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Abstract

Today’s autonomous systems, such as unmanned ground and aerial vehicles, are becoming

integral in various aspects of our daily lives. With the help of technological advancements in

sensing, actuation, communication, and computation, modern robots are capable of many civilian

and military applications with minimal to no human supervision. However, with these increases in

capabilities comes an increased risk of security vulnerabilities to cyber attacks or system faults that

induce undesired system behavior. Thus, it is crucial to provide improved detection and recovery

measures to ensure proper performance and safety. The objective of an attacker is typically to

implement stealthy attack sequences to manipulate the system of interest, all while attempting to

remain undetected. Although traditional attack detection techniques have been shown to be effective

in mitigating attacks for resilient operation, they are susceptible to being fooled by intelligent

attackers that are able to hide within the system noise profile. Furthermore, cyber attacks and/or

faults that occur on a single vehicle within multi-agent systems can potentially compromise the

performance of all vehicles, resulting in the failure of the multi-agent system from accomplishing

an operation. To counteract these undesirable scenarios, the utilization of recovery frameworks in

single- and multi-agent systems can ensure the safety of all agents while still being able to resiliently

accomplish tasks.

This dissertation focuses on increasing the state-of-the-art attack detection capabilities on

autonomous single- and multi-robot systems to discover previously undetectable stealthy attacks on

the sensor and communication infrastructure. To this end, we present novel runtime randomness-

based detection techniques to identify stealthy falsified sensor measurements and received information

over communication channels that intentionally hide within system noise profiles, but leaves traces

of non-random, inconsistent behavior. Additionally, we introduce an approach utilizing such

randomness-based techniques to covertly pass safety-critical information within a robotic swarm

through hidden signatures without the need to explicitly broadcast this information between

robots. We also highlight two cooperative recovery frameworks within multi-robot systems to aid

in re-localization of compromised robots that suffer from attacks or faults to critical positioning

sensors within unknown or landmark-free environments. Lastly, we present a detection and recovery

framework for individual autonomous systems that suffer from spoofed or faulty on-board controllers,

which can drive the vehicle to undesired locations in the environment.

These techniques are validated through extensive simulations and proof-of-concept lab experiment

case studies with single and cooperative unmanned ground vehicles. Current and future work includes

the development of cooperative frameworks for teams of robots to defend safety-critical regions of

the environment from malicious intruders.



“If everyone is thinking alike, then somebody isn’t thinking.”
– General George S. Patton
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Chapter 1

Introduction

Today’s autonomous cyber-physical systems (CPSs) like unmanned aerial and ground mobile

robots have become integral in various aspects of our daily lives. With the help of technological

advancements, modern robots are fitted with multiple on-board sensors and computers that make

them capable of many civilian and military applications with minimal to no human supervision.

Applications such as automated navigation [58], surveillance [104], search and rescue [96], and task

oriented jobs [19] are becoming more common and ready for deployment in real world applications,

especially in the automotive, industrial, and military domains. These various enhancements in

autonomy are possible thanks to the tight interaction between computation, sensing, communications,

and actuation that characterize CPSs. With these increases in capabilities comes however an

increased risk of security vulnerabilities to cyber attacks with the intent to induce undesired system

behavior. Thus, it is crucial to provide tighter security measures to ensure proper performance and

safety.

A successful attacker is able to implement a stealthy cyber attack sequence to manipulate the

system of interest, all while remaining undetected from attack detection schemes. The execution

of such a stealthy attack allows the successful attacker to degrade system performance, and

potentially cause damage, to the unknowingly compromised system. For example, in the motivational

Figure 1.1, an autonomous unmanned ground vehicle (UGV) experiences a stealthy sensor attack

that intentionally hides within system noise characteristics to slowly drive the UGV away from

its intended path. Previously demonstrated attacks of this nature include cases like: the Global

Positioning System (GPS) spoofing of a vessel [8], sensor and communication attacks on vehicle

technologies [66], infiltration of the Ukrainian power grid [54], and the infamous Stuxnet attack on

industrial SCADA systems [72].

In order to repel these stealthy attacks, detection algorithms are designed to find compromised

system’s components to maintain safe operation. Intelligent attackers, in turn, are forced to

resort to new methods to hide and deceive on-board control systems and their anomaly detection
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Figure 1.1: A pictorial representation where a cyber attack is able to hijack a vehicle to unsafe
states while remaining hidden within the noise profile of its sensors.

counterparts. While such attack vectors are less effective since the attacker needs to maintain a low

profile, performance degradation can be still accomplished if the attack is able to remain undetected.

Various traditional detection techniques [32] have been shown to be effective in mitigating these

attacks to provide resiliency in the scenario of attacks to vulnerable sensors and communication

channels on robotic systems. However, these traditional techniques monitor residual error magnitudes,

which consequently are susceptible to being fooled by intelligent attackers that are able to construct

attack sequences that hide within noise profiles. Typically, malicious attackers aim to compromise

a system by hijacking its states to unsafe regions while hiding within the system’s noise profile.

Despite hiding within magnitude-based boundaries to remain undetected, non-random patterns

arise that violate the expected behavior from normal system behavior. As an example, an attacker

that is hijacking an autonomous system while intentionally manipulating sensor measurements in a

stealthy manner to hide within system noise, will push the measurements toward one direction. In

order for the attack to be effective, it must inherently create inconsistent, non-random behavior of

the measurement residual. Randomness-based monitoring approaches for detection of anomalous

behavior in measurements and received information sequences have not been considered, thus

potentially leaving systems vulnerable to stealthy attacks.

While attack detection on-board a single robot is challenging in its own right, the problem

becomes much more complex when dealing with multi-robot systems where the motion of each robot

is dependent on other agents when using consensus mechanisms. As depicted in Fig. 1.2, a single

robot within a multi-robot system may perform in a non-cooperative way which affects neighboring

vehicles. If this issue is not eliminated from the system, then the effects of the misbehaving agent may

be propagated through the entire robot network. However, within the field of robotics, coordination

and swarming of multi-robot systems have long been studied and are gaining even greater attention

thanks to the many technological advances. These classes of systems are typically used to perform

coordinated tasks in a distributed fashion. This collaborative nature allows for numerous applications

that would be more difficult or not possible to perform with just a single agent, such as: factory
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and warehouse logistics [19], vehicle platooning [61], connected vehicle-to-vehicle operations [86, 41],

surveillance [104], and disaster-relief [26].

Figure 1.2: A multi-robot system which suffers from a compromised agent that impacts control
performance of other vehicles in the entire swarm.

With such benefits in multi-robot systems, also comes the risk of cyber attacks. In fact, many of

the aforementioned applications are typically designed without considering cyber-security issues,

assuming that all the actors (i.e., other robots) in the multi-robot setting are cooperative. In the

presence of a compromised robot in the network, liveness (i.e., the ability to perform and complete

correctly a task) and safety (i.e., avoid collisions or reaching undesired states) properties can be

violated. The presence of malicious actors in a network can potentially manipulate the entire

multi-robot system, hijacking a mission and potentially leading the system toward undesired states.

Such situations can be caused by: compromised communications which results in incorrect sharing of

information between robots, or by manipulated sensor measurements, leading compromised robots

to react to altered on-board signals that are also broadcast to surrounding neighbors. In a successful

hijacking attempt, an attacker is able to implement a stealthy attack sequence to degrade system

performance, all while remaining hidden from detection. It is imperative that stealthy cyber attacks

are discovered such that any compromised agents are isolated and removed from the system to

eliminate the malicious effects from the multi-robot system. Within this dissertation, we expand

on our randomness-based detection techniques to also provide resiliency in multi-robot systems.

These randomness-based methods, are able to recognize stealthy data inconsistencies and patterns

within information exchanges between vehicles. This detection capability enables a system to isolate

compromised robots in order to remove any undesirable effects to the multi-robot system’s control

performance while completing an operation.

Furthermore, during operations the individual robots communicate with each other for coor-

dination in order to complete various tasks. Communication broadcasts containing safety-critical

information (e.g., such as important tasks in an operation) that are not properly encrypted/protected

can be intercepted, thus creating further security issues. The most secure option is to avoid ex-
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changing data altogether; however, this is not a feasible option when safety-critical information

needs to be passed along. If agreed upon before operations, cooperative multi-robot systems

can leverage side-channel information that contain hidden signature data, which are unknown to

malicious attackers. In this way, an agent can collect data and infer the safety-critical information

from the received broadcasts of other agents without them explicitly broadcasting this information.

Hidden signatures within information broadcasts can be leveraged to covertly pass and/or detect

safety-critical information between robots in multi-agent systems to maintain safe operations. We

depict this scenario in Fig. 1.3, where a robot passes safety-critical information to its neighboring

vehicles when an object of interest has been found in the environment.

Figure 1.3: A multi-robot system cooperatively performs a task while inferring the objective of
other teammates that are accomplishing mission-critical tasks.

Beyond attack detection and isolation/removal of compromised agents in robotic systems, is

the essential capability of maintaining resilience for all robots during operation. A main aspect

for a robot to sustain resiliency in undesirable situations is the ability to localize itself within an

environment. The capacity to perform an accurate and robust localization allows unmanned systems

to achieve truly autonomous operations. This can be accomplished in various ways, such as by

relying on positioning sensors like global positioning systems (GPS), odometry, and IMU or through

range sensors such as LiDAR, infrared (IR), and camera systems [21]. The sensing information

can then be leveraged via implementation of localization methods such as Particle filters (PF) and

Simultaneous Localization and Mapping (SLAM) techniques.

While many of the aforementioned localization techniques are measured on-board a single vehicle

to aid in performing a desired task/goal; however, systems with multiple robots need to take

extra measures to ensure all robots are performing properly. For example, consensus algorithms

are typically considered in robotic swarms where agents share information (e.g., their states) to

attain coordinated behaviors in a decentralized fashion to accomplish a desired goal. A variety of

issues can cause undesirable information to be exchanged between robots, such as cyber attacks or
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faults to on-board sensors or malicious man-in-the-middle attacks to communication broadcasts. If

known landmarks/obstacles are present in the operating space, range sensors can be utilized for

localization or to determine if the system is performing as expected. However, if agents within a

multi-robot system are navigating in open spaces (e.g., in the middle of the ocean), landmarks may

not be available, thus leaving compromised agents unable to reliably localize themselves. Resilient

measures have been incorporated to multi-robot systems to ensure continued safe operations in

the presence of uncooperative robots within a swarm [89, 93]. To accomplish this, most methods

(e.g., [93, 88]) make the uncompromised robots typically “ignore” any misbehaving robot to remove

undesirable effects that could compromise the MRS mission. Thus robots experiencing cyber attacks

or faults are essentially discarded without a recovery method implemented. In turn, discarded

agents can potentially enter undesirable/restricted regions within the environment and the asset

will be more likely lost or damaged. However, instead of simply discarding any agent deemed

compromised, a more resilient approach should consider recovering the compromised robots while

continuing to perform the planned mission. Given these potentially important factors, designing

recovery frameworks for both single- and multi-robot systems is a critical research topic to ensure

safe autonomous operations.

With these considerations in mind, the objectives of this work are to solve the following challenges:

• How to detect attacks on sensors and communication broadcasts that intentionally hide within

system noises that no longer follow random behavior.

• How to characterize the improvement in control performance in terms of state deviation under

the effects of undetectable attacks to on-board sensors on a single system.

• How to detect sensor and communication attacks and recover/reconfigure a multi-robot system.

• How to inform neighboring vehicles in multi-robot systems about safety critical tasks without

explicitly sending this information over communication broadcasts.

• How to recover compromised agents that lose localization capabilities due to cyber attacks or

faults to on-board positioning sensors through cooperative recovery methods within multi-agent

systems.

• How to detect and recover from compromised operating regions within an on-board controller

caused by cyber attacks or faults.

In order to accomplish these objectives, this work proposes to leverage a randomness-based

approach to the traditional residual-based attack detection scheme to find previously undetectable

cyber attacks on single- and multi-agent systems which increases resiliency to autonomous operations.

Furthermore, we utilize the randomness-based approach in a similar fashion, but this time for
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discovering signals through hidden motion models and hidden signals in multi-robot systems for

covert information broadcasts in adverse environments.

1.1 Related Literature

In this section, an overview of related literature is provided in residual-based anomaly detection

schemes that are running on-board individual systems to discover inconsistent sensor measurements

due to cyber attacks and sensor/system faults. Then, an overview of techniques to provide resilience

from cyber attacks and faults in multi-agent systems to maintain desired global control performance,

followed by approaches in cooperative recovery to aid in localization of faulty agents in multi-robot

systems.

1.1.1 Residual-based Anomaly Detectors

Cyber-physical systems generally employ attack/fault detection mechanisms to provide for safer

autonomous operations. Traditional attack detection techniques monitor for inconsistent behavior

of the residual [32], defined as the difference between a measurement and the state prediction, which

is typically provided by a Kalman filter (KF) [42, 100]. When sensor measurements are altered by

malicious actors, the system at hand may be hijacked to undesirable states. In a successful hijacking

attempt, an attacker is able to implement a stealthy attack sequence to degrade system performance,

all while remaining hidden from detection. The term stealthy has been adopted in a wide-range

of attack scenarios on stochastic systems, such as in zero-dynamics [79], replay [111], zero-alarm

[13], and hidden [69] attack cases. In our context, the term stealthy indicates an attack sequence

that mimics normal (attack-free) behavior of traditional detection schemes (i.e., a hidden attack

[69]), where attackers leverage the noise characteristics within a system to evade detection during a

hijacking attempt. Previous literature in the field of cyber-physical system security have considered

deceptive cyber attacks to on-board sensors of a system by injecting false data to measurements while

trying to remain undetected within system noise [67]. Other have analyzed the effects of malicious

sensor attacks on individual systems that leverage a Kalman filter for state estimation [2]. Similarly,

authors in [49] characterize how undetected attacks compromise closed-loop systems that utilize the

Kalman filter in terms of state and system dynamic degradation. Frequently used residual-based

techniques for attack detection include: the Generalized Likelihood Ratio test (GLRT) [24, 28],

Sequential Probability Ratio testing (SPRT) [35, 50], Bad Data detection [68], and the Cumulative

Sum (CUSUM) detector for change detection [70]. A common residual-based detection technique is

Compound Scalar Testing (CST), commonly known as the chi-square detector, which reduces the

residual vector to a scalar quadratic test measure for monitoring [68]. Various improvements that

leverage the traditional chi-square detection scheme have utilized a tuning window [84], coding sensor

6



outputs [64], and the model-based CUSUM detector [71]. The use of these residual-based detection

techniques have shown their effectiveness when implemented on a wide range of applications that

include: attack detection on unmanned aerial systems [50], fault monitoring on mobile robots [102],

and securing industrial systems such as smart grids [76].

1.1.2 Multi-agent System Resiliency and Security

The topic of resilience in multi-agent systems has received extensive consideration in the engineering

and computer science communities [114]. Much attention has gone into resilience of these systems

based on network connectivity, determined by the underlying graph topology of the network [93].

A widely used method for multi-agent resilience is through consensus protocols that leverage the

Mean Subsequence Reduced (MSR) algorithms [119, 95, 120, 34, 16] in which all vehicles in a

network come to an agreement on a global variable of interest (e.g., velocity, position, heading

angle). Such consensus protocols are resilient to F number of compromised (e.g., non-cooperative)

agents, which rely on network topologies that satisfy the robustness properties in which every agent

in the network follows the strategy of diminishing the effect of potentially deceptive information

due to cyber-attacks or faults by ignoring up to F agents with shared values that contrast the most

from its own value of the global consensus variable. As noted by authors in [107], the purpose of

MSR algorithms is not to detect misbehaving (i.e., compromised) agents in a network, but rather

to simply leave out values consisting of the greatest difference in magnitude. The issue that arises

in proximity-based formation control is the need for reliable received position information from

neighbors to maintain a desired proximity from the other agents. With the inclusion of misbehaving

agents in the system, the proximity-based formation control performance can be compromised.

An example of misbehaving agent detection in multi-agent networks was presented by authors

in [18] that propose the Flag Raising Distributed Estimator (FRDE) such that each agent in

the network estimates an unknown parameter by an iterative algorithm that leverages both its

own sensor measurement and its neighbor’s estimate of the parameter to detect the presence of

adversarial agents. As a neighbor’s parameter estimate differs from an agent’s own parameter

beyond a chosen threshold, the neighbor is deemed adversarial, thus raising a flag. Authors in [117]

utilize agents as mobile detectors that allow for isolation of any malicious agents that collude with

each other in an attempt to take advantage of network connectivity constraints. Another example

can be found in [113] where every uncompromised agent can detect and isolate misbehaving agents

in leader-follower and leaderless consensus networked systems. Each agent employs a multi-phase

reputation-based protocol by relying on local observations and adaptive consensus weight updates

on neighbors to allow for resilient convergence of uncompromised agents in the formation. Taking

a different approach to detection, authors in [44] propose a network-wide shared watermarking

7



signal that is applied to control inputs of each agent in multi-robot systems, then a residual-based

anomaly detection scheme is used to find any misbehaving agents. In [53], the authors leverage

the residual-based Cumulative Sum (CUSUM) anomaly detector, first characterized in [77], to

discover spoofs to on-board navigation systems of robots in multi-robot systems, thus allowing the

mobile robot team to arrive at its desired destination. Different from the aforementioned works,

our proposed decentralized framework considers deceptive cyber-attacks that intentionally hide

within the uncertainties to avoid detection from traditional residual-based detection procedures in

multi-robot systems consisting of stochastic linear time-invariant (LTI) modeled agents.

1.1.3 Cooperative Recovery in Multi-agent Systems

The topic of resilient multi-agent system operations has been extensively researched recently in the

robotics and computer science communities [115]. Within the cooperative localization literature,

an early work leveraged other robots in the swarm as landmarks, where robots were split into two

subgroups that differed in roles and motion from each other [47]. However, the use of a centralized

controller limited the scalability and robustness of the framework. Improvements were made in [81]

with a decentralized approach to alleviate scalability issues and then verified on swarms of holonomic

robots equipped with range and bearing sensors. Authors in [92] utilized the joint estimate of

robot poses computed by an EKF using both centralized and decentralized methods for robots to

estimate their pose from the shared information between other robots. Scalability issues arise for

both methods and an assumption of swarm size is required prior to operations. Other works, such

as [15], have improved upon scalability issues by leveraging the Covariance Intersection Algorithm

to perform belief updates of neighboring robots in a decentralized manner. Differing from [92], the

framework in [15] enables each robot to compute only its own state covariance matrix for estimation

updates in a decentralized manner instead of requiring to compute state covariances for neighboring

robots. Authors in [82] maneuver a single leader robot consisting of a more capable localization

sensor with improved state estimation toward the center of the swarm via potential functions to

enhance localization capabilities of the remaining vehicles. A central position for the leader robot

enhances localization capabilities of the remaining robots when information is exchanged between

each other. In [83], the authors analyze optimal formation topologies for cooperative localization

within multi-AUV systems to improve control performance in the presence of errors in measurement

information.

We also find works that cover approaches for MRS resiliency from various types of attacks/faults

on: sensors, actuators, communications, and physical damage [116]. For example, authors in [106]

proposed a recovery framework on swarms to utilize LOS measurements when positioning sensors fail,

with the assumption that neighboring agents are within visual range at all times. In [93], authors
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proposed a resilient flocking framework that leverages a consensus algorithm along with a hybrid

control policy that maintains connectivity of the mobile robot team when uncooperative robots

share incorrect information. In [53], the Cumulative Sum detector was used to discover spoofs to

navigation systems of individual robots within multi-robot systems to isolate and remove malicious

agents. Different from these works, we assume that robots operate in unknown environments (i.e.,

lacking known landmarks) and are positioned beyond range sensing of other robots. When a cyber

attack or fault occurs to positioning sensors, an impacted robot loses the ability to localize itself

within the environment. In turn, it is necessary for a compromised robot to alert neighboring robots

to aid in recovery for re-localization.

Another topic of multi-agent system resilience that has received significant attention recently has

been the use of time- and radio frequency (RF)-based methods for cooperative localization/recovery.

Various time-based measurement techniques used for localization have been proposed, such as Time

of Arrival (ToA), Time Difference on Arrival (TDoA), Angle of Arrival (AoA), and Time of Flight

(ToF) [57]. An RF-based technique used for aid in localization are from measuring the Received

Signal Strength Indicator (RSSI). As the name suggests, RSSI-based techniques rely on measuring

the strength of the received radio frequency signal over the communication channel.

Much effort has been placed on leveraging RSSI to aid in localization within an environment.

In particular, numerous recent articles have leveraged anchor nodes with known positions placed

throughout an environment to aid in localization within indoor environments [110]. An example of

RSSI-based localization is found in [60], authors combined Weighted Distance Vector Hop (WDV-

Hop) from RSS measurements with a hyperbolic weighting matrix to estimate the positions of any

nearby agents in MASs while utilizing the known locations of reference nodes (i.e., anchors) in the

environment. Authors in [39] proposed a method for robotic swarms deployed in indoor environments

to effectively navigate through narrow passageways where robots are allocated specific roles to

ensure localization accuracy. In [14], an approach was proposed to provide robustness in localization

performance within swarms when nearby agents satisfy both Line-of-Sight and Non-Line-of-Sight

conditions, which affect estimation performance. Authors in [40] presented a framework that utilizes

the particle filter on the RSSI-based measurements from known anchor nodes and then fused the

position estimate with the remaining system states for improved localization capabilities. In [31],

the authors present theoretical results for an adaptive framework that positions a team of robotic

agents acting as mobile routers to provide communication coverage to the remaining subset of client

robots, when the knowledge of the clients’ positions are unknown. The multi-robot system is able

to position the robots behaving as routers to satisfy the client robots’ demands, while adapting to

changes in wireless signals (i.e., leveraging directionality of signal strength) and the dynamic (and

potentially unmapped) environment. Authors in [43] leverage RSSI signals to estimate AoA of signal
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sources (i.e., transmitters) and humans/robots for target tracking. Similar to our work, authors

in [75] proposed an RSSI-based localization algorithm for multi-robot teams within anchor-less

environments. Their approach combines a Kalman Filter and the Floyd-Warshall algorithm to

compute smooth distance estimates between agents, then multidimensional scaling is utilized to

estimate relative positions of nearby agents.

1.2 Overview of Research

The research presented in this dissertation consists of three successive Parts that include: I) sensor

attack detection on a single robot, II) isolation and network reconfiguration for resilient multi-

robot systems, and III) system recovery for both single- and multi-robot systems. A final Part IV

summarizes what we have gained and learned from in the first three Parts. Figure 1.4 provides an

overview of the research presented in this dissertation.

Figure 1.4: Overview of the presented research in this dissertation.

Beginning with Part I, we characterize various randomness-based detection techniques for

identifying stealthy sensor attacks that hide within system noise profiles. In order to effectively

design attack detectors to identify stealthy attacks, we mathematically model an autonomous system

with stochastic uncertainties with a discrete-time linear time-invariant model. From this model, we

are able to extract residual-based test measures which are used in monitoring for anomalies of the

on-board sensor measurements. In Part II, we extend the mathematical frameworks and detection

designs from Part I by providing resiliency to multi-robot system operations. In particular, we

characterize how robots can decipher whether its neighboring robots are behaving in proper manner

by analyzing information received from each of the vehicles. When neighboring robots are determined

to be compromised by cyber attacks, the remaining robots isolate these agents then reconfigure
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the network to remove any malicious effects that the compromised robots may pose. An additional

feature that is included within this Part is the ability for the robots to communicate safety-critical

information to each other without explicitly sending this data through communication broadcasts.

This is especially beneficial when multi-robot systems navigate within adversarial environments

where malicious attackers have the ability to intercept the safety-critical information, which could

possibly lead to devastating consequences if the attackers are successful. Part III presents recovery

frameworks for autonomous single- and multi-robot systems. We begin with a detection and

recovery framework as well for individual mobile autonomous systems. This framework enables

autonomous systems, such as mobile robots, to maintain desirable control signals during operations

when on-board controllers are faulty due to specific triggering conditions that provide malicious

control inputs. Our framework highlights a novel information compensator which alters data sent

to the controller to avoid any malicious conditions while also computing desirable control inputs to

the system. For the scenario of recovery in multi-robot systems, we highlight two frameworks where

other nearby robots cooperatively recover (i.e., re-localize) any compromised robots that suffer

from cyber attacks or faults to on-board positioning sensors, which deem is positioning estimate

to be unreliable. Before concluding Part III, we also include our preliminary work on a novel

cooperative multi-robot system framework. In this framework, a team of robots cooperatively defend

a protected region of the environment from a malicious intruding agent, then cooperatively shepherd

the intruder to a desired safe region. Throughout Parts I-III in this dissertation, we feature our

contributions with simulation results using realistic system dynamical models and lab experiments

on real unmanned ground vehicles to validate our frameworks. Finally, in Part IV, we conclude the

dissertation by providing insight in what we have accomplished and learned, followed by a discussion

on possible directions we could take in the future that we could take.

1.3 Dissertation Organization and Contributions

In this section, we present the composition of this dissertation by providing summaries of each

chapter and specifying contributions within each chapter. As a summary for this dissertation,

Part I consists of Chapter 2 which highlights the attack detection phase on individual systems,

Part II is covered by Chapters 3 and 4 that focus on detection, isolation, and reconfiguration in

multi-robot systems, and Part III is highlighted by Chapters 5-7 which feature recovery frameworks

that have been developed for both single- and multi-robot systems. To end this dissertation, Part

IV summarizes our results and a discussion in provided for possible future work. Now, let us outline

each chapter and mention our contributions.
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Chapter 2: Randomness-based Monitoring for Sensor Attack Detection

In this chapter, we introduce our novel randomness-based framework for detection of stealthy sensor

attacks that intentionally hide within noise profiles on a system. These detection frameworks

and their corresponding characteristics are utilized primarily throughout the remaining of this

dissertation for various applications. We begin by characterizing the system and noise models, the

on-board state estimator, and the threat model in the context of linear time-invariant discrete-time

system. Unlike previous residual-based detection schemes that monitor for sensor attacks, our

schemes are purposefully designed to discover stealthy attacks that hide within system noise profiles.

We introduce novel randomness-based approaches to find previously undetectable cyber attacks to

on-board sensors when using residual-based attack detection schemes on an individual system, which

monitors for inconsistent and non-random behavior that contradict the known system and noise

models. We cover three different frameworks in this chapter; one of which relies on a sliding window

of past data, while the other two relax this windowed constraint when monitoring at runtime. Within

these frameworks, we assume that an intelligent attacker can gain knowledge of critical aspects

of the system, such as the dynamical model, noise models, estimation technique, and on-board

controller to enable stealthy attack sequences. We compare our detection techniques to previously

state-of-the-art detectors to highlight the effectiveness of our methods when monitoring for stealthy

sensor attacks hidden within noise profiles. This chapter is based on the publications:

• P.J. Bonczek, S. Gao, and N. Bezzo, “Model-based Randomness Monitor for Stealthy Sensor

Attacks,” in Proceedings of the IEEE American Control Conference (ACC), 2020.

• P.J. Bonczek and N. Bezzo, “Memoryless Cumulative Sign Detector for Stealthy CPS Sensor

Attacks,” in Proceedings of the International Federation of Automatic Control World Congress

(IFAC), 2020.

• P.J. Bonczek and N. Bezzo, “Detection of Hidden Attacks on Cyber-Physical Systems from

Serial Magnitude and Sign Randomness Inconsistencies,” in Proceedings of the IEEE American

Control Conference (ACC), 2021.

Chapter 3: Multi-robot System Attack Detection and Network Reconfiguration

In this chapter, we extend our attack detection frameworks that were formalized in the previous

chapter to provide resiliency in multi-robot systems. In particular, the multi-robot systems follow

decentralized control consensus protocols to maintain desired proximity-based formations. We assume

that the robots operate in adversarial environments where on-board sensors and communication

broadcasts for information exchange between agents can be spoofed by intelligent attackers. A

randomness-based attack detection scheme is leveraged to identify not only on-board sensor spoofs,
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but also malicious information being received from neighboring agents. Upon detection of inconsistent

information being received, our framework allows each robot to isolate and reconfigure the multi-

robot network in a decentralized manner to allow for resilient navigation of all uncompromised

robots. We validate our framework with simulation and experiments consisting of autonomous

ground robots using both Gazebo and live experiments in a lab setting. This chapter is based on

the following publication:

• P.J. Bonczek, R. Peddi, S. Gao, and N. Bezzo, “Detection of Non-random Sign-based Behavior

for Resilient Coordination of Robotic Swarms,” IEEE Transactions on Robotics (T-RO) in the

Special Issue for Resilience in Networked Robotic Systems, vol. 38, no. 1, pp. 92-109, 2022.

Chapter 4: Detection and Inference of Randomness-based Behavior for Resilient

Multi-robot Coordinated Operations

This chapter deals with maintaining information secrecy during multi-robot system operations. We

tackle the problem of hiding safety-critical information that is passed between robots from potential

interception by malicious attackers. Virtual spring-damper mesh physics models are leveraged to

create detectable hidden motion signatures for nearby robots to detect. When important tasks are

discovered within the environment by an agent, this agent then changes its control behavior to emit

the hidden motion signature which is unknown to attackers to enable the transfer of safety-critical

information. This allows for the remaining vehicles in the swarm to aid in accomplishing safety-

critical tasks. We highlight our decentralized framework with both simulations and lab experiments

to validate the cooperative behavior of multi-robot swarms as information is passed amongst the

agents. This chapter is based on the following publication:

• P.J. Bonczek and N. Bezzo, “Detection and Inference of Randomness-based Behavior for

Resilient Multi-vehicle Coordinated Operations,” in Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2021.

Chapter 5: Recovery of Autonomous Systems Operating under On-board Controller

Failures

Chapter 5 introduces a detection and recovery framework on single autonomous systems that

experience cyber attacks or faults to its on-board controller during operations. When cyber attacks,

failures, and implementation errors occur within the controller of an autonomous, nominal behavior

is affected leading to unsafe states and degraded control performance. In this chapter, we focus on

the specific problem when controller parameters are manipulated, such as control gains, which alter

system behavior that are triggered when specific values of the state or tracking error is present within
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the on-board controller. If these changes are not detected, they can lead to partial or complete

loss of the system’s control authority, resulting in a hijacking and leading the autonomous system

towards unforeseen states. To deal with this problem, the system must detect which conditions

within the controller trigger the anomalous behavior and then have a recovery plan to maintain

a desirable control signal for resilient operation. Our novel recovery mechanism is designed as an

information compensator, which alters the reference signal and state vector information fed to

the controller to avoid compromised regions within the state or tracking error spaces that trigger

anomalous behavior to maintain desirable control inputs to the autonomous system. Our detection

and recovery framework is validated using both MATLAB simulations and lab experiments on an

autonomous robot to show resilient go-to-goal operations are performed in the presence of malicious

behavior to on-board controllers. This chapter is based on the following publication:

• P.J. Bonczek and N. Bezzo, “Resilient Detection and Recovery of Autonomous Systems

Operating under On-board Controller Cyber Attacks,” in Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2022.

Chapter 6: Multi-robot System Cooperative Recovery from Loss of Localization in

Unknown Environments

In this chapter, we introduce two frameworks for cooperative localization in multi-robot systems.

Here, we assume that robots are susceptible to cyber attacks or faults to on-board positioning sensors

such that compromised robots lose reliable positioning estimates, thus impacting performance of

themselves and the remaining of the robotic swarm. Different from other research literature, we

also assume that robots operate beyond sensing range from each other and also operate in unknown

and/or landmark-free environments, such that leveraging known objects or features for localization is

not possible. However, agents remain within communication range of each other, which is necessary

for exchanging information (e.g., state, input, task information) to preserve desired proximity-based

formations during operations. To overcome these undesirable circumstances, our first cooperative

recovery framework allows compromised robots to notify nearby robots of its loss of localization

capabilities. Then, the nearby agents switch control modes to perform a novel cooperative motion

behavior to aid in re-localizing the compromised agent by coming within distance sensing range

of the compromised robot. From the perspective of the compromised robots, these cooperative

robots are then used as mobile landmarks such that localization capabilities are returned to any

compromised robot with unreliable nominal positioning sensor. We verify this framework with

MATLAB simulations and lab experiments using swarms of ground robots.

In our second cooperative recovery framework, an agent can extract a distance estimate to each

nearby agent within communication range by measuring the received signal strength indication (RSSI)
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from their information broadcasts. We present a novel decentralized cooperative recovery framework

for individual agents to re-localize themselves within multi-agent systems by leveraging RSSI when

on-board positioning sensors are unreliable. Compromised agents leverage sensor reconfiguration

to replace their anomalous on-board position sensor with an RSSI-based position measurement

to re-localize itself. Given that RSSI measurements are noisy, we provide an optimal solution

to reduce uncertainty of the RSSI-based position measurements for improved state estimation

performance. Furthermore, we present a novel approach to robustly estimate the RSSI-based

measurement covariance to further improve state estimation accuracy, thus allowing for better

control performance. A series of MATLAB simulations using multi-agent system formations that

experience attacks and faults to positioning sensors highlight our approach. This chapter is based

on the following works:

• P.J. Bonczek and N. Bezzo, “A Cooperative Recovery Framework for Resilient Multi-robot

Operations in Unknown Environments,” submitted and under review to the IEEE Robotics

and Automation Letters (RA-L).

• P.J. Bonczek and N. Bezzo, “Resilient Multi-agent Formation Control via RSSI-based Lo-

calization,” submitted and under review to the 2023 IEEE American Control Conference

(ACC).

Chapter 7: Cooperative Robotic Teams for Defending Against Malicious Intruders

In this chapter, we highlight our current work where a team of autonomous robotic agents coop-

eratively defend a protected an object/region of interest within the environment from malicious

intruders (i.e., a robot that is considered completely compromised). The objectives for each of the

defensive robots is to: 1) intercept and impede the motion of an intruding agent from reaching

a known protected region within the environment by constructing a robotic wall/barrier and 2)

cooperatively shepherd the malicious intruder to a safe region in the environment. We validate our

cooperative approach with MATLAB simulations using teams of defensive robots to protect against

a malicious agent. This chapter is based on the following current work:

• P.J. Bonczek and N. Bezzo, “Cooperative Robotic Teams for Defending Against Malicious

Intruders,” in preparation for submission to the IEEE Transactions on Robotics (T-RO).

Chapter 8: Conclusions and Future Work

In this chapter, we conclude the dissertation by summarizing the results from all the aforementioned

works and discuss potential future directions to build on.

15



1.4 Summary of Contributions

To summarize, the work presented in this dissertation will contribute to the existing state-of-the-art

in autonomous robotic system resiliency and security by providing:

• Novel randomness-based approaches to find previously undetectable cyber-attacks in mea-

surement residual-based attack detection schemes on an individual system, which monitor for

inconsistent and non-random behavior that contradict the known system and noise models.

• A decentralized detection and isolation framework to discover stealthy attacks to both sensors

and communication broadcasts that attempt to hijack the entire multi-agent systems, allowing

for network reconfiguration by isolating any maliciously behaving agents.

• A novel decentralized framework to include hidden signals by utilizing hidden motion models

to alert neighboring vehicles of specific tasks, which enables the passing of safety-critical

information to other vehicles without explicitly broadcasting the information.

• A novel decentralized cooperative recovery framework to coordinate motion amongst neighbor-

ing robots to aid in re-localization of compromised agents that suffer from cyber attacks and

faults to on-board positioning sensors.

• A decentralized cooperative recovery framework for individual agents to re-localize themselves

within multi-agent systems by leveraging received signal strength indication when on-board

positioning sensors are unreliable due to cyber attacks and faults.

• A novel recovery approach for autonomous systems to maintain desired control inputs during

operations when attacks or faults occur within specific operating regions of the on-board

controller.
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Part I

Sensor Attack Detection
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Chapter 2

Randomness-based Monitoring for Sensor Attack

Detection

In this chapter, a novel framework is presented for randomness-based attack detectors within a

measurement residual-based monitoring scheme. The randomness-based approach leverages signed

inconsistencies of the measurement residual when monitoring for sensor attacks, whereas traditional

monitoring schemes monitor for magnitude-based inconsistencies of the residual test measure. By

employing the presented randomness-based detection schemes in this chapter, stealthy sensor attack

sequences hidden within noise profiles that evade detection from traditional methods can now be

discovered. These methods provide tighter security measures on autonomous systems for more

resilient operations. The attack detection schemes are validated with MATLAB simulations and lab

experiments using an unmanned ground vehicle. The material covered in this chapter was published

in the following:

• P.J. Bonczek, S. Gao, and N. Bezzo, “Model-based Randomness Monitor for Stealthy Sensor

Attacks,” in Proceedings of the IEEE American Control Conference (ACC), 2020.

• P.J. Bonczek and N. Bezzo, “Memoryless Cumulative Sign Detector for Stealthy CPS Sensor

Attacks,” in Proceedings of the International Federation of Automatic Control World Congress

(IFAC), 2020.

• P.J. Bonczek and N. Bezzo, “Detection of Hidden Attacks on Cyber-Physical Systems from

Serial Magnitude and Sign Randomness Inconsistencies,” in Proceedings of the IEEE American

Control Conference (ACC), 2021.

2.1 Introduction

The foundation behind attack detection is to leverage an estimator to predict the evolution of a

system’s state and compare it with measured/received information. This monitored difference,
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commonly referred to as the residual, is leveraged to detect anomalous behavior introduced by cyber

attacks. Discrepancies between this comparison and an expected behavior imply that there may

be an attack present. The detector is placed in the system feedback, as depicted in Figure 2.1, to

provide a determination on the health of the system (i.e., whether the system is safe or if a spoof

has been detected).

Figure 2.1: The overall residual-based monitoring architecture of a cyber-physical system.

Traditional attack detectors, namely the GLRT, Bad Data, and CUSUM detectors, leverage an

alarm-based method when monitoring residual magnitudes for attacks. These detection procedures:

1) compute a test measure from the residual magnitude, 2) provide a tuned threshold for comparison

with the test measure, and 3) trigger an alarm as the test measure passes the threshold. Under

nominal conditions, the tuned threshold parameter will result in a desired (i.e., expected) false

alarm rate. During an attack to the system’s on-board sensors, the alarm rate deviates from the

expectation which notifies the system of a potential attack. However, if a malicious attacker gains

access to critical system information (e.g., such as the dynamical model, noise characteristics, state

estimator), this offers the attack an opportunity to develop stealthy attack sequences which can

evade detection by hiding within noise profiles.

2.2 Preliminary Modeling

This section introduces the dynamical, measurement, noise, attack, and estimation models used

throughout this chapter.

2.2.1 System Dynamical and Noise Models

An autonomous system is considered to be modeled as discrete-time linear time-invariant (LTI)

system dynamics. Systems are equipped with sensors capable of measuring system states to achieve

full autonomy during operations without the need for humans.
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The discrete-time LTI system is modeled in the following form:

xk+1 = Axk +Buk + νk, (2.1)

yk = Cxk + ηk, (2.2)

with A ∈ Rn×n representing the state matrix, B ∈ Rn×m the input matrix, and C ∈ RNs×n

the output matrix with the state vector xk ∈ Rn, control input vector uk ∈ Rm, measurement

output vector yk ∈ RNs providing measurements from Ns ∈ N sensors, and sampling time instants

k ∈ N. Process and measurement noises are assumed to be i.i.d. zero-mean Gaussian uncertainties

ν = N (0,Q) ∈ Rn and η = N (0,R) ∈ RNs with covariance matrices are described by R > 0,

R ∈ Rn×n and Q > 0, Q ∈ RNs×Ns .

One critical assumption is that the system is controllable, or in other words, which describes

the ability of the control inputs uk to influence all elements of the state vector xk of the system

from an initial state to a desired state within a finite amount of time. We denote the controllability

matrix C ∈ Rn×nm by:

C =
[
B AB A2B . . . An−1B

]
(2.3)

and if rank(C ) = n then the system is considered controllable.

It is also assumed that the system is observable, meaning that the system state xk can be

estimated by utilizing the information from the system outputs yk. The observability matrix

O ∈ Rns×n is represented by:

O =



C

CA

CA2

...

CAn−1


(2.4)

such that if rank(O) = n then the system is determined to be observable.

2.2.2 State Estimation Model

During operations, a linear Kalman Filter (KF) is implemented to provide a state estimate x̂k ∈ Rn.

For simplicity, the asymptotic form of the Kalman Filter is utilized in the form:

x̂k+1 = Ax̂k +Buk +L(yk −Cx̂k) (2.5)
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with the Kalman gain matrix L ∈ Rn×Ns computed by

L = PCT(CPCT +R)−1 (2.6)

where limk→∞Pk = P is the asymptotic estimation covariance found by solving the discrete time

algebraic Riccati equation with the following:

P = ATPA− (ATPB)(R+BTPB)−1(BTPA) +Q. (2.7)

2.2.3 Threat Model

In this chapter, the assumption is that attackers are able to manipulate sensor measurements

in order to influence an autonomous system to behave in an undesired manner. This malicious

intent is captured in an attack vector ξk ∈ RNs , such that the updated measurement output vector

considering sensor attacks is characterized as:

ỹk = Cxk + ηk + ξk (2.8)

when the attack vector satisfies ξk ̸= 0, where it is assumed that any sensor (i.e., any element within

the attack vector ξk) may be compromised.

2.2.4 Measurement Residual and the Chi-square Test Measure

The state estimation model is leveraged to aid in determining whether sensor measurements are

behaving in an expected manner. More specifically, the measurement residual rk ∈ RNs , which

is defined as the difference between observed sensor measurements ỹk and the expectation of the

measurements using the state estimate x̂k, and computed by:

rk = ỹ −Cx̂k (2.9)

is leveraged to monitor for anomalous sensor behavior. The measurement residual distribution is

modeled to have an expected covariance Σ ∈ RNs×Ns when sensor measurements are behaving in a

nominal manner (i.e., ξk = 0) with the following:

Σ = E[rkrTk ] = CPCT +R. (2.10)

In the absence of sensor attacks, the measurement residual corresponding to an sth sensor

rk,s, s ∈ {1, . . . , Ns} follows a Gaussian distribution rk,s ∼ N (0, σ2s) where σ
2
s is the sth diagonal

element of the residual covariance matrix Σ such that E[rk,s] = 0 and Var[rk,s] = σ2s .
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Furthermore, the measurement residual can be reduced down to a scalar quadratic test measure

zk ∈ R≥0 that is then utilized to monitor the system for sensor attacks. This monitoring technique,

also known as the chi-square detector, compute the test measure by:

zk = r
T
kΣ

−1rk. (2.11)

In the absence of attacks, the measurement residual is an Ns-dimensional vector of normally

distributed random variables rk ∼ N (0,Σ). The test measure zk is then expected to be a random

variable that follows a chi-square distribution with Ns degrees of freedom, i.e. zk ∼ χ2(Ns), that

follows:

E[zk] = Ns, Var[zk] = 2Ns. (2.12)

2.2.5 Hypothesis Testing

When monitoring the measurement residual for consistent behavior, we test two different hypotheses:

The null hypothesis H0 for nominal (i.e., attack-free) conditions and the alternative hypothesis Ha

where attacks are present. Formally, the hypotheses are written as:

H0 :

{
E[rk] = 0,

E[rkrTk ] = Σ,
Ha :

{
E[rk] ̸= 0, and/or

E[rkrTk ] ̸= Σ.
(2.13)

2.2.6 Assumptions

The assumption is that the given linear dynamical and noise models capture the true behavior

of the autonomous system’s dynamics and stochastic uncertainties. The system is assumed to be

equipped with necessary on-board sensors to satisfy controllability and observability conditions.

The sensors are assumed to not suffer performance degradation from issues that include wear and

tear or reduction of accuracy due to environmental conditions.

2.3 Problem Formulation

This section formalizes the various problems that are addressed in this chapter. It is considered that

stealthy sensor attacks are implemented by intelligent attackers in an attempt to evade detection

while also hijacking the system. The attack signal ξk ̸= 0 contains malicious data that can disrupt

randomness, thus causing measurement residuals to display non-random behavior. The first problem

is formally defined as follows:

Problem 2.1 (Randomness Monitoring over Windowed Sequences) An autonomous sys-

tem has an objective to discover stealthy sensor attacks that are hidden within noise profiles. To
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aid in monitoring for anomalous measurement residual behavior, the on-board detection scheme for

randomness monitoring leverages a sliding window length T ∈ N of saved residual vector information.

Definition 2.1 (Sensor Measurement Consistency) While utilizing the sliding window T , an

individual sensor measurement is considered to be behaving in a nominal random manner if:

• A sequence of measurement residuals over the time window occurs in an unpredictable, pattern-

free manner.

• Measurement residual elements s = {1, . . . , Ns} have a proper distribution over E[rk,s].

Given each measurement residual element rk,s over the sliding window T from a time k − ℓ + 1

to time k, find a policy to determine at runtime whether its corresponding sensor measurement is

behaving in a random manner such that all conditions in Definition 2.1 hold.

The previous problem to monitor for non-random residual behavior due to stealthy attacks

relies on storing a window of residual data in order to be effective. The requirement of storing

historical residual information over a sliding window can be relaxed, while still being effective in

discovering stealthy attacks. In the next problem, the specific focus is on monitoring for unexpected

sign occurrences of a single chi-square test measure to detect sensor attacks, all while eliminating

the need for a sliding window.

Problem 2.2 (Window-less Sign Randomness Monitoring) Given the chi-square test mea-

sure zk computed from the measurement residual rk and its expected covariance matrix Σ, find

a policy to determine at runtime whether on-board sensor measurements are compromised (i.e.,

ξk ̸= 0) due to stealthy attacks that intentionally hide within noise profiles, without the need to store

a window of residual data.

If an intelligent attacker has knowledge of on-board detection schemes, hidden attack sequences

can be generated in an attempt to evade detection. However, these sequences can create patterns,

thereby causing the chi-square test measure to display non-random behavior.

Definition 2.2 (Serial Consistency) Sensor measurements are determined to be behaving con-

sistently if:

• The chi-square test measure is pattern-free and follows a chi-square distribution zk ∼ χ2(Ns).

• The difference between consecutive test measures follows an expected distribution and also an

expected sign switching rate.

Problem 2.3 (Runtime Detection of Serial Inconsistencies) Provided with the chi-square

test measure zk, design a policy to determine at runtime if sensor measurements satisfy serial

consistencies as defined in Definition 2.2.
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2.4 Randomness Monitor Over Windowed Measurement Residual

Sequences

A detection framework is introduced to monitor randomness of the measurement residual sequence

through two tests and tuning bounds are provided for each to result in desired false alarm rates. In

this section, two primary components of the approach are introduced: i) two statistical tests that are

utilized in residual monitoring and ii) tuning bounds are provided for each test to result in desired

behavior during attack-free conditions. The overall cyber-physical system architecture, including

our Randomness Monitor, is placed in the control system feedback to monitor the measurement

residual sequence.

2.4.1 Monitoring Window

A monitor is built to check if sequences of measurements within the residual rk over a sliding

monitoring window T = (k − ℓ+ 1, l) for ℓ ∈ N previous time instants is behaving consistently. The

residual sequences over the window T are denoted as

rT = (rT,1, . . . , rT,s, . . . , rT,Ns) (2.14)

where the residual sequence for an sth sensor is:

rT,s = (rk−ℓ+1,s, . . . , rk,s). (2.15)

The residual sequence for each sth sensor over the sliding window formalized in (2.15) is utilized

to monitor for expected residual symmetry and serial run randomness behavior.

2.4.2 Residual Symmetry

Following H0, we would expect that the number of positive and negative values of rk over the

monitoring window are equal. Additionally, a symmetric distribution indicates that the expected

absolute magnitude of positive and negative residuals over a given window of length ℓ are equal,

E[|r+T,s|] = E[|r−T,s|], s ∈ {1, . . . , Ns} (2.16)

where E[|r+T,s|] and E[|r−T,s|] denote the expected absolute magnitude for positive and negative values

of the residual rk,s within the window T for any given sth sensor. In other words, we would expect

the sum of absolute values from the residual to be equal for both the positive and negative values.

The WSR test takes both the sign and magnitude of the residual into account to determine whether
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conditions satisfy H0. Large differences in the residual signs or signed magnitudes imply non-similar

distributions, causing the test to reject the no attack assumption and triggering an alarm.

To perform the WSR test at each time instant k, we first look at the ℓ number of residuals

over the monitoring window T of a given sth sensor, ranking the absolute values of residuals rT,s,

starting with rank = 1 for the smallest absolute value, rank = 2 for the second smallest, and so on

until reaching the largest absolute value with rank = ℓ. Ranks of absolute values for positive (i.e.

|r+T,s|) and negative (i.e. |r−T,s|) residuals over the window T are placed into the sets R+
k,s and R−

k,s

at every time instance k, respectively.

Remark 2.1 For residuals equal to each other and not equal to 0 (tied for the same rank), an

average of the ranks that would have been assigned to these residuals is given to each of the tied

values. Furthermore, residuals equal to 0 are removed and ℓ is reduced accordingly.

Following, we compute the sum of ranks for both the positive and negative valued residuals,

W+
k,s =

∑
R+
k,s, W−

k,s =
∑

R−
k,s. (2.17)

Residuals with symmetric distributions have similar valued sum of ranks, i.e. W+
k,s ∼ W−

k,s,

whereas the sum of ranks in non-symmetric distributions are not similar W+
k,s ≁W−

k,s resulting in a

rejection of H0, which we will now discuss how to solve. Assuming a large window of size ℓ ≥ 201

[99], the Wilcoxon random variables W+
k,s, W

−
k,s converge to a Normal distribution (without attacks)

as ℓ→ ∞ and can be approximated to a standard normal distribution. The approximated expected

value and variance of the two sum of ranks W+
k,s and W

−
k,s, denoted as W±

k,s = {W+
k,s,W

−
k,s} is

E[W±
k,s] =

ℓ2+ℓ
4 , Var[W±

k,s] =
(ℓ2+ℓ)(2ℓ+1)

24 . (2.18)

The z-score of (2.17) for a given sth sensor is computed by

ZWk,s =
min(W±

k,s)− E[W±
k,s]√

Var[W±
k,s]

=
min(W±

k,s)−
(ℓ2+ℓ)

4√
(ℓ2+ℓ)(2ℓ+1)

24

(2.19)

and the p-value used to determine whether to reject the null hypothesis H0 (i.e., no attacks) is

computed from (2.19) as:

pWk,s = Φ(|ZWk,s|) = 2 · 1√
2π

ˆ ∞

|ZWk,s|
exp

{
−λ2

2

}
dλ. (2.20)

1For window length of smaller size, exact tables need to be used for probability distributions of the Wilcoxon
Signed-Rank random variable [99].
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When pWk,s falls below the threshold τWs = αdes
s , i.e., pWk,s < τWs , we reject H0 and an alarm

ψWk,s = 1 is triggered, otherwise ψWk,s = 0. In the absence of attacks, the alarm rate αWs for an sth

sensor should be approximately the same as the desired false alarm rate αWs ∼ αsdes. Computation

of αWs is over the sliding window Tα = (k − ℓα + 1, k) of length ℓα by αWs = 1
ℓα

∑k
j=k−ℓα+1 ψ

W
j,s.

Conversely, an attack that affects the residual distribution symmetry, triggering the alarm ψWk,s more

frequently, causing an elevation of alarm rate αWs . For alarm rates exceeding a user defined alarm

rate threshold, i.e., αWs > ατs , the sth sensor is deemed compromised. In the following lemma we

provide a proof for bounds of the WSR test variables (2.17) to satisfy a desired false alarm rate αdes
s .

Lemma 2.1 Given the residual rk,s for an sth sensor over a monitoring window T consisting

of ℓ residuals and desired false alarm rate αdes
s , an alarm is triggered by the WSR test when

ΩW− ≤ {W±
k,s} ≤ ΩW+ is not satisfied where

ΩW± = ±|Φ−1(αdes
s /2)|

√
(ℓ2 + ℓ)(2ℓ+ 1)/24 + (ℓ2 + ℓ)/4. (2.21)

Proof: From the Wilcoxon test statistic equaling the sum of ranks in (2.17), we can rearrange

(2.19) such that min(W±
k,s) = ZWcrit

k,s

√
(ℓ2 + ℓ)(2ℓ+ 1)/24 + (ℓ2 + ℓ)/4 where ZWcrit

k,s = Φ−1(αdes
s /2)

is the critical value of ZWk,s for min(W±
k,s) satisfying a desired alarm rate αdes

s to not reject H0. The

lower bound of {W−
k,s,W

+
k,s} must satisfy

ΩW− = Φ−1(αdes
s /2)

√
(ℓ2 + ℓ)(2ℓ+ 1)/24 + (ℓ2 + ℓ)/4 ≤ min(W−

k,s,W
+
k,s), (2.22)

to not sound off an alarm ψWk,s. Conversely, we want to show that if the lower bound ΩW− ≤ min(W±
k,s)

in (2.22) holds then the upper bound ΩW+ holds as well. By again manipulating (2.19) such

that we take the maximum max(W±
k,s) = ZWcrit

k,s

√
(ℓ2 + ℓ)(2ℓ+ 1)/24 + (ℓ2 + ℓ)/4 where this time

ZWcrit
k,s = Φ−1(1− αdes

s /2) is the critical value of ZWk,s for the upper bound max(W±
k,s) satisfying a

desired alarm rate αdes
s to not reject H0, the upper bound is written as

ΩW+ = Φ−1(1− αdes
s /2)

√
(ℓ2 + ℓ)(2ℓ+ 1)/24 + (ℓ2 + ℓ)/4 ≥ max(W−

k,s,W
+
k,s) (2.23)

to not trigger the alarm ψWk,s. In the calculation of the critical z-score value from the standard

normal distribution N (0, 1) to satisfy a given desired alarm rate αdes
s , it is easy to show that

|Φ−1(αdes
s /2)| = Φ−1(1 − αdes

s /2) and Φ−1(αdes
s /2) = −|Φ−1(αdes

s /2)| giving the final bounds of

ΩW− ≤ (W±
k,s = {W−

k,s,W
+
k,s}) ≤ ΩW+ as

−|Φ−1(αdes
s /2)|

√
(ℓ2 + ℓ)(2ℓ+ 1)/24+(ℓ2+ℓ)/4 ≤W±

s ≤ |Φ−1(αdes
s /2)|

√
(ℓ2 + ℓ)(2ℓ+ 1)/24+(ℓ2+ℓ)/4
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satisfying the bounds of ΩW± in (2.21). With this we conclude that if min(W±
k,s) does not satisfy

(2.22) then ΩW− ≤ {W−
k,s,W

+
k,s} ≤ ΩW+ is not satisfied, triggering alarm ψWk,s for a desired false alarm

rate αdes
s , ending the proof.

2.4.3 Serial Run Randomness

The WSR test alone is not sufficient to test for randomness, since an attacker could manipulate

measurements by creating specific patterns to avoid detection on the WSR test. To test further, we

need to determine if the sequence of residuals are being received randomly by leveraging the Serial

Independence runs (SIR) test [12]. The SIR test examines the number of runs that occur over the

sequence, where a “run” is defined as one or more consecutive residuals that are greater or less than

the previous value. A random sequence of residuals over a given window length should exhibit a

specific expected number of runs: too many or too few number of runs would not satisfy random

sequential behavior. A hypothesis test is formed with H0 for the absence of sensor attacks and Ha

where attacks are present by

H0: NR = E[NR], Ha: NR ̸= E[NR], (2.24)

where NR is the number of observed runs, to determine whether the number of runs satisfy a

randomly behaving sequence. First, we take the difference of residuals at time instances k and k− 1

over a window T ′

r′T ′,s := r′k,s = rk,s − rk−1,s , k ∈ T ′, (2.25)

where T ′ = {k − ℓ + 2, . . . , k} = T \ {k − ℓ + 1} is the monitor window T shortened by one by

removing the oldest time instance. This in turn gives us ℓ′ = ℓ− 1 residual differences.

Remark 2.2 A residual difference r′k,s = 0, k ∈ T ′ from (2.25) is not considered in the test and

the size of ℓ′ is reduced accordingly, i.e., ℓ′ = ℓ′ − 1.

From the sequence of residual differences (2.25), we take the sign of each residual within the

window T ′

sign(r′k,s), k ∈ T ′ (2.26)

forming a sequence of ℓ′ positive and negative signs. The number of runs NR are observed over the

sequence of ℓ′ residual differences. The expected mean and variance of runs [12] are computed by

E[NR] =
2ℓ′ − 1

3
, Var[NR] =

16ℓ′ − 29

90
. (2.27)

Assuming large data sets (i.e. window length ℓ ≥ 25) [12], the distribution of NR converges to a

normal distribution as ℓ′ → ∞ and can be approximated to a zero mean unit variance standard
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normal distribution NR ∼ N (0, 1). From the number of observed runs NR and number of residual

differences ℓ′, we compute the z-score test statistic for Serial Independence from a standard normal

distribution

ZSk,s =
NR − E[NR]√

Var[NR]
=
NR −

(
2ℓ′ − 1

)
/3√(

16ℓ′ − 29
)
/90

. (2.28)

Using the z-score from (2.28) we compute the p-value of the observed signed residual differences by

pSk,s = Φ(|ZSk,s|) = 2 · 1√
2π

ˆ ∞

|ZSk,s|
exp

{
−|λ|2

2

}
dλ. (2.29)

When pSk,s < τSs is satisfied where τSs = αdes
s denotes the threshold, we reject the null hypothesis

H0 from (2.24) and an alarm ψSk,s = 1 is triggered. In the absence of attacks, the alarm rate αSs is

approximately the same as the desired false alarm rate αSs ∼ αdes
s . Alarm rate αSs over the sliding

window Tα is computed by αSs = 1
ℓα

∑k
j=k−ℓα+1 ψ

S
j,s. Alarm rates exceeding a user defined alarm

rate threshold, i.e. αSs > ατs , signifies that the sth sensor is compromised.

Remark 2.3 A special case of triggering alarm ψSk,s = 1 is when Remark 2.2 is satisfied, when two

consecutive residuals are equal. Since rk,s ∼ N (0, σ2s), the probability of having two residuals of the

same value is equal to 0.

The following lemma provides a proof for bounds of NR in the SIR test to satisfy a desired false

alarm rate αdes
s .

Lemma 2.2 Given the residual differences r′k,s = rk,s − rk−1,s for an sth sensor over a window T ′

and desired false alarm rate αdes
s , an alarm is triggered by the SIR test when ΩS− ≤ NR ≤ ΩS+ is not

satisfied where

ΩS± = ±|Φ−1(αdes
s /2)|

√
(16ℓ′ − 29)/90 + (2ℓ′ − 1)/3. (2.30)

Proof: With an observed number of runs NR within a window of ℓ′ residual differences, we can

rearrange (2.28) such that NR = |ZSk,s|
√
(16ℓ′ − 29)/90 + (2ℓ′ − 1)/3 where |ZSk,s| = |Φ−1(αdes

s /2)|,
we find the bounds of NR to not reject (2.24) for a desired false alarm rate αdes

s are

−|Φ−1(αdes
s /2)|

√
(16ℓ′ − 29)/90 + (2ℓ′ − 1)/3 ≤ NR

≤ |Φ−1(αdes
s /2)|

√
(16ℓ′ − 29)/90 + (2ℓ′ − 1)/3.

(2.31)

From (2.31), we obtain the bounds of ΩS± in (2.30) for alarm triggering at a desired false alarm rate

αdes
s .
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2.4.4 Comparable Detectors

To show that our framework can easily be augmented with any detector that provides magnitude

boundaries, two different boundary detectors found in the CPS security literature are considered.

Both boundary detectors discussed in this section leverage the absolute value of the residual (2.9) for

attack detection. Consequently, in the absence of attacks (i.e., ξk = 0), this leads to |rk,s| following
a half-normal distribution [90] defined by

E[|rk,s|] =
√

2/πσs, Var[|rk,s|] = σ2s(1− 2/π) (2.32)

where σ2s was defined as the sth diagonal element in Σ.

The first detector considered is the Bad-Data Detector (BDD) [67], a benchmark attack detector

to find anomalies in sensor measurements, alarming when the residual error goes beyond a threshold.

Similar to our detection framework, the BDD can also be tuned for a desired false alarm rate αdes
s .

Considering the residual rk,s in (2.9), the BDD procedure for each sth sensor is as follows:

Bad-Data Detector Procedure

If |rk,s| > τBs , then alarm ψBk,s = 1, s ∈ {1, . . . , Ns} (2.33)

Assuming the system is without attacks, the tuned threshold τBs for the BDD in (2.33) with

rk,s ∼ N (0, σ2s) is solved by τBs =
√
2σserf

−1(1− αdes
s ) where erf−1(·) is the inverse error function,

resulting in αBs ∼ αdes
s .

The second well-known boundary detector that we consider is the CUmulative SUM (CUSUM),

which has been shown to have tighter bounds on attack detection than the BD [70]. The CUSUM

leverages the absolute value of the residual in the detection procedure and is solved by:

CUSUM Detector Procedure
Initialize S1,s = 0, s ∈ {1, . . . , Ns}
Sk,s = max(0, Sk−1,s + |rk,s| − bs), if Sk−1,s ≤ τCs

Sk,s = 0 and Alarm ψCk,s = 1, if Sk−1,s > τCs

(2.34)

The working principle of of this detector is to accumulate the residual sequence in Sk,s, triggering

an alarm ψCk,s = 1 when the test variable surpasses the threshold τCs . A detailed explanation of how

to tune threshold τCs given a bias bs for a desired false alarm rate αdes
s can be found in [70].

2.4.5 State Deviation Under Worst-case Stealthy Attacks

In this analysis, a reference tracking feedback controller is considered that is written by the following:

uk =Kx̂k + krx
ref
k (2.35)
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where K ∈ RNs×n is the state feedback control gain matrix, kr ∈ Rm×m is a reference gain

for output tracking, xref
k is the reference state, and x̂k is the state estimate computed from the

Kalman Filter (i.e., state estimator). Choosing a suitable K such that (A +BK) is stable (i.e.

ρ[A+BK] < 1, where ρ[·] is the spectral radius) and (A,C) is assumed stabilizable, the closed-loop

system can be written within terms of the KF estimation error as:

xk+1 = (A+BK)xk +Bkrx
ref
k −BKek + νk,

ek+1 = (A−LC)ek −L(ξk + ηk) + νk.
(2.36)

As an attacker injects signals into the measurements (i.e. ξ ̸= 0), system dynamics are indirectly

affected via the interconnected term BKek from the estimation error dynamics.

In the remaining of this section we describe the maximum damage that can occur due to

worst-case scenario stealthy sensor attacks. We assume the attacker has perfect knowledge of system

dynamics, detection procedures, and state estimation. The objective of an attacker is to cause

maximum damage to the system state by injecting attack signals ξk to measurements while also

remaining undetected. With only the BDD implemented, the effects of a worst-case scenario attack

while not triggering an alarm can be derived from (2.9) and (2.33) with a sustained attack signal

ξk,s = −Csek − ηk,s + τBs (2.37)

causing the residual |rk,s| = τBs to not trigger the BDD alarm.

Now considering CUSUM as a stand-alone detector, an adversarial wants to avoid attack

vectors such that the monitoring test variable exceeds threshold τCs , thereby causing a reset Sk,s =

0, if Sk−1,s > τCs in (2.34) by satisfying the CUSUM procedure sequence Sk,s = max(0, Sk−1,s +

|Csek + ηk,s + ξk,s| − bs) ≤ τCs if Sk−1,s ≤ τCs . For maximum effect on state deviation, the attacker

saturates the CUSUM test statistic such that Sk,s = τCs to achieve no alarm sequences. Here we

define a saturation as follows:

Definition 2.3 Saturation of a boundary detector is defined as the maximum allowable attack

signal to force the residual to, but without exceeding, the detector threshold.

Beginning at a time k, an attacker immediately saturates Sk,s with the attack signal

ξk,s = −Csek − ηk,s + bs − Sk−1,s + τCs (2.38)

followed by

ξk,s = −Csek − ηk,s + bs (2.39)

for all future time instances to hold Sk,s at threshold τ
C
s .
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With the Randomness Monitor augmented with either BDD or CUSUM, an attacker can no

longer hold an attack sequence to one side as described in attacks (2.37)-(2.39). Rather, an attacker

is forced to create an attack sequence such that rk,s alternates residual signs if it wants to avoid

triggering alarms for both the WSR and SIR tests. The most effective attack for maximum state

deviation with our augmented framework is to saturate the boundary detector as often as possible,

while leaving the remaining attack signals with an opposite sign with respect to the saturating

attacks to force the residual to be as close as possible to zero.

From the WSR test, given a monitoring window ℓ, the minimum number of non-saturating

attack signals ξk,s to not trigger an alarm ψWk,s is

γℓs = min
ℓj

( ℓj∑
rank=1

rank

)∣∣∣∣ ℓj∑
rank=1

rank > min(W±
s ), (2.40)

in which ℓj ∈ L = (1, . . . , ℓ) and L is the set of all ranks. From (2.40), we can then find the

maximum number of saturating attack signals by βℓs = ℓ− γℓs.

Proposition 2.1 The maximum allowable saturating attack signal converges to limℓ→∞
βℓs
ℓ = 1−

√
2
2 ≈ .293 for any αdes

s as shown by the dashed black line in Fig. 2.2.

Figure 2.2: Allowable percentage of saturating attack signals of given windows lengths for different
desired alarm rates αdes.

To this point, we have discussed worst-case scenario attack sequences causing saturation of the

test variable (in this paper BDD and CUSUM) to maximize the effect of the attack. However, from

Remark 2.3, a special case to satisfy requirements of the SIR test is when two consecutive residuals

of same value triggers an alarm ψSk,s = 1. To work around this issue, a stealthy attacker with

perfect knowledge of the SIR test can include a small uniformly random number to the attack signal

ξk,s denoted by δk,s ∼ U(0, ϵ) where ϵ ∈ R+ is infinitesimally small and E[δk,s] = ϵ
2 ≈ 0. Thus, the

worst-case scenario with the Randomness Monitor augmented to the BDD follows ξk,s = −Csek − ηk,s + τBs − δk,s, if saturating,

ξk,s = −Csek − ηk,s − δk,s, if non-saturating,
(2.41)
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in order to not trigger an alarm. Similarly, but with the CUSUM detector, an undetectable attack

sequence follows ξk,s = −Sk−1,s −Csek − ηk,s + bs + τCs − δk,s, if saturating,

ξk,s = −Csek − ηk,s + bs − δk,s, if non-saturating.
(2.42)

Given the alternating signed sequence of residuals over the monitoring window, the expected

value of rk,s under worst-case scenario stealthy attacks is denoted as E[rBk,s] = τBs (β
ℓ
s
ℓ − δk,s) ≈ τBs

βℓs
ℓ , for Bad-Data,

E[rCk,s] = τCs (β
ℓ
s
ℓ − δk,s) ≈ τCs

βℓs
ℓ , for CUSUM.

(2.43)

With our framework augmented to the BDD, the expected value of the residual sequence is

described as E[rBk ] = (E[rBk,1], . . . ,E[rBk,s])T and the expectation of the closed-loop system (2.36)

under attack (2.41) results in

E[xk+1] = (A+BK)E[xk]−BKE[ek],

E[ek+1] = AE[ek]−LE[rBk ].
(2.44)

Note, in (2.44), the reference signal term Bkrx
ref
k from (2.36) has been removed as we are interested

in the expected state deviation under an attack. It is clear that if ρ[A] > 1 and E[rBk ] ̸= 0 then

the expectation of the estimation error E[ek] for destabilized states diverge to infinity as k → ∞
(depending on algebraic properties of A), indirectly causing these states within E[xk] to also diverge

unbounded.

Lemma 2.3 Considering a closed-loop system from (2.1) and (2.44), where ρ[A] < 1 and attack

sequence in (2.41), the limit for expected state divergence limk→∞ E[xk] = ∆B is

∆B = (I −A−BK)−1BK(I −A)−1LE[rBk ]. (2.45)

Proof: Assuming both ρ[A] < 1 and ρ[A+BK] < 1 are satisfied, signifying the invertibility

of (I − A) and (I − A − BK) in (2.45), an expected equilibrium is reached as k → ∞ by

E[x∞] = (I − A − BK)−1BK(I − A)−1LE[rBk ] and E[e∞] = (I − A)−1LE[rBk ] such that the

evolution of (2.44) with the expected differences E[xk]− E[x∞] and E[ek]− E[e∞] is described by

E[xk+1]− E[x∞] = (A+BK)(E[xk]− E[x∞])−BK(E[ek]− E[e∞]),

E[ek+1]− E[e∞] = AE[ek]− E[e∞],
(2.46)
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are asymptotically stable i.e., limk→∞(E[xk+1] − E[x∞]) = 0 and limk→∞(E[ek+1] − E[e∞]) = 0,

therefore concluding the proof.

Similarly, with the Randomness Monitor augmented to CUSUM, the expected closed-loop system

evolution under attack sequence (2.42) is described by

E[xk+1] = (A+BK)E[xk]−BKE[ek],

E[ek+1] = AE[ek]−LE[rCk ].
(2.47)

where E[rCk ] = (E[rCk,1], . . . ,E[rCk,Ns ])
T is the expected value of the residual sequence vector for

CUSUM in (2.43).

Lemma 2.4 Considering a closed-loop system from (2.1) and (2.47), where ρ[A] < 1 and attack

sequence in (2.42), the limit for expected state divergence limk→∞ E[xk] = ∆C is

∆C = (I −A−BK)−1BK(I −A)−1LE[rCk ]. (2.48)

Proof: The proof is omitted here due to space constraints but follows the proof for Lemma 2.3.

2.4.6 Simulation Results

The proposed randomness monitoring framework was validated in simulation and experiments, then

compared to state-of-the-art detection techniques. The case study presented in this paper is an

autonomous waypoint navigation of a skid-steering differential-drive UGV with a linearized model:

v̇ =
1

m
(Fl + Fr −Brv),

ω̇ =
1

Iz

(w
2
(Fl − Fr)−Blω

)
, θ̇ = ω,

(2.49)

where v is the velocity, θ is the vehicle’s heading angle, and ω its angular velocity, forming the state

vector x = [v, θ, ω]T. The continuous-time model (2.49) is discretized to satisfy the system model

described in (2.1).

In both simulation and experiment, we perform two different attack sequences: Attack #1

where a stealthy attack sequence concentrates the residual distribution with a non-zero mean and

smaller variance whereas Attack #2 creates a signed pattern sequence {+, +, +, -} of residual

differences r′k,s. Both attacks are chosen to not increase the boundary detector (i.e., a traditional

magnitude-based detector) alarm rate.

In our simulation case study, we show the effect of stealthy attacks on the velocity sensor with a

monitoring window length ℓ = 100. Table 2.1 gives the resulting alarm rates when our framework is
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augmented to boundary detectors (BDD and CUSUM) with all detectors tuned for desired false

alarm rates αdes ∈ {.05, .20}. Under Attack #1, alarm rates for only the WSR increase to higher

values and similarly the Attack #2 pattern gives an increased alarm rate to only the SIR test.

Figure 2.3 demonstrates attacks where our detectors are tuned for αdes
1 = 0.10 and compared with

the CUSUM boundary detector. Attack #1 occurs between (50, 125)s triggering the WSR test,

Attack #2 between (175, 250)s triggering the SIR test, and from 300s a third attack satisfying

bounds for both tests but violating the CUSUM test is presented. Velocity is reduced as expected

while experiencing the effects of each attack.

Table 2.1: Simulated Alarm Rates

Figure 2.3: State deviation and alarm rates under various attacks over a moving window of length
100.

2.4.7 Experiment Results

In this section we present a case study for a UGV performing way-point navigation under stealthy

sensor attacks. For our case, the UGV travels to a series of goal positions while avoiding a restricted

area with a desired cruise velocity vref = 0.15m/s while experiencing the same class of attacks

as in Section [Simulation]. This time the IMU sensor that measures angle θ is spoofed while our

Randomness Monitor is augmented with the BDD. Fig. 2.4 shows the UGV position while traveling

to the four goal points. For both attacks the vehicle enters the restricted area (marked by red tape)
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while the boundary detector (BDD) does not see the attack in each case. The alarm rate for the

WSR test increases for the case under Attack #1 (solid line) and the SIR test alarm rate increases

during the case for Attack #2 (dashed line), as expected.

Figure 2.4: UGV position under Attack #1 (solid line) and Attack #2 (dashed line) with
accompanying resulting alarm rates.
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2.5 Cumulative Sign Attack Detector

The overall cyber-physical system architecture including the CUSIGN detector is summarized

in Fig. 2.5. CUSIGN, which can be augmented to any boundary detector providing magnitude

bounds, is placed in the system feedback to monitor the relationship between measurement and

state prediction. We focus on stealthy sensor attacks where an attacker may inject an attack signal

at any point between the sensors and the state estimator, in an attempt to affect system behavior.

Figure 2.5: The detection architecture of a CPS to monitor for sensor attacks with the CUSIGN
detector.

2.5.1 Test Measure Reference Point

We develop a Cumulative Sign (CUSIGN) detector that analyzes the sign of the given test measure

zk relative to a reference point and determines whether there is non-random behavior occurring.

The model-based CUSIGN detector monitors the chi-square test measure zk and outputs an alarm

when the CUSIGN test variable reaches a user defined threshold. For a given user defined threshold,

an expected alarm rate can be found that is independent from the model of the system (2.1).

In normal conditions, i.e., without attacks or sensor malfunctions, the test measure zk has a

specific probability of being higher or lower than a given user defined reference point zref ∈ R>0

within its known distribution. We formalize these probabilities of zk being higher or lower than the

reference point by

Pr
(
zk < zref

)
= γ

(s
2
,
zref

2

)
,

Pr
(
zk > zref

)
= 1− γ

(s
2
,
zref

2

)
,

(2.50)

36



where γ(·, ·) is the regularized lower incomplete gamma function [91]. The sign of zk with respect to

the reference zref is computed by the following

sgn(zk − zref) :=


−1, if zk − zref < 0,

0, if zk − zref = 0,

1, if zk − zref > 0,

(2.51)

where the probability of each scenario occurring is

Pr
(
sgn(zk − zref) = −1

)
= p−,

Pr
(
sgn(zk − zref) = 0

)
= 0,

Pr
(
sgn(zk − zref) = 1

)
= p+.

(2.52)

An example of (2.52) is shown in Fig. 2.6, where the probabilities p+ and p− determine whether

zk will be higher or lower than zref given zk ∼ χ2.

Figure 2.6: Probabilities p+ and p− determined by zref.

2.5.2 Detector Design

The procedure of CUSIGN is an accumulation of signed values, denoted by the CUSIGN test

variables S+
k and S−

k . Each variable is a monitor checking for a change in the probability of the

signed value sgn(zk − zref), one for positive and the other for negative changes. The following

procedure summarizes the CUSIGN detection in both the positive and negative cases:

CUSIGN Detector Procedure

Initialize S+
0 = 0,

S+
k = max

(
0, S+

k−1 + sgn(zk − zref)
)
,

S+
k = 0 and Alarm ζ+k = 1, if S+

k−1 = τ,

Initialize S−
0 = 0,

S−
k = min

(
0, S−

k−1 + sgn(zk − zref)
)
,

S−
k = 0 and Alarm ζ−k = 1, if S−

k−1 = −τ.

(2.53)
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The design of the test variable sequences S+
k and S−

k are to accumulate the signed value

sgn(zk − zref) ∈ {−1, 0, 1} and triggering an alarm ζ±k = {ζ+k , ζ
−
k } ∈ {0, 1} when the test variables

reach the threshold values τ ∈ N. When either of the test variables are equal to their corresponding

thresholds, the given test variable is reset to 0. An example of the CUSIGN test variable is shown

in Fig. 2.7 where three consecutive iterations zk > zref are satisfied at k = 1, 2, 3 (transitioning S+
k

in the direction of p+). At k = 3, the CUSIGN test variable S+
k reaches the threshold value τ = 3

causing a reset such that S+
k → 0.

Figure 2.7: Transitions of the CUSIGN test variable S+
k with threshold τ = 3.

Choosing a specific threshold τ results in expected alarm rates E[α+] and E[α−] for both the

positive and negative cases of the CUSIGN procedure (2.53). In the case that zref = E[median(zk)]

such that p+ = p−, the resulting expected alarm rates are equal E[α+] = E[α−].

Similar to the implementation in [71], the transition of the CUSIGN test sequences S±
k can

be constructed as a Markov chain with a transition matrix modeled from the probabilities of

sgn(zk − zref). With a user defined threshold τ to trigger an alarm and causing a reset condition of

the CUSIGN test variable to 0, we show the transitions of S±
k with a Markov chain diagram, as

follows in Fig. 2.8.

Figure 2.8: Markov chain for both CUSIGN test sequences with threshold τ .

Given a chosen threshold value τ ∈ N as a value that triggers an alarm when |S±
k | = τ , we

describe the Markov chain in Fig. 2.8 in the form of a Markov transition matrix T ± ∈ R(τ+1)×(τ+1).

The CUSIGN Markov Chain, occurring in a discrete manner, contains τ + 1 states denoted as

M = {M0,M1, . . . ,Mτ} where Mτ is an absorbing state that is equal to the threshold, causing the

CUSIGN test sequence S±
k to reset to M0 (i.e., S±

k = 0). The CUSIGN Markov transition matrix

T ± for both positive T + and negative T − cases with a probability distribution of sgn(zk − zref) are
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written by

T ± =



p∓ p± 0 0 . . . 0

p∓ 0 p± 0 . . . 0

0 p∓ 0 p± 0
...

. . .
. . .

...

0 . . . 0 p∓ 0 p±

0 . . . 0 0 0 1


. (2.54)

The transition matrix T ± structure remains the same on any system, where the matrix size

depends only on the value of the threshold τ . Transition probabilities for transient states in T ±

adhere to the following:

T ± =


Pr(Mj →Mj+1) = p±, for j = {0, . . . , τ − 1},
Pr(Mj →Mj−1) = p∓, for j = {1, . . . , τ − 1},
Pr(M0 →M0) = p∓,

(2.55)

and the final row represents an absorbing state containing elements equal to 0 besides the last

element equaling 1.

We define R± ∈ Rτ×τ as a matrix obtained from T ± with its last row and column removed (i.e.,

the absorbing state at threshold τ is removed), representing the transition probabilities to and from

the transient states, also known as the fundamental matrix. Elements of R± are all non-negative

and row sums are equal to or less than one, while the eigenvalues satisfy ρ[R±] < 1 such that

(R±)i → 0 as i→ ∞ and
∑∞

i=0 (R±)i = (Iτ −R±)−1, where ρ[·] is the spectral radius and Iτ is the

identity matrix of size τ .

Lemma 2.5 Given a system with a CUSIGN detector (2.53) with a chosen threshold τ ∈ N and

reference point zref ∈ R>0 that is not affected by sensor attacks such that the residual sequence

satisfies rk ∼ N (0,Σ) ∈ RNs and zk = rTkΣ
−1rk ∼ χ2 with Ns degrees of freedom, then the inverse

of the first element of the following vector

µ± = (Iτ −R±)−11τ×1 = (µ±1 , . . . , µ
±
τ )

T (2.56)

is the expected alarm rate, i.e., E[α±] = (µ±1 )
−1.

Proof: Given the Markov chain containing τ + 1 states denoted by M = {M0,M1, . . . ,Mτ}, a
fundamental matrix R± is taken from a designed Markov transition matrix (2.54) to satisfy the

transition probabilities (2.55). Leveraging the theory of average run length (ARL) in CUSUM [10],

the ARL is defined as the average length of time for the test sequence to reach the threshold τ to

trigger an alarm, determined by the fundamental matrix R± containing the transient states within
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T ±. By definition, the inverse of the ARL to observe an alarm results in the average frequency of

obtaining an alarm, known as the alarm rate. The ARL can be found by computing (2.56), then by

inverting the first element of µ±, i.e., (µ±1 )
−1, we obtain the expected alarm rate E[α±].

2.5.3 Window-less Alarm Rate Estimation

In the design of CUSIGN, we trigger an alarm when a test variable reaches a chosen threshold

τ . Given a system not experiencing sensor attacks, we have an expectation of the alarm rates.

Typically, to find an alarm rate, the number of triggered alarms are tallied over a given period of

time. Here, we want to create a “memoryless” procedure to find an alarm rate.

The conventional method of finding an average x̄ of a stochastic variable is x̄n = 1
n [

∑n
i=1 xi]

where n is the size the data set. This procedure requires storage of the complete data set, where

computation becomes less efficient as n grows. A memoryless online algorithm known as Welford’s

online algorithm for computing a mean incrementally was developed in [108] by transforming the

conventional method into an online update by the following form

x̄n =
1

n

[
xn +

n−1∑
i=1

xi

]
=

1

n
[xn + (n− 1)x̄n−1]

=
1

n
[xn + nx̄n−1 − x̄n−1] = x̄n−1 +

[
xn − x̄n−1

]
n

.

(2.57)

It can be seen in (2.57) that n grows indefinitely, equal to the number of data points. We

set a maximum value for n such that max(n) = ℓ ∈ N to create a “pseudo-window” for a rolling

sequential estimation of an expected mean. We name this modified version of Welford’s online

algorithm utilizing a pseudo-window ℓ as a Memoryless Run-time Estimator (MRE). The behavior

of MRE when computing the mean similarly imitates the conventional method of calculating the

mean consisting of ℓ data points, but without the need to store the entire sequence.

For the case of attack detection using alarm rates for CUSIGN, we leverage MRE in (2.57) to

find an online estimation of an expected alarm rate E[α] (we omit ± for α± in this section as the

MRE applies to both the positive and negative cases). Leveraging the pseudo-window of length ℓ

and replacing the counter n from (2.57) with k for sampling time instances, we attain the equation

α̂k = α̂k−1 +

[
ζk − α̂k−1

]
ℓ

, (2.58)

where ζk is the triggered alarm for CUSIGN, α̂k is an estimate of the alarm rate at time instance k,

and α̂0 = 0 initially at k = 0.
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Proposition 2.2 Assuming the system is not experiencing sensor attacks and the test measure

follows zk ∼ χ2 for time instances k ≥ 0, we empirically find that the alarm rate is a Normal

distribution as follows

α̂ ∼ N
(
E[α],

θE[α](1− E[α])

ℓ

)
, (2.59)

where ℓ is the user defined pseudo-window length, θ ∈ R>0 is an empirically found scaling value,

and E[α] is the expected alarm rate, i.e., the probability that the test variable Sk reach the threshold,

triggering an alarm ζk = 1.

Given the distribution of α̂ in Proposition 2.2, the expectation of the estimated alarm rate

follows

E[α̂] = E[α], Var[α̂] =
θE[α](1−E[α])

ℓ
. (2.60)

Values of θ are found to be dependent on the chosen threshold τ . Observed approximates of θ

are presented in Table 2.2 for thresholds τ = 1, 2, 3, 4 and ℓ ≥ 10.

Table 2.2: Empirical values for the scaling value θ given thresholds τ = 1, 2, 3, 4.

Thresholds τ = 1 τ = 2 τ = 3 τ = 4

θ ℓ
2ℓ−1

.74ℓ
2ℓ−1

.7ℓ
2ℓ−1

.69ℓ
2ℓ−1

Remark 2.4 For the CUSIGN detector, we empirically find that α̂ follows (2.59) when p+ ≈ p−

(i.e., zref is chosen to be at E[median(zk)] such that p− = p+ = 0.5). For a reference point zref not

placed near the expected distribution median, i.e., p+ ̸≈ p−, we found that the distribution of α̂

loses properties of the Normal distribution in (2.59). Empirical results for observed α̂ and Var[α̂]

considering the case when p+ ̸≈ p− can be found in Section 2.5.6.

By leveraging the distribution of the estimated alarm rate in (2.59), bounds of the alarm rate

can be made.

Lemma 2.6 Assuming an uncompromised system with a CUSIGN detector (2.53) with a reference

point zref and threshold τ ∈ N, detection of sensor attacks occurs when τα− ≤ α̂ ≤ τα+ where

τα± = E[α]± Z

√
θE[α](1− E[α])

ℓ
. (2.61)

Proof: Given a CUSIGN detector with threshold τ ∈ N and reference point zref ∈ R>0 that

determine transition probabilities p− and p+, an expected alarm rate E[α] can be computed by

inverting the first element in (2.56). With E[α] and leveraging the Memoryless Run-time Estimator

41



with a pseudo-window of length ℓ, the distribution of the estimated alarm rate follows α̂ ∼ N (·, ·)
with properties from (2.60). Detection bounds τα± of a specific confidence level determined by Z of

a Normally distributed random variable with properties from (2.60) follow:

E[α]− Z

√
θE[α](1− E[α])

ℓ
≤ α̂± ≤ E[α] + Z

√
θE[α](1− E[α])

ℓ
, (2.62)

satisfying (2.61), concluding the proof.

Detection of sensor attacks occur when an estimated alarm rate α̂ goes beyond a threshold from

τα± = {τα−, τα+}. Lower bounds resulting in τα− < 0 are omitted as α̂ ∈ [0, 1τ ].

2.5.4 CUSUM Detector for Comparison

The CUSIGN detector alone may not be sufficient as an attacker can change the magnitude of a

measurement, but still maintain random signed behavior of the test measure zk. The non-parametric

quality of CUSIGN results in the inability to monitor the magnitude of the test measure. A

well-known dynamic detector, the CUmulative SUM (CUSUM) detector, leverages the magnitude

of the test measure sequence zk to look for changes in the mean from an expectation. Formalized

into a model-based attack detector by [71] that outputs an alarm, the CUSUM attack detection

procedure follows

CUSUM Detector Procedure
Initialize C0 = 0,

Ck = max(0, Ck−1 + zk − b), if Ck−1 ≤ τC ,

Ck = 0 and Alarm ζCk = 1, if Ck−1 > τC .

(2.63)

The working principle of this detector is to accumulate the test measure zk in Ck, triggering

an alarm ζCk = 1 when the test variable surpasses the threshold τC . The test variable Ck resets

to zero either when the threshold τC is surpassed or when Ck goes negative. A bias b is selected

based on properties of Σ such that Ck does not grow unbounded. A detailed explanation of how to

construct a transition matrix for the probability distribution zk − b for the model-based CUSUM

can be found in [71]. The authors provide a method for tuning the threshold τC given a bias b for a

desired alarm rate E[αC ] with an assumption that the system is free of sensor attacks, where the

residual follows rk ∼ N (0,Σ), hence a shifted χ2 distribution zk − b = rTkΣ
−1rk − b.

Considering CUSUM as a stand-alone detector, an adversarial wants to avoid attacks such that

the test variable Ck exceeds threshold τC at a higher rate, thereby causing a reset Ck = 0 in (2.34)

by satisfying the CUSUM procedure sequence Ck = max(0, Ck−1 + zk − b) ≤ τC to trigger alarms

more often, resulting in a higher alarm rate αC . Subsequently, an attacker can design an attack such

that it remains within bounds of CUSUM to not trigger alarms more than expected. To include
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this attack vector, we can rewrite the CUSUM procedure such that

Ck = max(0, Ck−1 +
(
∥Σ− 1

2 (Cek + ηk + ξk)∥2
)
− b). (2.64)

Assuming that a malicious attacker can have access to the sensor measurements yk = Cxk + ηk

and has perfect knowledge of the state estimator, it will be able to find the estimator output Cx̂k.

With this information, the attacker can solve for yk −Cx̂k = Cek + ηk to achieve the ability of

manipulating elements of ξk by

ξk = −Cek − ηk +Σ
1
2 ξτ

C

k (2.65)

such that max(0, Ck−1+(ξτ
C

k )Tξτ
C

k − b) ≤ τC can maintain the test variable Ck within the detection

threshold τC .

2.5.5 Simulation Results

The proposed CUSIGN detector was validated in simulation and augmented with the CUSUM

detector. The case study presented is an autonomous way-point navigation of a skid-steering

differential-drive UGV with the following linearized model [73]:

v̇ =
1

m
(Fl + Fr −Brv),

ω̇ =
1

Iz

(w
2
(Fl − Fr)−Blω

)
, θ̇h = ω,

(2.66)

where v, θh, and ω denotes the velocity, heading angle, and angular velocity, forming the state vector

x = [v, θh, ω]
T. Fl and Fr describe the left and right input forces from the wheels, w is the vehicle

width, while Br and Bl are resistances due to the wheels rolling and turning. The continuous-time

model (2.66) is discretized with a sampling rate ts = 0.01 to satisfy the system model described in

(2.1). The UGV is tasked to continuously navigate to four goal-points along a square trajectory

with side lengths of 5m maintaining a velocity v = 0.5m/s for 200s.

In the simulation, we perform two different attack sequences on the velocity sensor on-board the

vehicle: 1) a persistent attack and 2) an alternating pattern attack. Both stealthy attack sequences

are designed to be undetectable by CUSUM, but are detected by CUSIGN due to the creation of

non-random patterns.

A system is first considered under nominal conditions where ξk = 0. In Table 2.3 we show the

alarm rate of the system over 5 million data samples and compare the results to the expected alarm

rate E[α±] computed from (2.56) in the case where p+ = p− = 0.5 for thresholds τ = 1, 2, 3, 4. Next,
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in Fig. 2.9 we show the distribution of the alarm rate estimate α̂ from the four cases in Table 2.3

overlaid with the expected distributed curve (in red) according to (2.60).

Table 2.3: E[α±] when p+ = p− = 0.5.

Thresholds τ = 1 τ = 2 τ = 3 τ = 4

E[α±] 0.5 0.16̄ 0.083̄ 0.05

α± (sim.) .50006 .16692 .083291 .050012

(a) (b) (c) (d)

Figure 2.9: Resulting distributions of α̂ when p+ = p− = 0.5 for (a) τ = 1, (b) τ = 2, (c) τ = 3, (d)
τ = 4.

Now, considering the UGV (2.66) case study in the presence of hidden attacks on the velocity

sensor on state x1 = v, we show the detection capabilities of CUSIGN. The CUSIGN is designed

with zref = E[median(zk)] ≈ s
(
1 − 2

9s

)3
where s = 3 such that the transition probabilities satisfy

p± = 0.5 and threshold τ = 2. The expected alarm rate E[α] = 0.16̄ and the Memoryless Run-time

Estimator (2.58) with pseudo-window length ℓ = 100 has detection bounds (2.61) at τα− = 0.0987

and τα+ = 0.2347 where Z = 3 for a 99.7% confidence. The design of CUSUM contains a bias

b = 1.1s = 3.3 with a threshold τC = 2.3226 to satisfy an expected alarm rate E[αC ] = 0.15 (see

[71] for tuning details), where the alarm rate is computed by a conventional method of length

ℓ by 1
ℓ

∑k
k−ℓ+1 ζ

C
k . Fig. 2.10 shows the results of a persistent attack (2.64), (2.65) beginning at

k = 10, 000 with a noiseless magnitude of 0.1τC . The alarm rate α̂C for CUSUM is unaffected while

CUSIGN discovers the attack and alarm rates α̂± both go beyond the detection bounds τα± (red

dashed lines). A second attack shown in Fig. 2.11 is attempted with an alternating noiseless pattern

of {0.1τC ,−0.1τC} to show that CUSIGN can detect patterns. Again, alarm rates for CUSIGN

find the non-random patterns and go beyond the detection bounds τα± while CUSUM is not able to

detect the non-random behavior.
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Figure 2.10: Alarm rates α̂± and α̂C for both CUSIGN and CUSUM with a hidden persistent
sensor attack.

Figure 2.11: Alarm rates α̂± and α̂C for both CUSIGN and CUSUM with a hidden alternating
sensor attack.

2.5.6 Empirical Results

From Remark 2.4, we show in Fig. 2.12 the gradual divergence from the normal approximation as

p+ and p− are no longer similar as the distribution of the estimated alarm rate estimate α̂ becomes

skewed. The empirical results provided throughout this section are results from 5 million samples,

thus giving an accurate representation of the resulting distributions.

(a) (b) (c)

Figure 2.12: Resulting distributions of α̂ when (a) p+ = p− = 0.5, (b) p− = 0.37, (c) p− = 0.3.

Furthermore, Table 2.4 provides the expected E[α̂] and simulated alarm rates, while Table 2.5
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provides the square root of the expected and simulated variance
√

Var[α̂] (i.e., standard deviation).

It can be seen that as p± ≈ 0.5, the simulated mean of the alarm rate estimates remain approximately

equal to the expectation (i.e., ¯̂α ≈ E[α]), but the simulation results for standard deviation diverge

from the expected variance as p+ ̸≈ p−.

Table 2.4: Results of E[α̂] for ℓ = 100.

p± .4 .5 .6

E[α̂]/sim (τ=1) .400/4.01 .500/.500 .600/6.01

E[α̂]/sim (τ=2) .1143/.1142 .1666̄/.1665 .2250/.2251

E[α̂]/sim (τ=3) .0484/.0483 .0833̄/.0832 .1256/.1258

E[α̂]/sim (τ=4) .0244/.0239 .0500/.0500 .0835/.0833

Table 2.5: Results of std[α̂] for ℓ = 100.

p± .4 .5 .6

std[α̂]/sim (τ=1) .0346/.0347 .0354/.0355 .0346/.0347

std[α̂]/sim (τ=2) .0194/.0204 .0227/.0226 .0254/.0238

std[α̂]/sim (τ=3) .0127/.0138 .0163/.0163 .0196/.0185

std[α̂]/sim (τ=4) .0091/.0099 .0128/.0128 .0163/.0153
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2.6 Serial Randomness Attack Detector

Thus far in this chapter, both a window-based and a window-less monitoring frameworks have

been introduced to detect non-random measurement residual behavior in the presence of cyber

attacks to sensor measurements. However, if intelligent attackers have gained enough knowledge

about the system at hand such as the dynamical model, state estimator, noise model, and on-board

detection schemes, the attacker can create specific attack vector sequences to remain hidden from

intrusion detectors. With these attack vector sequences, non-random patterns arise within the

chi-square test measure that can then be exploited by defensive mechanisms to raise a flag when

these inconsistencies are present.

2.6.1 Background on Undetectable Hidden Attacks

A successful attacker is capable of modeling an attack sequence to achieve a desirable effect while

remaining undetectable to any on-board fault detection mechanisms. In order to accomplish such

stealthy behavior, it is necessary to attain information about critical aspects of the system, such as:

acquiring knowledge to the modeled dynamics, sensor measurements, state estimator, and detection

procedure(s). To intentionally avoid detection, an intelligent attacker will carefully construct an

attack sequence to evade raising any flags. Below we describe a sequence an attacker may take with

respect to the Bad-Data detector [67] leveraging the chi-square test measure procedure. However,

this may be extended to satisfy any detection procedure using a similar concept to avoid detection.

Zero-alarm attacks are sequences designed by an attacker that maintains the test measure from

exceeding the defined threshold value (zk ≤ τz). This class of attack does not trigger an alarm

throughout the attack sequence, as the test measure never passes the threshold. In order to satisfy

such requirements, an attacker can construct the attack vector by

ξk = −Cek − ηk +Σ
1
2δk (2.67)

where δk ∈ RNs is a vector that satisfies δTk δk ≤ τz. With this attack vector designed at a time k,

the test measure zk results in

zk = (ỹk −Cx̂k)TΣ−1(ỹk −Cx̂k)

= (Cek + ηk + ξk)
TΣ−1(Cek + ηk + ξk) ≤ τz

(2.68)

that remains within the threshold value to not trigger an alarm. While generating an attack sequence

that does not trigger alarms may seem like a favorable attack design, it is necessary to recall that

alarms are triggered in a system operating in normal conditions without attacks. If alarms are
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no longer being triggered as designed for in an attack-free case, then these conditions may raise

suspicions of a possible attack. To avoid these alarm rate discrepancies, an attacker would want to

design an attack sequence that is undetectable to emulate normal (attack-free) conditions. This

class of attack brings us to develop a sequence that exploits the system uncertainties to execute

such a malicious attack.

Hidden attacks can be defined as designed attack sequences such that alarms are triggered at

the same rate as the desired false alarm rate during nominal, attack-free operation. As shown in

Fig. 2.13, during a hidden attack, a smart attacker can design a sequence where the test measure

zk exceeds the threshold τz at the same rate as nominal conditions. More specifically, in the top

graph of Fig. 2.13 is the chi-square distribution of zk with Ns = 4 degrees of freedom (dof) under

nominal conditions. A correctly chosen threshold value τz results in the test measure zk exceeding

the threshold at a desired rate of α in the attack-free case. Similarly, during a hidden attack (in the

bottom graph), an attacker can design an attack sequence such that the alarm rate matches the

desired alarm rate α, all while altering the distribution of zk and remaining hidden from detection.

Figure 2.13: An example of a hidden attack within the chi-square detection scheme.

To tune for a desired alarm rate α (in the attack-free scenario) for Bad-Data detection while

leveraging the chi-square procedure, the specific threshold τz is found by

τz = 2γ−1
(
1− α,

Ns

2

)
(2.69)

to achieve a desired alarm rate, where γ−1(·, ·) is the inverse regularized lower incomplete gamma

function [91]. The vector δk from (2.67) is designed such that

Pr(zk > τz) = Pr(δTk δk > τz) ≈ α (2.70)
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to remain hidden from detection.

2.6.2 Magnitude-based Detection

The design of the Serial Detector is to find inconsistent behavior of chi-square test measures

within its expected distribution due to stealthy attacks to on-board sensor measurements. An

attacker deliberately attempting to fool test measure-based detection algorithms may leave traces of

inconsistencies within the serial sequence. We propose the Serial Detector that analyzes consecutive

chi-square test measures at time instances k and k − 1, called the test measure difference, that is

described as:

dk = zk − zk−1

= rTkΣ
−1rk − rTk−1Σ

−1rk−1 ∈ R.
(2.71)

Proposition 2.3 A system that is free from sensor attacks, where we assume consecutive test

measures are independent random variables that follow chi-square distributions zk, zk−1 ∼ χ2(Ns)

with s degrees of freedom, has the following expectations of the test measure difference dk:

E[dk] = E[zk]− E[zk−1] = 0,

Var[dk] = Var[zk] + Var[zk−1] = 4Ns.
(2.72)

Given an attack-free system that follows the expectation (2.72) in Proposition 2.3, the test

measure difference dk ∈ R follows

dk ∼ VG
(
E[dk],

√
Var[dk], 0,

2

Ns

)
(2.73)

where VG(·, ·, ·, ·) denotes the variance-gamma distribution [94], which is a mixed distribution of

the normal distribution and gamma distribution. As the chi-square distribution is a special case

of the gamma distribution, the difference of two gamma random variables (i.e. chi-square random

variables) results in the variance-gamma distribution [45]. The parameters within the variance-

gamma distribution that describe the difference of two chi-square random variables, generalized in

[27], are the location c = E[dk], spread σ̄ =
√
Var[dk], asymmetry ϑ = 0, and shape λ = 2

Ns
. The

probability density function (PDF) of the variance-gamma distribution follows

f(dk; c, σ̄, ϑ, λ) =
2e(ϑ(x−c)/σ̄

2)|x− c|
1
λ
− 1

2

σ̄
√
2πλ

1
λΓ

(
1
λ

) (
1√

2σ̄2/λ+ ϑ2

) 1
λ
− 1

2

×K 1
λ
− 1

2

(
|x− c|

√
2σ̄2/λ+ ϑ2

σ̄2

)
(2.74)
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where Kλ is the modified Bessel function of the third kind of order λ and Γ(·) is the gamma function

[91]. During nominal conditions, the test measure difference dk is a symmetric zero-mean distribution

(i.e., parameters c = ϑ = 0).

False Alarms: Similar to other detection algorithms in literature [67, 71], we leverage an alarm

rate to diagnose the health of the system from sensor attacks. The magnitude-based detection

scheme compares the test measure difference dk to a threshold τd ∈ R>0 by: |dk| > τd −→ alarm: ζMk = 1,

|dk| ≤ τd −→ no alarm: ζMk = 0,
(2.75)

where the chosen threshold τd is dependent on the expected test measure difference distribution

described in (2.73). In Fig. 2.14 we show the resulting distribution of the test measure difference

dk = zk − zk−1 (the difference of two chi-square random variables), which is affected by the number

of sensors Ns. The test measure difference dk distribution follows a variance-gamma distribution

in an attack-free scenario, where we show the effects on the distribution for the number of sensor

Ns = {2, 3, 4, 5, 6, 7} (i.e., dof).

Figure 2.14: The resulting variance-gamma distribution of the test measure difference.

Under nominal circumstances, i.e. in the absence of attacks, an alarm is triggered at a desired

rate ψMdes ∈ (0, 1) given the chosen threshold value. The following lemma provides a method to

choose a threshold to satisfy a user-defined desired alarm rate.

Lemma 2.7 Assuming that the system is attack-free (i.e. ξk = 0) and considering the procedure in

(2.75) to trigger an alarm, a specific threshold value τd is chosen by

τd = {τd ∈ R>0 : Pr(ζ
M
k = 1) = ψMdes}, (2.76)

such that the result is a desired alarm rate ψMdes.
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Proof: Let Fdk(x; c, σ̄, ϑ, λ) denote the cumulative distribution function (CDF) of the random

variable dk from the PDF in (2.74). We compute the inverse CDF for a given desired false alarm

rate ψMdes to find the threshold value

τd = F−1
dk

(
1−

ψMdes
2

; c, σ̄, ϑ, λ
)

(2.77)

such that Pr(ζMk = 1) = Pr(|dk| > τd) = ψMdes to achieve a desired false alarm rate, thus concluding

the proof.

Alarm Rate Estimation: We employ a runtime method of estimating the alarm rate such that

we are able to eliminate the need to store a sequence of values. A Memoryless Runtime Estimator

(MRE) is leveraged to eliminate the need to use a windowed method to compute an alarm rate

estimation ψ̂Mk ∈ [0, 1]. The MRE algorithm is updated by following

ψ̂Mk = ψ̂Mk−1 +
ζMk − ψ̂Mk−1

ℓ
, (2.78)

where ℓ is a user-defined “pseudo-window” length. The resulting distribution while leveraging MRE

can be approximated to a normal distribution for pseudo-window lengths ℓ ≥ 10 consisting of a

variance that follows that of a exponential moving average (EMA) [30].

Lemma 2.8 Given the test measure difference dk defined in (2.71) for a system that is assumed

to be attack-free and tuned for a desired false alarm rate ψMdes, the estimate alarm rate follows a

Normal distribution described by

ψ̂Mk ∼ N
(
ψMdes,

ψMdes(1− ψMdes)

2ℓ− 1

)
. (2.79)

Proof: We first characterize the magnitude-based detector tuned for a desired false alarm rate

ψMdes as a Binomial distribution B
(
·, ·
)
where ψMdes is a probability for a “success” during a specified

number of “trials” (Refer to [91] for further explanations). By way of the binomial approximation

for larger pseudo-window size ℓ ≥ 10, a normal distribution can be used to approximate the alarm

rate while leveraging MRE (2.78) for estimation that results in

E[ψM ] = ψMdes, Var[ψM ] =
ψMdes(1−ψMdes)

2ℓ− 1
. (2.80)

From (2.80) we obtain the distribution in (2.79) to characterize the estimated alarm rate for

magnitude-based detection.

With the known expected false alarm rate distribution described in (2.79), we want to find

bounds on the estimated alarm rate ψ̂Mk , ∀k to determine if an attack has occurred. The following
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corollary provides detection bounds with a specific level of confidence 1− β, where β ∈ [0, 1] is a

user defined level of significance2.

Corollary 2.1 Assuming a system with s sensors that employs the chi-square detection scheme

that is monitoring the test measure difference (2.71) with a level of significance β while leveraging

MRE (2.78), detection of sensor attacks occurs when Ω− ≤ ψ̂Mk ≤ Ω+ is not satisfied where

Ω± = E[ψM ]± Z

√
E[ψM ](1− E[ψM ])

2ℓ− 1
. (2.81)

Proof: We construct confidence intervals for a normally distributed variable of a specific

confidence level, determined by z-score Z =
∣∣Φ−1

(β
2

)∣∣, that provide detection bounds by

E[ψM ]−
∣∣∣Φ−1

(β
2

)∣∣∣
√

E[ψM ](1− E[ψM ])

2ℓ− 1
≤ ψ̂Mk ≤ E[ψM ] +

∣∣∣Φ−1
(β
2

)∣∣∣
√

E[ψM ](1− E[ψM ])

2ℓ− 1
(2.82)

which satisfy (2.81), concluding the proof.

Detection of sensor attacks occur when an estimated alarm rate ψ̂Mk travels beyond the thresholds

from Ω± = [Ω−,Ω+].

2.6.3 Sign-based Randomness

To further strengthen detection of inconsistencies within the test measure, we monitor the “runs”

behavior of the test measure difference sequence. While a smart attacker may be able to fool the

magnitude-based monitor as discussed in Section 2.6.2, an attacker may leave traces of non-random

behavior on the signed test measure difference. The test we use to monitor for signed randomness is

influenced by the Serial Independence Runs (SIR) Test [12]. An example of the SIR test is shown

in Fig. 2.15, where it monitors a sequence of data by first computing the difference between the

current and previous data values and taking the sign of the difference to create a two-valued data

sequence (i.e., positive and negative values). Then, the number of observed runs NR, defined as

consecutive values of the same sign, are counted over the sequence length. In Fig. 2.15 we see that

over the sequence length W = 14 there are NR = 12 runs, which are highlighted by the red and

blue lines.

A drawback of the SIR test is the requirement to store the W length sequence of test measure

differences dk and then count the number of observed runs NR over this sequence. Alternatively,

we would like to use a window-less method to eliminate the need for storing an entire sequence to

2Reducing the value of β causes the detection bounds to move farther from the expected alarm rate, thus reducing
the frequency of falsely “detecting” under nominal (i.e., no attack) conditions while consequently giving an attacker
more freedom to design an attack without being detected, while the opposite is true when increasing β.
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Figure 2.15: A sequence of data, from left to right, converted to sequence of signed values while
leveraging the Serial Independence Runs Test.

determine whether the signed test measure difference is behaving randomly. To this end, we propose

to observe sign switches at runtime by triggering an alarm at a time k when the the present test

measure difference is of the opposite sign from the previous test measure difference at time k − 1.

We first compute the sign of the test measure difference by the following:

sgn(dk) :=


−1, if dk < 0,

0, if dk = 0,

1, if dk > 0,

(2.83)

and given that the distribution of the test measure difference dk is symmetric (assuming nominal

conditions) over the expected value E[dk] = 0, the probability of observing the signed values of the

test measure difference are

Pr
(
sgn(dk) = −1

)
= 0.5,

Pr
(
sgn(dk) = 0

)
= 0,

Pr
(
sgn(dk) = 1

)
= 0.5.

(2.84)

As sensor measurements are received at every kth time instance, the next test measure difference

dk is computed from (2.9), (2.11), and (2.71). A switch of the test measure difference sign signifies

the end of a run and an alarm ζSk ∈ {0, 1} is triggered such that ζSk = 1 at a time instance k,

otherwise ζSk = 0. The procedure to trigger a test measure difference alarm follows:

ζSk :=

 1, if sgn(dk) = −sgn(dk−1),

0, otherwise.
(2.85)

The alarm ζSk ∈ {0, 1} in (2.85) is then sent into the MRE to provide an updated runtime

estimate of the test measure difference alarm rate ψ̂Sk at time instance k.

Lemma 2.9 Given a system that is not experiencing attacks, the test measure difference alarm rate

while leveraging MRE (2.78) for estimation is described as a Normally distributed random variable
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by the following:

ψ̂Sk ∼ N
(
E[ψS ],Var[ψS ]

)
. (2.86)

Proof: We want to convert the distribution of expected runs E[NR] of test measure differences

over a window-based sequence of length W described in [12] by

NR ∼ N
(
2W − 1

3
,
16W − 29

90

)
(2.87)

to a runtime rate of expected test measure difference sign switching E[ψS ]. By first obtaining the

asymptotic distribution and then transforming the expected observed runs to an expected rate of

observed alarms E[ψS ] = E[NR]
W , we arrive to the expected sign switching alarm rate distribution

E[ψS ] =
2

3
, Var[ψS ] =

16

90(2ℓ− 1)
, (2.88)

while leveraging MRE for window-less estimation.

The following corollary provides a proof for detection bounds of ψ̂Sk to satisfy an expected alarm

rate E[ψS ].

Corollary 2.2 Given the test measure differences dk = zk − zk−1, detection occurs by the test

measure difference alarm rate when Ψ− ≤ ψ̂Sk ≤ Ψ+ is not satisfied where

Ψ± = ±
∣∣∣Φ−1

(β
2

)∣∣∣√ 16

90(2ℓ− 1)
+

2

3
. (2.89)

Proof: For a desired level of significance β we find the bounds of ψ̂Sk for an expected alarm

rate E[ψS ] are

−Z

√
16

90(2ℓ− 1)
+

2

3
≤ ψ̂Sk ≤ Z

√
16

90(2ℓ− 1)
+

2

3
, (2.90)

where z-score is Z =
∣∣Φ−1

(β
2

)∣∣. From (2.90) we can finally obtain the detection bounds of Ψ± in

(2.89) for alarm triggering at an expected alarm rate E[ψS ].

It is noted that while we describe a runtime method for detecting anomalous signed behavior

within the serial sequence of a chi-square random variable zk, this technique may be used on

any randomly distribution variable. As this method is non-parametric, the signed behavior is

independent from its underlying distribution [12, 99].

2.6.4 Undetectable Attacks

This section analyzes the attack sequence that an attacker must make in order to remain undetected

from our serial randomness-based detector. Continuing with assumptions previously made in Section
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2.6.1, a worst-case scenario is assumed where a smart attacker has access to the system model, noise

characteristics, control inputs, and state estimator to fool the introduced serial detection technique.

In particular, we focus on the attack sequences of ξk that can disrupt nominal closed-loop system

behavior while remaining hidden.

Magnitude-based Detection

We begin by considering an attack sequence that does not allow the magnitude-based alarm rate

ψ̂Mk to travel beyond detection bounds described in (2.81). If we recall the test measure difference

dk in (2.71), but written in terms of the sensor attack vector ξk, we have

dk = rTkΣ
−1rk − rTk−1Σ

−1rk−1

= (Cek + ηk + ξk)
TΣ−1(Cek + ηk + ξk)− (Cek−1 + ηk−1 + ξk−1)

TΣ−1(Cek−1 + ηk−1 + ξk−1) (2.91)

= (Cek + ηk + ξk)
TΣ−1(Cek + ηk + ξk)− zk−1.

In order for an attacker to not trigger the alarm ζMk = 1 at time k, i.e. a zero-alarm attack, the

sensor attack vector must maintain the test measure difference to satisfy |dk| ≤ τd. For an attack

vector sequence and the designed variance-gamma distribution threshold τd, we define a suitable

vector

δk = {δk ∈ RNs : |δTk δk − zk−1| ≤ τd}, (2.92)

that leads to the test measure difference dk not triggering an alarm. Therefore, for any time k, the

attack vector follows

ξk = −Cek − ηk +Σ
1
2δk, (2.93)

where Σ
1
2 is the symmetric square root of the measurement residual covariance matrix Σ, such that

|dk| = |zk − zk−1| ≤ τd, (2.94)

is satisfied. To remain hidden from detection, an attacker must trigger alarms at a rate which the

system is expecting. For the case of hidden attacks to evade detection of our serial monitor for

magnitude-based detection, a suitable vector δk in (2.92) is constructed as

Pr(|dk| > τd) = Pr(|δTk δk − zk−1| > τd) ≈ ψMdes, (2.95)

to emulate the alarm rate that would be seen during nominal conditions. More specifically, an

observed estimated alarm rate computed in (2.78) must remain within detection bounds found in

(2.81) to remain undetected. To ensure detection does not occur for the magnitude-based alarm

rate, an attacker must design the attack vector such that the alarm rate remains within detection
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bounds, ψ̂Mk ∈ [Ω−,Ω+]. To remain below the upper detection bound, the vector δk follows

|δTk δk − zk−1| ≤ τd :
(
Ω+ − ψ̂Mk−1 −

1− ψ̂Mk−1

ℓ

)
< 0, (2.96)

to guarantee ψ̂Mk ≤ Ω+. Additionally, a requirement to remain above the lower detection bound

adheres to

|δTk δk − zk−1| > τd :
(
Ω− − ψ̂Mk−1 +

ψ̂Mk−1

ℓ

)
> 0. (2.97)

Sign-based Detection

We continue with a scenario for an attacker to evade detection from the Serial Detector in which

the attack design is required to satisfy signed randomness throughout the sequence. Similar to the

magnitude-based detection, the attack sequence must result in alarm rates that emulate attack-free

conditions to remain hidden from detection. To achieve this, the sign-based alarm rate satisfies

Pr
(
sgn(dk) = −sgn(dk−1)

)
= Pr

(
sgn(zk − zk−1) = −sgn(zk−1 − zk−2)

)
≈ E[ψS ] (2.98)

in order to behave similarly to nominal conditions. In order to not cause a sign switching condition,

i.e. signed-based alarm ζSk = 0, the sign of dk must consist of the same sign as dk−1. In terms of the

vector δk while leveraging (2.67), the following inequality δTk δk > zk−1, if dk−1 > 0,

δTk δk < zk−1, if dk−1 < 0,
(2.99)

must be satisfied to not cause a sign change, thus not triggering an alarm. If the signed component

alarm rate ψSk , ∀k approaches the upper detection bound, the following equation guarantees

ψ̂Sk ≤ Ψ+, where

sgn(δTk δk − zk−1) = sgn(dk−1) :
(
Ψ+ − ψ̂S

k−1 −
1− ψ̂S

k−1

ℓ

)
< 0, (2.100)

thus maintaining the alarm rate within bounds. Similarly, the requirement to not cross below the

lower bound adheres to

sgn(δTk δk − zk−1) = −sgn(dk−1) :
(
Ψ− − ψ̂S

k−1 +
ψ̂S
k−1

ℓ

)
> 0, (2.101)

to remain undetectable from the Serial Detector.

2.6.5 Simulation Results

The proposed Serial Detector was validated in simulation and compared to state-of-the-art detection

techniques: Bad-Data (BD) [67], Cumulative Sum (CUSUM) [71], and Cumulative Sign (CUSIGN)
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detectors. The case study presented in this paper is an autonomous differential-drive UGV with the

linearized model in (2.66).

Two different attack sequences are performed: Bias Attack where the attack sequence concen-

trates the test measure distribution such that the magnitude detectors (BD and CUSUM) trigger

alarms at a desired rate while signed behavior monitored by CUSIGN remains consistent whereas a

Pattern Attack creates patterned concentrations on the chi-square test measure difference dk. In

Fig. 2.16, the resulting distributions for each case are shown that include: (a) the No Attack case

where zk ∼ χ2(Ns = 2), (b) Bias Attack, and (c) Pattern Attack. Both the Bad-Data and CUSUM

detectors are tuned for a desired alarm rate of α = 0.20 (see [67, 71]) and the CUSIGN detector

has an expected alarm rate of 0.0833. The magnitude component of our proposed Serial Detector

is tuned for an expected alarm rate E[ψM ] = 0.20 and the expected alarm rate for the signed

component is E[ψS ] = 2
3 . All detectors employ detection bounds that are 3 standard deviations

from their expectation.

(a) (b) (c)

Figure 2.16: The test measure zk distributions when (a) No attack, (b) Bias Attack, and (c) Pattern
Attack occur in the simulation case study.

Next, a simulation showing the detector alarm rates is included during No Attack at times

k < 20000, Bias Attack at 20000 ≤ k < 40000 and Pattern Attack beginning at time step k ≥ 40000.

During the Bias Attack in Fig. 2.17, the attack fools the BD, CUSUM, and CUSIGN detectors, but

the magnitude component of the serial monitor notices the change in the test measure sequence

due to the attack. The sign component does not detect the attack, as a bias attack does not

disrupt the change of signed behavior of the test measure difference dk. The Pattern Attack, while

preserving expected test measure difference magnitude behavior, interferes with the expected sign

switching rate of the test measure difference. As expected, in the absence of sensor attacks where

k < 20000, alarm rates for all detection procedures have distributions centered at their expectations.

While these modeled attack sequences are primitively designed examples that can fool comparative

detectors (e.g., BD, CUSUM, and CUSIGN detectors), the Serial Detector is able to exploit hidden

behaviors to strengthen detection capabilities.
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(a)

(b)

(c)

Figure 2.17: Resulting alarm rates during the No Attack, Pattern Attack, and Bias Attack. During
both the attack scenarios, the comparable detectors (BD, CUSUM, and CUSIGN) are fooled, while
the magnitude and sign components of the Serial Detector discover the Bias and Pattern attacks.

Dashed magenta lines represent 3σ detection bounds for each detector.

2.7 Discussions

In this section, we presented three different monitoring frameworks to detect stealthy cyber attacks

to on-board sensors by leveraging novel randomness-based methods. Our attack detection techniques

monitored for non-random measurement residual behavior, which would indicate that a sensor

measurements are being manipulated in an attempt to stealthily hijack a system toward an

undesirable state. We began by introducing the discrete-time linear dynamical model of our system,

noise and state estimation models, attack model, and the measurement residual test measure used in

monitoring for non-random behavior. Our first framework leverages the Wilcoxon Signed-Rank test

and Serial Independence Runs test over a sliding monitor window to detect stealthy attacks when

augmented to state-of-the-art boundary detectors. Among the key results of this chapter we provide:

bounds for desired false alarm rate for each test which are leveraged to detect attacks, bounds

on state deviation under worst case attack scenario, demonstrating that the proposed framework

outperform detectors that solely use boundary tests. Our second framework, called the Cumulative

Sign (CUSIGN) detector improves upon the sliding window-based method by relaxing the window

condition. In particular, we have constructed a Markov chain of the CUSIGN test sequence to
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model a resulting expected alarm rate. We have formalized a run-time method for computing an

alarm rate estimate using a modified version of Welford’s online algorithm. We empirically found

the resulting estimated alarm rate distribution and leveraged it to provide detection bounds given

a specific level of confidence. Then, we characterized attack sequences that remain undetected to

the CUSUM dynamic attack detector, that leave trails of non-random behavior for CUSIGN to

detect the attack. Our third detector introduced is the Serial Detector to discover inconsistent test

measure behavior due to hidden cyber attacks while employing a chi-square detection procedure.

Our detection approach monitors the magnitude and signed sequence of the chi-squared test measure

differences to detect inconsistent behavior. We characterized the expected alarm rates for both

magnitude and sign, which are dependent on the system model. Furthermore, we provide bounds

on detection while also providing an analysis of the detection bounds of our scheme. While our

proposed Serial Detector can not replace traditional chi-squared test measure-based detection

schemes, however, it can provide another layer of security to detect hidden attacks that are deceptive

to these state-of-the-art detectors. The proposed approaches were validated through MATLAB

simulations on UGV case studies.

The three detection frameworks introduced in this chapter are modeled for monitoring on-board

sensors of an individual autonomous system. To continue these frameworks, our objective is to

extend these frameworks to enable resilient operations on single-robot systems when impacted by

attacks vectors at differing entry points and also for attack detection within multi-robot systems.

We encourage the reader to refer to Chapter 5 for our framework in detecting and recovering from

cyber attacks and faults to on-board controllers which compromised control inputs to the system.

In this detection and recovery framework, we leverage randomness-based concepts that we have

introduced in this chapter. However, in the next chapter, we leverage the CUSIGN attack detector

to discover stealthy attacks within multi-robot systems where cyber attacks may occur to on-board

sensors and also information broadcasts between robots.
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Part II

Isolation and Reconfiguration for Resilient

Multi-robot System Operations
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Chapter 3

Multi-robot System Attack Detection and Network

Reconfiguration

In this chapter, a decentralized framework for detection and network reconfiguration for recovery

is introduced that provides resilient navigation for formations of robots in the presence of cyber

attacks. The Cumulative Sign (CUSIGN) attack detector presented in Chapter 2 is utilized by

each robot to monitor for on-board sensor attacks and also monitoring for misbehaving neighboring

robots within the multi-robot system. To maintain resilient multi-robot operations, misbehaving

agents are isolated from the remaining robots and the network is then reconfigured to mitigate the

risk of undesired control performance of the system. The resilient multi-robot system framework is

validated with MATLAB and Gazebo simulations and also with lab experiments using swarms of

UGVs. This chapter is based on the following publication:

• P.J. Bonczek, R. Peddi, S. Gao, and N. Bezzo, “Detection of Non-random Sign-based Behavior

for Resilient Coordination of Robotic Swarms,” IEEE Transactions on Robotics (T-RO) in

the Special Issue for Resilience in Networked Robotic Systems, 2022.

3.1 Introduction

Many advancements in sensing, control, planning, mobility, and networking have enhanced mobile

robotic systems allowing precise and robust autonomous operations that were unthinkable until only

recently. Within robotics, multi-agent system coordination and swarming have long been studied

and are gaining back attention thanks to the many technological advances, but this also brings upon

security issues. Multi-agent systems are typically used to perform coordinated tasks in a distributed

fashion. This collaborative nature allows for numerous applications that would be more difficult or

not possible to perform with just a single agent, such as: factory and warehouse logistics [19], vehicle

platooning [61], connected vehicle-to-vehicle operations [86, 41], surveillance [104], disaster-relief

[26], and exploration missions [58].
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With such benefits in multi-robot systems, however comes the risk of cyber attacks. In fact, all

the aforementioned applications are typically designed without considering cyber-security issues,

assuming that all the actors (i.e., other robots) in the multi-robot settings are cooperative. In the

presence of a compromised robot in the network, liveness (i.e., the ability to perform and complete

correctly a task) and safety (i.e., avoid collisions or reaching undesired states) properties can be

violated. The presence of malicious actors in a network can potentially manipulate the entire

multi-robot system, hijacking a mission and potentially leading the system toward undesired states,

as pictorially represented in Fig. 3.1.

Figure 3.1: A pictorial motivation of the problem investigated in this paper: in nominal conditions
a), i.e., with no attack, a multi-agent system can reach the desired goal (red ’X’) whereas in the

presence of an attack (red disks in b)) the system is hijacked away.

Such situations can be caused by: compromised communications which results in incorrect

sharing of information between robots, or by manipulated sensor measurements, leading compromised

robots to react to altered on-board signals that are also broadcast to surrounding neighbors. In a

successful hijacking attempt, an attacker is able to implement a stealthy attack sequence to degrade

system performance, all while remaining hidden from detection. The term stealthy has been adopted

in a wide-range of attack scenarios on stochastic systems, such as in zero-dynamics [79], replay [111],

zero-alarm [13], and hidden [69] attack cases. In this chapter, the term stealthy indicates an attack

sequence that mimics normal (attack-free) behavior of traditional detection schemes (i.e., a hidden

attack [69]), where attackers leverage the noise characteristics within a multi-robot system to evade

detection during a hijacking attempt. To discover such attacks, the key principle that we leverage is

that an attacker attempting to hijack one or more robots within a multi-robot system via stealthy

sensor and/or communication attacks will inherently exhibit non-random/inconsistent behaviors in

order to be effective, contradicting an expected behavior of the system model. Specifically, in this

chapter we monitor the residual — which is defined as the difference between a measured/received
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value and the predicted/expected value — in order to discover inconsistent behavior due to these

hijacking attempts. Our proposed monitoring scheme — which we name the Cumulative Sign

(CUSIGN) detector — differs from other residual-based detectors [67, 70, 71, 51, 49, 65, 25, 38,

85] as its purpose is to monitor for inconsistencies in signed behavior (i.e., non-randomness) of the

residual in multi-robot systems. Once an attack is discovered, we propose a framework to: 1) isolate

the compromised robots and 2) reconfigure the network to continue the desired task.

This paper has the following contributions: We propose a novel residual-based attack detection

scheme for multi-robot systems to find non-random residual behaviors due to stealthy communication

and sensor attacks that are undetectable by current state-of-the-art residual-based methods. We

then present a decentralized framework in which each robotic agent acts independently by leveraging

local information received from nearby robots while employing the proposed detection scheme

to enable resilient control of the multi-robot system during stealthy attacks and reconfigure the

network to maintain connectivity once one or more compromised robots have been isolated from the

network. While we present the proposed framework in a general sense, as a case study, we consider

cooperative autonomous multi-robot applications that leverage virtual spring-damper mesh physics

for decentralized formation control [97, 6, 7, 17, 87]. Our proposed framework, however, can be

used in any proximity-based consensus formation control (e.g., nearest neighbors [55]).

3.2 Preliminaries

This section introduces the multi-robot dynamical model, noise characteristics, and attack models

used throughout this chapter.

3.2.1 Multi-robot System Model

Let us consider a multi-robot system with N mobile robots that maintains a proximity-based

formation during a mission. Such system can be described using a directed graph, where each

directed edge represents the control influence on a robot due to the proximity of a neighboring robot in

the system. The directed graph describing the multi-robot system is modeled as G = (V, E) where the
set of vertices V = {1, 2, . . . , N} denote the mobile robots and the set of edges E = {(i, j) | i, j ∈ V}
are control links between robots. An edge (i, j) ∈ E means that the control input of robot i is

affected by the state of robot j within the proximity-based formation.

Each of the robots are modeled as LTI dynamical agents as follows:

ẋi = Axi +Bui + νi, i = 1, 2, . . . , N, (3.1)
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where xi ∈ Rn is the state vector, control input ui ∈ Rm, state and input matrices A and B

with appropriate dimensions, and zero-mean Gaussian process uncertainty νi ∈ Rn. The robots

successfully achieve tasks by performing a proximity-based consensus protocol ψ(·) in which all

robots i ∈ V agree on a decentralized control input ui ∈ Rm that follows:

ui = ψ
(
xi,xj ,Oi

)
, i = 1, 2, . . . , N, (3.2)

where xi is the state of robot i, xj represents the states of the neighboring robots j, j ̸= i, and the

set Oi denotes any nearby obstacles of robot i that are utilized for obstacle avoidance.

To enable the robot network to satisfy the consensus-based control protocol in order to accomplish

tasks, the robots exchange necessary information (e.g., state vector) with each other. The set

I = {I1, I2, . . . , IN} describes the information broadcast within the multi-robot system that is

available to any robots within communication range δc > 0. When all robots are cooperative, the

mobile team is able to complete the desired task at hand, where inputs are computed based on

information received from nearby robots.

Definition 3.1 (Communication Graph) Given the N robots in set V with a communication

range δc, we define the graph GC = (V, EC) with the edge set represented by,

EC =
{
(i, j)

∣∣ ∥∥pi − pj∥∥ ≤ δc, i, j ∈ V
}
, (3.3)

as the communication graph of the robot set V, where pi and pj are position coordinates (within the

state vector) of robots i, j ∈ V, i ̸= j.

The set of all neighboring robots within communication range of a robot i, as defined by the

communication graph, is represented by,

Ci =
{
j ∈ V

∣∣ (i, j) ∈ EC
}
. (3.4)

Definition 3.2 (Control Graph) Each robot i ∈ V leverages the received information to form

a neighbor set Si ⊆ Ci for consensus control purposes to maintain a desired proximity from other

robots. We define the graph GU = (V, EU ) with the edge set represented by,

EU =
{
(i, j)

∣∣ j ∈ Si, ∀i ∈ V
}
, (3.5)

as the control graph of the robot set V.
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3.2.2 Measurement Model

Given that the robot states are not directly available, each robot i is equipped with Ns on-board

sensors that provide sampled state measurements every ts ∈ R+ seconds as indicated by the output

vector given by,

y
(k)
i = Cx

(k)
i + η

(k)
i ∈ RNs , (3.6)

with the output matrix C and measurement uncertainty vector η
(k)
i at every time instant k ∈ N.

The process and measurement uncertainties of all robots are described in discrete-time as multi-

variate zero-mean Gaussian distributed noise with covariance matrices Q and R, respectively. A

Kalman Filter, with gain matrix K
(k)
i ∈ Rn×Ns , is implemented on-board each robot i to provide

discrete-time state estimates x̂
(k|k)
i ∈ Rn using a discretized dynamical model of (3.1).

3.2.3 Attack Model

Summarized in Fig. 3.2 are the cyber attacks considered in this chapter, which are a combination

of on-board sensor and/or communication spoofs that can maliciously affect any robot within the

multi-robot system. Next, we provide a brief description for each of the considered cyber-attack

scenarios.

Figure 3.2: The classes of attacks considered.

(A1) – Communication Attack : in which an attacker intercepts and replaces broadcast data

such that the receiver and sender data are different (e.g., a man-in-the-middle attack [20]). We

assume that an attacker is able to intercept communication broadcasts replacing the message with

modified, yet plausible information. As an example, the sender of a communication broadcast that

is being attacked may not be aware of the attack in which a receiver is obtaining falsified data. For

the case studies investigated in this chapter, the exchanged information I(k) at each time instant k

between robots are assumed to be state estimates, inputs, and measurements. We will indicate the
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spoofed broadcast information I(k)
i → Ĩ(k)

i from a robot i as,

Ĩ(k)
i =

{
x̂
(k|k)
i + ξ

(k)
i,x , u

(k)
i + ξ

(k)
i,u , y

(k)
i + ξ

(k)
i,y

}
, (3.7)

where in the presence of an attack, at least one of the following conditions is true: ξ
(k)
i,x ≠ 0 ∈ Rn,

ξ
(k)
i,u ̸= 0 ∈ Rm, ξ(k)i,y ̸= 0 ∈ RNs , resulting in I(k)

i ̸= Ĩ(k)
i .

(A2) – Sensor Spoofing : The second attack that we consider is sensor spoofing in which an

adversary manipulates on-board sensor measurements as follows,

ỹ
(k)
i = y

(k)
i + ξ

(k)
i,y , (3.8)

where ξ
(k)
i,y ∈ RNs is the attack vector that describes false data injections to sensor measurements.

An attacker manipulating on-board sensor will be able to to drive the state estimate of the robot

away from its true state, leading to unreliable on-board control decisions and, consequently, diverting

neighboring robots whose control actions are based on inaccurate position information received from

the compromised robot.

(A3) – Coordinated Attack : This is a combination of the previous two cases in which attacks

hide within the expected system behavior acting and hiding in a coordinated way on both sensing

(A1) and communication (A2) constraints. The compromised robot in this case is able to perform

a completely different operation while reporting plausible data to neighbor robots.

For each of the attack vectors
(
ξ
(k)
i,x , ξ

(k)
i,u , and ξ

(k)
i,y

)
, an attacker is assumed to be capable of

leveraging both process and measurement uncertainties Q and R, to construct attacks that emulate

the expected behavior of measurements and communication broadcasts that can fool traditional

residual-based attack detection techniques.

3.3 Problem Formulation

We consider a typical scenario in which robots in a multi-robot system coordinate their motion in a

decentralized fashion to maintain a desired formation while navigating toward a given goal. The

challenge is to provide a resilient approach for the multi-robot system to continue these operations

in the presence of cyber attacks that are intentionally hiding within system noises while attempting

to hijack the multi-robot system.

Problem 3.1 (Detection of Inconsistencies in Multi-robot Systems) Consider a set of N

homogeneous robots V in a multi-robot system. Design a decentralized policy for each robot i ∈ V
to detect at runtime inconsistencies from any neighbor j ̸= i due to cyber attacks on: 1) sensor
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measurements, i.e, if the following holds:

E[yj − ŷij ] ̸= 0, (3.9)

or 2) on the communication channel when the received state from j is different from the predicted

state computed by i:

E[xj − x̂ij ] ̸= 0. (3.10)

where ŷij and x̂ij are measurement and state predictions of j made by robot i.

To detect inconsistent behavior of neighboring robots, we employ an attack detection scheme

that monitors inter-robot residuals (i.e., the comparison between received and predicted information)

for unexpected behavior within the robot network. Upon detection, the system needs to isolate and

reconfigure to continue its planned operation. Formally:

Problem 3.2 (Multi-robot System Recovery) Find a decentralized policy for each robot i ∈ V
to isolate and remove any maliciously attacked robot j from its neighbor set for control Si that
presents inconsistent behavior flagged by solving Problem 3.1, i.e., to obtain,

S ′
i = Si \ {j}. (3.11)

With the malicious robot j removed from any neighbor set S ′
i, the robot j is no longer able to influence

the control of i.

3.3.1 Residual Characteristics in Multi-robot Systems

In this section, both the on-board and inter-robot residuals are characterized that are monitored for

non-random (i.e., inconsistent) behavior due to cyber attacks within multi-robot systems. We then

formalize the detection procedure that searches for non-random behavior in the residual sequences,

before describing an attack sequence that an intelligent attacker must take to avoid detection.

In this proposed detection framework within multi-robot systems, each robot i ∈ V monitors its

on-board measurement residual for discovery of sensor attacks as well as two types of inter-robot

residuals to identify inconsistent behavior of communication broadcasts or sensor information that

are received from neighboring robots j within the control graph, i.e. (i, j) ∈ EU . Let us define the

on-board measurement residual vector r
(k)
i on a robot i as,

r
(k)
i = y

(k)
i −Cx̂(k|k−1)

i ∈ RNs , (3.12)
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to monitor for on-board sensor attacks, which has an expected covariance matrixΣ
(k)
i = E[r(k)i

(
r
(k)
i

)T
] =

CP
(k|k−1)
i CT +R during attack-free conditions, with P

(k|k−1)
i denoting the prediction error covari-

ance. Each sth on-board measurement residual element is Normally distributed as follows,

E[r(k)i,s ] = 0, Var[r
(k)
i,s ] =

(
σ
(k)
i,s

)2
, (3.13)

where
(
σ
(k)
i,s

)2
is the sth diagonal element of the on-board measurement residual covariance matrix

Σ
(k)
i .

In our proposed multi-robot monitoring framework, each robot i ∈ V monitors its neighbors for

consistent behavior by computing state predictions of each neighbor j ∈ Si using their received

state x̂
(k|k)
j and input u

(k)
j information by,

x̂
(k+1|k)
ij = Adx̂

(k|k)
j +Bdu

(k)
j ∈ Rn (3.14)

where Ad and Bd are discrete-time equivalents of the known robot dynamical model in (3.1). A

robot i leverages these state predictions by comparing them to the received state and measurement

information from neighboring robots. Let us define the inter-robot state residual r̆
(k)
ij ∈ Rn by the

following,

r̆
(k)
ij = x̂

(k|k)
j − x̂(k|k−1)

ij (3.15)

which enables a robot i to monitor for consistent state and input information from a robot j. Each

qth element q ∈ {1, . . . , n} of the inter-robot state residual vector (3.15) is Normally distributed as

follows,

E[r̆(k)ij,q] = 0, Var[r̆
(k)
ij,q] =

Ns∑
s=1

(
K

(k)
j,(q,s)σ

(k)
j,s

)2
, (3.16)

with K
(k)
j,(q,s) representing the element at the qth row and sth column of the Kalman gain at time k

on robot j. Additionally, robots compute the inter-robot measurement residual,

r
(k)
ij = y

(k)
j −Cx̂(k|k−1)

ij ∈ RNs , (3.17)

to discover sensor attacks that may be occurring on the neighboring robot. The inter-robot

measurement residual shares the expected zero-mean Normally distributed characteristics of the

on-board measurement residual in (3.13). Note that in order for a robot i to compute inter-robot

residuals of a robot j at a time k in (3.15) and (3.17), a state prediction (3.14) must be made at

the previous time k − 1.

A robot that is operating in normal conditions will have an expected occurrence of signed

residual characteristics over time. With these considerations in mind, we propose a detector to
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analyze the sign of incoming residuals within multi-robot systems to determine whether the residual

behavior follows the expected random behavior. This technique, which we name the Cumulative

Sign (CUSIGN) detector, is unique to previous state-of-the-art residual-based detectors [67, 70, 71,

51, 49, 65, 25, 38, 85] in that instead of monitoring for magnitude changes, it relies on the sign of a

residual variable within an expected distribution in order to discover stealthy cyber attacks that

may remain hidden within noisy systems. Since the magnitude of a residual variable is overlooked,

the CUSIGN detector (characterized in Chapter 2.5) is non-parametric in nature and can be used

on any known distribution. Next, we briefly introduce the technique used for alarm rate estimation

before characterizing our alarm-based attack detector.

3.3.2 The Signed Residual

For ease of notation throughout the remaining of this subsection, the inter-robot state and mea-

surement residuals are written with the variable r
(k)
ij and refer to both as simply the “inter-robot

residual”. Since all inter-robot residuals in the chapter are modeled as zero-mean Normally dis-

tributed random vectors during nominal operation, each inter-robot residual element is simply

written as r
(k)
ij,q with a generic indexing of q ∈ {1, . . . , Nq}.

In normal operating conditions, i.e., in the absence of attacks defined in (A1)–(A3), the

signed value of inter-robot residuals have an expected probability of being higher or lower than their

expected values E[r(k)ij,q] = 0. The signed inter-robot residual element probabilities Pr(·) are computed

based on the expected residual distributions characterized in Section 3.3.1 by the following:

Pr
(
r
(k)
ij,q < E[r(k)ij,q]

)
= Φ

(
E[r(k)ij,q]

)
,

Pr
(
r
(k)
ij,q > E[r(k)ij,q]

)
= 1− Φ

(
E[r(k)ij,q]

)
,

(3.18)

where Φ(·) is the cumulative distribution function of the standard normal distribution [91]. The

sign of r
(k)
ij,q with respect to the reference E[r(k)ij,q] follows:

sgn(r
(k)
ij,q) =


1, if r

(k)
ij,q > E[r(k)ij,q],

0, if r
(k)
ij,q = E[r(k)ij,q],

−1, if r
(k)
ij,q < E[r(k)ij,q],

(3.19)

such that the probability of each scenario occurring is:

Pr
(
sgn(r

(k)
ij,q) = 1

)
= p+,

Pr
(
sgn(r

(k)
ij,q) = 0

)
= 0,

Pr
(
sgn(r

(k)
ij,q) = −1

)
= p− = 1− p+,

(3.20)
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where p+ = p− = 1
2 for a zero-mean Normally distributed residual from (3.13) and (3.16), as

the mean and median are equal. The CUSIGN detector leverages the expected probabilities

Pr
(
r
(k)
ij,q > E[r(k)ij,q]

)
= p+ and Pr

(
r
(k)
ij,q < E[r(k)ij,q]

)
= p− in determining non-random behavior in the

presence of attacks.

Alarm Rate Estimation: In the design of the non-randomness detector, alarms are triggered

during operation to aid in determining if a system is behaving normally. In our case of a multi-robot

network, the robots leverage this alarm-based method for self detection and to monitor the residual

sequence of their neighbors for inconsistent behaviors. Given a robot that is not under attack, the

frequency at which these alarms are triggered should follow an expected alarm rate. We employ a

window-less method, which we name Memoryless Runtime Estimator (MRE), for computing the

alarm rate estimate utilizing a “pseudo-window” length ℓ. The runtime update equation of MRE

for alarm rate estimation follows:

Â
(k)
ij,q = Â

(k−1)
ij,q +

[
ζ
(k)
ij,q − Â

(k−1)
ij,q

]
ℓ

, (3.21)

where ζ
(k)
ij,q ∈ {0, 1} is the alarm, Â

(k)
ij,q ∈ [0, 1] is an estimated alarm rate at every time instant k,

and Â
(0)
ij,q = E[A] initially at k = 0, where E[A] ∈ [0, 1] is the expected alarm rate. The resulting

alarm rate estimate can be approximated to a Normal distribution when ℓ ≥ 10 as demonstrated in

Chapter 2.5 with a resulting variance that shares properties of the exponential moving average [30].

3.3.3 CUSIGN Detection in Multi-robot Systems

To detect information inconsistencies (i.e., non-randomness) in multi-robot systems due to cyber

attacks, we leverage the Cumulative Sign (CUSIGN) attack detector that analyzes residuals to

determine whether non-random behavior is occurring. The CUSIGN detector monitors the residual

over the sequence of time and outputs an alarm when a threshold is reached, which is then sent

to the MRE to provide an updated alarm rate estimate. For any given user-defined threshold, an

expected alarm rate can be found that is independent of the system model.

The CUSIGN procedure is an accumulation of signed residual values by two CUSIGN test

variables S
(k),+
ij,q and S

(k),−
ij,q , where each signifies a test variable at time instant k. Each test variable

checks for changes in the probability for the signed residual value, one for positive and the other for

negative changes. The following procedure summarizes the CUSIGN detector for both the positive

and negative cases:
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CUSIGN Detector Procedure in Multi-robot Systems

S
(k),+
ij,q = max

(
0, S

(k−1),+
ij,q + sgn(r

(k)
ij,q)

)
,

S
(k),+
ij,q = 0 and Alarm ζ

(k),+
ij,q = 1, if S

(k),+
ij,q = τ

S
(k),−
ij,q = min

(
0, S

(k−1),−
ij,q + sgn(r

(k)
ij,q)

)
,

S
(k),−
ij,q = 0 and Alarm ζ

(k),−
ij,q = 1, if S

(k),−
ij,q = −τ

(3.22)

The working principle of CUSIGN test variable sequences are to accumulate the signed residual

value sgn(r
(k)
ij,q) ∈ {−1, 0, 1} and trigger an alarm ζ

(k),+
ij,q , ζ

(k),−
ij,q ∈ {0, 1} when the test variables reach

their corresponding threshold values τ ∈ N. As either of the test variables reach their respective

thresholds, then the test variable is reset to zero. An example of the CUSIGN detection procedure

(3.22) is shown in Fig. 3.3 where an incoming data sequence of residuals transition the positive and

negative CUSIGN test variables S
(k),+
ij,q and S

(k),−
ij,q . When either test variable reaches the threshold,

for this example τ = 2, an alarm is triggered (indicated by the red circles) and a reset to zero

condition occurs. The CUSIGN detector monitors the occurrence of triggered alarms as the CUSIGN

test variables reach their respective thresholds, where irregular occurrences indicated an attack may

be happening.

Figure 3.3: An example of transitions for the CUSIGN test variable S
(k),±
ij,q with a threshold τ = 2

given a sequence of data.

Similar to the implementation in [70], the transition of the CUSIGN test variable sequences can

be constructed as a Markov chain with a transition matrix modeled from the probabilities p+ and

p− computed in (3.20). Consisting of a user-defined threshold τ to trigger an alarm, we show the

transitions of S
(k),±
ij,q with a Markov chain diagram in Fig. 3.4.

Given a chosen threshold value τ ∈ N+ as a value that triggers an alarm when |S(k),±
ij,q | = τ , we

describe the Markov chain in Fig. 3.4 in the form of a Markov transition matrix T ± ∈ R(τ+1)×(τ+1),

denoted for both the positive and negative transition matrices, T + and T −. The CUSIGN Markov
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Figure 3.4: A Markov chain for both positive (top) and negative (bottom) cases of the CUSIGN
test variable sequence with triggering threshold states in red.

Chain, occurring in a discrete manner, contains τ + 1 states denoted as M = {M0,M1, . . . ,Mτ}
where Mτ is an absorbing state that is equal to the threshold, causing the CUSIGN test sequence

S
(k),±
ij,q to reset to M0. The CUSIGN Markov transition matrix for the positive T + with a probability

distribution of sgn(r
(k)
ij,q) is written as:

T + =



p− p+ 0 0 . . . 0

p− 0 p+ 0 . . . 0

0 p− 0 p+ 0
...

. . .
. . .

...

0 . . . 0 p− 0 p+

0 . . . 0 0 0 1


=

 Q+ ∗

01×τ 1

 . (3.23)

The transition matrix T + structure remains the same on any system, where the matrix size

depends only on the value of the threshold τ . Transition probabilities for transient states in T +

adhere to the following:
Pr(Mj →Mj+1) = p+, for j = {0, . . . , τ − 1},
Pr(Mj →Mj−1) = p−, for j = {1, . . . , τ − 1},
Pr(M0 →M0) = p−,

(3.24)

and the final row represents an absorbing (i.e., triggering) state containing elements equal to 0,

besides the last element equaling 1.

We define Q+ ∈ Rτ×τ as the fundamental matrix obtained from T + with its last row and

column removed (i.e., the absorbing state at threshold τ is removed), representing the transition

probabilities to and from the transient states. Elements of Q+ are all non-negative and row sums

are equal to or less than one, while the eigenvalues satisfy ρ[Q+] < 1 such that (Q+)k → 0 as

k → ∞ and
∑∞

k=0 (Q+)k = (Iτ − Q+)−1, where ρ[·] is the spectral radius and Iτ is the identity

matrix of size τ . Leveraging the fundamental matrix Q+, we can compute an expected alarm rate
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as indicated in the following lemma.

Lemma 3.1 Given a system with a CUSIGN detector (3.22) with a user-defined threshold τ ∈ N

that is not affected by cyber attacks such that the residual sequence satisfies r
(k)
ij,q ∼ N (0, σ

(k)
ij,q), then

the inverse of the first element of the following vector,

µ+ = (Iτ −Q+)−11τ×1 = (µ+1 , . . . , µ
+
τ )

T, (3.25)

is the expected alarm rate, i.e., E[A+] = (µ+1 )
−1.

Proof: Given the Markov chain containing τ + 1 states denoted by M = {M0,M1, . . . ,Mτ}, a
fundamental matrix Q+ is taken from a designed Markov transition matrix (3.23) to satisfy the

transition probabilities (3.24). Leveraging the theory of average run length (ARL) introduced in [10],

the ARL is defined as the average length of time for the test sequence to reach the threshold τ to

trigger an alarm, determined by the fundamental matrix Q+ containing the transient states within

T +. By definition, the inverse of the ARL to observe an alarm results in the average frequency of

obtaining an alarm, known as the alarm rate. The ARL can be found by computing (3.25), then by

inverting the first element of µ+, i.e., (µ+1 )
−1, finally obtain the expected alarm rate E[A+] = (µ+1 )

−1.

Remark 3.1 The design of transition matrix T − with subsequent fundamental matrix Q− and

expected alarm rate E[A−] = (µ−1 )
−1 for the negative case is computed by (3.23)-(3.25) with transition

probability (p+ and p−) signs inverted.

The expected variance of estimated alarm rates A
(k),±
ij,q using MRE for runtime estimation have

been found through empirical results in Chapter 2.5.6. A scaling factor θ ∈ R>0 is found to be

dependent on the chosen threshold τ . The observed MRE scaling factor approximates of θ are

presented in Table 3.1 for thresholds τ = 1, 2, 3, 4 and ℓ ≥ 10.

Table 3.1: Empirical values for the scaling value θ given τ = 1, 2, 3, 4.

Threshold τ τ = 1 τ = 2 τ = 3 τ = 4

θ 1 0.74 0.7 0.69

Proposition 3.1 Assuming a residual is not affected by a cyber attack while using (3.21) for alarm

rate estimation, the alarm rate is Normally distributed by the following:

Â
(k),±
ij,q ∼ N

(
E[A±],

θE[A±](1− E[A±])

2ℓ− 1

)
. (3.26)
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By leveraging the expected distribution of the estimated alarm rate in (3.26), bounds of the

alarm rate can be made. The following corollary provides alarm rate detection bounds for the

CUSIGN detector.

Corollary 3.1 Given a residual r
(k)
ij,q monitored by the CUSIGN detector (3.22) consisting of a

threshold τ ∈ N, detection of cyber attacks occur for a given level of significance α ∈ (0, 1) when

Ω− ≤ Â
(k),±
ij,q ≤ Ω+ is no longer satisfied.

Proof: With the CUSIGN detector consisting of a threshold τ , an expected alarm rate E[A±
ij,q]

found in (3.25), and leveraging (3.21) with a pseudo-window of length ℓ, the distribution of the

estimated alarm rate follows the Normally distributed properties from (3.26). Detection bounds

Ω± = [Ω−,Ω+] of a user-defined level of significance α ∈ (0, 1) (i.e., the probability that a false

detection occurs in nominal conditions) follows,

E[A±]−
∣∣∣Φ−1

(α
2

)∣∣∣√θE[A±](1− E[A±])

2ℓ− 1
≤ Â

(k),±
ij,q ≤ E[A±] +

∣∣∣Φ−1
(α
2

)∣∣∣√θE[A±](1− E[A±])

2ℓ− 1
(3.27)

where Φ−1(·) is the inverse cumulative distribution function of a standard normal distribution [91],

thus satisfying Corollary 3.1 and concluding the proof.

In summary, with the CUSIGN detection procedure, we can monitor and detect non-random

behavior in residual data. Under a worst-case scenario (i.e., assuming an attacker has full knowledge

of the system model and detection procedure), an intelligent attacker could remain hidden by

triggering alarms at rates that do not travel beyond detection bounds while maintaining an attack

vector. However, the CUSIGN detector’s attack deterring effects will be limited, and one could

implement multiple detectors in parallel with different threshold values τ to further impair an

attacker’s ability to remain hidden.

For a more detailed discussion about undetectable attacks, the reader can follow the next section.

3.4 Examples of Undetectable Attacks

In this subsection, we discuss attack sequences that an attacker can take to remain hidden from

detection from the CUSIGN detection scheme for both sensor and communication attacks. In order

to evade detection from CUSIGN, an attacker must be mindful of both the positive and negative

test variables S
(k),+
ij,q and S

(k),−
ij,q with their respective alarm rates Â

(k),+
ij,q and Â

(k),−
ij,q . To maximize

damage in a hijacking attack, a smart attacker would want to manipulate a variable of choice

(e.g., sensor measurement) to push the system in a specific direction with maximum effect, without

passing alarm rate detection bounds Ω± defined in (3.27). As a result of maximizing the effects of
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an attack, one alarm rate is driven toward the maximum alarm rate threshold Ω+ and the other

alarm rate is pushed toward the minimum threshold Ω−.

Assumption 3.1 Under a worst-case scenario, an attacker has knowledge of the robot dynamical

model (3.1), the network model (e.g., proximity-based consensus protocol), and the state estimation

procedure (e.g., Kalman filter). Furthermore, a malicious attacker has the ability to manipulate any

sth on-board sensor measurement y
(k)
i,s and/or any information within I(k)

i on a robot i ∈ V through

communication broadcasts.

3.4.1 On-board Sensor Attack

The first case considered is in the event that an attacker can inject false data to sensor measurements

on-board a robot i where ξ
(k)
i,y ̸= 0. Utilizing the spoofed output vector in (2.8) combined with the

on-board measurement residual defined in (2.9), we can rewrite the on-board measurement residual

vector on an ith robot as:

r
(k)
i = ỹ

(k)
i −Cx̂(k|k−1)

i

= Cx
(k)
i + η

(k)
i + ξ

(k)
i,y −Cx̂(k|k−1)

i

= Ce
(k|k−1)
i + η

(k)
i + ξ

(k)
i,y ,

(3.28)

where e
(k|k−1)
i = x

(k)
i − x̂(k|k−1)

i ∈ Rn is the state prediction error. Each sth on-board measurement

residual element, s ∈ {1, . . . , Ns}, is defined as:

r
(k)
i,s = Cse

(k|k−1)
i + η

(k)
i,s + ξ

(k)
i,y,(s) ∈ R, (3.29)

where Cs is the sth row of the output matrix C and ξ
(k)
i,y,(s) ∈ R is the sth element of the sensor

measurement attack vector. An intelligent attacker can manipulate the measurement residual sign by

constructing a suitable attack signal to create an attack sequence that avoids the CUSIGN detection

bounds. An attacker can manipulate the residual sign by choosing an attack vector element s of the

sensor measurement to satisfy:

sgn
(
r
(k)
i,s

)
=

{
1, if ξ

(k)
i,y,(s) > −Cse(k|k−1)

i − η
(k)
i,s ,

−1, if ξ
(k)
i,y,(s) < −Cse(k|k−1)

i − η
(k)
i,s .

(3.30)

We first examine the scenario when either of the estimated alarm rates monitoring the positive

Â
(k),+
i,s or negative Â

(k),−
i,s residual sign occurrences approach the maximum detection boundary

threshold Ω+ on a robot i. The objective of the attacker is to drive the alarm rate of the desired

sign as close to the maximum threshold without crossing it. The following equation is a restriction
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on the attack signal ξ
(k)
i,y,(s) for a sensor s on-board a robot i, for both alarm rates denoted as Â

(k),±
i,s ,

such that neither cross the maximum threshold:

ξ
(k)
i,y,(s) =

{
ξ
(k)
i,y,(s)

+
≶
−
−Cse(k)i − η

(k)
i,s

∣∣∣∣ (Ω+ − Â
(k−1),±
i,s −

1− Â
(k−1),±
i,s

ℓ

)
< 0

}
. (3.31)

The constraint in (3.31) determines if the detection threshold will be broken if an alarm is triggered

at the time instant k. This forces an attack signal ξ
(k)
i,y,(s) to result in a desired residual element sign,

such that an alarm is not triggered.

A similar restriction for both alarm rates is necessary as either one (i.e., alarm rate for the

opposite sign that approaches the maximum bound) nears the minimum threshold bound, Ω−. An

attacker must ensure that an alarm is triggered before the given alarm rate for an sth residual

element falls below the minimum detection bound, such that the sth attack signal element satisfies:

ξ
(k)
i,y,(s) =

{
ξ
(k)
i,y,(s)

+
≷
−
−Cse(k)i − η

(k)
i,s

∣∣∣∣ (Ω− − Â
(k−1+

∣∣±τ−S(k−1),±
i,s

∣∣),±
i,s

)
> 0

}
(3.32)

such that,

Â
(k′),±
i,s = Â

(k′−1),±
i,s −

Â
(k′−1),±
i,s

ℓ
(3.33)

where ∀k′ = k, . . . , k +
(∣∣± τ − S

(k′−1),±
i,s

∣∣− 1
)
denotes the number of time instants needed for the

CUSIGN test variable S
(k)
i,s to reach the CUSIGN threshold ±τ in order to trigger an alarm.

3.4.2 Inter-robot Residual for Communication Attacks

We assume that an attacker can manipulate any information I(k)
i sent from communication broadcasts

from a robot i ∈ V, which contains the robot’s state estimate, input, and measurements. For the

case of a communication attack, we provide a worst-case scenario when the broadcast state estimate

information from a robot i is altered by a malicious attacker (i.e., ξ
(k)
i,x ≠ 0). The neighboring robots

j ∈ Ci monitor for inconsistent information received from robot i, as it would be unaware of an

attacker maliciously altering its information via communication broadcasts. The objective for an

attacker is to avoid detection from the neighbors that are monitoring robot i.

The state prediction on-board a neighboring robot j monitoring a robot i is a function of the

information I(k−1)
i sent at the previous time instant k − 1:

x̂
(k|k−1)
ji = f

(
x̂
(k−1|k−1)
i ,u

(k−1|k−1)
i , ξ

(k−1)
i,x , ξ

(k−1)
i,u

)
= Ad

(
x̂
(k−1|k−1)
i + ξ

(k−1)
i,x

)
+Bd

(
u
(k−1|k−1)
i + ξ

(k−1)
i,u

) (3.34)
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where Ad and Bd are discrete-time equivalents of A and B in (3.1) such that the inter-robot residual

on robot j to monitor robot i follows:

r̆
(k)
ji = x̂

(k|k)
i + ξ

(k)
i,x −Ad

(
x̂
(k−1|k−1)
i + ξ

(k−1)
i,x

)
−Bd

(
u
(k−1|k−1)
i + ξ

(k−1)
i,u

)
=

(
x̂
(k|k)
i + ξ

(k−1)
i,x

)
− x̂(k|k−1)

ji ∈ R.
(3.35)

An attacker can manipulate the qth inter-robot residual element sign by choosing an attack

vector element of the broadcast state estimate to satisfy:

sgn
(
r̆
(k)
ji,q

)
=

 1, if ξ
(k)
i,x,(q) > x̂

(k|k−1)
ji,q − x̂

(k|k)
i,q ,

−1, if ξ
(k)
i,x,(q) < x̂

(k|k−1)
ji,q − x̂

(k|k)
i,q .

(3.36)

Similar to equations (3.31) and (3.32), an attack can manipulate the qth element of the sent

state estimate signal ξ
(k)
i,x,(q) in order to maximize the alarm rates for inter-robot residuals by

ξ
(k)
i,x,(q) =

{
ξ
(k)
i,x,(q)

+
≶
−
x̂
(k|k)
i,q − x̂

(k|k)
ji,q

∣∣∣∣(Ω+ − Â
(k−1),±
ji,q −

1− Â
(k−1),±
ji,q

ℓ

)
< 0

}
(3.37)

and, similarly, to ensure the alarm rate never reaches the lower bound, the attack signal needs to

satisfy

ξ
(k)
i,x,(q) =

{
ξ
(k)
i,x,(q)

+
≷
−
x̂
(k|k)
i,q − x̂

(k|k)
ji,q

∣∣∣∣(Ω− − Â
(k−1+

∣∣±τ−S(k−1),±
ji,q

∣∣),±
ji,q

)
> 0

}
(3.38)

where

Â
(k′),±
ji,q = Â

(k′−1),±
ji,q −

Â
(k′−1),±
ji,q

ℓ
(3.39)

and ∀k′ = k, . . . , k +
(∣∣± τ − S

(k′−1),±
ji,q

∣∣− 1
)
.

We note, since the CUSIGN attack detector monitors only the signed values of the residual

elements (i.e., magnitude is overlooked), it is not possible to quantify the worst-case effects of the

cyber attack in terms of true system state deviation with CUSIGN operating as the lone on-board

detector. However, when augmented in parallel with a traditional magnitude-based detector [67, 70,

71, 51, 49, 65, 25, 38, 85], the impact on state deviation due to a cyber attack may be quantified.

3.5 Multi-robot System Attack Detection and Recovery

In this section, we show how to deploy the proposed CUSIGN technique on a multi-robot system to de-

tect non-random (i.e., inconsistent) residual behavior due to cyber attacks and to recover/reconfigure

the system. Our scheme is leveraged to monitor and detect if neighboring robots are compromised,

as well as to perform self-monitoring for discovering inconsistencies to on-board sensor measurements
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due to cyber attacks. Fig. 3.5 summarizes the high-level procedure in a block diagram that is

executed by each robot in the network to monitor for cyber attacks and locally recover the system

when attacks have been detected. As a running case study for the remainder of this paper, we employ

a virtual spring-damper mesh (VSDM) with Gabriel Graph rule for proximity-based formation

control [5] to demonstrate our detection and recovery approach on multi-robot system formations.

However, our approach is valid for any cooperative proximity-based formation control for multi-robot

systems (e.g., nearest neighbor [55]).

Figure 3.5: The overall architecture describing our resilient robotic framework executed by each
robot i ∈ V in the network. Both the multi-robot detection on its neighbors j ∈ Si and self

detection on itself are performed to find stealthy attacks that exhibit non-random residual behavior.

3.5.1 Virtual Spring-Damper Meshes

As a working example, we consider virtual spring-damper meshes alongside the use of the Gabriel

Graph (GG) rule [29, 4] for proximity-based control of multi-robot systems performing coordinated

operations. Given that all agents are cooperative, this method allows for a decentralized algorithm

where agents are required to leverage local (proximity-based) interactions that result in a desired

global behavior of the system. Furthermore, systems that leverage VSDMs incorporate favorable

characteristics that include: scalability, efficiency, and known stability properties such that all

decentralized agents converge to a global consensus [97, 98]. Numerous works have leveraged VSDMs

for various applications [6, 7, 17, 22, 5, 56, 87]; where all of these works did not consider security

issues. A single compromised agent affected by cyber attacks can hijack the entire multi-robot

system to an undesirable state due to the control interconnections that are propagated throughout

the robot network, as demonstrated in Fig. 3.1. In a decentralized manner, our framework allows

the agents to identify and remove nearby agents from the network (i.e., the control graph) that

could potentially cause undesired behavior.

The objective of the multi-robot system is to navigate to a goal location while maintaining a

desired distance between neighboring robots. Furthermore, the multi-robot system must be resilient

to stealthy communication and sensor cyber attacks. In addition, we make the assumption that the

robot network is navigating in an unknown cluttered environment: to this end all robots are fitted
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with a range sensor providing 360 degree field of view (FOV) (e.g., a LiDAR) with limited range

δr < δc for obstacle/collision avoidance.

Each robot i is controlled to follow the VSDM network dynamics by leveraging a virtual

spring-damper physics model:

ui = p̈i =

[ ∑
j∈Si

κij(lij − l0r)d⃗ij +
∑
o∈Oi

κio(lio − l0o)d⃗io + κigligd⃗ig

]
− γiṗi ∈ Rm, (3.40)

where Si is the neighbor set of robot i ∈ V in the control graph GU and Oi is the set of obstacles

within the FOV of robot i. Given the use of a virtual spring model, l denotes the spring length

between a robot i and neighboring robots j (lij), obstacles (lio), and the goal g (lig), while l
0 are the

desired virtual spring rest lengths, κ represents the spring constants, and d⃗ is a unit vector. Given

damping coefficients that satisfy γi > 0, the multi-robot system leveraging the VDSM emulates a

true spring-damper mesh where dissipating forces act against the velocities, leading to an equilibrium

state of zero velocity in the absence of other external forces.

Given the set of robots V, each robot i ∈ V computes its neighbor set for control Si ⊂ Ci from
the received information of nearby robots (3.4) in the communication graph GC by following Gabriel

Graph rule [29, 4]. A Gabriel Graph is constructed in the following way: a robot j belongs to the

neighbor set Si of a robot i (i.e., a directed control edge is formed between i and j) if and only if

there are no other robots h ∈ Ci within the circle of diameter ij [11] by the following,

A Gabriel Graph is constructed in the following way: a robot j belongs to the neighbor set Si of
a robot i (i.e., a directed control edge is formed between i and j) if and only if there are no other

robots h ∈ Ci within the circle of diameter īj [11] by the following,

Si =
{
j ∈ Ci \ VCi

∣∣ îhj ≤ π/2
}
, (3.41)

where îhj, i ̸= j ≠ h is the interior angle of the three robot positions configuration from the on-board

position estimate p̂
(k)
i of robot i and position estimates p̂

(k)
j and p̂

(k)
h from received information of

nearby robots j and h. The set VCi ⊂ V in (3.41) denotes robots that are deemed compromised

by robot i, such that control edges are not constructed to remove compromised robots from the

network for resilient control. The determination of the compromised set VCi is discussed in Section

3.5.2. As a side note, the utilization of GG rule allows for connected graphs with no crossing edges

and hence an increased and uniform coverage as opposed to other graph techniques [9].

In Fig. 3.6 we show a sequence of snapshots for a simulation of a swarm of 15 robots deployed

using the virtual spring model with GG in (3.40) and (3.41) to navigate towards a desired goal

region while avoiding any obstacles in the environment.
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(a) (b)

(c) (d)

Figure 3.6: A sequence of snapshots with a robotic swarm consisting of N = 15 robots navigating
toward a goal region (in green) using the VSDM network model in the absence of cyber attacks.

3.5.2 Multi-robot Attack Detection and Recovery

Robots within the multi-robot system monitor for inconsistent behavior of their neighboring robots

to avoid stealthy attacks from hijacking uncompromised robots and, potentially, the entire robot

network. Each robot i ∈ V leverages received information I(k)
j from any neighboring robot j ∈ Ci to

perform attack detection by monitoring elements within the inter-robot measurement (3.17) and

inter-robot state (3.15) residual vectors, as characterized in Section 3.3.1.

To indicate that a robot i ∈ V is monitoring an sth inter-robot measurement residual element

and qth inter-robot state residual element on a robot j ∈ V, we denote the alarm rates as Â
(k),±
ij,s =

{Â(k),+
ij,s , Â

(k),−
ij,s } and Â

(k),±
ij,q = {Â(k),+

ij,q , Â
(k),−
ij,q }, respectively. If an alarm rate no longer satisfies

detection bounds (i.e., suggesting inconsistent behavior), a robot i deems the monitored robot j

compromised. Once inconsistent behavior is detected, the robot i then isolates and removes the

compromised robot j by placing it in its compromised set VCi ⊂ V. By placing robot j in its

compromised set, robot i performs a local reconfiguration of the network topology using the GG

rule on the communication graph presented in (3.41), hence forming a new control neighbor set

S ′
i = Si \ {j}. A previously found compromised robot j is allowed re-entry into the robot network,

and the control graph, in the event that the attack disappears and j behaves as expected again (i.e.,
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the residuals follows the expected distribution). In this case a local reconfiguration is again invoked

using GG to compute Si.
Fig. 3.7 shows a pictorial example of the scheme in which compromised robots 4 and 5 are

broadcasting spoofed position information (i.e., communication attack (A1)) to the robot network:

the empty disks represent the spoofed broadcast position coordinates of the true positions of the

compromised robots (red disks). The uncompromised robots (blue disks) detect non-random (i.e.,

inconsistent) behavior occurring from received information of robots 4 and 5, resulting in removal of

any control edge connections that could affect the multi-robot system performance, where (i, j) /∈ EU ,
i ∈ V, and j = {4, 5}. After removing the malicious nodes, the remaining seven nodes reconfigure

using the formation rules presented in Section 3.5.1.

Figure 3.7: An example of a network reconfiguration where uncompromised robots isolate and
remove compromised robots that are sending spoofed position broadcasts during a communication

attack.

Fig. 3.8 shows, as an example, the effect of a stealthy on-board sensor attack (A2 on an

unprotected swarm with the same task in Fig. 3.6. The attack begins at time step k = 400 on

four robots, dragging the entire multi-robot system away from the desired goal. In this example,

the empty red disks represent the unreliable on-board state estimates of the compromised robots

that are used for on-board control and are also broadcast to nearby agents in the robot network,

whereas the red disks denote the true positions of the compromised robots. The unreliable states

that are broadcast to nearby robot are then leveraged by the uncompromised robots (denoted by

blue disks), which propagates the attack effects throughout the entire robot network affecting the

overall mission.

3.5.3 Self Detection

Similarly, each robot i ∈ V performs self monitoring by leveraging the on-board measurement residual

to search for stealthy on-board attacks on its sensors. Shown in Fig. 3.5, the CUSIGN detector is

placed in the feedback of the traditional control loop to monitor the on-board measurement residual

for potential attacks. As a sensor’s measurements no longer satisfy an expected random behavior

(i.e., alarm rates travel outside detection bounds), a robot i places itself into its compromised set

i ∈ VCi ⊂ V.
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(a) (b)

(c) (d)

Figure 3.8: A swarm with four robots (red) that are experiencing malicious sensor attacks, causing
the their state estimates (white disks) to diverge from their true state. In turn, the network is

dragged away from its intended goal (green).

In this framework, the self detected compromised robot isolates itself from the rest of the network

by cutting any communication broadcasts to the network (i.e., (i, j) /∈ EU , ∀j ∈ V) and also stops

moving toward the goal; formally it will remove the first and third terms from (3.40), leaving any

control effort only towards obstacle and other robot avoidance. While we decided to implement such

a law for ease, different behaviors can be considered as we will discuss in more details in Section 3.9.

3.5.4 System Stability

The multi-robot system that leverages a virtual spring-damper mesh with Gabriel Graph rule for

formation control, together with the attack detection scheme presented in Section 3.3.3, create a

switching hybrid system in which edges construct and deconstruct as the robots move through the

environment. Past works have proved the static (i.e., fixed topology) and dynamic (i.e., switching

topology) stability of this time varying switching system by using Lyapunov theory [97, 7].

Here we extend some of these results and provide a stability proof also considering the cyber-

security detection and isolation procedures described in the previous sections. As compromised

robots are subject to cyber attacks that present detectable non-random behavior, certain directed

edges (i.e., virtual springs used for control) from compromised robots are eliminated while others
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between the remaining uncompromised robots may appear for network reconfiguration. Assuming

cyber attacks are detected using the proposed CUSIGN method, the multi-robot system is guaranteed

to re-converge to a new equilibrium after network reconfiguration occurs due to compromised robots

being removed from the system, as formally described in the following theorem.

Theorem 3.1 The hybrid system in (3.40) with switching dynamics imposed by the Gabriel Graph

rule (3.41), the CUSIGN detector and the network reconfiguration scheme as discussed in Sections

3.5.2 and 3.5.3 is stable (i.e., an equilibrium rest state can be reached).

Proof: To prove Theorem 3.1, we use a similar argument as in [98, 7]. We first derive the

potential energy of the system considering the removal of nodes due to detection of cyber attacks

and then show that the energy of the system after detection converges to a rest state. The stored

potential energy of each robot i in the network V is described as

U−
i =

∑
j∈V

[ ∑
h∈∆h

κjh(ljh − l0r)
2

]
, i ̸= j ̸= h. (3.42)

where ∆h ⊂ Sj \ {i} represents the change in neighboring robots for a robot j contained in the set

Sj due to the removal of robot i. The assumption in (3.42) is that, because of the Gabriel graph

rule, by removing a robot i new connections may appear between the remaining uncompromised

robots. The total system potential energy U is then the sum of the stored potential energy of each

robot i ∈ V:
U =

∑
i∈V

U−
i , (3.43)

Similarly, if a robot i is included into the system, the stored potential energy is described as

U+
i =

∑
j∈V

[ ∑
h∈∆h

κjh(ljh − l0r)
2

]
, i ̸= j ̸= h, (3.44)

Let VA ⊂ V be the set of detected compromised robots. Given an instant of time when a

robot i is removed due to an attack or introduced into the network, any uncompromised robots

j ∈ V \ VA re-converge to a new network equilibrium due to the changed number of uncompromised

robots in the network, denoted by |V \ VA|. In the case of the removal of robot i, the remaining

uncompromised robots j ∈ V \ {i} converge to the new network equilibrium by first removing edges

to robot i, i.e. (j, i) /∈ EU . Thereafter, the robots j ∈ V \ {i} construct edges to the new neighbors

h ∈ ∆h ⊂ Sj , such that (j, h) ∈ EU , to dissipate any stored energy U−
i that belonged to robot i

after it is removed. Conversely, when i is introduced to the network, the robots j ∈ V update their
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virtual spring edges by (3.41) considering that robot i is now joining the system, i.e. V ∪ {i}, to
converge to a new equilibrium.

As edge switching occurs due to network reconfiguration, the uncompromised robots j ∈ V \ VA

dissipate the stored potential energy U−
i (or U+

i ) of robot i ∈ VA in order to converge to an

equilibrium (i.e. rest state). Next we prove stability of the system assuming that a reconfiguration

of the system has happened (i.e., by removing or adding a node to the network).

Static Stability. Let us consider the scenario in which the network topology is not switching

after the removal of a compromised robot in VA or introducing a robot as described in (3.42) and

(3.44). We let the total energy function of the system, including any remaining available potential

energy from the removal or introduction of a robot be described as

V =
∑

i∈V\VA

1

2

[ ∑
j∈Si

κij(lij − l0r)
2 +

∑
o∈Oi

κio(lio − l0o)
2 + κigl

2
ig + (ṗi)

Tṗi

]
, (3.45)

By taking the first order derivative of the total energy in (3.45), the time derivative becomes

dV

dt
= −

∑
i∈V\VA

(
γi
(
ṗi
)T
ṗi

)
. (3.46)

in which because γi > 0, ∀i ∈ V , we obtain that the total energy dissipation is negative semi-definite.

Taking the second derivative of the total system energy, we obtain d2V
dt2

= −2
∑

i∈V\VA
(
γi
(
ṗi
)T
p̈i
)

which is bounded and finite if robot velocities and the differences (lij − l0r) and (lio − l0o), ∀i, j ∈ V
are finite.

Dynamic Stability. For the purpose of proving dynamic stability, we follow similar techniques to

authors in [97, 7] that introduce an energy reserve variable ∆E that cancels switching effects of the

network topology. Included in the switching topology of this proof, are effects from robots removing

or introducing other robots to the network as described in (3.42) and (3.44). Given an interval of

time ∆t such that a switch occurs to create a different topology for uncompromised robots without

network reconfiguration, the energy functions rate of variation is

∆V

∆t
=

∑
i∈V\VA

[
1

2

∑
h∈∆h

LU +
1

2

∑
j∈∆Si

Lr +
1

2

∑
o∈∆Oi

Lo +
1

2
κigl

2
ig − γi(∆

pi
t )T∆pi

t

]
. (3.47)

where LU = κih(lih − l0r)
2, Lr = κij(lij − l0r)

2, Lo = κio(lio − l0o)
2, ∆Si and ∆Oi are switches in

network topology (i.e., construction or deconstruction of edge connections) and ∆pi
t = ∆pi

∆t .
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Next, we build a modified potential function V ′ = V + E where E is the global energy reserve

by the following

∆E

∆t
=

1

2

∑
i∈V\VA

[
−

∑
h∈∆h

LU −
∑
j∈∆Si

Lr −
∑
o∈∆Oi

Lo − κigl
2
ig + γi(∆

pi
t )T∆pi

t

]
, (3.48)

that is dependent on changes to Si and Oi, ∀i ∈ V . Including the expressions (3.47) and (3.48) with

the first derivative of the modified potential function V̇ ′ = V̇ + Ė, we obtain the following negative

semi-definite expression

dV ′

dt
=
dV

dt
+
dE

dt
= −1

2

∑
i∈V\VA

(
γi
(
ṗi
)T
ṗi

)
. (3.49)

Again, by taking the second derivative of V ′ we obtain d2V ′

dt2
= −

∑
i∈V\VA

(
γi
(
ṗi
)T
p̈i
)
which is

bounded and finite. The modified energy function contains the following properties: V ′ is positive

definite, V̇ ′ is negative semi-definite, and V̈ ′ is bounded and finite. Therefore, by Barbalat’s lemma

we can conclude that the virtual spring network considering the modified energy function has stable

dynamics.

3.6 MATLAB Simulation Results

For the Matlab simulations, double-integrator point mass dynamics are considered for N = 15

robots in the swarm represented with the virtual spring model in (3.40) with each robot i ∈ V
having a state vector xi = [pxi , p

y
i , v

x
i , v

y
i ]

T ∈ Rn consisting of positions and velocities in the x-y

plane. Throughout all simulations, the set of point mass robots V share a maximum communication

range δc = 15m, maximum range sensing distance δr = 3m, virtual spring rest lengths l0r = 4m

and l0o = 3m, damping constant γi = 3, and spring constants κij = 15, κio = 40, and κig = 5.

A pseudo-window length ℓ = 50 for MRE alarm rate estimation (3.21) is used by all detectors.

Additionally, the CUSIGN test variable threshold is chosen to be τ = 2 such that the expected

CUSIGN alarm rates are E[A±] = 1
6 . Each robot i ∈ V measures the x and y positions with a

sampling time ts = 0.05s, with measurement and process noise covariances R = diag(0.05, 0.05)

and Q = diag(1e−3, 1e−3, 1e−5, 1e−5). During all simulations, the CUSIGN detector is compared

to the BD and CUSUM detectors which monitor both the measurement and state residuals of

the position for all robots i ∈ V, which have thresholds tuned for an alarm rate of Ades = 0.15.

Additionally, the CUSUM detector uses a bias of bs = 1.1b̄s (see [70] for further details on tuning of

the BD and CUSUM detectors).
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Two case studies are presented next: 1) a Man-in-the-middle communication attack and 2) a

sensor spoofing attack. In both cases, we consider the multi-robot operation presented previously in

Fig. 3.6 with robots i = {4, 5, 7, 8} under attack from time instant k = 500.

3.6.1 Communication Attack

Our first case study involves a stealthy man-in-the-middle communication attack (A1), as discussed

in Section 3.2.3, in which position measurement data from compromised robots are intercepted and

replaced with incorrect data before broadcasting to the rest of the swarm while slowly ramping

the position in the (−x)-direction. Fig. 3.9 shows the behavior of the swarm once we deploy our

framework, in which the compromised robots are detected in this case through the CUSIGN (3.22)

detector and isolated by their neighbors.

(a) (b)

Figure 3.9: A robotic swarm navigating towards a goal point (in green) while protected from
stealthy ramp attacks on communication broadcasts.

Fig. 3.10 shows the evolution of the alarm rate from the perspective of robot 2 monitoring robots

j = {2, 3, 4, 5, 7, 8, 9, 11} that belong to its neighbor set S2 at some point in time k > 0 during the

stealthy communication attack case study presented in Fig. 3.9. For multi-robot detection, robot 2

monitors both the inter-robot measurement and state residuals of its neighboring robots j ∈ S2. As

shown in Fig. 3.10(a), the CUSIGN detector of robot 2 that monitor the measurement residual r
(k)
2j

of its neighboring robots j ∈ S2 do not detect the attack, while in Fig. 3.10(b) the detectors that

are monitoring the inter-robot state residual r̆
(k)
2j find the inconsistent behavior as the attacker is

pushing the state estimate slowly to one side.

3.6.2 Sensor Attack

The second case study involves stealthy on-board sensor measurement attacks (A2) described in

(2.8), attempting to hijack compromised robots to an undesired state. Similar to our simulation
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(a)

(b)

Figure 3.10: Resulting alarm rates of robot 2 performing multi-robot detection on any neighboring
robots j ∈ S2 from the case depicted in Fig. 3.9 for: inter-robot (a) measurement and (b) state

residuals. The state residual is able to detect stealthy communication attacks that are not detected
by the measurement residual from robots j = {4, 13}.

case of a communication attack, an attack is slowly ramping the position measurement in the

(−x)-direction, while remaining hidden from previously state-of-the-art detection schemes. Fig. 3.11

displays the detection results against stealthy sensor attacks, where uncompromised robots isolate

and remove malicious robots from the network while maintaining the desired task of navigating to the

goal point. The sensor spoof considered deliberately hides within the noise to evade detection from

the CUSUM and Bad-Data detectors as shown in Fig. 3.12(b) and 3.12(c), but the attacker leaves

trails of non-random residual behavior which is detected by the CUSIGN detector (Fig. 3.12(a)).

(a) (b)

Figure 3.11: A robotic swarm navigating towards a goal point (in green) while protected from
stealthy attacks to on-board sensor measurements.

3.7 Gazebo Simulation Results
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(a)

(b)

(c)

Figure 3.12: Alarm rates comparison between CUSIGN, CUSUM and Bad-Data for the case study
shown in Fig. 3.11 for self detection while monitoring the on-board measurement residual for

position in the x-direction as stealthy cyber attacks affect sensors on-board robots i = {4, 5, 7, 8}.

To further reinforce these results, a case study on sensor spoofing was demonstrated with an

experiment in Gazebo with N = 10 Clearpath Jackal Robots performing a go-to-goal operation in a

larger environment with more obstacles, as demonstrated in Figs. 3.14 and 3.13. We leverage Gazebo

because it allows us to run longer experiments with more robots, larger spaces, and considering

even stealthier attacks than experiments in our lab space. Also in this case study, we decided to use

the Jackal robots to show the flexibility of our framework to deal with different dynamical models.

In the case of sensor attacks, the objective of an attacker is to slowly push a sensor measurement

(e.g., positions) to one side, resulting in hijacking of the true state of the robot that diverges from

the on-board state estimate. With this in mind, a larger environment is needed to perform a truly

and effective stealthy attack. The robots share a maximum communication and sensing range of

δc = 15m and δr = 3m, with virtual spring rest lengths l0r = 4m and l0o = 3m. Sensor measurement

noise covariance follows R = diag(0.05, 0.05, 0.002, 0.0004) on the Ns sensors receiving measurements

of the robot position, velocity, and heading angle. A pseudo-window length ℓ = 40 for MRE alarm

rate estimation (3.21) are used for all detectors. Additionally, the BD detector is tuned for an

expected alarm rate Ades = 0.15, while CUSUM is tuned for Ades = 0.1 (with bias bs = 1.05b̄s).

In Fig. 3.14 we show the sequence of snapshots for the robot network while experiencing stealthy
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Figure 3.13: Initial positions of the N = 10 Clearpath Jackal UGVs within a cluttered environment
for the experiments using Gazebo.

on-board sensor attacks on robots {7, 8, 10} beginning at k = 200 and robots {4, 6} beginning at

k = 400. During the attack, compromised robots have their position measurements slowly ramped

away in the (−x)-direction with the intention of driving the swarm away from the desired goal.

Avoidance actions are required from nearby robots that leverage their on-board range sensors to

prevent collisions. A comparison between detectors —CUSIGN, Bad-Data, and CUSUM— during

the stealthy sensor spoof from Fig. 3.14 is shown in Fig. 3.15, with their on-board alarm rates

displayed over the entire length of the case study. The CUSUM and Bad-Data detectors on-board

the robots fail to detect the stealthy sensor attacks, while the CUSIGN detector is able to identify

that the compromised robots are presenting inconsistent information, which allows the compromised

robots to safely remove themselves from the formation.

3.8 Experiment Results

Experimental validations are performed on N = 5 TurtleBot2 differential-drive robots performing a

go-to-goal operation within a lab environment. The hardware used is a Lenovo P51 Workstation

equipped with an Intel Core i7-6820HQ processor at 2.7GHz running Linux with ROS enabled.

The controller for each robot and the attacks are implemented in Matlab interfaced with ROS

through the Robotic Systems Toolbox, and the operation is executed at 100Hz. In this experiment

case study, the network of UGVs is tasked to navigate to a goal region (in green) while resiliently

maintaining a desired network topology that satisfy edges by the Gabriel Graph rule (3.41).

Two different cases are implemented: 1) communication attack without detection and 2)

communication attack with detection, with robots i = {3, 5} ∈ V subject to attacks. For both cases,

we use the following system parameters; δc = 3m, δr = 0.6m, l0r = 0.7m, l0o = 0.5m, and γi = 0.5.

Measurement noise covariance follows R = diag(0.01, 0.01, 0.002, 0.0004) on positions, velocity, and

heading angle states, while a pseudo-window length ℓ = 40 for MRE alarm rate estimation (2.78)
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(a) (b) (c) (d)

Figure 3.14: A robotic swarm attempting to navigate towards a goal region (in green) while
protected from stealthy attacks on sensor measurements. False data injections to the robot position
measurements are discovered and the swarm is able to resiliently isolate and remove any robots

under attack to reach the goal.

is used for all detectors. We begin with the case where no detection occurs in Fig. 3.16, showing

how a stealthy communication attack is able to drive the network of UGVs to an undesirable state,

away from the intended goal region. Fig. 3.17 shows the case where we have the CUSIGN detector

monitoring the inter-robot state residual from information received from neighboring robots. The

communication attacks on robots {3, 5} are discovered by the remaining uncompromised robots,

resulting in a network reconfiguration to remove the attacked robots. Fig. 3.18 displays the detector

results from the perspective of robot i = 1 from Fig. 3.17, where in Fig. 3.18(a) the stealthy

communication attack is not detectable on the inter-robot measurement residual, but in Fig. 3.18(b)

it leaves traces of non-random behavior in the state residual r̆
(k)
1j,q for the position in the x-direction

∀j ∈ V \ {1}.
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(a)

(b)

(c)

Figure 3.15: Alarm rate results from the experiment in Fig. 3.14 for robots i ∈ V performing self
detection while monitoring the on-board measurement residuals as stealthy cyber attacks affect

sensors on-board robots i = {4, 6, 7, 8, 10}. The CUSIGN detector detects non-random behavior of
the sth measurement residual (affecting the x position) as alarm rates travel outside of detection

bounds. The CUSUM and Bad-Data Detectors do not recognize the stealthy attacks.

(a) (b) (c) (d) (e)

Figure 3.16: A robotic swarm attempting to navigate towards a goal region (in green) while
unprotected from stealthy attacks on communication broadcasts.

91



(a) (b) (c) (d) (e)

Figure 3.17: A robotic swarm attempting to navigate towards a goal region (in green) while
protected from stealthy attacks on communication broadcasts. False broadcast information of the
robot positions are discovered and the swarm is able to isolate and remove any robots with spoofed

communication broadcasts.

(a)

(b)

Figure 3.18: Resulting alarm rates from the perspective of robot 1 for the experiment in Fig. 3.17
while monitoring the inter-robot residuals.

3.9 Discussion

This chapter has presented a resilient approach to detect and defend against stealthy sensor and

communication attacks that cause non-random behavior within homogeneous multi-robot systems.
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The Cumulative Sign (CUSIGN) detector is introduced to counteract these stealthy attacks by

monitoring alarm rates triggered by residual changes over time. Upon detection, the multi-robot

system reconfigures to isolate the malicious robots in a decentralized fashion. The proposed scheme

is scalable since each robot only relies on the local information received from its neighbors to assess

security issues. Finally, in our extensive simulations and experiments we show how our framework

can outperform well-known residual-based detection schemes like Bad-Data and CUSUM detectors.

Assembling together these magnitude-based detection schemes with our proposed approach would

increase the overall resilience of the system.

In the simulation and experiment demonstrations we have considered double integrator, differen-

tial drive, and skid-steering dynamics to show the generality and flexibility of our framework. The

main assumption for our framework is to have a priori knowledge about the vehicle dynamics and

the noise models. Currently we have assumed that communication within the network is ideal, such

that synchronization errors, time delays, and communication failures are negligible. Future efforts

expanding on this framework could include and leverage more accurate communication models with

uncertainties as introduced in [74] and [78] to further increase resilience, for example, by using

the dependencies between communication quality and distance between two communicating agents

(i.e., as a side-channel detection scheme). Expanding this framework to heterogeneous robotic

systems with different classes of vehicles and sensing capabilities is also another aspect that could

be investigated in the future.

From a recovery/reconfiguration perspective, we believe that an important direction forward

would be on how to deal with the robots that are found compromised. In this chapter, compromised

robots were isolated and removed from the network, to avoid their malicious effect on the coordination

of the rest of the uncompromised robots. However, more complicated approaches can be considered

to stop the malicious robots; such as surrounding or dragging them toward a safe state. In order

to enable such behaviors, it is necessary to predict the state of the compromised vehicles. One

possibility here is to research checkpointing and recovery methods, inspired by traditional software

engineering, by leveraging saved past reliable states and control inputs of the compromised system

and rolling forward to predict its reconstructed state after it was compromised, similar to literature

as in [46].

Predicting the intention of an attacker is also in our agenda since this will further increase

resilience to better recover a system. The inclusion of learning enabled components like regression and

classification techniques could further improve the on-board computation for detection. Furthermore,

investigating the effects of worst-case attack sequences that an attacker can perform while evading

detection from the CUSIGN detector to characterize the maximum damage in terms of the resulting

true state divergence from the on-board state estimate.
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Finally, another direction that we could head in is providing a framework for resilient task-based

multi-robot operations in the presence of cyber attacks. Like most multi-robot system operations,

and unlike the trivial go-to-goal operations implemented in this chapter, the robot swarms are

typically tasked to complete one or more objectives. However, if malicious actors are actively

attempting to intercept this critical tasked-based information that is communicated between robots,

an attacker can gain knowledge of the task/objective and intentionally seek to compromise the

operation. In the next chapter, we tackle this problem by designing a framework for the mobile

robot team to share these safety-critical tasks without explicitly sending the information through

communication broadcasts that can potentially be intercepted by malicious agents.
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Chapter 4

Detection and Inference of Randomness-based Behavior

for Resilient Multi-robot Coordinated Operations

In this chapter, a decentralized framework for coordinated multi-robot systems is introduced to allow

for resilient task-based operations in the presence of malicious communication broadcast information

attacks. This framework is an extension of the decentralized framework introduced in Chapter 3,

while considering the scenario of malicious eavesdroppers potentially intercepting safety-critical

information being passed between robots. In the context of this chapter, safety-critical information is

considered to be important tasks that are necessary for the robots within the multi-robot system to

cooperatively complete. Robots infer the safety-critical tasks via hidden motion signatures emitted

amongst each other to protect the information from any malicious attackers. The cooperative

multi-robot system framework is highlighted with MATLAB simulations and lab experiments using

swarms of TurtleBot2 UGVs. This chapter is based on the following publication:

• P.J. Bonczek, N. Bezzo, “Detection and Inference of Randomness-based Behavior for Re-

silient Multi-vehicle Coordinated Operations,” in Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2021.

4.1 Introduction

The use of coordinated multi-robot systems to perform various tasks has been extensively explored

for many years [96, 104, 61, 58]. By leveraging multiple robots instead of only one, it is possible

to perform more operations, and complete a task faster and more efficiently. Examples of such

operations that can benefit from the use of multi-robot systems are search and rescue operations

[96] depicted in Fig. 4.1, surveillance [104], military convoying/platooning [61], and exploration

missions [58]. Generally, approaches that leverage multi-robot systems assume that all robots are

cooperative while performing the desired operations to maintain swarming formations and can

exchange all necessary information to achieve the desired goal. However, these robots are susceptible
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Figure 4.1: Pictorial motivation of the problem in this paper in which a multi-robot system
cooperatively performs a task while inferring the objective of other teammates and detecting if they

are compromised by cyber attacks.

to malicious external attacks, especially on their communication infrastructure, which can affect

the entire network performance. For example, with a Man-In-The-Middle (MITM) attack [20],

an attacker intercepts a communication broadcast and replaces it with altered data which are

then received by neighboring robots. Successful attackers are able to purposefully block important

information from being received by nearby robots in the formation or control the entire multi-robot

network to an undesired location.

Safety-critical information, if not properly encrypted, can also be intercepted creating further

security issues. Although encryption techniques can be deployed, there exists attacks that are

capable of discovering encryption keys to extract data. The most secure option is to avoid exchanging

data altogether. In this chapter, we propose to leverage side-channel information that contains

hidden data, which is unknown to malicious attackers. For example, if a robot discovers an object

of interest whose identity needs to be kept secret, as depicted in Fig. 4.1, it could perform a certain

signature motion to indicate to neighboring robots of the discovered object. This motion triggers the

surrounding robots to infer its position and switch tasks to get attracted to the same object. In this

way, a robot can collect data and infer the behavior of other robots without explicitly broadcasting

important information. With such premises, we focus on applications for cooperative autonomous

robot networks in the presence of adversaries. We expand on literature that leverage virtual springs

for decentralized formation control [97, 17, 6, 5] while introducing a monitoring approach to detect

inconsistent behaviors between expected and received data to provide: 1) resiliency to cyber attacks

on communication broadcasts and 2) discovery of a hidden signature via side-channel states.

4.2 Preliminaries

96



4.2.1 Multi-robot System Model

Let us consider a multi-robot network of N homogeneous mobile robots modeled as a directed graph

G = (V, E), where we denote V = {1, . . . , N} as the robot set and the edge set E ⊂ V ×V , such that

an edge (i, j) ∈ E indicates a connection from robot i ∈ V to robot j ∈ V . All robots are considered

to have second order dynamics that can be represented in a linear time-invariant (LTI) state space

form in (3.1) that leverage virtual spring-damper meshes for decentralized formation control from

(3.40).

4.2.2 Attack Model

We assume the multi-robot network is navigating within an adversarial environment, such that

individual robots may be subject to malicious communication attacks (e.g., MITM attacks [20]). In

the case of an attack on an unprotected proximity-based formation, a single compromised robot can

affect the entire network of N robots as the effects of the attack are propagated throughout the

network. During a persistent communication attack, we assume that an attacker can continuously

intercept and modify broadcast data with stealthy (i.e., hidden within the system noise profile)

information in an attempt to intentionally fool (i.e., hijack) the robot network. Each robot i

exchanges state estimates, nearby obstacle positions, and neighbor set information at every time

instance k such that nearby robots have knowledge of its intended motion by construction of the

network model in (3.40). We indicate the spoofed broadcast information from a robot i ∈ V that is

received by other robots as:

x̂
(k)
i + ξxi −→ ˜̂x

(k)
i ,

po + ξ
o
i −→ p̃o, ∀o ∈ Oi,

{Si \ Sξ
−

i } ∪ Sξ
+

i −→ S̃i,

(4.1)

where ξxi ∈ Rn and ξoi ∈ R2 denote the attack vectors on state and obstacle positions, whereas the

sets Sξ
−

i ⊂ V and Sξ
+

i ⊂ V,
{
Sξ

−

i ∩ Sξ
+

i

}
= ∅ are robot identifications that are removed from and

added to the original neighbor set Si, respectively. For any attack vector ξxi ̸= 0, ξoi ≠ 0, ∀o, or
sets satisfying |Sξ

+

i |, |Sξ
−

i | > 0, an attacker is replacing the original message such that the received

information by any nearby neighbors will differ from the intended broadcast.

4.3 Problem Formulation

Given the network described by the virtual spring model (3.40) and the control graph GU (V, EU ), we
are interested in solving the following problems:
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Problem 4.1 (Robot Inconsistency Detection) Create a decentralized detection policy Pd such
that a robot j ∈ V that is experiencing inconsistent behavior can be discovered and isolated by any

robot i ∈ V such that,

(i, j) /∈ EU , i ̸= j, (4.2)

to prevent undesirable effects to the multi-robot network.

A second problem that we explore is to enable indirect exchange of information by leveraging

signature mobility behaviors of the agents of the swarm. While navigating through an adversarial

environment, robots that come into sensing range of an object of interest desire to notify the

remaining robots in the network of their discovery without revealing explicitly the identification

and position of the object to maintain secrecy from adversaries.

Problem 4.2 (Hidden Signature Detection) Given a robot i ∈ V that has found an object of

interest while navigating within an environment, find a control policy Pu to covertly provide an

identifiable hidden signature uH
i ∈ Rm for any nearby robots j ∈ Ci ⊂ V to detect without explicitly

sending information of the discovered object through communication broadcasts.

Upon recognizing a signature behavior, neighbors of the robot will estimate the position of the

object based on the same signature and switch toward that object.

4.4 Approach

In this section, the decentralized monitoring framework is described for detection and isolation

of inconsistently behaving robots in the network, while allowing each robot to provide a hidden

signature for nearby robots. The diagram in Fig. 4.2 summarizes our proposed scheme in which

each robot follows the primary or hidden control model, as well as detects whether neighboring

robots have expected behavior according to the primary or hidden models.

Figure 4.2: Overall framework architecture followed by each robot i ∈ V.
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4.4.1 Multi-robot Monitoring

During operations, each robot monitors nearby robots for consistent behavior according to the

virtual spring-damper primary network model described in (3.40). Additionally, each robot i receives

broadcasts containing state estimate vector information x̂j and control neighbor sets Si from any

nearby robot j ∈ Ci within communication range as represented in (3.4). Differing from multi-robot

monitoring in the previous chapter, each robot i infers the motion of each nearby robot j based on

their received information and the primary network model (3.40) where edges E are constructed

via Gabriel Graph rule [29, 4]. This robot i is able to make state evolution predictions of a nearby

robot j ∈ Ci such that the neighbor set of robot j satisfies Sj ⊂ Ci. The inclusion of the neighbor

set Sj ⊂ Ci is needed in order for robot i to predict the future state of the system using (3.40). The

inter-robot state prediction x̄
(k+1)
ij ∈ Rn of a robot j computed by a robot i is computed as

x̄
(k+1)
ij = Ax̂

(k)
j +Bu

(k)
ij (4.3)

where u
(k)
ij ∈ Rm is the estimated input for robot j that is computed by robot i which follows the

primary network model (3.40). At every kth time iteration, a robot i compares the inter-robot

residual r
(k)
ij , defined as the difference between the received state information x̂

(k)
j and the computed

state prediction of a robot j, by the following:

r
(k)
ij = x̂

(k)
j − x̄(k)

ij ∈ Rn. (4.4)

If a robot j is attack-free and is following the primary network model while being monitored

by a robot i, each element q ∈ {1, . . . , n} of the inter-robot residual vector is normally distributed

r
(k)
ij,q ∼ N

(
0, σ2r,q

)
characterized in the same manner as in (3.16). Similarly, each qth inter-robot

vector element of r
(k)
ij is a zero-mean normally distributed variable follows (2.52) during nominal

(i.e., no attack) conditions. To monitor whether the incoming information from nearby robots

is behaving in an expected random manner with respect to the primary network model (3.40),

we employ the Cumulative Sign (CUSIGN) detector to check for randomness with the procedure

formalized in (3.22). The multi-robot detection procedure on a robot i accumulates the signed

values of the inter-robot residual in the CUSIGN test variables for a robot j and triggers an alarm

ζ
(k),±
ij,q = 1 when a user-defined threshold τ ∈ N is reached, otherwise ζ

(k),±
ij,q = 0. As either of the

test variables reach their respective thresholds, the test variable is then reset back to zero. The

alarms for each qth element are then sent to the run-time update (2.78) for alarm rates Â
(k),−
ij,q and

Â
(k),+
ij,q , for simplicity denoted as Â

(k),±
ij,q , at each time instant k.
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4.4.2 Hidden Signature Generation

During operations, the mobile robots are tasked to converge to observed objects of interest while

navigating through the environment. As an ith robot comes within sensing distance δr of the

on-board range sensor with respect to an object,

lip = ∥pi − pp∥ ≤ δr, (4.5)

where pp is the position of an object of interest, the robot will notify neighboring robots by creating

a detectable hidden signature. To achieve this, the robot switches to a hidden virtual spring-damper

model described by,

uH
i = p̈i =

[
κh(lip − l0h)d⃗ip − γhṗi

]
∈ Rm, (4.6)

where the virtual spring-damper parameters κh ̸= κv and/or γh ̸= γv are distinct from the primary

network model in (3.40) to enable an identifiable dynamical signature. A robot i that follows the

hidden model (4.6) removes all virtual spring interactions to neighboring robots and the goal from

the primary network model that affect its control input. To maintain secrecy from attackers (with

regards to the observance of the object of interest), a robot i will continue to broadcast state,

observed obstacle positions, and its neighbor set information to nearby robots as it would in nominal

conditions. In this way, a malicious agent who is listening will continue to see the same type of

information as before. Any manipulation of such information that does not conform with the new

hidden model (4.6) or with the primary model in (3.40) will be considered a cyber attack.

The challenge that arises is that the object position pp remains unknown to the other robots in

the network. In comparison to the primary model (3.40), nearby robots do not receive all necessary

information when a robot i follows the hidden model (4.6) to monitor for consistency. This is due

to constraints set in Problem 4.2, that information regarding a discovered object of interest can not

be explicitly shared with the network to protect from interception by attackers.

4.4.3 Hidden Signature Detection

Given that the hidden model (4.6), robot dynamics, and maximum sensing range δr are known by

all robots, an expected robot velocity behavior can be leveraged as a robot converges toward an

object (i.e., a decaying velocity magnitude). More specifically, any robot i can recognize the hidden

signature by monitoring the received velocity estimate v̂
(k)
j behavior from a robot j and compare it

to the expected velocity decay behavior from the hidden model. Shown in Fig. 4.3(a) is an example

of the differing expected velocity behavior between springs of the primary and hidden models with

the corresponding distances to the object.

100



(a) (b)

Figure 4.3: Differing expected behavior of the (a) velocity decay, and (b) distance to the object for
the two different virtual spring-damper models.

Given that each robot i is making state predictions of any neighboring robot j according to

the primary network model (3.40), an alternative action by this robot (i.e., utilizing the hidden

model) would result in an unexpected behavior. Alarm rates from CUSIGN on-board a robot i

that is monitoring robot j, in turn, go beyond detection bounds due to the unexpected behavior

and robot j is placed in the compromised robot set Ri ⊂ V. Next, robot i would begin to monitor

the received velocity information of robot j to determine if its behavior follows the hidden model

(4.6). A velocity prediction of robot j by a robot i given j ∈ Ri is made from the received velocity

estimate ∥v̂(k)j ∥ by,

v̄
(k+1)
ij = h

(
∥v̂(k)j ∥

)
, (4.7)

where the function h(·) represents the expected velocity behavior according to the hidden spring

model (4.6), as shown in Fig. 4.3(a). At each time iteration k, the hidden velocity residual r̆
(k)
ij —

the difference between received velocity magnitudes and velocity predictions using the hidden model

— of robot j is computed by the following,

r̆
(k)
ij = ∥v̂(k)j ∥ − v̄

(k)
ij ∈ R, (4.8)

to monitor whether robot j is following the hidden model in (4.6). We leverage the known zero-mean

Normally distributed velocity estimate provided by robot j when characterizing the hidden velocity

residual. An assumption can be made such that the received velocity estimate information from

robot j is also approximately zero-mean Normally distributed around the expected velocity decay

behavior in h
(
∥v̂(k)j ∥

)
, only if robot j is following the hidden model. In this scenario, the hidden

velocity residual (4.8) is expressed as a random variable that presents the following characteristics:

Pr
(
r̆
(k)
ij < 0

)
= p̆− = 0.5,

Pr
(
r̆
(k)
ij > 0

)
= p̆+ = 0.5,

(4.9)
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where the probability of the hidden velocity residual being greater or less than zero is equal. A

random variable with characteristics that follow (4.9) should present an expected sign switching

rate behavior (i.e. how frequently r̆
(k)
ij changes signs) in accordance to the probabilities in (4.9). To

capture the rate of sign switching, we leverage an alarm that is triggered (i.e., ψ
(k)
ij = 1) when a

sign switch occurs at a time k. The procedure to trigger a sign switching alarm follows:

ψ
(k)
ij =

 1, if sgn
(
r̆
(k)
ij

)
= −sgn

(
r̆
(k−1)
ij

)
,

0, otherwise.
(4.10)

The sign switching alarm ψ
(k)
ij ∈ {0, 1} is then sent into the MRE algorithm (2.78) to provide an

updated run-time estimate of the hidden signature sign switching alarm rate Ĥ
(k)
ij ∈ [0, 1] at time

instance k.

Lemma 4.1 Given a robot j that is following the hidden model (4.6) while being monitored by robot

i, the expected sign switching rate to signify random behavior is E[H] = 1
2 .

Proof: We first examine the asymptotic distribution of the expected number of observed runs

E[U ] from the Wald-Wolfowitz runs test [105]. Then, we convert E[U ] over a defined sequence length

to a rate described by how frequently runs should occur (i.e., how often sign switching occurs) by

leveraging the known characteristics of the probabilities p̆+ and p̆−, such that the random variable

follows E[H] = 2p̆+p̆− = 1
2 , thus concluding the proof.

Lemma 4.2 The expected variance of the sign switching rate Ĥ
(k)
ij for a robot j that follows the

hidden model (4.6) while monitored by robot i ∈ V is Var[H] = 1
4(2ℓ−1) .

Proof: Let the expectation of a sign switch be modeled by a Binomial distribution where the

probability of success (i.e., sign switch) is E[H]. By normal approximation and utilizing MRE (2.78)

for sign switching rate estimation, the random variable follows a normal distribution with variance

Var[H] = E[H](1−E[H])
2ℓ−1 = 1

4(2ℓ−1) , concluding the proof.

The following corollary provides bounds of Ĥ
(k)
ij to satisfy an expected behavior to detect the

hidden model signature.

Corollary 4.1 Given the sequence of hidden velocity residuals r̆
(k)
ij , hidden signature detection

occurs by the sign switching alarm rate when Ψ− ≤ Ĥ
(k)
ij ≤ Ψ+ is satisfied.

Proof: A proof can be obtained by leveraging confidence intervals within a Normal Distribution.

Due to page limitations, we omit the proof.
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To summarize Corollary 4.1, when the sign switching alarm rate for the detection of the hidden

signature satisfies,

Ĥ
(k)
ij ∈ [Ψ−,Ψ+] −→ Signature Detection, (4.11)

robot i detects a hidden signature behavior in j.

4.4.4 Object of Interest Position Estimation

Robot i reacts by estimating the position of the object by leveraging the training set (i.e., expected

hidden model behavior) mapping f : R2 → R in Fig. 4.3 that maps the received velocity estimate of

robot j to its distance to the object by,

d̂
(k)
p,ij = f(∥v̂(k)j ∥). (4.12)

The position of the object pp is then estimated by robot i from the received position information

of robot j by,

p̂
(k)
p,ij = p̂

(k)
j + d̂

(k)
p,ijd⃗(∥v̂

(k)
j ∥), (4.13)

where d⃗(·) is a unit vector indicating velocity direction of robot j. Once the object position

coordinates p̂
(k)
p,ij have been estimated, robot i then detaches virtual springs from its neighbors and

goal to converge to the object of interest by also following the hidden model (4.11). Robots within

the network will continue to converge toward the point of interest until its task is completed. Upon

completion, all robots involved with the hidden task return to their normal control behavior with

the primary network model in (3.40).

4.5 Simulations Results

For the simulation case study, we consider N = 10 mobile robots treated as double integrator point-

masses navigating in an x-y plane. A sequence of snapshots are presented in Fig. 4.4 showing the

network of robots resiliently navigating through an obstacle filled environment. From Fig. 4.4(c)-(h),

robots {4, 8} (red circles) are subject to MITM attacks that falsify position information with the

intention of hijacking the network.

In Fig. 4.4(e) robot 1 discovers an object and then switches to the hidden model (4.6) to covertly

notify neighboring robots about the discovery. In turn, neighboring robots detect this hidden

signature (4.11), estimate the position of the object (4.13), then also switch to the hidden model

to converge to the object. CUSIGN and sign switching alarm rates from the perspective of robot

i = 7 are provided in Fig. 4.5 while monitoring neighboring robots for primary and hidden model

behaviors. Alarm rates for CUSIGN (3.22) monitoring robots {1, 2, 4, 8, 10} travel beyond detection
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.4: A network of N = 10 robots resiliently navigate through an obstacle-filled (black
squares) environment to a desired goal (red ‘X’). Robots converge to an object (orange disk) as it

comes within their viewing range (green disks) or if they detect the hidden signature from
neighboring robots.

bounds indicated by red dashed lines. However, shown in Fig. 4.5(b), the hidden signature alarm

rates (4.11) for robots {1, 2, 10} satisfy the hidden model detection bounds to signify consistent

behavior is occurring with respect to the hidden model (4.6), thus deeming these robots trustworthy.

Alternatively, robots {4, 8} ∈ R7 are treated compromised as a hidden signature was not detected

from their motion.
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(a) (b)

Figure 4.5: (a) CUSIGN detection alarm rates from the perspective of robot i = 7 and (b) sign
switching alarm rates for hidden signature detection.

4.6 Experiment Results

(a) (b) (c) (d) (e) (f) (g)

Figure 4.6: An experiment showing a network of N = 5 TurtleBot2 robots resiliently navigating to
a goal (red ‘X’). Robot 2 discovers an object (yellow helmet) as comes within its sensing range
(depicted by the green translucent circle), then provides a hidden signature behavior for nearby
robots to recognize as it converges to the object. Neighboring robots also converge to the object of

interest upon detection of this hidden signature.

Experimental validations are performed on N = 5 TurtleBot 2 differential-drive robots performing

a go-to-goal operation within a lab environment. Snapshots of this experiment are presented in

Fig. 4.6 capturing the following sequence of events; the initial robot positions (Fig. 4.6(a)), robot 2

discovering the object (Fig. 4.6(d)), neighboring robots converge toward the object after detecting

the hidden signature from robot 2 (Fig. 4.6(e)), and the network continuing to the goal once

the object “task” has been completed (Fig. 4.6(f)-(g)). During the simulation, communication

broadcasts from robot j = 4 are corrupted with false position data that attempt to drive the system
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to an undesirable location, but the CUSIGN detector finds these stealthy attacks, allowing the

network to resiliently perform the operation. In Fig. 4.7, alarm rates that are monitoring the

primary (3.40) and hidden (4.6) models throughout the experiment show robot 1 detecting the

compromised robot 4, as well as detecting the hidden signature from robot 2.

(a) (b)

Figure 4.7: (a) CUSIGN and (b) sign switching alarm rates from the perspective of robot i = 1.
Detection bounds are indicated by red dashed lines.

4.7 Discussion

In this chapter, we have presented a decentralized framework for a network of homogeneous robots

to resiliently perform desired task-based operations. The robots are able to distinguish between

received inconsistent information from neighboring robots due to man-in-the-middle attacks to

communication broadcasts and hidden model behaviors that provide a detectable signature to

implicitly pass safety-critical information. To detect stealthy attacks and the hidden signature, we

leverage randomness-based detection techniques —Cumulative Sign (CUSIGN) and sign switching

rate— to identify whether robots are following a primary or hidden network model. Future

extensions to the framework in this chapter could include: i) investigating the effects of different

attack classes/models and ii) develop an adaptive approach for the virtual spring parameters to

conform to changing network or environmental conditions.

To summarize Part II, consisting of Chapters 3 and 4, we introduced attack detection methods

to discovery stealthy cyber attacks within multi-robot systems to enable for resilient task-based

operations. Upon detection of misbehaving robots, our frameworks allow the remaining robots

to isolate the compromised robot then reconfigure the network topology to remove any malicious

effects that the compromise robots may induce. However, if the compromised robots suffer from

cyber attacks (or faults) to on-board sensors which compromise localization capabilities and control

behavior, the robots are discarded from the network without safety implications or a recovery method

106



in mind. More specifically, these robots may continue navigating in an undesirable manner, thus

potentially leading them to undesirable states within the environment that could damage/destroy

themselves or critical infrastructure. In the next Part, named System Recovery, we explore recovery

methods for both single- and multi-robot autonomous systems such that the vehicles have a

recovery framework in place due to various undesirable conditions that impact localization and

control performance on-board affected robots. In particular, we invite the reader to continue on to

Chapter 6 where we introduce cooperative recovery frameworks that utilize much of the theory and

applications discussed in Part II.
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Part III

System Recovery
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Chapter 5

Recovery of Autonomous Systems Operating under

On-board Controller Failures

5.1 Introduction

Present-day autonomous robotic systems possess increased complexities to support an expanded

array of computers and sensors to assist in advanced capabilities such as navigation, warehouse

logistics, and industrial operations, towards truly unmanned operations. With such complexity,

however, comes higher risks of malicious cyber attacks due to their unsupervised, autonomous

applications and the numerous entry points to implement an attack. While the vast majority of

the literature in robotics and cyber-physical systems security deal primarily with attacks on the

sensing and communication infrastructure of a system [101], in this section we consider attacks that

interfere with the control logic to hijack a system. For this class of attacks, controller parameter

gains can be altered to trigger an undesirable behavior under certain states or tracking errors. For

example, in Fig. 5.1 shows a motivational case in which a robot needs to turn to the right but ends

up turning to the left, away from the desired trajectory and into an obstacle when the tracking

error is within a compromised region.

One of the key principles that we leverage is that such robotic systems, in nominal conditions,

i.e., when uncompromised, have well-designed dynamical models that enable accurate predictions of

output measurements from their control input signals. A cyber attack on the on-board controller

can cause inconsistencies from the expectation of this input-output model, leading to observable

deviations from its nominal behavior. To this end, we consider a residual-based monitoring approach

that leverages the chi-squared detection scheme to reduce the residual vector into a scalar test

measure to detect controller integrity inconsistencies. Regions of the state space or the tracking

error space that are deemed compromised are monitored for future operations to avoid them. A

compensator to alter information provided to the controller (i.e., reference signal and state vector)

is built to avoid any compromised regions within the state or tracking error spaces. Moreover,
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Figure 5.1: Pictorial representation of the problem investigated in this paper in which a robot is
tasked to navigate toward a goal under a controller attack that gets activated only when the

tracking error crosses a certain threshold (red region in the figure).

to deal with this problem of maintaining desirable control performance during operations, the

altered information is designed to minimize the difference in the compensated control input signal in

comparison to the originally intended (but compromised) control input.

The contribution within this chapter is twofold: 1) a detection framework to discover compromised

regions of the state or tracking error space within a controller that cause anomalous system behavior

and 2) a compensator that alters the reference signal and state information provided to the controller

in order to bypass compromised regions to achieve desired control performance to resiliently continue

operations.

5.2 Preliminaries

This chapter considers robotic systems modeled as discrete-time linear time-invariant (LTI) systems

of the form:

xk+1 = Axk +Buk + νk, (5.1)

yk = Cxk + ηk, (5.2)

where xk ∈ Rn denotes the state vector, uk ∈ Rm is the control input, and yk ∈ Rs represents the

output vector at every time instance k ∈ N. The state, input, and output matrices A, B, and C are

of appropriate dimensions, while νk ∼ N (0,Q) ∈ Rn and ηk ∼ N (0,R) ∈ RNs are i.i.d. Gaussian

process and measurement uncertainties.

During operations, a Kalman Filter (KF) is implemented to provide a state estimate x̂k ∈ Rn in

the form:

x̂k+1 = Ax̂k +Buk +L(yk −Cx̂k) (5.3)
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where L = PCT(CPCT + R)−1 is defined as the Kalman gain matrix which is solved by the

algebraic Riccati equation.

5.2.1 Threat Model

We assume a general feedback controller with a nominal control input signal that is described as

uk =K
(
xref
k − x̂k

)
=Kxek (5.4)

where xek = x
ref
k − x̂k is the tracking error between a ref-erence signal (i.e., desired state) and the

state estimate, while K is a feedback gain to provide desired control performance of the system.

Additionally, we assume the true control inputs to the system

−umax ≤ uk ≤ umax (5.5)

are constrained to due to actuation limitations.

We consider control inputs (5.4) that can be altered due to undesired (and unknown) changes in

controller parameters and/or additive inputs, as depicted in Fig. 5.2. These changes occur as signals

fed to the controller satisfy specific compromised ranges of tracking error Ẽ and state X̃ within

a finite tracking error space Ẽ ⊂ E and/or finite state space X̃ ⊂ X . Within these compromised

regions, we consider scenarios such as: i) cyber attacks that are able to maliciously modify control

parameters and/or introduce control signal biases at runtime or ii) faulty code that is defined before

operations begin; resulting in undesirable control inputs provided to the system.

Figure 5.2: A diagram describing altered control parameters and additive inputs to result in
undesired control behavior.

The altered control inputs ũk ̸= uk are presented as

ũk = K̃x
e
k + ŭk ∈ Rm (5.6)

with the feedback gain K̃ ≠K and additive input signal ŭk ∈ Rm when the following condition is

satisfied:

xek ∈ Ẽ , x̂k ∈ X̃ . (5.7)
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5.3 Problem Formulation

An attack or fault to an on-board controller will consequently result in anomalous behavior due

to unreliable control signals ũk being applied to the system. We focus on discovering specific

operating conditions (i.e., regions and ranges) from the information (i.e., reference signal xref
k and

state estimate x̂k) provided to the controller that cause undesired behaviors.

Problem 5.1 (Anomalous Behavior Detection) Given the nominal and altered control inputs

represented in (5.4) and (5.6), we want to detect compromised regions within the state X and error

E spaces. Formally, the objective is to find conditions of the reference signal and state information

uk =

 K̃xek + ŭk, if {xref
k , x̂k} ∈ X̃ , Ẽ

Kxek, otherwise
(5.8)

that trigger undesired control inputs which are sent to the robot, hence resulting in undesired system

behavior.

Upon detection of compromised regions of state X̃ ⊂ X and tracking error Ẽ ⊂ E spaces, the

robot aims to avoid triggering these undesired behaviors such that resilient operation can continue.

Formally:

Problem 5.2 (System Recovery) Design a policy such that the robot computes a compensated

reference signal x̄ref
k and state x̄k information for the controller, where x̄ref

k ̸= xref
k and x̄k ̸= x̂k,

in order to avoid malicious regions within the state and error spaces to maintain desirable control

performance. Furthermore, the compensated input ūk which is computed using the compensated

reference signal and state information, seeks to minimize the following:

ūk =
{
argmin

ūk

(ūk − u∗
k) : {x̄ref

k , x̄k} ̸∈ X̃ , Ẽ
}

(5.9)

where u∗
k is the desired control input before compensation and argmin(ūk − u∗

k) represents the

objective to find a compensated input with minimum difference from the desired.

5.4 Framework

In this section we describe the monitoring and recovery framework to detect anomalous controller

behavior during specific ranges of information, then implement a recovery mechanism for an

autonomous robot to provide uncompromised control inputs for motion. The overall control

architecture is highlighted in Fig. 5.3 where a detector monitors the residual vector to determine
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Figure 5.3: Overall detection and compensation architecture of our framework. The compensator
manipulates the reference and state estimate vectors to compute a compensated input ūk when

x̂k ∈ X̃ or x̂ek ∈ Ẽ are satisfied.

if anomalous system behavior is occurring. This allows for compensation of information into the

controller (i.e., reference signal and state estimate vector) to ensure uncompromised control inputs

are sent to the robot. Our focus is on attacks or faults taking place on the on-board controller

as specific ranges of input information fed to the controller are provided. Within these ranges,

unknown controller parameter changes and/or additive control signals are included to the control

input, causing undesired behavior of the robot.

5.4.1 Space Partitioning

In this chapter, we want to discover specific regions within the error and state spaces that may

be compromised due to cyber attacks (or possibly faulty code) that alters the control inputs

computed by the on-board controller. To monitor for compromised regions within tracking error

space E = {E1, . . . , En} or the state space X = {X1, . . . ,Xn} for an ith state, i = 1, . . . , n, we first

partition the spaces into a finite number of bins.

For generalization, lets define any given space by the set S = {S1, . . . ,Sn}. An ith state in space

Si to be monitored is partitioned into Nb bins to check for inconsistent behavior within each bin

(i.e., partitioned region). The set of j = 1, . . . , Nb partitioned bins in an ith state are represented as

Bi = {bi,1, . . . , bi,j , . . . , bi,Nb} that span the entire space. Each partitioned bin of arbitrary size is a

subset of the set of bins (i.e., bi,j ⊂ Bi) within a space Si and described by:

bi,j =


Si,min ≤ bi,j ≤ Si,(bi,j,max) if j = 1

Si,(bi,j−1,max) < bi,j ≤ Si,(bi,j,max) if j = 2, . . . , Nb − 1

Si,(bi,j−1,max) < bi,j ≤ Si,max if j = Nb

(5.10)
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such that
Nb⋃
j=1

bi,j = Si and

Nb⋂
j=1

bi,j = ∅ (5.11)

are satisfied. As an example, in Fig. 5.4 we show an ith state that is partitioned into the Nb bins

(i.e., subspaces) of equal size that cover all possible values of its state space Xi.

Figure 5.4: Depiction of the Nb partitioned bins spanning a state space Xi.

The objective is to discover if specific regions within a space lead to faulty/anomalous behavior

due to a compromised on-board controller providing unknown, malicious control signals to the

system. For ease in the remainder of this paper, we describe the bin subspaces of a state i in general

terms that may be utilized for either the tracking error or state space. At every time iteration, the

system determines which bin j the information that is monitored belongs to (i.e., tracking error

xek,i ∈ bi,j or state x̂k,i ∈ bi,j). In the next subsection, we describe how to monitor for anomalous

behavior within each bin bi,j in an ith state or error space.

5.4.2 Residual-based State and Error Consistency Monitoring

During an operation, the robot checks for anomalous system behavior due to attacks or faults within

the on-board controller. In particular, each error/state subspace (i.e., denoted by the partitioned

bins described in Section 5.4.1) is monitored as the conditions of the reference and state estimate

information sent to the controller are met. If specific subspaces during operations present anomalous

behavior, they are flagged as compromised regions. We leverage a residual-based fault detection

scheme to check for anomalous system behavior at runtime. The idea behind this scheme is to utilize

the state predictions x̂k+1 in (2.6) to determine if the system is responding to the computed control

inputs uk accordingly. To monitor for inconsistent system behavior, we compute the measurement

residual vector

rk = yk −Cx̂k ∈ RNs (5.12)

which is defined as the difference between sensor measurements and the state prediction that was

computed at the previous time k−1. The measurement residual is modeled by a zero-mean Gaussian

distribution rk = N (0,Σ) with an expected covariance matrixΣ = E[rkrTk ] = CPCT+R ∈ RNs×Ns ,

where P is the estimation error covariance matrix. A system that is behaving in a consistent manner
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will display residuals that follow this expected distribution, while misbehaving systems violate this

expectation. We utilize the well-known chi-square detection scheme by reducing the residual vector

into a scalar test measure:

zk = r
T
kΣ

−1rk (5.13)

which is chi-squared distributed that follows zk ∼ χ2(Ns).

To determine if undesired control inputs ũk are being computed by the compromised controller

in a specific bin bi,j ⊂ Bi, we monitor for expected behavior of the test measure. Similar to

the monitoring method in Chapter 4, we monitor for unexpected sign switching rates to detect

inconsistent behavior. The sign of each incoming test measure (5.13) with respect to a user-defined

reference value zref ∈ R>0 is computed at every time k. Moreover, the signed test measure value

sgn(zk − zref) is compared with the sign of the previous signed test measure value when the system

belonged to the same jth bin in state i, bi,j ⊂ Bi, at time a k−Tbi,j . If the test measure comparison

is of opposite signs, then an alarm is triggered, otherwise an alarm is not triggered. Formally, the

procedure to trigger an alarm follows:

ζk =

 1, if sgn(zk − zref) = −sgn(zk−Tbi,j − zref)

0, otherwise
(5.14)

where Tbi,j ∈ N denotes the number of time steps since the jth bin in the space Bi was entered. The
alarm ζk ∈ {0, 1} signifies that the test measure at time k is of the opposite sign (i.e., a sign switch)

with respect to the previous test measure within the same bin at time k − Tbi,j to trigger an alarm

ζk = 1, otherwise ζk = 0. The alarm ζk is placed into a runtime alarm rate estimator:

Âk|bi,j′ =

 Âk−1|bi,j′ +
ζk−Âk−1|bi,j′

ℓ if j′ = j

Âk−1|bi,j′ if j′ ̸= j
(5.15)

to compute an updated estimate for the jth bin within the set Bi, where ℓ is a “pseudo-window”

length. All other alarm rate estimates corresponding to a bin j′ ≠ j are carried over from the

previous time step, since they are unaffected as the system did not belong to the space pertaining

to the j′th bin. All alarm rate estimates ∀j ∈ bi,j are initialized to Â0|bi,j = E[A] at time k = 0, and

alarm rate estimates should follow

Âk = E[A] = Pr[ζk = 1] (5.16)

where E[A] is the expected rate which alarms are triggered. Bounds on the estimated alarm rates,

denoted by [Ω−,Ω+] ∈ (0, 1) that satisfies Ω− < E[A] < Ω+, can be computed to signify anomalous
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system behavior. To summarize, when the alarm (i.e., sign switching) rate for the detection of

anomalous controller behavior satisfies,

Âk|bi,j ̸∈ [Ω−,Ω+] −→ Anomalous Behavior (5.17)

the robot detects anomalous behavior within bin j on an ith state. The robot then places the bin j

presenting the anomalous behavior into a compromised bin set bi,j → B̃i, where B̃i ⊂ Bi, to allow

for compensation to avoid this region that results in undesired control performance.

5.4.3 State and Reference Compensation

The goal for the compensator is to provide compensated values of the reference signal x̄ref
k and state

x̄k to the controller in order to avoid any compromised regions within the error Ẽ and/or state X̃
space. We define the control input

ūk =K
(
x̄ref
k − x̄k

)
=Kx̄ek (5.18)

as the computed input that utilizes the compensated reference and state vectors. Additionally, when

providing compensated information {x̄refk,i, x̄k,i} on an ith state to the controller, our objective is to

update the information in a manner to minimize the difference in compensated control input signal

from the nominal (i.e., desired) input

ūk = argmin(ūk − u∗
k) = argmin

(
K(x̄ek − xek)

)
(5.19)

where x̄ek = x̄
ref
k − x̄k and xek = x

ref
k − x̂k.

In Fig. 5.5 we show a high-level view of the compensation approach to satisfy (5.19). The

compensator determines whether the incoming information (i.e., the reference xrefk,i and state estimate

x̂k,i) belong to any compromised bins B̃i ⊂ Bi (highlighted by the red bins in Fig. 5.5) within an ith

state/error space. If the information belongs to a compromised bin, then the compensator chooses

the nearest uncompromised bin (colored in orange) from the current state/error, which is leveraged

to compute a compensated reference signal x̄refk,i and state estimate x̄k,i, respectively. Next, we

provide the compensation procedure for the cases when an attack to the controller affects regions

within the state X̃i ⊂ Xi and tracking error Ẽi ⊂ Ei spaces.

Compromised State Space

In this subsection, we describe compensation that occurs as one or more bins within the state space

Xi of any ith state are deemed compromised. The compensation occurs only when the ith state
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Figure 5.5: The compensation process to provide altered references and states to the controller to
avoid compromised regions (red) within an ith state.

estimate element is within a compromised jth bin x̂k,i ∈ bi,j where bi,j ⊂ B̃i. The objective is to

find a compensated state

x̄k,i = {x̄k,i ∈ bi,j : min(x̂k,i − x̄k,i), bi,j ∈ Bi \ B̃i} (5.20)

that is provided to the controller which belongs to an uncompromised bin bi,j ⊂ Bi \ B̃i. To maintain

desired reference tracking performance, we also compensate the reference signal x̄refk,i by the same

amount as the state compensation

x̄refk,i = xrefk,i +∆xk,i (5.21)

such that the tracking error remains unchanged, where ∆xk,i = (x̄k,i − x̂k,i) is the change in state.

Lemma 5.1 Given the compensated state estimation and reference signal that is provided to the

controller to avoid compromised regions in an ith state space x̄k,i ̸∈ X̃i, the computed control input

ūk is equal to the desired input u∗
k.

Proof: We observe that the difference in tracking error

(x̄refk,i − x̄k,i)− (xrefk,i − x̂k,i) = x̄ek,i − xek,i = 0 (5.22)

between the compensated and uncompensated information of an ith state that is provided to the

controller is zero. The resulting tracking error vector x̄ek = xek remains unchanged, thus the control

input signal to the system is the same (i.e., Kx̄ek =Kx
e
k → ūk = u

∗
k).

Compromised Error Space

Next, we describe the scenario where compensation occurs to avoid regions that are within the

compromised tracking error space which result in undesired control performance of the system.

Similar to the previous subsection for anomalies in the state space, we characterize the compensation

effort that occurs as anomalous behaviors are detected within any jth bin of the error space
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xek,i = xrefk,i − x̂k,i ∈ bi,j , where bi,j ⊆ B̃i. However, attackers may reduce the usable tracking errors

to a much smaller subset of the original error space Ei.

Figure 5.6: Viewing bins within an ith error space as a loop.

Depending on feasible control inputs (5.5) for a given system (2.1), we can describe the tracking

error space for these suitable states as a loop, as depicted in Fig. 5.6. In particular, reference signals

for these states can be switched to the opposite sign (i.e., reverse direction) to enable the robot to

reach specific positions within the environment. Furthermore, a user-defined buffer region between

bins 1 and Nb may be included to any suitable ith error element whose state can leverage the

loop method to control when a switching (i.e., reversal) of reference signals is applied. In Fig. 5.7,

we provide two examples of this method for both the velocity and heading angle of a robot. The

examples depict: 1) a robot navigating with a negative velocity (i.e., velocity reference signal is

of the opposite sign) and 2) a robot turning in the opposite direction by creating a loop (i.e.,

heading angle reference is shifted by ±2π). These scenarios can be exploited such that a robot can

reach desired positions within the environment when certain control input conditions cannot be

attained due to compromised regions within the error space. If the current tracking error satisfies

xek,i ∈ bi,j ⊂ B̃i and the nearest tracking error x̆ek,i ̸= xek,i within an uncompromised bin

x̆ek,i = argmin(xek,i − x̆ek,i), x̆ek,i ∈ bi,j ⊂ Bi \ B̃i (5.23)

crosses over the buffer region (i.e., 1 → Nb or Nb → 1), we update the ith reference signal to the

opposite direction with the function f : R 7→ R defined by

x̄refk,i = f(xrefk,i) =⇒ xek,i = x̄refk,i − x̂k,i (5.24)

and then the tracking error xek,i is updated accordingly.
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(a) (b)

Figure 5.7: Examples of system states such as (a) velocity and (b) heading angle that are capable
of providing an “opposite” reference signal.

From the given tracking error xek,i, the objective is to find the nearest tracking error to provide

to the controller

x̄ek,i = {x̄ek,i ∈ bi,j : argmin
x̄ek,i

(xek,i − x̄ek,i), bi,j ⊂ Bi \ B̃i} (5.25)

which belongs to an uncompromised bin bi,j ⊂ Bi \ B̃i such that x̄ek,i ̸∈ Ẽi. We compensate the

reference signal x̄refk,i by

x̄refk,i = x̂k,i + x̄ek,i (5.26)

to achieve the compensated tracking error in (5.25).

After compensation for an ith reference signal has occurred, the compensated control input is

no longer equal to the desired control input ūk ̸= u∗
k as Kx̄ek ̸=Kxek. The goal is to find a feasible

solution to update reference signals for any state i′ ̸= i, i′ = {1, . . . , n} \ i to minimize the difference

between the compensated control input ūk with compensated reference signals and the desired

control input u∗
k. To minimize the difference in control input to the system, the following objective

function is solved

J(x̄ek) = argmin
x̌ek

(
∥Ǩx̌ek − u∗

k +Kix̄
e
k,i∥

)
(5.27)

where Ǩ is the feedback control matrix with the ith column removed, x̌ek is the tracking error vector

with the ith element removed, and Ki is the ith column in the feedback matrix K. To satisfy the

compensated tracking error vector in (5.27) that minimizes the change in the control input, we

compensate the reference signals elements i′ for any altered tracking error

x̄refk,i′ = xrefk,i′ + (x̄ek,i′ − xek,i′), ∀i′ ̸= i. (5.28)

The following Lemma provides details to show that the true system state converges to the

desired reference signal, even as the reference signal is being compensated.
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Lemma 5.2 (System Stability) Given the compensated reference signals in (5.26) and (5.28) to

minimize (5.27) in order to avoid any compromised regions within the tracking error space x̄ek ̸∈ Ẽ
with control input ūk =Kx̄

e
k, the reference tracking closed-loop system is asymptotically stable.

Proof: We omit the full proof due to page limitations. However, Lemma 5.2 can be proved

via Lyapunov stability to show that reference tracking is globally asymptotically stable such that

the system state converges toward any desired bounded reference signal xref
k during attacks/faults

to the tracking error space (i.e., Ẽ ≠ ∅). In other words, the expectation of the true tracking

error xtk = x
ref
k − xk is always converging (i.e., E[xtk+1 − xtk] → 0 as k → ∞) for any compensated

reference signal x̄ref
k and compensated state x̄k computed in (5.24)–(5.28).

It is noted that when the compensator is providing compensated signals to the controller

{x̄ref
k , x̄k} → ūk, the resulting computed compensated control input ūk is utilized in the state

estimation process in (5.3).

5.5 Simulation Results

For the simulation case studies, we consider a differential drive UGV with the following general

dynamical model (2.49). The system is linearized and it is modeled with a sensor sampling rate

ts = 0.05s to satisfy the system model in (5.1) and (5.2).

For all simulations, the robot is tasked to visit a series of waypoints (i.e., goals) within an

obstacle-filled environment while maintaining a velocity vref = 0.15m/s. We present two case studies,

one each in the state and error spaces where attacks occur when velocity information provided to the

controller is within a compromised region v̂k ∈ X̃ or v̂ek ∈ Ẽ . Three simulations are provided for each

case study that highlight the Nominal (i.e., no attack), Uncorrected, and Corrected scenarios where

attacks start at k = 2700 and the robot begins from the same initial state x0 = [0, 1.5, 0, 0, 0]T.

State Space Attack

The case study for attacks within the state space is presented in Fig. 5.8. As the robot velocity

estimate provided to the controller satisfies v̂ = [0.12, 0.17] ∈ X̃i, then control feedback gains for

velocity are reduced by 80% and the gains for turning are multiplied by −1. In the Uncorrected

scenario, the system deviates from its intended trajectory as it tries to maintain its desired velocity

within a compromised region in the state space. Moreover, the robot collides with an obstacle,

although obstacle avoidance is implemented. Instead, in the Corrected scenario with our framework

implemented, the robot discovers the bins bi,j ⊂ B̃i where anomalous behavior is occurring (red

region in Fig. 5.8(c)) within the velocity state space, which allows the robot to recover and resiliently

maintain its operation shown in Figs. 5.8(a) and 5.8(d).
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(a)

(b)

(c)

(d)

Figure 5.8: A waypoint follower during the compromised state space case study showing: (a) the
resulting robot trajectories, (b) velocity tracking error, (c) alarm rates for the Nb = 20 bins, and (d)

distance to the next goal/waypoint.

Error Space Attack

In Fig. 5.9 we highlight a case study where attacks occur within the error space E . Attacks occur as
the velocity tracking error is any positive value, causing feedback gains for velocity to be reduced

by 90% and an input bias of ŭk = −0.08. When not monitoring for malicious behavior in the

Uncorrected scenario, the robot continues to attempt a forward (positive) velocity and is driven

away from its next intended goal point. In the Corrected scenario, the robot discovers anomalous
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behavior in bins bi,j ⊂ B̃i corresponding to positive velocity tracking errors (Fig. 5.9(c)). This allows

the robot to recover by updating its reference velocity to the opposite direction to navigate the

environment in reverse to resiliently maintain the operation.

(a)

(b)

(c)

(d)

Figure 5.9: The compromised tracking error space case study displaying: (a) the resulting robot
trajectories, (b) velocity tracking error, (c) alarm rates for the Nb = 20 bins, and (d) distance to

the next goal/waypoint.
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5.6 Experiment Results

Experimental validations are implemented on Husarion Rosbot 2.0 robots performing a go-to-goal

operation within a lab environment. We show two case studies where attacks are triggered based on

information from the heading angle this time; the first with an attack scenario within the state space

and the second within the error space. For each experiment case study, we provide results where

the robot is: a) unprotected from attacks/faults, b) protected from attacks/faults while leveraging

our compensation framework for recovery, and c) a MATLAB representation of the robot positions

during both the unprotected and protected experiments.

Snapshots of the first case study experiment are presented in Fig. 5.10, which captures the robot

navigating to a series of goals. The malicious threat to the controller occurs when the robot heading

angle (in degrees) satisfies θ ∈ [140, 245] or θ ∈ [−75, 30]. Without our detection and recovery being

performed, shown in Fig. 5.10(a), the control signal to the system is compromised and eventually

the robot crashes into a wall. We see in Fig. 5.10(b) where our framework is leveraged, the robot

compensates the information to the controller upon discovering anomalous regions within the state

space to allow for continued navigation to each of the goal points.

(a) (b) (c)

Figure 5.10: An experiment showing a robot detecting anomalous behavior due to an attack within
the state space of the heading angle estimate θ̂, then compensating information provided to the

controller to avoid any compromised states θ̂ ∈ Xi \ X̃i.

Our second case study demonstrates the robot that is subject to attacks in the heading angle

error space, as shown in Fig. 5.11. The attack occurs at any instance the robot desires to turn left

(i.e., negative tracking error), but instead the attack causes a turning action to the right. When

our framework is not implemented (Fig. 5.11(a)), the robot fails to complete the operation due to

continued circling motion. As shown in Fig. 5.11(b), since the robot is not able to turn left, the

compensator alters the reference signal such that the robot performs a “looping” action by always

turning right (i.e., positive tracking error) as this is the only possible action that the robot can do

to avoid the compromised tracking error space to continue the operation.
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(a) (b) (c)

Figure 5.11: A robot resiliently navigates to a series of waypoints while control parameters
corresponding to angular velocity are altered during an attack within the error space. The attacks
occur as the robot’s tracking error for heading angle is negative (i.e., desired turn to the left).

5.7 Discussion

In this chapter, we have introduced a detection and recovery framework for autonomous mobile

robots to maintain uncompromised control actions to resiliently perform a desired operation. The

robot is able to identify cyber attacks or faults to its on-board controller within specific regions of

the state and tracking error spaces by leveraging a residual-based attack detection scheme within

the partitioned spaces. Furthermore, the robot uses a compensator to alter reference signal and

state estimation vector information which is fed into the controller to maintain desired performance

while avoiding any compromised regions in the state/tracking-error spaces. Future extensions

to this chapter include extending the current framework to trigger replanning operations (e.g.,

changes in mission goals and trajectories) in the event that control recovery is not possible. Further

implementation on different vehicles such as aerial robots and multi-robot systems are also potential

areas that could exploit desirable recovery behaviors. In the next chapter, we investigate recovery

frameworks within multi-robot systems when agents experience cyber attacks or faults to on-board

positioning sensors.
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Chapter 6

Multi-robot System Cooperative Recovery from Loss of

Localization in Unknown Environments

6.1 Introduction

One of the essential capabilities for a mobile autonomous system is to localize itself within an

environment. The ability to perform an accurate and robust localization allows unmanned systems

to achieve truly autonomous operations. These autonomous operations can be accomplished in

various ways, by relying on positioning sensors like global positioning systems (GPS), odometry,

and IMU or through range sensors such as LiDAR, infrared (IR), and camera systems. The sensing

information can then be leveraged via implementation of localization methods such as Particle filters

and Simultaneous Localization and Mapping (SLAM) techniques.

When considering multi-agent system (MAS) applications, for example robotic swarms, consensus

algorithms are typically considered where agents share their states to attain coordinated behaviors

in a decentralized fashion to accomplish a desired goal [86]. When information being exchanged is

incorrect, the entire MAS can be hijacked and lead to unsafe conditions [93]. A variety of issues can

cause undesirable information to be exchanged between vehicles, such as cyber attacks or faults to

on-board sensors or malicious man-in-the-middle attacks to communication broadcasts. If known

landmarks/obstacles are present in the operating space, range sensors can be utilized for localization

or to determine if the system is performing as expected. However, if agents within a MAS are

navigating in open spaces (e.g., in the middle of the ocean), landmarks may not be available, thus

leaving compromised agents unable to reliably localize themselves.

Localization sensing is one of the most critical information required to achieve intelligent and

autonomous capabilities in unmanned systems like autonomous mobile robots. Global Positioning

Systems (GPS) are the most common sources for outdoor positioning, but there exists other sensing

methods to localize, such as: proximity sensors, radio frequency (RF), external cameras, and LiDAR

[21]. However, security-related threats and faults to positioning sensors can compromise system
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operations, with examples demonstrating catastrophic consequences that include GPS spoofing to

divert vessels off course [8] and GPS interference on unmanned aerial vehicles that cause undesirable

control behavior leading to crashes [36].

The issue of undesirable on-board positioning sensing is exacerbated within multi-robot systems

(MRSs). When left unchecked, compromised robots can negatively impact the entire system’s

control performance by hijacking the MRS motion to unsafe regions. Resilient measures have

been incorporated to MRSs to ensure continued safe operations in the presence of uncooperative

robots within a swarm [93, 89]. To accomplish this, uncompromised robots typically “ignore” any

misbehaving agents to remove undesirable effects that could incur to the MRS. In the case of

proximity-based formations of robots, misbehaving actors are isolated from the remaining robots (as

implemented in Chapters 3 and 4); thus robots experiencing cyber attacks or faults are essentially

discarded without a recovery method implemented. In turn, discarded agents can potentially enter

undesirable/restricted regions within the environment.

In this chapter, we introduce two frameworks for multi-robot systems to cooperatively recover

(i.e., re-localize) compromised robots that experience cyber attacks or faults to on-board positioning

sensors. Our first framework leverages stochastic system information to hide randomness-based

information to alert neighboring robots of the impending attack/fault, thus protecting information

from interception by potentially malicious attackers. When a robot detects that its on-board

positioning sensor has been compromised, it broadcasts the signal which is overlaid within state

information to create a hidden signature that alerts neighboring robots of its unreliable sensor.

Furthermore, after detection of its unreliable on-board positioning sensor, compromised robots

perform checkpointing for state reconstruction and compute reachable sets to ensure safety while

continuing to navigate in the environment. The detection of the hidden signature triggers the

nearby uncompromised robots to perform a cooperative motion behavior specifically to come

within sensing/visual range, i.e., leveraging robots as mobile landmarks to aid in re-localizing

the compromised robot. Our decentralized framework is designed to be robust within various

environments that may or may not include known landmarks that could be used for localization

while also considering that robots operate beyond distance/visual sensing range from each other.

The first framework in this chapter builds upon frameworks in previous chapters where we leveraged

randomness-based detection techniques to discover anomalous behaving agents subject to stealthy

cyber attacks in MRSs (in Chapter 3) and to infer safety-critical information via hidden signatures

within broadcast data exchanges (in Chapter 4).

In our second framework, which differs from our first framework, agents are tasked to maintain

desired formations while remaining resilient to faulty on-board positioning sensors. Similarly though,

the MAS operates within open or unknown environments that do not offer identifiable landmarks
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and also operate beyond range sensing of nearby agents for use in localization when nominal

on-board positioning sensors are unreliable. To deal with this, the proposed framework enables

compromised agents to leverage Received Signal Strength Indication (RSSI) and received position

information from neighboring agents for localization (i.e., mobile landmarks). Multilateration is

performed using the noisy RSSI measurements and received neighboring agent’s positions to provide

position measurements in replacement of the unreliable on-board position sensors. To minimize the

RSSI-based position measurement error, a weighted least squares method is used that leverages the

commonly utilized log-normal shadowing path loss model [33]. Moreover, the RSSI-based position

measurements have unknown covariances which differ from the nominal on-board position sensor.

To improve state estimation performance, compromised agents leverage an adaptive Kalman Filter

to estimate the position measurement covariance matrix at runtime. The proposed framework is

introduced in a generalized manner that may be used on any formation control technique for swarms

of homogeneous LTI modeled agents. As a specific case study in this paper, a virtual spring-damper

physics model [5] for proximity-based formation control is considered on MASs in a 2-dimensional

coordinate frame. However, our MAS framework can be expanded to heterogeneous systems [112],

non-linear modeled agents (i.e., by using Extended KF) [59], and higher dimensional coordinate

frames [109].

6.2 Preliminaries

This section introduces the multi-robot system dynamical model, communication and threat models,

and assumptions used throughout this chapter.

6.2.1 Multi-robot System Model

Let us consider a multi-robot system of N homogeneous robots modeled as a directed graph

G = (V, E). We denote V = {1, . . . , N} as the robot set and the edge set E ⊂ V × V, where an edge

(i, j) ∈ E indicates a connection for control from robot i ∈ V to robot j ∈ V . We consider each robot

i can be represented in an LTI state space form:

x
(k+1)
i = Ax

(k)
i +Bu

(k)
i + ν

(k)
i ,

y
(k)
i = Cx

(k)
i + η

(k)
i ,

(6.1)

with state A and input B matrices, state vector x
(k)
i ∈ Rn, and ν(k)i ∈ Rn denoting zero-mean

Gaussian process noise. All N robots rely on noisy sensors represented by the output vector

y
(k)
i ∈ RNs with C denoting the output matrix and η

(k)
i ∈ RNs representing zero-mean Gaussian

measurement noise at discrete time iterations k ∈ N. Each robot i utilizes a Kalman Filter to
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provide a state estimate x̂
(k)
i ∈ Rn and a range sensor providing 360◦ field of view with a limited

range δr > 0 for collision avoidance.

In an effort to cooperatively maintain a desired proximity-based formation, the robots within

the MRS exchange state information with each other. Each robot i ∈ V obeys a control consensus

to achieve the desired proximities by:

u
(k)
i = U

(
x̂
(k)
i , x̂

(k)
j

)
, i ̸= j (6.2)

such that j ∈ Si, where Si ⊂ V is a neighbor set utilized for control. Given the neighbor set Si for
each ith robot, we represent the edge set by E =

{
(i, j)

∣∣ j ∈ Si, ∀i ∈ V
}
that is defined within our

graph G = (V, E) of the robot set V.

6.2.2 Threat Model

We assume the multi-robot system is navigating within an adversarial environment, such that

individual robots may be subject to malicious cyber attacks or faults to position sensors. On

an unprotected proximity-based formation of robots, a single compromised robot can affect the

entire system of N robots as the effects of the attack are propagated throughout the system.

During a sensor attack, we assume that an attacker can continuously intercept and modify position

measurements (i.e., GPS data) with false, yet plausible information in an attempt to intentionally

hijack the multi-robot system. Furthermore, position sensors may experience various faults, such as:

drift, scaling, and hard faults [3].

For simplicity, we characterize both attacks and faults to received sensor measurements on-board

a robot i as

ỹ
(k)
i = y

(k)
i + ξ

(k)
i (6.3)

where ξ
(k)
i denotes the additive vector to localization measurements and ỹ

(k)
i is the compromised

measurement vector.

6.2.3 Communication Model

To overcome malicious cyber attacks or faults to position sensors, in this work, agents measure

RSSI from the received communications of nearby agents. A commonly-used path loss model is the

log-normal shadowing model [33], that is defined by:

P
(k)
ij,[rx] = P[tx] − PL(d0)− 10β log

d
(k)
ij

d0
+ Λ (6.4)
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where P
(k)
ij,[rx] is the measured received power by an agent i of an agent j, PL(d0) is the power loss

(in dB) from a reference distance d0, and d
(k)
ij = ∥p(k)i − p(k)j ∥ denotes the true distance between

agents i and j. The channel shadowing Λ ∼ N (0, σ2Λ) is modeled as a zero-mean Gaussian noise

and β is the path loss exponent. It is assumed that all agents have the same transmitting power

P[tx] which is known by the agents beforehand. In Fig. 6.1, we provide an example of received

signal strength that follows the assumed path loss model with shadowing and the impact to the

corresponding distance estimation as distance between agents increases.

(a) (b)

Figure 6.1: An example of the path loss model and the incurred distance estimation error
magnitude from RSSI measurements as distance increases.

6.3 Problem Formulation

We assume the nominal behavior of a MRS is to navigate within a desired proximity-based formation

where robots are beyond sensing range from each other while accomplishing tasks during operation.

However, robots that experience cyber attacks or faults to positioning sensors can impede on the

ability of all robots within the MRS to successfully execute the mission. A problem that we intend

to solve is to have robots identify compromised agents that have lost localization capabilities and

then behave in a cooperative manner to aid in recovery (i.e., re-localization) of any compromised

agents.

The first problem we wish to solve relies on a control policy to trigger a specific motion for

cooperative recovery of compromised agents. Formally:

Problem 6.1 (Control-based Cooperative Recovery) Consider an MRS tasked to navigate an un-

known environment towards a goal at position pg. Create a decentralized policy for any robot i ∈ V
to detect that a neighboring robot j ∈ V has lost localization capability (i.e., ξj ̸= 0) and switch to

a cooperative recovery control mode ŭ
(k)
i to recover (i.e., re-localize) the compromised robot j such

that:

E[pj − p̂j ] = 0. (6.5)

129



Agents that have detected their on-board positioning sensors have been compromised are tasked

to generate an identifiable signal to notify nearby agents of the undesirable conditions without

explicitly broadcasting of this information. The neighboring robots are able to infer the alerting

signal to enable the switch in control behavior to perform cooperative recovery.

An additional framework for cooperative recovery is introduced later in this section which relies

on leveraging the known communication model characterized in Section 6.2.3. Differing from the

control-based problem described in Problem 6.1, we wish to preserve the desired proximity-based

formation while still re-localizing any compromised agents. For this second framework, we are

interested in solving the following two problems:

Problem 6.2 (Detection and Sensor Reconfiguration) Create a policy such that any agent i ∈ V
that detects anomalous position sensor measurement behavior can reconfigure its sensor model in the

D-dimensional space to satisfy:

ỹ
(k)
i,[1:D] −→ ȳ

(k)
i,[1:D] (6.6)

by leveraging the known communication model to provide reliable position measurements ȳ
(k)
i,[1:D] to

re-localize itself.

Upon detection of sensor attacks/faults and sensor reconfiguration, we want to improve state

estimation performance to accommodate the updated sensor measurement model.

Problem 6.3 (Estimation Error Minimization) Create a policy P where an agent i ∈ V adaptively

updates an estimate for the unknown position measurement covariance within the Kalman Filter

given the updated sensor model by:

P
(
R̂

(k)
i

)
−→ min

((
e
(k)
i

)T
e
(k)
i

)
(6.7)

to minimize its estimation error e
(k)
i = x

(k)
i − x̂(k)

i within the state estimation process to optimized

control performance within the multi-agent formation.

6.4 Motion-based Cooperative Recovery

In this section, we introduce a MRS framework where robots cooperatively recover (i.e., re-localize)

compromised agents that experience cyber attacks or faults to positioning sensors, as depicted in

Fig. 6.2. Our framework leverages randomness to contain hidden data within stochastic system

information to alert neighboring robots of the impending attacks/faults. Similar to the framework

Chapter 4, the transfer of hidden signals to notify neighboring agents of safety-critical conditions

enables the protection of information from interception by potentially malicious eavesdroppers.
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When a robot detects that its on-board position sensors have been compromised, it broadcasts

a detectable hidden signal to alert neighboring robots of its unreliable on-board sensor(s). This

signal triggers the nearby uncompromised robots to perform a cooperative recovery behavior to

come within sensing/visual range (i.e., mobile landmarking) to aid in re-localizing the compromised

robot. We target autonomous MRSs that may perform operations within unknown adversarial

environments that are absent of landmarks that could be used for localization and also operate

beyond distance/visual sensing range from each other.

(a) (b) (c)

Figure 6.2: A pictorial representation of the cooperative recovery problem we wish to solve.
Nominal (uncompromised) robots (in blue) perform (a) detection of the faulty robot, (b)

cooperative behavior mode to act a mobile landmarks, and (c) aid in re-localization (recovery) of
compromised robots (red) that experience cyber attacks or faults to on-board position sensors.

The diagram in Fig. 6.3 highlights the overall architecture of our approach to allow for resilient

MRS operations. Each robot i monitors on-board sensors for consistent behavior and upon detection

of anomalous position sensor behavior, the robot performs state reconstruction to maintain safety

during the absence of localization capabilities. After state construction, compromised robots generate

an alerting signal that is hidden within state information broadcasts, which the nearby robots can

infer the hidden signature to identify the alert. The detection of the hidden alert signal triggers a

cooperative control mode in neighboring agents to aid in recovery by coming within sensing range

to provide mobile landmarks for the compromised robot, thus allowing the compromised robot to

leverage a particle filtering method to re-localize itself within the environment.
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Figure 6.3: The overall architecture of our framework followed by each robot.

6.4.1 On-board Sensor Anomaly Detection

During operations, each robot computes the measurement residual to monitor for consistent behavior

from its on-board position sensor measurements. We define the measurement residual r
(k)
i on a

robot i by

r
(k)
i = ỹ

(k)
i −Cx̂(k)

i ∈ RNs , (6.8)

that is a normally distributed vector r
(k)
i ∼ N (0,Σi) where Σi is the expected measurement

residual covariance during nominal conditions by a robot i. To monitor whether the incoming

measurements are behaving in an expected manner, we employ the chi-square detection scheme

where the measurement residual vector is reduced to a chi-squared scalar test measure defined by:

z
(k)
i =

(
r
(k)
i

)T
Σ−1
i r

(k)
i (6.9)

The chi-square detection scheme on-board a robot i triggers an alarm ζi = 1 when z
(k)
i > τ is

satisfied (otherwise ζ
(k)
i = 0) where τ ∈ R+ is a user-defined threshold, then alarms are sent to the

runtime estimator in (2.78). When the estimated alarm rate Â
(k)
i no longer follows the expectation:

Â
(k)
i ̸= E[A] −→ Anomaly Detection (6.10)

a robot i concludes that a cyber attack or fault has occurred to its on-board positioning sensor,

where E[A] is the expected alarm rate.

6.4.2 Checkpointing and Reachability for Safe Motion

With the positioning sensor deemed compromised, a robot can no longer rely on its position

estimate while navigating. A compromised robot performs state reconstruction via checkpointing
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and reachability analysis along with a virtual physics-based scheme to maintain the system safety

to avoid reaching undesired areas A ⊂ M in the environment M.

Checkpointing for State Reconstruction

Once a robot i detects a cyber attack or fault to its localization sensor, the robot leverages saved

historical information over a window of length L ∈ N of the robot’s states and control inputs. To

recover the system state, the robot “goes back” to a time when the system state was considered

safe to reconstruct an estimate of the failed state elements, by using a checkpointing and recovery

procedure [46]. The robot then rolls forward the checkpointed state by utilizing the stored control

inputs from the checkpointing time k − L up until the present time k. From this roll-forward

procedure [46], a reconstructed state ˆ̄x
(k)
i ∈ Rn is computed by:

ˆ̃x
(k)
i = AL

d x̂
(k−L)
i +

L∑
l=1

Al−1
d Bdu

(k−l)
i (6.11)

that is then used for control purposes. We assume the window length L of historical data is chosen

to contain enough information that extends longer than the time necessary to detect position sensor

anomalies [46].

Reachable Sets

With the loss of localization capabilities, we want to ensure that compromised robots do not enter

an undesired area A within the environment M ⊆ R2. Compromised robots are tasked to compute

a reachable set Ri ⊂ M that is based on the dynamical and noise models to provide all possible

positions that the robot’s true state may be located given the localization uncertainties to help

avoid navigating into any undesired areas. While other techniques exist [52, 48], we utilize Monte

Carlo simulations to generate reachable sets [23] where ellipsoid bounds ε
(k∗)
i of the reachable set

Ri are computed, as illustrated with the example in Fig. 6.4. This method encompasses all possible

locations of an ith compromised robot, where k∗ is the time since beginning the reachable set

computation.

Safe Motion

For a compromised robot i to ensure safety while in motion, the goal is to maintain a safe distance

away from any known undesired restricted area A ⊂ M. To do this, the robot includes a virtual

spring from the minimum distance between the reachable set bounds ε
(k∗)
i and the undesired region
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(a) (b)

Figure 6.4: Monte Carlo Reachable Set Example.

to provide a repulsive force modeled as:

u
(k)
i,A = κA(liA − l0o)d⃗iA, if liA < l0o, (6.12)

where liA = min
∥∥ε(k∗)i − pA

∥∥, l0o > 0 is a safety distance, and pA ∈ R2 is a position within the

undesired region A. The safe control input of compromised robot i follows:

ū
(k)
i = u

(k)
i,A + κigligd⃗ig − γi ˆ̄v

(k)
i (6.13)

where lig = ∥pg − ˆ̄p
(k)
i ∥ is the distance between the goal point and the reconstructed position

estimate and ˆ̄v
(k)
i is the reconstructed velocity estimate. This allows the compromised robot to

safely continue navigating toward the goal point while a reliable localization estimate is unavailable.

6.4.3 Inter-robot Residual Characteristics

In this subsection, we formalize the generation of a hidden signature that compromised robots

emit to notify neighboring robots of its loss of localization capabilities. We describe the necessary

conditions that neighboring robots monitor for to detect the hidden signature to trigger cooperative

recovery.

We begin by modeling an inter-robot residual that robots leverage to monitor for consistent

behavior of neighboring agents. Each robot exchanges its state estimate and control input at every

time instant k to enable neighboring robots to predict its motion. A robot i is then able to make

state predictions of any nearby robot j ∈ V by:

x̂
(k+1)
ij = Ax̂

(k)
j +Bu

(k)
j (6.14)
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where x̂
(k+1)
ij ∈ Rn is the prediction made by a robot i of a robot j. A robot i then computes an

inter-robot residual

r
(k)
ij = x̂

(k)
j − x̂(k)

ij (6.15)

which enables robot i to monitor for nominal state information behavior received from a robot

j. The expectation of the inter-robot residual vector follows r
(k)
ij = N (0,Σij) ∈ Rn, where each

element q = {1, . . . , n} is characterized by:

E[rij,q] = 0, Var[rij,q] = σ2ij,q =

Ns∑
s=1

(
K(q,s)σj,s

)2
(6.16)

such that K(q,s) represents the element of the qth row and sth column of the Kalman gain K. Next,

we formalize a procedure to generate a hidden signal to alert nearby robots.

6.4.4 Identifiable Hidden Signal

Once any compromised robot i ∈ VCi detects anomalous on-board sensor behavior (6.10), it desires

to notify neighboring robots of its unreliable sensor without explicitly broadcasting the information.

The objective is to produce a detectable randomness-based signature, all while the inter-robot

residual (6.16) continues to follow the expected distribution. The compromised robot leverages

the reconstructed state ˆ̄x
(k)
i and safe control input (6.13) to compute the next reconstructed state

estimate to time k + 1 by integrating forward system dynamics, as follows:

ˆ̄x
(k+1)
i = A ˆ̄x

(k)
i +Bū

(k)
i . (6.17)

Additionally, a compromised robot i overlays a hidden signal w
(k)
i ∈ Rn to the reconstructed

state by

ˆ̄x
(k)
i,H = ˆ̄x

(k)
i +w

(k)
i (6.18)

which is an additive Gaussian distributed vector that emulates the stochastic state estimate behavior

from the viewpoint of neighboring robots. The updated state (6.18) containing the overlaid signal

is then broadcast to the nearby robots. In the following Lemma, we show how a compromised robot

j ∈ VCj constructs the hidden signal w
(k)
j such that the inter-robot residual (6.15) maintains the

expected distribution as in nominal conditions (6.16) from the perspective of a robot i.

Lemma 6.1 A compromised robot j ∈ VCj covertly disguises the hidden signal w
(k)
j such that

the inter-robot residual distribution (6.16) from the perspective of neighboring robots emulates

nominal behavior if each element q = {1, . . . , n} of the hidden signal vector follows E[wj,q] = 0 and

Var[wj,q] =
∑Ns
s=1

(
K(q,s)σj,s

)2
2 .
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Proof: We first consider the forward dynamics in (6.17) and inter-robot prediction in (6.14)

where both leverage the same state space dynamics and control input but compute one step ahead

projections with differing states. The compromised robot j projects forward with the deterministic

dynamics the state ˆ̄x
(k)
i while the neighboring robot i uses the state ˆ̄x

(k)
i,H from (6.18) which contains

the hidden signal. A neighboring robot i monitoring inter-robot residuals of robot j, is in effect

monitoring the difference between two consecutive Gaussian hidden signals overlaid in the state

information at times k and k− 1, denoted by the difference vector d
(k)
ij = w

(k)
j −w(k−1)

j . Given this,

the expected distribution of each qth difference vector element follows:

E[d(k)ij,q] = E[w(k)
j,q ]− E[w(k−1)

j,q ] = 0,

Var[d
(k)
ij,q] = Var[w

(k)
j,q ] + Var[w

(k−1)
j,q ] = 2Var[wj,q].

(6.19)

Now, setting the difference vector d
(k)
ij ∼ N (0, 2Var[wj ]) equal to the expectation of the inter-

robot residual in (6.16), we establish that the hidden signal must contain properties:

E[wj ] = E[rij ], Var[wj ] =
Σij

2
, (6.20)

thus each element of the hidden signal wj,q follows:

E[wj,q] = 0, Var[wj,q] =

∑Ns
s=1

(
K(q,s)σj,s

)2
2

, (6.21)

thereby, concluding the proof.

By employing the deterministic forward dynamics (6.17) with the hidden signal (6.18), the

observation of the inter-robot residual from the perspective of a neighboring robot remains unchanged

(i.e., preserved Gaussian distributed properties). However, the inter-robot residual contains a differing

sign randomness signature from the nominal operating conditions. Next, we describe the conditions

for nearby robots to implement in order to observe a change in inter-robot residual sign switching

rate (i.e., randomness properties).

6.4.5 Hidden Signal Detection

To detect a randomness-based hidden signal within (6.18), a robot i monitors an inter-robot residual

sign switching rate ψij =
[
ψij,1, . . . , ψij,n

]T
of nearby robots j ∈ V . The following procedure triggers

an alarm (i.e., ζ
(k)
ij,q = 1) when a sign switch occurs on any qth inter-robot residual element at a time
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k by:

ζ
(k)
ij,q =

 1, if sgn
(
r
(k)
ij,q

)
= −sgn

(
r
(k−1)
ij,q

)
0, otherwise.

(6.22)

The sign switching alarm ζ
(k)
ij,q ∈ {0, 1} is then sent to a runtime alarm rate estimation algorithm

to provide an updated estimate of the sign switching rate ψ̂
(k)
ij,q ∈ [0, 1].

Lemma 6.2 Given a inter-robot residual (6.15) during attack-free conditions, the expected value

and variance of the sign switching rate to signify nominal random behavior follows E[ψ] = 1
2 and

Var[ψ] = 1
4(2ℓ−1) , respectively.

Proof: See Lemmas 4.1 and 4.2 in Chapter 4 for similarly designed proofs.

The overlaid hidden signal w
(k)
j by a robot j transforms the stochastic inter-robot residual

variable to contain serial randomness characteristics while observed by a robot i. The following

Lemma provides the required observed sign switching behavior by a robot i to determine that a

neighboring robot j is emitting the hidden signal.

Lemma 6.3 A robot i ∈ V detects the hidden signal w
(k)
j from a compromised robot j when

the observed inter-robot residual (6.15) sign switching rate for all q = 1, . . . , n elements satisfy

ψ̂
(k)
ij,q ∈ [Ψ′

−,Ψ
′
+].

Proof: Let us begin by leveraging the expectation of the sign switching alarm rate distribution

from known properties a sequence of serial data. The expected value E[ψ′] = 2
3 and variance

Var[ψ′] = 16
90(2ℓψ−1) of the inter-robot residual sign switching rate is emitted with the hidden signal

during safe control (6.13). Considering this, we say that the detection limits are Ψ′ = {Ψ′
−,Ψ

′
+} ∈

[0, 1] described as:

Ψ′ = E[ψ′]±
∣∣∣Φ−1

(α
2

)∣∣∣√Var[ψ′] (6.23)

where α ∈ (0, 1) denotes the level of significance and Φ−1
(
α
2

)
describes how many standard deviations

from the expected value (i.e., the z-score). To summarize (6.23), when the estimated inter-robot

residual sign switching alarm rate for all elements q = {1, . . . , n} of a robot j satisfy:

ψ̂
(k)
ij,q ∈ [Ψ′

−,Ψ
′
+] −→ Hidden Signal Detection, (6.24)

then robot i detects a hidden signal behavior in robot j.

After a robot i identifies that a robot j is compromised, robot j is included into the compromised

robot set j → VCi . In Fig. 6.5, we provide examples of the expected distributions of the residual

sign switching rate during nominal and hidden signal conditions for various window lengths ℓψ.
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(a) (b)

Figure 6.5: Expected distributions for nominal (blue) vs hidden signal (red) inter-robot residual
sign switching rates for window lengths ℓ = {60, 125}.

Corollary 6.1 Given a user-defined window length ℓψ > 0 for a robot i to estimate inter-robot sign

switching rate elements ψ̂ij,q, q = 1, . . . , n of a robot j, the probability of false detection (FD) is

described as Pr(FD) = β.

Proof: Under the assumption that each qth inter-robot residual element is independent, the

probability β that a qth sign switching alarm rate ψ̂ij,q travels above the lower bound for hidden

signal detection (i.e., ψ̂ij,q > Ψ′
−) follows:

β ≈ 1−
ˆ Ψ′

−

−∞
f
(
X

∣∣ E[ψ],Var[ψ]),
≈ 1−

ˆ Ψ′
−

−∞

1√
2πVar[ψ]

exp

{
− 1

2

(
X − E[ψ]√

Var[ψ]

)2} (6.25)

where f
(
X

∣∣ E[ψ],Var[ψ]) denotes the probability density function of the sign switching alarm rate

under nominal conditions. Then, the probability for at least ns ∈ {1, . . . , n} sign switching rate

elements to travel above the lower detection bound (during nominal conditions) is found by:

Pr(FD) =

n∑
ns=1

 n

ns

βns(1− β)n−ns (6.26)

such that when ns = n (i.e., a false detection) results in Pr(FD) = βn, thus concluding the proof.

6.4.6 Cooperative Recovery

In this subsection, we describe the decentralized cooperative behavior of a robot i that detects a

hidden signature (6.24) from a compromised robot j ∈ VCi that also belongs to its control neighbor
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set j ∈ Si. The cooperative robot i switches to a cooperative control mode to move within sensing

range of the compromised agent to provide mobile landmarks for recovery (i.e., re-localization).

Neighboring robots employ cooperative motion via a commonly-used spiral pattern to search

for and recover compromised robots [62] (i.e., encircling, rotating, and converging motion). First,

each cooperative robot i estimates who the other cooperative neighbors h of the compromised robot

j ∈ VCi are for cooperative recovery by leveraging Gabriel Graph (GG) rule [29]. We utilize GG rule

to construct a set of nearest neighbor robots to the compromised robot j that form a connected

graph without crossing control edges. A robot i estimates the cooperative set Ĉj,i of robot j by:

Ĉj,i =
{
h′ ∈ V

∣∣ ĵhh′ ≤ π/2, h, h′ ∈ V \ VCi
}

(6.27)

where ĵhh′, i ̸= h ̸= h′ is the interior angle of the three robot position configuration and positions of

robots h, h′ ∈ V \VCi are received from information broadcasts. Each cooperative robot i utilizes the

estimated set Ĉj,i to maneuver into locations to surround the compromised robot j in equal angular

intervals. The desired angle between the other cooperative robots follows θ̂desi = 2π
|Ĉj,i|

. To maintain

the desired intervals between its cooperative neighbors while encircling around the compromised

robot j, each robot i includes a control input to generate the tangential force:

u
(k)
i,E =

[
κE(θ̂

des
i − îjhLi )− κE(θ̂

des
i − îjhRi )

]
d⃗ij(⊥) (6.28)

where κE is a user-defined control gain, while hLi and hRi are the nearest cooperative neighbors

to the left and right from the perspective of robot i, respectively. Additionally, îjhLi and îjhRi

denote inner angles between the nearest left and right cooperative neighbors and d⃗ij(⊥) denotes the

direction of the tangential force from the vector of robots i to j.

Simultaneously, each cooperative robot i rotates around and converges toward the received

position coordinate of the compromised robot j that are computed by:

u
(k)
i,R =

[
κR(lij − l0v′)

]
d⃗ij(⊥),

u
(k)
i,C =

[
κC(lij − l0v′)

]
d⃗ij ,

(6.29)

to generate the rotational u
(k)
i,R and converging u

(k)
i,C motion. Parameters that determine control

behavior are κR and κC which denote rotate and converge. The desired distance l0v′ is reduced to

0 < l0v′ < δr to enable cooperative robots to come within sensing range δr of the compromised robot

j. The position of robot j used for rotation and converging (i.e., utilized in lij = ∥p̂(k)i − p̆(k)j ∥) is
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determined by:

p̆
(k)
j =

 p̂
(k)
j,i , if ∥p(k)i − p(k)j ∥ ≤ δr,

ˆ̄p
(k)
j,H, otherwise,

(6.30)

where ˆ̄p
(k)
j,H is the received position (containing the hidden signal) from compromised robot j ∈ VCi

and p̂
(k)
j,i is the observed estimated position of robot j when within sensing range of robot i. The

control input for each robot i during cooperative recovery follows

ŭ
(k)
i = u

(k)
i,E + u

(k)
i,R + u

(k)
i,C + κigligd⃗ig − γiv

(k)
i (6.31)

to allow for cooperative behavior to find the compromised robot j while still navigating towards

the goal. Once a robot i and all cooperative neighbors have come within sensing range of the

compromised robot, the robots return to the nominal formation controller (6.2) while maintaining

reduced distances l0v′ between the cooperative and compromised robots. Pictured in Fig. 6.6 is an

example of cooperative recovery motion from nearby robots (blue disks) to aid in re-localization

of a compromised robot (red disk). Cooperative robots rotate and converge to the location of

the distressed agent to come within sensing range δr (depicted by green disks) to provide mobile

landmarks.

(a) (b) (c)

Figure 6.6: Cooperative behavior of robots (blue) that: (a) encircle the estimated location of a
compromised robot j (red), (b) rotate around and converge toward the estimated location, and (c)
remain within sensing range (green disk) of a compromised robot to provide mobile landmarks for

localization.

Remark 6.1 (Lost Robot) In a scenario where the compromised robot j is not found, each

cooperative robot i places robot j into its set of lost robots j ∈ VLi . A robot i determines the

compromised robot j is unrecoverable (and no longer used for control) when the distance between the

robot j and all cooperative neighbors, including itself, are within sensing range and the robot j is not

observed. The cooperative robots return to nominal control mode when this scenario occurs.
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6.4.7 Mobile Landmarks for Re-localization

Once one or more cooperative neighboring robots come within sensing range, a compromised robot

i ∈ VCi begins to re-localize itself within the environment. In this work, compromised robots use a

particle filtering-based method for re-localization by leveraging the mobile landmarks (i.e., in-sensing

range robots), which are obtained by measurements from on-board range sensors that are assumed

to still be available and also utilizing the received position coordinates from nearby robots. Given

the known reachable set Ri ⊂ M and the sensing range δr, a robot i assumes that any robot j with

position coordinates that satisfies:

Pi =

 j ∈ Pi, if p̂
(k)
j ∈ Ri ⊕ δr,

j ̸∈ Pi, otherwise,
(6.32)

can potentially be the observed robot(s) within range sensing, denoted by the robot set Pi ⊂ V
where we represent Ri ⊕ δr as the summation of areas from the computed reachable set Ri and the

disk with sensing radius δr > 0. The output of our particle filter which utilizes the mobile landmarks

provided by nearby robots j ∈ Pi (i.e., resulting position coordinates) acts as a replacement for

position measurements, in place of the compromised on-board position sensor. This measurement is

then used for state estimation and control.

6.4.8 Multiple Compromised Robots

Up to this point, we have characterized the cooperative recovery framework for robots when only

a single control neighbor robot j is emitting a hidden signal. However, a robot that encounters a

scenario when two or more neighbors are emitting a hidden alert signal must make a decision of

which compromised neighbor to choose to aid in re-localization. We present a flow chart in Fig. 6.7

of the decision process made by any robot when this condition is present.

Figure 6.7: Cooperative behavior logic of robots when more than one neighboring robot is emitting
a hidden signal.

To summarize, a robot first infers the number of cooperative neighbors that each compromised

robot has by using (6.27). If the number of cooperative neighbors for one compromised robot

is at least 2 fewer than any other compromised robot, then the robot chooses to aid the robot
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with the minimum number of encircling neighbors. If the difference in cooperative neighbors does

not satisfy the previous conditions, then the robot will choose the nearest robot (i.e., in terms of

euclidean distance). At every time instant k, the robot infers the number of cooperative neighbors

per compromised robot, allowing the robot to switch to another compromised robot if network

topology conditions change.

6.4.9 Simulation Results

Our approach is validated with MATLAB simulations and experiments using a swarm of ROSbot

2.0 robots. In all case studies, the agents resiliently maintain a desired proximity-based formation

when leveraging a virtual spring-damper physics model defined by:

u
(k)
i =

[ ∑
j∈Si

κi(lij − l0v)d⃗ij + κgligd⃗ig

]
− γiv

(k)
i . (6.33)

The MRSs are tasked to perform go-to-goal operations in unknown environments where agents

are susceptible to cyber attacks and faults to vulnerable on-board position sensors.

We consider N = 10 agents treated as double integrator point masses that are navigating

in formation to a goal point within an environment M where desired distances between agents

is 10m (i.e., virtual spring rest lengths) and on-board sensing range is limited to δr = 3m. A

sequence of snapshots presented in Fig. 4.4 highlight our cooperative recovery framework to aid

in re-localization of two agents {1, 7} that experience malicious cyber attacks that falsify their

position sensor measurements. Once the compromised agents detect the cyber attacks, they emit

the hidden signature in ˆ̄xi,H to notify neighboring robots (blue disks), allowing them to perform

cooperative recovery behavior as shown in Fig. 6.8(b). In Fig. 6.8(c), the cooperative agents come

within sensing range of the compromised agents to aid in recovery by acting as a mobile landmark

(recovered agents are depicted by yellow disks). Fig. 6.8(d) shows that all compromised agents have

been recovered and the multi-robot system continues to navigate toward the desired goal point.

From the perspective of robot 10, we show in Fig. 4.5 the observed inter-robot residual sign

switching rates of all neighboring agents. The compromised agents {1, 7} have an observed increase

in sign switching rates (shown only for position in x-direction), allowing agents to switch to the

cooperative recovery control mode to aid in robot re-localization.

Shown in Table 6.1 is the success rate of our cooperative recovery framework during varying

MRS sizes and number of compromised robots. For each of the six scenarios, 100 simulations

were ran to result in an observed success rate, which is defined as the percent of robots that were

successfully re-localized. We observe as the number of compromised robots increases, the overall

rate of success decreases since there are fewer uncompromised robots available to aid in recovery.
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(a) (b)

(c) (d)

Figure 6.8: A formation of N = 10 agents resiliently navigating to a desired goal point (red ‘X’).
Robots perform cooperative recovery to aid in re-localization of the two compromised robots.

Figure 6.9: Observed inter-robot residual sign switching rate (position in the x-direction) from the
perspective of robot 10 throughout the simulation.

Table 6.1: Cooperative Recovery Success Rate

Total Agents 10 25

Compromised 1 3 5 3 5 10

Success (%) 100 91 56 100 96 64

6.4.10 Experiment Results

In the experiment case study, we consider N = 6 Husarion ROSbot 2.0 robots that are navigating

in a lab environment while resiliently performing a go-to-goal operation, as depicted in Fig. 4.6.

Robot 5 is subject to attacks to its position sensor (Fig. 4.6(b)) in an attempt to hijack the robot
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to an undesirable (i.e., restricted) region. Upon detection of the cyber attack, robot 5 generates a

hidden signal in ˆ̄xi,H to alert its neighbors. The snapshots in Fig. 4.6(c)-(d) show the cooperative

motion of neighboring robots {1, 2, 3, 4} to aid in recovery of robot 5 by acting as mobile landmarks.

Once robot 5 is recovered (Fig. 4.6(e)), the entire swarm of robots is able to safely navigate to the

desired goal region, as shown in Fig. 4.6(f)-(g).

(a) (b) (c) (d) (e) (f) (g)

Figure 6.10: An experiment showing N = 6 robots navigating to a goal (purple region) with robot
i = 5 experiencing a cyber attack to its position sensor. The neighboring robots detect the hidden
signal from robot 5, then perform a cooperatively aid in re-localization via mobile landmarking.

Furthermore, in Fig. 6.11 we highlight the case where our recovery framework is not implemented.

Upon detection of the misbehaving robot, the remaining robots in the swarm isolate the compromised

robot without a recovery method in place; thus allowing it to navigate into an undesired region.

(a) (b) (c)

Figure 6.11: A multi-robot system depicting: (a) nominal control performance, (b) a compromised
robot diverging from the swarm, and (c) the compromised robot crashing within an undesirable

region without our framework.
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6.5 Cooperative Recovery via Received Signal Strength Indication

The focus on this section resides on the problem of resilient coordination in multi-agent systems that

leverage control consensus schemes when one or more agents lose localization capabilities. More

specifically, agents are tasked to maintain desired formations within open or unknown environments

that do not offer identifiable landmarks and also operate beyond range sensing of nearby agents

for use in localization when nominal on-board positioning sensors are unreliable. To deal with

this, the proposed framework enables compromised agents to leverage Received Signal Strength

Indication (RSSI) and received position information from neighboring agents for localization (i.e.,

mobile landmarks). Multilateration is performed using the noisy RSSI measurements and received

neighboring agent’s positions to provide position measurements in replacement of the unreliable

on-board position sensors. To minimize the RSSI-based position measurement error, a weighted

least squares method is used that leverages the commonly utilized log-normal shadowing path loss

model [33]. Moreover, the RSSI-based position measurements have unknown covariances which differ

from the nominal on-board position sensor. To improve state estimation performance, compromised

agents leverage an adaptive Kalman Filter (KF) to estimate the position measurement covariance

matrix at runtime. The proposed framework is introduced in a generalized manner that may be

used on any formation control technique for swarms of homogeneous LTI modeled agents. As a

specific case study in this paper, a virtual spring-damper physics model [5] for proximity-based

formation control is considered on MASs in a 2-dimensional coordinate frame. However, our MAS

framework can be expanded to heterogeneous systems [112], non-linear modeled agents (i.e., by

using Extended KF) [59], and higher dimensional coordinate frames [109].

In the remaining of this section, we describe our decentralized framework for detection of cyber

attacks and faults to on-board localization sensors and the recovery method by utilizing the RSSI

measurements from nearby agents (i.e., mobile landmarks) in the swarm to replace the compromised

on-board sensor. The block diagram in Fig. 6.12 summarizes the proposed framework followed by

each agent in the swarm to recover from localization sensor/fault to maintain control performance

within the formation. As an agent i discovers anomalous behavior to its localization sensors, it

switches to a recovery mode which relies on RSSI measurements from nearby uncompromised agents

to replace the unreliable on-board sensor measurements. Then, the agent adaptively updates its KF

to accommodate the unknown RSSI-based position measurement covariance for improved control

performance.
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Figure 6.12: Overall control architecture followed by each agent i ∈ V to remain resilient from
localization (i.e., position) sensor attacks and/or faults.

6.5.1 Anomaly Detection

Each agent i ∈ V in our proposed framework monitors for inconsistent behavior of both its on-board

position sensor and position information from nearby agents. Let us define the measurement residual

on an agent i:

r
(k)
i = ỹ

(k)
i −Cx̂(k|k−1)

i , (6.34)

as the difference between the measurements and the prediction. We can model the measurement

residual covariance matrix (assuming the KF has converged to steady state) during attack-free

conditions that is described as Σi = CP
(∞)
i CT +R ∈ RNs×Ns where the steady state estimation

covariance P
(∞)
i is found from the discrete Riccati equation. Each agent i monitors its D-dimensional

position sensor measurements for anomalies by way of the commonly-used chi-square scheme [67],

which produces a scalar quadratic on-board test measure computed by

z
(k)
i =

(
r
(k)
i,[1:D]

)T
Σ̄−1
i r

(k)
i,[1:D] (6.35)

which has an expected chi-squared distribution z
(k)
i ∼ χ(D) with D degrees of freedom. The matrix

Σ̄i ∈ RD×D represents the position sensor measurement covariance block within

Σi =

Σ̄i ∗

∗T Σ̆i

 (6.36)

where Σ̆i represents the non-position covariance block corresponding to the remaining sensors.

Similarly, each agent monitors for expected behavior of nearby agents according to the control

consensus model that is followed by all agents. Each agent i receives both state x̂
(k)
j and control

input u
(k)
j information from any agent j ∈ V \ {i}. State evolution predictions x̂

(k+1)
ij ∈ Rn for an
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agent j are given as:

x̂
(k+1)
ij = Ax̂

(k)
j +Bu

(k)
j ∈ Rn, (6.37)

which is computed by an agent i. At every time iteration k ∈ N, an agent i computes the inter-agent

residual r
(k)
ij —defined as the difference between the received state estimate x̂

(k)
j and predicted state

x̂
(k)
ij of an agent j— by

r
(k)
ij = x̂

(k)
j − x̂(k)

ij ∈ Rn. (6.38)

If the agent j is behaving in a nominal fashion, each inter-agent residual element q = 1, . . . , n

follows the distribution r
(k)
ij,q ∼ N (0, σ2ij,q) given σ

2
ij,q =

∑Ns
s=1

(
K(q,s)σj,s

)2
where K(q,s) represents the

element of the qth row and sth column of the Kalman gain K, and σj,s is the sth diagonal element

in the known measurement covariance matrix Σj = Σi. For ease, we construct the inter-agent

covariance matrix Σij ∈ Rn×n with diagonal elements equal to σij,q, i.e. Σij = diag(σij,1, . . . , σij,n).

In a similar fashion to the on-board test measure in (6.35), the inter-agent test measure is computed

as

z
(k)
ij =

(
r
(k)
ij,[1:D]

)T
Σ̄−1
ij r

(k)
ij,[1:D] (6.39)

by an agent i to monitor for consistency of an agent j where Σ̄ij ∈ RD×D represents the inter-agent

residual covariance block for position within Σij =

Σ̄ij ∗

∗T Σ̆ij

.
To monitor for expected behavior of either test measure in (6.35) and (6.39), simply denoted as

z(k), an agent i creates an alarm-based mechanism when the test measure exceeds a user-defined

threshold τ which follows:

ζ(k) =

 1, if z(k) > τ,

0, if z(k) ≤ τ.
(6.40)

The threshold parameter τ ∈ R>0 is tuned to satisfy a user-defined desired false alarm rate

Ades ∈ (0, 1).

Lemma 6.4 (Threshold) Let us assume that the sensors on agent i are both free of cyber attacks

and faults while considering the alarm procedure in (6.40) for the test measure z(k) ∼ χ(D) with a

threshold τ ∈ R>0. To tune for a desired false alarm rate Ades ∈ (0, 1), the threshold τ is found by

τ = 2Γ−1
(
1−Ades,

D

2

)
(6.41)

to achieve a desired alarm rate, where Γ−1(·, ·) is the inverse regularized lower incomplete gamma

function [91].
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Formally, the probability Pr(·) that the test measure exceeds the user-defined threshold is

described as Pr(z(k) > τ) ≈ Ades. Each agent i updates its alarm rate estimate Â(k) with the

runtime update Â(k) = Â(k−1)+ ζ(k)−Â(k−1)

ℓ where Â(0) = Ades, ℓ > 0, and the alarm rate estimate can

be approximated to a Normal distribution with a variance that shares properties of the exponential

moving average [30].

Corollary 6.2 (Detection Bounds) Given the tuned threshold (2.69) for a desired false alarm

rate Ades ∈ (0, 1), the position sensor measurements are behaving as expected with a level of

significance α ∈ (0, 1) if the estimated alarm rate Â(k) ∈ [0, 1] satisfies the detection bounds

Â(k) ∈ [T−,T+].

Proof: We construct confidence intervals with a level of significance α ∈ (0, 1) for a Normally

distributed random variable, that provide the detection bounds

T± = Ades ±
∣∣∣Φ−1

(α
2

)∣∣∣
√
Ades(1−Ades)

2ℓ− 1
(6.42)

where alarm rate estimates that go beyond these bounds are exhibiting anomalous behavior, thus

concluding the proof.

To summarize Corollary 6.2, when the estimated alarm rate Â
(k)
i for detection of inconsistencies

to the on-board test measure z
(k)
i no longer satisfies the detection bounds Â

(k)
i ̸∈ [T−,T+], agent i

detects that a cyber attack or fault to its positioning sensors is present. In the case of inter-agent

monitoring where Â
(k)
ij ̸∈ [T−,T+], an agent i deems an agent j compromised and places the agent

into a compromised agent set VCi ⊂ V, i.e., j ∈ VCi .

6.5.2 RSSI-based Position Measurements

In this subsection, we discuss an RSSI-based localization method that leverages the modeled

communication channel described in Section 6.2.3 to replace the compromised/faulty sensor providing

position measurements. Our proposed method is performed by any compromised agent i that utilizes

the measured RSSI and received position information from uncompromised neighboring agent’s

communication broadcasts to compute RSSI-based position measurements. We present RSSI-based

multilateration in MASs within 2-dimensional environments (i.e., D = 2); however, our approach is

also valid in 3-dimensional spaces [109].

Once an agent i detects anomalous position sensor behavior, the agent no longer relies on the

on-board position sensor and begins to measure RSSI from any trustworthy nearby agents. An

agent i utilizes estimated distances from RSSI measurements to each uncompromised mobile agent

m in the set Mi ⊂ V \{VCi ∪ i} where the set Mi = {1, 2, . . . ,M} represents the M uncompromised
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mobile agents (i.e., mobile landmarks). From the known communication model, the observed path

loss PL
(k)
im (in dB) by an agent i from an agent m from RSSI P

(k)
im,[rx] (in dBm) is:

PL
(k)
im = P[tx] − P

(k)
im,[rx]. (6.43)

The estimated distance d̂
(k)
im based on received (i.e., measured) signal strength of an agent m

that is computed by a compromised agent i follows:

d̂
(k)
im = 10

PL
(k)
im

−PL(d0)

10β . (6.44)

The RSSI-based distance estimate to an agent m ∈ Mi are log-normal random variables [103],

provided the assumption that the communication channel follows a log-normal shadowing path

loss model in (6.4), (6.43), and (6.44). Consequently, the distance estimate in (6.44) is a biased

estimate. We leverage the assumed log-normal distribution to compensate for the biased estimate.

The log-normal random variables are described by the parameters µd and σd [103]:

µd = ln d
(k)
ij , σd =

σΛ ln 10

10β
(6.45)

with an RSSI distance estimate expectation that follows

E
[
d̂
(k)
im

]
= exp

{
µd +

σ2d
2

}
(6.46)

such that the expected estimation bias

e
(k)
im,d = E

[
d̂
(k)
im

]
− d

(k)
im ∈ R>0 (6.47)

is defined as the difference between the expectation of the RSSI-based distance measurement E
[
d̂
(k)
im

]
and the true distance d

(k)
im . Given that the true distance d

(k)
im is unknown in (6.45), an agent i

leverages the distance d̂
(k)
im = ∥p̂(k)i − p̂(k)m ∥ which is the estimated distance between agents i and m

from the position estimate of agent i and the received position estimate from an agent m. Using

(6.47), we can rewrite equation (6.44) to compensate for the estimation bias by

d̂
(k)
im = 10

PL
(k)
im

−PL(d0)

10β − e
(k)
im,d. (6.48)

Each mth agent’s estimated distances are leveraged with their corresponding received positions

p̂
(k)
m = [p̂

(k)
m,x p̂

(k)
m,y]T to find an optimal position p̄

(k)
i by minimizing the distance error residuals
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ϵm ∈ R, m = 1, . . . ,M using the following set of equations:

d̂
(k)
i1 =

√(
p̂
(k)
1,x − p̄

(k)
i,x

)2
+
(
p̂
(k)
1,y − p̄

(k)
i,y

)2
+ ϵ1

d̂
(k)
i2 =

√(
p̂
(k)
2,x − p̄

(k)
i,x

)2
+
(
p̂
(k)
2,y − p̄

(k)
i,y

)2
+ ϵ2

...

d̂
(k)
iM =

√(
p̂
(k)
M,x − p̄

(k)
i,x

)2
+
(
p̂
(k)
M,y − p̄

(k)
i,y

)2
+ ϵM

(6.49)

Next, we subtract the first equation from the remaining equations to obtain a system of M − 1

linear equations

Ωip̄
(k)
i = ϕi + εi (6.50)

with Ωi, ϕi, and εi computed by:

Ωi =


2
(
p̂
(k)
2,x − p̂

(k)
1,x

)
2
(
p̂
(k)
2,y − p̂

(k)
1,y

)
2
(
p̂
(k)
3,x − p̂

(k)
1,x

)
2
(
p̂
(k)
3,y − p̂

(k)
1,y

)
...

...

2
(
p̂
(k)
M,x − p̂

(k)
1,x

)
2
(
p̂
(k)
M,y − p̂

(k)
1,y

)

 (6.51)

ϕi =



(
d̂
(k)
i2

)2 − (
d̂
(k)
i1

)2
+ b

(k)
2 − b

(k)
1(

d̂
(k)
i3

)2 − (
d̂
(k)
i1

)2
+ b

(k)
3 − b

(k)
1

...(
d̂
(k)
iM

)2 − (
d̂
(k)
i1

)2
+ b

(k)
M − b

(k)
1

 (6.52)

εi =
[
ϵ2 − ϵ1 ϵ3 − ϵ1 . . . ϵM − ϵ1

]T
(6.53)

where b
(k)
m =

(
p̂
(k)
m,x

)2
+

(
p̂
(k)
m,y

)2
, ∀m ∈ Mi. To optimize the position p̄

(k)
i , we use the following

objective function:

J
(
p̄
(k)
i

)
= argmin

[∥∥∥W− 1
2

i

(
Ωip̄

(k)
i − ϕi

)∥∥∥2] (6.54)

whereWi ∈ R(M−1)×(M−1) is a weighting matrix which minimizes the sum of squares of the distance

error residual vector εi. A compromised agent i’s RSSI-based position measurement is found by

solving the objective function in (6.54) with a weighted least squares (WLS) estimator:

ȳ
(k)
i,[1:2] = p̄

(k)
i = (ΩT

iW
−1
i Ωi)

−1ΩT
iW

−1
i ϕi. (6.55)

Remark 6.2 For an agent i to compute a single feasible solution for an RSSI-based position

measurement (from (6.50) and (6.55)), the number of nearby uncompromised mobile agents M must

satisfy M ≥ D + 1. This is because under-determined systems have an infinite number of solutions.
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Next, the weighting matrixWi is characterized to compute an optimal RSSI-based measurement

error from (6.55).

6.5.3 Hyperbolic Weighting Matrix

To compute the weighting matrix, we first assume that the RSSI-based estimated distances d̂
(k)
im from

each uncompromised agent m ∈ Mi are independent from each other. Thus, the weighting matrix

Wi is the covariance of the vector ϕi that can be calculated by a hyperbolic weighting matrix with

each (pw, qw)th element (i.e., wpwqw) given as [103]:

wpwqw =

 Var
[(
d̂
(k)
i1

)2]
+Var

[(
d̂
(k)
i(pw+1)

)2]
if pw = qw

Var
[(
d̂
(k)
i1

)2]
if pw ̸= qw

(6.56)

where the elements of the weighting matrix are inter-agent RSSI-based estimation variances Var[·].
Given the log-normal shadowing path loss communication model in (6.4), (6.43), and (6.44), the

RSSI-based estimated distances d̂
(k)
im in (6.48) are log-normal random variables where we can leverage

the modeled variances. The estimation variances are computed by [103]:

Var
[(
d̂
(k)
im

)2]
= E

[(
d̂
(k)
im

)4]− (
E
[(
d̂
(k)
im

)2])2
(6.57)

which are found from the cth moment of a given log-normal distributed variable that is represented

as E[(d̂im)c] = ecµd+
c2σ2d

2 with log-normal parameters. Therefore, the second and fourth moments

from (6.57) are:

E
[(
d̂
(k)
im

)4]
= e4µd+8σ2

d , (6.58)

E
[(
d̂
(k)
im

)2]
= e2µd+2σ2

d , (6.59)

and substituting (6.58) and (6.59) into (6.57), we result in

Var
[(
d̂
(k)
im

)2]
= e4µd

(
e8σ

2
d − e4σ

2
d
)

(6.60)

which are used in the construction of the weighting matrix (6.56) to compute the optimized

RSSI-based position measurement ȳ
(k)
i,[1:2] by using the WLS algorithm (6.55).

6.5.4 Adaptive Position Measurement Covariance Estimation

With the position sensors reconfigured to leverage RSSI-based measurements, the measurement

covariance matrixR used during nominal conditions is no longer suitable for optimal state estimation.
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To deal with this issue, the compromised agent leverages the recursive KF process to allow for

adaptive updates (i.e., time varying) of the measurement covariance matrix R
(k)
i . The adaptive KF

can be described in three phases, as follows:

Kalman Filter Phase: Prediction

As in the same manner of a typical recursive KF, the following equations denote

x̂
(k|k−1)
i = Ax̂

(k−1|k−1)
i +Bu

(k−1)
i , (6.61)

P
(k|k−1)
i = AP

(k−1|k−1)
i AT +Q, (6.62)

the predicted state and estimation error covariance.

Kalman Filter Phase: Correction

We utilize a similar principal to previous literature ([1], [118]) that have characterized adaptive

adjustments to estimate unknown process and measurement covariance matrices in dynamic systems.

In these works, a residual-based method (i.e., the measurement residual in (6.34)) is used to

adaptively update estimates of the unknown noise covariances. However, the authors assumed

that sensor measurements are always zero-mean Gaussian distributed (i.e., attack-free conditions),

thus the state estimates are zero-mean Gaussian distributed random variables. In the presence of

unreliable sensor measurements and state estimates, the covariance matrix estimation can also be

compromised, hence leading to unreliable covariance estimates.

Here, we also leverage a residual-based method to estimate the measurement covariance matrix.

However, due to the unreliable position estimates from attacks/faults that occur to position sensors,

the residual for estimation must omit the use of the estimates for position x̂
(k)
i,[1:D] within the state

estimate vector. To deal with this problem, we leverage the RSSI-based position measurements

(6.55), multi-agent system model, and the remaining states in the state estimation vector x̂
(k)
i,[(D+1):n]

to reconstruct the RSSI-based position measurement covariance. Furthermore, we utilize known

properties from serial randomness over the sequence of data for RSSI measurement covariance

estimation.

First, to reconfigure to RSSI-based position measurements, an agent i updates the first D rows

of the output matrix C to form the updated output matrix C̄i by

C̄i,[1:D] =
[
ID 0D×(Ns−D)

]
(6.63)

where ID ∈RD×D denotes a D-dimension identity matrix, as the RSSI-based position measurements

have a 1:1 mapping with the position states (i.e., ȳ
(k)
i,[1:D] = p̄

(k)
i where p̄

(k)
i is the direct mapping of
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the state from the RSSI-based position measurement in (6.55)). The updated output matrix used

for the adaptive KF is denoted by C̄i ∈ RNs×n such that the first D rows are described in (6.63)

and the remaining Ns −D rows (if applicable) are the same as the output matrix C.

Assumption 6.1 The RSSI-based position measurements can be approximated as a Gaussian

distributed vector with covariance R̄i ∈ RD×D centered over the true position p
(k)
i of the compromised

agent i (i.e., ȳ
(k)
i,[1:D] ≈ N (p

(k)
i , R̄i)).

Next, a compromised agent i computes the RSSI position measurement residual described as

r̄
(k)
i = ȳ

(k)
i,[1:D] − C̄i,[1:D] ˆ̄x

(k)
i (6.64)

which is a comparison between the RSSI-based position measurement (6.55) and a position prediction

C̄i,[1:D] ˆ̄x
(k)
i . The prediction vector ˆ̄x

(k)
i in (6.64) is found by

ˆ̄x
(k)
i = Ax̄

(k−1)
i +Bu

(k−1)
i (6.65)

where x̄
(k−1)
i is a change to the previous state estimate vector at time k − 1 where the position

estimate x̂
(k−1|k−1)
i,[1:D] is replaced with the position mapping from the RSSI-based position measurement

ȳ
(k−1)
i,[1:D] = p̄

(k−1)
i , i.e.,

x̄
(k−1)
i =

[(
p̄
(k−1)
i

)T (
x̂
(k−1|k−1)
i,[(D+1):n]

)T]T
. (6.66)

At each time k ∈ N the difference (i.e., the residual in (6.64)) r̄
(k)
i = p̄

(k)
i − ˆ̄p

(k)
i where

ˆ̄p
(k)
i = ˆ̄x

(k)
i,[1:D] from (6.65) is monitored between two consecutive positions with respect to the true

state xi at times k and k − 1. The noise characteristics for the measured position p̄
(k)
i at a time k

are subject to both measurement noise R̄
(k)
i and process noise Q̄ of the position, where Q̄ is the

noise covariance block within Q that corresponds to the position states of the compromised sensors.

Given these noise properties, the expectation of the RSSI measured residual are described as:

E[r̄(k)i ] = E[η(k)i,[1:D]]− E[η(k−1)
i,[1:D]]

+ E[ν(k−1)
i,[1:D]]− E[ν(k−2)

i,[1:D]] = 0,
(6.67)

Var[r̄
(k)
i,[1:D]] = Var[η

(k)
i,[1:D]] + Var[η

(k−1)
i,[1:D]]

+ Var[ν
(k−1)
i,[1:D]] + Var[ν

(k−2)
i,[1:D]]

= 2R̄
(k)
i + 2Q̄ ≈ Σ̄

(k)
i .

(6.68)

The objective is to estimate the positive definite covariance matrix of the RSSI measurement

residual

Σ̄
(k)
i = E

[
r̄
(k)
i

(
r̄
(k)
i

)T] ∈ RD×D (6.69)
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by using a rolling runtime estimate similar to [1]

Σ̄
(k)
i = (1− δ)Σ̄

(k−1)
i + δ

(
r̄
(k)
i

(
r̄
(k)
i

)T)
(6.70)

where δ ∈ (0, 1) is a forgetting parameter in adaptively updating the covariance1. From the

approximated estimated covariance in (6.68), we can compute the estimated RSSI-based position

measurement covariance block

R̄
(k)
i =

Σ̄
(k)
i − 2Q̄

2
(6.71)

within the updated measurement covariance matrix

R
(k)
i =

 R̄
(k)
i 0D×(Ns−D)

0(Ns−D)×D R̆

 (6.72)

for all Ns sensors, where R̆ ∈ R(Ns−D)×(Ns−D) is the measurement covariance of the remaining

non-position sensors.

Kalman Filter Phase: Update

We incorporate the correction phase that adaptively updated the position measurement covariance

to optimize the state estimate, we then have the updates to:

K
(k)
i = P

(k|k−1)
i C̄T

i

(
C̄iP

(k|k−1)
i C̄T

i +R
(k)
i

)−1
, (6.73)
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, (6.74)

P
(k|k)
i =

(
In −K(k)

i C̄i
)
P

(k|k−1)
i , (6.75)

the Kalman gain, state estimate, and estimation covariance.

6.5.5 Simulation Results

Our approach is validated with MATLAB simulations on swarms of N = 12 mobile agents modeled

as double integrator dynamics. The MAS performs a go-to-goal operation within the x-y plane while

experiencing cyber attacks and faults to on-board positioning sensors. As a case study, we employ a

virtual spring-damper mesh [5] for decentralized proximity-based formation control to validate the

RSSI-based localization framework for resilient formation control. For all simulations, the agents

begin with randomized initial positions and are tasked to perform a go-to-goal operation while

maintaining ldes = 8m distance from any neighboring agent. Additionally, at time k = 350, five

1We note that a smaller δ puts a greater weight on the previous RSSI measurement residual covariance estimate at
time k − 1, thus resulting in less variation in the updated estimate.
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agents are randomly chosen to suffer from a cyber attack (false data injection) and two experience

sensor faults. The communication model has a path loss exponent β = 2 and shadowing noise of

Λ = N (0, 2), while the forgetting parameter used is δ = 0.01 for measurement covariance estimation.

(a) (b)

(c) (d)

Figure 6.13: An unprotected system of N = 12 agents compromised by cyber attacks and faults to
on-board position sensors on seven agents (red disks) resulting in them being diverted away from

the goal (green region).

In the first simulation presented in Fig. 4.4, we show a sequence of snapshots for an unprotected

multi-agent system navigating toward a goal region (green disk). The implemented cyber attacks

occur simultaneously on the five compromised agents with the intent of diverting their true positions

toward the undesired region (red region). Beginning in Fig. 6.13(a), all agents are uncompromised

(blue disks) and perform in a nominal manner; however in Fig. 6.13(b), the compromised agents are

subject to malicious cyber attacks and faults to their positioning sensors. In Figs. 6.13(c)-(d), the

true states of the compromised agents (red disks) are driven to undesired regions in the environment,

while the remaining uncompromised agents (blue disks) along with the corresponding unreliable

position estimates of the compromised agents (empty disks) continue navigating toward the goal.

In Fig. 5.9 we perform the same simulation as in Fig. 4.4, but this time the MAS is utilizing our

framework for resiliency. As shown in the series of snapshots, all seven agents are able to: 1)

detect the anomalous on-board positioning sensor behavior and 2) perform sensor reconfiguration to

RSSI-based position measurements to resiliently maintain desired control performance within the

MAS such that all agents safely reach the desired goal.

We provide a comparison between various MAS scenarios by showing the true proximity
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(a) (b)

(c) (d)

Figure 6.14: A system of N = 12 agents leveraging our framework resiliently navigates to the
desired goal point while experiencing cyber attacks and faults to on-board position sensors

(recovered agents in yellow).

error between neighboring agents (i, j) ∈ E . We highlight the scenarios which include: 1) no

detection and recovery, 2) a non-robust noise covariance update method of R(k) in [1], 3) detection

and recovery without updating R(k), and 4) our proposed robust method for updating R(k).

Fig. 6.15 shows the average formation proximity error over 400 simulations with randomized initial

positions for each scenario. At each time step k, the formation proximity error is computed as

E(k) = 1
|E|

∑
∀(i,j)∈E

∣∣∥p(k)i − p(k)j ∥ − ldes
∣∣.

Figure 6.15: A comparison of inter-agent proximity error within the formation.

In Table 6.2, the results of position estimation error ei,x/y in the 2-dimensional x-y coordinate

frame are presented for any compromised agent i. Our proposed method to adaptively update the

unknown RSSI-based position measurement covariance improves estimation error for more desirable
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control performance within the swarm.

Table 6.2: Position Estimation Error.

No Update Robust Up-
date

Variance [ei,x/y] 0.249/0.253 0.151/0.144

6.6 Discussion

In this chapter, we have presented two decentralized frameworks for a multi-robot system to safely

and resiliently perform operations by utilizing cooperative recovery techniques to aid in re-localizing

compromised robots that experience positioning sensor cyber attacks or faults. The first cooperative

recovery framework leverages motion to recover any compromised agents subject to cyber attacks or

faults to positioning sensors. Compromised robots generate a randomness-based hidden signature

to alert neighboring robots of the impending attack, allowing them to switch to a cooperative

recovery control mode to aid in robot re-localization via mobile landmarking. The second method

provides a decentralized framework is an alternative method for recovery within multi-robot systems

without altering the nominal network topology. In a similar manner, multi-agent systems are able

to resiliently navigate in the presence of cyber attacks and/or faults to on-board positioning sensors

within open or unknown environments that lack identifiable landmarks (i.e., anchors) and also

operate beyond distance/range sensing of other nearby agents. Upon detection of anomalous sensor

behavior, an agent performs sensor reconfiguration to leverage RSSI-based measurements from the

nearby agents (i.e., mobile landmarks) as a replacement for the original position sensor. An adaptive

Kalman Filtering method accommodates the updated position sensor by estimating its unknown

RSSI-based measurement covariance to reduce estimation error for improved control performance

within the swarm.

Future ideas to extend these cooperative recovery frameworks could include exploring within

heterogeneous multi-robot systems where we can exploit differing system dynamics to more efficiently

aid with recovery. For the RSSI-based recovery framework, future work includes improving the

robustness when the assumed path loss model does not hold due to instability of RSSI signals,

for example, due to the presence of cluttered environments that create multi-path behavior in the

communication broadcasts.
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Chapter 7

Cooperative Robotic Teams for Defending Against

Malicious Intruders

In this chapter, we present a framework for defensive robot teams to defend protected regions from

malicious intruding robots. We provide preliminary results to show our progress on this framework,

as it is a continuation of the cooperative multi-robot system frameworks introduced in Chapter 6.

This paper is in preparation to be submitted to a journal in robotics.

7.1 Introduction

Recent advances in multi-robot systems have enabled the development of cooperative control

strategies in applications such as: escorting [37], exploration [58], capturing/entrapment [80], and

military platooning [61]. Another interesting, yet similar, concept is shepherding, where the objective

is to guide one or more actors from an initial to a final location by using a team of cooperative robots.

In defensive applications leveraging robotic teams, the actor(s) are maneuvered to a desirable region

in the environment to fulfill a task.

Recently, the research community has began working on shepherding solutions where the actors

are assumed non-cooperative with the robotic team, thus the cooperative robots require complex

control algorithms to influence the motion of the actors. Typically, the assumption of the actor(s)

that need to be shepherded is that their behavior model is passive, meaning that their motion is

only influenced by nearby positioning of the robotic herders (e.g., utilizing a potential function

model). The problem of shepherding is increasingly challenging when the actors no longer behave

passively, and instead perform in a malicious manner. For example, a malicious actor (or in this

case, called an intruder or attacker) may have an objective to reach a specific location in the

environment to cause damage or harm to an object, person, or region. With this in mind, a team of

cooperative robots may be tasked to prevent this harmful event from occurring by working together

in a defensive manner to block the attempted intrusion. Within this chapter, we combine the
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concept of shepherding with cooperative defensive behavior by leveraging multi-robot systems to

safeguard protected regions within an environment. Moreover, we assume that the intruder continues

to maintain its malicious behavior, despite having been intercepted by the defensive robots. In

turn, the intruder may create avoidance behaviors to navigate around the defensive robots that are

behaving as “obstacles” to impede its motion. We introduce a cooperative control policy utilized by

a team of defensive robots which: 1) intercept an incoming intruder agent, 2) impedes the motion of

the intruder by constructing a barrier formed by the defender robots, and 3) shepherd the malicious

intruder to a safe region within the environment.

7.2 Preliminaries

We consider a team of Nd defender robots denoted as i ∈ D = {1, 2, . . . , Nd} tasked to defend against

a single robotic intruder within a 2-dimensional environment M ⊂ R2. Within the environment

is a protected region P ⊂ M defined by P = {m ∈ R2 | ∥m− cp∥ < rp} and a safe region S ⊂ M
described as S = {m ∈ R2 | ∥m − cs∥ < rs}. The variables (cp, rp) and (cs, rs) characterize the

centers and radii of the protected and safe regions, respectively. We assume the defenders and

intruder robot are subject to double integrator dynamics

ṗd,i = vd,i, v̇d,i = ud,i (7.1)

ṗa = va, v̇a = ua (7.2)

∥ud,i∥ ≤ ud,max, ∥ua∥ ≤ ua,max (7.3)

where pd,i ∈ R2 is the position of an ith defender and pa ∈ R2 is the position of the intruder robot

in an (x-y)–coordinate frame, respectively. The vectors vd,i and va denote velocities for defenders

and the attacker, while ud,i and ua represent the accelerations, which function as control inputs for

the defenders and attacker robots. Accelerations are limited by maximum values ud,max and ua,max,

where ua,max ≤ ud,max. In Fig. 7.1 is an example of the environment M considered, consisting of

the protected and safe regions, along with the defender and attacker robots.

7.2.1 Attack Model

In this work, we assume the attacker’s goal is to navigate into the known protected region P . To do

this, the attacker consists of an attacking force

uattack = uattack,magd⃗ap (7.4)
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Figure 7.1: An example of the environment that is considered in this work.

where uattack,mag is the attacking force magnitude and d⃗ap is the unit vector for force directionality,

which attracts the attacker toward the center of the protected region. When the attacker encounters

defender robots or obstacles during its approach of the protected region, the attacker leverages

virtual springs for avoidance to navigate around the impediments.

7.3 Problem Formulation

The objective for defender robots is to ensure no intruding agents enter the protected region P,

which has a safety-critical importance that must remain un-encroached. The defender robots aim to

block the advance of the intruder robot before it reaches the protected region. Formally, we write

the problem we wish to solve as:

Problem 7.1 Give the Nd defender robots in the set D, design a decentralized control policy such

that the defenders construct a blockade formation between the position of the attacker pa and the

region P ⊂ M to prevent the attacker from entering the protected region, i.e.:

pa ̸∈ P. (7.5)

A second problem that we wish to solve is upon impeding the advance of the attacker, the

defensive robots influence the attacker’s motion toward the safe region S in the environment.

Formally:

Problem 7.2 Design a decentralized control policy such that defenders cooperatively utilize a control

input ud,i to maneuver the blockade formation in a manner to steer the intruder away from the
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protected region P and towards the safe region S ⊂ M where S ∩ P = ∅ by:

ud,i → pa ∈ S (7.6)

where the defenders accomplish their task when the attacker’s position lies within the safety region.

7.4 Cooperative Defensive Framework

In this section, we present our cooperative framework that aims to solve the problems defined in

Section 7.3. We first introduce the full motion behavior of the intruder agent which aims to navigate

into the known protected region while avoiding any obstruction (i.e., the defensive robots), then we

present the control models of the defender robots to impede motion via barrier/wall construction

and cooperative shepherding of the malicious intruder agent.

7.4.1 Attacker Motion

To begin, we first introduce the avoidance algorithm on-board the malicious intruder to avoid

any obstruction in its path while navigate to its goal destination (i.e., the protected region). The

avoidance control input of an attacker when navigating follows:

uavoid =
∑
i∈Na

κr(lai − l0r)d⃗ai −
∑
o∈Oa

κo(lao − l0o)d⃗ao (7.7)

where lai = ∥pa − pd,i∥ and lao = ∥pa − po∥ are distance between the attacker and defender robots

and obstacles, respectively, with po ∈ R2 representing the position of an oth obstacle. The variables

κr and κo are virtual spring constants, while d⃗ai and d⃗ao denote the direction of repulsive forces on

the attacker robot. The sets Na ⊆ D and Oa represent nearby defenders and obstacles that cause

repulsive forces onto the attacker. The nearby defender robot set represents any defender i ∈ D
that is within a reactive distance l0r ∈ R+ and is computed by:

Na =

 i ∈ Na, if lai ≤ l0r ,

i ̸∈ Na, otherwise,
(7.8)

and similarly, the set of nearby obstacles is found by:

Oa =

 o ∈ Oa, if lao ≤ l0o,

o ̸∈ Oa, otherwise,
(7.9)

for any obstacle o ∈ O within a distance l0o ∈ R+.

161



The overall control input for the attacker robot is the summation of the attack vector and any

avoidance maneuvering by

ua = uattack + uavoid. (7.10)

Next, we introduce the motion models that the defender robots follow in order to prevent the

intruder robot from entering the protected region P.

7.4.2 Defensive Barrier Construction

Upon detection of a malicious intruder within the environment, the defensive robots in the set

D begin a cooperative control behavior to intercept the incoming attacker before it reaches the

protected region. The objective is to form a defensive line (i.e., barrier) to stop the motion of the

attack towards the protected region. This defensive line formation is perpendicular to the attacker

to protected region vector d⃗ap, denoted by the line d⃗ap[⊥], with separation δd > 0 between defenders

as illustrated in Fig. 7.2.

Figure 7.2: An example of a desirable defensive line that is located between the attacker position
and protected region.

The point of intersection of the vectors d⃗ap[⊥] and d⃗ap is represented as a central defensive

position pdef. In this subsection, we characterize how defensive robots align themselves with respect

to this defensive position to block an incoming attacker; however, we discuss how the defensive

position pdef is computed in the following subsection (Section 7.5.3).

In this work, we assume the detection of an incoming attacker is discovered by the defender

robots scattered throughout the environment. Given a limited sensing range δr > 0 on-board the

defender robots, the attacker is detected once it comes within sensing range of any robot i when the

following is satisfied

∥pa − pd,i∥ ≤ δr, ∀i ∈ D. (7.11)
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Once the attacker has been detected, the observing defender robot i communicates the location

of the attacker to the remaining robots. The initial robot that detects the attacker (i.e., the defender

with the shortest distance to the attacker) converges to the position pdef to intercept the attacker.

The remaining robots converge toward positions on the line with a separation distance δd from any

other defensive robots. The location chosen along the defensive line is dependent on their current

position with respect to the locations of the attacker and protected region (i.e., to join along the left

or right side of the defensive line). An example of this choice of defensive positioning is depicted in

Fig. 7.3 where the robot selects the correct positioning along the defensive line when joining.

Figure 7.3: An example of a desirable defensive line that is located between the attacker position
and protected region.

A defensive robot i determines whether to move to the left or right side of the line by first

computing the decision variable ψi by:

ψi = (pax − cpx)(pdy,i − cpy)− (pay − cpy)(pdx,i − cpx) (7.12)

where (pax, pay), (cpx, cpy), and (pdx,i, pdy,i) are the (x, y) position coordinates of the attacker, central

position of the protected region, and the position of the ith defensive robot. Then, the positioning

along the line is determined by:

pdefd,i =

 pdefc − δd(θ), if sign(ψi) = 1,

pdefc + δd(θ), otherwise,
(7.13)

to choose whether to move to the left side of the line (i.e., sign(ψi) = 1) or to the right (i.e.,

sign(ψi) = −1). If two or more defensive robots are tasked to navigate to the either side of the

defensive line, then the agents perform a linear assignment problem to decide which agent moves to

available positions along the line.
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7.4.3 Attacker Tracking

Here we discuss the control behavior performed by each defensive robot contained on the defensive

line DL to maintain desired positions between the attacker and protected region. The objective

is to sustain defensive positioning such that the line/barrier is in an ideal location (i.e., directly

between the attacker and protected region). To make this determination, the “center of mass” of

the defensive robots or also the average positions denoted by the central defensive position pdefc

is directly between the attacker and the center of the protected region. More specifically, if lacp

denotes the line from the attacker (pa) and the center of the protected region (cp), then the desired

central defensive position lies on lacp , i.e., p
def
c ∈ lacp . From the central defensive position, the

respective defensive positions pdefd,i where i ∈ DL are located accordingly given separation distance

δd with respect to the central position. The central defensive position is continuously updated as

the attacker navigates toward the protected region.

The defensive robots leverage the central defensive position and the motion of the attacker

to remain in ideal defensive line positioning. In effect, each robot i ∈ DL follows a proportional-

derivative (PD) control algorithm to enable for continuous tracking. The tracking control algorithm

is expressed as:

ui = kP (p
def
d,i − pd,i) + kD(ṗa − ṗd,i

[ ra
rd,i

]
)d⃗ap(⊥) (7.14)

where kP > 0 and kD > 0 are proportional and derivative control parameter gains while ṗd,i and

ṗa are velocities of the attacker and ith defensive robot. The unit vector d⃗ap(⊥) expresses that

all velocities considered are tangential to the vector d⃗ap (i.e., from attacker to protected region

positions). Furthermore, we denote ṗd,i[
ra
rd,i

] as the desired tangential velocity of the defensive robot

which is a function of the position of the attacker and itself with respect to the protected region.

As highlighted in Fig. X, the defensive robot requires a tracking velocity which is less than the

attacker, as it is at a shorter radial distance to the protected region than the attacker. The desired

tangential tracking velocity of the ith defender is:

ṗd,i =
rd,i
ra
ṗa (7.15)

to maintain a radial velocity that enables the defender to track an ideal defensive position to block

the attacker. In the next section, we will begin to model the overall shepherding system consisting

of the cooperative defensive robots attempting to steer the intruder agent away from the protected

region and toward the safe region in the environment.

7.5 Shepherding System
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In this section, we first characterize the high-level shepherding system model followed by the low-level

control model performed by each of the cooperative defensive robots to shepherd the intruder to the

safe region.

7.5.1 Shepherding Model

We first represent the shepherding system dynamical model in the following state space form:

ẋ = Ax+Bushep +Duattack,mag (7.16)

where the shepherding state vector x ∈ R6 is

x =
[
x ẋ y ẏ θ θ̇

]T
(7.17)

within the x-y coordinate frame and system matrices are described as:

A =



0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0


B =



0 0

− sin(ϕ) 0

0 0

− cos(ϕ) 0

0 0

0 β


D =



0

cos(θ)

0

sin(θ)

0

0


(7.18)

such that ϕ is the angle of the defensive line, θ defines the angle (direction) of the attack force, and

β is the moment of the defensive line. The control input vector to the system (7.16) is written as:

ushep =
[
ulin uang

]T
(7.19)

where ulin and uang are linear and angular force control inputs, respectively. Next, we formalize the

high-level closed-loop shepherding system control model.

7.5.2 High-level Shepherding Control Model

To control the shepherding system, we consider a reference tracking feedback controller

ushep = −Kxxe − uattack +Krxref (7.20)

where xe = xref − xa denotes the state tracking error of the attacker with respect to a reference

state xref to follow. The matrices Kx and Kr represent the state feedback control gain and reference
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gain. Next, by combining (7.20) into (7.16), we can represent the closed-loop shepherding control

system as:

ẋ = (A−BKx)xe +BKrxref (7.21)

to shepherd the attacker agent along the desired reference state. We first make the assumption

that the defensive robots are able to generate a feasible trajectory xref for the shepherded attacker

can follow. This is due to constraints in the shepherding control input based on limitations of the

defensive robot capabilities and forces generated by the attacker’s on-board obstacle avoidance

algorithm. Given these limitations, we assume the shepherding control inputs is constrained such

that ushep ≤ umax. In the next subsection, we will discuss how we leverage the defensive robot

positions to generate the linear and angular control components of the shepherding control input.

7.5.3 Defensive Robot Positioning for Intruder Steering

The objective of the defensive robots, after impeding the motion of the attacker, is to position

themselves in a way to influence the attacker’s motion away from the protected region and into

the safe region. To enable this behavior, the defensive robot positioning is placed in a desirable

location with respect to the attacker as well as a steering angle ϕsteer of the defensive line to guide

the attacker in a desired direction to generate desirable shepherding control inputs.

This desired motion to steer the attacker away is constructed from the desired shepherding

force ushep which counteracts both the attack force uattack and utilizes the force computed from the

on-board obstacle avoidance algorithm uavoid. The defensive line is positioned in a specific manner

to counteract the attack input uattack and by leveraging the potential functions from the on-board

obstacle avoidance algorithm of the attacker. More specifically, the defenders use the repulsive

force from the attacker’s avoidance algorithm to their advantage to coerce its motion in a desired

manner (i.e., toward the safe region). As previously described in (7.19), the defenders position

themselves within the defensive line to satisfy the linear ulin and angular uang shepherding control

inputs, respectively.

We begin with the defensive line steering for the angular input component to the shepherding

system. The goal is to align the defensive line such that it is perpendicular to the direction of the

desired shepherding force direction (to simultaneously create a defensive barrier and to influence

the attacker motion via its avoidance algorithm). To this end, we compute a steering control input

for the defensive robots to correctly align themselves with respect to the attacker to satisfy uang.

The steering control input corrects any error between the desired versus the current angle of the

defensive line. Formally, the angular control input is:

usteer = ksteer

(
∥ushep∥d⃗shep −

(
ψ +

π

2

))
(7.22)

166



where ∥ushep∥d⃗shep denotes the direction of the desired angle to influence the attacker’s motion,

ksteer is a control gain, and (ψ + π
2 ) is the current angle of the defensive line (offset by π

2 to account

for the desired defensive line positioning being perpendicular).

Next, we compute the central location of the defensive line by reverse engineering the obstacle

avoidance algorithm to satisfy ulin. In terms of positions of the defenders and attacker, with the

known potential field for obstacle avoidance, the resultant linear shepherding control input is

computed in general terms by:

ulin =

|DL|∑
i=1

klin∥pd,i − pa∥d⃗ia (7.23)

where klin > 0 is the parameter gain for avoidance and d⃗ia is the unit vector denoting direction

of forces from the ith defender to the attacker. We can approximate that the defensive line is in

proper symmetrical position in obstruction of the attacker’s motion, we can then rewrite (7.23) in

terms of the central defensive position as:

ulin =

|DL|∑
i=1

klin∥pdefc − pa∥ cos(ψia) (7.24)

where cos(ψia) denotes the difference between the direction of the resultant input vector and the

vector between the ith defender and the attacker. To choose a proper defensive positioning of all

defensive robots, we solve for a desired central defensive position by:

∥pdefc − pa∥ =
ulin

klin
∑|DL|

i=1 cos(ψia)
(7.25)

where ∥pdefc − pa∥ ∈ R+ is a scalar separation distance between the attacker and central defensive

position. The location of the central defensive position is placed at:

pdefc = pa + ∥pdefc − pa∥d⃗ap (7.26)

With the central defensive position computed, the robots are able to position themselves with

respect to this location and utilize it as the center of the defensive line. This allows the defensive

robots to align themselves between the intruder and protected region, while also influencing the

motion of the attacker in a desirable manner.

7.6 Simulation Results

Our preliminary results for our approach have been implemented in MATLAB on cooperative

swarms of Nd = 3 and Nd = 4 defensive robots in a 2-dimensional environment M. For each of
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the simulation case studies, a malicious intruder aims to navigate into a protected region P from

an unknown location within the environment from the perspective of the defensive robots. The

objective of the defensive robots in the set D is to intercept the intruder and impede its motion

before it enters the protected region by constructing a defensive barrier. Then, the defensive robots

cooperatively work together to shepherd the intruder to a safe region S located away from the

protected region. The multi-robot system operation is considered successful if the protected region

remains unimpeded and the intruder is guided into the safe region.

Our first case study is presented in Fig. 7.4, where we have considered Nd = 3 defensive

robots to complete the operation. Initial conditions of the simulation case study are shown in Fig.

7.4(a), and the intruder interception phase shown in Fig. 7.4(b) where defensive robot i = 1 first

performs the engagement. In Fig. 7.4(c), the defensive robots have constructed a defensive barrier

to impede motion and shepherd the intruder along a desired trajectory. Finally, the intruder has

been successfully guided to the safe region in Fig. 7.4(d) to accomplish the mission.

Our second case study is represented in Fig. 7.5, where this time we consider Nd = 4 defensive

robots. In Fig. 7.5(b), we see two of the defender robots have intercepted the intruder and have

begun constructing the defensive barrier to impede intruder motion. During this time, two more

robots have not yet joined the defensive barrier, but are navigating toward defensive positions

located along the line. As shown in Figs. 7.5(c) and 7.5(d), the four defensive robots successfully

shepherd the intruder along a trajectory to the safe region.
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(a) (b)

(c) (d)

Figure 7.4: A multi-robot system of Nd = 3 agents (small green disks) leveraging our defensive
framework to block the motion of a malicious intruder (red disk) then shepherd it to a safe region

in the environment.

7.7 Discussion

In this chapter, we have introduced our current defensive robotic team framework to block malicious

intruders from entering protected regions within the environment. We have devised a cooperative

control strategy for the defensive robot team to: 1) impede the motion of a intruder to prevent it

from entering a known protected region, and 2) cooperative strategy to shepherding the maliciously

behaving intruder to a safe region within the environment. Our cooperative framework enables the

defensive robot team to construct a defensive barrier/wall to both impede motion and shepherd

the intruder in a desirable manner. Unique to the related literature in this field, we assume that

the intruder agents continue to behave in a malicious manner even after being engaged by the

cooperative shepherding robots. To highlight our work on this cooperative framework thus far, we
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(a) (b)

(c) (d)

Figure 7.5: A multi-robot system of Nd = 4 agents leveraging our defensive framework to block the
motion of a malicious intruder (red disk) then shepherd it to a safe region in the environment.

present multiple simulations to show the effectiveness of our strategy to block and shepherd the

intruding agent.

7.7.1 Future Directions

The direction of the work presented in this chapter can go in a multitude of ways. To begin, the

first task we wish to find a solution for is proving controllability/stability of the shepherding portion

of our framework. The goal is to show that based on the positioning of the defensive robots, we

are able control the intruder agent along a feasible desired trajectory to shepherd the intruder to a

final destination (i.e., the safe region). An idea to which came to mind is treating the shepherding

agents (i.e., both the cooperative defensive robots and malicious intruder) as a single combined

system, where the positioning of the defensive robots with respect to the intruder acts as a “control
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input” to the shepherding system. Furthermore, the attack vector and obstacle avoidance algorithm

on-board the intruder are assumed to still be active while engaged by the defenders, are treated

as disturbances to the system. To prove stability of the overall system, we want to use a similar

theory in quadrotor control (such as in [63]) to control the shepherding system in a 2-dimensional

environment.

Another aspect we wish to investigate in the future is how the number of engaged defender

robots affect the shepherding performance of the malicious attacker. For example, questions that

we could pose are, can as few as two defender robots be able to block and shepherd the attacker

(assuming similar dynamical capabilities) to the safe region? Can we do this with one defender?

Or, when does the effectiveness of an increasing number of defender robots begin to level off, such

that having more defenders does not improve barrier/shepherding performance? This leads us to

another future consideration of the effectiveness of our framework when more than one attacker is

attempting to navigate into the protected region. If we have theoretical guarantees on the number

of defenders it takes to shepherd a single intruder, then we can provide guarantees on the number

of attacker agents our defender robot set D can handle when using our cooperative framework.

As of now, we have preliminary simulation results in MATLAB to highlight our progress

thus far. However, our future plans include implementing this framework on a team of defensive

unmanned ground robots in a lab environment. To make for interesting case studies, we want to

include experiment results where the attacker/intruder agent behaves autonomously according to its

combined attack and avoidance force models (7.10), and also a case where the attacker is manually

controlled by a human with the same objective of gaining access into the protected region.

171



Part IV

Epilogue
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Chapter 8

Conclusions and Future Work

In this chapter, we will conclude the dissertation with an overview of what we have accomplished

and learned, followed by a discussion of real-world applications for this work and also any possible

directions we could take for future work to build on what we have achieved thus far.

8.1 Conclusions

In this dissertation, we have presented frameworks for detection and recovery to maintain resilience

to cyber attacks and faults that may occur on single- and multi-robot systems. The foundation of this

work resides upon randomness-based monitoring for attack detection by leveraging residual-based

detection schemes. The primary contribution of our randomness-based techniques is to monitor for

randomness-based inconsistencies of measurement residuals when performing sensor attack detection.

Our techniques have improved upon state-of-the-art residual-based methods, as they are designed to

discover stealthy sensor attacks that intentionally hide within noise profiles on autonomous robots.

Previous methods typically monitor whether the residual magnitudes follow an expected distribution,

while our techniques monitor for pattern inconsistencies within the residual sequence that may be

caused by false data injections to sensor measurements. We then carried over the randomness-based

techniques to provide greater resiliency in multi-robot systems. More specifically, with our detection

frameworks implemented within multi-robot systems, individual robots can determine if information

being received from other robots is behaving consistently based on an expected behavior. With

this implemented, we also provide detection capabilities to stealthy man-in-the-middle attacks on

communication broadcasts exchanged between robots, where attackers can potentially intercept

broadcast information and replace it with plausible data that can deceive traditional detection

schemes. Upon detection of cyber attacks, the impacted robots are isolated and removed from the

multi-robot system through network reconfiguration to allow for operations to continue performing

in a resilient manner. Furthermore, we have developed a framework such that robots are able to

safely exchange safety-critical information with other robots via hidden signatures based on hidden

173



motion models. This is beneficial because safety-critical information (e.g., a task) is no longer

explicitly broadcast over communication channels that are vulnerable to interception by malicious

eavesdroppers. With these aforementioned techniques, we have provided resilience to stealthy cyber

attacks within multi-robot systems to allow for continued safety-critical task-based operations.

The final phase in this dissertation focused on recovery when autonomous systems experience

on-board cyber attacks and faults. In order to recover agents within multi-robot systems, we

introduced cooperative recovery frameworks to aid in re-localizing compromised robots that have

unreliable on-board localization/positioning sensors. This improves upon our other multi-robot

frameworks and other similar works in prior literature that utilize isolation and reconfiguration to

maintain system resilience, as our method is designed to fully recover any compromised agent such

that all robots complete missions in a safe manner. Differing from prior works, we assume that these

formations of robots operate in unknown or landmark-free environments, such that localization by

use of objects (i.e., landmarks) in the environment is not feasible. To cooperatively recover any

compromised robots, we have developed a framework that relies on a control-based method such

that the remaining robots coordinate their motion to provide mobile landmarks for re-localization.

A second cooperative framework relies on leveraging received signal strength indication (RSSI)

from information exchanges over radio frequency broadcasts for re-localization. By utilizing both

RSSI-based measurements and the received position information, the neighboring robots are treated

as mobile landmarks for localization. To recover a single autonomous robot system, we developed a

detection and recovery framework to provide resiliency to cyber attacks and faults within on-board

controllers that cause anomalous control behavior. Different from previous literature, we make the

assumption that the anomalous behavior is triggered when information sent to the controller is in

specific operating regions. We then developed a novel compensation scheme that is deigned to alter

information sent to the controller to avoid any regions causing malicious behavior, thus allowing an

autonomous system to maintain a desirable control signal to continue performing operations in a

resilient fashion.

8.2 Discussion and Possible Future Work

Throughout this dissertation, we have presented extensive simulations with realistic system models

and lab experiments using ground robots. The results to these relevant scenarios highlight the appli-

cability of our techniques and frameworks to solve real-world problems within mobile autonomous

systems, such as use in autonomous vehicles or military applications involving swarming robotics.

Other interesting real-world applications that the frameworks introduced in this dissertation could

be used in beyond mobile robotics include: attack detection in power grids (utilizing the material in

Chapter 2), resilient control/motion in industrial robotics (using the framework in Chapter 5), and
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ground target tracking (i.e., geolocation) using multiple video surveillance sensors/cameras (utilizing

frameworks in Chapter 6). Moreover, we have demonstrated that randomness-based monitoring

is a vital method for discovering cyber attacks that are designed to remain hidden within system

noise profiles. While this area of research has been investigated for a number of years, attackers will

always find security vulnerabilities or ways to evade intrusion detection schemes. While much of our

results are based on theory and simulations, it would be interesting to investigate the effectiveness

of these detection techniques work on more real-world systems with complex dynamics that operate

outside of a lab environment. As an example, how well can these randomness-based detection

mechanisms work when a system is experiencing external disturbances such as wind or ground

surfaces that are not level. In our results shown throughout the dissertation, we assumed that we

had a perfect model of our system, which includes the system dynamics and noise models. However,

if these models are not completely accurate, the effectiveness of our detection mechanisms can be

compromised. Future work can be implemented to test and/or characterize the effects on detection

performance under various unknown uncertainties that may occur to a system during operations.

Another strong assumption that we made in our attack detection frameworks is the attacker has

full knowledge of the system model (e.g., dynamical, noise, estimator, and controller). An appealing

idea would be to put effort into relaxing such a strong assumption to examine what an attacker’s

worst-case capabilities on a system are when less knowledge of the system is known.

We have also exhibited methods for autonomous multi-robot systems to recover from stealthy

cyber attacks and faults by way of network configuration and cooperative recovery techniques

within multi-robot systems. While the assumptions in this dissertation mainly covered spoofs/faults

to on-board sensors and alterations of information within communication broadcasts, there are

numerous other methods for attackers and system faults to compromise a multi-robot system. For

example, in our cooperative recovery frameworks we assumed only on-board positioning sensors are

compromised (due to faults/attacks) to impact localization capabilities; a scenario where a vehicle

sustains damage which impacts both positioning sensing and system dynamics/actuation would

potentially not be recoverable or could negatively influence system operations. This case would

affect both localization and control performance due to an unknown change to the system model.

More thought would be needed in the recovery process, such that cooperative vehicles aiding in

recovery must provide re-localization support while also realizing that the compromised agents

control performance has been diminished. Possible solutions to this problem could include altering

the control behavior of the entire swarm (e.g., navigating at lower velocities) or re-plan operations

by making changes to trajectories or mission tasks. Other issues that could arise include a complete

loss of on-board positioning sensing (e.g., GPS) on all vehicles, losses in communication capability

between agents, and unforeseen disturbances or increasingly difficult to navigate environments, all of

175



which could burden performance to the extent that the entire swarm operation can be compromised.

Although recent literature has addressed many of these aforementioned issues provided specific

assumptions and constraints to each of their frameworks, many holes and deficiencies still remain to

prevent autonomous systems from fully recovering due to undesirable circumstances that may occur

at runtime. However, within the realm of multi-robot systems, there are many possibilities for them

to significantly improve our lives in the near future. Applications ranging from autonomous cars

and transportation to smart cities, warehouse logistics, delivery services, defense weapon systems,

and mobile sensor networks for natural disaster prediction all have much to gain in the future with

the increased utilization of multiple robots/vehicles that can resiliently perform tasks.

In summary, the techniques presented in this dissertation have made it increasingly difficult for a

malicious actor to negatively influence autonomous single- and multi-robot systems and have made

these systems more resilient to unforeseen circumstances. However, we are only in the beginning

phase of a world dominated by autonomous systems that are able to perform complex tasks to

improve our daily lives. The detection and recovery techniques highlighted in this dissertation bring

these autonomous systems one step closer to being completely safe and reliable.
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Gabriel graph”. In: Advances in Applied Probability 34.4 (2002). doi: 10 . 1239 / aap /

1037990948.

[5] N. Bezzo, B. Griffin, P. Cruz, J. Donahue, R. Fierro, and J. Wood. “A Cooperative Heteroge-

neous Mobile Wireless Mechatronic System”. In: IEEE/ASME Transactions on Mechatronics

19.1 (2014), pp. 20–31.

[6] Nicola Bezzo, Patricio J. Cruz, Francesco Sorrentino, and Rafael Fierro. “Decentralized

identification and control of networks of coupled mobile platforms through adaptive synchro-

nization of chaos”. In: Physica D: Nonlinear Phenomena 267 (2014). Evolving Dynamical

Networks, pp. 94–103. issn: 0167-2789.

[7] Nicola Bezzo, Yuan Yan, Rafael Fierro, and Yasamin Mostofi. “A Decentralized Connectivity

Strategy for Mobile Router Swarms”. In: IFAC Proceedings Volumes 44.1 (2011). 18th IFAC

World Congress, pp. 4501–4506. issn: 1474-6670.

[8] Jahshan Bhatti and Todd E. Humphreys. “Hostile Control of Ships via False GPS Signals:

Demonstration and Detection”. In: Navigation 64.1 (2017), pp. 51–66. doi: 10.1002/navi.

183.

[9] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. New York: Elsevier, 1976.

177

https://doi.org/10.1109/PESGM.2017.8273755
https://doi.org/10.1109/ACC.2014.6859155
https://doi.org/10.1109/JSEN.2009.2030284
https://doi.org/10.1239/aap/1037990948
https://doi.org/10.1239/aap/1037990948
https://doi.org/10.1002/navi.183
https://doi.org/10.1002/navi.183


[10] D. Brook and D. A. Evans. “An Approach to the Probability Distribution of Cusum Run

Length”. In: Biometrika 59.3 (1972), pp. 539–549. issn: 00063444.

[11] F. Bullo, J. Cortés, and S. Mart́ınez. Distributed Control of Robotic Networks. Princeton

University Press, 2009. isbn: 978-0-691-14195-4.

[12] Camillo Cammarota. “The difference-sign runs length distribution in testing for serial

independence”. In: Journal of Applied Statistics 38.5 (2011), pp. 1033–1043. doi: 10.1080/

02664761003758984.

[13] Alvaro A. Cárdenas, Saurabh Amin, Zong-Syun Lin, Yu-Lun Huang, Chi-Yen Huang, and

Shankar Sastry. “Attacks against Process Control Systems: Risk Assessment, Detection,

and Response”. In: Proceedings of the 6th ACM Symposium on Information, Computer and

Communications Security. ASIACCS ’11. Hong Kong, China: Association for Computing

Machinery, 2011, pp. 355–366. isbn: 9781450305648. doi: 10.1145/1966913.1966959.

[14] Luca Carlino, Di Jin, Michael Muma, and Abdelhak M Zoubir. “Robust distributed coop-

erative RSS-based localization for directed graphs in mixed LoS/NLoS environments”. In:

EURASIP Journal on Wireless Communications and Networking 2019.1 (2019), pp. 1–20.

[15] Luis C. Carrillo-Arce, Esha D. Nerurkar, José L. Gordillo, and Stergios I. Roumeliotis.
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