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Abstract

The presence of server-side malware poses a significant risk to a large num-
ber of clients who access the compromised server. In this research, we propose
a Stealthy-Attack on the server-side that can withstand forensic analysis such as
reverse-engineering. Our attack can be triggered by ordinary contents from legiti-
mate and benign websites to avoid detection and misdirect investigators. To expand
the input-output space and make reverse-engineering challenging, our attack uses a
specialized state-machine that accepts any inputs and produces output accordingly.
We created a prototype of Stealthy-Attack and conducted an empirical evaluation on

the attack, which demonstrates that it poses significant obstacles to forensic analysis.
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Chapter 1

Introduction

1.1 Background

Malware analysis is a crucial task in revealing the real intentions and actors behind
cyber attacks. Analyzing malware can lead to various forensic evidence, such as
what sensitive information the malware wants to leak and to where (e.g., addresses
of attacker-controlled servers). In recent years, malware gets more sophisticated in
hiding its code using various techniques such as code obfuscation and remote code ex-
ecution. In response, advanced malware analysis techniques have been proposed: (1)
program analysis techniques including symbolic execution and forced execution [13,
17,19, 23, 27, 28, 31, 35, 37, 40, 48, 51, 61, 62, 63, 64, 65, 71, 84, 89] that can uncover
hidden malicious logic in malware and (2) deep packet inspection techniques [9, 20,
42, 74] that can see through malicious payloads delivered through network packets.
While it is challenging to dissect malware completely, analyzing behaviors of malware
often results in critical hints for triaging the attacker (e.g., via network addresses they

connect to).

In this research, we explore the possibility of creating a forensically stealthy mal-
ware. Specifically, we present an anti-forensic attack, dubbed Stealthy-Attack. It
collects inputs from multiple benign and uncompromised websites that are not associ-

ated with cyber attackers (e.g., www.npr.org). The input content is ordinary (i.e., not



influenced by the attacker), avoiding detection from network packet inspection tech-
niques and leaving no forensic evidence in the network trace. Stealthy-Attack does
not include executable malicious code itself, making static analysis based forensic

analysis (e.g., anti-virus techniques) ineffective.

The inputs are later used to construct a malicious payload through a special
state machine proposed by [33, 34], which is carefully designed to make the analysis
of Stealthy-Attack inconclusive. Specifically, the state-machine can take any inputs
and generate varying outputs depending on inputs, making the input-output space
extremely large. As such, Stealthy-Attack evades state-of-the-art malware detection
techniques, including reverse-engineering and forensic triaging. We design and im-
plement a set of tools that can create Stealthy-Attack from the following two inputs:
(1) malicious code snippet to deliver and (2) a set of benign contents. The created
Stealthy-Attack will run the specialized state-machine to convert the predetermined
benign contents into the malicious code snippet when all the benign contents appear

together.

Our contributions are summarized as follows:

o We propose Stealthy-Attack, an anti-forensic technique that transforms ordinary

contents from benign websites to malicious payloads.

o We leverage the concept of ambiguous translator [33, 34] for translating input

words to malicious payloads to impose challenges in reverse-engineering.

o We implement a set of automated tools to create Stealthy-Attack, including a

website crawler, statistical analyzer, and the ambiguous translator generator.

o Our evaluation result shows that Stealthy-Attack is effective in delivering malicious

payloads without being analyzed and detected.



Threat model. We assume a forensic/malware analysis scenario. Specifically, we
assume that an attacker already compromised a victim server and placed the malware.
While the malware might be executed, it did not deliver the malicious payload (i.e.,
attack) yet. Exploiting servers can be done by leveraging software vulnerabilities [21,
67] in Internet-facing server programs. The exploitation of web servers is out of the
scope of this research, but is typical in advanced cyber attack scenarios [2, 24, 36,
45]. We assume that the victim server may log network requests, but may not know

when the malware delivered the malicious payload.



Chapter 2

Related Work

2.1 Obfuscation techniques

Previous research has explored methods of obfuscation that use opaque predicates
to conceal malicious code[16, 19, 54], code insertion/replacement[22, 46|, encryp-
tions [72, 86|, hardware primitives [14, 70]. Although some obfuscation techniques,
such as the use of opaque predicates, have been used to conceal malicious code, they
are not foolproof as they can still be detected and eliminated using advanced program

analysis techniques [52].

Dummy code snippets that are inserted into an existing program can be detected
and eliminated through the use of dependency analysis techniques, such as taint anal-
ysis [17, 18, 19, 26, 27, 28, 31, 32, 40, 48, 51, 61, 62, 63, 64, 70, 84, 89]. Translating a
program into a more abstracted form, such as AST or Intermediate Representation,
can also reveal obfuscation techniques. A type of obfuscation known as data obfus-
cation, which involves encrypting code sections and decrypting them during runtime,
can be easily detected using dynamic analysis techniques [12, 50, 74]. Approaches
that rely on specific hardware support are difficult to use in real-world malware, as
many systems may not meet the necessary hardware requirements. In contrast, the
Stealthy-Attack does not require any specific hardware or software, making it partic-

ularly difficult to detect. Furthermore, the Stealthy-Attack is much more challenging



to analyze using static, symbolic, and dynamic analysis techniques, including fuzz

testing tools, as demonstrated in Chapter 3

2.2 Advanced malware analysis techniques

A group of research [3, 4, 6, 15, 23, 32, 35, 38, 41, 46, 53, 68, 71, 75, 80] tries to detect
and analyze malware. In particular, a dynamic analysis based forced execution tech-
nique [37] aims to handle evasive JavaScript malware. They forcibly drive execution
into every branch even if the branch condition is not satisfied. While they are effective
in detecting malware that hides malicious code behind sophisticated predicates, it is
not effective in exposing malicious payload in Stealthy-Attack because it is encoded
as states and transitions of the FDSM. Moreover, there are static, symbolic [26], and
fuzzing tools for malware analysis that can reveal malicious behaviors. As discussed

in Chapter 5, Stealthy-Attack is resilient to such malware analysis techniques.

2.3 Network traffic based analysis

There are also forensic analysis and network traffic analysis approaches that analyze
the causal relationship between network and system events [4, 80]. For such tech-
niques, Stealthy-Attack is difficult to analyze as it gets all inputs from common benign
websites where many other applications and systems may access them when Stealthy-
Attack is active. As a result, understanding who are the actors behind the attack is
particularly challenging. There are approaches that detect common patterns of mal-
ware [35, 38]. While they are effective in traditional malware, Stealthy-Attack can

evade such techniques as Stealthy-Attack can be implanted into existing programs.



Chapter 3

Motivating example

We show the effectiveness of the Stealthy-Attack by following a forensic analyst’s
perspective. Assume that a forensic analyst finds an instance of Stealthy-Attack in
a compromised server!, before it launches the attack. Then, he aims to understand
(1) the purpose and (2) the actors behind the Stealthy-Attack. We present four dif-
ferent analysis attempts on Stealthy-Attack, to demonstrate its resilience to forensic

analyses.

3.1 Analyzing inputs (i.e., network trace)

The forensic investigator obtains available network logs including network packet
headers and actual payloads before the attack happens. Unfortunately, from the do-
main names, I[P addresses, and the content that Stealthy-Attack has interacted with,
the investigator cannot understand what it does. A naive way of attributing the

attack to the benign websites, as shown in @ in Figure 3.1, is misleading the analysis.

3.2 Dynamic analysis

The analyst tries to execute the Stealthy-Attack sample, hoping that it can exercise

intended malicious behaviors so that they can be analyzed (@). However, without

!The assumption on the compromised servers in cyber attacks is typical [2, 24, 45].



knowing the particular input that can trigger the intended attack (which we call at-
tack triggering input), the Stealthy-Attack instance does not expose its real intention
(e.g., malicious code). Note that Stealthy-Attack will only generate malicious pay-
loads when the inputs from benign websites are presented as the attacker expected.
If not, it will generate a non-malicious output (i.e., a string that does not look any
malicious or another malicious code for obscuring the real objective). For example, in
Figure 3.1, Stealthy-Attack launches an attack (i.e., translates inputs to a malicious
payload) when it receives "“...Airlines say..."” from www.cnn.com, *...Cloudy in..." from
www.weather.com, and “...Amazon recommends...” from www.amazon.com as shown
in the second row of Figure 3.1-(d). However, when the analyst executes the program,
it obtains “...President will..." (@), "..Cloudy in...” (@), and "“...Amazon announces..."
(@), where @ means that the input is a part of attack delivering input and @ repre-
sents a non-attack delivering the input. As a result, the malicious payload (the third

row of Figure 3.1-(d)) is not generated.

3.3 Static analysis

The analyst tries to use static analysis techniques including symbolic execution to
learn the real intention of the Stealthy-Attack instance. However, they suffer from
over-approximation. They may obtain a set of all possible inputs and outputs without
a particular order, which cannot provide a concrete malicious code snippet. Moreover,
among the identified outputs, there are no suspicious outputs (e.g., those look like
code such as unlink()). This is because the state-machine can generate outputs that
are different from the annotated outputs of the state machine. In other words, it
can generate a malicious code snippet ‘fwrite’ without having the exact word ‘fwrite’

annotated in the state machine (Details are elaborated in Section 4.2.1). As a result,



Trying to reverse-engineer the state-machine
(input-to-malicious code translation mechanism).

RO * Trying to reproduce
B the attack execution.

s Attributing attacks to websites
it Stealthy-attack connectsto

o LY 4 Fail-free Dynamic | ==
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@fopen(“tmp”);@fwrite(...);...
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(d) Input Translation by Fail-free Dynamic State Machine
@ Content that will deliver the attack

“Airlines say”, “Cloudy in”, “Amazon recommends”, ...

“President will”, “Cloudy in”, “Amazon announces”, ...

@ Content that will not deliver the attack

Figure 3.1: Forensic analysis on Stealthy-Attack. Malicious output is not generated
without the attack-triggering input.

even after exploring millions of possible paths and inputs via symbolic execution

tools [5, 23, 29, 57], the attack delivering inputs were not found (Details are described
in Chapter 5).

3.4 Manual analysis

The analyst manually reads the source code to understand how the input words are

translated and what the hidden malicious behaviors are (@). The analyst collects

all possible inputs that can be processed by the state machine and tries to construct
inputs hoping it can reveal malicious payloads. However, he observes it is not possible

to establish a one-to-one mapping because the same state transition can be triggered



by multiple inputs, which implies he may need to test almost every possible word

(due to dynamic output translation in Section 4.2.1).
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Chapter 4

Design

To create Stealthy-Attack, we first profile websites to identify candidate input con-

tents (Section 4.1) and then construct the ambiguous translator (Section 4.2).

4.1 Identifying input words via profiling

Stealthy-Attack operates on the contents obtained from benign websites that are not
controllable by attackers (e.g., a headline news title on www.cnn.com). This design
choice is crucial to deceive forensic investigators (i.e., hide the identity of attackers).
However, uncontrollable inputs might be unreliable because they may have changed
when the attack is launched. We mitigate this issue by choosing inputs that are
statistically reliable via website content profiling. In addition, we propose a DOM

path update resilient parsing technique.

4.1.1 Profiling

The website profiler takes a set of web pages as input and generates multiple Input Vec-
tor candidates, consisting of Input Words and Statistics. Input words are essentially
the chosen inputs that make Stealthy-Attack launch the attack (i.e., deliver the ma-

licious payload). It crawls the web pages regularly for a specified period (e.g., every
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1 article

2 div><div><h3

3 a href="..." 11 article

4 span span o 12 a href="..."> | .
5 span : 13 h2 :
6 "Text" 14 "Text" (2]
7 15 h2
8 a 16 a

9 h3 div div 17 article

10 article

(a) Part of the persistent DOM tree of (b) Part of the persistent DOM tree of
www.cnn.com (July 2019) www.cnn.com (December 2020)

Figure 4.1: Comparing two persistent DOM trees.

hour for one month by default) so we have multiple snapshots for each page.

e Obtaining a persistent DOM tree. From the crawled website snapshots, we
compute a persistent DOM tree that only includes elements that appear in all crawled

instances so that unreliable contents will be excluded.

¢ DOM parsing resilient to updates. We leverage a parsing technique that is
resilient to updates in websites’” DOM structures. Specifically, we eliminate nodes
that do not contain any text. In addition, for an clement only contain another
element (i.e., a holder element), we consider it can be reduced when it is compared.
For instance, “<div><div><h3> Text </h3></div></div>" and “<div> Text
</div>" are considered equivalent in the profiler and Stealthy-Attack. In addition,
nodes with empty content will also be ignored as well (e.g., “<div></div>"). These
two techniques handle cosmetic changes in websites. Figure 4.1 shows an example
of two persistent DOM trees obtained from www.cnn.com from (a) July 2019 and
(b) December 2020. Observe that they have different DOM trees. However, after we
remove tags that do not have any content (@) and consider placeholders (@) between
the two DOM trees are equivalent, we identify the two are semantically identical (as
the highlighted parts are same). This parsing technique is used by all the components

of Stealthy-Attack.
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e Reliability of a persistent DOM tree. To better understand the reliability
of the persistent DOM tree, we obtain 5 persistent DOM trees collected from July
2019 (1st to 31st), November 2019 (1st to 30th), March 2020 (1st to 31st), July
2020 (1st to 31st), and November 2020 (1st to 30th) for 10 websites'. Then, we
compare the five persistent DOM trees of each website. The result shows that 94.7%
of the persistent DOM tree’s elements reliably appear during the first 4 months. The
percentage of reliable elements becomes smaller as time goes: 85.5% for 8 months,
76.3% for 12 months, and 71.3% for 16 months. This suggests that Stealthy-Attack
is quite reliable in its first four months. Moreover, to improve the reliability further,
we use multiple DOM elements and use them as alternative elements (i.e., backup

options) as explained in Section 4.1.2.

e Extracting input words. For each DOM element in the persistent DOM tree,
we extract all words that are longer than three characters. Shorter words (e.g., “for”
and “or”) are not good candidates in general because they usually do not have much

meaning and are too frequently seen across different pages.

The extracted words are annotated with their positions found in the text of the
DOM element. For example, a text “ Episode 976: Terms of Service” is annotated
as follows: “Episode” = 1st, “976:” = 2nd, “Terms” = 3rd, and “Service” = 4th.
Observe that the word “of” is not considered as its length is not longer than 3. At

runtime, the position will be used to extract input words.

e Computing input word statistics. Given the extracted words, the TextRank
algorithm [56] is used to identify frequently observed words among them. The top

ten (the number of words is configurable) words from the result are chosen. Then,

lwww.cnn.com, www.npr.org, www.gni.org, 19hz.info, techtonic.fm, earthquaketrack.com,

news.ycombinator.com, www.kimbellart.org, lite.poandpo.com, chromereleases.googleblog.com
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we compute the statistics of the chosen words. Specifically, for each input word, we
calculate (1) coverage, (2) regularity, and (3) distribution of the word during the

profiling period.

1) Coverage: This represents the percentage of an input word in a DOM element
appearing during the profiling. For example, suppose that we crawl every hour for 5
days, resulting in 120 (=24 % 5) data points. If an input word appears 100 out of 120

100

data points, its coverage is 55. Intuitively, an input word with a higher coverage has

a higher probability of being observed in the future.

2) Regularity: The regularity represents how regularly the content will appear.
To compute the regularity, for each input word, we measure the variance of time
distances between the two adjacent appearances. Specifically, given N data points,
the distances between the adjacent two points, n and n+1, are calculated, resulting /-
1 distances: dy,ds, ...,dy_1. Then, we count the number of unique distances, denoted
as CNTunique distances- 1f all the distances are equal (i.e., they regularly appear), the

value (i.e., regularity) will be 1.0 (i.e., 100%). We compute the regularity as follows:

1 0 _ CNTunique_distances

JOE] . Intuitively, an input word with a higher regularity will appear

in a more predictable way than an input word with a lower regularity.

3) Distribution: It represents how an input word appeared evenly during the
profiling period. This is complementary to the regularity because some input words
with high regularity may not be evenly distributed. For instance, if a particular input
word appears only three times but at the beginning, in the middle, and at the end
of the profiling period, it would have a high regularity score. However, it is not well
distributed over the period. A higher distribution value means an input word has
been observed evenly and frequently during the profiling period. Algorithm 1 shows

how we compute the distribution value (Dist). First, given a sequence of N data
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Algorithm 1 Computing distribution

Input : D: a set of data including all the profiled data points,
N: the number of data points. W: input word.
R: the number of iterations for distribution computation.
Output: Dist: distribution value for the input word W.
procedure Distribution(D, N, W)
G+ 24,Dist + 0, r«+ 1
while r # R do
140, D. <+ 0
while i # G do
r« N/G
n+i+1
Dgyp D[i*r,n*r]
14141
if W € Dgyp then
| De+De+1
end
end

DIST<—DIST+%
G+ G*x2,r+r+1

end
return Dist / R

points (the input D), we divide them into G groups (G = 24 in this research, line 2)
so that each group includes N/G data points (line 8 as Dy, represents the group).
Then, we count whether the content appears in each group (line 10) and divide it by
the value of G (lines 11-12). After that, we multiply G by 2 and repeat the above
process (line 13). After we repeat this R times (R = 5 in this research), we add the
computed value for different Gs and divide by R (line 14). To this end, an input word

that appears in more groups will have a higher distribution value.

4.1.2 Handling unexpected DOM changes

A website may change its DOM structure. As Stealthy-Attack walks on a DOM tree
to locate the input words, changes in the DOM structure can affect the input word

collecting process.

To handle this problem, we chain alternative input words from multiple DOM
elements so that Stealthy-Attack can reliably deliver the payload even with unex-

pected DOM changes. Specifically, for each selected input word, we identify input
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words from other DOM elements that always appear together with the selected input
word. The selected alternative DOM elements should not share many DOM elements
in their DOM paths (e.g., no more than 20%) so that the alternative input words can
work when a significant portion of DOM structure (e.g., 80% of the DOM structure)
is changed. If there is no such alternative input word within the same webpage, we
use input words from other pages. In practice, a website often has many duplicated
contents across multiple sub-webpages. For instance, www.npr.org’s front page [59]
and it’s National News Section [60] have identical contents because top news in the
“National News” section also appear in the front page. Such contents can be po-
tential alternative input words to tolerate unexpected DOM changes. At runtime, if
Stealthy-Attack fails to extract an input word from a webpage (e.g., from the front
page) because the DOM element containing the input word cannot be located, it tries
an alternative input word on another page (e.g., from the National News Section sub-
page). If it fails again, it continues trying the next alternative input words until it
succeeds. In this research, we chain 4 alternative DOM elements for an input word.

The number of alternative DOM elements is configurable.

4.2 Stealthy-Attack Creator

Two inputs are required to create Stealthy-Attack: (1) chosen input words from the

profiler and (2) payloads to deliver (e.g., source code of existing malware).

4.2.1 Fail-free Dynamic State Machine.

The core of Stealthy-Attack is the fail-free dynamic state machine (FDSM). The tech-

nique is borrowed from an existing work [34]. It has two distinctive anti-forensic
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characteristics. First, it is a fail-free state machine that always transits states regard-
less of the current state and input, even if the input is not annotated with the state
transitions (C1). In a typical state machine, a state transition only happens when
there is a transition that can accept the current input. If not, the state machine will
be stuck and fail to make a transition which can be traced by a forensic analyst to in-
fer that the provided input is not valid. Second, the output generation rule of FDSM
during state transition is dynamic (C2). This means that the output is changing
based on a concrete input at runtime. This significantly enlarges the search space of

the possible inputs and outputs.

e Making transitions on any inputs (C1). FDSM is designed to make transitions
from any state on any inputs. If an input does not match with any possible transitions
from the current state, it makes a transition to a state which has a transition condition
most similar to the provided input. Specifically, for all next states from the current
state, it calculates the distance (by subtracting values from each byte offset) between
the current input and the transition conditions. Then, it selects a transition with the

smallest distance.

e Dynamic output translation (C2). FDSM takes any inputs and generates out-
puts where each input leads to a unigque output. When FDSM makes a transition on
an input that is not exactly matched with the input of the transition, it changes the
output translation rule by applying the differences between the current input and the
input annotated on the transition. This makes the output space very large as the

output can vary as much as the input varies.

Consider FDSM taking I as input and making a transition 7% where the transi-
tion’s annotated input and output are denoted as 17y and T, respectively. Now,

assume a scenario when an input with no matching transitions from the current state
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is given. In this case, FDSM makes a transition 7% if the distance (i.e., the sum of
the distance between characters) between I and 7%, is the smallest compare to other
transitions’ annotated inputs (i.e., Tfir). Moreover, we extend the output space by
dynamically changing 7%, based on the current input /. Specifically, given I that
is different from 77y, and assume that the state machine makes 7 transition, instead
of generating T, according to the state machine, we generate an output computed
by TE,r — (Ify — I) on each byte of T%,,, Tfy, and I and ‘=’ operator represents

subtraction on each byte between the two operands (with the same byte offsets).

4.2.2 Constructing FDSM.

First, we create states and transitions for translating the chosen input to the given
malicious payload, so that it can generate malicious payload when the predefined
attack delivering inputs are provided. We then add dummy states and transitions to
connect all states. Note that the dummy states and transitions can also be used to
create decoy (i.e., fake) payloads so that it can mislead the forensic analysis. Input-
s/outputs of the transitions to the dummy states are chosen in a way that the inputs
of all transitions look similar, making it challenging to know which transitions are for
malicious payload generations. Specifically, for each newly added transition, its input
is derived by choosing a similar word (i.e., synonyms/antonyms in dictionaries [1, 66])

to its neighboring transition’s input.



18

Chapter 5

Evaluation

5.1 Reliability of Stealthy-Attack

Stealthy-Attack takes input from webpages that are not under the control of the
attacker, meaning that the reliability of Stealthy-Attack’s attack is probabilistic. To
understand the reliability of Stealthy-Attack in practice, we create a mock attack

with real-world websites and show the result.

Experiment with real-world websites. To understand how reliably input words
will show during an attack, we conduct an experiment from May 2019 to June 2019
(40 days). In particular, we profile 5 websites (Twitter: Houston Rockets, Trinity
Church Boston, NASA Image of the Day, eBay, and Oracle Arena)! for the first 20
days, and observe the websites for the next 20 days to check whether the input words
appear. We select an input word from each of the websites, resulting in 5 input words
in total. As shown in Figure 5.1-(a), during the profiling period, there are about 19
hours that all desired input words appear together (highlighted). Figure 5.1-(b) shows
the input words that appeared on the websites during the observation period (May
28th, 2019 ~ June 17th, 2019). There are about 4 hours all the input words appeared

together. We present two more such experiments on our website [76], showing that

Thttps://twitter.com/houstonrockets, https://www.trinitychurchboston.org,
https://www.nasa.gov/multimedia/imagegallery /iotd.html, https://www.ebay.com,
https://www.theoaklandarena.com
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5/7/2019 5/12/2019 5/17/2019 5/22/2019 5/27/2019
» Twitter - Houston Rockets ¢ Trinity Church Boston NASA - Image of the Day
* eBay e Oracle Arena
(a) Profiling Period
-— ; N
- -
a——— —— — a— a——— a———
A D - G D D L 2  — - -
5/28/2019 6/2/2019 6/7/2019 6/12/2019 6/17/2019
 Twitter - Houston Rockets ¢ Trinity Church Boston NASA - Image of the Day
* eBay e Oracle Arena

(b) Observation Period

Figure 5.1: Input words appearing during the experiment. X-axis represents the date
and Y-axis represent the appearance of input words from websites.

creating reliable and stealthy attacks is possible.

5.2 Anti-forensic capability of Stealthy-Attack

Datasets for payloads. We collect 573 server-side malware from known malware
collection repositories [7, 8, 11, 58, 69, 79, 81, 82, 83, 85, 88]. The samples consist
of eight types: webshells, backdoors, bypassers, uploaders, spammers, SQLShells,
reverse shells, and flooders. For each category, we collect a similar number of samples

(e.g., 61~79). Details of each type of the samples can be found in Appendix A.

Statistics of Stealthy-Attack. We generate Stealthy-Attack instances for all 573
collected malware samples as shown in Figure 5.2. We categorize them by the sam-
ples’ sizes. As shown in Figure 5.2-(a), the sizes of Stealthy-Attack are significantly
larger than the original samples (from to 26 to 67 times roughly). To mitigate this sig-

nificant size increase, we apply compression, e.g., gzip, to reduce the size of Stealthy-
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Figure 5.2: Size of Stealthy-Attack instances.

Attack. Figure 5.2-(b) shows the sizes after the compression. Except for the first
group, the size of Stealthy-Attack is about 5 times larger than the original sample.
Stealthy-Attack in the smallest group is 10 times bigger than the original sample.
However, their sizes are less than 30 KB, which is commonly observed in real-world

PHP applications.

5.3 Comparison with existing obfuscators

We compare Stealthy-Attack with state-of-the-art obfuscation techniques. We pre-
pare two sets of samples: benign samples and malicious samples. We apply existing
obfuscators to obtain obfuscated versions of samples. We also create Stealthy-Attack
of the samples. Then, we run existing malware detectors to see whether the obfus-

cated samples and Stealthy-Attack instances are detected.

Obfuscator selection. Four state-of-the-art obfuscators are chosen based on their
popularity: PHP Obfuscator [25], YAK Pro [39], Best PHP Obfuscator [10], and
Simple Online PHP Obfuscator [43].
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Malware detector selection. We use three widely used malware detectors (PHP
Malware Finder [78], Linux Malware Detector [44], and Shellray [73]) and a recently
released PHP malware scanning tool called MalMax [55] that handles multiple layers
of obfuscations and exposes all hidden malicious behaviors of malware. We do not
use popular anti-virus software [49, 77] because they perform worse than the malware

detectors we selected as mentioned in [55].

Malicious sample selection and methodology. From the 573 malware we col-
lected, malware samples that are not detected by existing malware detectors are ex-
cluded from this experiment. Specifically, PHP Malware Finder identifies 413 sam-
ples, Linux Malware Detector flags 185 samples as malware, and Shellray detects
524 samples. To this end, we use the different numbers of samples for experiments
with each malware detector. Then, each obfuscator is applied to the samples and
obtains obfuscated malicious payloads. Finally, the four malware detectors scan all

the samples obfuscated by existing obfuscators and Stealthy-Attack instances.

Result for malicious samples. Table 5.1 shows that all existing malware detection
tools are unable to detect Stealthy-Attack (0%), while most of the malware samples
obfuscated by the other tools can be detected by at least three detectors: PHP Mal-
ware Finder (averagely 89.5%), Shellray (83%), and MalMax (100%). The detection
rate of Linux Malware Detector (LMD) is relatively lower than others as LMD is not

specifically designed for PHP server-side malware.

Understanding false alarms. Some malware detectors often consider any obfus-
cated programs as malicious, causing high false positive rates. To understand false
positive, 573 benign PHP program files from popular PHP programs’ codebases (in-
cluding WordPress [87], Joomla [30], phpMyAdmin [22], and CakePHP [47]) are col-

lected. Initially, none of the 573 benign files are flagged as malware by the existing
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Table 5.1: Detection results on malicious and benign samples.

PHP Mal. Finder Linux Mal. Detect Shellray MalMax
Obfuscator
Mal. Benign , Mal. Benign , Mal. Benign , Mal. Benign
_ PHP Obfuscator 7[275]7 77777 399/413  161/573 | 98/185 0/573 | 479/524  0/573 ! 573/573 0/573
YAK Pro [39] 264/413  139/573 _16/185 9[5775%7 Ny 239/524  1/573 R 573/573 70[537737 N

Simple PHP Obfuscator [43] = 413/413  573/573 |  0/185 0/573 ' 524/524 573/573 ' 573/573  0/573

I
0/524  0/573 ! 0/573 0/573

Stealthy-Attack 0/413  0/573 ' 0/185 0/573

Green cells on ‘Mal’ columns indicate that techniques are effective against malware detectors (Detected less
than 5%, and lighter green if 5%~50%) while green cells on ‘Benign’ columns mean that they have no false
positives (Lighter green if 5%~50%). Red cells represent the opposite (undesirable) results.

detectors. However, once they are obfuscated by PHP Malware Finder and ShellRay,
we observe many of them are detected as malware (i.e., high false positive rates) by
Best PHP Obfuscator [10] and Simple Online PHP Obfuscator [43]. Linux Malware
Detector has no false positives, while it misses many PHP malware samples in general

(i.e., low true positive rate).

Result from MalMax. MalMax [55] detects all the malicious code hidden by the
four existing obfuscators without flagging any benign obfuscated samples. However,
MalMax detects none of the Stealthy-Attack instances. This is because MalMax
focuses on executing all statements without precisely identifying attack triggering
inputs. Simply executing all statements of a target is sufficient for analyzing the

existing obfuscators but not sufficient for Stealthy-Attack.
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Chapter 6

Conclusion

This research introduces a novel form of attack called Stealthy-Attack, which aims
to secretly deliver malicious payloads while posing significant obstacles to forensic

analysis after the attack.

We triggered attacks by leveraging popular sites that hackers cannot control. To
collect words regardless of site changes, we utilized the DOM tree, and words that
meet certain criteria among those collected will reappear in the near future to frustrate
victims and forensic analysts from predicting the timing of the attack. Additionally,
we obstruct commonly used words to prevent forensic analysts from easily guessing

the attack input vector.

We leverage Fail-free Dynamic State Machine that effectively evades various foren-
sic analysis attempts. Malicious code remains undetected until a set of appropriate
benign words is translated by the state machine so that they can evade detection
from the most popular detection tools. Two characteristics of state machine make
the analysis attempts challenging here: Transition on any inputs and dynamic output
translation. Our evaluation shows that Stealthy-Attack is highly effective in prevent-

ing forensic analysis.
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Appendix A

Payload types

A webshell is malware that enables attackers to access a compromised server via a
web browser that acts like a command-line interface. Backdoor is used to provide
remote access to an infected machine for attackers. Bypassers are used to avoid
detections of local or remote security mechanisms (e.g., firewalls). Uploaders are used
to remotely inject additional malware into victim machines. Spammers compose and
send spoof/spam emails. SQLShells allows remote attackers to access databases of
compromised servers, similar to webshells. A reverse shell is a type of shell that
communicates back to the attacker’s machine from a victim’s machine. Flooders are
used to launch Denial of Service (DoS) attacks by sending an excessive number of

network packets.





