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Abstract

Field Programmable Gate Arrays (FPGAs) have become an increasingly useful and impor-

tant architecture in hardware design. As a exible alternative to custom integrated chips,

FPGA-implemented designs can be produced quickly and cheaply. However, this exibil-

ity comes at a signi�cant performance penalty. To help address this issue, we propose a

family of three-dimensional FPGA architectures, with increased speed and smaller size as

compared to existing 2D FPGAs. We implemented the �rst suite of tools for creating cir-

cuit designs for the new proposed architecture, and used these tools to demonstrate the

e�cacy of 3D FPGAs (e.g., 3D FPGA circuit mappings seem superior to those mapped to

2D ones). We explored several issues arising in the design of both 2D and 3D- FPGAs,

and implemented two useful tools: (1) Spi�y, which performs placement and global routing

simultaneously for 2D and 3D FPGAs, and (2) Gambit, which is the �rst tool to perform

placement, global routing and detailed routing simultaneously, and which demonstrates

the usefulness of conict graphs. These tools yield superior solutions within reasonable

runtimes, and employ a "template smoothing" technique which signi�cantly improves the

results at a modest runtime cost. Our results indicate that 3D FPGAs are a viable future

architecture.
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Introduction

From conception to physical realization, the process of creating a computer chip involves

many di�cult tasks. Given a function to be implemented as a digital chip, the job creating

it is complex, involving di�cult decisions at many di�erent levels. A chip architecture must

be selected { a choice between a number chip designs, each having various advantages and

disadvantages. A functional representation of the task must be formulated, then translated

into a hardware representation and physically mapped to the chip. This physical mapping

must be veri�ed, and the chip itself must then be constructed and tested. Only after this

signi�cant e�ort do we have an operational computer chip, be it is as complicated as a CPU

or as simple as a toaster-oven timer.

Each of these tasks can be challenging and mistakes can be costly, both in terms of time

and money. It is believed that many of the subtasks involved in the creation process are

impossible to solve optimally in a reasonable amount of time, requiring shortcuts in the form

of solution estimations. Yet, using these estimates reduces the quality of the �nal result,

which leads to slower and larger chips. Further, as technology progresses, the circuit designs

are becoming more and more complicated { making good estimates harder and harder to

achieve in a reasonable amount of time.

As noted above, one important step in the creation of a chip is the selection of its

1
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hardware architecture: the con�guration of the physical components. Di�erent architectures

permit di�erent circuit designs and impose di�erent restrictions on the designer. The custom

design architecture is at one end of the spectrum. Using this architecture results in the

fastest and most space-e�cient chips, as the only limitations are those imposed by physical

laws. However, creating them is a time-consuming and expensive process.

Field Programmable Gate Arrays, referred to as FPGAs, are at the other end of the

spectrum. FPGAs impose the most restrictions on circuit design. These limitations result

in chips that are slower and larger than their custom design counterparts. However, FPGAs

are far easier to design. The process of implementing a circuit on an FPGA is typically

much faster and more cost-e�ective than implementing the same circuit on a custom design

chip.

Once the architecture has been chosen and the functional design created, the design

needs to bemapped to the architecture. The functions need to be translated into components

that can be placed on a chip. In addition, physical locations on the chip need to be chosen

for each component, and wire paths need to be selected for connecting the components. The

restrictions on this physical design depend on the chip architecture. On a custom design

chip, components can take any shape and be placed anywhere, while wires are restricted only

in that they must keep certain minimal distances from other wires. On FPGAs, components

have a speci�c size and shape, and are limited in placement to speci�c areas. The possible

paths that wires can take are pre-designated between the component areas. The di�culties

of mapping functional designs to chips vary greatly with the type of architecture.

With very small circuits it is conceivable that the physical design can be done manually.

However, the time has long since passed that this can be done with reasonably-sized circuits.

Because the number of components in a typical circuit now numbering easily in the millions,

it is di�cult for even a fast computer to perform this task in an acceptable amount of time.

The physical design of such a circuit cannot be done manually. Thus the need for design

automation: the task of delegating the physical design problems to a computer.
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Physical design has been historically divided into several tasks, including placement,

global routing, and detailed routing. The details and problems associated with each of these

depends on the architecture in question, but certain goals must be achieved with each of

these tasks, regardless of the hardware selected. Before the sub-tasks are performed, we

must have an abstract circuit description, a list of components that need to be mapped to

the chip surface and a speci�cation as to how these components are to be interconnected.

How this description is produced often varies; for some architectures, such as custom-design,

a method known as oor-planning may be used. For other architectures, such as FPGAs,

technology mapping may be employed. Given the circuit description produced, we can

perform the three sub-tasks:

� Placement: A size and a shape has already been determined for each component

(or pre-determined by the architecture type), and in the placement phase a geometric

location on the chip surface is found for each component.

� Global Routing: Once the locations of the components have been chosen, the general
connection path between components is determined. (Note that the global routing

phase is sometimes treated as a part of the detailed routing phase.)

� Detailed Routing: Once a global route has been selected for each connection path,

exact wire segment paths are chosen to implement the global routes.

The ultimate goal is to produce a chip that is as small and as fast as possible. This goal is

accomplished by working towards speci�c objectives in each phase that frequently require

the components be placed as closely together as possible, leaving only enough room to run

the routing wire, and arranged so as to minimize the length of the connection paths.

This dissertation deals with the problems associated with FPGAs and the related phys-

ical design problems of placement, global routing and detailed routing. These problems are

addressed as follows. In Chapter 2, we present an overview of FPGAs: a description of

their architecture and an overview of the various advantages and problems associated with
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them. In Chapter 3 we propose a new type of FPGA architecture to address some of the

problems. This architecture is known as a Three Dimensional Field Programmable Gate

Array (3D-FPGA). It is our thesis that the creation of a 3D-FPGA architecture is both

feasible and desirable, and in this chapter we give both a theoretical justi�cation for this

thesis.

In Chapter 4 we present a more detailed explanation of physical design for the FPGA

architecture. We explain the current state of algorithms dealing with the various phases,

with an eye toward applying them to the 3D-FPGA architecture. We argue for a new

paradigm for achieving the goal of the three phases: the simultaneous execution of all three

phases, and discuss what has been done towards such a method.

In Chapter 5, Chapter 6 and Chapter 7 we present Spi�y and Gambit: tools we have cre-

ated for the simultaneous placement and routing of 3D-FPGAs. Based upon the Mondrian

Tool [43], Spi�y improves Mondrian's algorithm and generalizes it to the 3D architecture, re-

placing a number of aspects of the algorithm with superior problem solving solutions. When

paired with the graph-based router of Alexander and Robins [8, 9] or the Upstart router of

McCulloch and Cohoon, we have the �rst tool suite to generate full circuit mappings for

creating circuits mappings for 3D-FPGAs, and the research provided the motivation for the

construction of the architecture at Northeastern University [60, 63]. Gambit is the �rst tool

to incorporate the detailed routing phases into the simultaneous performance of placement

and global routing. We discuss the algorithms used in Gambit, showing that it is possible

to perform these phases simultaneously.

In Chapter 8 we re-address the issue of 3D-FPGAs, justifying them experimentally.

In our original proposal of the architecture we made theoretical arguments as to why 3D-

FPGAs are superior to standard (2D) FPGAs, but we had no way of experimentally validat-

ing our arguments without physical design tools for the architecture [4]. With the creation

of Spi�y this experimental validation becomes possible. With these physical design tools,

we show that a 3D-FPGA architecture does lead to superior design.
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In summary, the contributions resulting from this research are:

� Spi�y: A state-of-the-art tool for the simultaneous placement and global routing of

FPGA. When combined with the Upstart and compared against the results of other

leading tools, we achieve a 13% improvement and channel-width and a 10% improve-

ment in path-length, while improving runtime by 38% when run on equivalent hard-

ware. When compared against other tools on equivalent benchmarks, Spi�y produces

some of the best circuit mappings in the literature.

� Template Smoothing: A new augmentation to the Spi�y algorithm, leading to further

improvements in the quality of the circuit mappings. When integrating the template

smoothing technique into the Spi�y algorithm, we bring about a 6% improvement in

channel-width and a 7% improvement in path-length as compared to results of using

Spi�y without template-smoothing.

� Gambit: The �rst tool to perform simultaneous placement, global routing and detailed

routing for FPGAs of either dimension. While Gambit's results are not competitive

with new tools, it does serve as a proof as concept. The creation of Gambit demon-

strated a viable method for integrating the placement and both routing phases, and

present a promising avenue of research towards a tool superior to any currently in the

literature.

� The �rst circuit mappings for 3D-FPGAs. While other tools have been quickly modi-

�ed to produce circuit mappings for 3D-FPGAs, the Spi�y tools is the �rst to exploit

the traits of the new architecture, producing quality results.

� The �rst experimental justi�cation of 3D-FPGAs, showing the architecture is worth

pursuing. Through a series of experiments made possible by the creation of Spi�y,

we show that in generalizing the architecture to the third dimension, we gain can

gain as much as a 22% improvement in channel-width and an 11% improvement in
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net length over standard FPGA circuit mappings just by the addition of three extra

levels. Such improvements are signi�cant in the world of VLSI-CAD, and justify the

further exploration and creation of 3D-FPGAs.



2

Field Programmable Gate Arrays

In order to understand the motivations behind the three-dimensional �eld programmable

gate array, it is necessary that the reader have a proper understanding of the standard

FPGA architecture. To achieve this understanding requires that we provide a more thorough

background in the general area of chip design. In this chapter, we explain some of the issues

concerned with the physical creation of computer chips. We discuss the choices that must be

made, and the trade-o�s implicit in those choices. An examination of the available options

will help motivate the need for FPGAs, and lead us to a detailed discussion of the FPGA

architecture.

2.1 Overview

The goal of chip design is to create a chip for a given purpose. The intended function

of the chip can vary, ranging from relatively simple tasks (e.g. a clock timer or an auto-

transmission regulator) to much more complex jobs (e.g. an arithmetic logic unit or CPU).

Regardless of the task, the chip must be constructed with certain objectives in mind. Some

of the more important objectives include:

7
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� Maximizing Speed: The chip should function as quickly and e�ciently as possible.

This requirement is more important in some applications than in others (e.g. speed

in a microwave controller is less crucial than speed of an automatic targeting system).

However, it is safe to assume that we wish to maximize the speed.

� Minimizing Size: The chip should be of minimal size. The importance of size varies

with task, but smaller chips are usually less expensive and faster.

� Minimizing Automation Complexity: The chip should lend itself to simpler

construction algorithms. How di�cult is it to automate the construction of the chip?

Given a function, how much work can be done automatically to create the physical

realization of the function, how long will the process take, and what will be the quality

of the �nal result? If a circuit requires millions of components, we clearly cannot derive

the physical layout of those components by hand { nor can we generally wait the weeks

it would take for the automation software to �nd an optimal solution.

� Minimizing Production Costs: The cost of constructing the chip should be min-

imal. Implicit in this is the requirement that we should be able to build the chip

quickly. In a competitive market, the longer a chip's construction process takes, the

less the chip is worth. The goals of minimizing production costs and design time are

frequently in conict with the goal of producing small and e�cient chips.

One further goal implicit in any chip design is that the chip must function correctly, an

objective that is di�cult to verify. Other objectives also appear in the literature, e.g., power

minimization. These objectives are beyond the scope of this dissertation. We concentrate

on the goals of speed and size minimization, as well as minimizing automation complexity

and production costs.

Thus, given an abstract description of a circuit { generally a logical or functional de-

scription of the chip's intended function { the challenge is to create a physical realization

of that description in such a way as to achieve our stated goals. One of the �rst problems
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is that of choosing a layout environment { an architectural structure that de�nes how the

physical components can be placed. Di�erent layouts lend themselves to di�erent goals {

by picking a speci�c environment, designers can use its characteristics to their advantage

in terms of a certain goal, but doing so may be at the cost of other objectives.

2.2 Layout Environments

While there are many di�erent types of layout environments, they can be classi�ed into

three design styles: full custom, semi-custom, and universal [84]. Given a set of modules

{ physical components that implement logic { and a speci�cation as to how these modules

are to be interconnected, the design style dictates a set of rules concerning the shape and

placement of the modules and wires.

2.2.1 Full Custom Environments

With a full custom layout style, designers have great exibility in how they shape and place

the modules. The assignment must obey certain physical constraints { for example, a min-

imum distance between wires must be maintained to prevent electro-magnetic interference.

But for the most part the designers may shape and size the modules as needed, place them

where they want, and run the connecting wires along any path they want. In Figure 2.1 we

see an example of such a circuit. Notice the variation in module shape and size, and the

freedom in wire path.

With the exibility of the custom design layout style, the designer has the freedom to

e�ciently pack modules and shorten wires { leading to smaller and faster chips. However,

this exibility comes at a cost: full custom chips are the most di�cult to create. The

freedom to place components results in complex design problems. Therefore the automation

complexity can be quite high, and designing custom design chips is expensive. The physical

construction of full custom chips is also quite di�cult, and is further complicated by the need

to construct any new chip from scratch. As a result, full custom design can involve large
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Module Wires Chip Boundary

Figure 2.1: A full custom layout.

startup costs, and the entire process is time consuming. If the function being implemented

is dependent on maximizing speed and minimizing size, implementing it in a custom design

layout may be worthwhile. If not, it is often bene�cial to sacri�ce the exibility in favor of

a layout environment that can be produced at lesser cost.

2.2.2 Semi-Custom Environments

If the intended application of the computer chip allows for some sacri�ce of speed or size,

it is worth considering the use of a semi-custom environment. Where the full custom chip

environment provides extensive exibility, a semi-custom chip both limits the designer to

the use of modules of speci�c shapes and sizes (typically chosen from a library) and restricts

the module placement to speci�ed locations. As a result, the designer has less options in

terms of packing the modules together. However, it also results in less complex automation

problems then does the full custom environment.

One class of semi-custom design chips are cell-based environments [73]. In a cell-based

environment, designers are generally provided with a library of modules, or cells, from which

they can select from to implement the various circuit functions. Each cell in the library is of
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a designated shape and size, performs a designated operation, and can be placed in restricted

portions of the chip (after the cells have been designed in a full custom environment). The

designer must choose the operations required to implement the given function, pack the

cells within the restricted area, and run the wires (which are also restricted to certain areas

of the chip) between those cells requiring interconnections.

In Figure 2.2 we see an example of a standard-cell layout in which the modules are

restricted to rows, hence the name row-based architecture. Note that the cells are of uniform

height, but their width varies with function. Connecting wires are allowed to run through

the routing channels between rows and through feed-through cells laid out in the cell rows.

As the wires are restricted to these channels, this structure is sometimes referred to as a

channel-based architecture.

Wires

Cell Row

Routing
Channel

Feedthrough Cells(Cells)Modules

Figure 2.2: A standard cell layout.

The automation complexity of such a layout, while still quite high, is considerably less

than that of the full custom design chips. As each cell has a pre-speci�ed size and is

restricted in placement options, there are fewer degrees of freedom in the solution. Hence,

there is a smaller solution space to search.
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In cell-based environments there are still a number of signi�cant challenges. Once the

set of cells has been picked, it is necessary to divide them among the rows and place them

in some order on each row. In order to maximize the speed of the chip, we want to place

them in such a way as to minimize the length of the connecting wires. At the same time, we

want to minimize the size of the chips by minimizing the number of wires running through

routing channels { thus minimizing the needed width of each channel (the channel-width).

We are still subject to physical laws, e.g., wires must maintain a given distance from each

other and may not cross.

2.2.3 Universal Environment

Given an arbitrary function, designers may take the extra time to implement it in a full-

custom environment, or they may sacri�ce speed and size in order to implement it in a

semi-custom environment. Regardless of which option is picked, the chip still has to be

constructed according to speci�cations of the functional layout. Even for semi-custom

environments this is no trivial task and introduces some delay between the completion of

the layout design and the physical completion of the circuit. Further, it is only after the

completion of the circuit that the layout can be tested. Any corrections will require the

construction of a new chip, which leads to additional time delay.

Universal environments are pre-constructed { without knowledge of the circuit to be

laid out. Using programmable logic and routing resources, the components are placed in

a uniform pattern on the chip and can be easily mass produced. A designer need only

pick an appropriate device and program the resources in such a way as to implement the

correct logic and connections. Thus there is no delay between completion of the layout

design and construction of the chip. The chip has already been fabricated, which makes

for a very e�cient design cycle. In addition, mass production of the architecture leads to

considerably lower production costs. However, this e�ciency comes at a cost in terms of

speed and size. Designers have little exibility in the positioning of the components and
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can only work with a pre-speci�ed con�guration. Therefore they have no freedom to tailor

the chip to their speci�cations. Thus universal environments are usually the cheapest to

build, but they result in slower and larger chips.

Although the design of universal environments is less complex than that of semi-custom

chips, it is still high. Each cell must be programmed into one of a limited selection of pre-

existing modules. Further, routing options are even more limited than with semi-custom

design, as all possible options have been speci�ed. Thus the designer still faces the challenge

of assigning cells to locations in such a way as to minimize the length of connections. While

the channel-width of the architecture is predetermined in the construction, the designer

may be able to select among architectures of di�erent widths, hence, di�erent sizes. The

challenge is to map the logic to the cells so as to minimize the required channel width { or

congestion. This minimization enables the chip to be as small as possible.

One example of universal circuitry is the FPGA architecture, which is discussed in

detail in the next section. Generally consisting of an array of logic modules with speci�ed

connection paths, FPGAs have become hugely popular in industry because of their e�cient

design cycle. While clearly not appropriate for applications very dependent on speed or

size, they are very good for applications where these requirements are of lesser importance

{ as well as for prototyping circuit designs before laying them out in a more complex

environment.

2.3 Field Programmable Gate Arrays

As mentioned above, FPGAs provide the advantages of the universal layout environment,

and some have the additional advantage of being reprogrammable. The hardware can ac-

tually be recon�gured for a new use or to correct a current implementation. While still

slower and larger than full-custom or semi-custom chips, low startup cost, low �nancial

risk, and quick turn-around time usually more than make up for these problems in many

applications.
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FPGAs were �rst introduced commercially by Xilinx in 1984 [26, 106] and have since

been heavily used in industry. FPGAs come in a variety of styles from a number of pro-

ducers; discussions of FPGA technologies can be found in several surveys [21, 22, 74]. In

this dissertation we concentrate on one particular FPGA technology: the symmetric archi-

tecture produced by Xilinx and others. It is the dominant version on the market. While

many of the results in this paper could be generalized to include more styles of FPGAs, the

symmetric architecture provides a good frame of reference in which to discuss our results.

2.3.1 The Symmetric FPGA Structure

In Figure 2.3, we see the structure of a symmetric FPGA and the components from which

it is composed. We �rst explain the function of each component of an FPGA:

� Logic Block: Logic blocks perform the logic functions of the circuit. They are im-

plemented as a programmable lookup table and can be programmed with any boolean

function of up to a constant number of inputs and outputs.

� Pins: Pins carry the input and output signals to and from logic blocks.

� Connection Wires: Connection wires carry signals between components of the

FPGA.

� Connection Blocks: Connection blocks are a programmable resource used to con-

nect pins to channel wires. At the designer's option, a connection block can usually

be programmed to connect any incident pin to any incident channel wires.

� Switch Blocks: Switch blocks are a programmable resource used to connect incident
channels wires { thus giving the designer exibility in signal paths. Ideally, switch

blocks would provide the capacity to connect any subset of incident edges. Unfortu-

nately, that kind of exibility requires switch blocks too large and complicated to be

practice. In commercial FPGAs only a subset of the connections is possible.
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Connection Blocks

Switch Block

Block
Logic

Pins

Channel
  Wires

Potential Connections

Figure 2.3: A 2D-FPGA symmetrical architecture with a channel-width of seven.

In addition to these components, it is necessary to de�ne several more terms to facilitate

discussion of the architecture:

� Channels: A channel is the area between two switch blocks in which the set of

connecting channel wires are contained.

� Channel-Width: channel-width is the maximum number of wires running through

each channel at any point. Note that as FPGAs are prefabricated, they are generally

constructed such that the channel-width is uniform over all channels. Thus when

paired with a given number of logic blocks, the channel-width de�nes the size of the

chip.
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� Net: Once logic blocks have been programmed with logic functions, certain pins need
to be interconnected to provide input and output signals. Each set of two or more

pins requiring an interconnection is known as a net. A pin can be a member of at

most one net. Because a net can involve more than two pins, an interconnection is

typically not a simple path but rather a tree.

� Congestion: The congestion of a channel is the maximum number of nets routed

through the channel at any point. Since each channel wire segment can carry only

one signal, the channel-width cannot be less then the congestion of any channel.

After programming the logic blocks with functions, and the switch blocks and connection

blocks to correctly transmit signals and connect the nets, we need a way to quantify our

results in terms of size and speed. With respect to chip size, our objective is to minimize

channel-width, thus minimizing the size of the FPGA which will be used to implement

the circuit. Given an abstract functional description to map to an FPGA, we generally

have no control over the number of logic blocks required { hence that aspect of the FPGA

size determined for us. However, we do have some control over the congestion. If we

can prevent the congestion from exceeding some value n, then we can use an FPGA with

channel-width n. Since channel-width determines size, we can minimize the size of the

FPGA by minimizing congestion.

In maximizing speed, we need to minimize connection path lengths. The exibility of

switch blocks comes at a cost: signals are slow to travel through them. Hence we want to

minimize the number of switch-blocks through which a signal must travel. Since the number

of wires over which the signal travels directly determine the number of switch blocks through

which it travels, we need only examine the nets' connecting trees to judge the quality of the

route in terms of speed.

There are several ways to measure the size of an interconnection tree. Frequently,

researchers look at the size of the total segment length that makes up the trees (taking

either an average or the maximum value) and use this to rate their results [27, 44, 61].



2.3. Field Programmable Gate Arrays 17

However, it is more accurate to �nd the source of each net (the unique pin on each net from

which the signal originates) and to consider the length of the maximum source-to-sink path

in the tree (either the average or maximum value over all nets). This second metric is said

to be performance driven, and is also frequently measured in the literature [42, 65, 76]. In

this dissertation, we consider both tree-length and source-to-sink path length, and rate our

tools with these metrics as appropriate.

2.3.2 Improvement of Speed and Size

As has already been emphasized, while FPGAs can be cost-e�ective they do not measure up

to other layout styles with respect to size and speed. The designer cannot e�ciently pack

cells together, and the programmable hardware takes up space and introduces propagation

delay. As a result, researchers have proposed numerous improvements, and are continuously

experimenting with new modi�cations to improve the architecture [20, 100].

One option for improving size is to modify the structure of the logic blocks. By increasing

the number of inputs per logic block, we increase both the size and functionality of the

blocks, hence decreasing the number of blocks required. This trade o� has been examined

and experimented with, and it has been found that a block with four inputs provides a good

balance [79, 90].

Other studies have looked at the problems of modifying the structures of switch blocks

[30, 49, 78, 94]. Decreasing the exibility of each switch block by reducing the number of

options for connecting channel wires will decrease its size. But it will also decrease the

routing exibility of the FPGA by making it much more di�cult to route a net in a given

channel-width, generally resulting in a given circuit requiring a larger chip. This implies a

limit to the reductions in size that can be made in this manner, as there will be a point at

which the bene�ts of further reductions in size will be outweighed by the costs of further

decreases in switch block exibility.

In terms of speed, \long wires" are frequently provided { bypassing switch blocks, thus
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eliminating the induced propagation delay. Others have proposed \hard-wiring" sets of

logic blocks together, thus eliminating the need for switch blocks within these sets [32, 42].

The concept of a hierarchical FPGA has been proposed to eliminate the need for switch

blocks when moving between sections of the chip [1]. All of these proposals help improve

performance { but at the cost of raising the automation complexity by a substantial degree.

In the spirit of these proposals, we have developed an architectural variation with the

aim of improving both size and speed without raising the design complexity or decreasing

exibility by any signi�cant degree. In Chapter 3 we discuss our idea of a three dimen-

sional FPGA, explaining the concept and providing a theoretical justi�cation as to why

this variation is worthwhile.



3

Three-Dimensional Field Programmable Gate

Arrays

While the improvements discussed in Section 2.3 modify speci�c parts of the FPGA archi-

tecture, here we look at a more general approach to improving the performance and logic

density of FPGAs. Instead of changing any one part of the FPGA, we propose changing the

layout of the logic blocks. By con�guring the architecture as a three-dimensional structure,

we can obtain a signi�cant improvement in performance and logic density without sacri�c-

ing design complexity or exibility. While we were the �rst to propose the idea [4, 5], a

number of investigations have expanded upon on our results [60, 63, 68, 87, 107]. These

investigators have all concentrated on the physical challenges of constructing such a device,

whereas we are concerned with the challenges of mapping circuits to the proposed model

and the advantages of doing so.

In this chapter we propose and such a structure and argue for its use. Section 3.1

outlines the model of the new architecture, and Section 3.2 argues that the construction of

such a chip is a feasible goal. In Section 3.3 we present a theoretical justi�cation for the

proposed architecture. We leave the experimental justi�cation to Chapter 8.

19
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3.1 Physical Description

Recalling the symmetric-structure of an FPGA as diagramed in Figure 2.3, it is easy to

generalize the concept to the third dimension. By stacking several of these FPGAs and

providing connections between vertically adjacent switch blocks, as shown in Figure 3.1,

we obtain a three-dimensional architecture. Conceptually, the generalized switch-block

con�guration is such that each interior block has an upper and lower neighbor in addition

to the standard four planar neighbors. The conceptual generalization is depicted in Figure

3.2.

Layers

Vertical Connections

Figure 3.1: Stacking three FPGAs to form a three layer 3D-FPGA

Certain component structures of the 3D-FPGA require modi�cation, while others remain

the same as in the 2D architecture. Logic block structure is not changed; each pin on the

logic block still links the logic block to a connection block within the same level. Similarly,

the pin and connection block structures stay the same. However, the switch block structure

must allow for vertical connections. The channels of a 3D-FPGA can be classi�ed into

two categories: planar channels and vertical channels. Planar channels run between switch

blocks and connection blocks within the plane, as they do in standard FPGAs. Vertical

channels run between vertically adjacent switch blocks.
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Connections
    Vertical 

Connections
    Planar

Switch
Blocks

Figure 3.2: Conceptual model of the 3D-FPGA switch block con�guration

In modeling the 3D-FPGA, a number of details must be addressed. For example, 2D-

FPGAs are normally built with a uniform channel width. However, there is no reason to

assume that the vertical channels of a 3D-FPGA must have the same channel width as the

planar channels. Nor is it a given that every two vertically adjacent switch blocks must

have a vertical channel between them. If the construction cost of a vertical interconnection

is high, it may be worth providing fewer of them.

The structure of the switch block must also be considered. The switch block of a 2D-

FPGA does not always provide the option of connecting any arbitrary set of incident channel

wires, but only of certain subsets. This condition is still the case in the 3D architecture.

Restricting the exibility of the switch blocks increases the complexity of mapping circuits

to the FPGA and decreases the exibility of the structure. This has led to investigations of

the proper balance between switch block size and routing exibility for the 2D architecture

[30, 94]. This research needs to be generalized to the 3D architecture.
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3.2 Construction

Although this dissertation is primarily concerned with the theoretical advantages of the

proposed architecture, it would be incomplete without consideration of the physical prob-

lems in its construction. There would be minimal interest in this discussion if construction

of a 3D-FPGA is infeasible. While we argue below that a 3D FPGA can be built, this is not

immediately obvious. Heat dissipation can be a problem, as the surface-to-volume ratio is

greatly diminished. Similarly, vertical interconnections are currently di�cult to implement.

Fortunately, the 3D-FPGA is not the �rst three-dimensional chip architecture to be

proposed. Multi-chip modules, or MCMs, have been successfully implemented in a three-

dimensional version known as an MVM-V [25]. Researchers have dealt with the same issues

and constructed MVM-V devices.

MCM-Vs have been used to implement a 3D-FPGA. This was done at the University of

She�eld in the TriMorph project in 1996. While we are unaware of any literature that has

been formally published on TriMorph, results were promising. However, TriMorph deviated

from our model in one signi�cant way: logic blocks could only be placed on the surface of

the structure, as shown in Figure 3.3. While this provides some advantages over the 2D

architecture, it does not compete with our proposal.

Our initial proposal of a 3D-FPGA motivated research at Northeastern University [60,

63, 68], where researchers succeeded in constructing a 3D-FPGA in line with our model.

Instead of using the symmetric architecture, they used a structure known as the Triptych

architecture [16, 47]. They produced an actual 3D chip with interior logic blocks which

acts much the same way as our model. The stacking of chips was done using a technology

developed at their lab [107], allowing them to place vertical metal interconnects, known as

interlayer vias, anywhere on the chip. Technically, vias do not run vertically between switch

blocks; instead switch blocks exist as planar entities with vertical connections attached to

selected output pins, as depicted in Figure 3.4. This is an unimportant distinction, and the

switch block con�guration can easily be modeled as we have proposed.
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Figure 3.3: A TriMorph FPGA { all logic components are on the surface.

Channel Segment

       Standard

Vertical

   Vias

Figure 3.4: A TriMorph switch block. The switch block is identical to a 2D switch
block, but several pins connect to interlayer vias { thus providing the vertical intercon-
nections.

The research done at Northeastern University was motivated by our research, but does

not overlap our work in any signi�cant way. They have provided the answer to the one

crucial question we were not equipped to address: Can 3D-FPGAs be created? While they

did address the problems of mapping circuits to the architecture, it was an issue of only

secondary concern for them, with no competitive results.

We can now continue with our motivation of the proposed architecture and the related

design automation problems, knowing that 3D-FPGAs are a feasible technology.
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3.3 Improvements over Standard FPGAs

While we have argued that the construction of a 3D-FPGA is feasible, we have not yet

discussed the advantages of the proposed architecture. As discussed in Section 2.3, the

major drawback to standard FPGAs is their speed and logic density. The technology that

makes them exible slows them down and consumes space that could otherwise be used

for logic resources. By moving to the three dimensional architecture we can improve both

performance and logic density, without raising the design complexity or losing any of the

exibility that make FPGAs worthwhile.

3.3.1 Speed

FPGAs su�er from major interconnect delay. In addition to the standard delay due to wire

lengths, the technology that allows switch blocks their exibility also slows down signals

that transverse the structure. In total, interconnect delay can account for 70% of the clock

cycle period [21, 99]. One way to deal with the delay is to place related pins closer together

{ thus reducing the connection distance. The restriction of placement to discrete points on

the plane clearly limits our ability to do this. By allowing use of the third dimension, we

increase our exibility to minimize connection lengths.

Suppose we have a circuit requiring b logic blocks, and we have the option of con�guring

them in two or three dimensions, as depicted in Figure 3.5. Consider the average distance

between points. With the two dimensional con�guration, the average distance between

any two points is 2
3

p
b, while in the three-dimensional con�guration the distance is 3

p
b. In

practice, for b � 12, the average distance between points is shorter in the three-dimensional

con�guration. An average shorter distance should lead to expected shorter net lengths,

which means less interconnection delay. As any real circuit is unlikely to have a value of b

less than 100, 3D-FPGAs are superior to 2D-FPGAs in this respect.
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Figure 3.5: 2D vs 3D con�guration of 64 blocks, with a path of average length high-
lighted for each structure.

3.3.2 Logic Density

The technology that allows FPGAs their exibility comes at a second cost: size. By in-

corporating the potential for many di�erent connections, we force an increase in the size of

switch blocks { taking up area that could otherwise have been used for logic. Thus, there is

less logic per chip, which means circuits require a larger area. By making use of the third

dimension, we can reclaim some of this space.

Recall our goal of minimizing congestion. As discussed in Section 2.3, FPGAs are

prefabricated with a uniform channel width. The smaller the width of the channel, the

smaller the chip will be. When mapping a circuit to the architecture, we need to minimize

the congestion, thus minimizing the required channel width. In the standard con�guration,

the limitation of four channels incident to any switch block restricts our ability to do this. In

the three-dimensional architecture we increase this number, and thus increase our options.

The average number of shortest paths between points increases, giving us more ability to

route around congested areas without sacri�cing net-length. As a result, we are able to
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decrease congestion, thus reducing required channel width. Further, the amount of area

dedicated to routing can be decreased, thus improving the logic density.

3.3.3 Other Advantages

While improved performance and logic density are the primary advantages of the 3D-FPGA

architecture, it is worth noting other advantages of the structure. Unlike many of the pro-

posed variations discussed in Section 2.3, the architecture does not increase design com-

plexity or decrease exibility. For example, the proposed addition of long wires to bypass

switch blocks does improve the performance of some circuits, but it also increases the design

complexity [32, 42]. The hierarchical FPGAs are faster but much more restrictive { some

circuits cannot be mapped to them in an e�cient way [1]. 3D-FPGAs are free from both

problems; the mapping problem is no more complex than that of a standard FPGA, nor

should any circuit su�er from being mapped to the 3D architecture.

3D-FPGAs reduce the need to partition large circuits between multiple chips, which

results in gains in both speed and power consumption [60]. With the standard architecture,

it is generally cost-e�ective to split large circuits up and provide inter-chip connections.

However, these connections introduce huge delay, and it is a di�cult (NP-complete) problem

to partition the circuit in such a way as to minimize the number of connections required. It

was shown at Northeastern that by moving to the multi-layered architecture, we alleviate

this problem [60, 63]. As interlayer connections are considerably faster than inter-chip

connections, we get considerable speedup. In addition, the reduced number of I/O pins

and the long planar interconnections between FPGAs result in signi�cantly less power

consumption.

3.4 Further Remarks Concerning 3D-FPGAs

In this chapter, we proposed a model for the 3D-FPGA, showed that the concept is feasible,

and discussed the potential advantages of the architecture. However, the discussion was
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only speculative { it is still left to show that these advantages hold in practice. To do this,

we must produce actual circuit mappings for the proposed architecture. Thus we must

create actual design automation tools for 3D-FPGAs.

In the following chapter, we temporarily leave the discussion of 3D-FPGAs and move

to the physical design of the standard FPGA architecture. In Chapter 5 we present a new

design automation tool. For purposes of explanation and quality comparisons these tools

are discussed in terms of the standard FPGA architecture. However, the tools can be easily

generalized to the 3D architecture; all implementations are for the 3D-FPGA architecture

with a 2D-FPGA treated as a degenerate case. In Chapter 8 we show the e�ciency of

applying our tools to the new structure and show that in practice our assertions do hold:

3D-FPGAs are superior to the standard architecture.



4

Design Automation for FPGAs

We have explained the basic structure of the standard and three-dimensional FPGA, and

can now discuss our major concern: electronic design automation. How do we automate

the process of implementing the circuit on an FPGA? In the following chapter we �rst

discuss each of the traditional phases in the automation process, and the relevant work

that has been done in the area. In Section 4.3 we discuss an inherent aw in the standard

methodology, and an alternative method to correct the problem.

Note that for ease of explanation, all concepts in this chapter are explained in terms of

the standard symmetric FGPA architecture. The 3D-FGPA architecture is, for the moment,

ignored. However, the concepts presented here easily generalize to the 3D architecture, as

is discussed in Chapter 8.

4.1 Overview

Given a boolean description of some function, there are several tasks to be performed in

order to implement the function on an FPGA. Logic blocks must be programmed, and pins

on the logic blocks must be reserved for speci�c nets. Signal paths must be designated

to connect nets, while switch blocks and connection blocks must then be programmed to

implement these paths. All of this must be done with our objectives in mind: minimizing

28
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the number of logic blocks, path lengths, and congestion. Computing a quality mapping of

even the smallest circuits is di�cult, and is a task that needs to be automated.

Traditionally, design automation is divided into four phases: technology mapping, place-

ment, global routing and detailed routing [21], as depicted in Figure 4.1. In the technology

mapping phase, we choose the set of functions to be programmed into the logic blocks. In

the placement phase, we map each of these functions to a speci�c logic block on the FPGA.

In the global routing phase we loosely specify each net's connection tree, assigned the net

to channels, but not to exact wire-segments within each channel. In detailed routing we

choose wire-segments with each channel for each net, subject to the restrictions imposed by

the switch blocks.

Specification

Logic Design

Circuit Design

Physical Design

Fabrication

Testing

Partitioning

Placement

Routing

Compaction

Chip

x = a + b c

a

c

b

Figure 4.1: The stages of chip design and electronic design automation [64].

Traditionally each of these steps are performed sequentially: the output of one phase
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becomes the input of the next. We do not believe that this is the best approach, and discuss

an alternative in Section 4.3.

4.2 The Phases of Design Automation

Before we discuss our alternative approach, we need to explain the design automation stages,

and the history of research relating to each stage, in more detail. In this section we present

an in depth discussion of each stage, concentrating on those phases directly relevant to our

research.

4.2.1 Technology Mapping

While the research in this dissertation does not concern the technology mapping phase

directly, it does rely on the results of technology mapping tools. Hence any discussion

would be incomplete without mention of this phase. The �rst serious technology mapping

tool, Chortle, was developed at the University of Toronto in 1990 [40]. Chortle begins

with a directed acyclic graph representation of a boolean network modeling the circuit, and

groups interior nodes (each representing a simple function) such that each grouping can be

implemented on one logic block. It must do this in such a way as to ensure that for each

function group the number of inputs and outputs does not exceed the number of inputs and

outputs allowed on a logic block. Given this constraint the algorithm attempts to minimize

the total number of groups, thus minimizing the number of logic blocks used. Chortle makes

use of a dynamic-programming algorithm, grouping and splitting nodes as needed during a

search of the tree.

Since Chortle a number of more sophisticated algorithms, employing more sophisticated

optimization functions, have been published in the literature [33, 34, 35, 36, 81]. By grouping

functions in such a way as to lend themselves to a more e�cient placement and a better

routing, and allowing the mapping to take advantage of certain aspects of the architecture,

the �nal circuit design can be much improved.
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4.2.2 Placement

As our research deals directly with issues concerning the placement phase, we discuss this

stage of the design automation process in more depth. Upon completion of the technology

mapping phase, we have a list of functions to be mapped to logic blocks and a list of

interconnections. In general terms, the goal is to map these functions to logic blocks in

such a way as to minimize the tree lengths and channel width resulting from the �nal

routing. Part of the di�culty inherent in placement is predicting the quality of the route

that would result from a particular placement without overly complicating the placement

phase.

= Pin for Net 1
= Pin for Net 2

= Pin for Net 3
= Pin for Net 4

1 12

2

3 3

4 45

5

6

67

7

8 89

9

Function Number

Figure 4.2: Two possible placements for a set of nine function-groupings on a 3x3
FPGA.

In Figure 4.2 we see two possible placements on a small FPGA. The �rst placement

depicts a mapping of the nine functions to logic blocks without regard to the optimization

criteria. Note that the mapping of a function to a block determines exactly which pins on

that block must be used for which nets. In the second placement we have re-mapped the
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functions in such a way as to minimize the lengths of the connecting trees. But in doing so,

we made no attempt to minimize the number of nets per channel that will result from the

�nal routing. In fact, our assignment does not even assure that the routings are possible

given the switch block constraints.

Traditionally, placement research has been split into two approaches: local search strate-

gies, such as simulated annealing an genetic algorithms, and partitioning-based placement.

Local search strategies were for a long time considered superior to the partitioning-based

placement. However, with the release of tools such as GORDIAN [56], the partitioning-

based methods became competitive.

The �rst partitioning-based placement tools used the technique of min-cut bisection

[18, 19, 46, 58]. With this technique the chip area is cut into two sections, and the function-

groups partitioned between the two sections in such a way as to minimize the number of

nets split between partitions. The process is then applied recursively to each partition, until

the area is small enough that the placement can be done by some other method, as shown

in Figure 4.3. Dunlop and Kernighan improved this technique with the addition of terminal

propagation [38]. In terminal propagation, virtual terminals are designated for each net

along the border of the partition regions to better reect connections between regions { as

will be detailed in the next section.

Figure 4.3: A recursive min-cut partitioning of a chip area.

These basic min-cut algorithms allow only placement, with routing to be done later.

Suaris and Kedem generalize the min-cut approach to a quadrisection, in which the vertical
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and horizontal cuts of a region are performed simultaneously [91]. Thus the partition is done

with a \two-dimensional" view, allowing for a better placement in the plane. Combining

this technique with terminal propagation, it is also possible to develop a course global route

for each net as the blocks are placed in the quadrants, leading to the basic technique for

simultaneous placement and global routing [92].

The quadrisection technique was generalized to larger grids by Mayrhofer and Lauther

[67], who also introduced the notion of using minimum Steiner trees over the grid to de-

�ne their optimization function. Bapat and Cohoon then developed the technique into a

methodology known as sharp partitioning [12], leading to a full tool for the simultaneous

placement and global routing of standard cell devices. Ganley implemented the method for

FPGAs, leading to the Mondrian tool [7, 43] { the predecessor for the Spi�y tool discussed

in Chapter 5.

While we do not address local search placement strategies directly, we compare the

results of our tools against tools making use of these strategies. Most local search strategies

are based on simulated annealing. One of the original tools for placement was Timberwolf,

which used simulated annealing and a bounding-box metric to generate the placement, as

well as a global route [86]. More recently, Betz and Rose produced VPR, which attempts to

place blocks in such a way as to minimize a function of the bounding boxes of the nets [15],

and is also capable of independently computing a route for the placement it produced. In a

later paper VPR has been further improved, and geared towards timing-driven placement

[66].

4.2.3 Global Routing

In global routing, the goal is to take the placement and compute a general route for each net.

That is, to pick the channels each net will use without choosing the exact wire segments.

The objectives depend on the application. Generally the user wants to optimize over two

criteria. Congestion should be minimized by minimizing the maximum number of nets
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assigned to any one channel. And propagation delay should be minimized by minimizing

the size of the trees. Which of these criteria takes priority depends on the application, and

is sometimes superseded by more specialized criteria, e.g., minimizing the length of certain

critical nets, or minimizing clock skew.

In Figure 4.4, we see a placement on a small FPGA, and two possible global routes of

that placement. Note that both global routes are optimized in terms of tree length, but

the second route induces a channel width of two, while the �rst has no more then one net

assigned to any channel.

There has been debate on whether global routing is a necessary step in the design of

an FPGA [62]. Some tools skip the step [3, 8, 9, 42, 61]. However, there has been a fair

amount published in the literature on global routing. As mentioned in the last section, the

Mondrian tool performs placement and global routing simultaneously. The Maple-opt tool

of Togawa, Sato and Ohtsuki was originally design to perform placement and global routing

simultaneously, and was later expanded to include technology mapping [95, 96, 97, 98].

Other tools work independently on global routing, generally using graph-based techniques

based on standard shortest-path algorithms [14, 15, 27, 29, 93].

4.2.4 Detailed Routing

Once the global router has �nished its job (if used), a detailed router assigns each net to

channel segments within the various channels used by the net. Only one net can be assigned

to a particular wire segment within a given channel. It is here that the structure of the

switch blocks must be considered. As switch blocks are limited in their allowed connections,

it is the detailed router's job to ensure that a net is assigned to wires such that it can be

connected through the switch blocks in a legal manner.

Depending on the quality of the placement and global route, it is possible that the router

will not be able to create a legal route for the circuit. As neither the placement nor global

routing tool typically take switch block structure into account, the tools may assign the nets
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= Pin for Net 1 = Pin for Net 2
= Pin for Net 3

Figure 4.4: A placement on an FPGA of 3x3 logic blocks, and two possible global
routings of that placement. The left routing will require a channel width of two, while
the right a channel width of only one.

in such a way as to be impossible to connect all of them through the switch blocks. This

problem can sometimes be alleviated by increasing the channel width, performing a \rip-up-

and-reroute," or changing the global route of the nets [8, 9]. Frequently the detailed router

is also left to incorporate special characteristics of the architecture, such as long wires, thus

possibly improving on the global routes. So while the primary objective of a detailed router

is to compute a feasible detailed route for each net, it still should optimize congestion and
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net-length within the solution space of legal routings.

In Figure 4.5 we see an example of a global route, and a detailed route computed from

it. Note that if the designer had prioritized channel width over net length in the detailed

routing stage, the largest net could have been rerouted, sacri�cing size to reduce congestion.

Figure 4.5: A global route for some circuit, and a detailed route computed from that
global route.

While it is a goal of our research to perform detailed routing simultaneously with place-

ment and global routing, creating a pure detailed router was beyond the scope of our

research. While there are a number of routers in the literature [23, 24, 101], we used two

routers produced at the University of Virgina: the router developed by Alexander and

Robins [8, 9], and McCulloch's and Cohoon's Upstart routing tool. Each of these are graph

based (hence trivially applicable to 3D-FPGAs as well as the standard architecture), and

work net-by-net. For each net, the router attempts to route the net within its speci�ed

global route, then begins to expand the possible paths if this fails. Details of that expan-

sion vary between the tools.
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4.3 Sequential versus Simultaneous Phases

Traditionally, the four phases are done sequentially; the output of one phase becomes the

input of the next [88]. The reasons behind this boil down to simplicity: it is considerably

more complex to deal with the problems together then it is to solve each independently.

However, as the quality of the result of any stage is directly dependent on the output of

the preceding stages, there is some loss in not allowing the later stages to inuence of the

earlier stages. In this section, we discuss the idea of performing the stages simultaneously,

and review the relevant research.

4.3.1 Motivation

While performing the stages sequentially simpli�es the mapping process as a whole, it

comes at a cost. In splitting the tasks up, we are implicitly relegating certain decisions

to later stages. For example, switch block structure is generally considered only in the

detailed routing phase { thus simplifying the earlier stages. However, as the global routing

stage ignores the constraints imposed by the switch block structure, the global route that

is produced will frequently be infeasible, requiring the detailed router to redo some of the

global router's work. Similarly, placement algorithms generally measure the quality of their

placement based on the spread of the nets { trying to get the pins of each net as close

together as possible. Because the placement metric often does not take channel width

into consideration, the global router will frequently have a more di�cult time minimizing

congestion then it would have with a slightly di�erent placement.

Consider the example in Figure 4.6. Initially we see two possible placements of a given

net { the top placement di�ering by the bottom in that we have switched the lower rows

of blocks. Note that if we are taking only net-lengths into consideration, these placements

are considered equivalent. The length of each connecting tree will remain the same. Thus

the placer has no reason to pick one placement over another.

Next we see a global route for each placement. At this stage, we can see the top route
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Switch Block
  Structure

Detailed RouteGlobal RoutePlacement

Figure 4.6: Two possible placements of equivalent quality, and the global and detailed
routes that follow. Note that the top global route is of lesser quality, and did not lead
to a feasible global route given the structure of the switch block shown below.

is inferior to the bottom { it requires a channel width of two, where the other requires a

channel width of one. The global router will produce a route for the placement it is given;

it does not have the option to choose between these two routes, or to modify the placement.

In a strictly sequential system, the placer can decide which of the placements will be used

without considering channel width. Thus there is no way to guarantee that the superior

placement is used.

Now assume that the switch blocks for the FPGA in question are structured as shown,

with the interior lines designating potential pin connections, and we see that the one place-
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ment cannot be routed. The upper left block does not have the capacity to carry two signals

horizontally. Yet because the placement phase does not consider the switch block structure,

it does not know to avoid that placement. For the same reason the global router cannot

spot the problem. Thus we do not identify the problem until the detailed routing phase,

costing us a signi�cant amount of time without providing any solution other than to start

from scratch.

Clearly it would bene�t the �nal result if constraints such as switch block structure

and objectives such as channel width minimization were addressed in earlier stages. One

approach towards this goal is to perform the stages simultaneously and interactively, so

decision made in the \later" stages can a�ect decision made in the earlier stages without

necessitating the duplication of the earlier stages work.

4.3.2 Work on Simultaneous Phases

The �rst method in which two phases were combined came from the introduction of terminal

propagation [38]. This, coupled with the quadrisection technique [92] and generalized to a

larger grid [67] led to the sharp partitioning as discussed in Section 4.2 [12].

In Figure 4.7 we see a chip area that has been quadrisected, with the pins of a two-

terminal net assigned to quadrants one and three. When we recursively apply the quadri-

section to each quadrant, there is no indication where each of the nodes should be placed

within a quadrant. Hence there is no reason they might not be assigned to opposite ends

of the chip { inducing the worst connection length possible. However, when we assign vir-

tual terminals along the partition lines { each virtual terminal being treated as a node in

every partition it touches { the partition algorithm will be penalized for placing terminals

in partitions not containing the virtual terminals.

Thus we have integrated a portion of the global routing phase with the placement phase.

By assigning the virtual terminals, a part of the global route is developing and is able to

inuence future placement decisions. Bapat and Cohoon re�ned this methodology with



4.3. Sequential versus Simultaneous Phases 40

Net Terminals

Quadrisection

       Initital

Recursive Quadrisection

Virtual Terminals

Figure 4.7: A quadrisection min-cut quadrisection of one net, followed by a possible
partition without terminal propagation, and one in which virtual terminals are assigned.

their introduction of sharp placement [12], shown in Figure 4.8. Here we see how a two-

terminal net might be partitioned within the three-by-three grid. In the second stage we

pick the route the net will take between partitions, thus giving us a coarse global route, and

a selection of virtual nodes to propagate the information to future recursions. In step three

we apply the algorithm recursively, treating virtual nodes as actual nodes. Thus it can be

seen how the assignment of virtual nodes leads to an overall global route.

There have been several other projects with the aim of integrating the phases into

one simultaneous phase. Schlag, Kong and Chen make a �rst attempt with their tool

for routability-driven technology mapping [85], a tool that does not perform the phases
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Figure 4.8: A sharp-partition of one net, followed by the selection of a global route
between partitions and the assignment of virtual nodes, then the algorithm to one level
of recursion.

simultaneously, but does take routing constraints into consideration during the technology

mapping phase. A �rst attempt to actually perform technology mapping and placement

together was proposed by Chen, Tsay, Hwang, Wu and Lin [31]. The Maple tool created

by Togawa, Sato and Ohsuki originally combined placement and global routing, but later

improved on the algorithm by Chen et. al. to combine technology mapping as well in

the tool Maple-opt [96, 97, 98]. Nag and Rutenbar have also published several results for

simultaneous placement and routing [69, 70, 71], as have Nakatake, Sakanushi, Kajitani and

Kawakita [72].

Less has been done with the integration of detailed routing. Frequently global routing
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is not performed, delegating the problems of global routing to the detailed router [3, 8, 9,

61]. The VPR tool of Betz and Rose does explicitly perform the two simultaneously [15].

However, there is no tool in the literature that performs detailed routing and placement

simultaneously. The tool Gambit presented in Chapter 7 is the �rst.

4.4 Summary

We have now explained the problem and objectives of electronic design automation, explored

the relevant work done in the area, and explained our goal: to create a tool that performs

the stages of design automation simultaneously. While complicated in nature, research has

indicated that such tools will lead to considerably better circuits designs then does the

sequential methodology.

In the next chapter we follow up on the work of Bapat, Cohoon and Ganley [12, 7, 43]

to create Spi�y: a tool for the simultaneous placement and routing of three-dimensional

FPGAs.
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Spi�y: A Tool for the Simultaneous Placement

and Global Routing of FPGAs

In this chapter we present Spi�y, a tool for the simultaneous placement and global routing

of FPGAs. Spi�y is also the �rst tool to perform these tasks for 3D-FPGAs. In Section 5.1

we present the necessary background and a brief overview of the methodology. Section 5.2

introduces the concept of a thumbnail { the underlying basis for Spi�y's routing capabilities.

In Section 5.3 we discuss the data structures that contribute to the success of Spi�y, in

Section 5.4 we present the Spi�y algorithm in detail, and in Section 5.5 we give an asymptotic

analysis. We present our experimental results in Section 5.6.

5.1 Overview and Background

In Section 4.3 we outlined the sharp methodology of Bapat and Cohoon, using a recursive

application of sharp partitioning in combination with terminal propagation to simultane-

ously develop a placement and global route [12], which was implemented speci�cally for

FPGAs in Ganley's Mondrian system [43]. Spi�y is based on the Mondrian system, though

the speci�cs have been extended and improved. As a result, Spi�y is a superior tool to

Mondrian, producing superior results in signi�cantly less time.

43
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Like all placement tools, Spi�y begins with the output of the technology mapping stage:

a list of functions which must be mapped to logic blocks, and the list of net interconnections.

The tool's output is a placement and global routing for the circuit. Spi�y employs a divide-

and-conquer algorithm that works by creating an initial placement and loose-global route,

then re�ning the current results in each recursion. Within each recursion of Spi�y there are

three major activities:

� Partitioning: In a given recursion, Spi�y partitions the area being routed into a grid

and assigns logic elements to grid-partitions in such a way as to minimize the \spread"

of the nets, i.e., this distance between terminals of a given net. Each grid-partition

will then serve as a sub-problem in a future recursion. There is no theoretical limit

on the size of the grid, but in practice it is computationally infeasible to use a grid

more re�ned than a 3� 3 partition.

� Route Selection: Having placed each logic element into exactly one partition, Spi�y

now decides the path that the nets will take between partitions. The objective is to

minimize the congestion by spreading the paths evenly across the partitions, while

still using minimum source-to-sink paths for each net.

� Virtual Terminal Assignment: While we have assigned each net a route between

partitions, we do not know exactly where a given route will cross a given partition-

line. Spi�y assigns virtual terminals for each net along these partition lines, specifying

the switch block locations at which the nets will cross the lines. Virtual terminals

enable the algorithm to consider each partition independently.

In our implementation, the recursion terminates when it reaches a partition containing one

logic block, at which point nets are routed around the block to complete the overall routes.

These activities are depicted in Figure 5.1. In Figure 5.1(a) we see an FPGA with a

3 � 3 grid placed on it, each logic element lying in exactly one grid partition, and each

partition line cutting through a series of switch blocks and connection blocks. In Figure
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5.1(b) logic elements have been assigned to partitions. The net shown in the diagram has

been split between six partitions. In Figure 5.1(c) we see the inter-partition route chosen

for that net, and in Figure 5.1(d) the virtual terminals along each partition line have been

chosen. In Figure 5.1(e) we see a solution for each partition, the union of which gives our

overall solution in Figure 5.1(f).

(a) (b) (c)

(d) (e) (f)

Figure 5.1: An illustration of the steps of Spi�y on a single net. (a) The FPGA is
partitioned into a three-by-three grid, with each logic bock lying in exactly one partition,
and each partition-line consisting of a series of switch blocks and connection blocks. (b)
The logic blocks are partitioned between regions. (c) A route between regions is picked
for the net. (d) Switch blocks along the global route are assigned as virtual terminals.
(e) Each partition is solved recursively. (f) The union of the global routes is the �nal
solution for this net.
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In Section 5.4, we discuss the algorithm in more detail. However, preceding that dis-

cussion we �rst examine the graph constructs and data structures that contribute to its

e�ciency.

5.2 Thumbnails

Our graph construct discussion begins with thumbnails. A thumbnail is related to the

concept of a minimum rectilinear Steiner arboresence.

De�nition 5.1 Let G be a rectilinear graph, N be some subset of the nodes of G, and

s 2 N be the node that is designated the source node of N . A minimum rectilinear

Steiner arboresence is a connected subgraph of G containing all nodes in N such that

the source-to-sink path length of the tree is minimized for every path, and the length of the

tree is of minimal length over all such trees.

Note that any nodes outside of N used in the tree are referred to as Steiner points.

Figure 5.2 illustrates a minimum Steiner arboresence for a sample graph and point set.

Using the gray node as the source and the black nodes as sinks, we �rst see three di�erent

minimum Steiner arboresences for the point set { each containing two Steiner points in

addition to its terminal points. Note that the fourth tree, while smaller than the other

three, is not a minimum Steiner arboresence as it does not contain a path of minimal length

for every source/sink pair. The concept of Steiner arboresences has been long studied [50],

and the problem of �nding them was recently shown to be NP-complete [89].

Next, for a partitioned chip we de�ne the partition graph of a chip:

De�nition 5.2 Given a chip area partitioned in a grid pattern, the partition graph of

that chip is the graph containing one node for each partition, with two nodes being adjacent

if and only if the corresponding partitions share a common boundary.

We depict a sample partition graph in Figure 5.3. Note that as the partitions are in a grid

pattern, the partition graph must be rectilinear.
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Figure 5.2: Three minimum Steiner arboresences for a given point set, with the gray
node representing the source. Note that while the fourth graph is smaller, it does not
contain a minimum-length path for every source/sink pair and hence is not a minimum
arboresence.

Graph Partition and
Corresponding Node

Figure 5.3: A three-by-three partition of a graph and its corresponding partition graph.

Having de�ned minimum rectilinear Steiner arboresences and the partition graph, we

can now de�ne the concept of a thumbnail:

De�nition 5.3 Let C be a chip with a partition grid, a placement of a circuit on the chip,

and some net �. Let 	 = (V;E) be the (rectilinear) partition graph of the chip, let V 0 � V

be the set of all nodes such that � has a pin occupying the corresponding partitions, and

let s be the node corresponding to the partition occupied by �'s source pin. A thumbnail

of net � is a selected minimum rectilinear Steiner arboresence of 	 with respect to V 0 and

source node s.
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In Figure 5.4 we see a sample net placement and four possible thumbnails for that net.

Thumbnail evaluations will form the basis of Spi�y. They allow us to model both the spread

of the nets as they are placed in partitions and the route a net takes between partitions.

(a)

(b)

Figure 5.4: A placement of a net and four thumbnails for that placement.

Note that in using Steiner arboresences, we are orienting the tool towards minimizing

source-to-sink paths, thus creating a placement-driven router. If we were interested only in

minimizing net-length, we could instead use minimum Steiner trees, i.e., the smallest tree

connecting a given point set. In the example of Figure 5.2, only the fourth graph would be
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a minimum Steiner tree of the point set. While our experiments are done mostly in terms

of the arboresences, Spi�y is con�gured to handle either model.

5.3 Data Structures

Spi�y was developed in an object-oriented style. In particular, a number of its structures are

built on top of the Standard Template Library [10]. We discuss the data structures necessary

for the representation of our problem, followed by the other data structures needed in the

operation of our algorithm.

5.3.1 FPGA Structural Representation

The FPGA is represented by several persistent objects. These objects are created in the

initialization of the program as speci�ed by the input.

� Chip: A chip is a three-dimensional array of logic elements or blocks. Given a

location, the block at that location can be returned in constant time. Blocks on the

chip may change location in constant time.

� Block: A block is a set of pins partitioned into six directions, or sides, numbered

clockwise around the block. The ith pin of the block can be returned in constant

time, as can the ith pin of a given side, e.g., the 5th pin of the north side. Each

block's location on the chip can also be returned in constant time. Note that a block

can represent a logic block, switch block or connection block of an FPGA; which can

be determined from its location in constant time.

� Pin: A pin exists on exactly one block and has at most one net mapped to it, identi�ed

by the net's index. The location of the pin's block can be found in constant time, as

can the identity of the pin's net. A net can be added to a pin, removed from a pin

or changed on a pin in time logarithmic in the number of pins on the a�ected pin's

block.
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� Net: A net consists of three sets:

Terminal Pins: The set of all logic block pins used by the net. The set can be

returned in time linear in the size of the set. After its initial creation, pins are

not added or removed, though they may move location on the chip in constant

time.

Steiner Pins: The set of all switch block and connection block pins used by the

net. The list can be returned in time linear in its size. Pins may be added or

removed in time logarithmic in the size of the list.

Channels: The set of channels to which the net has been assigned. The list of

channels can be returned in time linear in its size, and channels may be added

or removed in time logarithmic in its size.

In addition, the net contains a source pin, a terminal pin designated by the input,

and a source tree: a directed acyclic graph such that the root represents the source

pin, the set of leaves represents the remainder of the terminal pins, and the interior

nodes represent the Steiner pins on the paths from the source to the terminals. Given

any node of a source tree, the node's parent and set of children may be returned

in constant time, and the node may be moved to any other position in the tree in

constant time.

At the termination of the algorithm, the structure of the source tree directly reects

the global route of its net. If we begin at the source node of a net's source tree and trace

some path to a sink, the switch block pins represented by the source tree's interior nodes

form a path from the source pin to the sink node's terminal pin. The switch block pins are

discarded, but the switch blocks to which they correspond de�ne the global route. We see

this construction depicted in Figure 5.5, with a net on the left and its corresponding source

tree on the right. For simplicity, we have combined all nodes corresponding to the same

switch block.
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Source Pin

a

c

b

a

bc

Steiner Point

Terminal
     Pin

Figure 5.5: The global route of the net, and the corresponding source tree. For sim-
plicity, we have combined all nodes representing pins of the same switch block into one
switch block.

Problem 5.1 Given a chip with blocks, pins and nets initialized as indicated by the input,

rearrange the blocks and create a global route for each net based on this arrangement such

that:

� The maximum number of nets using any one channel is minimized.

� The maximum source-to-sink path length averaged over each net is minimized.

5.3.2 Other Data Structures

While the above data structures are su�cient to solve the problem, additional structures

and classes are necessary for the e�cient performance of the algorithm.

� Chip Portions: A chip portion object records the boundaries of a cubic portion of

the chip. Each chip portion contains the following information:

The boundaries of the portion in each dimension. These are accessible in constant

time.

The source pin of each net for that portion, i.e., the pin where the net enters the

portion, or the source pin of the net if it is in the portion. The pin is accessible
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Global Source Node

Source Node
Chip Portion

Chip Portion
Exit Nodes

Chip Portion Boundries

Figure 5.6: An illustration of an FPGA wit one chip portion boundary highlighted,
and one net that is routed through the portion. The associated object would contain
information de�ning these boundaries with respect to he chip, as well as net net's source
node and exit nodes.

for a given net in constant time, as is the corresponding node in the net's source

tree.

The exit pins of each net, i.e., the pins where the net leaves the portion. Exit pins

di�er from the entrance pins because we are viewing the route as a directed tree,

with the net's global source acting as the root. The list of exit pins is accessible

in time linear in its size.

A sample chip portion is depicted in Figure 5.6. Spi�y is designed to operate on a chip

portion object, thus simplifying recursion. Its initial input will be the chip portion

whose boundaries are comprised of the chip's boundaries. When operating on any

portion, it uses the partition grid to de�ne new sub-portions, placing each of these

in a partition queue (or stack). This when it has completed it task with respect to

one portion, it takes the next portion from the queue, thus emulating a recursion call.

Note that with the queue we are actually performing a breath-�rst search, while a

stack structure is equivalent to a depth-�rst search.
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� Channel Matrix: This object indicates which nets have been mapped to each chan-

nel. The object is implemented as an array of sets. Given two adjacent blocks with

connecting channel � , we can add a net to � or remove a net from � in time logarithmic

in the number of nets currently mapped to �. We can determine the number of nets

mapped to � in constant time.

� Connecting Map: For a given net and any two blocks, the connection map deter-

mines whether the two blocks are connected by the net's global route. This infor-

mation is necessary to prevent loops in the route. It is implemented as a standard

union-�nd structure, with the �nd and union operations taking close to constant

amortized time.

� FPGA Graph: This graph represents the route of each net on the FPGA. Each node

in the graph represents one block in the route of the FPGA. Nodes are adjacent if and

only if the net is routed between the intervening channel in the case of a switch block

and connection block, or on a pin in the case of a logic block and a connection block.

This graph is created at the end of the algorithm, and allows us to prune routes of

unnecessary paths, check for disconnected net routes, and compute statistics such as

tree length.

5.3.3 Steiner Tree Representation

During the course of the algorithm, it becomes necessary to calculate minimum Steiner

arboresences. Because calculating arboresences is an NP-complete problem, we maintain a

list of all possible arboresences for all possible point sets in our grid to retain tractability.

Thus we need an e�cient way to store node sets of the graph and the arboresence structures.

Since the partition graph is never modi�ed, we can create a representation by numbering

each node and each edge. Let v be the number of nodes in the partition graph 	. By

numbering the nodes from 0 to v � 1, we can encode any node set with a binary number
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such that the ith bit is 1 if and only if node i is in the set. Access to the nodes is then

logarithmic in the number of nodes. By numbering the edges, we can specify edge sets {

and subgraphs { in a similar manner. This leads us to our �nal data structures:

� Steiner Sizes: An array of integers such that the ith element is the size of any

minimum Steiner arboresence corresponding to the node set encoded by i.

� Steiner Trees: An array of arrays of arrays of integers such that the jth element

of the ith element is an array of the subgraph encoding of the minimum Steiner

arboresences corresponding to the point set i with node j as the source.

� Incident Edges: An array of integers such that the ith integer is an encoding of the

edges incident to node i.

� Incident Nodes: An array of integer pairs such that the ith pair consists of the two

nodes to which edge i is incident.

The structures are initialized from a pre-computed �le and allow us to do several things:

� Given a point set and a source node, we can compute the size of the minimum Steiner

arboresences for that point set in constant time given that the number of nodes �ts

in a single word. Given the size of our graphs this assumption is valid, and is made

in the following de�nitions as well.

� We can examine all minimum Steiner arboresences of a point set in time linear in

the number of such arboresences and determine the number of such arboresences in

constant time.

� Given a particular arboresence, we can conduct a breadth-�rst or depth-�rst search

on the tree in time linear in its size.

Note that while we have been assuming that we wish to minimize source-sink paths as

discussed in Section 2.3, the structures are exible enough to minimize tree size if that
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metric is favored. In that case, we modify the structures to list all minimal Steiner trees

instead of arboresences.

5.4 The Spi�y Algorithm

We now describe Spi�y in detail. In this section we will present each phase of the algorithm,

and describe our approach to the problems posed by those phases.

5.4.1 Notation and Problem Size

In describing and analyzing the Spi�y algorithm, we will use the following notation:

� n denotes the number of nets for our problem instance.

� b denotes the number of blocks on the chip.

� x, y and z denote the dimensions of the chip.

b = x � y � z.

� p, q and r denote the dimensions of the partition grid.

� 	 = (V;E) denotes the partition graph, where V is the node set (with v = jV j) and
E is the edge set.

v = p � q � r

jEj = x � (y � 1) � z + (x� 1) � y � z + x � y � (z � 1)

� �(V 0; s) denotes the number of minimum rectilinear Steiner arboresences in G on the

point set V 0 � V , with source s 2 V 0.

� �(	) denotes the maximum possible value of �(V 0; s) over all node source / sink pairs

in 	.
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In terms of asymptotic analysis, the size of the partition grid is not considered an aspect

of the problem size. Due to the large number of thumbnails that must be stored on disk,

it is impractical to use grids larger than 9 partitions. Hence we can assume that p, q and r

as constant with respect to the problem size, and perform our analysis in terms of the two

factors which do grow: the number of nets (n) and the number of blocks (b).

5.4.2 Initialization

Initialization of the data structures is a simple task. The arboresence-related data structures

are read directly from a pre-computed �le. The chip, blocks, pins and nets are also read

directly from the input �les produced by a technology mapping tool. Each block object

must be created, each pin object must be created, and each net object must be created with

its proper terminals. In initializing the structures, we create an arbitrary placement. Each

logic element has been assigned to a block, and it is now Spi�y's job to rearrange the block

positions.

We also pre-calculate all partitions to which the algorithm will be applied, de�ne them

each with a chip portion object, and order these as we wish to address them. The �rst

chip portion consists of the entire chip, while the next v portions consist of the v sub-

portions into which the chip is divided. The following v2 portions consist of the next level

of sub-partitions, and so on until partitions of size one are reached, as diagramed in Figure

5.7.

Note that though these chip portions are being pre-calculated (a concession made for

ease of the template smoothing technique introduced in Chapter 6), we transverse them in a

breath-�rst search. As long as each portion is examined after its parent, we are not bound

to a breath-�rst search. We experimented with a depth-�rst search, but the breath-�rst

search gives better results and is more amenable to the template smoothing technique.

When initializing the chip structure, we need to run through the list of blocks once

{ requiring O(b) time. In constricting the net structure, we run through the list of nets,
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(a) (b) (c)

Figure 5.7: The ordering of the chip portions for a 3x3 grid on a 9x9 FPGA. (a)
The �rst partition { the entire chip. (b) The next set of partitions { the �rst level of
recursion. (c) The next 81 partitions, which are the base cases of the recursion.

adding terminals as needed. As adding a terminal to a net requires time logarithmic in the

number of terminals already in the net, the entire process requires a worst-case time bound

of O(n log b), but an average-case time bound of O(n).

Initialization of the arboresence-related data structures depends on the size of the par-

tition graph, but this is not considered part of the input size. Therefore, in terms of an

asymptotic analysis we can consider this to be a constant time operation.

Pre-computing the chip portions is the most asymptotically expensive operation of the

initialization stage. While each portion can be initialized in constant time, the number of

portions increases exponentially with the depth, for a total of
Plogv b

i=1 vi partitions. With

each of these partitions taking constant time, the total time required is vlogv b+1�1
v�1 = O(b).

Thus we have our complexity analysis for the initialization phase:

Complexity Analysis 5.1 The initialization phase of the Spi�y algorithm runs in

O(b) +O(n log b) +O(n)

worse case time and

O(b) +O(n)

average case time.
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5.4.3 Partitioning

5.4.3.1 Problem De�nition

Given the chip portion under consideration and a partition of that portion, our �rst objective

is to rearrange the blocks within the portion in order to group the pins of any net within a

minimal number of partitions, thus keeping the interconnect distance of the net small. It is

not always possible to do this; some nets must be split. We prefer to keep these split nets

in adjacent partitions when possible. We illustrate this circumstance in Figure 5.8, where

an arbitrary placement of two nets is shown, and two possible block rearrangements. While

both placements minimize the number of nets that is split, the right placement places the

split net in adjacent partitions.

Figure 5.8: An initial placement of two nets, and two possible rearrangements. The
left picture is superior to the initial placement because the nets are grouped together
as much as possible. The right picture is even better because it keeps the split net in
adjacent partitions.

It is at this point that we use the thumbnails de�ned in Section 5.2. Consider the
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thumbnails in terms of our placement goals. If a net can be placed within one partition,

its only thumbnail has a length of zero. If it must be split, then the closer its assigned

partitions are, the smaller its thumbnails will be. Thus thumbnails can be used to model

the quality of our placement and formalize our partition problem.

Problem 5.2 Given a portion of chip with a gird partition and a set of logic blocks in the

portion, the objective of the partition problem is to assign, or rearrange, the logic blocks

to partitions such that the sum of the thumbnail lengths over all the nets is minimized.

Consider again Figure 5.8. Calculating the thumbnail sizes for each placement is

straightforward. In the �rst, each net has a thumbnail size of three, for a total score of

six. In the lower left placement, the split net still has a thumbnail size of three, while the

other net has a size of zero, for a total score of three. In the third placement, the split

net has been reduced to its minimum possible size, 1, while the other net remains 0. This

placement has a total score of 1 { an optimal partition score for this example.

Finding an optimal placement is NP-complete [45]. Even with the Steiner Tree structure

allowing us to �nd the size of the thumbnail in constant time, we cannot �nd the optimal

solution for this problem in polynomial time (unless P = NP ). Thus we use a probabilistic

search method to �nd a good solution: simulated annealing.

5.4.3.2 Problem Solution

Simulated annealing, First introduced by Kirkpatrick, Galatt and Vecci [55], is a probabilis-

tic search method modeled on the annealing of crystals. The algorithm works by starting

with an arbitrary solution and randomly searching the neighborhood for improved varia-

tions. An initial \temperature" is computed, dictating the probability that the algorithm

will accept a solution inferior in quality to the solution currently under consideration. (A

better solution is always accepted.) As the temperature is decreased over the course of the

algorithm, the probability of accepting inferior solutions decreases until the algorithm con-

verges to a stable answer. Thus the algorithm searches for local optima, but also hill-climbs
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Let S be a random solution.

Randomly sample b2 di�erent solutions.

Set t to the standard deviation of the sampled scores.

Let SB be the set of those solutions.

While the �rst stopping criterion is not met:

Repeat until second stopping criterion is met:

Choose a random neighbor S0 of S.

Let � = �(S0)� �(S).

If (� < 0) or (Rand(0; 1) < e��=t)

S  S0

If (�(S) < �(SB))

SB  S

Decrease t by a �xed percentage

Figure 5.9: The simulated annealing algorithm for the partition phase. The function
Rand(0,1) returns a random value between 0 and 1, and �(S) returns the score of
solution S { the sum of the thumbnails.

in order to avoid being trapped in any one local optimum. As the temperature decreases

the amount of hill-climbing tends to decrease.

The idea behind simulated annealing is based on the concept of the neighborhood of a

solution. Given a solution S , the neighborhood of S, denoted �(S) , is the set of solutions

that can be reached from S by a single move. For our problem, a move consists of the

swapping of two logic blocks in di�erent regions. Swapping the blocks can be done in

constant time, and calculating the new score requires time linear in the number of nets

mapped to the blocks being switched. As the standard architecture allows no more then

eight nets per logic block, this is a constant time operation.
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In Figure 5.9 we see the basic simulated annealing algorithm (though the two loop-

halting criteria must still be addressed). The number of the iterations of the inner loop

is a function of the number of solutions the algorithm has tried or accepted. It will stop

when O((b+n)2) solutions have been tried or O(n+ b) solutions have been accepted during

the loop. The outer loop watches for solution convergence, halting when no signi�cant

improvement occurs for a pre-speci�ed number of iterations.

5.4.3.3 Asymptotic Analysis

Given the probabilistic nature of the simulated annealing technique, it is di�cult to give a

precise run-time bound on the algorithm. However, we can derive a loose worst-case bound.

The initialization of the algorithm is simple: we require O(b3) time to compute the

initial temperature. Within the inner loop there are three operations: switching two logic

blocks, calculating the new score, and recording the new solution if it is the best seen so

far. As any technology has a constant number of pins per logic blocks, we can take that

number as a constant. Therefore these �rst two operations require constant time, and the

third requires O(b) time. Thus one iteration of the inner loop requires O(b) time. The

inner is executed until there have been O(n+ b) solutions accepted or O((n+ b)2) solutions

examined, leading to a worst case of O((n+b)2) iterations. Hence one iteration of the outer

loop requires O(b3 + bn2) time in the worst case.

The outer loop is more di�cult to optimize, as it does not halt at any pre-speci�ed time.

Instead, it tends to halt when the temperature decreases to a su�ciently small level. The

initial temperature is based on the standard deviation of a random sampling of solution-

space members. Given a partition graph of size v, no net can have a thumbnail of size

greater than v � 1. Hence the largest possible score of a solution is (v � 1)n, while the

smallest is 0. Thus the maximum standard deviation, which the maximum possible starting

temperature, is � = 1
2n(v � 1) = O(nv).

In every iteration of the outside loop the temperature is reduced by a speci�ed percent,
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until the probability of accepting poorer quality solutions is su�ciently small, which will

eventually leave the algorithm in a local optima. The probability of accepting a new solution

of lesser quality is e
�d

t , where d is the di�erence in solution quality { hence d � 1. Thus

for any given t, the probability of regressing to any poorer solution is at most e
�1
t . Assume

we begin at temperature ti , we choose to halt when this probability is no greater than

some �xed value !0 , and assume the temperature is decreasing to some �xed percentage c

every iteration (0 < c < 1). Thus on the kth iteration the temperature will be tic
k, and the

probability of regression will be e
� 1

tic
k . In the worst case, ti = O(nv), and we will require

O(log nv) iteration to reach the cuto� probability !0.

Complexity Analysis 5.2 The worst case run-time of the Spi�y partition stage is

O(b3) +O((b3 + bn2 + b3) log nv):

Note that while this is the tightest bound we can compute, it is still a very-loose worst

case bound, with an average case bound that is likely to be much smaller.

5.4.4 Route Selection

Once the blocks have been placed in partitions, we must consider the nets that have been

split between partitions and choose inter-partition routes for them. Here the exact con�g-

uration of the thumbnails becomes important.

5.4.4.1 Problem De�nition

Given a placement of the blocks, we must pick an inter-partition route for each split net

such that:

� Each source-to-sink path of the net is minimized.

� No one region is over-congested because a disproportionately large number of nets

cross over one boundary.
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The �rst objective is easily modeled with thumbnails as a thumbnail of the net contains the

shortest source-to-sink paths possible for the net. Hence we need to pick one thumbnail for

each net, which could be done in O(n) time except for the second condition.

Assume we assign each net � a thumbnail, denoted �(�) , and from this assignment we

create the congestion vector � such that

�[e] = jf� : e 2 �(�)gj:

In other words, �[e] counts the number of times edge e is used. To satisfy the second

condition, we try to keep the values of �[e] roughly equal. To do this, we want to minimize

their variance

�2� =

P
e2E(b[e]� b)2

jEj � 1
;

where E is the set of edges in the partition graph and � is the average of the elements of

�. From this, we can formally de�ne our problem:

Problem 5.3 Given a placement on a partitioned chip, for each net � choose a thumbnail

�(�) such that the variance of the corresponding congestion vector is minimized.

5.4.4.2 Problem Solution

If the number of partitions v is considered to be parameter of the problem, the problem

would is than NP-complete [57, 75]. However, as we are computationally con�ned to using

small partition graphs, we can consider v and jEj to be constant. Given this, the problem

can be solved in polynomial time by a dynamic programming algorithm, but this algorithm

requires O(2jEjnjEj+1) [43]. As we are dealing with values of jEj of no less than 12, this is

an O(n13) algorithm, which unacceptable in practice.

As the exact algorithm is too slow, we use a �rst-�t greedy heuristic to compute a good

solution that works in two stages:

1. Sort the nets according to the number of di�erent thumbnails each has available to it.
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2. Consider the nets in sorted order, and for each net pick the template that minimizes

the congestion value for the partial-solution developed to that point.

Therefore we �rst route those nets which have few choices and save other nets to compensate

for the less avoidable congestion caused earlier in the algorithm.

5.4.4.3 Asymptotic Analysis

We begin by sorting the nets by the number of thumbnails that are available to each. This

number that is bounded by the constant �(G), so we can use a simple bucket sort with an

O(n) bound. Following this, we once again perform at most �(G) constant operations on

each net.

Complexity Analysis 5.3 The worst-case and average-case run time of the route selec-

tion stage of the algorithm is O(n).

5.4.5 Virtual Terminal Assignment

At this point we have partitioned each net and assigned each an inter-partition route. For

each net, we must assign a virtual terminal along any partition-lines the net's routes cross

without overloading any switch blocks. Once this is done, each partition can be considered

independently, and the union of the solutions result in a full global route.

5.4.5.1 Problem De�nition

For any edge e in the partition graph, let N(e) be the set of all nets that use a thumbnail

contain edge e, and let S(e) be the set of all switch blocks on the edges of the partitions

corresponding to the two nodes incident to e. In assigning virtual nodes we are mapping

each element of N(e) to an element of S(e) in order to:

1. Minimize the maximum number of nets assigned to any one switch block.
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2. Minimize the sum of the distances of each net from the nearest switch blocks to which

they are assigned.

The �rst of these goals, which we prioritize, can be formulated by the requirement to

minimize maxs2S(e) jf� 2 N(e) : � is mapped to sgj. The second objective requires a

distance function � : (N(e) � S(e)) ! IR such that �(�; s) is the sum of the distances from

s to the nearest terminal of � on each side of the partition line.

Having de�ned these, we can now formulate the problem:

Problem 5.4 Given a placement of each net and a thumbnail assignment for each net, �nd

a mapping Me : N(e)! S(e) for each edge e in the partition graph such that the value:

n � c �max
e2E
f max
s2S(e)

fjf� 2 N(e) : Me(�) = sgjgg +
X
e2E

X

�2N(e)

�(�;Me(�))

where c is some number larger than twice the size of the largest path on the chip.

The �rst part of the function reects the largest number of nets assigned to any one switch

block. The second term reects the distance of the switch block to each net terminal. The

�rst sum is multiplied by n � k so that it will dominate the second term, thus prioritizing

width over distance.

5.4.5.2 Problem Solution

It is simple to determine the optimal value of the �rst term of the function. Given an edge

e, the pigeon hole principle tells us that we must assign at least dN(e)
S(e) e nets to some switch

block in S(e). Nor do we ever have to assign more than that number of nets to any switch

block. So the optimal value of maxe2Efmaxs2S(e)fjfn 2 N(e) : Me(n) = sgjgg is equal to
maxe2EdN(e)

S(e) e. We can easily compute this number, which we denoted � .

We solve the remainder of the problem by translating it into a minimum-cost perfect

matching problem, �rst solved by Hopcraft and Karp [48]. Though this problem could be

solved for the entire chip at once, by using the � value and solving it edge-by-edge, we
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can compute a more accurate � function for the later edges that is updated to reect the

mappings made for the earlier edges.

For each edge e, we create a complete bipartite graph as follows. For each element in

N(e) we create a node. These nodes together form the �rst partition, which has size jN(e)j.
For each element in S(e) we create � nodes, forming the second partition of nodes, which

has size jS(e)j�. Then for every net n 2 N(e) and every switch block s 2 S(e), we add an

edge between n's node and each of s's node with weight �(n; s). Following this construction,

we use the Hopcraft/Karp algorithm, as encoded by Saltzman [82], to pick exactly one edge

adjacent to each net-node such that the edge-weights are minimized. Thus we have induced

a mapping optimizing the objective function.

5.4.5.3 Problem Analysis

The Hopcraft algorithm, which runs in O(jN(e)j 52 ) time, must be run for each edge e. For

each edge we must create the � function, which requires O( bvS(b)) time to check each block

in each partition against each switch block. In the worst case, jN(e)j � n and S(b) � b.

Complexity Analysis 5.4 The virtual-node assignment phase has a worst-case runtime

of O(b2 + n
5
2 ).

5.4.6 Source Computation

The last task before the recursion is to update the source tree for each net with respect to

the new partitions. Recall from Section 5.3 that each net contains a source tree, de�ning

the paths from its source to it sinks. As we have now added new pins to each net, we need

to insert them into the source trees. Further, we have created v new partitions, each of

which needs to be provided with a list of each net's source and exits with respect to the

portion in question.

The solution to this is straightforward. However, it requires the support of the provided

data structures to perform e�ciently. As the chip portion to which we have been applying
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the algorithm has each node's source and sink pins recorded, we can perform this operation

in constant time for each net. For a given net, we select the source node for that net and

begin a search of the net's global routing tree. The tree indicates which portion lines are

now crossed, and which switch blocks have been selected. We can create and add the nodes

into the source tree in constant time, while also updating each partition. The search of the

tree requires O(v) time, hence the �nal stage of our analysis:

Complexity Analysis 5.5 Updating the source-trees and chip portion objects requires O(n)

time.

Having �nished this step, we now have enough information for each new portion to treat

it independently, and know that the union of the solutions will provide a global-route.

5.4.7 Base Case

The base case consists of a chip portion containing exactly one logic block. In such a case,

the portion will contain that logic block, the four neighboring connection blocks, and the

four neighboring switch blocks. This con�guration is shown in Figure 5.10, with the graph

representation of the layout which is used to formulate our problem.

5.4.7.1 Problem De�nition

When we reach a portion containing exactly one switch block, that block may contain nets

mapped to its logic pins. Further, the four switch blocks surrounding the logic block may

serve as virtual terminals for some nets. For each net, the set of blocks assigned to that net

must be connected. In Figure 5.11 we see the selection of nodes for some net, and three

possible ways to connect the graph. Each of these is a potential layout-graph, and denote

In terms of minimizing net length, the �rst route is clearly the best. However, we need to

select a routing-graph for each net without over-using any channel. As minimizing channel

width takes priority over minimizing the route length, the presence of other nets could force

the use of one of the longer routes.



5.4. The Spi�y Algorithm 68

Figure 5.10: The layout of a base-case chip portion and a graph representation of that
layout. In the left diagram we see the blocks surrounding the logic block in question. In
the right diagram we see a graph representation of the block structure. Each node rep-
resents one block, and two nodes are adjacent if the corresponding blocks are connected
by a wire.

Figure 5.11: A sample base-case layout graph, and three possible routings for the
graph.

Problem 5.5 Given the placement of nets in a single chip portion, assign each net � a

layout-graph �(�) such that:

1. The value maxe jf� : �(�) uses edge egj is minimized.

2. The total number of edges is minimized.
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With (1) taking priority over (2).

5.4.7.2 Problem Solution

The problem is NP-complete [41, 43]. However, as this problem is the base case of the

recursion, the problem instance is small. We know that b = 1, and we can reasonably

assume the number of nets will be a small percentage of the original number. Thus we have

chosen to use an exact algorithm. We use the integer programming technique formulated

by Ganley [43] to get the best possible solution, using the tool LP SOLVE tool produced

by Berkelaar [13], and have found that in practice the algorithm works quickly.

5.4.7.3 Problem Analysis

A meaningful analysis of the problem solution for the base-case is quite di�cult. Because

we are using integer programming, we know the worst case run-time is exponential in n, but

we do not have a bound on n. While there is no theoretical reason the base case portion

could not contain all nets on the chip, in practice the number of nets it does contain is

always a very small percentage of the original number.

5.5 Asymptotic Analysis of the Spi�y Algorithm

We have now presented the six stages to the Spi�y algorithm, each with the tightest analysis

known:

1. Initialization: O(b) +O(n log b) +O(n).

2. Partitioning: O(b3) +O((b3 + bn2) log n):

3. Route Selection: O(n).

4. Virtual Terminal Assignment: O(b2 + n
5
2 ):
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5. Source-Tree Update: O(n).

6. Base-Case: f(n) (Unknown) .

Thus we can calculate the time complexity of the recursion phase of Spi�y:

T (n; b) = vT (
b

v
; n) +O((bn2 + nb2 + b3) log nv +�(G) +

1

v
b2 +O(n

5
2 )

= bf(n) +O(bn2 log b log vn+
bv2(b2 � 1) log nv

(v2 � 1)
+

�(G)(b� 1) + b(bv � v) + n
5
2

v � 1
)

Complexity Analysis 5.6 Taking the size of the partition graph as a constant and the

net-size and chip-sizes as input parameters, the Spi�y Algorithm has a worst-case runtime

bound of:

O(bf(n) + (bn2 log b+ nb2 + b3) log n+ b2 + n
5
2 b)

where f(n) is the runtime bound of the base-case.

In addition to the integer programming technique used for the base-case, Ganley also

presents a O(n3) heuristic. If we were to use this, we would then be able to bound Spi�y at

O(bn3+ b3 log n+ bn2 log b log n). However, linear programming has proved to work quickly,

and also produces solutions of considerably higher quality.

We reiterate that this a very loose worst-case bound. While the best bound we could

prove for the simulated annealing was O(b3+ bn2 logn), an average-case or amortized anal-

ysis would likely be much better { leading to a much better bound over-all. Further, we

have assumed that the full number of nets will be considered in each recursion, while in

truth the number under consideration will be considerably reduced in each recursion. Thus

the average case bound should be signi�cantly lower than the worst case bound presented

here.
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5.6 Experimental Results

Now that we have explained the Spi�y algorithm, we show that the implementation of

Spi�y produces quality results. In this section we discuss the results of using Spi�y on

standard benchmarks, and compare them against the results of other tools. As there are

no public results for 3D-FPGAs, we limit ourselves to benchmarks for the 2D architecture

to demonstrate the quality of our tool.

5.6.1 Benchmarks

For our comparisons we have used a set of benchmarks created at the University of Toronto

that have been the basis for the testing of a number of tools [3, 6, 7, 8, 9, 14, 15, 21, 23, 24,

40, 43, 53, 62, 66, 78]. They are designed for the two 2D-FPGA symmetric architectures,

the Xilinx 3000 and 4000. The characteristics of each benchmark can be seen in Table 5.1.

Circuit FPGA Number

Name Size of Nets

busc 13� 12 151

dma 18� 16 213

bnre 22� 21 352

dfsm 23� 22 420

z03 27� 26 608

9symml 11� 10 79

term1 10� 9 88

apex7 12� 10 115

alu2 15� 13 153

too large 14� 14 186

example2 14� 12 205

vda 17� 16 225

alu4 19� 17 255

k2 22� 20 404

Table 5.1: Statistics on the benchmark circuits used to test Spi�y. The �rst �ve
benchmarks were originally designed for the Xilinx 3000-series circuits and the last nine
for the 4000-series circuits.
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5.6.2 Detailed Routing

When testing placement tool or global routing tool on an FPGA, the quality of the results

can only be judged after the detailed routing has been performed. Hence we need a detailed

router to process the output of Spi�y. In the course of our testing, we made use of two

such tools: one created by Alexander and Robins [8, 9], and the Upstart tool created by

McCulloch and Cohoon at the University of Virginia. Each router is graph based, working

by sequentially routing the nets along the global routes, and recomputing those routes when

necessary.

5.6.3 Spi�y vs Mondrian

In rating the quality of Spi�y, compare it to its predecessor, Mondrain. This is a natural

comparison, as Mondrian is based on the same principles as Spi�y, was a state-of-the-art tool

at the time of its implementation, and still produces some of the best results in the literature.

In the next two sections we discuss the di�erences between Spi�y and Mondrian, and present

the experimental results from running each tool on a set of standard benchmarks.

5.6.3.1 Di�erences

Though Spi�y is based on the same general principles as the Mondrian algorithm of Cohoon

and Ganley [43], there are signi�cant technical di�erences that make Spi�y a more e�cient,

e�ective and exible tool. We will subsequently compare these results to support this claim,

but we �rst discuss the di�erence, explaining why Spi�y is the better tool.

Both tools work on the principles of geometric partitioning: place a partition on the chip,

place and route blocks between partitions, assign virtual nodes and recursively apply the

algorithm to each partition. However, the implementation details are signi�cantly di�erent,

and the capabilities of Spi�y are superior to those of Mondrian. Among the most important

di�erences are:
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� Object oriented design: As discussed in Section 5.3.2, Spi�y was written in an

objected oriented manner. Built on the standard template library [10] and loosely

based on the FPGA data-structures created by McCulloch and Cohoon, this design

provides a number of advantages:

1. E�ciency: The object-oriented nature of the design leads to greater e�ciency.

By streamlining and improving a number of the data-structures used by Mon-

drian, as well as experimenting with various alternatives and additions to the

original data structures, we were able to signi�cantly decrease the runtime of the

algorithm.

2. Flexibility: Because of the design, there is considerable exibility in the oper-

ation of the algorithm, allowing easy modi�cation and experimentation. Having

�nished the basic Spi�y algorithm, we were able to experiment with a signi�cant

number of variations on the program that were not easily introduced into Mon-

drian. Among the most important of these were the introduction of template

smoothing and the creation of the Gambit tool, as discussed in Chapters 6 and

7. With the basic design of Spi�y, the implementation of these new ideas was

quick and straightforward.

3. Generlizability: Spi�y can be readily modi�ed to operate on other architecture

variations. As the FPGA is represented by an object, the object need only be

modi�ed to reect the characteristics of the new architecture. So long as the

interface methods are present in the object description, Spi�y will continue to

function and produce chip mappings. Architecture variations could be as simple

as a modi�ed FPGA architecture, adding or modifying certain characteristics,

or as complicated as switching to a di�erent channel-based semi-custom design

architecture.

4. Readability: Spi�y is more readable then Mondrian, allowing researchers in-

terested in the area great ease in experimenting with variations on the basic
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algorithm. Because of the modularization, a researcher can isolate and experi-

ment with one aspect of the algorithm (e.g. replacing the simulated annealing

with an alternative solution method), or experiment with more general changes

in the methodology.

� Performance Driven Capabilities: While Mondrian was based on Steiner trees,

then later adopted for arboresences, Spi�y is designed speci�cally for arboresences.

As the maximum source-to-sink path length of a net is a more precise estimation of

performance, the arboresence measurement is a superior model. Because Spi�y was

designed for them, Spi�y does a better job at minimizing these path-lengths. Where

Mondrian treated the arboresences as Steiner trees, Spi�y keeps a detailed list of

source information throughout the re�nements, and is designed to minimize source-

to-sink lengths in ways Mondrian could not. Further, Spi�y is able to maintain an

exact measurement of the source-to-sink path-lengths of each net, where Mondrian

could only estimate these lengths.

� Steiner Tree Encodings: As discussed in Section 5.3.3, we exploited the regular

properties of the partition graph to encode the arboresences into an e�cient data

structure. As a result, we have reduced the cost of the Steiner-tree operations by an

order of magnitude and greatly improved the runtime of the Spi�y algorithm.

� Block Portion Objects: Where Mondrian decomposes the chip in the course of the

normal re�nements, Spi�y pre-computes these chip portions and creates an object

for each. With these objects available during the course of the execution, Spi�y has

access to more information and has opportunities to prepare these objects for the

algorithm's execution. As a result, both runtime and the quality of the �nal results

are improved.

� Improvements in the Simulated Annealing Algorithm: As the simulated an-

nealing algorithm requires that the solution be randomly modi�ed a considerable
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number of times, it is vital that we be able to make the modi�cation quickly. By in-

troducing several new data structures and the tree encodings addressed above, these

modi�cations can be made much faster than in the Mondrian algorithm, causing a

considerable improvement in the execution time.

� Improvements in Route Selection and Virtual Terminal Assignment: A

number of minor improvements have been made to the route selection and virtual

terminal assignment algorithms. While no one of the changes is signi�cant to merit

discussion, the cumulative e�ect of these changes is considerable.

� Improvements in Base-Case Solution: A number of constraints were added to the

integer programming, restricting the solution space and thus improving the runtime

of the algorithm. Further, Spi�y treats the base-case independently (and after) the

recursion, in a carefully selected order to further improve the results.

5.6.3.2 Comparison of Results

Our tests begin with a comparison to Mondrian, the predecessor to Spi�y. In Table 5.2

we see that with a few exceptions, Spi�y runs signi�cantly faster than Mondrian. As both

tools involve probabilistic search, these numbers are in a sense a random sampling of the

true speedup of Spi�y, hence the con�dence intervals indicated for each benchmark. Taking

the midpoint of each interval as the point-estimation for the runtime over each benchmark,

we see an average runtime improvement of 37:7%.

We now consider the quality of the results. As noted above, we cannot directly judge

the quality of either tool's output, we are obliged to pair each tool with a detailed router. In

the research done by Ganley [43], the output of Mondrian was routed by a the tool created

by Alexander and Robins [8, 9]. We originally paired Spi�y with this router, but found

that this combination resulted in mappings superior in net-length but inferior in congestion

[54, 53]. The reasons for this loss of quality are due of the lack of a post-processing heuristic



5.6. Experimental Results 76

Circuit Mondrian Spi�y Improvement

busc 77.5 106.3 -37.2%

dma 196.8 137.9 29.9%

bnre 654.4 230.0 64.4%

dfsm 528.6 289.1 45.3%

z03 1042.3 523.0 49.8%

9symml 56.1 27.7 50.6%

term1 30.9 30.2 2.3%

apex7 48.0 56.5 -17.7%

alu2 154.4 74.5 51.8%

too large 216.5 102.3 52.8%

example2 139.7 161.5 -15.6%

vda 1019.3 280.2 72.5%

alu4 1105.8 153.2 86.2%

k2 12198.8 872.3 92.8%

Average 37.7%

Table 5.2: A comparison of the run-times of Mondrian and Spi�y. All tests were run
on a 50MHZ Sparc 20 using SunOS 4.1.3. Time is given in seconds.

employed by Mondrian, and because the Alexander and Robins tool tends to ignore much

of the global routing information produced by Spi�y.

When we paired Spi�y with Upstart, the results improved signi�cantly. In Table 5.3,

we see the channel widths of those routings produced by the Mondrian tool and Alexander

and Robins router pairing, as compared to those produced by the Spi�y and Upstart pair-

ing. Each result in the table is an average for of thirty runs, with the corresponding 95%

con�dence interval given. Over the nine benchmarks tested, Spi�y was able to improve the

channel with by an average of 13:2%.

Using the same methodology, Table 5.4 gives us the comparison of Mondrian and Spi�y

(with their respective routers) when measuring net-length. When running the tools with an

arboresence-based model, thus optimizing source-to-sink paths, Spi�y improves the total

wire-length by 10:2%. While the more interesting statistic for this case would be the av-

erage source-to-sink path length, this information was not provided for Mondrian, making
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Name Mondrian Spi�y %�

9symml 11.4 8:86 � 0:18 22:3% � 1:6%

term1 7.0 7:50 � 0:22 �7:1% � 3:1%

apex7 9.1 7:53 � 0:22 17:3% � 2:4%

alu2 12.2 9:85 � 0:19 19:3% � 1:6%

too large 11.9 10:05 � 0:20 15:6% � 1:7%

example2 9.3 9:47 � 0:33 �1:8% � 5:6%

vda 15.0 12:03 � 0:23 20:7% � 3:6%

alu4 14.5 11:67 � 0:19 19:5% � 1:3%

Average 13:2%

Table 5.3: A comparison of channel widths of Mondrian results (routed by the Alexan-
der/Robins tool) against Spi�y results (routed by the Upstart tool) for the Xilinx 4000
benchmarks. All Mondrian results are taken from Ganley's thesis [43]. All Spi�y results
are an average of 60 runs, stated in terms of 95% con�dence intervals.

comparison impossible.

Name Mondrian Spi�y % Gain

9symml 21.8 20:53 � 0:38 5:8% � 1:7%

term1 14.0 13:60 � 0:46 2:9% � 3:3%

apex7 18.2 15:06 � 0:31 17:3% � 1:7%

alu2 24.4 22:72 � 0:37 6:9% � 3:7%

too large 23.8 20:87 � 0:27 12:3% � 1:1%

example2 18.6 14:95 � 0:58 19:6% � 2:3%

vda 30.0 27:20 � 0:38 9:3% � 0:8%

alu4 29.0 26:84 � 0:16 7:5% � 0:5%

average 10:2%

Table 5.4: A comparison of net wire lengths of Mondrian results (routed by the Alexan-
der/Robins tool) against Spi�y results (routed by the Upstart tool) for the Xilinx 4000
benchmarks. All Mondrian results are taken from Ganley's thesis [43]. All Spi�y results
are an average of 60 runs, stated in terms of 95% con�dence intervals.
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5.6.4 Comparisons Against Other Tools

Now that we have established Spi�y's superiority over Mondrian, the start-of-the-art tool

in the literature at the time of its publication in 1995 [7], we need to compare Spi�y against

tools produced since that time.

In Table 5.5 we compare the FPGA placement tool Altor [80] against Spi�y in terms

of channel width. For the global routing, Altor is paired with a verity of tools, including

LocusRoute [77], GBP [104], TRACER [59], VPR [15], and the Alexander/Robins routing

tool [9]. For those global routers that did not compute a detailed route as well, the tools

CGE [23], SEGA [61] and VPR are used to complete the mapping. In all cases, Spi�y

performs better { with a 15.6% over the next best tool suite in the terms of the total

number of tracks used.

Placement Tool Altor Spi�y

G. Routing Tool LocusRoute GBP OCG Tracer VPR A/R

D. Routing Tool CGA SEGA SEGA Upstart

9symml 9 9 9 9 6 7 8 8

alu2 12 10 11 9 9 8 9 9

alu4 15 13 14 12 11 10 11 10

apex7 13 13 11 10 8 10 10 6

example2 18 17 13 12 10 10 11 8

term1 10 9 10 9 7 8 8 6

too large 13 11 12 11 9 10 10 9

vda 14 14 13 11 11 12 12 10

Total 104 96 93 83 71 75 76 66

Table 5.5: Comparison of channel widths resulting from the Altor placement tool [80]
paired with various route tools, compared against the Spi�y/Upstart suite. All scores
shown are the best out of 60 trials. Tools for scores other than Spi�y are taken from
the paper on VPR [15].

In Table 5.6 we compare the results of the Spi�y/Upstart suite against the VPR placer.

While the results do not look promising { for each benchmark Spi�y is at best able to

tie VPR's results { the comparison is questionable. In the experiments run by Betz and
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Rose [15] the placement was calculated using a di�erent technology mapping then used in

our experiments. As a result, the nets in their placement are smaller, naturally leading to

smaller channel widths.

Placement Tool Altor VPR VPR Spi�y

G. Routing Tool VPR

D. Routing Tool SEGA Upstart

9symml 6 6 5 8

alu2 8 6 6 9

alu4 9 8 7 10

apex7 8 5 4 6

example2 10 5 5 8

term1 6 5 5 6

too large 10 7 6 9

vda 10 8 8 10

Total 65 52 46 66

Table 5.6: Comparison of channel width using VPR for various stages, compared
against the Spi�y/Upstart suite. All scores shown are the best out of all trials, with
scores for VPR benchmarks taken from the paper on that tool [15]. Note that as VPR
uses a di�erent technology mapping for each circuit, it was provided with an advantage
in computing a good mapping.

In terms of net-length, we have shown that Spi�y improves circuit mappings over Mon-

drian. However, it is not standard practice for papers to report estimations of this metric.

Hence we have no results to compare against.

5.6.5 Changing the Partition Size

To this point, all experiments have been run using a 1� 3� 3 partition. It is reasonable to

assume that by changing this partition size, the quality of our results should vary. However,

it is computationally infeasible to work with a partition such that v > 12; the structure

containing the Steiner trees is too large to hold in memory. Thus we experimented with

three di�erent partitions: 1� 2� 2, 1� 3� 2 and 1� 4� 3. In Tables 5.7, 5.8 and 5.9 we

see the results of using these partitions. It is no surprise that the quality of the mappings
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su�er from the use of the smaller partitions, or that the runtime su�ers with the use of

the larger partitions. However, it is odd that the channel-width su�ers from the use of the

larger partition, but this is likely a factor of statistical sampling error. It likely we would

see more dramatic improvements in the use of larger partitions, but such experiments are

not feasible.

Circuit 1� 2� 2 1� 3� 2 1 � 4� 3

Width %� Width %� Width %�

busc 8.37 � 0.33 -4.58% 8.50 � 0.31 -6.25% 7.80 � 0.25 2.50%

dma 10.33 � 0.41 -17.87% 9.50 � 0.34 -8.36% 8.43 � 0.23 3.80%

bnre 13.80 � 0.42 -28.17% 13.10 � 0.48 -21.67% 10.60 � 0.29 1.55%

dfsm 13.50 � 0.45 -31.92% 12.53 � 0.45 -22.48% 9.63 � 0.33 5.86%

9symml 9.17 � 0.26 -3.38% 9.10 � 0.23 -2.63% 8.63 � 0.25 2.63%

term1 8.03 � 0.37 -7.11% 8.10 � 0.45 -8.00% 7.53 � 0.38 -0.44%

apex7 7.70 � 0.33 -2.21% 7.93 � 0.40 -5.31% 7.13 � 0.27 5.31%

alu2 10.27 � 0.38 -4.23% 10.17 � 0.30 -3.22% 9.57 � 0.29 2.88%

too large 10.43 � 0.31 -3.81% 10.57 � 0.27 -5.14% 10.17 � 0.42 -1.16%

example2 9.93 � 0.29 -4.93% 9.80 � 0.38 -3.52% 9.10 � 0.40 3.87%

vda 13.27 � 0.48 -10.25% 13.20 � 0.35 -9.70% 11.57 � 0.38 3.88%

alu4 13.17 � 0.43 -12.86% 13.00 � 0.40 -11.43% 11.80 � 0.49 -1.14%

Average -10.94 -8.98 2.46

Table 5.7: The channel-width resulting from the use of di�erent partitions, and the
percentage improvement over the 1� 3� 3 partition. Scores are averaged over 30 runs,
with all intervals being at the 95% level of con�dence.

5.7 Summary and Conclusion

Based on the Mondrian tool, Spi�y employs a divide-and-conquer algorithm designed to

simultaneously generate a placement and a global routing for FPGAs. In this chapter,

we presented the details of the tool and the experimental results produced by running the

tool on a standard set of benchmarks. Con�ning ourselves to 2D-FPGAs, we found that

Spi�y runs considerably faster than its counterpart, and when used in conjunction with the

Upstart router produced better results. In comparing it to other tool suite we �nd that



5.7. Summary and Conclusion 81

Circuit 1� 2� 2 1� 3� 2 1 � 4� 3

Length %� Length %� Length %�

busc 11.62 � 0.29 -6.43% 11.26 � 0.23 -3.12% 10.36 � 0.17 5.08%

dma 17.40 � 0.38 -18.66% 16.19 � 0.24 -10.39% 14.45 � 0.20 1.49%

bnre 21.37 � 0.37 -31.92% 18.95 � 0.26 -16.97% 15.71 � 0.16 3.01%

dfsm 19.49 � 0.26 -35.54% 17.13 � 0.31 -19.08% 13.50 � 0.16 6.13%

9symml 13.56 � 0.49 -6.53% 13.22 � 0.46 -3.86% 12.80 � 0.39 -0.57%

term1 10.80 � 0.42 -5.33% 11.30 � 0.60 -10.15% 10.62 � 0.55 -3.52%

apex7 11.25 � 0.40 -5.75% 11.40 � 0.51 -7.19% 10.36 � 0.31 2.64%

alu2 15.56 � 0.23 -7.43% 15.27 � 0.20 -5.46% 13.98 � 0.15 3.48%

too large 16.12 � 0.35 -10.92% 15.77 � 0.32 -8.49% 14.44 � 0.33 0.66%

example2 12.03 � 0.21 -7.03% 11.97 � 0.58 -6.55% 10.61 � 0.41 5.56%

vda 22.20 � 0.78 -17.64% 20.69 � 0.29 -9.65% 18.28 � 0.20 3.14%

alu4 20.53 � 0.29 -17.52% 19.39 � 0.26 -11.00% 17.09 � 0.21 2.14%

Average -14.22 -9.33 2.44

Table 5.8: The average path length resulting from the use of di�erent partitions, and
the percentage improvement over the 1� 3 � 3 partition. Scores are averaged over 30
runs, with all intervals being at the 95% level of con�dence.

Spi�y suite improves channel width over all tools except the VPR suite. However, VPR

employs a tool that can map the circuit instance to equivalent but smaller instances.

We also note that Spi�y is equipped to provide a great deal of exibility to the user.

Not only may the user specify that Spi�y replace its aboresence model with a Steiner tree

model, there is also the option to control a number of parameters. The temperature decrease

and termination criteria for the simulated annealing may be speci�ed by the user, as may

the cost of transversing vertical interconnections. Further, the use may specify that the

simulated anneal heuristic be replaced with an exact branch-and-bound algorithm for all

chip portions of a given sizes.

In the next chapter we discuss template smoothing { a new technique added to the Spi�y

methodology to further improve results.
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Circuit 1� 2� 2 1 � 3� 2 1 � 4� 3

Time %� Time %� Time %�

busc 7.30 � 0.78 15.28% 8.30 � 0.80 3.68% 8.47 � 0.99 1.74%

dma 12.37 � 0.50 -5.40% 12.60 � 0.65 -7.39% 13.80 � 0.70 -17.61%

bnre 28.07 � 0.87 -30.85% 24.13 � 0.54 -12.51% 22.53 � 0.62 -5.05%

dfsm 35.60 � 0.80 -25.72% 30.53 � 0.71 -7.83% 30.50 � 0.77 -7.71%

9symml 2.07 � 0.09 0.00% 2.07 � 0.09 0.00% 2.37 � 0.21 -14.52%

term1 2.07 � 0.09 7.46% 2.03 � 0.18 8.96% 2.50 � 0.29 -11.94%

apex7 3.97 � 0.43 0.42% 3.30 � 0.44 17.15% 4.73 � 0.55 -18.83%

alu2 6.70 � 0.36 -15.85% 6.50 � 0.25 -12.39% 6.20 � 0.27 -7.20%

too large 7.87 � 0.27 2.88% 7.77 � 0.34 4.12% 9.17 � 0.56 -13.17%

example2 9.43 � 1.01 10.44% 8.93 � 1.17 15.19% 12.00 � 1.39 -13.92%

vda 15.57 � 0.59 19.90% 16.90 � 1.36 13.04% 19.30 � 1.72 0.69%

alu4 14.63 � 0.25 -14.32% 14.63 � 0.42 -14.32% 13.53 � 0.38 -5.73%

Average -2.98 0.64 -9.44

Table 5.9: The runtime resulting from the use of di�erent partitions, and the percentage
improvement over the 1 � 3 � 3 partition. Scores are averaged over 30 runs, with all
intervals being at the 95% level of con�dence.
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Template Smoothing for Spi�y

In this chapter we present the technique of template smoothing, a novel augmentation of

the Spi�y algorithm that can be used to signi�cantly improve circuit-mapping quality. In

Section 6.1 we provide an overview of the template smoothing technique and motivation

for the technique. In Section 6.2 we explain how the technique is integrated into the Spi�y

algorithm. In Section 6.3 we present our experimental results.

6.1 Overview

Consider again the steps in the Spi�y algorithm: we divide the chip area into partitions,

simultaneously place and route the nets with respect to these partitions, and recursively

apply the algorithm to each partition. However, there is no reason we need to apply the

algorithm only to those partitions de�ned by the recursion; it could easily be applied to

di�erent regions of the FPGA { regions that do not necessarily \�t" within those regions

normally created.

In Figure 6.1 illustrates this idea. In Figure 6.1(a) we see the area of a chip partitioned

to two levels of recursion. First the chip is partitioned with a 3�3 grid, then each partition

is partitioned with a 3�3 grid. In Figure 6.1(b) we have recombined sets of the second-level
partitions to create larger areas, which we refer to as smoothing-portions.

83



6.1. Overview 84

(a) (b)

Figure 6.1: (a) An FPGA area partitioned to two levels of recursion with a 3 � 3
partition grid. (b) Four 3 � 3 partitions of regions of the chip overlapping the �rst
level partitioned regions, but corresponding to regions de�ned by the second level of
recursion.

Figure 6.2 depicts an example of template smoothing. In Figure 6.2(a) we see a segment

of a chip and two levels of a 3�3 partition placed on the chip area. Figure 6.2(b) shows a net
assigned to this segment after the completion of Spi�y, and in Figure 6.2(c) the outline of

a smoothing-portion is highlighted. In Figure 6.2(d) all information within this smoothing-

portion is erased. The algorithm is applied to the smoothing-portion, depicted in Figure

6.2(e). As a result, the �nal routing tree has been rearranged, leaving unneeded branches.

These extra branches must be pruned, giving us our �nal solution in Figure 6.2(f). Taking

the gray block as the source for the net, we see that this �nal solution has decreased the

maximum source-to-sink path.

De�nition 6.1 Consider an application of the Spi�y algorithm at level l of the recursion,

and let A denote the portion of the chip to which Spi�y is being applied at that point. We
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(a) (b) (c)

(d) (e) (f)

Figure 6.2: An illustration of the potential improvement of template smoothing. In (a)
we see a section of the chip area and the partition of that area through two recursions.
In (b) the placement and route induced for a speci�c net is illustrated. In (c) we mark
the new portion to be routed, and in (d) we remove all information from that portion.
In (e) we have applied the tool to the new portion, and in (f) we see the new resulting
placement and route.

refer to A as a level l Spi�y-portion.

Recall from Chapter 5 that v = r � p � q is the number of partitions in the partition grid.

In Figure 6.3 we see an illustration of the �rst three levels of Spi�y-portions for a 3 � 3

partition. The chip itself is the only level 0 Spi�y-portion. When then partitioned into an
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r � p� q grid, each of these new v partitions is a level 1 Spi�y-portion, and each of the v2

sub-partition of the level 1 Spi�y-portions is a level 2 Spi�y-portion.

(a) (b) (c)

Figure 6.3: An illustration of the �rst three levels of spi�y-portions in a 3�3 partition.
(a) shows the only level 0 Spi�y-portion. (b) shows the 9 level 1 Spi�y-portions. And
(c) shows the 81 level 2 Spi�y-portions.

In de�ning our smoothing-portions, we do not introduce partitions that would not be

considered during the course of the normal Spi�y algorithm. Introducing such portions

results in both the assignment of virtual terminals in unexpected places and the omission

of virtual terminals along the edges of some of the Spi�y-portions, making the recursion

impossible. Hence we create smoothing portions out of smaller Spi�y-portions.

De�nition 6.2 A level l smoothing-portion is a region of the block consisting of v level

l+1 Spi�y-portions, to which the Spi�y algorithm is applied outside the course of the normal

recursion calls. The partition grid placed on the smoothing-portion is de�ned by the level

l + 1 Spi�y-portions.

In Figure 6.4 we see an chip divided into its level 2 Spi�y-portions (using a 3 � 3

partition), an example of a legal level 1 smoothing-portion, and an example of an illegal

smoothing portion. Notice that the level 1 smoothing-portion consists of 3�3 level 2 Spi�y-
portions, thus avoiding introducing new partition lines. In the third case, the marked region

is not composed of 3 � 3 Spi�y portions. Using this marked area would both introduce
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virtual terminals into the interior of the level 2 Spi�y-portions and possibly leave their

edges without virtual terminals, ruining our ability to treat each Spi�y-portion recursively.

Figure 6.4: An example of a 3 � 3 Spi�y partition to two levels of recursion, a legal
smoothing-portion, and an illegal smoothing-portion. The third example is an illegal
smoothing-portion as it is not built on Spi�y-portions.

Given a level l smoothing-portion P , we can apply the Spi�y algorithm to P once we

know its edges have been assigned the proper virtual nodes, something we can be assured

of after we have applied the algorithm to each level l Spi�y-portions intersecting P . When

the Spi�y algorithm has been applied to P at the ith level, we can recursively continue

this application to each of its partitions. However, since each of these partitions is a Spi�y-

portion, the algorithm is applied to them in the course of the normal Spi�y algorithm. Thus

there is no need to follow these recursions.

Given this, we can now de�ne the portion order in which the algorithm is to be applied.

We begin with a standard breadth-�rst search: start with the unique level 0 Spi�y-portion

(the chip), follow this with each level 1 Spi�y-portion, and continue with each level 2 Spi�y

portion. At this point we are able to apply the algorithm to each level 1 smoothing-portion,

after which we can work with the level 3 Spi�y-portions. In short, we use a breadth-

�rst search for the Spi�y-algorithms, interspersed with the smoothing-portions after the

completion of speci�ed levels of the breadth-�rst search.

We still need to address exactly which of the potential smoothing-portions should be

used. We expect that examining more smoothing-portions will results in higher quality
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results, but will require a longer runtime of the tool. We discuss this tradeo� in Section

6.3, presenting the experimental results of di�erent strategies.

6.2 Implementation

Given the data structures presented in Section 5.3, integration of template-smoothing into

the Spi�y tool is straightforward. In order perform template smoothing, two additional

tasks must be performed:

1. Smoothing-portions must be created and added into the portion list to reect the

order in which they should be routed.

2. When applying the algorithm to a smoothing-portion, all interior switch blocks of

that portion must be cleared of all virtual node assignments, and all data structures

must be updated accordingly.

Integrating the smoothing-portions into the list is a simple task. We create all smoothing-

portions from the smaller Spi�y-portions, and add them to the list as we reach the end of

each recursion level in our breath-�rst search of the Spi�y-portions. As each smoothing-

portion can be created in O(1) time, the amount of time this adds is O(j&jv), where S& is
the set of smoothing-portions to be used.

The second item is the most computationally complex. Given a smoothing-partition

P , we need to remove the virtual nodes assigned to each block within the partition. This

removal is complicated by switch blocks on the edge of the partitions. Those blocks that

are used by a net to enter a partition must be retained, while those used by a net within

the partition must be discarded. We solve this problem by \locking" nets to a switch block

side in any virtual node assignment, thus allowing us to judge if a given virtual node serves

as an entry point for a given partition. However, the operations of locking a net, unlocking

a net, or checking to see if a net is locked on a give switch block side is logarithmic in the
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number of nets locked to the side. So the runtime is O(log n) in the worst case, where n is

the number of nets.

In order to clear the virtual nodes within a smoothing-portion, we check every block

of the smoothing-portion. For each of those blocks we check every net assigned to the

block, and for each of those net assignments we determine if the net should be removed.

If it is to be removed, we must also remove it from the net's Steiner point list and modify

the net's source tree as needed. Further, if the smoothing-portion has two \entry" pins

(as the example net did in Figure 6.2(c)), we need to reorganize the tree to eliminate one

source node and make all exit nodes children of the remaining source node. For a level

l smoothing-partition there are b
vl

blocks to check, where b is the number of blocks on

the chip. Checking and removing each net on a block requires O(log n) time, and any

tree reorganization requires O(1) time. As we argued in Chapter 5 that we can take v as

a constant, this procedure requires O(b log n) time in the worst case, though the bound

should be much smaller in the average case.

We can conclude that the cost of performing the algorithm on a smoothing-portion is

increased by O(b log n). Since we do not make the recursive calls on these portions, the

entire algorithm is increased by O(j&jb log n) { a term absorbed in the run-time bound of

the Spi�y algorithm. Thus the worst-case bound of the Spi�y algorithm remains unchanged.

6.3 Experimental Results

In this section we examine the results of using template smoothing. We �rst ran a series of

tests without the template smoothing feature. Using the statistics from these experiment

as our base-line for comparisons, shown in Table 6.1, we then ran a series of tests with the

template smoothing feature to judge the improvement in circuit mapping and corresponding

increase in runtime. All experiments in this section are based upon a 3� 3 partition gird,

the same used in the testing in Chapter 5.
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Circuit Channel Average Path Runtime

Width Length (seconds)

busc 8.00 � 0.19 10.92 � 0.20 8.62 � 0.75

dma 8.77 � 0.20 14.67 � 0.18 11.73 � 0.44

bnre 10.77 � 0.23 16.20 � 0.17 21.45 � 0.34

dfsm 10.23 � 0.22 14.38 � 0.15 28.32 � 0.74

9symml 8.87 � 0.18 12.73 � 0.31 2.07 � 0.06

term1 7.50 � 0.22 10.26 � 0.38 2.23 � 0.21

apex7 7.53 � 0.22 10.64 � 0.26 3.98 � 0.37

alu2 9.85 � 0.18 14.48 � 0.20 5.78 � 0.15

too large 10.05 � 0.20 14.53 � 0.21 8.10 � 0.41

example2 9.47 � 0.33 11.24 � 0.34 10.53 � 0.97

vda 12.03 � 0.23 18.87 � 0.18 19.43 � 1.32

alu4 11.67 � 0.22 17.47 � 0.13 12.80 � 0.21

Table 6.1: The base-line results for comparison against the template smoothing experi-
ments. Each statistic was taken over an average of 60 runs, with all con�dence intervals
computed at a 95% level of con�dence. The path length of a net is de�ned to be the
number of wires in the largest source-to-sink path of a net, and the length presented in
this table is the average over all net lengths.

6.3.1 Smoothing Templates

While we have discussed the concept of a smoothing-portion, we have not yet discussed

the smoothing-templates: the ordered multi-set of smoothing-portions to be used during the

execution of the algorithm. The selection of the smoothing templates may have a signi�cant

e�ect on the �nal results, and in the following experiments we evaluate di�erent possible

templates on a 3� 3 partition. In order to simply the experiments, we �rst need to de�ne

the idea of a smoothing-class.

Figure 6.5 shows all level 2 Spi�y-portions of an FPGA with respect to a 3�3 partition
grid, and a numbering of all interior Spi�y-portions such that the numbers are symmetric

with respect to both axis.

De�nition 6.3 A smoothing-class &i is the set of all smoothing-portions P such that the

center Spi�y-portion of P is labeled i in Figure 6.5.
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Figure 6.5: An array of level 2 Spi�y-partitions of a chip, and an arbitrary sym-
metric numbering of each interior partition. This numbering allows us to characterize
our smoothing-portions into smoothing-classes for ease of notation. &i is the set of all
smoothing-partitions P such that the center Spi�y-portion of P is numbered i.

In Figure 6.6 we see two examples of smoothing-classes: &3 and &10. &3 contains all smoothing-

portions consisting of nine Spi�y-portions arranged in a 3� 3 grid, where the center Spi�y-
portion is labeled with a 3 in Figure 6.5. &10 is de�ned in much the same way. Note that

the set of level 1 Spi�y-portions are equal to the union of the classes &2, &5 and &1.

When constructing a smoothing-template, it makes sense to include the reections of

any smoothing-portion along each axis. Hence by constructing the smoothing-template

from smoothing-classes, we ensure that any templates used are closed under reection. In

the following sections, we characterize a template by its class indices. For example, the

template T = (3; 4; 1; 3) denotes that in ordering the smoothing-portions, we use those in

&3, followed by those in &4, followed by those in &1, and �nishing with those in &3. Note again

that this is an ordered multi-set, hence the smoothing-template (3; 4; 1; 3) is di�erent than

(4; 3; 1; 3), which is di�erent than (4; 3; 1).

6.3.2 First Experimental Results

Our �rst goal in experimenting with smoothing-templates is to determine whether there

is any value in their use. In Table 6.2 we see the results of using the smoothing-template
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Figure 6.6: (a) The set of smoothing-portions consisting of the smoothing-class &3. (b)
The Set of smoothing-portions consisting of the smoothing-class &10.

(8,9,3,10,6,4,7,2,5,1), a template using every smoothing-class. From these results we see

that the technique does induce an improvement in circuit mappings, decreasing the channel-

width by 5.97% and the path length by 7.41% over Spi�y without template smoothing. As

expected, it does increase the runtime of the algorithm by a signi�cant amount. However,

as the largest benchmark still takes less than 55 seconds, the increase in circuit quality will

be worth the extra run-time to many designers.

We have established that template smoothing is a technique worth pursuing. However,

it is worth investigating smaller templates for designers who do not wish make the runtime-

sacri�ce, or are dealing with exceptionally large circuits. Thus we ran a series of experiments

on di�erent smoothing-templates.

6.3.3 E�ects on Run Time

The �rst characteristic we look at when using a smoothing-template is the e�ect of its size

on runtime. In Table 6.3 we see the average runtime for templates of various sizes, and
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Circuit Channel Width Path Length Run Time

busc 7.87 � 0.34 1.67% 10.33 � 0.19 5.36% 13.17 � 1.00 -52.80%

dma 8.47 � 0.41 3.42% 13.52 � 0.24 7.85% 23.73 � 1.21 -102.27%

bnre 9.50 � 0.38 11.76% 13.65 � 0.23 15.71% 47.30 � 3.62 -120.51%

dfsm 8.60 � 0.60 15.96% 11.88 � 0.34 17.42% 54.60 � 4.39 -92.82%

9symml 8.80 � 0.28 0.75% 12.12 � 0.30 4.82% 5.23 � 0.16 -153.23%

term1 7.17 � 0.30 4.44% 9.65 � 0.28 5.88% 4.70 � 0.37 -110.45%

apex7 7.30 � 0.30 3.10% 10.13 � 0.26 4.72% 8.23 � 0.63 -106.69%

alu2 9.70 � 0.31 1.52% 13.89 � 0.22 4.08% 13.37 � 0.43 -131.12%

too large 9.97 � 0.43 0.83% 13.85 � 0.26 4.75% 17.53 � 0.89 -116.46%

example2 8.93 � 0.44 5.63% 10.66 � 0.25 5.13% 18.97 � 1.50 -80.06%

vda 10.60 � 0.50 11.91% 17.72 � 0.31 6.09% 35.20 � 5.29 -81.13%

alu4 10.43 � 0.29 10.61% 16.22 � 0.18 7.14% 30.68 � 1.15 -139.68%

Average 5.97% 7.41% -107.27%

Table 6.2: Results using the template T = (8; 9; 3; 10; 6; 4; 7; 2; 5; 1), and the improve-
ment over mappings done without template smoothing. Each average is taken over 30
runs. Each statistic represents the center of a 95% con�dence with width no more than
5.39% of the value.

the corresponding percentage increase of runtime for each template size shown in Table 6.4.

When we calculate the linear correlation coe�cient, shown in Table 6.5, we see that in each

case these coe�cients are very close to 1 { indicating the percentage increase in time is very

close to linear in the size of the smoothing-template. Given that they are linear, the average

regression angle of the line is 63:96�, meaning that for every smoothing-portion added we

can expect an increase in runtime of approximately 2:05% of the base-line runtime.

6.3.4 E�ects on Routing Quality

Having determined in practice that the increase in runtime is linear in the size of the

smoothing-template, we now investigate the e�ect of size of the smoothing-template on

circuit quality. The objective depends on the needs of the user, and whether they want

the fastest tool, the best mapping, or some combination of the two. In the following

experiment we try a number of smoothing-templates, using the Upstart router to complete
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Name 4 8 12 16 20 24

busc 8.31 8.85 9.49 9.98 10.14 11.07

dma 12.72 14.04 15.53 16.76 17.31 19.49

bnre 20.66 23.08 25.37 27.77 28.81 33.56

dfsm 27.54 30.34 33.16 35.83 36.71 41.38

9symml 2.02 2.14 2.51 2.95 3.05 3.26

term1 2.29 2.39 2.52 2.59 2.84 3.32

apex7 4.12 4.44 4.89 4.95 5.45 5.79

alu2 6.19 6.97 7.77 8.61 8.90 10.24

too large 8.56 9.73 10.57 11.48 11.83 13.63

example2 11.31 12.09 13.02 14.11 14.81 15.17

vda 19.56 20.76 23.21 25.30 25.16 28.95

alu4 13.62 15.63 17.06 19.40 19.63 23.53

Table 6.3: The average runtime for each benchmark for di�erent sized templates, where
size is de�ned as the number of smoothing-portions contained in the template.

Name 4 8 12 16 20 24

busc 5.73% 12.60% 20.74% 26.97% 29.01% 40.84%

dma 10.61% 22.09% 35.04% 45.74% 50.52% 69.48%

bnre 8.97% 21.73% 33.81% 46.47% 51.95% 77.00%

dfsm 8.34% 19.35% 30.45% 40.95% 44.41% 62.79%

9symml 1.00% 7.00% 25.50% 47.50% 52.50% 63.00%

term1 19.90% 25.13% 31.94% 35.60% 48.69% 73.82%

apex7 8.14% 16.54% 28.35% 29.92% 43.04% 51.97%

alu2 12.34% 26.50% 41.02% 56.26% 61.52% 85.84%

too large 8.35% 23.16% 33.80% 45.32% 49.75% 72.53%

example2 6.00% 13.31% 22.02% 32.24% 38.80% 42.17%

vda 4.82% 11.25% 24.38% 35.58% 34.83% 55.14%

alu4 12.47% 29.07% 40.88% 60.20% 62.10% 94.30%

Table 6.4: The increase in runtime over the base-line for di�erent sized templates.

each mapping.

We begin by looking at each smoothing-class individually. In Table 6.6 and Table 6.7,

we see the results of using only one of the smaller smoothing-classes, with actual data

presented in Table 6.14 and Table 6.15 at the end of this chapter. In Table 6.8 and Table
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Circuit Linear Correlation Angle of

Coe�cient Regression

busc 0.96 73:61�

dma 0.99 63:43�

bnre 0.99 60:75�

dfsm 0.99 64:71�

9symml 0.97 59:31�

term1 0.94 65:16�

apex7 0.99 69:28�

alu2 0.99 59:74�

too large 0.98 60:90�

example2 0.99 70:09�

vda 0.96 63:06�

alu4 0.97 57:50�

Average 63:96�

� 4:68�

Table 6.5: The linear correlation coe�cient between template size and run-time in-
crease for each benchmarks, as calculated from Figure 6.4 and additional experiments
not shown.

6.9 we see the results of using one of the larger smoothing-classes. In the following tables we

present other smoothing templates, with actual data present at the end of the chapter. The

gain from any of these is minimal. A number of the one-class smoothing-templates actually

seem to increase the channel-width, but once we increase to larger size improvements the

channel-width does decrease.

Exactly which smoothing-template is best will depend on the individual circuit instance.

In our experiments we tested a number of smoothing-templates, and none produced results

equal to the T = (8; 9; 3; 10; 6; 4; 7; 2; 5; 1) template �rst presented in Table 6.2.

6.4 Conclusion

In this chapter we presented template-smoothing to improve the results of the Spi�y al-

gorithm. Having implemented the tool, we provided a characterization of the templates
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Circuit (2) (3) (4) (5) (6) (7)

busc 1.25% 1.25% 2.50% 1.67% 3.75% 0.42%

dma 0.76% -0.76% 1.90% -1.90% 0.00% 1.52%

bnre 0.93% -0.31% 1.24% 2.17% 0.00% 5.57%

dfsm 0.33% 2.61% 0.00% 4.56% 1.30% 3.58%

9symml -3.01% -3.38% -0.38% -1.88% -1.88% -2.26%

term1 0.89% 0.00% -1.33% -0.44% -4.89% -1.78%

apex7 -1.33% -5.75% 0.00% -3.10% 3.98% 0.44%

alu2 0.51% 3.55% 3.55% 3.89% 2.54% 1.18%

too large 2.16% 1.82% 1.49% 2.82% 4.81% 0.50%

example2 5.63% 3.52% 5.63% 4.58% 3.87% 4.58%

vda 1.38% 1.11% 3.88% 2.49% 2.49% 2.49%

alu4 1.71% -0.86% 0.00% -0.57% 0.00% 1.71%

Average 0:93% 0:23% 1:54% 1:19% 1:33% 1:50%

Table 6.6: Percentage improvement in channel width for each smoothing template on
each benchmark taken over 30 runs.%

Circuit (2) (3) (4) (5) (6) (7)

busc 0.91% 2.45% 2.04% 3.59% 1.56% 1.05%

dma 1.14% 0.57% 0.96% -0.99% 0.62% 1.79%

bnre 1.43% 1.23% 0.54% 0.60% 1.78% 1.57%

dfsm 4.01% -0.52% 0.60% 3.04% 1.94% 2.40%

9symml -1.53% -0.39% 0.84% -0.05% -2.04% -0.29%

term1 -1.96% -1.46% -2.57% 1.76% -7.27% -1.63%

apex7 -0.57% -2.96% -5.03% -4.81% -0.75% -3.80%

alu2 -1.54% 0.12% -0.07% 0.12% -0.50% 1.25%

too large 0.45% 1.83% -1.15% 0.49% 2.28% 0.65%

example2 5.09% 4.66% 4.51% 2.00% 2.78% 4.60%

vda 0.73% 0.30% 1.09% -0.01% 0.68% 0.83%

alu4 -0.19% -1.32% 0.29% 0.68% 1.43% -0.45%

Average 0:67% 0:38% 0:17% 0:53% 0:21% 0:66%

Table 6.7: Percentage improvement in path length for each smoothing template on
each benchmark taken over 30 runs.%

and presented the experimental results of using di�erent templates. A number of these

provided us with signi�cant improvement in our circuit mapping with only a small penalty



6.4. Conclusion 97

Circuit (8) (9) (10)

busc 3.33% 2.08% 1.25%

dma 0.76% -1.90% 3.04%

bnre 2.79% -0.31% 4.33%

dfsm 1.30% 6.84% 2.28%

9symml 0.00% 0.00% 5.26%

term1 4.00% 0.44% -1.33%

apex7 -3.54% 2.21% -3.54%

alu2 3.21% 2.20% 2.54%

too large 0.83% 1.49% 4.48%

example2 3.52% 3.17% 4.93%

vda 1.66% -0.28% -3.05%

alu4 1.14% 4.57% 2.29%

Average 1:58% 1:71% 1:87%

Table 6.8: Percentage improvement in channel width for each smoothing template on
each benchmark taken over 30 runs.%

Circuit (8) (9) (10)

busc 1.25% 3.81% 3.01%

dma 2.75% 2.08% 0.99%

bnre 3.03% 3.27% 2.44%

dfsm 3.99% 4.69% 0.75%

9symml 0.51% -3.20% 1.12%

term1 4.63% -0.48% -6.49%

apex7 -1.38% 0.52% -4.90%

alu2 1.44% 0.23% 1.86%

too large 1.14% 0.91% -0.95%

example2 3.81% 1.31% 3.84%

vda 1.89% 1.84% 3.00%

alu4 0.12% 1.51% -0.87%

Average 1:93% 1:38% 0:32%

Table 6.9: Percentage improvement in path length for each smoothing template on
each benchmark taken over 30 runs.%

in run-time.
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Circuit (3; 6; 4; 7) (8; 10) (9; 10) (8; 9)

busc 3.75% 1.25% 5.00% 3.33%

dma -0.38% 4.18% 5.32% 3.42%

bnre 5.26% 4.33% -0.31% 8.36%

dfsm 8.14% 7.17% 5.21% 6.19%

9symml 0.75% -0.38% 4.14% 1.88%

term1 2.67% 4.00% 5.33% 2.22%

apex7 -1.33% 5.75% 1.77% 3.10%

alu2 4.91% 6.60% 5.58% 3.21%

too large 3.81% -0.50% 3.48% 3.48%

example2 2.11% 7.04% 5.99% 1.76%

vda 6.37% -3.05% 4.43% 2.49%

alu4 2.00% 4.00% 2.29% 3.14%

Average 3:17% 3:37% 4:02% 3:55%

Table 6.10: Percentage improvement in channel width for each smoothing template on
each benchmark taken over 30 runs.%

Circuit (3; 6; 4; 7) (8; 10) (9; 10) (8; 9)

busc 2.91% 3.74% 2.59% 3.05%

dma 2.05% 1.33% 0.87% 0.73%

bnre 5.56% 7.74% 6.86% 6.89%

dfsm 6.17% 5.79% 6.33% 8.17%

9symml -0.37% -0.65% 1.02% 2.22%

term1 0.12% 6.61% 5.54% 3.02%

apex7 -2.62% 2.28% 3.95% 0.44%

alu2 1.48% 1.99% -0.57% 1.52%

too large 3.56% 1.03% 3.23% 0.76%

example2 3.90% 4.89% 5.13% 1.85%

vda 3.42% 3.34% 2.51% 2.66%

alu4 1.47% 2.16% 3.05% 2.17%

Average 2:30% 3:35% 3:38% 2:79%

Table 6.11: Percentage improvement in path length for each smoothing template on
each benchmark taken over 30 runs.%
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Circuit (8; 9; 10) (10; 9; 3; 2) (3; 10; 6; 4; 7) (4; 3; 2; 7; 6; 5)

busc 2.50% 2.92% 2.50% 3.33%

dma 1.14% 3.42% 1.52% 3.80%

bnre 6.50% 7.12% 4.64% 8.36%

dfsm 9.77% 11.07% 0.33% 8.47%

9symml 0.75% -1.13% -1.50% -0.38%

term1 1.78% 8.00% 0.89% 2.22%

apex7 1.33% -0.89% 2.21% -0.44%

alu2 3.55% 2.88% 3.21% 3.21%

too large 3.81% -0.83% -1.16% 4.15%

example2 5.63% 7.75% 6.34% 4.93%

vda 3.88% 5.26% 8.03% 4.99%

alu4 4.57% 4.57% 0.86% 4.86%

Average 3:77% 4:18% 2:32% 3:96%

Table 6.12: Percentage improvement in channel width for each smoothing template on
each benchmark taken over 30 runs.%

Circuit (8; 9; 10) (10; 9; 3; 2) (3; 10; 6; 4; 7) (4; 3; 2; 7; 6; 5)

busc 3.93% 1.42% 1.48% 4.80%

dma 4.10% 4.85% 3.72% 4.53%

bnre 9.97% 8.25% 5.34% 9.54%

dfsm 9.28% 10.56% 5.49% 10.01%

9symml 2.48% 1.58% 2.97% 4.01%

term1 2.03% 5.60% 0.31% 3.22%

apex7 0.54% 2.76% 2.47% -1.68%

alu2 2.63% 0.62% 2.36% 2.44%

too large 3.42% 1.30% 2.38% 3.51%

example2 6.54% 5.18% 4.08% 5.30%

vda 4.20% 4.45% 3.29% 3.63%

alu4 3.76% 3.52% 3.28% 4.53%

Average 4:41% 4:18% 3:10% 4:49%

Table 6.13: Percentage improvement in path length for each smoothing template on
each benchmark taken over 30 runs.%
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Circuit None (2) (3) (4) (5) (6) (7)

busc 8.00 7.90 7.90 7.80 7.87 7.70 7.97

dma 8.77 8.70 8.83 8.60 8.93 8.77 8.63

bnre 10.77 10.67 10.80 10.63 10.53 10.77 10.17

dfsm 10.23 10.20 9.97 10.23 9.77 10.10 9.87

9symml 8.87 9.13 9.17 8.90 9.03 9.03 9.07

term1 7.50 7.43 7.50 7.60 7.53 7.87 7.63

apex7 7.53 7.63 7.97 7.53 7.77 7.23 7.50

alu2 9.85 9.80 9.50 9.50 9.47 9.60 9.73

too large 10.05 9.83 9.87 9.90 9.77 9.57 10.00

example2 9.47 8.93 9.13 8.93 9.03 9.10 9.03

vda 12.03 11.87 11.90 11.57 11.73 11.73 11.73

alu4 11.67 11.47 11.77 11.67 11.73 11.67 11.47

Table 6.14: Average channel width over 30 runs on each benchmark. Each value
represents the center of a 95% con�dence interval with a half-width of no greater than
7.12% of its value.

Circuit None (2) (3) (4) (5) (6) (7)

busc 10.92 10.82 10.65 10.69 10.52 10.75 10.80

dma 14.67 14.50 14.58 14.53 14.81 14.58 14.40

bnre 16.20 15.97 16.00 16.11 16.10 15.91 15.94

dfsm 14.38 13.81 14.46 14.30 13.94 14.10 14.04

9symml 12.73 12.93 12.78 12.63 12.74 12.99 12.77

term1 10.26 10.46 10.41 10.52 10.08 11.00 10.42

apex7 10.64 10.70 10.95 11.17 11.15 10.72 11.04

alu2 14.48 14.71 14.47 14.49 14.47 14.56 14.30

too large 14.54 14.47 14.27 14.70 14.46 14.20 14.44

example2 11.24 10.67 10.71 10.73 11.01 10.93 10.72

vda 18.87 18.73 18.82 18.67 18.88 18.74 18.72

alu4 17.47 17.50 17.70 17.42 17.35 17.22 17.55

Table 6.15: Average path length over 30 runs on each benchmark. Each value repre-
sents the center of a 95% con�dence interval with a half-width of no greater than 5.85%
of its value.
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Circuit None (8) (9) (10)

busc 8.00 7.73 7.83 7.90

dma 8.77 8.70 8.93 8.50

bnre 10.77 10.47 10.80 10.30

dfsm 10.23 10.10 9.53 10.00

9symml 8.87 8.87 8.87 8.40

term1 7.50 7.20 7.47 7.60

apex7 7.53 7.80 7.37 7.80

alu2 9.85 9.53 9.63 9.60

too large 10.05 9.97 9.90 9.60

example2 9.47 9.13 9.17 9.00

vda 12.03 11.83 12.07 12.40

alu4 11.67 11.53 11.13 11.40

Table 6.16: Average channel width over 30 runs on each benchmark. Each value
represents the center of a 95% con�dence interval with a half-width of no greater than
9.47% of its value.

Circuit None (8) (9) (10)

busc 10.92 10.78 10.50 10.59

dma 14.67 14.26 14.36 14.52

bnre 16.20 15.71 15.67 15.80

dfsm 14.38 13.81 13.71 14.27

9symml 12.73 12.67 13.14 12.59

term1 10.26 9.78 10.31 10.92

apex7 10.64 10.78 10.58 11.16

alu2 14.48 14.27 14.45 14.21

too large 14.54 14.37 14.40 14.67

example2 11.24 10.81 11.09 10.81

vda 18.87 18.52 18.52 18.31

alu4 17.47 17.45 17.20 17.62

Table 6.17: Average path length over 30 runs on each benchmark. Each value repre-
sents the center of a 95% con�dence interval with a half-width of no greater than 10.07%
of its value.
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Circuit None (3; 6; 4; 7) (8; 10) (9; 10) (8; 9)

busc 8.00 7.70 7.90 7.60 7.73

dma 8.77 8.80 8.40 8.30 8.47

bnre 10.77 10.20 10.30 10.80 9.87

dfsm 10.23 9.40 9.50 9.70 9.60

9symml 8.87 8.80 8.90 8.50 8.70

term1 7.50 7.30 7.20 7.10 7.33

apex7 7.53 7.63 7.10 7.40 7.30

alu2 9.85 9.37 9.20 9.30 9.53

too large 10.05 9.67 10.10 9.70 9.70

example2 9.47 9.27 8.80 8.90 9.30

vda 12.03 11.27 12.40 11.50 11.73

alu4 11.67 11.43 11.20 11.40 11.30

Table 6.18: Average channel width over 30 runs on each benchmark. Each value
represents the center of a 95% con�dence interval with a half-width of no greater than
10.02% of its value.

Circuit None (3; 6; 4; 7) (8; 10) (9; 10) (8; 9)

busc 10.92 10.60 10.51 10.63 10.58

dma 14.67 14.37 14.47 14.54 14.56

bnre 16.20 15.30 14.94 15.09 15.08

dfsm 14.38 13.49 13.55 13.47 13.21

9symml 12.73 12.78 12.82 12.60 12.45

term1 10.26 10.24 9.58 9.69 9.95

apex7 10.64 10.91 10.39 10.22 10.59

alu2 14.48 14.27 14.19 14.56 14.26

too large 14.54 14.02 14.39 14.07 14.43

example2 11.24 10.80 10.69 10.66 11.03

vda 18.87 18.23 18.24 18.40 18.37

alu4 17.47 17.21 17.09 16.93 17.09

Table 6.19: Average path length over 30 runs on each benchmark. Each value repre-
sents the center of a 95% con�dence interval with a half-width of no greater than 6.69%
of its value.
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Circuit None (8; 9; 10) (10; 9; 3; 2) (3; 10; 6; 4; 7) (4; 3; 2; 7; 6; 5)

busc 8.00 7.80 7.77 7.80 7.73

dma 8.77 8.67 8.47 8.63 8.43

bnre 10.77 10.07 10.00 10.27 9.87

dfsm 10.23 9.23 9.10 10.20 9.37

9symml 8.87 8.80 8.97 9.00 8.90

term1 7.50 7.37 6.90 7.43 7.33

apex7 7.53 7.43 7.60 7.37 7.57

alu2 9.85 9.50 9.57 9.53 9.53

too large 10.05 9.67 10.13 10.17 9.63

example2 9.47 8.93 8.73 8.87 9.00

vda 12.03 11.57 11.40 11.07 11.43

alu4 11.67 11.13 11.13 11.57 11.10

Table 6.20: Average channel width over 30 runs on each benchmark. Each value
represents the center of a 95% con�dence interval with a half-width of no greater than
5.68% of its value.

Circuit None (8; 9; 10) (10; 9; 3; 2) (3; 10; 6; 4; 7) (4; 3; 2; 7; 6; 5)

busc 10.92 10.49 10.76 10.75 10.39

dma 14.67 14.07 13.96 14.12 14.00

bnre 16.20 14.58 14.86 15.33 14.65

dfsm 14.38 13.05 12.86 13.59 12.94

9symml 12.73 12.42 12.53 12.35 12.22

term1 10.26 10.05 9.68 10.23 9.93

apex7 10.64 10.58 10.34 10.37 10.81

alu2 14.48 14.10 14.39 14.14 14.13

too large 14.54 14.04 14.35 14.19 14.03

example2 11.24 10.50 10.66 10.78 10.64

vda 18.87 18.08 18.03 18.25 18.19

alu4 17.47 16.81 16.85 16.89 16.68

Table 6.21: Average path length over 30 runs on each benchmark. Each value repre-
sents the center of a 95% con�dence interval with a half-width of no greater than 5.29%
of its value.
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Gambit: A Tool for the Simultaneous Placement,

Global Routing and Detailed Routing of FPGAs

In Chapter 4 we discussed the idea performing the stages of design automation simultane-

ously, and in Chapter 5 we presented a tool that simultaneously accomplishes placement

and global routing. In this chapter we present Gambit: the �rst tool to perform placement,

global routing and detailed routing simultaneously. Built on the Spi�y methodology, we

incorporate a graph structure to model the detailed routing constraints. In allowing these

constraints to inuence the placement and global route as they are generated, Gambit

produces a full circuit mapping, including both a placement and a detailed route.

7.1 FPGA Structure Revisited

Before we can explain the algorithms used in Gambit, we must �rst expand our explanation

of the standard FPGA structure from Section 2.3. Recall the structure of a symmetric

FPGA architecture (Figure 7.1). While we discussed the layout of the blocks and wires, we

have not yet discussed the structure of the switch blocks.

Ideally, switch blocks could connect any two incident wires, thus guaranteeing any global

route could be realized. However, this exibility makes them far too large and complicated.

104
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Connection Blocks

Switch Block

Block
Logic

Pins

Channel
  Wires

Potential Connections

Figure 7.1: A 2D-FPGA symmetrical architecture with a channel-width of seven.

Thus switch blocks can only connect certain subsets of wires. In Figure 7.2 we see a Xilinx

switch block and its anti-symmetric model [30]. A number of studies have been done on

the minimal number of switches required to provide full routing capability, and it has been

determined that this structure is a good choice [28, 30, 78, 102].

The model shown in Figure 7.2 has an important characteristic which Gambit exploits:

it divides the channel-wires into equivalence classes. Consider the labeling of the wires in

the diagram, and assume we extend this labeling to every channel: each channel-wire is

numbered from 1 to w (the channel-width of the FPGA), starting with the left-most or

top-most wire. Notice that the wires can be connected by a switch block if and only if

they have the same label. As a result, if a net is routed on a wire of label i, it cannot be

transferred to a wire of any other label; it must stay on wires labeled i. Thus if we think of
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Figure 7.2: (a) A Xilinx XC4000-type switch module and (b) its switch-module model.

the wires in terms of equivalence classes, with two wires being in the same class if and only

if they have the same label, we then know each net can be routed to only one equivalence

class.

7.1.1 Conict Graphs

Given a circuit design with a placement and global route already calculated, we now de�ne

a new structure:

De�nition 7.1 Given a placement and global routing of some circuit, the Conict Graph

G = (';R), where the set of nodes ' are the set of nets, while (n1; n2) 2 R if the global

routes of n1 and n2 share a channel.

Consider what it means if two nodes in G are adjacent. As the two global routes share a

channel, they may not be routed to the same channel-wire within that channel, hence they
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must be assigned to wires of di�erent labels. Because we can only assign a net one label,

we are mapping these nets to di�erent equivalence classes. If we think of this mapping as

a node coloring, we have our basic theorem:

Theorem 7.1 Given the placement and global route for come circuit description and an

FPGA with anti-symmetric switch blocks and channel-width w, there exists a legal detailed

route of the circuit on the chip conforming to the given global route if and only if G is

w-colorable.

The proof of this is straightforward, and it immediately follows that even with the global

routes, �nding an optimal detailed routing problem is NP-hard for this architecture. Studies

have been done concerning the structures and colorability of conict graphs, as well as using

the conict graphs to build detailed routers [62, 103]. However, we are the �rst to use the

graph to allow detailed routing constraint to inuence the placement and global routing

phases.

(a) (b)

Figure 7.3: (a) The global routings of four nets on an FPGA. (b) The corresponding
conict graph. Note that even though the global routings require of channel-width of
2, the conict graph has a chromatic number of 3 { hence the detailed routing requires
a channel-width of 3.
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Figure 7.3 depicts the global routing of some circuit and the corresponding conict

graph. As that graph has a chromatic number of 3, we can conclude from Theorem 7.1 that

the optimal detailed route for that global routing requires a channel-width of three, even

though the global route appears to only require a width of two.

In order to incorporate detailed routing into our Spi�y tool, we construct and maintain

a conict graph during the operation of the tool. As the global routing is constructed, the

graph will be updated accordingly. Thus, at any we point can determine the current minimal

channel-width required for the detailed routing by checking the chromatic number of the

graph. (Though in practice, we would have to do this heuristically, as �nding the chromatic

number of a graph is NP-complete [45].) By allowing this graph structure to inuence the

stages of the Spi�y algorithm, we can force the tool to construct the placement and global

route in such a way as to minimize the chromatic number of the graph.

7.1.2 Doglegs

While switch blocks do not allow all possible connections between incident channel-wires,

connection blocks are more exible. In the Xilinx 4000 FPGA series, any wires incident

to a connection block may be connected to any pin of a neighboring logic block [105]. As

a result it is frequently assumed that two wires incident to the connection block may be

connected through a pin, thus providing an input pin dogleg. Such a feature allows nets to

switch tracks, thus invalidating our theorem and reducing the usefulness of a conict graph.

Most FPGA design automation tools in the literature assume that input pin doglegs are

allowed [6, 23, 54, 53, 59, 61, 104]; Betz and Rose note that this is not correct [15]. In order

to implement input pin doglegs, a connection block must consist of independent pass tran-

sistors, each connecting a pin to a wire. However, connection blocks are considerably smaller

when implemented with a multiplexer, which only allows for the one wire-connection per

pin. Because of this reduction in area, commercial FPGAs use the multiplexer technology.

In the results presented in Chapters 5 and 6, Upstart assumes the availability of input
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pin doglegs, as that assumption is necessary to provide a fair comparison against other

tools. Our implementation of Gambit assumes that these doglegs are not available. Thus

while the results of Gambit cannot be compared to those of other tools, the routings are

more consistent with the actual architecture of commercial FPGAs.

7.2 Graph Coloring

In the performance of the Gambit algorithm it is frequently necessary to produce a good

or optimal coloring for the conict graph. While the conict graphs are large enough that

using an exact (exponential) algorithm is infeasible, the algorithm will occasionally need to

color a small subgraph of the conict graph exactly. Hence we need both an exact algorithm

and a good heuristic.

7.2.1 Exact Coloring Algorithms

For coloring small graphs exactly, we experimented with two methods: a branch-and-bound

algorithm and a linear-programming solution. In each case, the runtime of the algorithm

can be improved if we can provide a small upper bound �(G) on the chromatic number

of the graph G. Let �(G) denote the chromatic number of a conict graph G. We know

�(G) � n, where n is the number of nets in the circuit. We could set �(G) = n. However,

the following theorem will frequently give us a better bound:

Theorem 7.2 Any graph G has at least �(G) nodes of degree no smaller than �(G)� 1.

The proof of the theorem is straight forward [83].

From this theorem we can create a simple algorithm to �nd a bound of �(G) that will

usually be better than n. Let dmax be the maximum degree of any node in G. We can

sort the nodes by degree in O(dmax) = O(n) time. We then start with the nodes of highest

degree, and search backwards until we �nd the �rst value k such that there are at least k
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nodes of degree k � 1 or greater { also requiring linear time. As this value k is the largest

such number for G, so we know by Theorem 7.2 that �(G) � k, and we set �(G) = k.

7.2.1.1 Branch-and-Bound

The branch-and-bound search for the optimal coloring is a standard algorithm of that type.

We perform a depth-�rst search on the solution tree, discontinuing a path whenever the

solution currently under construction uses either more colors than �(G) or more than the

best solution seen so far. While it is di�cult to derive a meaningful runtime bound on this

(or any branch-and-bound) algorithm, we do know this will examine no more than �(G)n�1

solutions.

7.2.1.2 Integer Programming

The integer programming technique, or more precisely the 0-1 programming technique,

requires that for a given problem instance, we formulate:

� A linear function g : f0; 1g�  IR.

� A set of linear inequalities over f0; 1g�.

We then �nd a vector B 2 f0; 1g� consistent with the constraints such that g(B) is mini-

mized and use this B to induce a solution to the graph-coloring problem.

Given a graph G of n nodes with edge set R, we will require the following variables

(elements of our vector):

� u�, 1 � � � �(G): u� will be assigned a value of 1 if and only if there is some node

assigned color �

� vi;�, 1 � i � n, 1 � � � �(G): vi;� will equal 1 if and only if node ni is assigned color

�.
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Note that given a coloring of a graph,
P�(G)

i=1 ui will be the number of colors used { hence

is the function we wish to minimize. To insure that the values assigned to the variables

correctly conform to the coloring, we need the following constraints:

� 8i; � u� � vi;�.: This constraint ensures every color � used in the graph is reected in

u�.

� 8i P�(G)
�=1 vi;� = 1: This constraint ensures that every node is assigned exactly one

color.

� 8(i; j) 2 R 8� � �(G) : vi;�+ vj;� � 1: This constraint ensures no two adjacent nodes

have the same color.

Any assignment of 0 and 1 values to the variables that satisfy these constraints will induce

a legitimate graph coloring, and any legitimate graph coloring will induce a solution sat-

isfying these constraints. Hence any solution satisfying these constraints that minimizes

g(B) =
P�(G)

i=1 ui will induce an optimal coloring. By using the Berkelaar's LP Solve tool

for solving integer and linear equations [13], we can solve the program for an solution.

Though integer-programming is NP-hard, it tends to work quickly in practice. However,

it does not work fast enough to be useful in �nding colorings for full conict graphs, which

ranges in size from 79 nodes to over 400 nodes in our benchmarks. While there are 2�(G)(n+1)

possible variable assignments, it is di�cult to calculate the size of the solution space because

of the third constraint. It is also worth noting that even �nding a element of the solution

space is NP-Hard [51], making an asymptotic analysis very di�cult.

7.2.2 Coloring Heuristics

Because the problem is NP-hard, when coloring a full conict graph we use a coloring

heuristic. There has been a signi�cant amount of work on such heuristics for a variety of

applications. We have chosen to implement and experiment with two particular heuristics.
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7.2.2.1 Dsatur Heuristic

The Dsatur heuristic was introduced by Brelaz in 1979, but is generally regard of one of the

better simple heuristics in the literature [17]. The heuristic is based on a greedy method

oriented towards the saturation degree: the number of di�erent colors to which a node is

adjacent. We continually pick the node of greatest saturation degree, and in case of ties

choose the candidate nodes with the highest edge-degree. Having picked a node, we assign

it a color and continue. There are variations on which color we assign to the node. The

three most common strategies are picking the legal color most used, picking the legal color

least used, or picking the �rst legal color from an arbitrary ordering. The algorithm runs

in linear time, and there is no known non-trivial bound on its error.

7.2.2.2 Interference Graph Coloring

Interference graph coloring is frequently used by compilers for register allocation [2, 11]. It

is based on the principle that the machine in question has a limited number of registers

c, and thus cannot use a graph color greater than c. If allocation to a register forces the

estimated chromatic number of the graph to a value higher than c, alternate provisions have

to be made.

The algorithm is similar to Dsatur, but only nodes of edge-degree less than c are admitted

as candidates for coloring. As each node is colored it is removed from the graph, reducing

the degree of all adjacent nodes. If at any time a sub-graph is reached in which every

node has edge-degree c or more, steps will have to be taken in the original input to discard

edges until some node can be selected. In terms of a compiler, these steps would involve

reassigning data from a register to memory, thus freeing of the register for other uses.

The situation in detailed routing is similar to that of register allocation if the designer is

con�ned to an FPGA of channel-width of some �xed w. In that case the chromatic number

of the conict graph cannot be allowed to increase past w. If in applying the heuristic

we reach a point such that an edge needs to be removed, we would have to recalculate a
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portion of some net's placement and global route to accomplish this task. We do not address

this issue in this dissertation, except to observe that if the input pin doglegs are allowed,

we have a ready-made way of eliminating conict-graph edges. We foresee the possibility

of incorporating doglegs at this point to split a net between tracks, hence splitting the

corresponding node into two nodes of lesser degree. While this approach appears to be

fairly complicated, it is worth future investigation if input pin doglegs are allowed in any

architecture.

We have however implemented the interference graph coloring heuristic with the idea

that speci�cation of some value w may inuence the general construction of the conict

graph towards a chromatic value of w. However, in those cases where we have to violate

that limit, it is our practice to increase w as necessary { hence the heuristic is essentially a

variation on Dsatur.

7.3 Gambit Implementation

Gambit is based primarily on the Spi�y algorithm, using the same basic steps and tech-

niques, but modifying and expanding them where necessary. In this section we will review

the basic phases of Spi�y, and explain where the changes incorporated into the Gambit tool.

7.3.1 Data Structures and Notation

Only one new data structure has been added to the Gambit tool: a weighted-graph object

representing the conict graph, implemented as a set-based adjacency-list. Nodes are per-

sistent objects created for each net during the initialization of the algorithm, while edges can

be added during the course of the algorithm. In order to facilitate coloring, we incorporated

a constant-time mapping scheme between nodes and colors based on each node's uniquely

assigned label. Edge weights are required to record the number of global-route connec-

tions between two nets, information necessary for net removal when performing template

smoothing.
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Some other data-structures from Spi�y require minor modi�cation. Each net holds a

record of its node in the conict-graph, making its node and node color accessible in constant

time. Blocks are assigned the task of maintaining the edge structure of the conict graph.

Any two nets assigned to the same side of a switch block must share a channel, hence their

nodes must be adjacent in the graph. So blocks add edges, remove edges, and modify edge

weights as nets are assigned or removed from the blocks. This does raise the processing

cost of adding a net to a block, or removing one from a block, from constant time to time

linear in the number of nets mapped to the side of that block { O(n) in the worst case.

Notation will remain consistent with that used in Section 5.4. G will denote the conict-

graph and �(G) will denote the number of colors currently used by G. For simpli�cation, we

will not di�erentiate between a net and its corresponding node in the conict graph. When

we refer to a \net's color," we are referring to the color of the net's node in the conict

graph.

7.3.2 Initialization

The only added initialization cost is that of creating the conict graph, which will begin with

n nodes and 0 edges. Since there are 0 edges, �(G) = 1, hence we will assign each net the

same initial color. As individual nodes can be created in constant time in conjunction with

the creation of the nets, the linear time to crate the graph is absorbed in the initialization

time of Spi�y.

7.3.3 Partition

As the partition phase deals with routing only in a very general sense, we left this portion

of the Spi�y algorithm untouched. During this phase there are no modi�cations to switch

blocks or connection blocks, hence there are no modi�cations to the conict graph.
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7.3.4 Route Selection

In the Spi�y algorithm we selected a thumbnail for each placement by building a congestion

vector, and assigning thumbnails in such a way as to minimize the variance over the elements

of this vector. In Gambit, we still choose a thumbnail for each net, but also assign a new

color to each, or choose to leave its color unchanged. We are still interested in minimizing

the congestion of the congestion vector, but minimizing the number of colors used on the

net is made a higher priority.

We begin by clearing the color of all nets that will need a thumbnail, and then count the

\color availability" �(e; �) of each thumbnail edge e and color �. That is, consider thumbnail

edge e and let S(e) be the set of switch blocks lying on the corresponding partition line. If

�(#) represents the colors of all nets currently used by # (or, more accurately, by the two

sides of # relevant to the thumbnail edge), then no net assigned this thumbnail will be able

to use any color in the set \#2S(e)�(#). We de�ne �(e; �) as the number of switch blocks

in S(e) that do not have a net of color � assigned to them { thus the number of nets of

color � we can assign to a thumbnail using edge e before � becomes a member of the set

\b2S(e)�(#).
As before, we use a greedy algorithm in which we begin with those nets that have

the least number of thumbnail choices. However, where we would arbitrarily break ties in

Spi�y, here we pick the longest nets. The more switch blocks a net must transverse, the

more color-conicts it is likely to incur. Hence the longer nets will tend to have less color

choices.

Given a net, we consider each possible thumbnail, and the partition edges the thumbnail

crosses. We consider each thumbnail for the net, and determine if there is some color �

that can legally be assigned to the net's conict graph node such that �(e; �) > 0 for every

edge e in the thumbnail. If there is no � � �(G) such that this is true, we eliminate

the thumbnail from consideration. Only if we eliminate all thumbnails do we introduce a

new color, increasing �(G) but allowing us to reintroduce all of the net's thumbnails as
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candidates.

From this restricted set we pick our thumbnail as before: so as to minimize the variance

of the elements of the congestion vector for the partial solution. In addition, we assign the

net � a color. We pick a legal color � that will maximize the value mine2�� �(e; �) . We do

this in order to avoid \using up" any color on any edge { thus heuristically leaving more

color options for future nets considering the use of thumbnails sharing these edges. Having

picked a color �, we update the values of �(e; �) for each e 2 �(�), and repeat the process

for the next net. Upon termination of this phase, we have a thumbnail for each net and a

color for each node in the conict graph.

Where the asymptotic runtime of the route selection in Spi�y was linear in the number of

nets, the extra work required to heuristically minimize �(G) will raise that runtime. Recall

from Chapter 5 that the number of nodes v in the partition graph G is not considered a

parameter of the input. Nor is the size of the edge-set E. As a result, for any point set

V 0, the number of minimum rectilinear Steiner arboresences �(V 0) is also independent of

the input, as is the bound on that number �(G). The number of nets n and the number of

blocks b are the only variables we are concerned with in terms of input size.

Initially we must calculate the values �(e; c) for every e 2 E and every color �, noting

that the number of colors is bounded by the number of nodes n. To calculate �(e; �) for all

e we will have to check every switch block lying on a partition edge to count the number

that can use color �. We check if a given block can use color � in log n time, so this stage

takes O(b log n) time.

In sorting the nets, no net may have more than �(G) thumbnails, and no thumbnail can

have more than v � 1 edges. With these bounds on the sorting keys, we can sort the nets

in O(n�(G)(v � 1)) = O(n) time. For each net we must examine the O(�(G)) thumbnails

to determine which colors each can be legally assigned. Using the � function this can be

done for a thumbnail edge in constant time, so for the entire thumbnail in O(v) time, since

the thumbnail has nor more than v � 1 edges. For a net with k thumbnails the process
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can be done in O(�(G)cvk) time, which is linear in the size of the input. We then pick

an admissible thumbnail as before, and pick a color in O(�) = O(n) time. Once we have

picked the thumbnail and color, updating the � function will require constant time.

Complexity Analysis 7.1 The worst-case time complexity for the route selection phase

of Gambit is O(n2).

As noted before, this is a very loose analysis. Because � will generally be much less than

n, it is likely the average-case bound on the heuristic is much better.

7.3.5 Virtual Terminal Assignment

The virtual terminal assignment for Gambit is very close in form to the virtual terminal

assignment for Spi�y. The only additional constraint is that we must ensure each net gets

assigned to a switch block that can accommodate the net's color, and that no two nets of

the same color are assigned to the same switch block.

Recall from the Spi�y algorithm that the problem was solved with a minimum-cost

perfect matching problem. We created a bipartite graph P with a node for each net, a set

of nodes for each available switch block, and added edges between net-nodes and block-nodes

with weights reecting the distance between the net's terminals and the block. We ensured

that no switch block is overloaded by limiting the number of nodes in P corresponding to

any switch block.

In Gambit the limit on �(G) will implicitly limit switch block overloading; there is no

need to explicitly deal with the issue. Thus when creating nodes in P for each switch block,

instead of limiting the number of nodes by the ratio, we create one node for each color that

can be used by the block. As P must be a complete bipartite graph, we must add an edge

from each of the net nodes to each of the switch block nodes. However, for any edge that

connects a net of color � with a switch block node of color other than � we add an in�nite

penalty to the weight of the edge. From the manner in which we assigned our net colors, we
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know that if there are k nets using color � then there must be k switch blocks with color �

available, hence each net can be assigned to a switch block without incurring the penalty.

7.3.6 Graph Recoloring

While all the steps taken in the route selection and virtual terminal assignment phases

are done with the aim of minimizing �(G), there is no assurance that we have the best

graph coloring possible. Hence there is some value in recoloring G with a more e�cient

heuristic after the virtual terminal assignment. In later recursions many of the nodes are

una�ected by any of these stages as they may not exist with the portion of the chip under

consideration. We have chosen to only recolor the subgraph of G a�ected by the previous

steps on most recurrences. Given that we are performing a breadth-�rst search, we recolor

the entire graph only when we starting a new level in the tree.

7.3.7 Base Case

While the base case can be handled in much the same way as in Spi�y, we do make modi-

�cations to the integer program used. Speci�cally, we combine Ganley's solution with the

graph color technique presented in Section 7.2.

In creating the constraints of the integer program, we introduce all variables and con-

straints needed in Ganley's solution, as well as all variables and constraints used in our

graph coloring solution. One additional set of constraints is needed to provide the correct

interaction. In Ganley's formulation, he uses a series of 0/1 variables denoted fk;i, which are

assigned a value of 1 if and only if net k is assigned to channel i. We need to ensure in our

solution that if fk;i = 1 and fm;i = 1, indicating that nets k and m have been assigned to

the same channel, than they are given a di�erent color. We enforce this with the constraint

fk;i + fm;i + vk;c + vm;c � 3 for all c � �(G). Thus if the two nets are assigned to the same

channel they cannot both use color c, but otherwise are free to be the same color. We cre-

ate a new minimization function for the linear program that is a linear combination of the
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optimization functions from original each integer program, prioritizing color minimization

over the minimization of net length.

In general we will not consider the entire conict graph in the solution of a single block,

as we do not want to take the time to do a exact graph coloring of the full graph. Instead

we consider only the subgraph relevant to the portion being considered, and the color

constraint imposed by nodes adjacent to this subgraph. However, the number of instance

of our additional constraint is still fairly large. With k nets and, in Ganley's formulation,

8 channels, there will be
�
k
2

�
8 � �(G) instances of this constraint. Even with small values

of k the problem instance because quite large, causing the LP Solve to take a considerable

amount of time in deriving a solution for a single logic block.

7.4 Asymptotic Analysis

In the analysis of Gambit, there are only a few changes in terms of the worst-case asymptotic

runtime. The route selection phase has changed from O(n) to O(n2). Assigning the virtual

terminals will require O(n
5
2 ) time as before. However, as we now require O(n) time to

assign a net to a virtual terminal, the processing time of each net is raised to O(n2). This

is absorbed in the O(n
5
2 ) term, and will not a�ect our analysis. Finally, in each recursion

we will have to recolor a portion, or all of, the graph. As this depends on the heuristic or

algorithm used, we will donate the runtime of this action as g(n).

Thus the only changes to the recurrence 5.1 are the addition of an O(n2) term for the

base-case, and an O(g(n)) term for the graph-heuristics. As long as g(n) = O(n
5
2 ), which it

is for our graph heuristics, these changes will make no di�erent to the asymptotic runtime

of the algorithm.

Complexity Analysis 7.2 Taking the size of the partition graph as a constant and the

net-size and chip-sizes as input parameters, and g(n) as the run-time of the graph-coloring
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heuristic employed, the Gambit Algorithm has a worst-case runtime bound of:

O(bf(n) + (bn2 log b+ nb2 + b3) log n+ b2 + n
5
2 b+ bg(n))

where f(n) is the runtime bound of the base-case.

7.5 Experimental Results

Gambit was implemented as a proof-of-concept. Raising the quality of Gambit's results to

a competitive level will require further research. However, our results indicate that such

research is worthwhile.

In Table 7.1 we present the results of using the Gambit algorithm with the Dsatur

heuristic [17], and in Table 7.2 we present the results of using the algorithm with the

graph-interference heuristic. Clearly the later heuristic is superior in practice, signi�cantly

increasing quality with very little increase in runtime.

Circuit Average Channel- Best Channel- Runtime

Width Width (seconds)

busc 20.47 � 0.6 18 31.36 � 1.1

dma 26.20 � 0.57 24 76.37 � 2.0

bnre 36.53 � 0.6 33 180.90 � 3.4

dfsm 32.13 � 0.80 29 179.43 � 4.8

9symml 21.43 � 0.59 19 21.3 � 1.4

term1 16.10 � 1.1 12 11.13 � 1.5

apex7 17.60 � 0.9 14 19.83 � 2.1

alu2 30.30 � 0.78 27 63.57 � 1.6

too large 30.00 � 0.7 27 76.97 � 1.4

example2 24.60 � 1.0 21 53.03 � 3.0

vda 42.33 � 0.7 39 141.7 � 2.4

alu4 42.70 � 0.8 38 149.40 � 1.9

Table 7.1: The channel-width produced by Gambit for each benchmark (as speci�ed
by the chromatic number of the conict graph), and the runtime of the algorithm in
second when using the Dsatur Heuristic [17]. All averages are over thirty runs.
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Circuit Average Channel- Best Channel- Runtime

Width Width (seconds)

busc 14.2 � 0.58 12 32.46 � 1.6

dma 17.60 � 0.5 15 77.47 � 2.0

bnre 23.63 � 0.5 21 186.73 � 3.6

dfsm 20.23 � 0.6 18 191.63 � 4.7

9symml 16.23 � 0.6 14 21.2 � 1.34

term1 11.2 � 0.7 9 9.67 � 1.3

apex7 12.97 � 0.8 11 20.56 � 2.3

alu2 21.93 � 0.6 19 65.87 � 2.0

too large 20.03 � 0.7 18 78.80 � 2.12

example2 18.06 � 0.9 15 56.10 � 2.7

vda 28.47 � 0.5 26 144.33 � 2.0

alu4 29.16 � 0.7 27 153.92 � 2.90

Table 7.2: The channel-width produced by Gambit for each benchmark (as speci�ed
by the chromatic number of the conict graph), and the runtime of the algorithm in
second using the graph interference heuristic. All averages are over thirty runs.

In Table 7.3 we see Gambit compared to several of the tool suites discussed in Section

5.6.4. Note that this is not a fair comparison, as those tools allow input pin doglegs where

Gambit does not, allowing for more compaction of nets into channels. Clearly, Gambit is

not the superior tool. However, observe that Gambit does tie or beat each of these tool

suites for at least once benchmark.

7.6 Conclusion

Although in implementing Gambit we have not produced a tool that is generally competitive

with others in our tool suite, we have produced a proof of concept: conict graphs can be

used to integrate the placement, detailed routing and global routing into a simultaneous

execution.

There are two speci�c areas of research worth following up in our goal to make Gambit

a quality tool. The �rst is in the area of graph colorings. The best algorithms to color
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Global R. LocusRoute GBP OCG Gambit

Detailed R. CGA SEGA

9symml 9 9 9 9 14

alu2 12 10 11 9 19

alu4 15 13 14 12 27

apex7 13 13 11 10 11

example2 18 17 13 12 15

term1 10 9 10 9 9

too large 13 11 12 11 18

vda 14 14 13 11 26

Total 104 96 93 83 139

Table 7.3: Comparison of channel-widths resulting from the Altor placement tool [80]
paired with various route tools, compared against the Gambit tool with the interference
graph heuristic. All scores shown are the best out of all trials. Tools for scores other
than Gambit are taken from the paper on VPR [15].

classes of graphs exploit speci�c characteristics of those graphs. If we can �nd a common

characteristic of conict graphs, we may be able to devise a heuristic with a bound on

solution quality, or even a polynomial time algorithm that �nds exact solutions for graphs of

the given characteristics. Coudert used such a technique to provide a polynomial algorithm

for the exact coloring of perfect graphs [37]. His argument that all \real life" graphs have the

characteristic of being perfect actually provided part of the initial thought process leading

to Gambit. However, conict graphs provide an example of a real life graph that is not

perfect.

The second area of research is in the base case of the recursion, the so-called \miniature

routing problem". While the integer programming technique works well for Spi�y, it does

not lend itself to the added complexity produced by the conict graph. In order to improve

the results of Gambit, an alternative method must be found of routing around the base-case

will minimizing �(G).



8

Circuit Mappings for 3D-FPGAs

In Chapter 5 we discussed our implementation of the Spi�y algorithm and showed that

when paired with the Upstart router, the tool suite produces quality circuit mappings for

traditional FPGA architectures. However, both tools are also designed to process circuit

instances for the 3D-FPGA architectures. With the ability to create mappings for the 3D

architecture, we can now experimentally justify the arguments made in Chapter 3.

In Section 8.1 we discuss the conceptual challenges of generalizing each of the tools to

the third dimension. In Section 8.2 we compare 2D mappings with 3D mappings, which

shows that the move to the third dimension does result in an improvement in circuit quality.

In Section 8.3 we examine the routings produced by di�erent partition grids for 3D-FPGAs,

and in Section 8.4 we explore the e�ects of template smoothing on the 3D mappings. Finally,

in Section 8.5 we consider the cases where the 3D-FPGA is provided with only a subset of

the possible vertical connections, cases Spi�y is also equipped to handle.

8.1 Spi�y and Upstart for 3D-FPGAs

While the implementation details of Spi�y for the 3D-FPGAs are not completely straight-

forward, the basis for the Spi�y algorithm remains unchanged. We place an r � p � q

partition grid on the chip, perform each stage of the algorithm as with the 2D architecture,

123
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and recurse through the partitions. Template smoothing is implemented analogously, al-

though the smoothing-classes vary with the di�erent partition girds. We note that because

Upstart is a graph-based router, it easily generalizes to the third dimension.

8.2 2D-FPGAs vs 3D-FPGAs

In this section we compare circuit mappings of the two architectures with the intent to

show that 3D-FPGAs do lead to higher-quality results. Using the Spi�y/Upstart tool suite,

we map traditional benchmarks to variations of 3D-FPGA architectures and compare the

resulting channel widths and net lengths. However, it is very important that we conduct

our experiments in such a way as to ensure that any gains in the 3D-architecture are due to

the extra dimensions, and not because of extra resources or di�erences in the performance

of the algorithm on that architecture.

In order to ensure that the mapping tool operates at the same level on each architecture,

we must �nd a grid partition for the 3D architecture comparable to the 1� 3� 3 partition

used for the 2D architecture. Computationally, we are limited to using a grid of dimensions

no larger than 3�2�2. But by using a 3�2�2 partition grid to map our 3D-circuits, while
2D circuits are mapped with a 3�3 partition grid, we leave ourselves open to the possibility
that the greater number of partitions in the 3D architectures was responsible for any gain

in circuit quality. Hence we will limit ourselves to a 2� 2� 2 partition grid { giving the 2D

architecture a slight advantage. Because we are dealing with benchmarks whose x and y

dimensions are greater than the z dimension, we will eventually reach recursion levels where

the block-portions consist of only one level. At this point, Spi�y will automatically switch

back to the 1� 3� 3 partition, thus slightly o�setting the advantage of the 2D mappings.

In order to compare the two architectures we must ensure that the amount of resources

provided to each architecture is equal. If one architecture is provided with more blocks on

which to map a benchmark than the other, that architecture will have an advantage that is

not a product of its dimension: there is more room to place and route elements, leading to
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better circuit mappings. If we are to argue that 3D-FPGAs are superior, we must ensure

that they are not provided with more resources than on the 2D architecture.

In Section 8.2.1, we compare our mappings of standard benchmarks between 2D-FPGAs

and 4-level 3D-FPGAs such that the two architectures are provided with exactly the same

number of logic blocks. In many cases the number of logic blocks provided is larger than

required by the benchmark, but as this will be equally true on both chips we believe neither

architecture will receive an advantage.

In Section 8.2.2 we take our standard mappings for the 2D-FPGAs and compare them

with mappings to 3D-FPGAs of 2 to 4 levels. Here we make our best e�ort to keep the

resources the same, though the smallest cube with enough blocks to hold the circuit some-

times has slightly more logic blocks than its 2D counterpart. However, such experiments

give us a sense of the gain resulting from the addition of levels to the FPGA.

8.2.1 Holding Chip Size Constant

In our �rst experiment, we take each benchmark and map it to two FPGA's of the same

size: a standard FPGA that is the smallest square of even parameters that can hold the

circuit, and a four-level 3D-FPGA with each side of each level cut in half. For a circuit

requiring k logic blocks, let c be the smallest even integer such that c �
p
k. We then map

the circuit to a standard FPGA of size c� c and to a 3D-FPGA of size 4� c
2 � c

2 .

In Table 8.1 we see the average results of this mapping. Moving to the third dimension

proves bene�cial for both channel-width and the average net length, with a 22.31% im-

provement in the �rst, and a 11.23% improvement in the second. However, since we are not

trying to rate the e�ectiveness of our tool, but rather the e�ectiveness of our architecture,

it is more important to consider the best mapping that can be achieved on the architecture.

In Table 8.2 we see these statistics. On average the best circuit mapping over a 3D-FPGA

improves the best channel-width on a 2D-FPGA by 18.97%, while the net length is improved

by 9.31%.



8.2. 2D-FPGAs vs 3D-FPGAs 126

Channel-Width Net Length

Circuit Size 2D 3D %� 2D 3D %�

busc 152 9.30 � 0.66 7.50 � 0.36 19.35% 20.56 � 1.81 19.84 � 1.11 3.49%

dma 261 8.83 � 0.43 7.73 � 0.34 12.45% 23.68 � 1.01 21.67 � 0.56 8.48%

bnre 390 10.77 � 0.38 8.93 � 0.37 17.03% 24.12 � 0.29 22.65 � 0.97 6.11%

dfsm 451 15.60 � 1.70 10.33 � 0.60 33.76% 37.28 � 4.32 27.02 � 2.39 27.51%

9symml 80 10.10 � 0.38 7.47 � 0.25 26.07% 24.36 � 0.30 19.99 � 0.24 17.93%

term1 86 8.80 � 0.52 6.83 � 0.33 22.35% 17.57 � 1.09 15.01 � 0.64 14.56%

apex7 113 8.80 � 0.69 7.87 � 0.45 10.61% 20.02 � 1.82 19.55 � 0.73 2.33%

alu2 159 10.53 � 0.51 8.73 � 0.39 17.09% 25.63 � 1.45 24.46 � 0.98 4.57%

too large 189 12.80 � 0.95 9.23 � 0.35 27.86% 26.56 � 1.88 22.95 � 1.00 13.60%

example2 164 10.10 � 0.85 7.33 � 0.28 27.39% 18.25 � 1.62 14.88 � 0.81 18.46%

vda 262 12.80 � 0.56 8.89 � 0.28 30.56% 30.77 � 1.89 25.16 � 0.62 18.25%

alu4 264 11.40 � 0.35 10.03 � 0.50 11.99% 27.25 � 0.87 28.92 � 1.59 -6.09%

Average 22.31% 11.23%

Table 8.1: A comparison of the channel-widths and net lengths of 3D-FPGA mappings
compared against the 2D-FPGA holding the FPGA size constant. An FPGA of size
k was mapped to a 2D-FPGA of size c � c and a 3D-FPGA of size 4 � c

2
� c

2
, where

c is the smallest even integer such that c �
p
k. Each number is the average of 30

runs, given with a 95% con�dence interval. Note that as there is no detailed router
capable of optimizing net length for 3D-FPGAs, we instead use net length to estimate
performance.

Note the added signi�cance in the improvement in net length, as this is accomplished

after the reduction of channel-width. While channel-width is our primary concern, the

reduction of channel-width leads to a reduction of resources and should therefore lead to

an increase in net lengths. With an 19% reduction in channel-width, we would expect net

lengths to increase signi�cantly. Hence our 9% reduction in net lengths further validated

our expectations of 3D-FPGAs.

8.2.2 Varying the Layers

In our next set of experiments, we vary the number of layers of the 3D-FPGA. Mapping each

benchmark to architectures of comparable resources and ranging from one to four levels, we

compare the average and best results for each benchmark in terms of channel-width and net
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Channel-Width Net Length

Circuit 2D 3D %� 2D 3D %�

busc 7 6 14.29% 15.03 14.18 5.64%

dma 8 7 12.50% 21.71 20.04 7.70%

bnre 9 7 22.22% 22.78 20.53 9.88%

dfsm 9 7 22.22% 21.40 20.29 5.20%

9symml 8 6 25.00% 22.22 18.29 17.66%

term1 6 6 0.00% 11.81 11.39 3.56%

apex7 6 5 16.67% 14.46 13.54 6.37%

alu2 9 7 22.22% 21.89 19.38 11.47%

too large 9 7 22.22% 19.42 17.44 10.21%

example2 8 6 25.00% 14.04 12.85 8.47%

vda 11 8 27.27% 27.23 23.12 15.10%

alu4 10 8 20.00% 25.60 22.69 11.34%

Average 18.97% 9.31%

Table 8.2: A comparisons of the runs from Table 8.1, using the best of 30 runs for
each.

length. Here we use the standard size architecture for each benchmark, and a 3D-FPGAs

of two to four levels with approximately the same amount of resources. The exact size of

each architecture for each benchmark can be seen in Table 8.3.

Name 1 Layer 2 Layers 3 Layers 4 Layers

busc 1 � 13� 12 2� 9� 9 3 � 8� 7 4� 7� 6

dma 1 � 18� 16 2� 12� 12 3� 10� 10 4� 9� 8

bnre 1 � 22� 21 2� 16� 15 3� 13� 12 4� 11 � 11

dfsm 1 � 23� 22 2� 16� 16 3� 13� 13 4� 12 � 11

9symml 1 � 11� 10 2� 8� 7 3 � 7� 6 4� 6� 5

term1 1 � 10� 9 2� 8� 6 3 � 6� 5 4� 5� 5

apex7 1 � 12� 10 2� 8� 8 3 � 7� 6 4� 6� 5

alu2 1 � 15� 13 2� 10� 10 3 � 9� 8 4� 7� 7

too large 1 � 15� 14 2� 11� 10 3 � 9� 8 4� 8� 7

example2 1 � 14� 12 2� 10� 9 3 � 8� 7 4� 7� 6

vda 1 � 17� 16 2� 12� 12 3� 10� 9 4� 9� 8

alu4 1 � 19� 17 2� 13� 13 3� 11� 10 4� 9� 8

Table 8.3: The size of the architectures used for each benchmark.
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Table 8.4 shows the average and best channel-width resulting from thirty mappings of

each benchmark to each architecture, and Table 8.5 shows the corresponding percentage

improvement for each 3D-FPGA benchmark mapping over the standard FPGA benchmark

mapping.

2 layers 3 layers 4 layers

Circuit Average Best Average Best Average Best

busc 6.80 � 0.45 6 7.30 � 1.22 6 7.00 � 0.75 6

dma 7.90 � 0.79 6 7.40 � 0.60 6 7.90 � 1.14 6

bnre 9.80 � 0.81 9 9.80 � 0.66 9 9.20 � 0.45 8

dfsm 9.00 � 0.34 8 10.20 � 1.38 8 8.50 � 0.61 7

9symml 7.80 � 0.56 7 6.90 � 0.41 6 6.80 � 0.45 6

term1 8.60 � 0.90 6 7.80 � 0.74 7 7.00 � 0.83 5

apex7 6.50 � 0.51 6 7.40 � 0.90 5 7.40 � 0.69 5

alu2 8.10 � 0.63 7 8.70 � 0.96 7 8.90 � 1.04 7

too large 9.10 � 0.71 8 9.40 � 0.97 7 7.80 � 0.45 7

example2 8.40 � 0.97 7 8.30 � 0.76 7 8.30 � 0.68 7

vda 9.80 � 0.66 9 10.30 � 1.17 8 8.70 � 0.35 8

alu4 10.30 � 0.48 9 10.30 � 0.90 8 9.30 � 0.76 8

Table 8.4: The average and best channel-widths produced when mapping each bench-
mark to architectures ranging from 2 to 4 levels. The statistics are taken over 30 runs
for each benchmark, and intervals are at the 95% level of con�dence.

Clearly the addition of each level results in improvements. While a few benchmarks do

su�er with addition of a second level, the overall improvement is impressive. At four levels

we achieve on average a 19% improvement in the best channel-width found.

In Table 8.6 and Table 8.7 we see the best net-lengths achieved for each benchmark. As

the channel-width has been decreased we would expect net length to increase dramatically.

However, net length increases only by a small percentage for the 2- and 3- level FPGAs,

and actually decreases for the 4-level FPGAs.
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2 layers 3 layers 4 layers

Circuit Average Best Average Best Average Best

busc 15.00% 14.29% 8.75% 14.29% 12.50% 14.29%

dma 9.92% 25.00% 15.62% 25.00% 9.92% 25.00%

bnre 9.01% 0.00% 9.01% 0.00% 14.58% 11.11%

dfsm 12.02% 11.11% 0.29% 11.11% 16.91% 22.22%

9symml 12.06% 12.50% 22.21% 25.00% 23.34% 25.00%

term1 -14.67% 0.00% -4.00% -16.67% 6.67% 16.67%

apex7 13.68% 0.00% 1.73% 16.67% 1.73% 16.67%

alu2 17.77% 22.22% 11.68% 22.22% 9.64% 22.22%

too large 9.45% 11.11% 6.47% 22.22% 22.39% 22.22%

example2 11.30% 12.50% 12.35% 12.50% 12.35% 12.50%

vda 18.54% 10.00% 14.38% 20.00% 27.68% 20.00%

alu4 11.74% 10.00% 11.74% 20.00% 20.31% 20.00%

Average 10.48% 10.73% 9.19% 14.36% 14.83% 18.99%

Table 8.5: The percent improvement in channel width over the 2D architecture for
each multi-layered architecture.

2 layers 3 layers 4 layers

Circuit Average Best Average Best Average Best

busc 15.89 � 1.03 14.89 15.90 � 1.88 14.19 15.74 � 1.39 13.54

dma 22.95 � 0.67 21.23 22.46 � 0.52 21.66 21.32 � 0.89 19.87

bnre 26.98 � 1.03 25.44 25.42 � 0.73 23.73 23.73 � 0.50 22.80

dfsm 24.37 � 0.61 23.29 23.02 � 0.47 22.13 21.89 � 0.66 20.37

9symml 21.06 � 0.87 18.38 21.29 � 0.43 20.39 20.71 � 0.65 18.75

term1 17.88 � 1.18 14.48 16.30 � 0.57 14.64 13.80 � 1.21 11.66

apex7 16.33 � 1.58 14.50 17.35 � 1.82 13.80 14.50 � 1.13 13.09

alu2 22.62 � 0.81 21.54 21.45 � 0.47 20.18 22.45 � 1.57 19.76

too large 21.07 � 1.36 19.81 22.40 � 2.55 18.48 18.46 � 0.40 17.74

example2 16.20 � 1.49 14.36 15.48 � 1.85 12.77 15.45 � 1.83 12.85

vda 26.87 � 0.61 25.56 27.34 � 2.29 24.16 23.47 � 0.41 22.91

alu4 27.26 � 0.32 26.63 27.07 � 2.18 25.01 24.55 � 1.61 22.85

Table 8.6: The average and best net lengths produced when mapping each benchmark
to architectures ranging from 1 to 4 levels. The statistics are taken over 30 runs for
each benchmark, and intervals are at the 95% level of con�dence.
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2 layers 3 layers 4 layers

Circuit Average Best Average Best Average Best

busc -1.86% -3.62% -1.92% 1.25% -0.90% 5.78%

dma -1.10% 1.03% 1.06% -0.98% 6.08% 7.37%

bnre -5.89% -7.66% 0.24% -0.42% 6.87% 3.51%

dfsm -4.86% -8.93% 0.95% -3.51% 5.81% 4.72%

9symml -2.53% -1.66% -3.65% -12.78% -0.83% -3.71%

term1 -31.47% -23.55% -19.85% -24.91% -1.47% 0.51%

apex7 -8.43% -6.07% -15.21% -0.95% 3.72% 4.24%

alu2 0.44% -1.03% 5.59% 5.35% 1.19% 7.32%

too large -0.96% -2.01% -7.33% 4.84% 11.55% 8.65%

example2 -8.36% -6.29% -3.55% 5.48% -3.34% 4.89%

vda 1.21% 0.47% -0.51% 5.92% 13.71% 10.79%

alu4 -1.56% -5.97% -0.86% 0.48% 8.53% 9.07%

Average -5.45% -5.44% -3.75% -1.69% 4.24% 5.26%

Table 8.7: The percent improvement in net length over the standard architecture for
each multi-layered architecture.

8.3 Changing the Partition Dimensions

As we discussed in Chapter 5, it is theoretically possible to increase the dimensions of the

partition grid { presumably leading to superior results. However, in practice any grid with

more that 12 partitions is infeasible, leave us only one alternative to the 2��2�2 partition:
a 3� 2� 2 partition. Recall that when we reach a portion consisting of a plane, we revert

back to a 1� 3� 3 partition grid.

In Tables 8.8, 8.9 and 8.10 we see the results of mapping the benchmarks to architectures

of varying levels using the 3�2�2 partition grid. In all cases the average runtime is increased
dramatically for very little (when any) gain in quality. As the percentage increase in runtime

appears to be inversely proportional to the size of the circuit, we can attribute part of it

to the large start-up cost of loading the additional Steiner-tree structures. Hence for larger

benchmarks the large partition my be of use. In these examples it is not worthwhile.
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Circuit Channel-Width Net Length Runtime

Average %� Average %� Average %�

busc 7.17 � 0.34 -5.39% 16.17 � 0.66 -7.69% 6.87 � 0.73 -8.99%

dma 7.90 � 0.27 0.00% 22.91 � 0.27 -7.89% 13.17 � 0.61 -17.56%

bnre 9.90 � 0.36 -1.02% 27.45 � 0.25 -6.08% 21.67 � 0.42 -12.85%

dfsm 9.13 � 0.36 -1.48% 24.33 � 0.35 -0.84% 27.77 � 0.83 -6.80%

9symml 7.57 � 0.25 2.99% 20.41 � 0.50 2.67% 3.00 � 0.00 -50.00%

term1 7.30 � 0.45 15.12% 16.21 � 0.87 6.27% 3.00 � 0.24 -76.47%

apex7 6.90 � 0.33 -6.15% 16.69 � 1.00 -9.16% 3.90 � 0.34 -25.81%

alu2 8.30 � 0.28 -2.47% 22.43 � 0.52 -3.31% 6.27 � 0.17 -27.89%

too large 8.53 � 0.29 6.23% 21.10 � 0.54 -5.94% 7.77 � 0.27 -27.32%

example2 8.33 � 0.55 0.79% 15.54 � 0.82 0.88% 8.77 � 0.79 -34.87%

vda 9.77 � 0.34 0.34% 27.37 � 0.44 -7.41% 13.17 � 0.54 3.19%

alu4 10.23 � 0.39 0.65% 26.97 � 0.29 -2.69% 13.07 � 0.28 -12.64%

Average 0.80 -3.43 -24.83

Table 8.8: Results of using a 2� 3� 3 partition with a target FPGA of 2 layers, and
the improvement over the 2� 2� partition. Statistics are averaged over 30 runs, with
the 95% con�dence intervals indicated.

8.4 Template Smoothing for 3D-FPGAs

Template smoothing can be applied to 3D-FPGAs just as it can be applied to 2D-FPGAs.

With the di�erent Spi�y-portion con�guration it becomes more di�cult to characterize the

templates, but is no more di�cult to perform once the templates are speci�ed.

When using a 1�3�3 partition, we could easily specify a smoothing-portion by its center
Spi�y-portion. When an employing a 2�2�2 partition, we specify a partition by its corner.
Consider the 4 � 4� 4 grid of level 2 Spi�y-portions, and number them from 0 to 3 along

each axis. The smoothing portion consisting of the Spi�y-portions (0; 0; 0), (0; 1; 0), (0; 0; 1),

(0; 1; 1), (1; 0; 0), (1; 1; 0), (1; 0; 1) and (1; 1; 1) would be denote by the corner of the least

value for each coordinate, (0; 0; 0). In this manner we can unique specify and Spi�y-portion,

and use these speci�cations to unique de�ne each possible smoothing-template.

In Tables 8.11 through 8.14 we see the results from using four progressively larger

smoothing-templates for mapping our benchmarks to a four-layer architecture. For tem-
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Circuit Channel-Width Net Length Runtime

Average %� Average %� Average %�

busc 6.93 � 0.31 5.02% 15.00 � 0.57 5.67% 6.57 � 0.60 -49.24%

dma 7.57 � 0.35 -2.25% 21.44 � 0.29 4.54% 11.73 � 0.47 -20.96%

bnre 9.00 � 0.38 8.16% 23.25 � 0.26 8.53% 20.73 � 0.42 -12.07%

dfsm 8.53 � 0.42 16.34% 20.83 � 0.20 9.49% 28.80 � 1.19 -20.50%

9symml 6.80 � 0.23 1.45% 20.55 � 0.52 3.50% 3.00 � 0.00 -50.00%

term1 7.13 � 0.51 8.55% 14.41 � 0.62 11.58% 2.47 � 0.29 -76.19%

apex7 6.77 � 0.36 8.56% 14.67 � 0.63 15.46% 4.40 � 0.45 -76.00%

alu2 8.30 � 0.37 4.60% 21.23 � 0.37 1.04% 6.13 � 0.19 -22.67%

too large 8.27 � 0.42 12.06% 19.16 � 0.49 14.44% 8.13 � 0.42 -27.08%

example2 7.93 � 0.42 4.42% 13.48 � 0.39 12.96% 12.53 � 1.27 -42.42%

vda 9.10 � 0.25 11.65% 24.13 � 0.27 11.75% 20.03 � 1.81 -41.08%

alu4 9.27 � 0.39 10.03% 24.21 � 0.25 10.57% 12.70 � 0.30 -18.69%

Average 7.38 9.13 -38.08

Table 8.9: Results of using a 2� 3� 3 partition with a target FPGA of 3 layers, and
the improvement over the 2� 2� partition. Statistics are averaged over 30 runs, with
the 95% con�dence intervals indicated.

plates T1, we include the smoothing-portions with corners at (0; 1; 1), (2; 1; 1) and (1; 1; 1)

{ the center of each plane. For T2, we took each smoothing portion from the middle:

(1; 1; 0), (1; 1; 2), (1; 0; 1), (1; 2; 1) and (1; 1; 1). For T3 we added to this the same portions

at the bottom and top level (changing the z coordinate of T2 to 0 and 2. For T4 we used

all possible smoothing portions T1 [ T2 [ T3 [ T4. As with the 2D-FPGAs, the quality of

the results increase with the size of the template, as does the runtime. Once again, with

the largest template no benchmark requires more than 48 seconds and returns a signi�cant

improvement in both channel-width and net length.

8.5 Restrictions on Vertical Routing

In the initial proposal of the 3D-FPGA, we believed it likely that any commercial version

of such a chip would only provide a minimal number of vertical interconnections. While

the research of Lesser, Meleis, Vai, Chiricescu, Xu and Zavracky does not come to the
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Circuit Channel-Width Net Length Runtime

Average %� Average %� Average %�

busc 7.07 � 0.38 -0.95% 14.44 � 0.40 8.25% 5.37 � 0.44 -37.61%

dma 7.57 � 0.23 4.22% 20.60 � 0.45 3.38% 11.20 � 0.46 -12.00%

bnre 9.33 � 0.32 -1.45% 23.31 � 0.27 1.79% 18.73 � 0.31 -7.66%

dfsm 8.53 � 0.29 -0.39% 20.88 � 0.20 4.64% 23.07 � 0.49 -6.30%

9symml 7.67 � 0.34 -12.75% 19.70 � 0.47 4.87% 2.93 � 0.17 -62.96%

term1 7.00 � 0.31 0.00% 13.76 � 0.62 0.29% 2.20 � 0.27 -100.00%

apex7 7.03 � 0.43 4.96% 15.32 � 0.73 -5.62% 4.27 � 0.60 -25.49%

alu2 8.50 � 0.38 4.49% 21.07 � 0.67 6.15% 5.40 � 0.19 -28.57%

too large 8.30 � 0.37 -6.41% 18.72 � 0.35 -1.42% 6.97 � 0.27 -22.22%

example2 7.87 � 0.35 5.22% 14.65 � 1.01 5.20% 9.77 � 1.60 -23.63%

vda 9.17 � 0.43 -5.36% 23.49 � 0.23 -0.07% 12.97 � 0.66 -7.16%

alu4 9.23 � 0.35 0.72% 23.40 � 0.21 4.69% 11.77 � 0.27 -15.36%

Average -0.64 2.68 -29.08

Table 8.10: Results of using a 2� 3� 3 partition with a target FPGA of 4 layers, and
the improvement over the 2� 2� partition. Statistics are averaged over 30 runs, with
the 95% con�dence intervals indicated.

same conclusion after constructing the actual chip [60, 63], we have still provided Spi�y the

capacity to account for this restriction in exibility.

The modi�cations to allow Spi�y to handle the case of missing vertical interconnections

are straightforward. In order to prevent Spi�y from assigning a net to a non-existent

connection, we merely remove the connections end-point switch blocks from consideration

during the virtual-node assignment phase. If a net is not assigned to the switch blocks on

either end of the connection, it will not use the connection. As Spi�y was already con�gured

to avoid the use of switch blocks that are full, we merely needed to mark each relevant switch

block as full (with respect to the vertical direction) in the initialization phase. Having done

that, Spi�y will automatically avoid routing nets through the non-existent vertical inter-

connections.

There is one related issue which is more complex: the assignment of nets to partitions

in such a way as to guarantee there is a feasible minimal route between them. Suppose
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Circuit Channel-Width Net Length Runtime

Average %� Average %� Average %�

busc 7.10 � 0.34 -1.43% 14.78 � 0.62 4.05% 5.33 � 0.57 -36.75%

dma 7.33 � 0.25 7.17% 20.11 � 0.36 3.06% 11.90 � 0.67 -19.00%

bnre 8.73 � 0.38 5.07% 23.17 � 0.26 0.98% 21.03 � 0.54 -20.88%

dfsm 8.27 � 0.38 2.75% 21.45 � 0.26 2.63% 25.27 � 0.75 -16.44%

9symml 6.93 � 0.28 -1.96% 20.88 � 0.27 -0.31% 2.07 � 0.09 -14.81%

term1 6.97 � 0.41 0.48% 14.72 � 0.66 -9.73% 1.63 � 0.21 -48.48%

apex7 7.33 � 0.43 0.90% 15.06 � 0.73 -8.58% 3.13 � 0.34 7.84%

alu2 7.97 � 0.32 10.49% 20.49 � 0.64 8.49% 5.83 � 0.28 -38.89%

too large 7.90 � 0.45 -1.28% 18.20 � 0.57 -0.51% 7.77 � 0.36 -36.26%

example2 8.20 � 0.44 1.20% 14.69 � 0.90 4.54% 8.50 � 1.35 -7.59%

vda 8.93 � 0.35 -2.68% 23.21 � 0.45 -0.75% 12.90 � 0.68 -6.61%

alu4 9.23 � 0.38 0.72% 23.33 � 0.42 4.46% 11.53 � 0.31 -13.07%

Average 1.79% 0.69% -20.91%

Table 8.11: The results of using smoothing-template T1 on a 4-layer FPGA, and the
improvement over a mapping to a 4-layer FPGA without using template smoothing.
All averages are taking over 30 runs, with the 95% con�dence interval speci�ed.

the simulated annealing assigned some net to two vertically adjacent partitions, and there

were no vertical interconnections between those two partitions. The net would then not be

routable, and the algorithm would report failure.

In order to avoid such a situation there were two options: ensuring that the simulated

annealing would not allow such a situation arise, or ensuring that there will always be a route

between any two partitions. As we will discuss next, the second solution is quite reasonable

to implement, and there is no need to complicated our simulated annealing algorithm to

implement the �rst solution.

Given the results of our experiments, it is reasonable to assume that the partition size

will be of dimensions z � 2 � 2, where z 2 f2; 3g. Further, in the benchmarks that we

consider the architectures are limited to four levels. As a result, no chip portion past

the second recursion will contain more than one level. Consider Figure 8.1, where we see

one level of a 3D-FPGA, with the 2 � 2 partition placed on it to two levels of recursion.
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Circuit Channel-Width Net Length Runtime

Average %� Average %� Average %�

busc 6.93 � 0.29 0.95% 14.67 � 0.58 4.76% 5.53 � 0.46 -41.88%

dma 7.47 � 0.31 5.49% 20.03 � 0.49 3.45% 12.23 � 0.57 -22.33%

bnre 8.83 � 0.33 3.99% 22.89 � 0.34 2.21% 23.07 � 0.80 -32.57%

dfsm 8.33 � 0.30 1.96% 21.33 � 0.29 3.15% 27.00 � 0.56 -24.42%

9symml 7.13 � 0.32 -4.90% 20.40 � 0.35 1.96% 1.97 � 0.07 -9.26%

term1 6.60 � 0.29 5.71% 14.07 � 0.69 -4.83% 1.53 � 0.19 -39.39%

apex7 7.03 � 0.40 4.96% 15.52 � 0.77 -11.89% 3.53 � 0.41 -3.92%

alu2 7.87 � 0.36 11.61% 20.44 � 0.46 8.70% 6.53 � 0.29 -55.56%

too large 7.97 � 0.27 -2.14% 18.40 � 0.54 -1.61% 8.17 � 0.34 -43.27%

example2 7.80 � 0.36 6.02% 14.92 � 0.85 3.07% 9.73 � 1.70 -23.21%

vda 8.83 � 0.26 -1.53% 23.90 � 0.64 -3.71% 14.57 � 1.06 -20.39%

alu4 9.03 � 0.35 2.87% 23.14 � 0.24 5.24% 13.20 � 0.42 -29.41%

Average 2.92% 0.88% -28.80%

Table 8.12: The results of using smoothing-template T2 on a 4-layer FPGA, and the
improvement over a mapping to a 4-layer FPGA without using template smoothing.
All averages are taking over 30 runs, with the 95% con�dence interval speci�ed.

By providing the marked switch blocks with vertical inter-connections, we have assured

that each partition has access to some vertical inter-connection, hence a net can be routed

between any two partitions. Any further portions will consist of only one level, hence do not

need access to vertical inter-connections. Thus only four vertical connections are required

per level. In general, for a 3D-FPGA consisting of k levels, we would require 4d
k

2
e vertical

interconnections per level.

In Tables 8.15 through 8.17 we see the results of mapping our circuits to these restricted

3D architectures.

8.6 Conclusion

Having created a tool suite that can create circuit mappings to 3D-FPGAs, we have shown

the advantages of constructing these devices. The addition of extra levels allows for circuit

mappings that require less space and lead to better performance then their two-dimensional
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Circuit Channel-Width Net Length Runtime

Average %� Average %� Average %�

busc 7.07 � 0.31 -0.95% 14.72 � 0.64 4.49% 6.90 � 0.61 -76.92%

dma 7.23 � 0.29 8.44% 19.39 � 0.30 6.55% 14.50 � 0.53 -45.00%

bnre 8.87 � 0.40 3.62% 21.75 � 0.27 7.09% 28.10 � 0.84 -61.49%

dfsm 8.00 � 0.37 5.88% 20.22 � 0.19 8.23% 32.17 � 0.76 -48.23%

9symml 7.10 � 0.36 -4.41% 19.86 � 0.32 4.60% 2.80 � 0.15 -55.56%

term1 6.80 � 0.37 2.86% 13.61 � 0.64 -1.41% 1.80 � 0.27 -63.64%

apex7 7.00 � 0.33 5.41% 14.78 � 0.64 -6.53% 4.67 � 0.46 -37.26%

alu2 8.07 � 0.32 9.36% 20.59 � 0.61 8.02% 8.33 � 0.38 -98.41%

too large 7.63 � 0.35 2.14% 17.51 � 0.18 3.29% 10.87 � 0.34 -90.64%

example2 8.00 � 0.40 3.61% 14.09 � 0.73 8.44% 11.30 � 1.50 -43.04%

vda 8.83 � 0.31 -1.53% 22.90 � 0.57 0.61% 17.47 � 0.91 -44.35%

alu4 9.30 � 0.44 0.00% 22.85 � 0.55 6.43% 15.47 � 0.47 -51.63%

Average 2.87% 4.15% -59.68%

Table 8.13: The results of using smoothing-template T3 on a 4-layer FPGA, and the
improvement over a mapping to a 4-layer FPGA without using template smoothing.
All averages are taking over 30 runs, with the 95% con�dence interval speci�ed.

Figure 8.1: One level of a 3D-FPGA, with two recursion-levels of a 2�2�2 partitioning
displayed. If the four black switch blocks are used for vertical inter-connections, then
every partition is incident to some vertical inter-connection.

counterparts without requiring additional resources. Even the addition of a single level leads

to improvement, and a 3D-FPGA consisting of four levels leads to signi�cant improvement.

In Chapter 3 we discussed the di�culties of constructing 3D-FPGAs, and noted that our

work on the subject had motivated researchers at Northeastern University to construct the
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Circuit Channel-Width Net Length Runtime

Average %� Average %� Average %�

busc 6.87 � 0.29 1.90% 14.11 � 0.43 8.42% 9.10 � 0.50 -133.33%

dma 7.57 � 0.31 4.22% 19.04 � 0.30 8.21% 18.37 � 1.14 -83.67%

bnre 8.03 � 0.39 12.68% 19.75 � 0.24 15.61% 37.73 � 1.38 -116.86%

dfsm 7.17 � 0.28 15.69% 18.39 � 0.18 16.53% 43.07 � 1.20 -98.46%

9symml 7.43 � 0.34 -9.31% 19.55 � 0.40 6.09% 3.70 � 0.17 -105.56%

term1 6.43 � 0.21 8.10% 13.59 � 0.45 -1.31% 2.70 � 0.30 -145.45%

apex7 6.83 � 0.43 7.66% 14.02 � 0.63 -1.05% 5.93 � 0.38 -74.51%

alu2 7.53 � 0.25 15.36% 20.02 � 0.48 10.57% 11.17 � 0.30 -165.87%

too large 7.77 � 0.36 0.43% 17.45 � 0.47 3.64% 14.27 � 0.54 -150.29%

example2 7.90 � 0.37 4.82% 13.57 � 0.55 11.84% 14.03 � 1.27 -77.64%

vda 8.40 � 0.39 3.45% 22.10 � 0.58 4.09% 23.77 � 1.53 -96.42%

alu4 8.57 � 0.39 7.89% 21.79 � 0.45 10.78% 20.83 � 0.58 -104.25%

Average 6.07% 7.79% -112.69%

Table 8.14: The results of using smoothing-template T4 (the set of all possible
smoothing-portions) on a 4-layer FPGA, and the improvement over a mapping to a
4-layer FPGA without using template smoothing. All averages are taking over 30 runs,
with the 95% con�dence interval speci�ed.

Name Channel-Width Net Length Runtime

Average Best Average Best Average

busc 9.30 � 1.12 8 15.83 � 0.95 14.25 5.40 � 1.44

dma 10.90 � 1.70 9 22.69 � 1.06 20.49 9.90 � 1.24

bnre 15.00 � 1.26 12 26.16 � 0.77 23.85 19.40 � 0.37

dfsm 12.50 � 0.91 11 23.85 � 0.47 23.18 25.50 � 1.27

9symml 10.10 � 0.86 9 20.62 � 0.94 18.92 2.20 � 0.30

term1 12.20 � 1.25 10 17.53 � 0.85 15.51 1.30 � 0.35

apex7 10.20 � 2.65 7 15.77 � 1.88 13.78 3.00 � 0.58

alu2 12.60 � 0.97 11 22.16 � 0.38 21.40 4.90 � 0.23

too large 13.30 � 3.07 10 20.91 � 1.14 19.39 6.60 � 0.69

example2 12.70 � 4.03 9 14.94 � 1.43 13.55 7.80 � 1.96

vda 22.10 � 4.52 17 26.82 � 1.41 25.29 11.70 � 1.58

alu4 18.60 � 1.27 16 26.43 � 0.57 25.30 11.70 � 0.48

Table 8.15: The results of using restricted vertical routes on a 2-layer 3D-FPGA. All
averages are taking over 10 runs, with the 95% con�dence interval speci�ed.
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Name Channel-Width Net Length Runtime

Average Best Average Best Average

busc 18.90 � 2.51 14 18.30 � 2.28 14.58 4.80 � 0.56

9symml 13.70 � 0.83 12 22.88 � 0.94 20.56 2.50 � 0.51

term1 13.50 � 1.36 11 16.66 � 1.07 13.26 1.50 � 0.38

apex7 15.40 � 1.94 11 19.11 � 2.14 14.40 2.90 � 0.71

alu2 25.60 � 2.06 22 23.56 � 2.06 21.07 5.60 � 0.50

too large 28.90 � 1.95 24 21.08 � 1.28 19.38 6.20 � 0.66

example2 23.50 � 3.39 17 17.38 � 1.83 14.46 6.80 � 3.05

Table 8.16: The results of restricted vertical routes on a 3-layer 3D-FPGA. All averages
are taking over 10 runs, with the 95% con�dence interval speci�ed.

Name Channel-Width Net Length Runtime

Average Best Average Best Average

busc 13.90 � 2.93 10 17.20 � 1.81 14.97 4.70 � 0.48

dma 20.60 � 1.18 18 22.58 � 0.38 21.84 10.70 � 1.22

9symml 13.10 � 0.92 11 22.23 � 1.05 19.24 2.00 � 0.48

term1 10.80 � 1.61 8 15.71 � 1.31 13.17 1.40 � 0.50

apex7 12.90 � 2.27 10 16.47 � 1.59 14.17 3.40 � 0.84

alu2 18.90 � 2.37 14 24.93 � 1.44 22.11 5.00 � 0.34

too large 19.30 � 2.24 16 20.90 � 0.78 19.66 6.40 � 0.77

example2 23.10 � 4.76 15 17.72 � 2.06 14.27 7.10 � 2.47

alu4 31.60 � 5.17 24 25.69 � 1.38 24.51 11.20 � 0.45

Table 8.17: The results of restricted vertical routes on a 4-layer 3D-FPGA. All averages
are taking over 10 runs, with the 95% con�dence interval speci�ed.

chips, demonstrating that the architecture is feasible [60, 63]. At this point no manufacturer

has produced a commercial 3D-FPGA line, but given these results we strongly believe that

it will eventually happen. We have laid the ground work for such a product, and developed

the tools necessary to make the product useful.
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Summary, Conclusion and Future Work

In this chapter we review the accomplishments of this work and discuss the future of the

research in this dissertation. In Section 9.1 we outline the completed research, and discuss

the results and their signi�cance. In Section 9.2 we will discuss the potential directions our

research could take, and the idea we feel are worth pursuing.

9.1 Summary of Results

The accomplishments of this dissertation can be classi�ed into four area: the creation of

Spi�y, the implementation of template smoothing, the creation of Gambit, and the work

done on three-dimensional �eld programmable gate arrays.

9.1.1 Spi�y

We �rst created the tool Spi�y. Spi�y performs simultaneous placement and global routing

for FPGAs, and is the �rst tool to perform either task for 3D-FPGAs. Based on geometric

partitioning, Spi�y divides the chip area into a set of disjoint grid-portions, then simul-

taneously places logic blocks into these portions and routes nets amongst them. Given

this course placement and global route, the algorithm is then applied to each grid-portion,

139



9.1. Summary of Results 140

re�ning the placement and global route within each partition.

Spi�y was implemented in C++ in slightly more than 10,000 lines of code, and provides

the user with a number options. The user may specify the use of either Steiner trees or

Steiner arboresences to model performance, and may specify a number of the operational

parameters. The simulated annealing algorithm used for partitioning may be replaced with

an exact branch-and-bound algorithm if the user speci�es, or such a substitution can occur

when the chip area reaches a su�ciently small size, also speci�ed by the user. In the case

of 3D-FPGAs, the user has the exibility to add a penalty for vertical interconnections, or

to disallow the use of large numbers of those interconnections.

In comparing Spi�y against its predecessor, we found Spi�y to be a superior tool. Spi�y

was tested over a set of benchmarks frequently used as test-cases for FPGA design au-

tomation tools, and compared against the results of Mondrian using the same benchmarks

and resources. On average, Spi�y reduces the runtime by 38%, with the runtime over the

largest benchmark being reduced from 3.4 hours to 14 minutes. Further, the circuit map-

pings produced by the Spi�y/Upstart pair are of a substantially better quality, lowering the

channel-width by an average of 13% and the net size by an average of 10%. In comparing it

to tools produced since Mondrian we see that the Spi�y/Upstart tool suite produces some

of the best results in the literature. Only VPR achieves better results, and those are derived

from superior technology mappings, giving the tool an additional advantage.

9.1.2 Template Smoothing

We presented the technique of template smoothing. Template smoothing augments the

geometric partitioning methodology and leads to superior circuit mappings. When used

with the Spi�y algorithm, template smoothing intersperses invocations of the algorithm

into the recursive breath-�rst search. Where Spi�y divides the chip area into partitions

and deals with each partitions independently, template smoothing also considers partition

subproblems that overlap the original subproblems. As a result, Spi�y has the opportunity
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to correct and improve solutions that su�ered from the loss of information incurred from

dealing with each original partition independently.

Template smoothing is an option to the Spi�y tool, with the user free to specify the

number and exact locations of extra partitions. The number of extra partitions will increase

the overall runtime, with experimental results showing the correlation between this number

and the percentage increase in runtime is essentially linear. With the largest number of

partitions in our experiments, we achieved an 6% improvement in channel-width and 7%

improvement in path-length when compared to mappings produces without using template

smoothing. Using smaller numbers of partitions, we achieved smaller, but still signi�cant,

increases in quality with a lesser increase in runtime.

Note that while Spi�y and the template smoothing augmentation were designed for 3D-

FPGAs, the techniques are by no means limited to that chip architecture. These algorithms

are equally applicable to many semi-custom design styles, and with some variations could

be applied to full-custom chips. For each style a new tool would have to be coded, but the

theoretical challenges in doing so would be minimal.

9.1.3 Gambit

We created Gambit. Gambit is the �rst tool to perform placement, global routing and

detailed routing simultaneously. Gambit is designed for FPGAs (2D and 3D), though the

concept could be generalized to many channel-based architectures. Based on the constraint

imposed by many commercial FPGAs, Gambit maintains a structure known as a conict

graph, a graph whose coloring will induce a feasible detailed route. By con�guring Spi�y

to make its decision in such a way as to heuristically minimize the chromatic number of the

conict graph, the �nal algorithm produces a detailed routing in addition to the placement

and global routing already created by Spi�y.

Gambit is signi�cant in that it is a proof of concept, showing that it is possible to

perform all three phases together. We do not claim the results to be competitive with other
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tools in the �eld. We do claim the tool has the potential to produce quality mapping.

We have argued the merits of integrating phases, and have shown that a small increase

in the quality of the coloring algorithm brings about a large increase in quality. By using

more sophisticated coloring techniques, we believe the quality of the results will become

competitive to those of other tools. In Section 9.2 we will discuss possible improvements to

the algorithm, which we believe will lead to a tool competitive with other tool suits in the

literature.

9.1.4 3D-FPGAs

We proposed and justi�ed the idea of a 3D-FPGA. By placing FPGAs in layers to form a

three-dimensional con�guration, we argued that the same amount of resources could be used

to construct circuit mappings that would require less space and have a superior performance.

Initially we made a theoretical justi�cation for this argument, which motivated researchers

at Northeastern to implement such an architecture [60, 63].

Having developed the �rst tools for the new architecture, we were able to create the �rst

circuit mappings, and thus the �rst experimental results justifying their use. In performing

experiments, we found that when mapping circuits to 2D-FPGAs with Spi�y, and compar-

ing the results to four-layered 3D-FPGAs of equivalent resources, the 3D-FPGA reduced

channel-width by an average of 22%, and reduced net length by an average of 11%. We con-

tinued to map the benchmarks to FPGAs by varying the number of levels, and established

that in practice the addition of each new level resulted in improvement.

9.2 Future Work

While within each category we achieved the goals listed, there are a number of research

paths we believe are still worth pursuing. To start, a number of aspects of the Spi�y

algorithm leave room for improvement:
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� Steiner Tree Storage: Spi�y relies on the quick computation of minimum rectilinear

Steiner trees, and accomplishes this calculation by storing all possible such trees over

the partition graph. As a result, we are limited by space to fairly small partition sizes.

However, as nets are generally small, it seems likely that Steiner trees with a large

number of terminals could be eliminated from the list, thus allowing us to use larger

partition graphs without the memory penalty incurred by those larger Steiner tree

lists.

� Sharp Partitioning: In performing the sharp partitioning, blocks are placed within

partitions so as to minimize the \spread" of the net, leaving the route-selection phase

to attempt to minimize congestion between nets given the placement. Thus Spi�y

is implicitly prioritizing path length minimization over channel-width minimization,

though the later is generally regarded as more important. We believe it is worth

an e�ort to incorporate a more direct channel-width minimization technique into the

partition phase. It is conceivable that during the simulated annealing phase a penalty

could be incorporated into a solution score to reect that a solution would lead to

a larger channel-width, but the ability to calculate such a penalty quickly would be

vital to the performance of the simulated annealing.

� Floating Virtual Terminals: Once a virtual terminal has been assigned to a switch

block, it is �xed to that block (save by removal during template smoothing). However,

it could prove advantageous during a later partitioning phase to move that virtual

terminal to another switch block along the relevant chip portion's boarder. Doing

such would then e�ect the placement within other independent portions, creating

some di�cult challenges with respect to the data structures and recursion. It may

be worth a programmer's time to incorporate the ability to adjust virtual terminals

during the partition phase, if this can be done without an undo cost in runtime.

� Miniature Routing: Currently, Spi�y uses as its base case a chip portion containing
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exactly one logic block. An examination should be conducted that considers expanding

the base to route larger portions, thus providing the tool with more information as

to the net's path when making the �nal connections. However, the integer program

currently used cannot be easily generalized to these larger base cases, and it is likely

a new method would need to be developed.

While Spi�y could bene�t from research along these lines, Gambit clearly requires sig-

ni�cant work in order to become a quality tool. The �rst step in doing such will require a

deeper investigation into graph-coloring heuristics. Two speci�c techniques worth exploring

is the sequential graph color algorithm developed by Sarma and Banyopadhyay [83], and

the semide�nite method of Karger, Motwani and Sudan [52]. Further, a more sophisticated

method of choosing net colors and routes is required then the simple greedy algorithm

currently employed.

However, the most important area of research involving Gambit is that of the miniature

routing. While we have adopted the Spi�y integer programming solution method to handle

the conict graph, the solution is unsatisfactory. Because of the complexity of the graph-

coloring problem and the size of the conict graph, it is infeasible to have the integer program

minimize the coloring over the entire graph for each base case. Only a small portion of the

graph { the portion relevant to the base-case in question { is considered. It is our belief

that an approach should be developed that would heuristically route the block and color

the entire graph, as opposed to exactly coloring a smaller portion without consideration of

the remainder of the graph.
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