 

    space = "Lab", 

    n.breaks = 10, 

    labels = function(x) paste0(x,"%"), 

     

    guide = guide_coloursteps(even.steps = TRUE, 

                              barheight = unit(0.1, "in"), 

                              barwidth = unit(4, "in"), 



 115 

                              show.limits = TRUE, 

                              title.position = "top", 

                              limits = c(0, 100) 

    ) 

  ) + 

   

  theme_void() + 

  theme( 

    legend.position = "bottom" 

  )+ 

  labs(fill = "Most Restrictive Plans in Rating Area, %") 

 

 

 

ggplot(restrictiveness_map_data) + 

  geom_sf(aes(fill = less_restrictive), size = .05, color = "white")  + 

  geom_sf(data = states_sf, fill = NA, size = .1, color = "white")  + 

  scale_fill_binned( 

    low  = "grey", 

    high = "dark blue", 

    space = "Lab", 

    n.breaks = 10, 

    labels = function(x) paste0(x,"%"), 

     

 

  guide = guide_coloursteps(even.steps = TRUE, 

                            barheight = unit(0.1, "in"), 

                            barwidth = unit(4, "in"), 

                            show.limits = TRUE, 

                            title.position = "top", 

                            limits = c(0, 100) 

      ) 

  ) + 

 

  theme_void() + 

  theme( 

    legend.position = "bottom" 

  ) + 

  labs(fill = "Moderately Restrictive Plans in Rating Area, %") 

 

ggplot(restrictiveness_map_data) + 

  geom_sf(aes(fill = not_restrictive), size = .05, color = "white")  + 

  geom_sf(data = states_sf, fill = NA, size = .1, color = "white")  + 

  scale_fill_binned( 

    low  = "grey", 

    high = "dark green", 

    space = "Lab", 

    n.breaks = 10, 

    labels = function(x) paste0(x,"%"), 

     

    guide = guide_coloursteps(even.steps = TRUE, 

                              barheight = unit(0.1, "in"), 

                              barwidth = unit(4, "in"), 

                              show.limits = TRUE, 

                              title.position = "top", 

                              limits = c(0, 100) 

    ) 

  ) + 

   

  theme_void() + 

  theme( 

    legend.position = "bottom" 

  )+ 

  labs(fill = "Least Restrictive Plans in Rating Area, %") 

 

 

# Map Part 2 -------------------------------------------------------------- 

restrict_categories <- 

restrictiveness_map_data %>% 

  tibble() %>% 

  ungroup() %>% 

  mutate( 

    across( contains("restrictive"), ~as.numeric(.x > 50) 

            )   

    ) %>% 

  gather(restrictiveness, indicator, -AREA, -c(total:geometry))  %>% 

  filter(indicator == 1) %>% 

  mutate( 

    restrictiveness = str_to_title(str_replace_all(restrictiveness, "_", " ")), 

    restrictiveness = factor(restrictiveness, levels =  

                               c("Restrictive", "Less Restrictive", "Not Restrictive")) 

  ) %>% 

  st_as_sf() 

 

 

 

ggplot(restrict_categories) + 

  geom_sf(aes(fill = restrictiveness), size = .05, color = "white", alpha = .8)  + 

  geom_sf(data = states_sf, fill = NA, size = .1, color = "grey")  + 

  scale_fill_manual(values = c("dark red", "dark blue", "dark green"), 

                    guide = guide_legend(title.position = "top") ) + 

   

  theme_void() + 

  theme( 

    legend.position = "top" 
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  )+ 

  labs(fill = "") 

 

 

# rankings ---------------------------------------------------------------- 

restrictive_areas <- 

clustered_plans %>% 

  select(id, ward3) %>% 

  left_join(plan_info %>% 

              select(id, AREA) 

  ) %>% 

  group_by(AREA, ward3) %>% 

  count() %>% 

  spread(ward3, n, fill = 0) %>% 

  rename(restrictive  = `2`, less_restrictive = `1`, not_restrictive = `3`) %>% 

  mutate( total =  restrictive +  less_restrictive + not_restrictive  ) %>% 

  mutate(across(contains("restrictive"), ~.x/total*100))  

 

restrictive_areas %>% 

  arrange(-restrictive) %>% 

  View() 

 

restrictive_areas %>% 

  arrange(-less_restrictive) %>% 

  View() 

 

restrictive_areas %>% 

  arrange(not_restrictive) %>% 

  View() 

 

restrictive_areas %>% 

  arrange(-not_restrictive) %>% 

  View() 


