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Abstract

Datacenters are the critical infrastructure in today’s information age. The sustained

demand for digital services has led to record datacenter build-outs and increased energy

consumption. Modern datacenters heavily rely on brown energy. Two significant problems

with using brown energy are 1) brown energy is expensive and 2) harmful to the environ-

ment since brown energy generation releases greenhouse gases. Renewables are becoming

increasingly accessible energy sources to power the datacenters, leading to dramatically

lower energy costs and significant climate impact reductions. Green datacenters, also re-

ferred to as power-modulated datacenters, can utilize multiple energy sources (wind and

solar) by intelligently adapting computing to energy generation. The difficulty with renew-

ables is that power generation is intermittent and subject to frequent fluctuations, making

job scheduling in such datacenters interesting from a research perspective. Green data-

centers need intelligent systems and system software that adapt to the intermittent power

supply from renewables.

Traditional heuristics-based job schedulers use hand-crafted scheduling policies. Hand-

engineering domain-specific heuristics-based schedulers to meet specific objective functions

in highly dynamic green datacenters is time-consuming, error-prone, expensive, and re-

quires domain expertise. Reinforcement Learning (RL) has solved sequential decision

making tasks of impressive difficulty by maximizing reward functions through trial and

error. The growing body of research has shown that Reinforcement Learning schedulers

can learn effective job scheduling policies in traditional datacenter environments with a

constant power supply. Although the results demonstrated in the existing work are con-

vincing, they do not examine the complexities presented in the dynamic green datacenter

environments.

This dissertation delivers four fundamental contributions. First, we developed a unified

green datacenter simulator driven by heuristic and RL scheduling policies and synthetic or

real workloads and integrated multiple renewable energy sources to power the datacenter.

The simulator allows resource scaling (small to medium scale), allowing the practitioners to

experiment with datacenters of different capacities. Second, we systematically explore RL

scheduler design features demonstrating the performance implications when adequately de-

signed. Third, while many existing RL schedulers optimize for single objective effectively,

they do not address multi-criteria optimization. Moreover, one or more of these objec-



tives may be in opposition, e.g., maximizing the total value (revenue) while minimizing

the overall job delay. We demonstrate that constrained RL schedulers learn to accomplish

such opposing goals and satisfy multi-criteria optimization. Finally, classic online RL job

schedulers can learn efficient scheduling strategies but often takes hundreds of thousands

of timesteps to explore the environment and adapt from a randomly initialized DNN pol-

icy. Offline reinforcement learning, also known as batch RL, presents the prospect of policy

optimization from large pre-recorded datasets without online environment interaction. Ad-

ditionally, we show that incorporating prior datasets to pre-train the RL scheduler agent

can short-circuit the random exploration phase and continuously improve with online data

collection.

To deliver these contributions, we employed Offline, Online, and Constrained-Controlled

RL methods. We evaluated the efficacy of these methods with diverse power supply and

load conditions using synthetic and real workloads. This study provides several insights

to design future RL schedulers that ensure performance and cost-effectiveness in power-

modulated datacenters.
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Chapter 1

Introduction

The sustained demand for digital services has led to record datacenter build-outs and in-

creased energy consumption. Conservative estimates suggest that global datacenter energy

consumption between 2010 and 2018 went up by 6%, totaling 205 TWh in 2018. Fur-

ther research [1] implies that the datacenter energy consumption is an order of magnitude

higher than the estimated 6%, considering numerous unaccounted small-to-medium scale

datacenters and datacenters that cater to new technologies (e.g., blockchain, cryptocur-

rency mining). Datacenters in the U.S. consume 1.8% of the total electricity; electricity

predominantly generated using non-renewable sources emitting an estimated ∼ 230 Million

Metric tons of greenhouse gases every year.

Given high carbon emissions and growing societal awareness of climate change, gov-

ernment agencies, non-profits, and the general public demand cleaner (greener) goods and

services. Consequently, cloud service providers are investing in green datacenters1, i.e.,

datacenters partially or entirely powered by renewable energy. While some cloud service

providers [2] [3] [4] buy carbon offsets, others [5] [6] are shifting towards datacenters entirely

powered by renewables. These datacenters either generate their own renewable energy (self-

generation) or draw from an existing carbon-free (e.g., wind, solar) power generation plant

(co-location). Electricity generation from wind farms in the U.S. increased from ∼ 6 billion

1The terms green datacenter and power-modulated datacenter are used interchangeably throughout this
dissertation.

1
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kilowatt-hours (kWh) to 275 billion kWh between 2000 and 2018 [7].

Furthermore, electricity cost is one of the significant contributors to the total opera-

tional cost in datacenters [8] [9]. Cloud service providers need to factor energy costs into

their final billing to make a profit. Higher datacenter operational costs translate to the

end-users paying high prices to run their jobs. One way to reduce the costs is to reduce

the operational expense in the datacenters. Since electricity is a significant piece of that

equation [9] [10], using renewable energy sources (RES) to power datacenters is becoming

a necessity and a reality. A handful of startups [5] [3] [11] are working in this direction,

with national and international investors investing heavily in such datacenters. Similarly,

corporations that previously relied on traditional cloud service providers for their computa-

tional needs are prospecting for green cloud service providers to reduce costs. Wind energy

is one of the lowest-priced and cleanest energy sources available today [12]. By 2050, wind

energy could avoid the emission of 12.3 gigatonnes of greenhouse gases [13].

The difficulty with renewables is that power generation is intermittent and subject to

frequent fluctuations, making co-location and self-generation interesting from a research

perspective. Solar energy generation has a diurnal pattern with maximum energy genera-

tion at midday, while wind energy generation is higher at night. By combining solar and

wind sources, energy generation typically complements each other.

Traditional heuristics-based job schedulers [14] [15] [16] use hand-crafted scheduling

policies suitable for datacenters with constant power supply. Hand-engineering domain-

specific heuristics-based schedulers to meet specific objective functions of highly dynamic

green datacenters is time-consuming, error-prone, expensive, and requires domain exper-

tise.

Reinforcement Learning (RL) has solved sequential decision tasks of impressive dif-

ficulty by maximizing reward functions through trial and error. Recent examples using

deep learning range from robotic locomotion [17] [18], sophisticated video games [19] [20],

and congestion control [21]. The growing body of research [22] [23] [24] have shown deep

reinforcement learning (DRL) schedulers can learn effective job scheduling policies in tra-

ditional datacenter environments with constant power supply.
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Although the results demonstrated in the existing work are convincing, they do not

examine the complexities presented in the dynamic green datacenter environments. The

existing work propounds the RL schedulers as black boxes without exploring the design

choices that may potentially improve their performance.

Additionally, while many existing RL schedulers optimize for single objective effectively,

they do not address multi-criteria optimization where the goal is to optimize for more than

one objective. Furthermore, one or more of these objectives may be in opposition, e.g.,

maximizing the total value (revenue) while minimizing the overall job delay. A trade-off

exists between achieving high job value on the one hand and low expected delays on the

other. Hence, the aims of achieving high rewards and low costs are in opposition. In prac-

tice, datacenter operators prioritize multiple objectives, including high system utilization

and job completion. RL schedulers need to learn to accomplish such opposing goals to

satisfy multi-criteria optimization.

Finally, classic online RL job schedulers can learn efficient scheduling strategies but of-

ten takes hundreds of thousands of timesteps to explore the environment and adapt from a

randomly initialized DNN policy. Existing RL schedulers overlook the importance of learn-

ing and improving upon heuristic policies. For instance, designing reward functions that

elicit desired behaviors in complex environments is challenging. Instead, the RL schedulers

can leverage the behavior of custom heuristic schedulers’ designed specifically for unique

workloads or environments to learn and improve overall performance. Offline reinforce-

ment learning, also known as batch RL, presents the prospect of policy optimization from

large pre-recorded datasets without online environment interaction. Additionally, we can

incorporate prior datasets to pre-train the RL scheduler agent short-circuiting the random

exploration phase to learn a reasonable policy with online training. In essence, an effec-

tive RL scheduler framework for pre-training from off-policy datasets that continuously

improves with online data collection can provide best-of-both-worlds.
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1.1 Thesis Statement and Research Contributions

In this dissertation, we hypothesize that Reinforcement Learning based sched-

ulers perform better than heuristics schedulers for power-aware scheduling in

datacenters. RL schedulers adapt to varying conditions and learn strategies

that meet the specific objectives set forth by the datacenter operators. These

objectives may include single-criteria optimization, constrained optimization with oppos-

ing goals, or multi-criteria optimization. To evaluate this hypothesis, this dissertation 1)

implemented a green datacenter simulator driven by various workloads, resource configu-

rations, and operating conditions, including intermittent power supply from renewables;

2) uncovered several previously unexplored RL scheduler design features and tuning pa-

rameters that may lead to better-performing systems by investigating the limitations of

existing RL schedulers, 3) optimizing for multiple objectives, and 4) utilizing historical

datasets collected from expert demonstrations to reduce training time and demonstrate

performance improvement over expert systems.

1.1.1 Power-modulated datacenter simulator

Due to many practical reasons, such as the cost of resources, time scale, presence of other

loads on the clusters, or lack of access to the facilities, experimental evaluation cannot

be adequately performed on real systems. To obtain reliable results, simulations must be

repeated with different setups using the same controllable conditions that simulate different

real-life scenarios. The RL agent learns policies by repeated trial and error. Training the

RL scheduler on a real system requires dedicated access to resources to not interfere with

other users’ jobs. Furthermore, resource ramping based on intermittent power supply may

cause significant physical wear and damage to the machines. While many ad-hoc simulators

exist for clusters, they did not sufficiently meet the green datacenter requirements. For

example, these simulators did not feature the capability to control resource availability

based on the power supply. Additionally, we need a lightweight simulator suitable for RL

scheduler training and evaluation. The existing RL schedulers use custom-built datacenter
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environments for specialized purposes. None of the existing environments simulate a green

datacenter with resource ramping, a crucial feature for our research.

In Chapter-4, we present a unified green datacenter simulator driven by synthetic or

real workloads and integrate multiple renewable energy sources and Energy Storage De-

vices (ESDs) to power the datacenter. The simulator allows resource scaling (small to

medium scale), allowing the practitioners to experiment with datacenters of different ca-

pacities. The simulator supports the resource pool expanding and contracting in response

to the intermittent power supply from renewables. Additionally, the simulator supports

configuring various time horizons, job arrival rates, job size distribution, and job durations

for synthetic workloads. Finally, we designed a green datacenter simulator controlled by

either RL and heuristic scheduling policies (e.g., Quality of Service (QoS), Shortest Job

First (SJF), Highest Value First (HVF), and First Come First Serve (FCFS)).

1.1.2 Designing RL scheduler for power-modulated datacenters

We surveyed existing research and determined that the current research does not adequately

address challenges presented in the complex dynamic green datacenter environments. The

current research presents the RL schedulers as black boxes without exploring the system

design configurations. We identified four RL scheduler design features pertinent to green

datacenters, namely 1) state and action space representation, 2) configuring for different

workloads, 3) extended planning horizon, and 4) policy network configurations.

In Chapter-5, we present an RL scheduler framework called Renewable Energy Aware

Resource management (RARE) and experimentally demonstrate the performance im-

provements when the RL scheduler is appropriately designed and configured. We show

that our RL scheduler performs better than heuristics policies in the dynamic green data-

center environment for synthetic and HPC workloads for a small to medium-scale cluster

with 10 to 1200 resources. The RL scheduler adapts exceptionally well to the intermittent

power supply (synthetic and actual power prediction data). With synthetic workload, our

RL scheduler performs 18% to 25% better for small-scale clusters and 2% to 20% better

for medium-scale clusters than heuristic policies. With the HPC workload, the RL sched-



1.1. Thesis Statement and Research Contributions 6

uler performs 7% to 14% better than the heuristic policies. With varying power supply

(100%, 90% and 80% power), our RL scheduler performs 9% to 13% better in small scale

cluster and 5% to 20% better compared to heuristic policies in medium scale cluster. We

show that as the planning horizon extends (from 36 to 72-time units), our RL scheduler

performs 4% to 14% and 6% to 10% better than heuristic policy for synthetic and HPC

workloads, respectively.

1.1.3 Constraint controlled reinforcement learning scheduler

In green datacenters, intermittent power supply from renewables leads to intermittent re-

source availability, inducing job delays and associated costs. The scheduler’s objective is

to schedule jobs on a set of resources to maximize the total value (revenue) while minimiz-

ing the overall costs due to job delays. In addition, datacenter operators often prioritize

multiple objectives, including job completion and system utilization.

In Chapter-6, we present a Constraint Controlled RL (CoCoRL) scheduler that auto-

matically learns conflicting reward and cost functions. We accomplish this by applying the

Proportional-Integral-Derivative (PID) Lagrangian methods in Deep Reinforcement Learn-

ing to the job scheduling problem to achieve favorable learning dynamics. We demonstrate

our scheduler’s performance for both the primary objective (maximizing total job value)

and the secondary objective (minimizing costs due to job delays). We demonstrated that

CoCoRL simultaneously achieves a higher total job value, high system utilization, and a

high job completion ratio while keeping the costs considerably lower compared to heuristic

policies. For synthetic workload, our scheduler provides a significantly higher total job

value ratio between 5%-25% for job arrival rates ranging from 20-60% (fewer jobs in the

system). At a higher job arrival rate of 60-80% (more jobs in the system), our scheduler

performs 5%-10% better than baseline heuristic policies. The CoCoRL scheduler performs

comparably to the QoS policy and completes 5%-20% more jobs than the other heuristic

policies. Our scheduler shows a 2%-6% higher system utilization than heuristic policies

between 80% job arrival rate. For HPC workloads, our scheduler achieves similar superior

performance while staying within the cost limit, whereas the heuristic policies accrue 5x-
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10x higher negative penalties. Finally, we demonstrate the significance of accurately tuning

hyperparameters (e.g., cost limit) to satisfy various optimization goals set by datacenter

operators.

1.1.4 Learning to schedule using offline and online RL methods

We investigate how learning from previously collected demonstrations can be applied in

job scheduling using data-driven RL techniques. We explored two data-driven RL meth-

ods, namely 1) Behaviour Cloning (BC) and 2) Offline RL (historically known as batch

RL), which aim to learn policies from logged data without further interaction with the

environment. These methods address the challenges concerning the cost of data collection

and safety, particularly pertinent to real-world applications of RL.

In Chapter-7, we show that the performance of BC methods is highly dependent on the

quality of the training dataset. BC is likely to fail to learn good policy when the dataset

does not contain enough transitions generated by a well-performing policy or the fraction

of poor data is too large. Unlike BC, the performance of Offline RL is resilient to training

datasets with mixed (both well-performing and poor) heuristic policies. When the dataset

does not contain enough transitions generated by a well-performing policy or the fraction

of poor data is too large, Offline RL methods can leverage the benefits of stitching parts

of suboptimal trajectories. The challenge with Offline RL is that because the learning

algorithm must entirely rely on the static dataset, there is no possibility of improving by

exploration. If the dataset does not include transitions that reach high-reward regions of

the state space, it may be impossible to learn such high-reward regions. Additionally, not

all environments have historical or quality datasets needed in offline learning methods.

In Online Learning, the agent interacts with the environment and explores numerous

state-action pairs to learn a generalizable policy. Model-free deep RL methods are noto-

riously expensive in terms of their sample complexity. Even relatively simple tasks can

require millions of steps of data collection. What is considered an upside, exploration pro-

cess, is also the downside because the exploration process is time-consuming. We utilize

Offline RL as a launchpad to learn effective scheduling policies from prior experience col-
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lected using expert demonstrations or heuristic policies. Finally, we demonstrated that by

effectively incorporating prior datasets to pre-train the agent, we short-circuit the random

exploration phase to learn a reasonable policy with online training.

1.1.5 Summary

We present a unified green datacenter simulator driven by synthetic or real workloads and

integrate multiple renewable energy sources and Energy Storage Devices (ESDs) to power

the datacenter. We apply the proportional-integral-derivative (PID) Lagrangian methods

in RL to accomplish constrained optimization where the opposing goals of maximizing

total job value and minimizing job delays and multi-criteria optimization satisfy multiple

objectives simultaneously. We address challenges concerning the cost of data collection

and explore two data-driven RL methods which aim to learn policies from logged data

without active interaction with the datacenter environment. We utilize Offline RL as

a launchpad to learn effective scheduling policies from prior experience collected using

Oracles or heuristic policies. Such a framework is effective for pre-training from off-policy

datasets and well suited to continuous improvement with online data collection. This

set of works demonstrates that Reinforcement Learning based schedulers perform better

than heuristics schedulers for power-aware scheduling in green datacenters while effectively

adapting to a complex dynamic environment, optimizing for different objectives, including

constrained optimization or multi-criteria optimization and incorporating prior datasets to

pre-train the RL agent to short-circuit the random exploration phase, which confirms our

hypothesis.

1.2 Dissertation Outline

The remainder of this dissertation is organized as follows:

Chapter-2: Job Scheduling - Background and Related Work discusses the

scheduling problem and prior heuristic approaches, challenges, and limitations of existing

work.
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Chapter-3: Reinforcement Learning and Scheduling discusses RL basics and

how we map the scheduling problem in green dataceters into an RL environment to learn

effective scheduling under various conditions.

Chapter-4: Power-Modulated Datacenter Simulator presents a unified green

datacenter simulator driven by synthetic or real workloads and integrates multiple renew-

able energy sources, and supports various operating conditions.

Chapter-5: Designing RL Scheduler for Power-Modulated Datacenters presents

the limitations of current work, challenges presented in the complex dynamic green data-

center environments and explores RL scheduler design parameters and configurations for

overall performance improvement.

Chapter-6: Constraint Controlled Reinforcement Learning Scheduler presents

a constrained optimization problem in green datacenters and demonstrates the performance

gains by learning rewards and penalties using PID Lagrangian methods.

Chapter-7: Learning to Schedule using Offline and Online RL Methods

explores Offline and Online RL methods and demonstrates circumstances under which each

method performs effectively. We will evaluate the various learning variations individually

and combine some techniques.

Chapter-8: Conclusions summarizes the dissertation and discusses the implications

of this work and potential future research directions.



Chapter 2

Job Scheduling - Background and

Related Work

This chapter will discuss the Job Scheduling problem and existing work. We will introduce

commonly used objective functions in datacenter scheduling. Then, we will briefly discuss

green datacenters and why we chose Job Value as the RL scheduler’s objective function

and evaluation metric in the green datacenter.

2.1 Job Scheduling

Job Scheduling is deciding when and where to run a set of jobs on a set of resources

to optimize an objective function. Information about available resources and jobs defines

a scheduling problem. We need to know the resource type and the number of resources to

determine when the jobs can feasibly be finished. By specifying the resources, we effectively

define the boundary of the scheduling problem. Additionally, we describe each job in terms

of resource requirements, duration, the earliest time to start, and the time it might take to

complete. The job duration is generally uncertain, but we usually suppress that uncertainty

(allowing buffer time) when stating the problem.

Objective function defines the objective of the optimization. Preferably, an objective

function should consist of all costs that depend on scheduling decisions. However, costs are

10



2.1. Job Scheduling 11

often difficult to identify entirely or measure. Typical objective functions for schedulers

include: minimizing total execution time, minimizing cost to the user, minimizing the

makespan, maximizing throughput, or maximizing revenue for the cloud provider. One of

the most commonly used objective functions in datacenters is resource utilization.

Scheduling problems require a performance measure for a given set of jobs in a schedule.

A solution to a scheduling problem amounts to answering two questions:

• Which resources should be allocated to perform each job? - Space

• When should each job be performed? - Time

If a given set of jobs available for scheduling does not change over time, the system

is static; in contrast, when new jobs appear over time, the system is dynamic. The

system is deterministic when conditions are assumed to be known with certainty. On the

other hand, when we recognize uncertainty, the model is stochastic. Traditionally, static

and deterministic models have proved more tractable than dynamic models and have been

studied extensively. This research focuses on job scheduling in a dynamic and stochastic

environment. Dynamic because the jobs arrive in an online manner and stochastic because

resource availability is not constant and depends on the intermittent power supply from

the renewables.

Schedulers are the resource management software that decides which jobs to run,

when, and where to run them. Efficiently scheduling users’ jobs on distributed computing

resources with heterogeneous resources and job mix may need complex policies to meet

agreed objectives. Traditionally, dynamic, online schedulers have used heuristics-based

scheduling techniques where system engineers design algorithms to capture multiple and

diverse problems. Reasoning about these heuristics’ interactions is complicated and be-

comes intractable as the number of variables and heuristics increases.

The search for an exceptional job scheduler has existed for several decades [25]. Besides

Computer Science, the optimal scheduling problem exists in many other fields, from indus-

trial automation to NASA space shuttle payload processing [26]. The research is rich with

ideas for schedulers that optimize for various objective functions. The optimal scheduling
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problem is NP-hard [27], and the proliferation of schedulers indicates that no one sched-

uler is suitable for arbitrary jobs to resource combinations. Ultimately, an enterprise’s

objective function drives the design of any bespoke job-shop scheduler.

2.2 Scheduler’s Objective Function

An Objective Function maps an event or values of one or more variables onto a real

number, intuitively representing some “cost” associated with the event. An optimization

problem seeks to minimize/maximize an objective function. An objective function is either

a loss function or its negative (in specific domains, variously called a reward function, a

profit function, a utility function, or a fitness function), in which case it is to be maximized.

The primary classifications for measuring the scheduling quality are 1) Application-

centric scheduling and 2) Resource-centric scheduling. Application-centric scheduling aims

at optimizing the objectives of the individual application. Resource-centric scheduling aims

at optimizing the resource utilization of resources provider.

2.2.1 Power-modulated datacenters

Here we briefly discuss the power-modulated (a.k.a green datacenters) and specific chal-

lenges in green datacenters, e.g., power supply variations from renewables and challenges

with scheduling jobs. Finally, we discuss reasons for selecting Job Value as a preferred

objective function for our green datacenter model. A detailed explanation of the power-

modulated datacenter model is discussed in Chapter-3.

The resource pool, R, ramps up and down based on the power available to the datacenter

at any given time. Power availability decides when and how many resources are turned on

or off. Therefore, power prediction data is part of the state space. As power availability

changes, the corresponding resource availability is reflected in the state representation

supplied to the scheduler agent.
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2.2.2 Job Value as the objective function in power-modulated datacen-

ters

In green datacenters, prioritizing the jobs that provide the highest value is essential. Given

intermittent power supply (and machine availability), the resource management software

must pick jobs most likely to generate higher value (and minimize SLO violations). Further-

more, the objective of picking jobs with the highest value serves as a proxy for utilization

since the highest value jobs are packed on the machines first, and then the next tier of jobs

(jobs with the lower value) are picked, and so on. This also ensures QoS for users willing

to pay more by prioritizing their jobs over other low-priority jobs.

2.3 Related Work

Production planning and scheduling problems frequently arise in practice and have long

been the focus of Operations Research, Control Theory, and Production Management.

Although the modeling and learning approaches proposed in this dissertation are general

and can be deployed for different applications, distributed job scheduling problems depict

the target application domain in the context of which we test, analyze, and validate all

approaches.

In the rest of this section, we will categorize every scheduler we discuss based on the tax-

onomy described in [25]. The taxonomy for classifying distributed schedulers includes local

vs. global, static vs. dynamic, distributed vs. central, cooperative vs. non-cooperative,

and optimal vs. suboptimal. Some schedulers may not strictly fit in just one of the sub-

sections, but we included them in the corresponding sub-section because of the use case

described in the literature.

2.3.1 Distributed and multiprocessor schedulers

Distributed scheduling has been a well-studied problem for many decades. The graph-

matching approach described in [28] uses a minimax criterion representing the maximum

time for a task to complete module execution and communication in all the processors.
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Optimal task assignment is defined using graphs. The graphs are then used to represent the

module relationship of a given task and the processor structure of a distributed computing

system. The search for weak homomorphism corresponding to optimal task assignment is

formulated as a state-space search problem and solved by the well-known A* algorithm [29].

The work in [30] describes greedy algorithms for communicating tasks with static task

assignments in distributed computing systems. The goal is to minimize the total execution

and communication costs incurred by an assignment. The model considers interference

costs which reflect the degree of incompatibility between two tasks. Another solution

that uses task clusters and distributed groups of processes that communicate heavily is

described [31]. Task clusters are tasks with heavy inter-task communication that should

be on the same host. Distributed groups also have inter-task communication but execute

faster when spread across separate hosts. This work proposes a bidding strategy and uses

system and task description messages.

In [32], the author proposes two scheduling methods. The first is adaptive with dynamic

reassignment based on broadcast messages and stochastic learning automata. This method

uses a system of rewards and penalties as a feedback mechanism to tune the policy. The

second method uses bidding and one-time assignment in a real-time environment. The

scheduler based on the bayesian decision described in [33] is a global, dynamic, distributed,

cooperative, suboptimal, heuristic, and one-time assignment.

2.3.2 Batch and meta schedulers

Extensive research exists on resource management and scheduling on clusters - Torque [34],

Moab [35], and Maui [36] that have had tremendous success in managing HPC clusters.

These systems work on a single cluster under one administrative domain. They are not

well suited to support a federation of geographically distributed clusters primarily because

of non-shareable file systems. Many of these distributed schedulers were also created to

support parallel programming application models and run coarse-grained workloads. These

cluster schedulers allow clients to specify the types of processing environments, but unfor-

tunately, not across multiple clusters or administrative domains.
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Condor [37] [38] is a global, dynamic, distributed, cooperative, suboptimal scheduler

that utilizes idle CPU cycles in workstations. The system has a central coordinator for

keeping track of idle machines and placing queued jobs on the idle machines. The system

also has a local scheduler on each participating workstation that constantly monitors local

activity. When the local workstation is idle, it schedules a remote waiting job. When

a local user returns to the workstation, the remote job is preempted, checkpointed, and

moved to another idle machine to continue execution. The philosophy of Condor is to leave

the owner in complete control of the workstation, no matter the cost of doing so. This

system does not support the concept of QoS or job priorities.

Maui [36] is a global, dynamic, distributed, suboptimal (heuristics) based batch sched-

uler extensively used in the HPC community. Maui scheduler implements a backfill sched-

uler with job prioritization and emphasizes a fair share policy. Maui was initially designed

to maximize cluster utilization but later evolved to maximize scheduler performance and

flexible policy specifications. The concept of Job class (Job queue) is used to constrain

the types, sizes, and resources that jobs can specify. The concept is carried forward in the

other batch schedulers discussed next. Maui also supports QoS and Access Control Lists

(ACLs) to determine the associated access privileges. Maui limits the users and resource

consumption using throttling policies, e.g., limiting at most three active jobs per user at

any given time. The newer systems achieve this using Cgroups, VMs, or containerization.

Moab [39] is a commercial cluster scheduler that supports moldable job requests in

which the user provides several job size and wall time options. The scheduler will choose

an option based on whichever option can be met first.

Simple Linux utility Resource Management (Slurm) [40] is a global, dynamic, dis-

tributed, suboptimal (heuristics) based batch scheduler widely used in HPC facilities.

Slurm is an open-source native scheduler that operates on a single administrative domain

(single cluster). Slurm has a plugin that enables systems like Maui or Moab to integrate

with broader systems. Slurm allows exclusive and non-exclusive access to resources. Users

can specify a job’s resource requirements, submit a job, monitor job status, and terminate

jobs. It arbitrates conflicting resource requests by putting jobs in the wait queue until suffi-
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cient resources become available. Slurm does not support work-preserving job preemption

and migration.

Maui and Moab are meta-schedulers (manage one or more clusters within one adminis-

trative domain) in that they can integrate with Native-schedulers (schedulers that manage

a single cluster) like Torque or Slurm.

2.3.3 Schedulers for grids and federated clouds

This subsection describes meta-schedulers or resource management systems that integrate

multiple administrative domains to provide a single-system image to the end users. Along

with scheduling jobs, the systems may provide additional features like security, accounting,

and visualization data management tools, all packaged as one software bundle or toolkit.

An extensive survey of other systems in this category is presented in [41].

Condor-G [42] combines software from Globus and Condor [38] to allow users to har-

ness multi-domain resources that provide a single system image. The Condor-G system

leverages significant security, resource discovery, and resource access in multi-domain en-

vironments supported by Globus Toolkit [43] and management of computation and har-

nessing resources within a single administrative domain supported by the Condor system.

The combination of the inter-domain resource management protocols of the Globus Toolkit

and Condor’s intra-domain resource management methods allows the user to harness multi-

domain resources as if they all belong to a single domain. The user defines the tasks to

be executed then Condor-G handles all aspects of discovering and acquiring appropriate

resources, regardless of their location; initiating, monitoring, and managing execution on

those resources; detecting and responding to failure; and notifying the user of termination.

PBS Pro [44] is a resource management system for grid computing that includes security,

computing, and data management features. Compute Grids built using PBS pro can

support advance reservations, harvest idle desktop computer cycles, and peer schedule

work (i.e., moving jobs across the room or across the globe). Data management in PBS

Pro is handled via automatic stage-in and stage-out of files. The PBS Pro monitors daemon

processes (called MOMs) to collect real-time data on the state of systems and executing
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jobs. This data, combined with information on queued jobs, accounting logs, and static

configuration information, gives a complete view of the managed resources. These include

advance reservation support, cycle harvesting, and peer scheduling. Job preemption is

implemented, but job checkpointing and migration are not part of the scheduling system.

Legion [45] is a meta-computing system that acts as an Operating system with support

for computing, storage, and other services. The scheduler supported by Legion is global,

dynamic, distributed (hierarchical), and suboptimal (heuristics). The governing philoso-

phy of scheduling in Legion is a negotiation of services between autonomous entities: the

consumer of the service (application) and the service provider (system or resource). A

similar approach is described in AppLeS [46]. The service provider has complete control

of the system at all times and decides when and what resources are shared in this environ-

ment. The scheduler described in [45] is a basic heuristic scheduler. However, the more

important feature is extending the resource management service and implementing a more

sophisticated scheduler for specific application domains.

Globus [47] system enables modular deployment of grid systems by providing the re-

quired basic services and capabilities as a toolkit. The toolkit comprises components that

implement basic services, such as security, resource location, resource management, data

management, resource reservation, and communications. Globus is constructed as a lay-

ered architecture in which higher-level services can be developed using the lower-level core

services. Its emphasis is on the hierarchical integration of Grid components and their

services. The underlying scheduler can be Legion or AppLeS, which integrates with the

Globus toolkit to support resource management.

GenesisII [48] is an open-source, standards-based (Open Grid Forum and Open Grid

Services Architecture) grid middleware that supports remote computing and secure data

sharing. GenesisII provides researchers with simple, easy-to-use, secure access to resources,

particularly data and computes resources, regardless of location. The central feature of

GenesisII and the GFFS is a shared, global, distributed path-based namespace where ev-

erything (compute resources, queues, files, directories, exports) is represented as files. The

computer resources scattered under multiple administrative domains are linked in one or
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more queues providing location transparency to end users. Users submit their jobs (along

with resource requirements) to the queue, and the jobs are scheduled to resources (could

be under multiple administrative domains) matching the job requirements.

2.3.4 Schedulers for datacenter analytics workload

Datacenter analytics workload includes running periodic jobs that take large amounts of

data (collected for a period of time, e.g., google search) and produce meaningful statistics

on that data.

Mesos [49] is a global, dynamic, distributed, suboptimal resource management system.

Mesos’s main feature is enabling sharing (multi-tenancy) commodity clusters between mul-

tiple diverse cluster computing frameworks (Hadoop and MPI). Multi-tenancy aims to im-

prove cluster utilization and avoid per-framework data replication. Mesos shares resources,

allowing frameworks to achieve data locality by taking turns reading data stored on each

machine. To support the sophisticated schedulers of today’s frameworks, Mesos introduces

a distributed two-level scheduling mechanism called resource offers. Mesos decides the re-

source count to offer each framework, while frameworks decide which resources to accept

and which jobs to run on them.

YARN [50] is a global, dynamic, centralized, suboptimal resource management sys-

tem. It was mainly developed to run MapReduce jobs and jobs with other frameworks

(e.g., spark). YARN implements ClusterScheduler at its core, but other schedulers with

varying heuristic scheduling policies can be implemented. YARN addresses multi-tenancy

with Hadoop on Demand (HoD), where users submit their job with a description of an

appropriately sized compute cluster to Torque. Torque enqueues the job until enough

nodes become available. When nodes become available, Torque starts the leader process

on the head node, which would then interact with Torque (or Maui) to start HoD’s slave

processes. The slave processes then spawn a JobTracker and TaskTrackers for that user,

then accepting a sequence of jobs. Some of the work discussed below implement custom

schedulers on top of YARN.

Morpheus [51] is a global, dynamic, centralized, suboptimal scheduling system for data-
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center analytics workload. Morpheus codifies implicit user expectations as explicit Service

Level Objectives (SLOs) inferred (using linear programming formulation) from historical

data. Morpheus enforces SLOs using scheduling techniques that isolate jobs from sharing-

induced performance variability, for instance, using a recurring reservation for repeated

workloads. Dynamic reprovisioning is used to reduce performance variance due to failures.

Cluster utilization is the key metric that Morpheus tries to optimize.

Graphene [52] is a global, static, distributed, suboptimal (heuristic) based scheduler for

heterogeneous DAG jobs. Graphene focuses on scheduling long-running jobs and jobs that

are hard to schedule first. The scheduler creates an offline schedule for the long and tough-

to-scheduler jobs and then schedules the remaining tasks without violating dependencies.

The scheduler aims to reduce the median job completion time for a given set of DAG jobs.

Carbyne [53] is a global, dynamic, distributed, suboptimal (heuristic) based scheduler

that integrates with YARN. Carbyne allows jobs to altruistically give up their short-term

fair share of cluster resources to improve Job Completion Time (JCT) across jobs while

guaranteeing long-term fairness. However, the paper indicates that any workload that runs

on YARN can use this scheduler, the primary use case that supports altruism for jobs with

DAG and analytics workloads.

Tetrisched [54] is a global, dynamic, distributed, suboptimal scheduling system imple-

mented in YARN for repetitive analytics jobs in datacenters. Tetrisched plans ahead by

using a constraint solver to optimize job placement. It requires the user to supply explicit

constraints with their jobs. It implements Space-Time Request Language (STRL) to spec-

ify space and time preferences. The is either specified or automatically generated based

on SLOs and then used in Mixed Integer Linear Programming (MILP) solver to create

a schedule. The schedule is revisited, and job placements are adjusted according to the

system’s current state.

Hydra [55] is a global, dynamic, distributed, sub-optimal (heuristic) based scheduler in

YARN for data analytics jobs in Microsoft. This system is the successor to Apollo [56],

which supported only one framework called Scope. Hydra extends YARN to support mul-

tiple frameworks with the main idea of a federation of resources. The cluster is subdivided
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into sub-clusters, each managed and scheduled by a separate entity. The higher-level

scheduling entity allocates resources to coarse grain, and sub-cluster managers allocate

specific machines to jobs.

2.3.5 Datacenter schedulers for user-facing services

Paragon [57] is a global, dynamic, centralized, suboptimal (greedy) scheduler that caters

to resource heterogeneity and application interference. It uses information about the ap-

plication’s runtime. If the application is new, it profiles each application to extract the

execution time estimates based on collaborative filtering techniques such as those employed

in Netflix for filtering movies. Paragon compares the application similarities to estimate

the runtime of a previously unseen application. The scheduler monitors each job’s perfor-

mance, and if the execution time deviates from the predicted time, the job is re-profiled.

The job can be migrated using other mechanisms (VM migration).

Quasar [58] is a global, dynamic, centralized, suboptimal (greedy) scheduler mainly

focusing on maximizing resource utilization and high application performance. Instead of

relying on user-specified execution time, it takes a quality metric (throughput, latency)

from the user. It converts that into a resource specification that satisfies the requested

quality metric. It also profiles the jobs to collocate the applications so that they cause the

least interference, thus satisfying the application performance. Quasar adjusts the resources

by scaling up/down as the load increases/decreases, and if migration is supported, migrates

jobs as needed.

Hawk [59] is a global, dynamic, distributed, suboptimal scheduler for frameworks like

Spark [60]. Hawk combines centralized and distributed schedulers such that the centralized

entity is responsible for scheduling long jobs, and short jobs are scheduled in a distributed

fashion. Hawk uses randomized task stealing as part of scheduling data-parallel jobs on

large clusters to ensure fairness for short tasks queued behind long ones. Hawk reserves a

set of resources to run jobs obtained using a task-stealing mechanism. Hawk is specifically

designed for data-parallel jobs and integrates with the Spark framework.

Firmament [61] is a global, dynamic, centralized, suboptimal (heuristic) scheduler with
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sub-second placement latency for large clusters by continuously rescheduling all tasks via

a min-cost max-flow (MCMF) optimization. Firmament achieves this low latency by using

multiple constraint-solving algorithms (MCFS) instances, solving the problem incremen-

tally and via problem-specific optimizations. The main goal of Firmament is achieving high

placement quality, thus increasing cluster utilization and decreasing placement latency.

Firmament implements flow-based scheduling considering the entire workload, allowing

rescheduling and priority preemption support. A major drawback is that Firmament as-

sumes that the cluster state does not change while the algorithms run, which is not true

in green datacenters.

Medea [62] is a global, dynamic, distributed (hierarchical), suboptimal (heuristic) based

scheduler. Medea is designed for the placement of long and short-running containers.

Medea introduces placement constraints to capture interactions among containers within

and across applications. It follows a two-scheduler design: Medea applies an optimization-

based approach that accounts for constraints and global objectives for long-running con-

tainers. Medea uses a traditional task-based scheduler for low placement latency for short-

running containers. Medea gives the highest priority to long-running jobs and does not

preempt or migrate jobs once placed.

Optimus [63] is a global, dynamic, distributed, suboptimal (ML approximation) based

scheduler implemented on top of Kubernetes [64]. Optimus is a customized job scheduler

for deep-learning clusters. Optimus uses online fitting to predict the training job’s model

convergence and, based on the performance, estimates training speed as a function of allo-

cated resources for the job. Based on the online fitting, it dynamically allocates resources

such that job completion time is minimized. Optimus is implemented on top of Kubernetes

and works with scheduling containers within which the jobs run. Once scheduled, the jobs

run to completion and are not preempted or migrated.

Kairos [65] is a global, dynamic, distributed (hierarchical), suboptimal (approximation)

based scheduler. Kairos proposes using the LAS scheduling policy instead of directly esti-

mating the task execution time. The scheduler has a central component for load balancing

and a local component for handling scheduling and preemption. The scheduler preempts
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jobs only to resume them locally and does not migrate jobs from one cluster to another.

Gandiva [66] is a global, dynamic, central, suboptimal scheduler implemented on top

of Kubernetes. Gandiva exploits intra-job predictability (time taken for each mini-batch

iteration) to time-slice GPUs efficiently across multiple jobs leading to low job latency. This

predictability w.r.t job performance is also used dynamically migrating jobs to better-fit

GPUs leading to improved cluster efficiency. Gandiva is tailored for large machine learning

training jobs, especially hyper-parameter search jobs, and exploits the repetitiveness of the

jobs to predict the future resource requirements for that job.

Tiresias [67] is a global, dynamic, central, suboptimal scheduler tailored for Deep Learn-

ing training jobs. Tiresias uses two scheduling algorithms 1) Discretized Two-Dimensional

Gittins index policy for a single server leading to minimizing JCT, and 2) Discretized Two-

Dimensional LAS is information agnostic and aims to minimize the average JCT of all jobs

in the system. When Tiresias’s cluster manager has the distribution of previous job execu-

tion times, it chooses the discretized 2D-Gittins index and discretized 2D-LAS otherwise.

Tiresias implements an RDMA network profiling library to intercept the network-level ac-

tivities and determine the model structure of DDL jobs which aids in the job placement

decision.

The other open-source and proprietary systems that are used in production include

Apache Hadoop YARN, Apache Mesos [49], and Kubernetes [68], and proprietary sched-

ulers Borg and Apollo [56] are also available for scheduling datacenter analytics jobs and

user-facing services. These systems assume that most jobs are periodic and that completion

times remain consistent with previous executions. This allows the schedulers to predict

expected overall job completion times.

2.3.6 Schedulers for power-modulated datacenters

The schedulers discussed in the previous section do not demonstrate their suitability in

green datacenter environments. To address the intermittent power supply from renew-

ables, the existing heuristics schedulers [69] [70] [71] delay the deferrable jobs until the

renewable power is adequate or the electricity price is low before the soft deadline of the
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jobs expires. Deferring the jobs may lead to poor QoS for the users. In [72], the scheduler

employs a heuristic Mixed-Integer Linear Programming (MILP) formulation to minimize

grid electricity when the electric grid is used and minimize the workload’s performance

degradation when using renewable energy sources.

Greenslot [73] tries to maximize green energy consumption while meeting job deadlines

using the Least Slack Time First (LSTF) heuristic algorithm; the authors disclose that this

leads to long delays for some jobs. Greenslot does not place a limit on how much cost is

acceptable due to delays. Moreover, Greenslot does not suspend jobs once started, while

our system has work-preserving suspend and restart capability. Recent work [74] presents

a unified management approach for the thermal and workload distribution in datacenters.

The objective is to minimize power consumption while satisfying thermal and Quality

of Service (QoS) constraints. They implement a particle-based algorithm that requires

adjusting some non-trivial number of parameters over multiple iterations.

2.4 Chapter Summary

This chapter introduced the job scheduling problem and discussed heuristic schedulers for

diverse datacenter and workload configurations. Current heuristic cluster schedulers rely

on handcrafted heuristics that are generic, easy to understand, and straightforward to im-

plement. However, these schedulers may not always lead to achieving the best schedules

foregoing potential performance optimizations by adhering to generic heuristics. Specifi-

cally, for power-modulated datacenters, the complexity increases due to intermittent power

supply from renewables. Moreover, developing scheduling policies for power-modulated

datacenters require expert domain knowledge and significant effort to devise, implement,

and validate their efficacy requiring engineers to do the heavy lifting.



Chapter 3

Reinforcement Learning and

Scheduling

This chapter introduces Reinforcement Learning (RL) basics and discuss how we map job

scheduling in the power-modulated datacenter to the RL environment. Then we discuss

reward engineering and types of reward functions. Finally, we present a brief related work

on RL schedulers.

3.1 Reinforcement Learning Basics

Reinforcement Learning refers to a set of trial-and-error methods where an agent learns

to make good decisions in a given environment via a sequence of interactions. The main

components of RL are the agent and the environment. At each step of interaction, the

agent sees an observation of the state of the world and then decides to take action. The

environment changes based on the agent’s action. The agent perceives a reward signal

from the environment, a scalar that tells it how good or bad the current world state is.

The agent’s goal is to maximize its cumulative reward, called return. Figure 3.1 shows

the RL agent observing the environment’s current state, selecting an action from a set of

allowable actions, and receiving a reward. The agent’s action causes state transition by the

environment (which may be deterministic or probabilistic). The reward depends on the

24
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current state and the action. This process of the agent observing the environment, taking

action (after receiving some reward for the action), and transitioning to the new state is

characterized as Markov Decision Process (MDP) [75].

Figure 3.1: Typical RL agent observing the environment, taking action, and collecting
reward/cost for the action.

A state is a complete description of the state of the world. There is no information

about the world that is hidden from the state. An observation is a partial description of

a state, which may omit information. In deep RL (DRL), the states and observations are

represented by a matrix, real-valued vector, or higher-order tensor. For example, a visual

observation may be represented using the RGB matrix of its pixel values; a robot’s state

may be represented by its joint angles and velocities.

The set of all possible valid actions in a given environment is called the action space.

Environments can have discrete action spaces with only a finite number of moves avail-

able to the agent or continuous action spaces.

A policy is a rule that the agent uses to decide what actions to take. A policy can be

deterministic, denoted by µ: at = µ(st), or it may be stochastic, denoted by π: at = π(st).

In deep RL, we have parameterized policies, i.e., policies whose outputs are computable

functions that depend on a set of parameters (e.g., the weights and biases of a neural

network) which can be adjusted to change the behavior using an optimization algorithm.

The parameters of such a policy are denoted by θ and used as a subscript on the policy

symbol to emphasize the connection: at ∼ πθ(st).

A trajectory is a sequence of states and actions in the world, τ = (s0, ao, s1, a1, . . .).

The very first state of the world, s0, is randomly sampled from the start-state distribution.
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State transitions (changes to the world between the state at time t, st, and the state at

t + 1, st+1 are controlled by the natural laws of the environment and depend only on the

most recent action, at.

3.1.1 Markov Decision Process

We consider Markov Decision Process (MDP, see [75]) consisting of a finite state space

S, a finite action space A, a bounded reward function r : S × A → R such that ∀s ∈

S, a ∈ A, |r(s, a)| ≤ rmax < ∞, a transition function p : S × S × A → [0, 1], a policy

π : A× S → [0, 1], and an initial distribution p0 : S → [0, 1].

At time step 0, an initial state S0 is sampled according to p0(·). Here p0(·) represents

a probability distribution on S whose probability mass function is p0. At time step t =

0, 1, . . . , an action At is sampled according to π(·|St). Here π(·|St) represents a probability

distribution on A, where the probability mass for a ∈ A is π(a|St). Then a reward Rt+1 =

r(St, At) is emitted and a successor state St+1 is sampled according to p(·|St, At). Here

p(·|St, At) represents a probability distribution on S, where the probability mass for s ∈ S

is p(s|St, At). In the discounted setting, we consider a discount factor γ ∈ [0, 1) to trade

off the importance of long-term and short-term rewards. To summarize the possible future

rewards starting from a state s following the policy π, we define the state value function

vπ as vπ(s) = Eπ,p[Gt|St = s]. Here Gt =
∑∞

i=0 γ
iRt+i+1] is the return at time step t.

Similarly, we use the action value function qπ to summarize the possible future rewards

starting from a state-action pair (s, a) following the policy π as qπ(s, a) = Eπ,p[Gt|St =

s,At = a]. The two value functions are related to each other as vπ(s) =
∑
π(a|s)qπ(s, a).

Then the discounted total rewards Jπ, which is the expectation of the summation of the

discounted future rewards starting from time step 0, is Jπ = Es∼p0(·)[vπ(s)].

3.1.2 Function approximation

When the state space S is too large, maintaining a look-up table (i.e., a vector v ∈ R|S|)

as an estimate of vπ becomes intractable. Even worse, such a look-up table v cannot

easily provide generalization across states. Function approximation is introduced to cope
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well with large state spaces and provide generalization across different states. Function

approximation adopts a feature mapping x : S → RK , which maps each state s into a

K-dimensional vector. As K is usually much smaller than |S|, function approximation

exhibits memory efficiency when the state space is large. As x(s) is usually correlated for

different s ∈ S, function approximation naturally provides generalization across different

states.

A Deep Neural Network (DNN) [76] is a function approximator that stores the policy

for each (s, a) pair. Typically, DNNs have multiple (input, hidden, and output) layers,

each containing several neurons. Interconnections between neurons are called edges, and

their associated weights are called model parameters (πθ(s, a)). Then, learning consists

of finding the suitable coefficients, or weights, by iteratively adjusting those weights along

gradients that encourage less error. The input to policy and value networks is the state

which includes jobs and available resources in the system. Based on the environment’s

feedback (reward), the neural net can use the difference between its expected reward and

the obtained reward to adjust its weights and improve its interpretation of state-action

pairs.

3.1.3 Reinforcement Learning algorithms

Two main approaches for policy learning are Q-learning and policy optimization. In Q-

learning, the agent learns an estimate of the optimal action-value function (Q-function) and

obtains the estimated optimal action by maximizing the Q-function. In policy optimization,

the agent learns the optimal policy by directly optimizing the policy space. Specifically, if

we denote θ as the parameters of the policy model that we are trying to learn, the policy

optimization tries to update θ so that the policy model will generate better actions for a

given set of observations τ =< s0, ao, r1, s1, a1, r2, s2, a2, r3, . . . >. The policy optimization

methods (e.g., actor-critic method) are generally applicable to a broader range of problems

(including problems with continuous states) and tend to converge faster than the Q-learning

method.

The actor-critic method leverages two networks 1) policy network and 2) value net-
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work. The policy network generates actions while the value network guides the training.

The policy network (actor) takes the environmental state, at every step, as its input and

outputs one or more actions determining which job to run. Value network (critic) helps to

improve training efficiency. The value network’s output (rest) can be intuitively considered

as the expected reward of a set of jobs based on the agent’s current policy. After the

policy network selects an action, the critic evaluates the new state to determine whether

situations got better or worse than expected.

In an actor-critic method, the actor is trained to assign higher probabilities to actions

that the critic determines will lead to higher monetary value. The critic then uses the

improved actor to better estimate the expected return of selecting each action. Both

networks rely on the state representation s̃ learned by the encoder network. Separating the

encoder in this way lets us share parameters across the actor and critic training processes

and reduces overall network size. However, for stability reasons, the encoder parameters

are updated alongside the critic but not the actor [77].

3.2 Mapping Job Scheduling in Green Datacenters to RL

Environment

To train the RL scheduler agent, we convert the green datacenter scheduling problem into

a Markov Decision Process (MDP) with a state space S describing the current status of

the datacenter resources, an action space A of new jobs, and a reward function R to be

optimized. The operation of the datacenter - including receiving new jobs and placing

scheduled jobs on available resources - becomes the MDP transition function, T. Figure

3.2 illustrates the RL scheduler agent interacting with the green datacenter environment.

The scheduler’s objective is realized with rewards that the agent receives. Reward, a

single scalar function, is a combination of the positive reward or associated cost for action

in a given state. The scheduler’s reward function is configurable, allowing rewards to be

either sparse (rewards only obtained on job completion) or dense (smaller rewards to guide

the agent after each step).
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Figure 3.2: RL scheduler interacting with green datacenter (powered by renewable and
brown energy sources), optimizing for various metrics.

3.2.1 State space

A state is a representation of the environment, and the state space is the set of all pos-

sible states. In the power-modulated datacenter environment, the state space S includes

information about jobs, resources, and resource availability (based on power generation

predictions).

3.2.1.1 Resources

Resources are represented in an image format of shape (time horizon, resource types) ×

max resources, with grey pixels indicating available resources. As jobs are scheduled on

the resource pool, segments of the image are occupied by colored rectangles representing

jobs’ resource requirements and duration. Figure 3.3 illustrates the cluster image (10 CPUs,

10 GPUs for 24-time units) and the allocation of each resource to jobs scheduled for service,

starting from the current timestep and looking ahead 24-time units into the future.

The power availability feedback is not directly provided to the scheduler agent as part

of the state information. Instead, the resource pool expands and contracts based on the

datacenter’s power supply at any given time. Power availability dictates when and how
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many resources are turned on or off. Therefore, power prediction data is an integral part of

the state space, i.e., as power availability changes, the corresponding resource availability is

reflected in the state supplied to the scheduler agent. Unavailable resources, due to power

constraints, are marked black on the resource image. For instance, at timestep 22 (Figure

3.3), 70% of power is available, so 70% of the resources are on, and 30% are shut down.

Similarly, at timestep 23, 80% of power is available, meaning 80% resources are on and

20% are shut down.

Figure 3.3: State information with Resources and Jobs: A 10 CPUs, 10 GPUs cluster with
time-horizon=24, and ready pool size=5. The unavailable resources are indicated in black
squares (bottom).

3.2.1.2 Jobs

Each job, ji ∈ J , has associated meta-data (described in Chapter-4, table 4.1). Jobs can

have additional information, e.g., input/output files, that may affect completion time. We

do not account for additional overhead in our environment. A workaround to accommodate

such overheads is adding extra slack time to the job’s expected finish time.

In our system, jobs can be in one of three locations: 1) wait pool, 2) ready pool, or

3) scheduled on the resources. The wait pool is where jobs first arrive. The jobs from



3.2. Mapping Job Scheduling in Green Datacenters to RL Environment 31

wait pool are moved (e.g., FIFO or QoS order) to the ready pool, where they can then

be scheduled on the resources. The jobs in the ready pool are represented in two formats

1) Vectors and 2) Images. In vector format, each job’s vector consists of job value, qos,

qos violation time, enter time, expected finish time, duration and resource requirement. Ad-

ditional meta-data for each job is calculated after the job is admitted, e.g., remian-

ing runtime (if the job gets suspended) and qos violation time. In image format (see §3.3),

each job is represented as a rectangle with a horizontal side representing the number of re-

sources requested and a vertical side representing the job length (time units). Both formats

generate nearly identical performance results, but the vector format is compact compared

to image only format.

In Figure 3.3, the ready pool size is 5 (with job indices 0−4) and has 5 jobs (represented

in vector format). The yellow job (at ready pool[1]) requires 4 CPU and 4 GPU units for

the next six timesteps, and the job’s value is 24. The jobs are processed over some fixed

T timesteps. The time horizon shifts after processing jobs during that timestep, with

the job metadata vectors updated and the resource image advancing by one row. As

the time horizon shifts, the energy available from renewables (and battery) dictates the

availability of resources for placing new jobs. To make scheduling decisions, the scheduler

agent continuously observes the state - jobs, resources, and resource/power availability.

QoS value: Users may have different utility functions, i.e., users are willing to pay

different amounts for different jobs based on their importance. The user picks the re-

quired QoS for that job based on the user’s willingness to pay for the job (e.g., spot

instances [78] [79] [80]). The QoS value is specified as a percentage of the time the user

wants his job to run. The qos violation time specifies the upper bound by which time the

job must finish executing. The higher the QoS percentage, the higher the job’s value.

qos violation time =
1

QoS
× run time (3.1)

If a job remains in the system past qos violation time, it incurs negative rewards ev-

ery time step after that. A higher QoS value means the closer the job’s completion
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time to the expected finish time. If a user wants 0.95 (95%) QoS value and specifies

expected finish time = 10 hours, then the job must be completed within 10.5 hours. Ex-

pressing QoS value in percentages gives an upper bound of when a user can expect his job

to finish. The idea is similar to Least Attained Service (LAS) [81] in that a job receiving

more service is suspended and later restarted if preempted.

3.2.2 Action space

The set of all possible actions the learning agent can take in the environment. The action

space for a datacenter with ready pool size n is a set of n + 2 discrete options A =

{j0, j1, . . . , jn, suspend, no op}. The actions {a = ji, ∀i ≤ n} schedule the ith ready pool

job ji on available resources. The job’s colored rectangle is added to the first available slot

in the resource image with enough free space to schedule it. The action a = suspend is

used to suspend an incomplete job and replace it with a higher value. The suspend action

is work-preserving, in that a suspended job resumes from the point it was stopped at and

not from the beginning. The suspended jobs are re-queued after updating the remaining

run time, along with the other ready jobs. Although our scheduler framework supports

checkpoint-restart capability [82], the feature was turned off for the experiments discussed

in this paper. Finally, the action a = no op means that the scheduler agent does not want

to schedule (e.g., resources requirements cannot be satisfied) or suspend any jobs in that

timestep. In Figure 3.3, action = 1 (at ready pool[1]) schedules the yellow job to run on

the available resources. Additionally, the action space can extended to include new actions

(e.g., migrate) as needed.

3.2.3 Rewards

The DRL scheduler’s objective is realized with rewards that the agent receives. Rewards,

which are scalars given by the reward function R(st, at, st+1), are a combination of the

positive reward or associated cost for action in a given state. Some actions collect positive

rewards, while other actions accrue negative costs. For instance, if a job, j, running on

a resource, collects a positive reward proportional to its value. A job’s value, j.value, is
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calculated based on the type of resources requested, duration, and QoS value. If a job

is delayed and QoS is violated, it collects a negative reward. Negative reward indirectly

encourages fairness, ensuring low QoS value jobs are not delayed or starved. Other costs

and rewards can be incorporated into the reward function. Our DRL scheduler’s objective

is to maximize the total job value from finished jobs, |Jfinished| expressed as,

Total Job V alue =

|Jfinished|∑
i=1

ji.value (3.2)

where ji.value = ((#cpu× cpu price per unit×duration)+(#gpu×gpu price per unit×

duration)) ∗ qos.

A direct calculation of value is the price the user is willing to pay to run a job. Total

Job Value is both an application-centric and resource-centric metric; the emphasis is on

processing as many user jobs as possible, which may increase resource utilization. By

processing as many jobs as possible, we essentially maximize the total value we gain from

running those jobs. Even a small improvement in total job value can generate millions of

dollars in savings for the service providers. Other common objective functions (utilization,

makespan, and system throughput) are driven by system-centric parameters that enhance

throughput and utilization rather than improving the utility of application processing.

These systems treat resources as if they all cost the same price and the results of all

applications have the same value, even though this may not be the case in reality.

3.2.3.1 Reward engineering

In RL, the reward function generates a value that the agent maximizes to achieve the

desired goals. Every time we change the reward function, we may explicitly set a new and

different goal for the agent. Designing a suitable reward function to elicit a specific behavior

is known as reward engineering or reward shaping. Rewards can be simple (e.g., maximize

utilization), compound (e.g., maximize utilization and total job value), or opposing (e.g.,

maximize total job value while minimizing job delays).

The RL scheduler’s objective is realized with rewards that the agent receives. Typically,
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the reward is a single scalar function with a combination of the positive reward or associated

cost for action in a given state. Some actions collect positive rewards, while other actions

accrue negative costs. For instance, if a job runs on a resource, it collects a positive reward

proportional to its value. If a job is delayed and QoS is violated, it collects a negative

reward. Other costs and rewards can be incorporated into the reward function.

The reward functions are classified into three categories based on the number of objec-

tives the reward tries to maximize or minimize. The objectives could be to maximize job

value or resource utilization, minimize job delay or cost, or other metrics relevant to the

datacenter operators.

The three reward categories are:

• Simple reward function: This type of function maximizes or minimizes a single ob-

jective.

• Compound unidirectional function: This type of function tries to combine multiple

objectives, and the objectives are either maximized or minimized. The objectives are

either increasing or decreasing in the same direction.

• Compound dual (opposing) function: This type of function tries to maximize one or

more objectives while minimizing another.

The scheduler’s reward function is configurable, allowing rewards to be either sparse

(rewards only obtained at specific intervals or on job completion), dense (smaller rewards

to guide the agent after each step), or mixed (sparse and dense) rewards.

3.3 Training scheduler agent with the simulator

The basic idea in policy gradient methods is to estimate the gradient by observing the

trajectories (samples) obtained by following the policy. The policy π is initialized randomly

or using parameters from a previously trained model.

We train the agent with multiple examples (job sets) of job arrival sequences. We

simulate Max Episodes episodes for each job set to explore the probabilistic space of
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(a) Next action, a=2.
(b) Job at 2 gets scheduled (orange job in (a)).
New jobs are in the ready queue.

(c) Next actions = 0 and 2.
(d) Jobs at 0 and 2 are scheduled (light blue and
purple jobs in (b)). After 3 time steps, actions
= 0, 2, 1. Jobs at 0, 2, and 1 get scheduled.

Figure 3.4: RL scheduler agent training steps with jobs getting scheduled on the resources
and new jobs arriving at the ready pool.

possible actions, π(at, st), with the current policy.

At each step of an episode, the system obtains a state of the current job placements from

the previous operations. We then select the next job by sampling a probability distribution

over jobs in the ready pool (Figure 3.4). After that job is scheduled on available resources,

the system transitions to the next stage. Repeating these transitions means all the jobs

in the job set are scheduled on the resources. This process of sampling jobs and state

transitions is illustrated in Figure 3.4a through Figure 3.4d.

In Figure 3.4a, two jobs (represented in blue and red) from the previous iteration are

running, and in the current time step, new jobs (yellow and green) are placed while the

agent samples another job (orange). Finally, the state transitions to Figure 3.4b, where

the time horizon shits (2 units of the blue job are remaining), the jobs (yellow, green, and
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(a) Current state with 5 running jobs, 4 jobs in
ready pool and 4 jobs in the wait pool.

(b) Policy network picking action = 0 and 2.

Figure 3.5: Image input to the policy network; action output from the network.

orange) are scheduled to run, and four new jobs (light-blue, dark-blue, purple and green)

arrive in the ready queue from the wait pool. The number of jobs in the wait queue (grey)

is reduced by four. The time horizon shits again, and this forms the new state, and its

corresponding image format is illustrated in Figure 3.4c.

At each time step, the cluster state represented in the image format (Figure 3.5a)

becomes the input to the agent (policy network), illustrated in Figure 3.5b. The agent

samples the possible actions (i.e., pick jobs in the ready pool), the action with the highest

probability represents the next job to be scheduled, and so on. In this case, the agent
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samples actions 0 and 2, i.e., pick two jobs (light-blue and purple) to be scheduled.

We record the state, action, and reward information (τ =< s0, ao, r1, s1, a1, r2, . . . >)

for all time steps up to Max episode length for Max Episodes episodes. We use reward

values to compute the cumulative reward (discounted) at each time step t of each episode.

The total value of all the jobs with the final placement state is the reward.

3.4 Scaling

A recurring challenge in RL has been solving problems with a huge state or action space,

and most RL environments suffer from state space explosion problem as the state space

increases. Given a state and action space, there are at most |A||S| unique policies. This

means that the size of the problem’s solution space grows exponentially with each additional

feature in our state [83]. This is commonly described as the “curse of dimensionality.”

With complex problems, we note that training time can become highly unrealistic and

computational complexity intractable.

One solution that helps alleviate the state space explosion problem is splitting up

large state spaces into smaller ones through state space decomposition. This allows us

to distribute computation and accelerate training. The key idea is to use smaller neural

networks to learn the dynamics of the decomposed state sub-spaces, with another neural

network considering the relatively less frequent interactions between the different state

sub-spaces. We proposed two possible solutions to this problem in chapter-8.

The flexible design of our datacenter simulator allows exploring various design options

that would enable us to compare the different schedulers’ performance for different system

configurations, including datacenter size, system load, and workload distributions. For

instance, we can model a small-scale datacenetr with 10 to 100 resources or a medium-

scale datacenter with 100 to 1200 resources with a system load.

A comprehensive list of the various datacenter-specific parameters and RL-specific hy-

perparameters is provided in Appendix-A. These parameters can be adjusted to simulate

various system configurations and to fine-tune the RL agent’s performance.
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3.5 Related Work - RL Schedulers

Reinforcement Learning has been used for a variety of tasks, including robotics [83] [84],

manufacturing plants [85] and computer game playing [86]. RL is used for decentralized

packet routing in a switch [87]. Recently, learning has been applied to designing congestion

control protocols using a large number of offline [88] or online [89] experiments. Automatic

traffic optimization in datacenters has shown promising results in [90]. This section briefly

discusses reinforcement learning methods applied to job scheduling problems in diverse

contexts. We will discuss topic-specific relevant related work in each chapter to better

contextualize our work.

The first RL formulation of job-shop scheduling in the RL framework was proposed

in [26]. The authors describe local, static, central, and suboptimal (approximation) schedul-

ing in the RL setting. The system is a repair-based scheduler that first starts with a

critical-path schedule and repairs constraint violations incrementally with the goal of find-

ing a short conflict-free schedule. The authors propose temporal difference algorithms to

train a neural network to learn a heuristic evaluation function over states. The TD evalua-

tion function is a one-step look-ahead search procedure to find good solutions to scheduling

problems. A small number of NASA space shuttle payload processing tasks were evalu-

ated, and the results confirmed that RL could provide a new method for constructing

high-performance scheduling systems.

DeepRM [91] is a global, dynamic, central, suboptimal (approximation) scheduler im-

plemented as a deep RL framework. This work describes the design and demonstrates

a simple multi-resource cluster scheduler. DeepRM operates in an online setting where

jobs arrive dynamically and cannot be preempted once scheduled. DeepRM learns to op-

timize various objectives, such as minimizing average job slowdown or completion time.

DeepRM employs a standard policy gradient reinforcement learning algorithm for learning

from experience.

Minerva [92] is a global, dynamic, central, suboptimal scheduler for bottleneck detection

in distributed factory settings. The work uses a similar technique as [26] in that it schedules
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jobs for a fixed interval, starting with scheduling bottleneck jobs and then rearranging the

jobs that violate constraints until no more violations exist in the schedule. This work

implements neural network-based Q-function approximation and Q-learning algorithm.

cuSH [93] is a cluster scheduler using RL to schedule jobs on heterogeneous clusters.

The work is primarily influenced by [91] and implements similar DRL (CNN instead of

DNN) techniques for finding near-optimal scheduling policies. This scheduler addresses

scheduling for a single HPC cluster, not geographically distributed ones.

Decima [94] uses DRL and neural networks to learn workload-specific scheduling al-

gorithms without human instruction beyond a high-level objective, such as minimizing

average job completion time. In Decima, new representations for jobs’ dependency graphs

are implemented to support jobs running on the Spark framework.

Harmony [95] is a DRL cluster scheduler that places ML training jobs to minimize

interference and maximize performance (training completion time). The DRL employs

an actor-critic algorithm to stabilize training and improve convergence, job-aware action

space exploration, and experience replay. Harmony employs an auxiliary reward prediction

model, which is trained using historical samples to produce a reward for unseen placement.

All the systems above assume that power is constant in their datacenters, i.e., machine

and network failures are the only failure modes. While server failures still exist in our

environment, we are focusing on job scheduling problem in power-modulated datacenters

(refer to Chapter-4).

Interest in exploring RL methods for job scheduling has exploded in recent years. While

there are many implementations, comparing with State-of-the-art (i.e., other RL scheduler

implementations) is not straightforward. RL scheduler’s performance depends on 1) RL-

specific factors and 2) the scheduling environment. The RL-specific factors include various

learning algorithms (REINFORCE, A2C, PPO, CPPO, offline/online), neural configura-

tions (differ based on problem size), optimization objectives expressed as reward functions

(e.g., Job Value, Utilization, Makespan, Wait-time/Delays) and hyperparameters (includ-

ing batch size, learning rates, and neural net activation functions). The scheduling envi-

ronment factor includes state representation (e.g., image only, vectors only, image+vector),
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environment (e.g., traditional datacenters, power-modulated datacenters), workload types

(e.g., HPC workloads, Cloud workloads, analytics, and Machine Learning workloads), and

scale of the problem (e.g., small, medium, and large scale clusters) among others. Not

making all the above changes results in unfair comparisons. Making all the above changes

could result in a completely new or different RL Scheduler implementation than the origi-

nal. Therefore our implementations, discussed in Chapters-5, 6 and 7, are compared with

heuristic scheduling policies (refer to Chapter-5 for details on the heuristic scheduling poli-

cies).

3.6 Chapter Summary

This chapter introduced Reinforcement Learning formalized by the Markov Decision Pro-

cess and discussed Actor-Critic methods. We described how we map job scheduling prob-

lem in the power-modulated datacenter to the reinforcement learning environment. We

discussed reward engineering and types of reward functions and presented related work on

RL schedulers.



Chapter 4

Power-Modulated Datacenter

Simulator

The power-modulated (green) datacenter is a datacenter co-located at or near renewable

energy sources. Co-locating the datacenters near green energy production sources reduces

energy transmission loss and increases the energy available to the datacenters. Various

renewable sources can power the datacenter with the provision to store (batteries) excess

energy from renewables. Additionally, the datacenter is connected to the electric grid to

support critical infrastructure when energy from renewables and batteries cannot sustain

the load. In this chapter, we aim to design a green datacenter simulator controlled by

heuristic and RL scheduling policies. We present a unified green datacenter simulator that

allows experimenting with synthetic and real workloads, integrating multiple renewable

energy sources and batteries to power the datacenter.

4.1 Introduction and Motivation

Due to many practical reasons, such as the cost of resources, time scale, presence of other

loads on the clusters, or lack of access to the facilities, experimental evaluation cannot

be adequately performed on real systems. To obtain reliable results, simulations must be

repeated with different setups using the same controllable conditions that simulate different

41
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real-life scenarios. The Online RL agent learns policies by repeated trial and error. Training

the RL agent on a real system requires dedicated access to resources to not interfere with

other users’ jobs. Also, resource ramping based on intermittent power supply may cause

significant physical wear and damage to the machines.

Many simulators have been developed to mitigate the above problems [96]. If properly

designed, simulators are very useful since different system configurations and workloads can

be used to evaluate existing or proposed solutions. While many ad-hoc simulators exist for

clusters, they do not sufficiently meet our requirements. For example, these simulators do

not feature the capability to control resource availability based on the power supply. Also,

the simulator must support various workloads, job arrival patterns, and scheduling policies

(heuristic and RL policies). Furthermore, we needed a lightweight simulator suitable for

RL training and evaluation. The amount of work needed to modify the existing simulators

is quite extensive.

Many researchers have proposed a variety of simulated environments to train and eval-

uate RL schedulers. Unfortunately, these datacenter environments are custom-built for

specialized workloads, including machine learning training jobs [22], DAG jobs [97], and

HPC jobs [24]. Few other simulated datacenter environments focus on energy efficiency [23],

application profiling and monitoring [98], and delayed scheduling [99] based on the avail-

ability of power. None of the proposed environments simulate a green datacenter where

resource ramping is a crucial feature.

We need a unified green datacenter simulator driven by synthetic or real workloads that

integrates multiple renewable energy sources and Energy Storage Devices (ESDs) to power

the datacenter. The simulator must support resource scaling up and down, allowing the

practitioners to experiment with datacenters of different capacities. Additionally, the sim-

ulator must allow the resource pool to expand and contract in response to the intermittent

power supply from renewables. Finally, the simulator supports configuring various time

horizons, job arrival rates, job size distribution, and job durations for synthetic workloads.

We now present an overview of our green datacenter simulator.
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4.2 Datacenter Simulator - Overview

This section describes the discrete event simulator that simulates the power-modulated

datacenter environment. A discrete event simulation (DES) models the operation of a

system as a discrete sequence of events in time. Each event occurs at a particular instant

in time and marks a change of state in the system. Between consecutive events, no change

in the system is assumed to occur; thus the simulation time can directly jump to the

occurrence time of the next event.

Our simulator aims to evaluate and compare the performance of various scheduling

policies under different operating conditions, e.g., power availability levels, workloads, and

system load. Figure 4.1 depicts a green datacenter simulator interacting with the sched-

uler. The scheduler component can be any scheduling mechanism, including heuristic (e.g.,

FCFS, SJF) or RL scheduler. In the green datacenter simulator, the state space represents

the current state of the resources and jobs, actions represent the scheduler’s next decision

(schedule, suspend, or no-op), and a reward signal that the scheduler receives for an ac-

tion. The state of all the resources (available, currently in use and unavailable resources

due to power supply constraints) and jobs (running and waiting to be scheduled) is shared

between the simulator and the scheduler component.

Figure 4.1: Scheduler interacting with the datacenter simulator, executing actions gener-
ated by the scheduler, and sharing the datacenter state.

First, the datacenter simulator is initialized with the required configuration (e.g., re-

source pool size, job arrival rate, and workload type). After initialization, the datacenter
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simulator continuously interacts with the scheduler component for the duration of the sim-

ulation, simulating the actions dictated by the scheduler. The datacenter state changes

under two broad circumstances, 1) simulate actions from the scheduler component, and 2)

simulate resource availability based on the power supply.

As the jobs arrive, the workload is fed to the scheduler component. The scheduler

decides what actions to execute next based on the jobs and the current system state. The

action sequence is sent to the simulator component, which simulates each action in the

datacenter environment; after each action, the system’s state changes. This new state

change is visible to the scheduler component. Based on the new state, the scheduler

generates new actions that the datacenter simulator executes, and the loop continues. The

power availability (synthetic or real traces) dictates the number of resources available at

any given time in the datacenter. The datacenter simulator turns resources on/off based on

the power supply. The following sections describe the simulation components: resources,

jobs, actions, and rewards.

4.2.1 Assumptions

When designing a simulator, it is critical to understand the scope of the system, user

requirements, workloads, and underlying environment. This section discusses the assump-

tions made when designing our unified power-modulated datacenter simulator.

• Power generation prediction data, based on local weather predictions, is available to

the simulator.

• Job meta-data is provided, and any missing information is handled in the admission

control module beforehand.

• Checkpoint-restart capability behaves as expected and is work-preserving to suspend

and resume jobs. The work done between two checkpoint events is lost when a node

fails during that window. If the job’s metadata includes a high-reliability guarantee,

then the scheduler must restore the state of the job from its latest checkpoint. If
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a job has specified the highest priority, it is immediately restarted from its latest

checkpoint.

• Other intermittent failures, including machine and network failures, are not handled

in the simulator module.

• Essential infrastructure, including networking, storage, and head nodes, are always

operational.

4.3 Simulation Process

The main components of the simulation process include initializing the system with values

provided by the user, executing the actions generated by the scheduler component, and

generating a reward signal that indicates how good the action was. The main simulation

loop is outlined in Algorithm 1.

Algorithm 1: Simulation main loop

1 while iter count < max iterations do
// repeat, possibly with new seed

2 reset()
3 initialize power availability()
4 initialize workload()
5 initialize system()
6 Function Execute gdc simulation():
7 while simulation steps count < max simulation length do
8 if action == SCHEDULE then
9 Function schedule()

10 end
11 if action == SUSPEND then
12 Function suspend()
13 end
14 if action == NOOP then
15 Function noop()
16 end

17 end

18 end
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4.3.1 Initialization

During the initialization step, we set up the simulator with initial parameters supplied by

the user. The simulation parameters are supplied to the system via a file that the user

modifies based on the simulation requirements. The initialization step includes 1) reset()

routine and 2) init() routine. The reset() routine resets all the system parameters to default

values. The init() routine has three sub-routines namely initialize power availability(),

initialize workload() and initialize system(). The initialize power availability() subroutine,

based on the user’s input, selects between synthetic power availability or uses real power

data from a CSV file. The initialize workload() subroutine, based on the user’s input,

selects between synthetic workload or real workload traces (ANL or others) from a CSV file.

The initialize system() subroutine, based on the user’s input, initializes various datacenter

specific parameters, including resource size, number of resource types (CPU, GPU), time

horizon size, resource price, etc. The system parameters are supplied from a python file

(e.g., baseline envs.py).

4.3.2 Jobs

In our system, jobs can be in one of three locations: 1) wait pool, 2) ready pool, or

3) scheduled on the resources. The wait pool is where jobs first arrive. The jobs from

wait pool are moved to the ready pool, where they get scheduled on the resources. The

simulator simulates running jobs on the available resources. The jobs are dispensed to

the simulator by the scheduler component. The scheduler decides on the action, and the

simulator executes the corresponding action.

Our simulator supports various workloads, including synthetic and real traces. During

initialization, the user can select the type of workload to simulate. Although the simulator

supports any workload, we used synthetic and HPC workloads since those workloads closely

match our use case. A detailed description of the workload model is presented in §4.4.
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4.3.3 Resources

Resource availability is represented, of shape (time horizon, resource types×max resources),

in an image format. As jobs get scheduled on the resource pool, segments of the image

are occupied by colored rectangles representing jobs’ resource requirements and duration.

Figure 3.3 illustrates the cluster image (10 CPUs, 10 GPUs for 24-time units) and the allo-

cation of each resource to jobs scheduled for service, starting from the current timestep and

looking ahead 24-time units into the future. A detailed description of the power availability

model is presented in §4.5.1.

The power availability feedback is directly provided to the simulator, which updates the

state information based on the power availability. The resource pool expands and contracts

based on the datacenter’s power supply at any given time. Power availability decides

when and how many resources are turned on or off. Therefore, power prediction data is

an integral part of the state space, i.e., as power availability changes, the corresponding

resource availability is reflected in the state supplied to the scheduler agent. Resources

unavailable due to power constraints are marked black on the resource image (refer to

§4.5).

4.3.4 Actions

The action space for a datacenter with ready pool size n is a set of n+ 2 discrete actions

A = {j0, j1, . . . , jn, suspend, no op}. The action a = suspend suspends an incomplete job

and replaces it with a higher value. The scheduler can generate one or more actions for

each simulation time step. The maximum number of actions for one simulation step is

bounded by n + 2 (i.e., ready pool jobs+ suspend+ noop). Actions are generated either

by heuristic or DRL schedulers. The following sections describe the actions and how

the simulator simulates those actions in detail. Actions specific to the RL scheduler are

presented in Chapter-3, section 3.2.2.
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4.3.4.1 Schedule action

The actions {a = ji, ∀i ≤ n} schedule the ith ready pool job ji on available resources. The

job’s colored rectangle is added to the first available slot in the resource image with enough

free space for it to be scheduled. The simulation steps for schedule action are outlined in

Algorithm 2.

Algorithm 2: Schedule Action

1 Function Execute schedule():
2 if resources available (CPU and GPU) then
3 move readypool[i] to available resources
4 update the state (image) after scheduling the new job
5 update resources (CPU and GPU) count

6 end
7 if suspend=‘yes’ then
8 resume a job from the suspendpool
9 end

10 while available slots > 0 do
11 new job = get job from waitpool()
12 readypool[available slot] = new job

13 end
14 update the qos violation time for all the jobs in readypool
15 increment simulation time, simulation steps count
16 update the system state
17 collect rewards and costs
18 new state = get observation()
19 return new state, reward

The get observation() function converts datacenter’s current state to an observation

that can be fed to the neural network. The observation can be of two types 1) image-only

format and 2) image+vector format.

4.3.4.2 Suspend action

The suspend action is work preserving, in that a suspended job resumes from the point

it was stopped at and not from the beginning. The suspended jobs are re-queued after

updating the remaining run time, along with the other ready jobs. The simulation steps

for suspend action are outlined in Algorithm 3. Although our scheduler framework supports

checkpoint and restart capability [82], we have not included experiments to demonstrate
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Algorithm 3: Suspend Action

1 Function Execute suspend():
2 if running jobs then
3 while num running jobs > 0 do
4 select a candidate job to suspend from running jobs list
5 end
6 suspend/remove candidate job from running jobs list
7 add suspended job to suspended jobs list

8 end
9 update the qos violation time for all the jobs in readypool and suspended jobs

10 increment simulation time, simulation steps count
11 update the system state
12 collect rewards and costs
13 new state = get observation()
14 return new state, reward

checkpoint/restart capability since it is out of the scope of this dissertation.

4.3.4.3 No-Op action

Finally, the action a = no op means that the scheduler agent does not schedule (e.g.,

resources requirements cannot be satisfied) or suspend any jobs in that timestep. In Fig-

ure 3.3, action = 1 (at ready pool[1]) schedules the yellow job to run on the available

resources. The simulation steps for no-op action are outlined in Algorithm 4.

Algorithm 4: No-Op Action

1 Function Execute noop():
2 while available resources > 0 do
3 new job = get job from waitpool()
4 readypool[available slot] = new job

5 end
6 update the qos violation time for all the jobs in readypool and suspended jobs
7 increment simulation time, simulation steps count
8 update the system state (e.g., job finishes)
9 new state = get observation()

10 return new state
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4.3.5 Simulator extensions

Our implementation assumes a “pool of resources” (CPUs and GPUs), which allows the

scheduler to make fine-grain per-resource scheduling decisions. We do not account for data

(and task) locality, but our simulator formulation can be extended to accommodate machine

boundaries by allocating resources per machine model. In the future, we will incorporate

machine boundaries in the state representation. The machine boundaries will provide a

notion of nodes instead of a pool of resources. The reasoning behind this restriction is

that the job’s performance often depends on whether the resources are local to a node or

on different nodes. With this new state representation, a job can request resource type

and the number of resources of each type, i.e., (#cpu,#gpu). If a node does not have the

requested number of (#cpu,#gpu) resources, then the job cannot be scheduled on that

resource. In such a case, the agent gets a higher reward if a job’s resource requirement is

met on the same machine.

Typically, a datacenter will house heterogeneous resources, including but not limited

to multiple generations of CPUs from various vendors, multiple generations of GPUs from

different vendors, and multiple storage types (SSDs, Hard Disks, Archives) to cater to the

diverse needs of the users. The current implementation simulates a homogeneous resource

pool for all the experiments. The current implementation does not simulate unexpected

machine failures, storage devices, or delays caused due to I/O and networking. We can

extend the simulator to incorporate storage and network delays by adding buffer times to

each job’s start and end times. Currently, we simulate two types of resources (CPUs and

GPUs). Other resource types (e.g., memory, storage requirement) can be added easily by

modifying the num resource types parameter and workload traces accordingly.

4.4 Workload Model and Workloads

This section describes various workloads and the job distributions for each workload type.

The goal of evaluating a system is often to compare individual system designs or imple-

mentations. Evaluating different systems is expected to bring out performance differences
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that will allow for an educated decision regarding the system’s design choices. However,

performance differences could also be an artifact of the evaluation methodology. The per-

formance of a system is not only a function of the system design and implementation. It

may also be affected by the workload to which the system is subjected.

Many factors characterize the workloads, including job sizes, run times, and arrival

patterns. The drawback of using trace workloads from real systems is that the traces

reflects a specific workload, and there is always the possibility of the results that do not

generalize to other systems or load conditions. In particular, there are cases where the

workload depends on the system configuration; therefore, a given workload is not neces-

sarily representative of workloads on systems with other configurations. This makes the

comparison of different configurations problematic. The existing RL schedulers evaluate

workloads without changing the system configurations for individual workload types.

The datacenter simulator consists of a cluster with different resource types. Jobs arrive

at the cluster in an online manner in discrete timesteps. We assume that the resource

demand of each job is known upon arrival; i.e., the resource requirements of each job j are

given by the vector rj = (rj,1, rj,2), and Tj is the duration of the job. We assume each job

has a fixed allocation (no malleability), such that rj must be allocated continuously from

when the job starts execution until completion. If a job gets suspended, then the job’s

remaining run time is updated when the job resumes.

4.4.1 Synthetic workload

We used a synthetic workload where each job consists of meta-data, including job-id,

resource requirement (#cpu, #gpu), and job duration. Jobs arrive online according to a

Poisson process. The average job arrival rate, λ, determines the average load on the cluster.

We chose the job duration and resource requests such that 70% of the jobs are short jobs

with a duration between 1t and 10t chosen uniformly. The remaining are long-duration

jobs chosen uniformly from 10t to 30t for a time horizon of 48. Each job can request a

maximum of 50% of the total resources, picked randomly. The advantage of synthetic

datasets is that we can control the job characteristics to study the sensitivity of various
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RL methods for various job mixes.

4.4.2 Real workload

We train and evaluate the DRL scheduler using real High Performance Computing (HPC)

workloads including Argonne National Laboratory (ANL) Intrepid [100], San Diego Su-

percomputer Center (SDSC) SP2 [101], San Diego Supercomputer Center (SDSC) Blue

Horizon [102], Potsdam Institute for Climate Impact Research (PIK) IBM iDataPlex Clus-

ter [103] and HPC2N Seth [104]. Additional details such as jobs’ size, runtime, and system

details can be found in the respective citations provided. These workloads were collected

between 1998 and 2012. Although some of these logs are old, they have similar characteris-

tics to modern workloads regarding job arrival rates, resource requirements, and duration.

We made additional changes to the job logs to compensate for missing information. For

example, we added GPU requirements to the job requests because Intrepid job logs did not

have GPU jobs. Similarly, we augmented QoS data to each job where 60% of the jobs are

of medium to high QoS value (0.6 to 1.0), and the rest are of low QoS value (0.1 to 0.6).

Each job, ji in J , has associated meta-data described in Table 4.1. Jobs can have

additional information, e.g., input/output data. The additional meta-data may affect a

job’s completion time, but we do not account for additional overhead in our environment.

Additional overheads can be added as a slack time to the job’s expected finish time.

Both synthetic and real workloads have multimodal distributions for job duration and

resource requirements. For example, in a synthetic workload, a job can request different

quantities of resources, 4 CPUs and 2 GPUs, for 10-time units. In real workloads, if a

job requests more resources than the resource pool size currently simulated, the resource

request is scaled down to the resource pool size. We generate a new job sequence for

synthetic workloads for every training and evaluation run. For real workloads, we split the

workload such that 80% is used during training and 20% during evaluation. The actual

training/evaluation percentage split may vary slightly between workloads based on the

length of the workloads.
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Table 4.1: Per job meta-data

Field Description

id unique identification number
resource req requested number of units of each resource type
length user-specified time duration for the job
value monetary value when the job completes
QoS user specified Quality of Service for the job
enter time job submission time
start time time when the job starts executing on the resource
finish time time when the job completes execution
qos violation time upper limit when the job should finish w/o QoS violation

4.5 Power Infrastructure with Renewables

We define the power infrastructure to include the generation and distribution of power in

a microgrid form. A microgrid grid integrates multiple power supplies, such as renewables,

the electric grid, battery storage for renewables, and diesel generators. If the datacenter

guarantees high availability (e.g., 99.99%), then relying on brown energy, including the

electric grid and diesel generators, might be necessary. However, it is imperative to leverage

renewable energy, if sufficiently available, rather than the electric grid or diesel generators

to reduce brown energy consumption and carbon emissions.

In green datacenters, depending on the predicted power, the machines can be in any

of the following power states: 1) Turned off (no power consumption, 2) Idle (low power

consumption), and 3) Running full throttle (full power consumption). A basic linear power

model to estimate servers’ power consumption is given by,

Pserver(µ) = pidle + (pfull − pidle)× µ (4.1)

where pidle and pfull are the powers used by all machines at idle and fully utilized states,

respectively. µ is the average power utilization of all machines. We denote the total

renewable energy available at a datacenter at time t as Et. This equation should hold at

all times,

Pserver(µ),t ≤ Et (4.2)
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We assume that the critical infrastructure (head nodes, network, storage nodes) is

always powered up to facilitate job checkpointing and migration [105]. Methods to maintain

an optimal resource pool are outside the scope of this work.

4.5.1 Renewables and power availability

Forecasting is crucial for integrating variable renewable energy (VRE) resources such as

wind and solar into datacenters. The difference between forecasted output and actual

generation is forecast error. Factors affecting forecast performance include forecast time

horizon, local weather conditions, and weather data availability. By integrating VRE

forecasts into the scheduling system, datacenter operators can anticipate up- and down-

ramps in VRE generation to balance load and generation in intra-day and day-ahead

scheduling.

With shorter timescales, accurate VRE generation forecasting can help reduce the risk

of incurring penalties. Over longer timescales, improved VRE generation forecasting based

on accurate weather forecasting can help better plan long-running jobs (suspending and

resuming the jobs appropriately). The forecasting accuracy decreases with the increase

in the forecast time horizon. Thus, selecting a proper time horizon before designing a

forecasting model is key to maintaining forecasting accuracy at an acceptable level [106].

It may not be acceptable to reject or delay some jobs (e.g., jobs with high QoS require-

ments) if it is possible to execute them with a small additional amount of brown energy.

In such cases, the datacenter faces a multi-criteria optimization problem comprising the

selection of power sources and the scheduling of jobs. Similarly, batteries use also results in

a multi-criteria optimization problem since the datacenter administrator can decide when

to use the additional power from the battery. Multi-criteria optimization is ongoing, and

we will cover this topic in future work.

We use synthetic power and real power prediction data traces in our experiments. When

using synthetic power traces, the power availability level, e.g., 90%, means that 90% of the

resources are turned on (10% resources turned off) during that period (see Figure 3.3).

The real power prediction data (solar and wind) is from GLEAMM [107] datacenter. The
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GLEAMM center is a microgrid equipped with 150 kW solar power and three wind turbines

connected to the facility, each with 300 kVA of expected power generation.

4.5.2 Energy Storage Devices (ESDs)

ESDs or batteries store the excess energy from wind and solar, increasing the contribution

from renewable resources and reducing the electric grid’s need. This translates to reduced

electricity costs, lower carbon emissions, and highly reliable services. ESDs act as a buffer

to smooth out power from wind and solar farms, shifting energy from peak generation time

of day (charging) to low generation periods (discharging). Various factors affect the ESD

procurement decisions [108] for a given datacenter. For instance, the maximum load that

the ESDs need to support, battery capacity, and charge/discharge rates of the battery.

Storing MegaWatts (MW) of energy from wind and solar farms (multi MW peak) requires

a large battery capacity and high battery charge/discharge rates. This can be cost and

space prohibitive for small- and mid-size datacenters. Right-sizing the battery to meet a

specified Quality of Service (QoS) is an important step.

(a) Available power exceeds a given value from
renewables and battery.

(b) Power generation: solar (peak 120 kW),
wind (peak 600 kW), June 2019.

Figure 4.2: Power generation and power availability from wind and solar at GLEAMM.

Figure 4.2a shows the probability that total expected power will exceed a given value

for each renewable source and combinations from data calculated hourly across the 2019

calendar year at the GLEAMM facility. For example, a datacenter of 250 kW total electrical
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draw can expect to have its energy needs met at least 60% of the time entirely by the on-

site solar array and wind farm. Approximately 80 kW or more will be available at least

95% of the time for critical on-site functions such as data storage, internal networking,

and control functions of the computational cluster entirely from on-site renewable sources.

During other times, power can be obtained from the battery or the electrical grid to ensure

∼ 95% to ∼ 100% access to the datacenter.

Figure 4.2b shows the power (over 3 days in June 2019) from renewables and power

available with battery on site. The datacenter can expect a nearly constant power supply

with the battery. We used a simple model (Algorithm 5) to right-size the battery to support

a datacenter similar to GLEAMM facility with a 400 kW electrical draw. Assuming the

total peak generation from renewables (solar and wind) is 720 kW, a battery with 1 MW

capacity, discharge rate (E-rate) of 100, and charge rate (C-rate) of 100 can steadily supply

energy to the datacenter (shown in red line, Figure 4.2b). The data shown here is for a

small window (3 days in June) with ideal conditions, which drastically vary with seasons.

4.6 Simulator Validation

We validated our green datacenter simulator by running brief simulations with heuristic

policies, e.g., FCFS. We collected the scheduled jobs’ traces and verified that the jobs were

scheduled in the specified order depending on the heuristic policy. Additionally, we repeated

the experiment with different seeds (generating different job sequences) and verified that

the scheduler behaved in an expected manner depending on the heuristic policy specified.

4.6.1 Validation with heuristic scheduling policies

To verify the correctness of the simulator, we simulated experiments with an easily verifiable

scheduling policy, i.e., FCFS. With FCFS, the jobs that arrive first get scheduled first. We

generated a set of synthetic jobs with various resource requirements, duration, and job

arrival times. Once the simulation was complete, we verified that the jobs that arrived

first were scheduled first. We ran similar experiments with SJF since verifying that the
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Algorithm 5: Battery model: calculate total power available for datacenter use.

Input: renew power - total power from renewables
Output: power available - power available to the datacenter
Initialize: battery capacity, max load, c rate, e rate

1 for t = 1, 2, . . . , time horizon do
// sufficient power from renewables, charge the battery

2 if renew power ≥ max load then
3 power available = max load
4 excess power = renew power - max load
5 battery level[t] = min(battery level[t-1]+excess power, battery capacity)

6 else
// not enough power from renewables, check the battery

7 needed power = max load - renew available
8 battery power = min(e rate, battery level[t-1])

// battery has enough charge to satisfy the max load

9 if battery power < needed power then
10 battery level[t] = battery level[t-1] - needed power
11 power available = max load

12 else
// battery cannot satisfy the full load, partial power supply

13 battery level[t] = battery level[t-1] - needed power
14 power available = renew power + battery power

shortest jobs are always scheduled first is easy. This indicates that the simulator executes

the jobs in the desired order as the scheduler directs.

Next, we verified that the resources consumed by each job matched the given resource

requirement of each job. We checked that when the resources were not over-subscribed.

Only the jobs that could currently run on the available resources were scheduled, and

the other jobs remained in the ready pool until the resources became available. If the

ready pool was full, jobs wait in the wait pool. Additionally, we verified that jobs from

wait pool are admitted to ready pool only when slots are available in the ready pool.

Also, we verified that the simulator rejects jobs that could not fit on the current clus-

ter size. In other words, if the resource requirement of a job exceeds the max job resources,

that job will be rejected by the simulator. Similarly, if a job’s duration exceeds max job duration,

such a job is rejected.



4.7. Future Work 58

4.6.2 Validating action execution

To execute the schedule action, the simulator must remove a job specified by the scheduler

component from ready pool and place the job on the resources. The simulator first checks

if the resources are available and then places the job on the resources. Then the simulator

deducts the available resource count to reflect the new state.

The simulator first removes the candidate job from the resources to execute the suspend

action. After this step, the resources previously occupied by the candidate are marked

available. The suspended job is placed on the suspend jobs list. We validated that the

suspended job reflects the job duration with the remaining time to finish (work preserving).

If no candidate job was found, i.e., no running jobs, the suspend action will not incur any

penalties/costs.

To validate noop action, we ran two experiments. First, we ran the simulator by

controlling the job arrival rate (fewer jobs in the ready pool). Second, we saturated the

resources (no available resources) and issued noop command. In the first case, there were

no jobs to execute in the ready pool and therefore issuing a noop action resulted in no

change to the system except the existing jobs (if any) progressed and time incremented.

In the second case, since there were no available resources, issuing a noop action resulted

in no change in the system because new jobs could not be placed on the resources. The

existing jobs (if any) made progress and time increments.

Appendix-B lists the most relevant green datacenter simulator parameters that can

be altered to simulate various configurations during training and evaluation. Additional

parameters are excluded for brevity.

4.7 Future Work

In the future, we would like to extend our datacenter simulator to incorporate common

problems faced in real-world settings. For example, our simulator does not model features

like storage delays, interference, network delays, latency, or other failure rates. We can

extend our datacenter model by adding extra time (e.g., to model latency) to the job’s
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start and finish times. Similarly, storage delays can be modeled by adding additional

delays based on the data size specified or requested by a job. Additionally, we will extend

the datacenter model to enable additional resource selection, including memory, storage

types, and network interfaces.

4.8 Chapter Summary

We proposed a unified green datacenter simulator that allows experimenting with synthetic

and real workloads and integrates various renewable energy sources and Energy Storage

Devices (batteries). We implemented a discrete event simulator to simulate the green

datacenter environment. Our simulator aims to evaluate and compare the RL scheduler’s

performance under various operating conditions, i.e., power availability levels (synthetic,

constant, and intermittent power supply), varying system loads, and different workloads

(synthetic and real).



Chapter 5

Designing RL Scheduler for

Power-Modulated Datacenters

Reinforcement Learning based job schedulers automatically learn scheduling policies from

trial-and-error. For example, existing work [22] [23] [24] has shown that RL schedulers

can learn effective job scheduling policies in traditional datacenter environments with con-

stant power supply. Although the results presented in the current work are convincing,

these implementations do not examine the complex dynamic green datacenter environ-

ments. Furthermore, the existing work treats the RL schedulers as black boxes without

exploring the design choices that further improve performance. In this chapter, we identify

limitations in the current work. We present RARE (Renewable energy Aware REsource

management), a Deep Reinforcement Learning (DRL) job scheduler for power-modulated

datacenters. We demonstrate RL scheduler features that significantly improve performance

when correctly designed and configured.

5.1 Introduction and Motivation

Typically, RL researchers use standardized environments, such as OpenAI gym, to ensure

fair performance comparison between various implementations. Even with standardized

environments, hyperparameter tuning significantly impacts performance [109]. In the case

60
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of RL schedulers, the performance depends on two broad categories. First, RL-specific

factors such as learning algorithms, DNN configurations based on problem size, optimiza-

tion objectives (reward functions), and hyperparameters (batch size, learning rates, NN

activation functions). Second, scheduling system-specific factors such as state represen-

tation (image only, image+vector), learning environment (traditional datacenters, power-

modulated datacenters), workloads (HPC workloads, cloud workloads, machine learning

workloads), and scale of the problem (small, medium, or large scale clusters). These two

broach categories are interrelated, and system design decisions must consider both cate-

gories to extract expected performance. In this section, we will explore the limitations in

existing work and demonstrate how we can adequately design the RL schedulers to achieve

better performance in power-modulated datacenters.

5.1.1 Limitations in existing work

First, the “environment” plays a crucial role in reinforcement learning by providing suitable

reinforcement (reward) and encouraging the agent to execute positive actions repetitively.

The specially constrained environment rewards or penalizes the agent for correct or incor-

rect behavior (action). Although existing work [23] [24] [22] [98] has shown RL schedulers

learn effective job scheduling policies in traditional datacenter environments (with constant

power supply), they do not capture the complex dynamic green datacenters environments

where the resource pool expands and contracts due to intermittent power supply from re-

newables. Moreover, dissimilarities in their environments (traditional vs. power-modulated

datacenter environment) make it nearly impossible to compare these implementations one-

to-one. Designing an RL scheduler environment with a power-modulated resource pool as

part of the state space is crucial (shown in §5.4.3.2).

Second, the current work does not discuss the implications of system design choices,

making it difficult to analyze why the RL schedulers perform better than heuristic policies.

One such design choice is the size of the planning horizon. The RL scheduler seeks to

maximize the future cumulative rewards over some predefined planning horizon. Typically,

renewable energy predictions are generated for a 24-hour (day ahead) window. The RL
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schedulers can make better scheduling decisions with a longer planning horizon, whereas

greedy heuristic policies cannot plan for future events. Therefore, studying the RL sched-

uler’s performance over longer planning horizons is crucial for green datacenters (shown in

§5.4.3.3).

Third, the current implementations, [22] [23] [24], treat the RL schedulers as a black

box. Existing research does not explore RL-specific and green datacenter-specific configu-

rations that may significantly improve performance. These configurations may include the

neural network size (number of neurons in input, hidden, and output layers) and the state

representation (jobs, resources, and power supply). Moreover, following a one-size-fits-

all approach when evaluating the RL scheduler for different problem sizes and workloads

(with different job properties and distributions) may not deliver the expected performance.

Some of these design decisions have performance implications (shown in §5.4.3.4), while

others may influence training time or system memory consumption (not explored in this

dissertation).

5.2 Designing RL Schedulers for Green Datacenters

This section will discuss the RL scheduler design considerations that address the limitations

identified in the previous section.

5.2.1 Manage resource pool based on power supply

In power-modulated datacenters, depending on the predicted power, the machines can be

in any of the following power states: 1) turned off (no power consumption), 2) idle (low

power consumption), or 3) running full throttle (full power consumption). The resource

pool expands and contracts based on the power available to the datacenter at any given

time. Power availability decides when and how many resources are turned on or off. There-

fore, power prediction data is an integral part of the state space, i.e., as power availability

changes, the corresponding resource availability is reflected in the state information sup-

plied to the scheduler agent.
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Given the power-modulated resource pool, the scheduler should learn scheduling policies

such that jobs finish before resources are turned off, suspended, migrated, or scheduled

after resources become available. The RL scheduler must be trained with resource pool

expanding and contracting depending on the power supply to the datacenter (refer to

Chapter-4, §4.5).

5.2.2 Extended planning horizon

Forecasting is crucial for integrating variable renewable energy (VRE) resources such as

wind and solar into datacenters. By integrating VRE forecasts into the scheduling sys-

tem, datacenter operators can anticipate up- and down-ramps in VRE generation to cost-

effectively balance load and power generation in intra-day and day-ahead scheduling. Fac-

tors affecting forecast performance include forecast time horizon, local weather conditions,

and weather data availability.

At short timescales, accurate VRE generation forecasting can help reduce the risk of

incurring penalties (penalties for suspending and migrating jobs). Given the advancements

in the quality and duration of weather prediction, the power generation prediction window

could be 36, 48, or more hours into the future. Over longer timescales, improved VRE

generation forecasting based on accurate weather forecasting [106] can help better plan

long-running jobs without suspending and resuming the jobs frequently. Therefore, the

system must be designed to incorporate longer planning horizons.

5.2.3 Workloads and scaling

The goal of evaluating a system is often to compare different system designs or implementa-

tions. Many factors characterize the workloads, including job sizes, resource requirements,

runtime estimates, and arrival patterns. The drawback of using trace workloads from

real systems is that the traces reflects a specific workload, and there is always the ques-

tion of whether the results generalize to other systems or load conditions. In particular,

there are cases where the workload depends on the system configuration; therefore, a given

workload is not necessarily representative of workloads on systems with other configura-
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tions. This makes the comparison of different configurations problematic. The existing RL

schedulers [24] analyze diverse workloads without changing the system configurations for

different workloads.

5.3 RL Scheduler Agent Training

We train our scheduling agent with a custom variant of the model-free off-policy actor-critic

framework with discrete actions [110] [111]. The agent interacts with the environment,

sampling actions from πθ in state s, transitioning to a new state s′ and receiving a reward

r. This experience is saved in a replay buffer D for later use. In addition to the “actor-

network”, we initialize a neural network ϕ to represent the Q-function, denoted Qϕ, which

takes state and action vectors as input and outputs an estimate of the expected return

when taking action a in state s and following π thereafter. We can use our critic network

to train the actor network to output higher-value actions. The improved actor is then

used to improve the critic network’s value estimates, and this process is repeated until

performance converges. This technique is “model-free”. It does not attempt to directly

model changes in the environment and “off-policy” because it recycles data collected from

past decisions of the actor network.

The datacenter model (Chapter-3, section 3.2.2) with ready pool size n is converted

to an RL environment that takes an action index < n + 2 and returns a new state and

reward. States are tuples containing both the resource image and array of job meta-

data (section 3.2.1), while the reward function can be adjusted to reflect the goals of our

scheduling system. This dissertation focuses on optimizing the total (monetary) value of

completed jobs; the reward at timestep t is the total value of all completed jobs at that

timestep. Our agent learns to select jobs from the ready pool that maximize total job value

with the help of three DNNs. The encoder combines the state information in the resource

allocation image and job metadata array and produces a compact vector representation.

The resource allocation image is processed by convolutional layers common in computer

vision applications, while the job array is passed through standard feed-forward layers.
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The two representations are then normalized for stability and concatenated together

before a final sequence of layers condenses them to a vector s̃ ∈ R128 that summarizes

the current state of the scheduling environment. The actor network takes s̃ as input and

outputs probabilities for selecting all n + 2 scheduling actions. The critic also takes s̃ as

input and outputs q ∈ Rn+2, where q[i] is an estimate of the total monetary value that

we expect to achieve in the future when beginning in the current state and taking the ith

action.

Algorithm 6: RARE: DRL Scheduler Training Process

Initialize: Encoder Net gψ, Actor Net πθ, Critic Net Qϕ
Input: Advantage Samples k, Replay Buffer with pre-provided transitions

D ← {(si, ai, ri, s′i), . . . }
1 for training step t ∈ {0, . . . , T} do
2 Randomly Sample Batch of B transitions {(si, ai, ri, s′i)}i=Bi=0 ∼ D

// the encoder embeds resource image + job metadata into a single array

3 Let s̃j := gψ(sj)
// critic loss (where ��∇ cancels gradient contributions)

4 Lcritic ←
1

B

i=B∑
i=0

(Qϕ(s̃i, ai)− E
a′∼πθ(s̃′i)

[
(ri +��∇γ(Qϕ(s̃′i, a′)

])2


// estimate the advantage function, A(s, a), by comparing the value of a

to the average value of actions sampled from the policy in a given

state.

5 Let Â(s̃i, ai) := Qϕ(s̃i, ai)− 1
k Σ

k
0 Qϕ(s̃i, a

′ ∼ πθ(s̃i))
// offline actor loss [112]. supervised regression copies actions with

positive advantage (where 1{x} is 1 if x is True else 0)

6 Lactor ←
1

B

i=B∑
i=0

(
−1{Â(s̃i,ai)>0}logπθ(ai|s̃i))

)
// update neural nets by gradient descent

7 ψ ← ψ − α∇ψLcritic , ϕ← ϕ− α∇ϕLcritic , θ ← θ − α∇θLactor
8 end
Output: Trained Scheduling Policy πθ(gψ(s))

In an actor-critic method, the actor is trained to assign higher probabilities to actions

that the critic determines will lead to higher monetary value. The critic then uses the

improved actor to better estimate the expected return of selecting each action. Both

networks rely on the state representation s̃ learned by the encoder network. Separating the

encoder in this way lets us share parameters across the actor and critic training processes

and reduces overall network size. However, the encoder parameters are updated alongside

the critic but not the actor for stability reasons.
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The training process is outlined in Algorithm 6. Our specific implementation includes

several additional details that have been shown to improve stability and performance; the

offline version of our scheduler is closest to Critic Regularized Regression (CRR) [112].

5.4 Evaluation

This section evaluates the RL scheduler’s performance with different workloads and power

availability at the green datacenter and explores the effects of design choices on the per-

formance. Before presenting the results, we briefly discuss the workload and experimental

setup.

5.4.1 Experimentation conditions

Our green datacenter simulator compares different resource allocation and scheduling poli-

cies using various workloads and power availability settings. Our datacenter model (sec-

tion 3.2.1) integrates resources, jobs, and power supply from renewables (section 4.5.1) and

ESDs (section 4.5.2). The flexible design of our datacenter simulator allows for exploring

various design options that can improve the RL scheduler’s performance. We modeled a

small-scale (10 to 50 resources) and a medium-scale datacenter (100 to 1200 resources)

for the following experiments. Scheduler agent training and evaluation experiments were

conducted on servers with Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz and AMD EPYC

7252 8-Core processors, and NVIDIA GTX1080Ti (12GB VRAM), NVIDIA TESLA P100

(12GB VRAM), NVIDIA A100 (40GB VRAM) GPUs, NVIDIA RTX6000 (24GB VRAM)

GPUs, NVIDIA A16 (16GB VRAM) GPUs, and NVIDIA A40 (48GB VRAM) GPUs. See

Computing Resources, Dept. of Computer Science [113] for more information about the

compute resources.

5.4.2 Evaluation metrics

The metric used for evaluating the RL scheduler’s performance is the Total Job Value

(section 3.2.3) from running the jobs. The Total Job Value accumulated during evaluation
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includes a total value for all the jobs completed on time. The higher the Total Job Value,

the better. We repeated each experiment 10 times with random seeds and found the

error margin between runs was insignificant. In the following graphs, the Total Job Value

(y-axis), the total value of all the completed jobs, is expressed in scientific notation (e

notation).

For comparison, we evaluate heuristic scheduling policies, including Shortest Job First

(SJF), Quality of Service (QoS), Highest Value First (HVF), and First Come First Serve

(FCFS) for comparison. The SJF heuristic policy picks the job with the shortest runtime

first. With the QoS scheduling policy, the job with the highest QoS value (refer to sec-

tion 3.2.1.2) is scheduled first. The highest value job is scheduled first with the HVF policy,

and the job with the earliest enter time is scheduled using FCFS. We selected the represen-

tative heuristics (SJF, FCFS, QoS, and HVF) because each heuristic optimizes one or more

metrics (job value, utilization, job completion). The SJF heuristic minimizes job delays

(and maximizes utilization), the FCFS heuristic (commonly used policy in SLURM [114])

minimizes wait times, QoS greedy heuristic minimizes job delays and QoS violations, and

HVF greedy heuristic maximizes value. We will use these heuristic scheduling policies for

comparison in Chapter-6 and Chapter-7 as well.

We explored a random scheduling policy that performed similarly (or better) for 10

and 20 resources. For larger problem sizes, the random job scheduling policy performed

significantly lower (sometimes negative value due to QoS violations) than all the other

heuristic policies. Therefore, the random policy is disregarded from further comparisons.

Our framework does not support backfilling; we will incorporate this feature in our future

work.

For additional details on synthetic and real workloads, refer to Chapter-3.

5.4.2.1 Power availability

We use synthetic power and real power prediction data traces in our experiments. When

using synthetic power traces, the power availability level, e.g., 90%, means that 90% of

the resources are turned on (10% resources turned off) for that time step (see Figure 3.3).
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The real power prediction data (solar and wind) is from GLEAMM [107] datacenter (see

Chapter-4, §4.5.1).

5.4.3 Results

First, we evaluate our RL scheduler with synthetic and ANL HPC workloads. Second, we

demonstrate the RL scheduler’s adaptability to the intermittent power supply. Third, we

evaluate design choices, namely extended planning horizon and increasing ready pool size,

that significantly increase the performance of the RL scheduler compared to heuristics.

Finally, we show that the RL scheduler can learn to imitate the existing heuristic policies

and improve performance over those heuristic policies.

5.4.3.1 Performance with synthetic and HPC workloads

Performance with synthetic workload and power data: This section demonstrates

the RL scheduler’s performance with the increasing number of resources. We modeled a

small and medium scale datacenter and maintained the workload and power availability at

100%. The Total Job Value obtained compared to heuristic scheduling policies is plotted

in Figure 5.1.

Figure 5.1: RL scheduler’s performance vs. heuristic scheduling policies with varying
datacenter capacity (small to medium scale datacenter).
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Figure 5.2: Performance - RL and heuristic policies upto 1200 resources.

Analysis: From Figure 5.1, the RL scheduler performs 18% to 25% better for small-

scale datacenter and 2% to 20% better for medium-scale datacenters compared to heuristic

policies. As the number of resources increases (≥ 50), the RL scheduler’s performance

closely matches (2% to 6% better) the performance of QoS and SJF policies. Figure 5.2

shows that the RL scheduler performs consistently better than heuristic policies as the

problem size increases up to 1200 resources. We note that as the state space increases

with bigger problem size, the RL scheduler must explore more states to decide on the best

action in any given step. Given the vast state space, the agent cannot explore all possible

state-action pairs within the fixed episodic limits. Therefore, the performance gap between

the RL scheduler and maximum value becomes wider as we scale to a higher number of

resources (shown in Figure 5.2). This vast state space problem can be alleviated by splitting

the state space into smaller sizes. We will investigate this approach in the future.

Performance with real HPC workloads and real power prediction data: We

modeled a small-scale datacenter (10 to 30 resources) with ANL HPC job workload and

maintained the job arrival rate at 100%. We also used the power prediction data from the

GLEAMM datacenter to simulate a real-world green datacenter powered by renewables
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and batteries (no brown energy).

Figure 5.3: RL scheduler’s performance vs. heuristic scheduling policies with ANL work-
load and GLEAMM power data.

Analysis: Figure 5.3 shows the performance of the RL scheduler compared to heuristic

policies on the ANL workloads and real power prediction data from GLEAMM. The RL

scheduler’s performance for ten resources matches the QoS and is 5% to 10% better than

other scheduling policies. For 20 and 30 resources, the RL scheduler performs 7% to 14%

better than the heuristic policies.

Different workloads have diverse job mixes and distributions; therefore, their perfor-

mance varies [24]. Although the one-size-fits-all approach works, we plan to investigate the

diverse workload properties further to gain deeper insights into designing RL schedulers

(e.g., DNN shape, size, and state representation).

5.4.3.2 Scheduler’s adaptability to intermittent power supply

This section presents the RL scheduler’s adaptability to the varying power supply. The

intermittent power generation by renewables necessitates the datacenter resources to switch

between power states (off, idle, full throttle). Our experiments simulate intermittent power

supply to the datacenter at each time step, not fixed reduced power supply. We modeled

small and medium-scale datacenter with different power availability levels and measured
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the total job value obtained at each level. Based on power availability, the resource pool

size expands and contracts at every timestep (Chapter-3, Figure 3.3). The job arrival rate

is constant at 100% for all the power availability levels.

Figure 5.4: RL Scheduler’s performance with varying power supply - small and medium
scale datacenter.

Analysis: In Figure 5.4, we plotted the total job value with varying power supply

(100%, 90% and 80%) for a small and medium-scale cluster. For small-scale cluster (Figure

5.4a, b and c), the RL scheduler performs 9% to 13% better (10 and 20 resources) and

8% to 12% better (50 resources) than heuristic policies. For medium-scale cluster (Figure

5.4d), the RL scheduler performs 1% better than QoS policy and 5% to 20% better than
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other heuristic policies. The greedy heuristic policies, like SJF, do not plan for the future

by design. On the contrary, the RL scheduler observes the resource availability changes in

the future and intelligently schedules suitable jobs maximizing total job value. As observed

in the previous section, the performance difference between the RL scheduler and heuristic

policies narrows (300 resources) with a larger state space.

5.4.3.3 Extended planning horizon

The renewable energy predictions are typically generated for a 24−hour (day ahead) win-

dow. More recently, researchers have developed better prediction models that can predict

(with relative accuracy) power generation for extended time windows (2-3 days) [115].

This subsection investigates the RL scheduler’s performance with various planning hori-

zons, namely 36, 48, 60, and 72-time units. For this experiment, we used synthetic workload

and 100% power to isolate the performance implications of the extended planning horizon.

Figure 5.5: RL scheduler’s performance vs. SJF scheduling policy with increasing time
horizon - 10 resources.

Analysis: From Figure 5.5, as the planning horizon increases from 36 to 72, the RL

scheduler performs 4% to 14% and 6% to 10% better than SJF heuristic policy for synthetic

and ANL HPC workloads, respectively. The RL scheduler seeks to maximize the future

cumulative rewards over some predefined planning horizon (a.k.a, time horizon). With a
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shorter planning horizon, TH=36, the RL scheduler might be limited to myopic decisions

yielding immediate gains. The greedy heuristic policies lack the ability to plan for future

events; specifically, the performance of SJF policy cannot improve as long as the jobs’

runtimes are strictly less than the planning horizon.

Our experiments assume that the quality of predictive information does not decay with

an extended time horizon. In reality, as the time horizon increases, uncertainty increases

due to weather prediction inaccuracy (described in section 4.5.1). This uncertainty can be

captured by changing the discount factor, γ. The discount factor determines how much

the RL agent cares about rewards in the distant future relative to those in the immediate

future. If γ = 0, the agent will be completely myopic and only learn about actions that

produce an immediate reward. For our experiments above, we set γ = 0.99. We note that

optimization problems become computationally intensive (due to state-space explosion)

with longer time horizons. In the future, we will identify the limits beyond which extending

the time horizon will result in diminishing returns.

5.4.3.4 Varying readypool size

This section evaluates the performance of different scheduling policies as the ready pool

size varies. The size of the ready pool (Chapter-3, Figure 3.3) is fixed for any given problem

size because the DNN’s shape cannot change dynamically during training or evaluation.

The RL scheduler can only select one or more jobs in the ready pool at each step. On

the other hand, typical heuristic schedulers can select one or more jobs from all of the

waiting jobs in the system. This experiment demonstrates that capping the list of jobs to a

reasonable number (ready pool size) does not affect the performance of the RL scheduler.

For this experiment, we used ten resources, synthetic and ANL workloads with 100% power

supply, to study the effect of ready pool size on the quality of the results produced by the

RL scheduler.

Analysis: Figure 5.6a shows the RL scheduler’s performance (synthetic workload) com-

pared to the SJF scheduling policy with varying ready pool sizes. The RL scheduler per-

forms best with a ready pool size of 15, an 18% improvement over SJF. The RL scheduler’s
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Figure 5.6: RL scheduler’s performance vs. SJF scheduling policy with varying ready pool
sizes - 10 resources.

performance decreases for ready pool sizes of 25 and higher but still performs 4% to 7%

better than SJF. On the other hand, the SJF policy always picks the smallest job, and the

performance stays constant even when we increase the ready pool size because the jobs’

lengths are within a certain distribution (described in section 4.4.1). Even if more jobs are

visible (in the ready pool) to the SJF scheduler, the job lengths are likely to be similar.

Figure 5.6b shows the RL scheduler’s performance with ANL HPC workload. The

RL scheduler performs 10% better than SJF when the ready pool size is 5 and 7% better

for ready pool size 15 and above. Whereas, with the synthetic workload, the RL sched-

uler’s performance increases, with the ANL HPC workload, the performance decreases as

ready pool size increases. We showed that having a smaller set of ready pool jobs does not

affect the RL scheduler’s overall performance. Further, we believe that the graph trends

for the two workloads are different due to the differences in the job distributions. We plan

to investigate further with other workloads.
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5.5 Future Work

We showed that the RL scheduler’s performance linearly scales up to 1200 resources. This

was the largest problem size we could train on our existing hardware. In the future, on

better hardware, we would like to identify the largest problem size that can be accom-

modated without compromising on the RL scheduler’s performance. The RL scheduler’s

performance will diminish as the state space increases. At that point, we will explore other

solutions, including a multi-agent approach that partitions the state space among multiple

scheduling agents might provide better results.

We explored two representations, 1) image-only representation where resources and

jobs were represented as an image, and 2) image with job vector where resources were

represented as an image and jobs were represented as vectors. We want to explore another

representation where resources and jobs are represented as vectors only.

Finally, comparing one state-of-the-art RL scheduler implementation with other is ex-

tremely difficult due to the reasons discussed in the introduction section of this chapter.

We want to open source and extend our work so that the practitioners have a basic set of

design features but also be able to customize the datacenter environment (types of work-

loads, cluster configurations, and other features) to implement their unique solutions and

provide a fair comparison with other state-of-the-art schedulers implemented using our

basic environment.

5.6 Chapter Summary

In this chapter, we surveyed existing research and determined that the current research

does not adequately address challenges presented in the complex dynamic green datacen-

ter environments. The current research presents the RL schedulers as black boxes without

exploring the system design configurations. We identified four RL scheduler design fea-

tures pertinent to green datacenters, namely 1) state and action space representation, 2)

configuring for different workloads, 3) extended planning horizon, and 4) policy network

configurations.
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We presented our DRL scheduler framework, RARE (Renewable energyAwareREsource

management). We experimentally demonstrated performance improvements when the RL

scheduler is appropriately designed and configured. We show that our RL scheduler per-

forms better than heuristics policies in the dynamic green datacenter environment for

synthetic and real HPC workloads for a small to medium-scale cluster with 10 to 1200

resources. The RL scheduler adapts exceptionally well to the intermittent power supply

(synthetic and actual power prediction data). With synthetic workload, our RL scheduler

performs 18% to 25% better for small-scale clusters and 2% to 20% better for medium-scale

clusters than heuristic policies. With the HPC workload, the RL scheduler performs 7%

to 14% better than the heuristic policies. With varying power supply (100%, 90% and 80%

power), our RL scheduler performs 9% to 13% better in small scale cluster and 5% to 20%

better compared to heuristic policies in medium scale cluster. We show that as the plan-

ning horizon extends (from 36 to 72-time units), our RL scheduler performs 4% to 14% and

6% to 10% better than heuristic policy for synthetic and HPC workloads, respectively.



Chapter 6

Constraint Controlled

Reinforcement Learning Scheduler

In power-modulated datacenters, resource availability depends on the power supply from

renewables. Intermittent power supply from renewables leads to intermittent resource

availability, inducing job delays (and associated costs). Green datacenter operators must

intelligently manage their workloads and available power supply to extract maximum ben-

efits while constraining the costs. Then, the scheduler’s objective is to schedule jobs on a

set of resources to maximize the total value (revenue) while minimizing the overall costs

(e.g., due to delayed jobs or QoS violations). Hence, the aims of achieving high rewards

and low costs are in opposition. A trade-off exists between achieving high job value on the

one hand and low expected delays on the other. In addition, datacenter operators often

prioritize multiple objectives, including high system utilization and job completion. To

accomplish the opposing goals of maximizing total job value, minimizing job delays, and

optimizing for multiple objectives, we apply the Proportional-Integral-Derivative (PID) La-

grangian methods in Deep Reinforcement Learning to job scheduling problem in the green

datacenter environment. Lagrangian methods are widely used algorithms for constrained

optimization problems. We adopt a controls perspective to learn the Lagrange multiplier

with proportional, integral, and derivative control, achieving favorable learning dynamics.

Feedback control defines cost terms for the learning agent, monitors the cost limits during

77
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training, and continuously adjusts the learning parameters to achieve stable performance.

Our experiments demonstrate improved performance compared to scheduling policies with-

out the PID Lagrangian methods. Experimental results illustrate the effectiveness of the

Constraint Controlled Reinforcement Learning (CoCoRL) scheduler that simultaneously

satisfies multiple objectives.

6.1 Introduction and Motivation

Existing RL schedulers presented in [22] [116] [23] solely focus on optimizing a single reward.

While these implementations demonstrate good performance for a specific metric, they do

not consider costs associated with hazardous actions. In practice, these RL policies face

skepticism about their robustness when encountering unusual situations. For example, an

RL model may “misbehave” on an unanticipated workload change or intermittent power

supply making bad scheduling decisions that lead to applications’ service level objective

(SLO) violations.

While errors during training in these domains (robotic locomotion [17] [18], sophisti-

cated video games [19] [20], congestion control [21], and cluster job scheduling [24] [117] [118])

come without a cost, limiting the rates of hazardous outcomes in some learning scenarios

is crucial. One example is wear and tear on a robot’s components or surroundings. While

it is possible to impose such limits directly by prescribing constraints in the action or state

space, hazard-avoiding behavior must be learned.

Additionally, focusing only on generating “good” or “balanced” schedules is not enough.

The agent must not only satisfy the constraints but also optimize for other metrics. The two

most common objectives that datacenter operators prioritize are order-based and resource-

based [119]. For example, satisfying due dates (reducing job delays) is an order-based

objective, while efficient resource utilization is a resource-based objective. This can be

achieved by appropriately co-designing the reward and cost functions to satisfy multiple

objectives simultaneously.

Furthermore, any effective scheduling system must adapt to unforeseen events. In a
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power-modulated datacenter environment, the resource availability is based on the power

supply from renewables. Even with the best weather predictions, there can be unforeseen

circumstances when the power supply changes drastically. The scheduler should handle

such situations gracefully by maintaining high rewards and costs within limits.

One solution is to embed all conflicting requirements in a constrained RL problem and

use a primal-dual algorithm that automatically chooses the agent’s parameters. The main

advantage of this approach is that constraints ensure satisfying behavior without manually

selecting the penalty coefficients. Instead of applying constraints in the action or state

space directly, hazard-avoiding behavior is learned. We utilize the well-known framework

of the Constrained Markov Decision Process (CMDP) [120], limiting the accumulation of

the cost signal, which is similar to the reward signal. Lagrangian methods are a classic

technique for solving constrained optimization problems. The desired scheduling policy is

one that maximizes the usual reward while satisfying the cost constraint.

This chapter presents a constraint-controlled RL scheduler that uses a primal-dual

algorithm that automatically learns conflicting reward and cost functions. We demonstrate

that a Constraint-controlled RL scheduler learns policies that satisfy the constraints and

optimize for other objectives, such as resource utilization and job completion. Our results

illustrate that our CoCoRL scheduler efficiently adapts to real HPC workloads while using

real power supply data (solar and wind) from an existing Green datacenter. We illustrate

the importance of accurately tuning hyperparameters to satisfy various optimization goals

set by datacenter operators.

6.2 Background

In many situations in the optimization of dynamic systems, a single utility for the optimizer

may not be sufficient to describe all the objectives involved in sequential decision-making.

A special situation is where one controller has multiple objectives. Instead of introducing a

single utility to maximize (or a cost minimize), that may be some function (e.g., weighted

sum) of the multiple objectives, a natural approach for handling such cases is optimizing
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one objective with constraints on others. In particular, this allows us to understand the

trade-off between the various objectives.

Figure 6.1: The constrained minimum, ∇f = -λ∇g.

One solution is to embed all conflicting requirements in a constrained RL problem

and use a primal-dual algorithm that automatically chooses the agent’s parameters. This

approach’s main advantage is that constraints ensure satisfying behavior without manually

selecting the penalty coefficients. The Constrained Markov Decision Process (CMDP) [120]

framework facilitates limiting the accumulation of the cost signal, which is similar to the

reward signal (Figure 6.1) where the optimal scheduling policy is one that maximizes the

usual return while satisfying the cost constraint.

6.2.1 Lagrangian methods for constrained optimization

Lagrangian methods are a classic family of approaches to solving constrained optimization

problems. For example, the equality-constrained problem over the real vector x:

min
x
f(x) s.t. g(f) = 0 (6.1)

is transformed into an unconstrained one by the introduction of a dual variable–the

Lagrange multiplier, λ–to form the Lagrangian: L(x, λ) = f(x) + λg(x), which is used to

find the solution as:

(x∗, λ∗) = argmax
λ

min
x
L(x, λ) (6.2)
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Gradient-based algorithms iteratively update the primal and dual variables where λ

acts as a learned penalty coefficient in the objective, leading to a constraint-satisfying

solution [121].

6.2.2 Dynamical systems and feedback control

Dynamical systems are processes that are subject to external control. A generic formulation

for discrete-time systems with feedback control is:

xk+1 = F (xk, uk)

yk = Z(xk)

uk = h(y0, y1, . . . , yk)

(6.3)

Where x is the state vector, F is the dynamics function, u applied control, y is the mea-

surement outputs, and the subscript denotes the time step. The feedback rule, h, can

access past and present measurements. The optimal control problem is to design a control

rule, h, that results in a sequence y0:T = {y0, y1, . . . , yT } (or states x0:T ) that scores well

for some cost function C. For instance, reaching a goal condition, C = |yT − ȳ|, or closely

following a desired trajectory, ȳ0:T .

A typical feedback control system, illustrated in Figure 6.2, comprises a controller, a

system to be controlled, actuators, and sensors. The setpoint represents the exact value of

the controlled variable. The error is the difference between the setpoint and the current

value of the controlled variable, i.e., e(t) = setpoint – current value of the controlled

variable. The manipulated variable is the quantity that the controller varies to influence

the value of the controlled variable. The feedback loop of the system is as follows: 1) The

system, at regular intervals, monitors and compares the controlled variable to the setpoint

to determine the error, 2) The controller computes the required control signal based on the

error; and 3) The actuators change the value of the manipulated variable to control the

system.



6.2. Background 82

Figure 6.2: Typical PID feedback loop to control the system.

6.2.3 Constrained-controlled reinforcement learning

The Constrained Markov Decision Processes (CMDP) [120] extend MDPs [122] to include

constraints into RL. A CMDP is the extended tuple (S,A,R, T, µ, C0, C1, . . . , d0, d1, . . .).

The cost functions Ci : S × A × S → R are defined with the same form as the reward

functions, and di : R represents cost limits. For this work, we consider a single, all-

encompassing cost.

In RL, the expected sum of discounted rewards computed over τ = (s0, a0, r1, s1, a1, r2, . . .)

trajectories, using the policy π(a|s) is a common performance objective, defined as J(π) =

Eτ∼π[
∑∞

t=0 γ
tR(st, at, st+1)]. The corresponding value function for the cost is defined as

JC(π) = Eτ∼π[
∑∞

t=0 γ
tC(st, at, st+1)]. Then the constrained-controlled RL problem is

solved for the best possible policy:

π∗ = argmax
π

J(π) s.t. JC(π) ≤ d (6.4)

DRL uses a Deep Neural Network (DNN) for the policy, πθ = π(·|s; θ) with θ as a

parameter vector. The policy gradient algorithms improve the policy over time by gathering

experience in the task of estimating the reward objective gradient, ∇θJ(πθ) iteratively.

Therefore our constrained optimization problem is expressed as maximizing score at some



6.3. Related Work 83

iterate, πk, ideally obeying constraints at each iteration:

max
π

J(πk) s.t. JC(πm) ≤ d

where m ∈ {0, 1, . . . , k}
(6.5)

We cast constrained RL as a dynamical system with the Lagrange multiplier as a control

input, to which we apply PID control in the learning algorithm. The PID multiplier method

proposed in [123] is a recent result where a PID update rule is considered for a learned

Lagrange multiplier.

6.3 Related Work

This section briefly discusses relevant related work applicable to this chapter. For a com-

plete review of related work on heuristic and RL schedulers, refer to Chapter-3 and Chapter-

4.

Feedback control-based schedulers: A wide variety of contributions using control

theory based resource management in various settings are proposed in [124] [125] [126]. The

scheduler in [127] applies the PID controller to load balance tasks in real-time systems.

These systems use heuristic or formal methods and manually tune the control parameters

to achieve the desired optimization objectives.

Single objective RL schedulers: Much of the prior work focuses on unconstrained

optimization problems i.e., without safety constraint. These systems optimize a single ob-

jective such as latency, throughput, power, and energy consumption. The Spotlight [22]

partitions the agent’s neural network training operations onto different devices (CPUs and

GPUs) to minimize ML model training time. The RL scheduler in [97] is designed to min-

imize the makespan of DAG jobs considering both task dependencies and heterogeneous

resource demands. The scheduler in [98] implements a co-scheduling algorithm based on an

adaptive RL by combining application profiling and cluster monitoring. The optimization

objective in [98] is to maximize resource utilization. These implementations incorporate a

single reward function that maximizes or minimizes a single objective. Although effective,
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this naive application of RL to optimize for a single objective can lead to poor perfor-

mance on the secondary objectives. Also, none of these schedulers are designed for green

datacenter environments.

Multi-objective RL schedulers: Many prior work has studied multi-objective opti-

mization in scheduling [128]. Recent work [74] presents a unified management approach for

the thermal and workload distribution in datacenters. The objective is to minimize power

consumption while satisfying thermal and Quality of Service (QoS) constraints. They

implement a particle-based algorithm that requires adjusting some non-trivial number of

parameters over multiple iterations. DeepEE [23] proposes improving datacenters’ energy

efficiency by concurrently considering the job scheduling and cooling systems. The goal,

in [23], is to reduce cooling costs in a datacenter rather than optimize job scheduling. The

joint optimization problem aims to minimize the power usage effectiveness while preventing

overheating in the rack server and keeping the load balance. The downside of these systems

is that designing a good reward function that balances different, often conflicting, objec-

tives is challenging. A different optimal solution exists for each set of penalty coefficients,

also known as Pareto optimality. Manually tuning the exact coefficients of different objec-

tives is a time-consuming process. Our work focuses on automatically learning the policy

parameters based on the cost signal instead of manually tuning for conflicting objectives.

RL schedulers with constraints: A good number of prior work has studied safety

constraints in RL training [129]. Two main categories of the work include limiting the

action space or state space to satisfy constraints. The work in [130] blocks specific actions

when a safety condition is violated. However, shielded RL only applies to simple problems

with tabular states and treats the shield as part of the environment without modifying

the RL optimization objective. Therefore, the shield is only a protection mechanism to

constrain the action set, not a technique for adapting the agent’s policy. The proposed

work in [131] uses the RL framework for robotics to inject experience data from the expert’s

control into the replay buffer for off-policy RL methods. This framework uses a classical

PID controller as an alternative to speed up the training of RL for robot planning and

navigation problems. As the actor-network becomes more advanced, it can then take over
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to perform more complex actions. Eventually, the PID controller is discarded entirely.

Another body of prior work focuses on adjusting RL algorithms to avoid exploring un-

safe states [132], modeling the risk in state transitions, and conservative exploration [133].

These methods incorporate the fallback policy within neural networks but cannot guaran-

tee that the system will eventually recover to a safe state. Training wheels [134] prioritize

meeting the safety condition and rely on deterministic fallback policies. While it may be

possible to impose limits directly by prescribing constraints in the action or state space,

hazard-avoiding behavior must be learned. Our work focuses on embedding all conflict-

ing requirements in a constrained RL problem and learning the parameters automatically

instead of restricting unsafe states and actions.

6.4 Approach

This section presents the mapping of RL as a dynamical system and the PID Lagrangian

method for constrained-controlled RL agents. In section 6.5, we present scheduler design

as an instance of this mapping and the RL training algorithm.

6.4.1 Mapping RL as a dynamical system

Similar to the system of equations in eq 6.3, the first-order dynamical system in constrained

RL [123] form is defined as:

θk+1 = F (θk, λk)

yk = JC(πθk)

λk = h(y0, y1, . . . , yk, d)

(6.6)

Here F is a nonlinear function corresponding to the policy update on the RL agent’s

parameter vector, θ. The penalty or cost-objective, y, is the measured output of the

system. This measured output (y) is fed to the feedback control rule, h, along with the

cost limit, d. With this starting point, the learning algorithm given by F , and the penalty

coefficient update rule, h, can be tailored to solve the constrained optimization in (eq 6.5).
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The policy gradients for reward and cost of the first-order Lagrangian method,∇θL(θ, λ) =

∇θJ(πθ)−λ∇θJC(πθ), is organized in the form of eq 6.6 as:

F (θk, λk) = f(θk) + g(θk)λk (6.7)

f(θk) = θk + η∇θJ(πθk) (6.8)

g(θk) = −η∇θJC(πθk) (6.9)

where η is the Stochastic Gradient Descent (SGD) learning rate. The controller’s role is

to push inequality constraint violations (JC−d)+ to zero.

6.4.2 Lagrangian update with PID controller

A constrained optimization problem is a problem of the form maximizing (or minimizing)

the function F (x, y) subject to the condition g(x, y) = 0. The Constrained MDPs have

two criteria; 1) the usual reward and 2) the cost as a second value function. The reward

must be optimized while the cost must remain below some specified threshold.

The PID update rule, is shown in Algorithm 7. During training, the proportional

term fastens the response to constraint violations, the integral term eliminates steady-state

violations at convergence, and the derivative control acts in anticipation of violations. It

prevents cost overshoot and limits the rate of cost increases within the feasible region. The

integral term eliminates steady-state violations at convergence. For detailed preliminary

work, refer to Appendix-A [123].

6.5 Constrained Controlled RL Scheduler Design

This section presents the constraint-controlled RL scheduler overview, workload, and re-

source model. Next, we will discuss the Constraint-controlled RL scheduler and training

algorithm overview.

In order to train the constraint-controlled RL scheduler, we convert the datacenter

scheduling problem into a CMDP(§6.2.3, [120]) with a state space S describing the current
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Algorithm 7: Update Lagrange Multiplier using PID control parameters.

Initialize: JC,prev ← 0//Previous Cost

I ← 0//Integral
Kp,Ki,Kd ≥ 0 //Tuning parameters

1 for i, ..., i+ k do
2 Collect current cost, JC
3 e(t) = JC−d

// proportional term

4 P = Kpe(t)
// integral term

5 I = (I + e(t))+
// differential term

6 D = Kd(JC − JC,prev)+
// Control output

7 λ = (KpP +KiI +KdD)+
8 JC,prev = JC
9 return λ

10 end

status of the cluster resources, an action space A of new jobs, and a reward function R to

be optimized and a cost function C to be minimized.

6.5.1 State space, reward and cost functions

The state space (section 3.2.1), S, includes information about jobs (section 3.2.1.2), re-

sources (section 3.2.1.1), and resource availability (based on power generation predictions).

The CoCoRL scheduler’s objective is realized with rewards and costs that the agent

receives. In addition to the usual reward signal (maximize the total job value from finished

jobs, section 3.2.3), the environment also provides a separate cost signal for each delayed

job at every timestep. These costs are separate from the task-based reward signal.

Total Job V alue =

|Jfinished|∑
i=1

ji.value (6.10)

Cost =

n∑
i=1

1ji∈J (6.11)

We can customize the costs to be an aggregate cost signal reflecting more than one
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constraint, e.g., job delays and QoS violations. By default, cost functions are simple

indicators of whether a job is delayed. The cost signal, waiting or delayed jobs, is expressed

in eq 6.11. We chose a simple cost function, but practitioners can opt for a complex cost

function that embodies different penalties rolled up into a single cost function.

Figure 6.3 illustrates the CoCoRL scheduler overview. We applied the Constrained-

controlled Proximal Policy Optimization (CPPO) [123] policy gradient method, a constraint-

controlled variant of PPO [135].

Figure 6.3: RL scheduler with PID controller (highlighted in green) interacting with the
green datacenter. A Constraint-controlled policy ensures that the system actions generated
by the policy neural network do not violate constraints during training and deployment.

6.5.2 Constraint-controlled RL scheduler training

The training (Algorithm 8) follows the typical minibatch-RL scheme. The agent senses

the current state takes action, and records the reward information for a fixed number of

time steps in each episode. The trajectory taken during each episode is recorded as τ =<

s0, ao, r1, s1, a1, r2, . . . >. Rewards are computed from recorded values for each time step t

of every episode. The sampled estimates of the cost criterion, ĴC , are fed back to control the

Lagrange multiplier (refer to Algorithm 7). As the agent learns for rewards, the upward

pressure on costs from reward learning can change, requiring a dynamic response. The

costs are fed to the PID controller to control the Lagrange multiplier, λ. The θ−learning

loop in the CPPO method updates the parameters, θ, accordingly.
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Algorithm 8: CoCoRL training with Constrained PPO policy gradient method.

Input: Batch Size B, Learning Rate α, Discount γ, Cost limit
Datacenter Simulator Env with Dynamics T : S ×A → S
Reward Function R : S ×A× S → R
Cost Function C : S ×A× S → C
Initialize: Actor Net πθ, Critic Nets Vϕ, VC,ψ,
Control rule, JC ← [ ] //cost history

1 for training step t ∈ {0, . . . , T} do
2 Sample the environment: mini-batch
3 // sample action

4 a ∼ π(·|s; θ)
5 // transition to new state

6 s ′ ∼ T (s, a)
7 // collect reward

8 r ∼ R(s, a, s ′)
9 // collect cost

10 c ∼ C(s, a, s ′)
11 Apply feedback control:

12 Store sample estimate ĴC into JC
13 λ← h(JC , d), λ ≥ 0 //see algo 7

14 Update π using Lagrangian objective
15 Update critics, V ϕ(s), VC,ψ(s)
16 // reward and cost policy gradients

17 ∇θL = ∇θĴ(πθ)−λ∇θĴC(πθ)
18 end

Output: Trained Scheduling Policy πθ

6.6 Evaluation

We investigated the performance of the CoCoRL scheduling algorithm, the CPPO [123]

policy gradient method described in Algorithm 8, on a small green datacenter setting with

ten resources. The policy network is a two-layer Multilayer Perceptron (MLP) and a final

Long Short-Term Memory (LSTM) [136]. The reward function (the primary objective)

maximizes the total job value, while the cost function (the secondary objective) limits

the overall job delay. We show the effectiveness of PID control in maximizing the total

value while simultaneously reducing constraint violations. By design, the baseline heuristic

scheduling policies do not seek to reduce constraint violations.
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6.6.1 Experimentation conditions

For experiment sections 6.6.3.1, 6.6.3.2, and 6.6.3.3, we used a synthetic workload (refer

to Chapter-4, section 4.4.1). For experiment sections 6.6.4 and 6.6.5, we trained and

evaluated the CoCoRL scheduler using ANL [100], SDSC-SP2 [101], SDSC-Blue [102], and

PIK-IPLEX [103] workloads. All the experiments in the following sections were conducted

with the real power prediction data (solar and wind) from GLEAMM datacenter [107]. Jobs

arrive in an online fashion, meaning that the scheduler does not know the job information

a priori. The job arrival rates vary between 20% to 120%. Refer to Chapter-4, 4.4.2 for

additional details on these datasets.

6.6.2 Performance metrics

The performance metrics used for the following experiments are Total Job Value (Chapter-

3, section 3.2.3), Job Completion ratio, and System Utilization ratio. The job Completion

ratio is the ratio of the jobs finished and the total jobs submitted during the simulation.

System Utilization is the ratio of resources used and the total number of resources.

The primary objective of the CoCoRL scheduler is to maximize the total job value,

and the secondary objective is to minimize the overall job delays. The primary objective,

total job value, is directly measured by calculating the value of the completed jobs. The

secondary objective, cost due to job delays, is measured indirectly through job completion

and system utilization ratios. The rationale is that fewer jobs are delayed if more jobs

complete on time. Similarly, high system utilization may indicate more running jobs, thus

reducing overall job delays.

The baseline heuristic scheduling policies, namely, QoS (Quality of Service), Shortest-

Job-First (SJF), First-Come-First-Serve (FCFS), and Highest Value First (HVF), are used

for comparison. For a detailed explanation of these heuristic policies, refer to Chapter-5,

section 5.4.2.
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6.6.3 Performance with synthetic workload

6.6.3.1 Performance - total job value

This section evaluates the performance of different scheduling policies as the job arrival

rate increases. Figure 6.4 shows performance in terms of the Total Job Value ratio, the

total value of finished jobs, and the total value of all the jobs during the entire simulation

and varying job arrival rates (between 20% and 120%). The 95% confidence interval for

each point of the Job Value ratio is within ±0.025.

Figure 6.4: Total job value ratio with varying system load.

Analysis: The primary objective of the CoCoRL scheduler is maximizing the total job

value, which the CoCoRL scheduler accomplishes, illustrated in Figure 6.4. The perfor-

mance of the CoCoRL scheduler is significantly (7-24%, 8-30% and 4-26%) better than

heuristic policies for arrival rates of 20%, 40%, and 60%, respectively, since there are fewer

jobs (lower job arrival rate) than available resources in the datacenter. The total job value

ratio gradually decreases as the job arrival rate increases (60-80% arrival rate) due to more

jobs than available resources. At 80% job arrival rate, the CoCoRL performs 4-21% bet-

ter than baseline heuristic policies. As the system load increases (100-120% arrival rate),

CoCoRL still maintains a 4-20% higher job value ratio than heuristic policies. We see the

total job value ratio dropping due to a significantly higher number of jobs than available
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resources, i.e., more jobs are not completed (thus losing their value) as the arrival rate

increases.

6.6.3.2 Performance - job completion

This section evaluates the performance of different scheduling policies and their job com-

pletion ratio as the job arrival rate increases (between 20% and 120%). Figure 6.5 shows

performance in terms of job completion ratio, i.e., the number of jobs completed and the

total number of jobs as the job arrival rate varies. The 95% confidence interval for each

point of the Job Completion ratio is within ±0.015.

Figure 6.5: Job completion ratio with varying system load.

Analysis: From Figure 6.5, the CoCoRL and QoS heuristic policy demonstrate similar

job completion ratio low-medium system load (20-80% arrival rate) with CoCoRL perform-

ing slightly better than QoS policy. As the system load increases (80-100% arrival rate),

the CoCoRL and QoS scheduling policies complete significantly more jobs (77% and 73%)

than the other heuristic policies. When the system load is 120%, the CoCoRL scheduler

performs significantly better with 8% higher job completion ratio than the QoS and SJF

and 40% better than other policies.
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6.6.3.3 Performance - system utilization

This section evaluates the system utilization using different scheduling policies as the job

arrival rate increases. Figure 6.6 shows performance in terms of system utilization as the

job arrival rate increases (between 20% and 120%). The 95% confidence interval for each

point of the Utilization ratio is within ±0.01.

Figure 6.6: System utilization ratio with varying system load.

Analysis: From Figure 6.6, the system utilization is low when the load on the system

is low (20-60% load), with CoCoRL showing 4% better utilization. As the system load

increases, the system utilization increases for all the scheduling policies, but CoCoRL

shows a consistently higher system utilization of 4%-6% than heuristic policies. Since

CoCoRL schedules more jobs (from the previous experiment), more resources are used,

leading to higher system utilization. Even though more jobs are available as the system

load increases, it is possible that some of the jobs’ resource requirements cannot be satisfied,

fragmenting the resources. The fragmented resources lead to the underutilization of the

system. Therefore, we do not see 100% utilization even when the system load is 120%.

Performance - Cost: This section evaluates the total cost using different scheduling

policies as the job arrival rate increases. Figure 6.7 shows the performance of the CoCoRL

in terms of the total cost accrued during the entire simulation with varying job arrival rates
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(between 20% and 120%).

Figure 6.7: Total cost with varying system load.

Analysis: From Figure 6.7, CoCoRL accrues significantly lower cost, 1x, 10x, and 20x

lower, than SJF policy for low job arrival rates of 20%, 40%, and 60% respectively. As the

job arrival rate increases, more jobs are delayed leading to an increase in the cost for all the

policies. We note that CoCoRL cost grows much slower and significantly lower compared

to other heuristic policies, with 2x lower than the SJF policy.

Finally, we compare the total job value, completion, and system utilization ratio for

different scheduling policies at 80% and 100% job arrival rates plotted in Figure 6.8.

In summary, Figure 6.8 shows that CoCoRL can simultaneously achieve (1) a higher

total job value, (2) high system utilization, and (3) a high job completion ratio. At 100%

job arrival rate (Figure 6.8b), CoCoRL performs at par or better than the QOS heuristic

scheduling policy. None of the other heuristic policies under comparison meet these goals

simultaneously.

6.6.4 Performance with HPC workloads

This section evaluates the performance of different scheduling policies with the real HPC

workloads. Figure 6.9 shows performance in terms of the Total Job Value ratio, total job

completion ratio, system utilization ration, and the total cost during the entire simulation
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Figure 6.8: CoCoRL’s performance compared to heuristic policies - Job Value, Jobs Com-
pleted, and System Utilization ratios at 80% and 100% job arrival rate.

and varying job arrival rates (between 20% and 120%). The 95% confidence interval for

each point of the Job Value ratio is within ±0.02.

Analysis: In Figure 6.9a, CoCoRL performs significantly (15-23%, 6-22%, and 7-22%)

better for arrival rates of 20%, 40% and 60% respectively with ANL workload. At 80%

job arrival rate, the CoCoRL performs 4-17% better than baseline heuristic policies. As

the system load increases (100-120% arrival rate), CoCoRL’s performance maintains a

moderately higher (3-10%) total job value than heuristic policies. All scheduling policies

perform consistently similarly as the job arrival rate increases, the artifact of ANL job

characteristics as most jobs in this workload are big jobs (higher resource requirement and

longer job duration). Similarly, CoCoRL outperforms the heuristics policies with HPC

workloads shown in Figure 6.10a, Figure 6.10b, Figure 6.10c, and Figure 6.10d.

The job completion ratio of different scheduling policies using ANL workload is plotted

in Figure 6.9b. At 20% and 40% job arrival rates, CoCoRL completes 13%-21% and 8%-

10% more jobs, respectively, compared to heuristics policies. At 60% higher job arrival

rates, CoCoRL performs at par to slightly better than the heuristic policies. The system

utilization ratio is plotted in Figure 6.9c illustrating CoCoRL’s system utilization which is

2%-20% better compared to best (QoS) and least (HVF) heuristic policies.
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(a) Total Job Value (b) Job Completion

(c) System Utilization (d) Cost

Figure 6.9: Total job value, job completion, system utilization ratio and cost with varying
system load - ANL workload.

From 6.5.1, the environment provides a separate cost signal for each delayed job at

every timestep. The cost is separate from the reward signal. To select the cost limit,

we ran the unconstrained RL scheduler in the datacenter environment. For each episode,

we collected the cost for each delayed job during that episode. The total cost in the

unconstrained environment gives us the baseline. The goal, then, is to limit these accrued

costs. Therefore, the cost limit supplied to the CoCoRL scheduler is much less than the

total cost collected in the unconstrained environment. Figure 6.11 shows the performance

of the CoCoRL in terms of the total cost accrued during the entire simulation with varying

job arrival rates (between 20% and 120%). The 95% confidence interval for each point of
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(a) SDSC SP2 workload (b) SDSC Blue workload

(c) PIK-IPLEX workload (d) HPC2N workload

Figure 6.10: Total job value ratio with varying system load and real workloads.

the Job Value ratio is within ±0.25. For this experiment, the cost limit was fixed at 2000.

From Figure 6.9d (ANL workload), at 20% job arrival rate, CoCoRL, SJF, and QoS

all accrue similar costs, whereas FCFS and HVF accrue higher costs as the job arrival

rate increases. We note that CoCoRL accrues significantly lower costs for job arrival rates

0f 40-80%. CoCoRL and SJF maintain a meager accrued cost as the job arrival rate

increases, while the other heuristic policies accrue significantly higher costs. Similarly, we

note CoCoRL has considerably lower costs compared to heuristics policies with different

workloads shown in Figure 6.11a, Figure 6.11b, Figure 6.11c, and Figure 6.11d.
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(a) SDSC SP2 workload (b) SDSC Blue workload

(c) PIK-IPLEX workload (d) HPC2N workload

Figure 6.11: Accrued total cost with varying job arrival rates and real workloads.

6.6.5 Hyperparamaters - PID values and cost limits

In this subsection, we will highlight the significance of tunning parameters, namely gain

values for Kp, Ki, and Kd shown in the training Algorithm 8. We note that the values

of Kp,Ki, and Kd are configured during training to satisfy the corresponding optimization

objective. The Kp,Ki, and Kd gain values can be identified by trail-and-error or using the

Ziegler-Nichols method [137]. In addition to gain values, setting the appropriate cost limit

ensures that the scheduler learns the appropriate Lagrange multiplier, which steers the

agent toward desired behavior and stays within specified cost limits. The cost limits for

various workloads were identified by running the unconstrained RL and accumulating cost

signals for delayed jobs. We further reduced the cost limit collected in the previous step,
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such that the scheduler can learn to make a reasonable trade-off between rewards and costs.

For example, if the unconstrained RL scheduling agent recorded a cumulative cost of 11000

(due to delayed jobs), then the cost limit was reduced to 7000 while training the CoCoRL

scheduler agent. Then, the CoCoRL agent is configured to learn scheduling actions so that

it does not exceed the cost limit of 7000.

Figure 6.12: Accrued cost with different PID values and cost limits - ANL workload.

Analysis: Figure 6.12a shows the performance of the two models trained with different

PID values (Kp = 2,Ki = 1,Kd = 1 and Kp = 2,Ki = 1e − 2,Kd = 1). The model with

a higher integral value, Ki = 1, maintains significantly lower costs than the lower integral

value, Ki = 1e−2, for job arrival rates of 100-120%. The high Ki setting generally achieves

better cost performance due to efficient cost control.

Figure 6.12b shows the performance of the two models trained with different cost limit

values (7000 and 2000). For example, the datacenter operator can set conservative cost limit

to ensure QoS violations are minimized. On the other hand, selecting a lenient cost limit

might generate a higher total job value where the scheduler picks higher-value jobs at the

risk of violating the QoS agreements of low-value jobs. In essence, if the cost limit is too

small, the scheduler agent will learn unsafe scheduling behavior leading to QoS violations.

If the cost is too severe, the agent may fail to learn anything useful. Appropriately mod-

eling the average cost in an unconstrained setting and training the RL scheduler to stay

within the required cost limit will balance the trade-off between multiple objectives.
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6.7 Future work

We tuned hyperparameters to attain our optimization goals. However, our hyperparameter

settings do not indicate the best possible performance of each of our optimization goals. We

plan to explore the tuning hyperparameters for other multi-criteria optimization problems.

For example, selecting from various power sources to minimize brown energy and battery

usage. Multi-criteria optimization is ongoing, and we will cover this topic in future work.

We can generally combine multiple cost types into a single cost function and define a

combined cost limit. However, to have fine-grain control over different cost types (e.g., job

delays vs. SLO violations), we may need to define separate cost functions corresponding

to each type. In the future, we would like to study how different cost functions can be

incorporated during learning to control individual cost types in the desired manner.

6.8 Chapter Summary

In green datacenters, intermittent power supply from renewables leads to intermittent re-

source availability, inducing job delays and associated costs. The scheduler’s objective is

to schedule jobs on a set of resources to maximize the total value (revenue) while minimiz-

ing the overall costs due to job delays. In addition, datacenter operators often prioritize

multiple objectives, including job completion and system utilization.

In this chapter, we presented a Constraint Controlled RL (CoCoRL) scheduler that

automatically learns conflicting reward and cost functions. We accomplish this by apply-

ing the Proportional-Integral-Derivative (PID) Lagrangian methods in Deep Reinforcement

Learning to the job scheduling problem to achieve favorable learning dynamics. We demon-

strate our scheduler’s performance for both the primary objective (maximizing total job

value) and the secondary objective (minimizing costs due to job delays). We demonstrated

that CoCoRL simultaneously achieves a higher total job value, high system utilization, and

a high job completion ratio while keeping the costs considerably lower compared to heuris-

tic policies. For synthetic workload, our scheduler provides a significantly higher total job

value ratio between 5%-25% for job arrival rates ranging from 20-60% (fewer jobs in the
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system). At a higher job arrival rate of 60-80% (more jobs in the system), our scheduler

performs 5%-10% better than baseline heuristic policies. The CoCoRL scheduler performs

comparably to the QoS policy and completes 5%-20% more jobs than the other heuristic

policies. Our scheduler shows a 2%-6% higher system utilization than heuristic policies

between 80% job arrival rate. For HPC workloads, our scheduler achieves similar supe-

rior performance while staying within the cost limit, whereas the heuristic policies accrue

5x-10x higher negative penalties. Finally, we demonstrate the significance of accurately

tuning hyperparameters to satisfy various optimization goals set by datacenter operators.



Chapter 7

Learning to Schedule using Offline

and Online RL Methods

Deep reinforcement learning algorithms have succeeded in several challenging domains.

Classic Online RL job schedulers can learn efficient scheduling strategies but often take

thousands of timesteps to explore the environment and adapt from a randomly initialized

DNN policy. Existing RL schedulers overlook the importance of learning from historical

data and improving upon custom heuristic policies. Data-driven reinforcement learning

presents the prospect of policy optimization from pre-recorded datasets without online en-

vironment interaction. Following the recent success of data-driven learning, we explore

two data-driven RL methods: 1) Behaviour Cloning and 2) Offline RL, which aims to

learn policies from logged data without interacting with the environment. These methods

address the challenges concerning the cost of data collection and safety, particularly per-

tinent to real-world applications of RL. Although the data-driven RL methods generate

good results, we show that the performance is highly dependent on the quality of the his-

torical datasets provided during training. Finally, by effectively incorporating prior expert

demonstrations to pre-train the agent, we can short-circuit the random exploration phase

to learn a reasonable policy with online training. We utilize offline RL as a launchpad to

learn effective scheduling policies from prior experience collected using Oracle or heuristic

policies. Such a framework is effective for pre-training from historical datasets and well

102
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suited to continuous improvement with online interaction.

7.1 Introduction and Motivation

The process of online reinforcement learning involves iteratively interacting with the envi-

ronment and collecting experience, typically with the most recently learned policy, and then

using the experience to improve the policy [138]. In many settings, this online interaction

is impractical because data collection is expensive (e.g., robotics, healthcare) or dangerous

(e.g., autonomous driving). Moreover, even in domains where online interaction is possible

(e.g., job scheduling), practitioners may prefer utilizing previously collected data, especially

if the domain is complex and requires large datasets for effective generalization.

Learning a task from scratch can require a prohibitively time-consuming amount of

exploration of the state-action space to find a good policy, especially in sparse reward envi-

ronments. Moreover, learning without prior knowledge is an approach rarely taken in the

natural world. Knowledge of how to approach a new task can be transferred from previously

learned tasks or extracted from the performance of an expert. The existing RL schedulers

overlook the importance of learning and improving upon existing heuristic policies. The

RL schedulers can leverage the behavior of custom heuristic policies explicitly designed

for unique environments to learn and improve overall performance. The heuristic policies

generate expert demonstrations, and the RL agents learn from these demonstrations to

improve upon the heuristic policies.

For many of these domains, including job scheduling, large amounts of historical data

are readily available. Effective data-driven methods for deep reinforcement learning can

utilize this data to pre-train offline while improving with online fine-tuning. This has led

to a resurgence of interest in data-driven RL methods, namely 1) Behaviour Cloning (BC)

and 2) Offline RL (historically known as batch RL) [139], which aim to learn policies from

logged data without further interaction with the real system.

Behavior cloning is an approach for imitation learning [140], where the policy is trained

with supervised learning to imitate the actions of a provided dataset directly. This process
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is highly dependent on the performance of the data-collecting process. In many cases, these

come from an existing rule-based, heuristic, or myopic policy that we are trying to replace

with an RL approach. The effective use of such datasets would make real-world RL more

practical and enable better generalization by incorporating diverse prior experiences. Due

to the efficient use of collected data and the stability of the learning process, this research

area has attracted much attention recently.

Depending on the quality of the prior demonstrations, useful knowledge can be ex-

tracted about the task being solved, the dynamics of the environment, or both. Pure BC

methods incorporate prior data with the aim of directly mimicking demonstrations. This

is desirable, assuming demonstrations are known to be optimal. However, it enforces strict

requirements on offline data quality, which can cause undesirable bias when the demon-

stration data is not optimal. Often, the collected data can be mixed with sub-optimal

transitions.

Offline reinforcement learning algorithms also aim to leverage large existing datasets of

previously collected data to produce effective policies that generalize across a wide range of

scenarios without needing costly active data collection. Empirical studies comparing offline

RL to imitation learning have come to mixed conclusions. Some studies show that offline

RL methods outperform imitation learning significantly, specifically in environments that

require “stitching” parts of suboptimal trajectories [141]. In contrast, many recent articles

have argued that BC performs better than offline RL on both expert and suboptimal

demonstration data over a variety of tasks [142] [143] [144]. This makes it confusing for

practitioners to understand whether to use offline RL or merely run BC on collected demos.

While offline learning methods provide a mechanism for utilizing prior data, such meth-

ods are generally ineffective for fine-tuning online data as they are often too conservative.

In effect, these methods require us to question: Do we assume the prior dataset is optimal?

Do we use strictly offline data or only online data? We need algorithms that learn suc-

cessfully in either of these cases to make it feasible to learn policies for real-world settings.

Therefore, we study a simple actor-critic algorithm (in §7.4) that bridges pre-training from

prior data and improvement with online data collection. This RL technique is effective for
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pre-training from off-policy datasets but is also well suited to continuously improve with

online data collection.

Our contribution is the empirical characterization of BC, offline RL, and online RL

pre-trained with offline datasets for job scheduling in the green datacenter environment.

Existing RL scheduler research exclusively focuses on Online RL methods. We could not

find any published research exploring recent developments in data-driven RL methods

applied to the job scheduling problem. We demonstrate when the different data-driven

methods can be applied (based on the quality of the prior datasets) and under what condi-

tions each method is effective. Our results emphasize the importance of leveraging decades

worth of research on heuristic schedulers, using transitions from heuristic methods to learn

a policy and improve it further without spending excessive time or computational effort

with only Online learning. Specifically, combining the Offline+Online method speeds up

learning while leveraging existing heuristic/expert demonstrators. We demonstrate how to

generate datasets of varying qualities (by combining transitions from good and not-so-good

heuristic policies) applicable to the job scheduling problem. The contribution of this study

is not just another RL scheduler but a systematic study of what makes sense - standard

offline RL, pure online RL methods, or offline pre-training with online fine-tuning. We

evaluate these RL techniques in the power-modulated datacenter environment.

7.2 Background

This section briefly compares offline Reinforcement Learning, off-policy, online Learning,

and offline learning with online fine-tuning methods. Figure 7.1 illustrates offline reinforce-

ment learning (a), classic off-policy reinforcement learning (b), classic online reinforcement

learning (c), and offline pre-training with online fine-tuning (d). We re-introduce the basics

of RL to differentiate between different methods and to aid in readability and continuity.

Reinforcement Learning (RL). RL is a framework aimed at dealing with tasks of

sequential nature. Typically, the problem is defined as a Markov decision process (MDP)

(S,A,R, p, γ), with state space S, action space A, reward function R (scalar), transition
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Figure 7.1: Illustration of offline reinforcement learning (a), classic off-policy reinforcement
learning (b), classic online reinforcement learning (c), and offline training with online fine-
tuning (d).

dynamics p, and discount factor γ. The behavior of an RL agent is determined by a policy

π. The RL agent’s objective is to maximize the long-term expected discounted return

Eπ[
∑∞

t=0 γ
trt+1], i.e., the expected cumulative sum of rewards when following the policy

in the MDP. This objective is evaluated by a value function, which measures the expected

discounted return after taking action a in state s: Qπ(s, a) = Eπ[
∑∞

t=0 γ
trt+1|s0 = s, a0 =

a].

Behavior Cloning (BC). Another approach for training policies is imitating an expert

or behavior policy. Behavior cloning (BC) is an approach for imitation learning [140], where

the policy is trained with supervised learning to imitate the actions of a provided dataset

directly. Unlike online RL, the success of BC is highly dependent on the quality of the

dataset. BC is likely to fail when the prior dataset does not contain enough transitions

generated by a policy performing well on the task or the signal-to-noise ratio is too large.

Off-policy. Off-policy learning consists of a behavior policy that generates the data and

a target policy that learns from this data [138]. The behavior policy continuously collects

data for the agent in the environment. For example, data is collected using previous policies
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up to time k during training π0, π1, . . . , πk and stored in a replay buffer. This data is used

to train the policy πk+1. An example of off-policy RL is actor-critic variants in [145].

Offline RL. Offline RL (a.k.a batch RL), similar to BC, breaks the presumption that

the agent can interact with the environment. Instead, we provide the agent with a fixed

dataset collected by some unknown data-generating process (experts or heuristic policies).

This setting may become challenging since the agent loses the opportunity to explore the

environment according to its current views and must infer good behavior from only the

provided transitions. More generally, offline RL is a counterfactual inference problem:

given data generated from a given set of decisions infer the consequence of an independent

set of decisions.

Offline training with online fine-tuning. This method is concerned with acceler-

ating online fine-tuning by pre-training on smaller offline datasets. We follow the same

process as offline RL to pre-train with datasets collected from experts or heuristic policies

to learn policy π. Then, by initializing the policy network with π, instead of random ini-

tialization, we fine-tune the policy by interacting with the environment similar to classic

online RL.

7.3 Related Work

Behavior Cloning and Offline RL. The authors in [146] propose scheduling on Domain-

specific systems-on-chip as a classification problem and propose a hierarchical imitation

learning-based scheduler that learns from an Oracle to maximize the performance of mul-

tiple domain-specific applications. A similar framework is suggested in [147] for mobile

platforms. HiLITE [148] employs a hierarchical imitation learning framework to maximize

energy efficiency while satisfying soft real-time constraints on embedded systems on chip

(SoC).

Existing RL scheduler research exclusively focuses on Online RL methods. Most of the

published research demonstrating data-driven methods are in the field of robotics using

openAI gym environments but these methods are not demonstrated in the job scheduling
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context. To the best of our knowledge, there is minimal prior work, if any, using BC and

offline RL methods applied to the job scheduling problem. They do not demonstrate the

various data-driven methods and under what conditions each method is effective (depend-

ing on the quality of the prior datasets). We could not find any prior research applying a

combination of offline pre-trianing and online learning to the job scheduling problem. In

this chapter, we aimed to understand if, when, and why offline RL is a better approach for

tackling sequential decision-making problems, specifically job scheduling in green datacen-

ters.

7.4 Job Scheduling using Offline and Online Learning

Figure 7.2 illustrates an overview of an offline agent learning from prior datasets and an

online agent - initialized with pre-trained policy using offline data - fine-tuning the pol-

icy by actively interacting with the green datacenter environment. The state space (sec-

tion 3.2.1), S, includes information about jobs (section 3.2.1.2), resources (section 3.2.1.1),

and resource availability (based on power generation predictions).

Figure 7.2: RL scheduling agent: offline learning (left) and offline pre-training with online
fine-tuning (right).

The core RL algorithm used to train the encoder, actor, and critic varies depending on

whether we use online or offline data. The offline RL algorithm is described in Algorithm

9, and the online RL algorithm is described in Algorithm 10.

Both methods train a Q-function critic with the standard mean-squared Bellman error

update [138], where our critic network(s), Qϕ, learn to predict bootstrapped estimates of
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Algorithm 9: Offline training process

Input: Advantage Samples k, Replay Buffer with pre-provided transitions
D ← {(si, ai, ri, s′i), . . . }, function f

Initialize: Actor net πθ, Critic net Qϕ
1 for training step t ∈ {0, . . . , T} do
2 Sample Batch of B transitions {(si, ai, ri, s′i)}i=Bi=0 from D

// actor loss (see [112])

3 La ←
1

B

i=B∑
i=0

f(Qϕ, si, ai)logπθ(ai | si)

// critic loss

4 Lc ←
1

B

i=B∑
i=0

((
Qϕ(si, ai)− E

[
(ri + γQϕ(s

′
i, a

′)
])2)

// update nets by gradient descent

5 ϕ← ϕ− α∇ϕLc
6 θ ← θ − α∇θLa
7 end
Output: Trained Scheduling Policy πθ(s)

future value based on immediate rewards and a “target” network. We implement an en-

semble method that trains multiple critics to reduce over-estimation error, as in SAC [110]

and TD3 [149]. We use PopArt [150] normalization to standardize the magnitude of our

critic outputs; this simplifies tuning hyperparameters across datacenter environments with

different resources and job values.

The primary difference between online and offline variants is the gradient update of

the actor. The online algorithm trains the actor to maximize the value predictions of the

critic, as in the discrete-action version of SAC [111]. Like SAC, we use a max-entropy RL

formulation that encourages robust policies and prevents our agents’ actions from collapsing

to a local optima during training. As an additional exploration measure, we use an epsilon-

greedy strategy [151] to add random noise to action selection during the early stages of

learning. Directly maximizing the outputs of the critic exploits overestimation error in

unfamiliar state-action pairs [152]. This “uninformed optimism” can be a useful exploration

strategy for online learning but becomes a significant issue during offline learning when we

are unable to evaluate actions’ true value. The offline actor update needs to constrain the

policy to the distribution of actions covered by the existing training data. This is achieved
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Algorithm 10: Online training process with Offline data

Input: Datacenter Simulator Env with Dynamics T : S ×A → S, Reward
Function R : S ×A× S → R, Replay Buffer D ← {(si, ai, ri, s′i), . . . }

Initialize: Actor net πθ, Critic net Qϕ
1 for training step t ∈ {0, . . . , T} do

// sample action from the policy

2 at ∼ πθ(st)
// advance datacenter sim and receive next state and reward

3 s′t ← T(st, at),
4 rt ← R(st, at, s

′
t)

// add transition to the replay buffer

5 D ← D ∪ {(st, at, rt, s′t)}
6 Randomly Sample Batch of B transitions {(si, ai, ri, s′i)}i=Bi=0 ∼ D

// critic loss

7 Lc ←
1

B

i=B∑
i=0

((
Qϕ(si, ai)− E

[
(ri + γQϕ(s

′
i, a

′)
])2)

// online actor loss (see [110])

8 La ←
1

B

i=B∑
i=0

(
E

a′∼πθ(si)

[
−Qϕ(si, a′)

])
// update nets by gradient descent

9 ϕ← ϕ− α∇ϕLc
10 θ ← θ − α∇θLa
11 end

Output: Trained Scheduling Policy πθ(s)

by performing supervised learning on the state-action mapping contained in the training

data, filtered by a function f (Algorithm 9, line 3).

Intuitively, the actor network is trying to copy the decisions in the dataset, but the filter

f prioritizes some actions over others. When f outputs the same value for all samples,

we recover standard Behavioral Cloning as a special case. A popular alternative is to

up-weight actions that lead to a higher return than the current policy and down-weight

those that lead to a lower return. This concept is formalized by the advantage function

Aπ(s, a) = Qπ(s, a) − Ea′∼π(s)[Qπ(s, a′)]. In practice, the advantage is estimated using

the critic network and samples from the actor: Aπθ(s, a) ≈ Qϕ(s, a) − 1
k

∑j=k
j=1 Qϕ(s, aj ∼

πθ(s)). The filter function f can then down-weight samples with low advantage, such as

f(Qϕ, s, a) = exp(Aπθ(s, a)) [153]. Our work follows [112] and uses a more intuitive binary

filter that simply ignores data that the critic network does not think will improve the policy
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f(Qϕ, s, a) = 1{Aπθ(s, a) > 0}.

7.5 Evaluation

Empirically, we found that QoS and SJF heuristic policies perform better than other heuris-

tic policies for small and medium cluster sizes (10 to 100 resources). Therefore, we use

QoS policy as a baseline and combined transitions from other heuristic policies to generate

datasets with varying quality of noise-to-signal ratio. We used a synthetic workload, and

a job arrival rate of 120% was used for all the experiments. The performance metric used

is Total Job Value.

We ran five training runs for each learning method with randomly initialized scheduler

agents. To evaluate, we averaged ten rollouts (for each of 5 training runs) with 100K steps

and random seed. The 95% confidence interval for each point in the following graphs is

within the ±0.015 and ±0.023 range.

7.5.1 BC and Offline learning

Behavior Cloning (BC): We start by demonstrating the performance of the first data-

driven method called Behavior Cloning. The performance of BC methods is highly depen-

dent on the quality of the training dataset. BC is likely to fail to learn good policy when

the dataset does not contain enough transitions generated by a well-performing policy or

the fraction of poor data is too large. For this experiment, we collected transitions from

heuristic policies, namely SJF, QoS, FCFS, and HVF policies. We then load a combina-

tion of these transitions into the replay buffer BC combo scheduler agent. Each policy

contributes 25% of the total transitions loaded into the replay buffer. We repeat the train-

ing by loading only QoS and SJF transitions into the replay buffer to train the BC qos sjf

agent. In this case, each heuristic policy contributes 50% of the total transitions loaded

into the replay buffer. Finally, we loaded only QoS transitions into the replay buffer, i.e.,

100% of the replay buffer consists of transitions from QoS policy to train the BC qos agent.

Analysis: Figure 7.3 shows the performance of BC agents when trained with different
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Figure 7.3: Performance of BC method when trained using prior datasets generated by
heuristic policies with varying noise-to-signal ratio.

ratios of transitions from different heuristics. When the replay buffer consists of a mix

of expert and poor quality transitions (e.g., QoS, SJF, FCFS, HVF), the BC method

(BC combo) learns a policy that performs worse than the QoS policy alone. Even with

a 50% noise-to-signal ratio (i.e., 50% QoS and SJF), BC qos sjf performs poorly in some

instances. When the reply buffer is populated with a higher ratio of good transitions (i.e.,

100% QoS, best heuristic policy), then BC qos effectively learns to mimic that policy. The

BC method performs significantly better when trained with high-quality demonstrations.

Note that BC learning methods are incredibly beneficial in two scenarios. First, suppose

we have prior datasets from an Oracle or a good heuristic policy but need to learn a general

policy that works in a similar but slightly different setting. In that case, BC can learn

the general policy from transitions generated by the Oracle for the new setting. Second,

suppose we have transitions from a legacy or proprietary system and cannot or do not have

access to the system’s code base that generated the transitions. In that case, BC learning

can be applied to learn the underlying policy from the transitions generated by the legacy

system.

Offline RL: Next, we demonstrate the performance of the second data-driven method

called offline RL. Unlike BC, the performance of offline RL is resilient to training datasets

with mixed (both well-performing and poor) heuristic policies. Suppose prior datasets
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do not contain enough transitions generated by a well-performing policy, or the fraction

of poor data is too large. In that case, offline RL methods can leverage the benefits of

stitching parts of suboptimal trajectories. Similar to the previous experiment, we load a

combination of heuristic transitions (SJF, QoS, FCFS, and HVF policies) into the replay

buffer for training the offline RL agents.

(a) Varying quality of prior datasets (10 resources).

(b) BC and offline RL performance, scaled up to 50 re-
sources.

Figure 7.4: Performance comparison: BC and offline learning with varying quality of the
prior datasets.

Analysis: From the Figure 7.4a, we note that BC qos agent performs better than

BC qos sjf and BC combo. The BC qos sjf and BC combo agents were trained with a mix
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of poor-quality transitions. Since the BC agent learns to merely mimic the transitions in

the replay buffer, the presence of poor-quality transitions affects the performance of these

two agents. Figure 7.4a shows the performance of offline RL compared to BC, with the

replay buffer of prior data consisting of a mix of well-performing and poor transitions. The

Offline combo performs significantly better than BC combo when the training data has a

mix of good and bad transitions. Note that BC combo performs worse than QoS due to a

higher percentage of poor-quality data, shown in Figure 7.4b.

Figure 7.5: Performance comparison: BC, offline learning and best heuristic policy (i.e.,
QoS).

Figure 7.5 shows the performance of offline RL compared to BC and Qos heuristic

methods when scaled to 50 resources. At scale, the Offline combo significantly outper-

forms both BC combo and QoS policies. Additionally, Figure 7.5 shows that Offline combo

agent trained on sufficiently noisy suboptimal data can attain at-par or better performance

than even BC qos method trained with expert demos. Furthermore, the Offline combo,

Offline qos sjf, and Offline qos agents perform similarly (Figure 7.4a), showing that the of-

fline Learning method is resilient to noisy datasets during training. The offline RL methods

benefit from stitching parts of suboptimal trajectories. For example, suppose the dataset

contains a subsequence illustrating arrival at state x + 1 from state x and another subse-

quence illustrating arrival at state x+ 2 from state x+ 1. In that case, an effective offline

RL method should be able to learn how to arrive at state x+ 2 from state x, which might



7.5. Evaluation 115

provide a substantially higher final reward than any of the subsequences in the dataset.

This sort of “transitive induction” occurs on a portion of the state variables, effectively

inferring potentially optimal behavior from highly suboptimal components.

The offline RL method facilitates generalization, i.e., it can be adapted to learn from

any policy (e.g., Oracle, heuristic policies) that optimizes a specific objective, such as job

value, resource utilization, or energy efficiency. We remark that the offline RL method is

significantly better when training buffers are loaded with a mix of transitions generated by

more than one policy. With mixed transitions (well-performing and poor), offline RL can

learn a general policy, possibly stitching multiple policies to get a better one.

7.5.2 Online learning

The most obvious challenge with offline RL is that because the learning algorithm must

entirely rely on the static dataset, there is no possibility of improving by exploration. If

the dataset does not include transitions that illustrate high-reward regions of the state

space, it may be impossible to learn such high-reward regions. For example, when the

dataset size is limited, some learning algorithms tend to overfit on the small dataset, or if

the dataset state-action distribution is biased, neural network training may only provide

brittle, non-generalizable solutions. Additionally, not all environments have historical or

high-quality datasets that can be readily used for training.

In online learning, the agent interacts with the environment and explores numerous

state-action pairs to learn a generalizable policy. Model-free deep RL methods are noto-

riously expensive in terms of their sample complexity. Even relatively simple tasks can

require millions of data collection steps, and complex behaviors with high-dimensional ob-

servations might need substantially more. What is considered an upside, the exploration

process, is also the downside because the exploration process is time-consuming, where the

agent alternates between the exploration and exploitation phases to learn decent policy.

We trained the BC and offline agents for 500k steps and the online agent for 1 million steps.

Everything else being the same (e.g., neural net configuration, batch size), the online agent

was trained twice as long as the BC and offline methods to achieve similar performance
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goals.

Figure 7.6: Performance comparison: BC, offline, and online learning methods.

Analysis: Figure 7.6 shows the performance of online RL compared to BC qos and

Offline combo Learning methods. We note that the online method performs as well as the

BC and offline methods when the state space is small (10-30 resources). The performance

drops as the state space increases (40-50 resources). This is because exploring large state

space needs more interactions with the environment and, therefore, a longer time to train.

With enough time and random starting points, the online agent might eventually match

or outperform the BC and offline methods for large state-space problems.

7.5.3 Combining Offline and Online learning

Online RL provides an appealing formalism for learning control policies from experience.

However, the classic active interactions with the environment require a lengthy active ex-

ploration process for each behavior. Suppose we allow RL algorithms to use historical

datasets to aid online learning effectively. In that case, the learning process could be made

substantially more practical: the prior data would provide a starting point, a launch-

pad, that mitigates challenges due to exploration and sample complexity, while the online

training enables the agent to perfect the desired skill. Such prior data could either con-

stitute expert demonstrations or, more generally, sub-optimal prior data that illustrates
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potentially useful transitions. Given the dataset, D, of transitions generated by a heuristic

policy, our goal is to leverage D for pre-training and use some number of online interactions

to learn the good generalizable scheduling policy.

For this experiment, we used a modified version of advantage weighted actor-critic

(AWAC) [154](Algorithm 10) framework, which enables rapid learning of skills with a

combination of prior datasets and online experience. This framework leverages offline data

and quickly performs online fine-tuning of RL policies. Additionally, incorporating prior

datasets can reduce the time required to learn with large state space.

Figure 7.7: Performance comparison: BC, offline learning and online learning with offline
pre-training methods.

Analysis: Figure 7.7 shows the performance of online training using offline data (of-

fline+online) compared to BC qos and Offline combo learning methods. For this experi-

ment, we trained the agent for 50k offline steps (pre-loading QoS transitions to the replay

buffer) and 1 million online steps. Even though the offline+online was trained for merely

50k offline steps, the offline+online agent’s performance is at par or better than either

BC or offline methods for large problem sizes (100 resources). This framework is effective

for pre-training from off-policy datasets but is also well suited to continuous improvement

with online data collection. Additionally, this framework can utilize different types of prior

data: demonstrations, suboptimal data, or random exploration data.
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7.5.4 Effectiveness of Offline and Online learning methods

In this section, we will discuss the effectiveness of the offline and online learning methods

and present the scenarios under which a given RL technique is applicable.

First, we collected 80 rollouts (sequences of 100-200k samples) of offline experience

data where the heuristic scheduling policies (QoS, SJF QoS, and Combo) select the ac-

tions. Second, we load the offline experience into the empty replay buffer during the RL

scheduler’s training. We trained three RL scheduler agents with BC, offline RL, and of-

fline+online methods. In each of these methods, the RL scheduler’s actor net learns to

mimic the action choices of the heuristic data in its replay buffer to varying degrees. To

evaluate the success of the learning process, we simulated new rollouts controlled by the

original heuristic and measured the percentage of steps where the policy’s action is equal

to the heuristic’s decision in the current state. This action agreement metric provides some

insight into each of the RL method’s ability to learn heuristic policies.

Action Agreement QoS SJF QoS Combo

BC 95% 99% 98%

Offline 91% 91% 87%

Offline+Online 21% 21% 17%

Table 7.1: Action agreement: BC, offline and offline+online learning methods

Analysis: The action agreement percentage for 10 resource environment are shown in

Table 7.1. The BC policy, trained with SJF QoS and Combo datasets, has the highest

action agreement (99% and 98% respectively), confirming that the BC learning method

directly mimics the underlying policy in the dataset. When the replay buffer dataset

consists of multiple policies (BC qos sjf and BC combo), it is more likely that BC will mimic

the actions of one of the underlying policies attributing to the high action agreement. When

trained using a dataset with only QoS policy, BC qos scheduler agrees with the QoS policy

95% of the time. The remaining 5% of the time BC is likely generating random actions.

On the other hand, the offline RL scheduler demonstrates a lower action agreement with

the policy in the dataset. When trained using a dataset with QoS and SJF QoS policies,
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the offline RL agent agrees 91% of the time. The offline RL agent’s action agreement drops

to 87% with combo datasets confirming that offline RL is resilient to low-quality datasets

and extracts good policies even when the noise-to-signal ratio is high. The offline+online

method, pre-trained with offline data and using online interactions for improvement, shows

21% action agreement when pre-trained with QoS and SJF QoS and 17% with combo

data. This low action agreement indicates that the offline+online method learns policies

significantly different from the underlying heuristic policies leading to better performance.

Data
Quality

BC Offline Offline+Online Online

High ✓ ✓ ✓ NA

Medium × ✓ ✓ NA

Low × × ✓ NA

No data × × × ✓

Table 7.2: Choosing between BC, Offline and Offline+Online learning methods

Finally, Table 7.2 presents our recommendations on which RL method is suitable based

on the quality of prior datasets and learning environments. Suppose the practitioners have

access to high-quality datasets (expert demonstrations) and want to extract the general

underlying policy. In that case, BC is a better choice, although offline methods will also

perform equally well. One caveat is that if the expert demos are generated by a highly

customized policy for a specific domain, then BC might fail to generalize well in a modified

domain. If the prior datasets are of mixed quality (expert demonstrations mixed with

suboptimal transitions), then offline and offline+online RL methods are suitable. Offline

RL is more resilient to noise but needs some good transitions closer to high-reward areas.

Similarly, the offline+online method is resilient to noisy datasets, but this method also

has the advantage of interacting with the environment to improve the pre-trained policy.

Therefore, the offline+online method can be used even when the noise-to-signal ratio in

the prior dataset is high. The agent (pre-trained with a noisy dataset) will eventually learn

good policies after some interactions with the environment. Finally, if practitioners have

access to prior datasets or the learning environment is novel (e.g., to learn new actions to
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avoid QoS violations in green datacenters), then the online RL method is most suitable.

In terms of training time, BC training is generally faster because the supervised actor

update is easier to learn than the Q-function (offline learning). For the same reason, offline

learning is faster than offline+online learning. We observed that, for our problem setting,

online learning took the longest to learn reasonable policies, given all other parameters

being the same.

7.6 Future Work

In future work, we would like to empirically analyze the performance of offline learning with

diverse datasets generated from different workloads. The goal of data-driven methods is to

train a model that attains good performance on datasets coming from the same distribution

as the training data. In offline RL, the basic idea is to learn a policy that does something

differently (likely better) from the behavior pattern observed in dataset D. Distributional

shift issues can be addressed in several ways, and we would like to explore this further.

Additionally, we would like to analyze the effect of the size of the prior datasets used in

offline learning and training duration to achieve the best performance for each method and

performance with various workloads.

7.7 Chapter Summary

Job scheduling using online RL methods has demonstrated efficient scheduling strategies

in datacenters. Unfortunately, online RL methods often take hundreds of thousands of

timesteps to explore the environment and adapt from a randomly initialized DNN policy.

Moreover, large amounts of historical data are readily available for the job scheduling

domain. Effective data-driven RL methods can use prior datasets to pre-train offline while

improving with online fine-tuning. Furthermore, designing reward functions that elicit

desired behaviors in complex environments is challenging. The RL schedulers can leverage

custom heuristic schedulers’ designed specifically for unique workloads or environments to

learn and improve overall performance.
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This chapter emphasizes the importance of leveraging decades worth of research on

heuristic scheduling policies and recent developments in data-driven RL methods. We

show the use of transitions from heuristic methods to learn a policy and improve it fur-

ther without spending excessive time and computational effort using online learning alone.

Specifically, combining the Offline+Online method speeds up learning while leveraging ex-

isting heuristic/expert demonstrators. We demonstrate how to generate datasets of varying

qualities (by combining transitions from good and not-so-good heuristic policies) applicable

to the job scheduling problem.

We explored two data-driven RL methods, namely 1) Behaviour Cloning and 2) Offline

RL, which aim to learn policies from logged data without further interaction with the

environment. These methods address the challenges concerning the data collection costs

and safety, particularly pertinent to real-world applications of RL. Although offline learning

methods produce good results, we showed that the performance is highly dependent on the

quality of the historical datasets. Finally, we utilize offline RL as a launchpad to learn

effective scheduling policies from a prior dataset collected using expert demonstrations or

heuristic policies. By effectively incorporating prior datasets to pre-train the RL agent, we

short-circuit the random exploration phase to learn reasonable policies with online learning.

The contribution of this study is not just another RL scheduler but a systematic study of

what makes sense - standard offline RL, pure online RL methods, or offline pre-training

with online fine-tuning.



Chapter 8

Conclusions

This dissertation focuses on designing and evaluating RL-based schedulers that effectively

adapt to dynamic conditions and learn strategies that meet the specific objectives of power-

modulated datacenters.

The sustained demand for digital services has led to record datacenter build-outs and

increased energy consumption. Datacenters in the U.S. consume 1.8% of the total electric-

ity; electricity predominantly generated using non-renewable sources, emitting an estimated

∼ 230 Million Metric tons of greenhouse gases every year. Given high carbon emissions and

growing societal awareness of climate change, government agencies, non-profits, and the

general public demand cleaner (greener) goods and services. Consequently, cloud service

providers are heavily investing in green datacenters, i.e., partially or entirely powered by

renewable energy, either by self-generation or co-location.

The difficulty with using renewables to power datacenters is intermittent power supply,

accompanied by inaccuracies in power predictions. The degree of inaccuracy varies from

one renewable energy source to another, requiring smart systems and system software

to carefully balance and intelligently adapt computing to energy generation. Traditional

heuristics-based job schedulers [14] [15] [16] use hand-crafted scheduling policies suitable

for datacenters with constant power supply. Hand-engineering domain-specific heuristics-

based schedulers to meet specific objective functions of complex dynamic green datacenters

is time-consuming, error-prone, and requires domain expertise.

122
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Reinforcement Learning has solved sequential decision tasks of impressive difficulty

[18] [19] [20] [21] by maximizing reward functions through trial and error. The growing

body of research [22] [23] [24] have shown RL schedulers can learn effective job scheduling

policies in traditional datacenter environments with constant power supply.

8.1 Summary of Contributions

In this dissertation, we hypothesized that Reinforcement Learning based sched-

ulers perform better than heuristics schedulers for power-aware distributed

scheduling in datacenters. RL schedulers adapt to varying conditions and learn

strategies that meet the specific objectives set forth by the datacenter opera-

tors. These objectives include single-criteria optimization, constrained optimization with

opposing goals, or multi-criteria optimization.

To address the shortcomings of existing RL schedulers, this dissertation proposed a

unified green datacenter simulator that allows experimenting with synthetic and real work-

loads and integrates various renewable energy sources along with Energy Storage Devices

(batteries). We implemented a discrete event simulator to simulate the green datacenter

environment. Our simulator aims to evaluate and compare the RL scheduler’s performance

under various operating conditions, i.e., power availability levels (synthetic, constant, and

intermittent power supply), varying system loads, and different workloads (synthetic and

real).

We showed that our RL scheduler, RARE [118] performs better than heuristics-based

algorithms in the dynamic green datacenter environment for synthetic and real HPC work-

loads for a cluster of up to 1200 resources. The RL scheduler adapts exceptionally well to

the intermittent power supply (synthetic and actual power prediction data). We demon-

strated that accurately tuning the system parameters like planning horizon and proper

DNN configurations leads to increased performance.

This dissertation identifies that current RL schedulers do not optimize for multiple ob-

jectives simultaneously. We presented a Constraint-controlled RL scheduler, CoCoRL [155],
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that automatically learns conflicting reward and cost functions. We applied proportional-

integral-derivative Lagrangian methods in Deep Reinforcement Learning to job scheduling

problems in the green datacenter environment. We showed that a Constraint-controlled RL

scheduler learns policies that satisfy the conflicting constraints and optimize for multiple

objectives such as resource utilization and job completion. Our experiments demonstrate

the CoCoRL scheduler’s performance for both the primary objective (maximizing total job

value) and the secondary objective (minimizing overall job delay). The CoCoRL scheduler

yields significantly higher total job value while exhibiting comparable job completion and

system utilization ratio than baseline heuristic scheduling policies. We showed that our Co-

CoRL scheduler efficiently adapts to HPC workloads and intermittent power supply (solar

and wind). Additionally, we showed the significance of accurately tuning hyperparameters

to satisfy various optimization goals set by datacenter operators.

This dissertation investigates data-driven RL methods, namely 1) Behaviour Cloning

(BC) and 2) Offline RL (historically known as batch RL), which aim to learn policies from

logged data without further interaction with the environment. These methods address

the challenges concerning the cost of data collection and safety, particularly pertinent to

real-world applications of RL. Although the BC learning approach generates good results,

we showed that the performance is highly dependent on the quality of the historical data.

We explored Offline RL as a launchpad [156] to learn effective scheduling policies from

prior experience collected using expert demonstrations or heuristic policies. Finally, we

demonstrated that by effectively incorporating prior datasets to pre-train the agent, we

short-circuit the random exploration phase to learn a reasonable policy with online training.

Such a framework is effective for pre-training from off-policy datasets and well suited to

continuous improvement with online data collection.

8.2 Limitations and Future Work

While this dissertation has taken significant steps toward exploring RL schedulers for green

datacenters, the presented methods have some limitations that are worth exploring in the
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future. In this section, we first review these limitations and potential solutions to extend

the proposed solutions and then highlight some research directions toward production-

ready RL schedulers. Below are some of the limitations of our proposed work and also

existing work:

8.2.1 State space explosion

The datacenter environment described so far is for a single-agent reinforcement learning

scheduler, i.e., the case where the central resource manager is the scheduling agent directly

sensing the state and scheduling jobs based on the resource availability in a single dat-

acenter. The advantages of a central agent are: 1) The agent has a global view of the

state space and hence can optimize the schedule to maximize the objective function, and

2) There is no communication overhead in terms of coordinating with other agents. The

disadvantage is that the state space can become combinatorial, and learning can take a

long to converge to a near-optimal policy. Furthermore, as the problem size increases, so do

the model sizes, which have memory and storage implications. Training these exceedingly

large models may not be feasible on limited hardware resources available to researchers.

8.2.2 Standardized environments and models

Researchers have proposed many RL-based schedulers for a variety of systems. Even within

a single datacenter, RL schedulers are specialized for various workloads, including machine

learning training jobs [22], DAG jobs [97], HPC jobs [24] and many more. While other

RL schedulers focus on energy efficiency [23], application profiling and monitoring [98], and

delayed scheduling [99] based on the availability of power. Several other implementations

use dissimilar representations of states, actions, rewards, and environments. The prolif-

eration of RL schedulers with different representations and models renders it hard, if not

impossible, to make a fair one-to-one comparison between various implementations.



8.2. Limitations and Future Work 126

8.2.3 Future work

For future work, we have short-term and long-term research goals. First, explore multi-

criteria optimization using Model Predictive Control (MPC) methods, similar to PID La-

grangian methods discussed in Chapter-6. In this research, multi-criteria optimization

includes jointly optimizing for Quality of Service (QoS), Fairness, and Energy Manage-

ment in green datacenters. Second, interpret the learned models for various workloads and

optimization objectives. Using this understanding, develop generic RL scheduler models

that work well for a wide range of workloads, optimization objectives, and operating con-

ditions. Third, separating the resource selection and job selection into two agents acting

in tandem to alleviate, to some degree, the state-space explosion problem.

Our long-term research goals are 1) addressing and mitigating the state-space explosion

problem and 2) standardizing the datacenter environments.

To mitigate the state-space explosion problem, we would like to explore two directions,

namely 1) multi-agent distributed scheduler and 2) hierarchical scheduler. First, using

Multi-agent RL [157] methods, a central manager distributes the scheduling control to lo-

cal agents. A local agent may dynamically decide to run the jobs or cooperatively forward

unallocated jobs to another agent to optimize the global utility of the system. There are

two main settings in MARL: 1) Cooperative; and 2) Non-cooperative. In cooperative set-

tings, the agents can share full or partial information about the state space they perceive.

In a non-cooperative setting, local agents may not share their local states with peer agents.

Using multi-agent systems provides many advantages compared to a centralized solution

with a single agent. The advantages are the ability to distribute the required computations

over several entities, increased robustness, and scalability. The disadvantage of choosing a

distributed approach is that agents may make potentially suboptimal decisions (in that en-

vironment becomes partially observable) until they learn better policies producing only an

approximate joint policy. The communication overhead may also affect the final schedule,

and the agents must deal with communication delays and failures.

Second, hierarchical reinforcement learning aims to discover and exploit hierarchical

structure in a given Markov decision problem. The assumption is that the tasks can be
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divided into terminating subroutines that the agents at each sub-level can call. The root-

level agent will receive the reward by aggregating the agents’ rewards immediately below

it. Those agents will receive rewards based on the policies followed by agents at the next

level and so forth. The learning agents have a partial view of the environment (Partially

Observable MDP or POMDP [158]), and the agents communicate their state with other

agents to maximize overall reward. When the learning has finished, the policy for each

sub-routine will be an optimal solution to a sub-MDP of the original MDP. The policy

of the overall MDP will be a combination of the policies of the various subroutines. An

essential benefit of this approach is that these sub-MDPs (and the learned policies) can be

reusable in new tasks.

By dividing the state space among multiple agents, we can alleviate both problems.

Each agent can learn policies on smaller state space, reducing the training time, and the

smaller models will fit on existing hardware available to the researchers.

To address the need for standardized environments, we propose homogenizing different

datacenter implementations, similar to OpenAI Gym [20], and provide customization op-

tions in the datacenter environment for experimentation. Additionally, we would extend

the datacenter environment to simulate other essential infrastructures, including network-

ing, storage, and their associated overhead. This standardized datacenter environment will

provide a solid foundation for the systems research community to conduct experiments

and compare results with other researchers. Ideally, this effort will facilitate collaboration

between systems researchers and build effective RL schedulers for real-world datacenters.
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Appendix A

A.1 Markov Process

Markov Process is a memory-less random process. That is a sequence of random states

S1, S2, and so on, with the Markov property. A Markov process, a.k.a Markov chain, is a

tuple (S, P ), state space S, and transition function P . The dynamics of the MDP can be

defined by these two components, S, and P . When we sample from an MDP, the sample

is a sequence of states, a.k.a an episode. A summary of notations used throughout this

dissertation can be found in Table A.1.

A.1.1 Markov Reward Process (MRP)

MRP is a Markov process with value judgment, i.e., how much reward can be accumulated

by following a particular sampled sequence. An MRP is a tuple (S, P,R, γ), S is the state

space, P is the state transition probability function, and R is a reward function,

Rs = E[Rt+1|St = s] (A.1)

i.e., the expected immediate reward we get from state S at that moment. The total

discounted reward, Gt, is given below, from time step t. The goal is to maximize this

return,

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
0

γkRt+k+1 (A.2)

γ is a discount factor, γϵ[0, 1].
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The discount factor decides how much the agent should care about rewards now to

future rewards. If (γ = 0), the agent only cares about the first reward (short-sighted).

If (γ = 1), the agent cares about all future rewards (far-sighted). The discount factor γ

is mathematically convenient because we can guarantee that the algorithm will converge

and avoid infinite returns (with loops) in Markov processes. Another reason to discount

rewards is that the agent is not certain about the future. The agent may be better off

taking the immediate reward rather than waiting to get a larger reward later in the future.

So, γ defines a form of the finite horizon for a specific duration. Intuitively, it encodes the

human cognitive model, which shows preferences for immediate rewards.

The agent tries to get the maximum expected sum of rewards from every state in which

it ends up. To achieve maximum rewards, the agent must use the optimal value function,

i.e., the maximum sum of cumulative rewards. The optimal value function is solved using

Bellman equations. For brevity, we are not explaining the formalism of Bellman equations

here. Refer [138] for a detailed overview of Bellman equations.

We have the value function for MRPs, but there are no decisions that an agent can

choose from. With a policy, a rule for choosing an action in a Markov process, the agent

has a choice for picking actions. Formally, a policy is a mapping from the set of states S

to the set of actions A.

A.1.2 Markov Decision Process (MDP)

MDP is a Markov Reward Process with decisions. An MDP is a tuple (S,A, P,R, γ), where

S is the state space, A is a set of actions (finite), P is the state transition probability

function given by,

P ass′ = P [St+1 = s′|St = s,At = a] (A.3)

R is the reward function given by, and γ is a discount factor γϵ[0, 1]. A rule for choosing

actions in any state is called a policy. Formally, a policy is a mapping π from the set of

states S to the set of actions A. An agent’s policy π is a distribution over actions given
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states. A policy completely defines the behavior of an agent,

π(a|s) = P [At = a|St = s] (A.4)

If an agent follows a specific policy over many trials, the average reward the agent

receives is the value of that policy. Along with computing the value of a policy averaged

over many trials, we can also compute the value of a policy starting in a particular state s.

The value of a policy is denoted Vπ(s). This is the expected cumulative reward of executing

policy π starting in state s, and we can write it as

Vπ(s) = E[rt+1 + rt+2 + ...|St = s, π] (A.5)

where rt is the reward, st is the state at time t. Finally, the expectation is taken over the

stochastic results of actions in the environment. An MDP can have more than one optimal

policy denoted by π∗ that maximizes the expected value of the policy. All the optimal

policies share the same optimal value function, V ∗. The optimal value function satisfies

the Bellman equation,

V∗(s) = maxa
∑
s′

P (s′|s, a)[R(s′|s, a) + V∗(s
′)] (A.6)

where a denotes an action in state s, s′ is the resulting state reached as per the transition

probability P (s′|s, a), R(s′|s, a) denotes the expected one-step reward for performing action

a and moving from state s to s. V∗(s
′) is the value of the resulting state. The sum on the

right-hand side is the expected value of the one-step reward R(s′|s, a) plus the value of the

next state s. We can think of it as the backed-up value of a one-step lookahead search and

choosing the action with the best backed-up value with maxa. The sum is so important

that it is given a special name Q∗(s, a),

Q∗(s, a) =
∑
s′

P (s′|s, a)[R(s′|s, a) + V∗(s
′)] (A.7)
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Q∗(s, a) is the expected total reward received when the agent performs action a in state

s and then behaves optimally after that. Substituting this into the Bellman equation, we

see that the value function is just the maximum (overall actions) of the Q-function,

V∗(s) = maxaQ∗(s, a) (A.8)

Substituting this into the Q-equation to obtain the Q version of the Bellman equation:

Q∗(s, a) =
∑
s′

P (s′|s, a)[R(s′|s, a) +maxa′Q∗(s
′, a′)] (A.9)

The problem of RL is to compute the optimal policy, given no prior knowledge about

the MDP, by interacting with the MDP. The RL agent can observe state s, try action a, and

observe the resulting state s and the reward r by interacting with the MDP. By accumulat-

ing information over many interactions, the agent can form an estimate of the probability

transition function (P̂ (s′|s, a)) and the expected one-step reward function (R̂(s′|s, a)). An

alternative is to construct an estimate of V∗ or Q∗ directly, without learning the probability

transition function P̂ and the expected one-step reward function R̂ first using Q-learning

algorithm. Let Qt(s, a) be the current estimate of the optimal Q-function at time t. At

each time step t, the agent observes the current state s, chooses action a according to

policy πx, resulting in state s′ and the one-step reward r, and updates as follows:

Qt+1(s, a) = (1− α)Qt(s, a) + α[r +maxa′Qt(s
′, a′)] (A.10)

The parameter α is a learning rate (between 0 and 1). The expression on the right-

hand side is computing a moving average between the previous value of Q(s, a) and a new

“estimated value” resulting from the current experience. If α gradually decreases according

to certain standard conditions, and if πx ensures that every action is executed infinitely

often in every state, then with probability 1, Qt converges to Q∗. It is important to note

that the action a can be very simple or very complex, and this algorithm will still work.

Indeed, action a can be a call to a subroutine that takes many primitive actions and then
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exits. When that subroutine exits, it will leave the environment in some new state s′. If

we define r as the total reward received while the subroutine a was being executed, then

the Bellman equation is still satisfied, and Q-learning will still converge to Q∗. Technically,

this variant of Q-learning is called semi-Markov Q-learning (or SMDP Q-learning) because

an MDP in which actions can take multiple timesteps is known as a semi-Markov decision

problem.

A general setting shown in Figure 3.1 represents an agent interacting with the envi-

ronment. At each time step t, the agent observes system state st, and it should choose an

action at. For the chosen action, the state of the environment transitions from st to st+1,

and the agent receives a reward rt for that action. The state transitions and corresponding

rewards are stochastic and have the Markov property - the state transition probabilities

and rewards depend on the state of the environment st and the action at taken by the

agent.

The agent can control only its actions, not the reward, after taking action. During

training, the agent interacts with the environment and observes quantities of the system for

various actions. The agent’s goal is to maximize the expected discounted reward expressed

as,

E[
∞∑
i=1

γtr
t] (A.11)

where γϵ(0, 1] is a factor discounting future rewards. The discounting factor specifies how

important future rewards are with respect to the current state. If the reward r occurs n

steps in the future from the present state, then the reward is multiplied by γn to describe

its importance to the present state.

Policy space: The act of selecting an action in each state is called “policy” and

is denoted as π. The agent selects the next actions based on a policy (π). Policy is a

probability distribution over actions π : π(s, a) → [0, 1]. Thus π(s, a) is the probability

that an action a is taken in state s. There are many possible (s, a) pairs, exponential in

our case. Therefore, it is not practical to store the policy in vector format. Instead, we

use function approximators. A function approximator has considerably fewer parameters,
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θ represented as πθ(s, a). The idea is that by approximating the policy, the agent would

take similar actions for similar or close-by states.

Gradient Descent and Policy gradients: The class of RL algorithms that learn

by performing gradient descent on the policy parameters is the focus of this dissertation.

The policy-gradient method gives the directions that the parameters should be adjusted

in order to improve a given policy’s performance. The process of training RL agents is

just optimizing the objective function where the objective is to get the maximum expected

cumulative discounted reward (given by the above equation) by taking the gradient of the

objective function.

▽θEπθ
[
t∑
0

rt] =
t∑
0

logπθ(s, a)Qπθ(s, a) (A.12)

Here, Qπθ(s, a) is the expected cumulative discounted reward from choosing action a in

state s and subsequently following policy πθ. The main idea of policy gradient methods is to

estimate the gradient by observing the trajectories of executions obtained after following a

policy. The agent samples multiple trajectories and uses the cumulative discounted reward,

vt, as an unbiased estimate of Qπθ(st, at). The agent then iteratively updates the policy

parameters in the direction of the gradient.

A.2 Preliminaries - Constrained Controlled PID Lagrangian

Method

This section briefly introduces CMDP and is reproduced here from the literature.

Constrained Reinforcement Learning: The Constrained Markov Decision Pro-

cesses (CMDP) [120] extend MDPs [122] to include constraints into RL. A CMDP is the

extended tuple (S,A,R, T, µ, C0, C1, . . . , d0, d1, . . .). The cost functions Ci : S×A×S → R

defined with the same form as the reward functions, and di : R representing cost limits.

For this work, we will consider a single, all-encompassing cost.

In RL, the expected sum of discounted rewards computed over τ = (s0, a0, r1, s1, a1, r2, . . .)
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trajectories, using the policy π(a|s) is a common performance objective:

J(π) = Eτ∼π[
∑∞

t=0 γ
tR(st, at, st+1)]. The corresponding value function for the cost is de-

fined as JC(π) = Eτ∼π[
∑∞

t=0 γ
tC(st, at, st+1)]. Then the constrained RL problem is solving

for the best possible policy:

π∗ = argmax
π

J(π) s.t. JC(π) ≤ d (A.13)

Deep RL uses a Deep Neural Network (DNN) for the policy, πθ = π(·|s; θ) with θ

as a parameter vector. The policy gradient algorithms improve the policy over time by

gathering experience in the task of estimating the reward objective gradient, ∇θJ(πθ)

iteratively. Therefore our constrained optimization problem is expressed as maximizing

score at some iterate, πk, ideally obeying constraints at each iteration:

max
π

J(πk) s.t. JC(πm) ≤ d

where m ∈ {0, 1, . . . , k}
(A.14)

Optimal Control and Dynamical Systems: Dynamical systems are processes that

are subject to external control. A generic formulation for discrete-time systems with feed-

back control is:

xk+1 = F (xk, uk)

yk = Z(xk)

uk = h(y0, y1, . . . , yk)

(A.15)

Where x is the state vector, F is the dynamics function, u applied control, y is the mea-

surement outputs, and the subscript denotes the time step. The feedback rule, h, can

access past and present measurements. The optimal control problem is to design a control

rule, h, that results in a sequence y0:T = {y0, y1, . . . , yT } (or states x0:T ) that scores well

for some cost function C. For instance, reaching a goal condition, C = |yT − ȳ|, or closely

following a desired trajectory, ȳ0:T .

In general, systems with simpler dependency on the input are easier to analyze and
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control (i.e., simpler h performs well), even though the dependence on the state is compli-

cated [159].

F (xk, uk) = f(xk) + g(xk) uk (A.16)

where f and g can be nonlinear in the state and may be uncertain or unknown.

Lagrangian Methods for Constrained Optimization: Lagrangian methods are

a classic family of approaches to solving constrained optimization problems. The work

in [160] analyzed the dynamics of a continuous-time neural learning system applied to this

problem. The authors start with the component-wise differential equations:

ẋi = −
∂L(x, λ)
∂xi

= − ∂f
∂xi
− λ

∂g

∂xi
(A.17)

λ̇ = α
∂L(x, λ)
∂λ

= αg(x) (A.18)

where the scalar constant α is the learning rate on λ. Differentiating eq A.17 and substi-

tuting with eq A.18 leads to the second-order dynamics, written in vector format:

ẍ +Aẋ + αg(x)∇g = 0 (A.19)

is a forced oscillator with a damping matrix:

Aij =
∂2f

∂xi∂xj
+ λ

∂2g

∂xi∂xj

or, A = ∇2f + λ∇2g

(A.20)

The work in [160] showed that if A is positive definite, the system eq A.19 converges to

a solution that satisfies the constraint. Also, [160] noted that the system eq A.17 and

eq A.18 is prone to oscillations, with frequency and settling time depending on α.

In eq A.18, λ merely integrates the constraint. To encourage the dynamics towards fast

and stable constraint satisfaction, a new term is introduced [123] in λ that is proportional

to the current constraint value. In the differential equation for λ, this term appears as the
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time-derivative of the constraint:

λ̇ = αg(x) + βġ(x) = αg(x) + β
∑
j

∂g

∂xj
ẋj (A.21)

where β is the strength coefficient. Replacing eq A.18 by eq A.21 and combining with

eq A.17 yields similar second-order dynamics as eq A.19 with an additional term in the

damping matrix:

ẍ + (A+ β∇g∇T g)ẋ + αg(x)∇g = 0 (A.22)

The new term is beneficial because it is positive semi-definite - the outer product of a

vector with itself - thereby increasing the damping eigenvalues and boosting convergence.

A similar analysis [123] applies to the addition of a term in λ based on the derivative

of the constraint value. It appears in λ̇ as the second derivative of the constraint:

λ̇ = αg(x) + γg̈(x) (A.23)

where γ is the strength coefficient. The resulting dynamics are:

ẍ +B−1Aẋ + (αg(x) + γẋT∇2gẋ)B−1∇g = 0 (A.24)

with B = I + γ∇g∇T g , and I the identity matrix.

The combination of the previous two developments gives the Proportional-Integral-

Derivative (PID) multiplier method inducing independent changes in the dynamics (i.e.,

insert the damping matrix of eq A.22 into eq A.24). The PID multiplier method proposed

in [123] is a recent result where a PID update rule is considered for a learned Lagrange

multiplier.

A.3 Hyperparameters

Many RL papers investigate in-depth learning paradigms. Nevertheless, it is less visible

that behind successful experiments in deep RL, complicated code bases contain many low-
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and high-level design decisions that are usually not discussed in research papers. While

one may assume that such “choices” do not matter, there is some evidence that they are,

in fact, crucial for or even driving good performance [161] [162] [109].

While there are open-source RL algorithm implementations available that practitioners

can use, this is still unsatisfactory because often, different algorithms implemented in

different code bases are compared one-to-one. This makes it impossible to assess whether

improvements are due to the algorithms or their implementations. Furthermore, without

an understanding of lower-level choices, it is hard to assess the performance of high-level

algorithmic choices, as performance may strongly depend on tuning hyperparameters and

implementation-level details. Our goal in this section is to provide such lower-level choices

we used during our experimentation.
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Notation Description

s State
a Action
S Set of all non-terminal states
S+ Set of all states, including the terminal state
A(s) Set of actions possible in state s
R Set of possible rewards
C Cost function St
State at t
At Action at t
Rt Reward at t, dependent, like St, on At−1 and St−1

Gt Return (cumulative discounted reward) following t
π Policy, decision-making rule
π(s) Action taken in states under deterministic policy π
π(a|s) Probability of taking action a in states under stochastic policy π
p(s′, r|s, a) Probability of transitioning to state s′, with reward r from s, a
vπ(s) Value of states under policy π (expected return)
vπ(s) Value of states under the optimal policy
qπ(s, a) Value of taking action a in states under policy π
q∗(s, a) Value of taking action a in states under the optimal policy
Vt(s) Estimate (a random variable) of vπ(s) or vπ(s)
Qt(s, a) Estimate (a random variable) of qπ(s, a) or q∗(s, a)
γ Discount-rate parameter
ϵ Probability of random action in ϵ-greedy policy
α, β Step-size parameters
λ Decay-rate parameter for eligibility traces
T Datacenter simulator environment dynamics
D Replay buffer
L Lagrangian
d Cost Limit
B Randomly sampled batch
gψ Encoder network
πθ Actor network
Qϕ Critic network
Lcritic Critic loss
Lactor Actor loss
f and g linear or non-linear functions depending on the context

Table A.1: Common notations used in RL literature
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Hyperparameter Value

Batch size 1024
NN hidden layer size 512
Actor learning rate 1e− 4
Critic learning rate 1e− 4
Encoder learning rate 1e− 4
Discount, γ 0.99
Number of critics 1
PopArt True
BC Warmup steps 20,000

Table A.2: Hyperparamaters used in Chapter-5.

Hyperparameter Value

NN hidden layer size 512
Hidden Layers 2
LSTM size 512
Learning rate 1× 10−3

NN Nonlinearity tanh
Batch dimension, time 200
Batch dimension, envs 100
PPO ratio-clip 0.1
Discount, γ 0.99
λGAE 0.93
Optimizer Adam
Cost scaling 1/10
Exponential moving average, KP 0.95
Exponential moving average, KD 0.9
Difference iterates delay, KD 15
Observation Normalization True
Cost limit anl=7k,

sdsc sp2=20k,
sdsc blue=23k,
pik iplex=100k,
hpc2n=25k

Table A.3: Hyperparamaters used in Chapter-6.
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Hyperparameter (Common) Value

Batch size 1024
Replay buffer size 1,750,000 and 50,000
NN hidden layer size 512
Actor learning rate 1e− 4
Critic learning rate 1e− 4
Encoder learning rate 1e− 4
Discount, γ 0.99

Behavior Cloning

Number of critics 1
PopArt False
BC Warmup steps 20,000

Offline RL

Number of critics 2
PopArt False
Number of offline steps 100,000

Offline+Online RL

Number of critics 2
PopArt True
BC Warmup steps 20,000
Number of offline steps 50,000
Number of online steps 500,000

Table A.4: Hyperparamaters used in Chapter-7.

Common parameters Value

Kernel width 4
Horizontal stride 2
MLP hidden 256
Number of filters 32
Job array MLP hidden 128

Small encoder

Extra convolutional layers 1
Job array MLP hidden 128

Medium encoder

Extra convolutional layers 2
Job array MLP hidden 300

Large encoder

Extra convolutional layers 3
Job array MLP hidden 400

Table A.5: Configuration for small, medium and large encoders used in Chapters-5 and 7.
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Table B.1 shows the most relevant parameters to configure a power-modulated datacenter.

These parameters can be changed to simulate various configurations during training and

evaluation of various scheduling policies. For instance, increasing the total resource slots

generates a cluster with more resources (e.g., 10 to 100 resources). The price per resource

per unit of time can be decided using the res price option. The default is 0.5 for both

CPUs and GPUs, but this can be altered to cater to the practitioner’s needs.

Similarly, various power sources can be selected by changing the power avail rate. A

number between 0.0 to 1.0 is used to select a synthetic power setting. For example,

power avail rate=0.9 means 90% power supply 90% of the time. To select real power data,

set power avail rate=-1.0, and to select real power data plus battery, set power avail rate=-

2.0.

To increase the system load, we change the job arrival rate. Selecting the type of

workload is done by changing workload type with possible choices of synthetic, ANL,

SDSC-SP2, SDSC-Blue, PIK-IPLEX, and HPC2N. Other job-related properties include

max job duration and max job resources. These parameters, provided by the user, dictate

how long a job must run and the maximum number of resources any job can request.

To select various reward and cost types, set the reward type and cost type parameters

accordingly. Currently, we have 15 different types of reward functions and 9 different types

of cost functions. Similarly, other costs can be altered, such as waiting cost (waiting cost)

values.

The simu len, max jobs, and max episode length control the simulation duration, max-
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imum numbers of jobs during that simulation run, and maximum episodic length for RL

scheduler training. The time horizon dictates how much the scheduler can look into the

future to schedule the jobs. Typically, this parameter is set to 24, 36, 48, or 72 time

units.
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Field Values Description

total resource slots 10 number of units of each resource sub-types
max job resources 5 max resources each job can request
ready pool 5 number of jobs in the ready pool
num resource types 2 number of resource types
res price 0.5 cpu and gpu resource price
workload type “synthetic” workload type, synthetic or hpc
is suspend “no” run with or without job suspension option
job arrival rate 1.0 job arrival rate, system load
max job duration 30 max length/duration of each job
job value knob 0.1 for scaling down the job’s value
power avail rate 0.0 percentage of power supply, 1.0 = 100%, 0.5 = 50% power
reward type 13 type of the reward function, ranges between 1-15
cost type 9 type of the reward function, ranges between 1-9
longrunning cost -1 cost incurred for running too long
readypool cost -1 cost incurred for waiting in ready pool
waitpool cost -1 cost incurred for waiting in wait pool
suspend cost -1 cost incurred for suspending a job
is newseed True select new seed for every run, during training and evaluation
run eval False select between training or evaluation run
simu len 10000 max simulation length
max jobs 1000000 max number of jobs for this simulation
max episode length 10000000 max episode length
time horizon 48 max time units for the simulation
waitpool size 48 × 3 max size of the wait pool
suspendpool size 48 × 3 max size of the suspend pool
end “no new job” status when the simulation ends
backfill type “FCFS” order in which jobs get admitted from waitpool to readypool
classic observation False select between image only or image + vector formats
heuristic agent False select DRL or heuristic agent actions during evaluation

Table B.1: Simulator parameters to configure power-modulated datacenter with various
properties.
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[73] Í. Goiri, M. E. Haque, K. Le, R. Beauchea, T. D. Nguyen, J. Guitart, J. Torres, and

R. Bianchini, “Matching renewable energy supply and demand in green datacenters,”

Ad Hoc Networks, vol. 25, pp. 520–534, 2015.

[74] A. D. Carnerero, D. R. Ramirez, D. Limon, and T. Alamo, “Particle based opti-

mization for predictive energy efficient data center management,” in 2020 59th IEEE

Conference on Decision and Control (CDC), 2020.

[75] “Markov property.” [Online]. Available: https://en.wikipedia.org/wiki/Markov

property

[76] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in Neural Information Processing

Systems, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds., vol. 25.

Curran Associates, Inc., 2012. [Online]. Available: https://proceedings.neurips.cc/

paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[77] D. Yarats, I. Kostrikov, and R. Fergus, “Image augmentation is all you

need: Regularizing deep reinforcement learning from pixels,” in International

Conference on Learning Representations, 2021. [Online]. Available: https:

//openreview.net/forum?id=GY6-6sTvGaf

[78] P. Ambati, N. Bashir, D. Irwin, and P. Shenoy, “Waiting game: Optimally provision-

ing fixed resources for cloud-enabled schedulers,” in SC20: International Conference

for High Performance Computing, Networking, Storage and Analysis, 2020.

[79] (Accessed May 2022) Amazon ec2 spot instances. [Online]. Available: https:

//aws.amazon.com/ec2/spot/

[80] (Accessed May 2022) Azure spot virtual machines. [Online]. Available: https:

//azure.microsoft.com/en-us/pricing/spot/

[81] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee, and M. Zaharia,

“Heterogeneity-Aware cluster scheduling policies for deep learning workloads,” in

https://en.wikipedia.org/wiki/Markov_property
https://en.wikipedia.org/wiki/Markov_property
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://openreview.net/forum?id=GY6-6sTvGaf
https://openreview.net/forum?id=GY6-6sTvGaf
https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/
https://azure.microsoft.com/en-us/pricing/spot/
https://azure.microsoft.com/en-us/pricing/spot/


BIBLIOGRAPHY 156

14th USENIX Symposium on Operating Systems Design and Implementation (OSDI

20). USENIX Association, Nov. 2020.

[82] T. Jain and G. Cooperman, “Crac: Checkpoint-restart architecture for cuda with

streams and uvm,” in Proceedings of the International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, ser. SC ’20. IEEE Press,

2020.

[83] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A

survey,” J. Artif. Int. Res., vol. 4, no. 1, p. 237–285, may 1996.

[84] J. Kober, J. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,”

The International Journal of Robotics Research, vol. 32, pp. 1238–1274, 09 2013.

[85] S. Mahadevan and G. Theocharous, “Optimizing production manufacturing using

reinforcement learning,” in FLAIRS Conference, 1998.

[86] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driess-

che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Diele-

man, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. P. Lillicrap, M. Leach,

K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep

neural networks and tree search,” Nature, vol. 529, pp. 484–489, 2016.

[87] J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing networks: A

reinforcement learning approach,” in Proceedings of the 6th International Conference

on Neural Information Processing Systems, ser. NIPS’93. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 1993, p. 671–678.

[88] K. Winstein and H. Balakrishnan, “Tcp ex machina: Computer-generated congestion

control,” in Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,

ser. SIGCOMM ’13. New York, NY, USA: Association for Computing Machinery,

2013, p. 123–134. [Online]. Available: https://doi.org/10.1145/2486001.2486020

https://doi.org/10.1145/2486001.2486020


BIBLIOGRAPHY 157

[89] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, “Pcc: Re-

architecting congestion control for consistent high performance,” in Proceedings of

the 12th USENIX Conference on Networked Systems Design and Implementation,

ser. NSDI’15. USA: USENIX Association, 2015, p. 395–408.

[90] L. Chen, J. Lingys, K. Chen, and F. Liu, “Auto: Scaling deep reinforcement

learning for datacenter-scale automatic traffic optimization,” in Proceedings of the

2018 Conference of the ACM Special Interest Group on Data Communication, ser.

SIGCOMM ’18. New York, NY, USA: Association for Computing Machinery, 2018,

p. 191–205. [Online]. Available: https://doi.org/10.1145/3230543.3230551

[91] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource management with

deep reinforcement learning,” in Proceedings of the 15th ACM Workshop on Hot

Topics in Networks, ser. HotNets ’16. New York, NY, USA: ACM, 2016, p. 50–56.

[Online]. Available: https://doi.org/10.1145/3005745.3005750

[92] T. E. Thomas, J. Koo, S. Chaterji, and S. Bagchi, “Minerva: A reinforcement

learning-based technique for optimal scheduling and bottleneck detection in dis-

tributed factory operations,” in 2018 10th International Conference on Communica-

tion Systems Networks (COMSNETS), 2018, pp. 129–136.

[93] G. Domeniconi and E. K. Lee, “Cush: Cognitive scheduler for heterogeneous high

performance computing system,” in Workshop on Deep Reinforcement Learning for

Knowledge Discover, DRL4KDD, 2019.

[94] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Alizadeh, “Learn-

ing scheduling algorithms for data processing clusters,” in Proceedings of the ACM

Special Interest Group on Data Communication, SIGCOMM, 2019.

[95] Y. Bao, Y. Peng, and C. Wu, “Deep learning-based job placement in distributed ma-

chine learning clusters,” in IEEE INFOCOM 2019 - IEEE Conference on Computer

Communications, 2019, pp. 505–513.

https://doi.org/10.1145/3230543.3230551
https://doi.org/10.1145/3005745.3005750


BIBLIOGRAPHY 158
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