
Knowledge Graphs: Gaining Deeper Insight into Open-Source Data

CS4991 Capstone Report, 2024

Emmitt Sun James

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

gwu8ek@virginia.edu

ABSTRACT

Today, a vast amount of open-source data is

generated every single second, presenting a

significant challenge in its collection and

management. To address this, my team and I

implemented a knowledge graph based

solution, providing a structured representation

of entities and their complex relationships. The

project involved implementing many AWS

services including Amazon Neptune, a fully

managed graph database service. This graph

database allowed for efficient querying and

analysis, allowing for a better understanding

connections within the data. Initial results

demonstrated improved data accessibility and

enhanced pattern recognition. However, the

project still has plenty of room for

improvement with future work consisting of

adding advanced data visualization features,

adding a more advanced searching feature, and

optimizing graph performance.

1. INTRODUCTION

Every day, an estimated 2 million blog posts

are published on the internet (Puranjay, 2015).

These posts, which fall under the umbrella of

open-source data, are readily accessible. With

all of this data sitting at our fingertips, my team

and I were tasked with developing a solution

to organize the data in an intuitive and easily

navigable way.

In developing this solution, we sought to go

beyond traditional relational databases, which

can struggle to represent complex

relationships in an intuitive manner. As a

result, we decided to utilize graph databases to

create a knowledge graph, allowing us to

connect entites with each other via various

relationships. This approach not only

enhanced the structure of the data but also

improved querying capabilities, allowing

analysts to ask more nuanced questions and

retrieve insights more efficiently.

2. RELATED WORKS

In analyzing the current data management

landscape, Petkova (2024) discusses the

advantages of knowledge graphs. One of the

primary advantages is its ability to take in data

from many different sources, and combine

everything into a central access point in a

consistent manner. Another advantage that is

highlighted is the connection between the data

and the real world that knowledge graphs

provide. Unlike traditional databases,

knowledge graphs provide much richer

context, helping to capture inherent

complexities of real-world data. The flexibility

and efficiency of knowledge graphs is also

highlighted, in that a knowledge graph allows

for updating schema elements while also

storing data in a cost-efficient manner

Upon deciding to move forward with a

knowledge graph approach, my team and I had

an important decision to make: should we use

Amazon Neptune or Neo4j as our underlying

managed graph database service. Kumar

(2024) discusses the pros and cons of both

services, highlighting the factors that might

lead a team to prefer one over the other. Neo4j

the more established option in the space has

superior community support along with a more

stable experience. However, Neptune is better

at scale and offers seamless integration with

other AWS services. Its seamless integration

with other AWS services what ultimately led

us to choose Neptune over Neo4j.

In an article on the Neo4j website, a software

company known for its extensive graph

database management system, Bratanič (2022)

presents a detailed breakdown of an

information extraction pipeline that takes in

text data and adds it to a knowledge graph. The

presented pipeline, which includes steps for

entity recognition and extraction, relationship

extraction, and storing results in a knowledge

graph overlaps greatly with my experience

working on a knowledge graph based data

pipeline.

3. PROJECT DESIGN

In this project, my team and I were tasked with

designing a data pipeline and a web

application from the ground up. The data

pipeline was responsible for ingesting open-

source data, processing it, and inserting it into

a knowledge graph, a graph-based data

structure where information is represented as

nodes (entities) and edges (relationships).

Meanwhile, the web application would query

this knowledge graph and display the data in a

user-friendly way. Since we were building this

project from scratch, we had a great deal of

creative freedom in our design choices, free

from the constraints of an existing codebase.

3.1 DATA PIPELINE ARCHITECTURE

The data pipeline was architected entirely

using various Amazon Web Services (AWS)

services, a cloud computing platform that

provides many different services for cloud-

based data processing and storage options.

Leveraging AWS allowed us to create a

scalable and efficient pipeline, streamlining

data ingestion and processing, while reducing

the complexity of managing separate

infrastructures. Furthermore, when the team

had to select a managed graph database service

to build our knowledge graph on, we decided

to go with Amazon Neptune. This choice

enabled seamless integration with the rest of

our AWS-based pipeline, allowing for easier

management and streamlined data flow.

3.2 DATA INGESTION & PROCESSING

The first major step in the data pipeline is data

ingestion. Fortunately, an adjacent team had

already implemented this functionality, so

instead of building it ourselves, we accessed

the data through an AWS Simple Storage

Service (S3) bucket provided by their team.

Once the data is ingested, it undergoes a multi-

step processing phase. Initially, the data is

cleaned and standardized to ensure quality and

consistency. Next, we performed entity and

relationship recognition using DBpedia

Spotlight, a natural language processing tool.

This step identified and annotated key

entities—specifically people, places, and

organizations—while enriching these entities

with additional properties and connections to

other entities. This enrichment process was

crucial for building a comprehensive and

interconnected knowledge graph that would

form the backbone of the web application’s

querying and visualization capabilities.

3.3 KNOWLEDGE GRAPH

Once processed, the data is transformed to

align with a predefined structure, known as an

ontology, preparing it for insertion into our

knowledge graph. This transformation ensures

that the data follows a structured format

compatible with our Amazon Neptune graph

database. Once transformed, the data is

seamlessly loaded into Neptune, enabling the

creation of relationships and insights within

the knowledge graph that users can interact

with through the web application.

We decided to utilize a knowledge graph in

this project because of the unique advantages

it has over more traditional data storage

options. Knowledge graphs offer a more

flexible and powerful approach to handling

complex data relationships due to their graph-

based structure. This structure allows for more

natural representation of real-world

relationships and can handle the dynamic and

interconnected nature of open-source data

(Kiff, 2024).

3.4 WEB APPLICATION

The web application includes a frontend (user

interface) and a backend, creating a seamless

user experience for interacting with the

knowledge graph. The frontend allows users to

explore and navigate the data intuitively, while

the backend acts as a “data shuttle,” efficiently

retrieving and delivering relevant data from

the knowledge graph to the user-facing

frontend.

The design process began with rough sketches

on a whiteboard to establish a shared vision for

the user interface. Once the general design was

agreed upon, we transitioned to Figma, a tool

that enabled us to create quick mockups with

real design elements. This rapid prototyping

stage allowed us to experiment with multiple

designs, which we then presented to the team

for feedback. Each round of feedback led to

further refinements in the mockups, ensuring

the design evolved to meet our expectations.

After finalizing the mockups, we began coding

the frontend using TypeScript with the

Angular framework and styled it with

Tailwind CSS. To ensure the frontend was

robust, we utilized the Jest testing framework

to develop comprehensive tests, reinforcing

the quality and reliability of the application.

While the frontend provides an interface for

the users to use, it is unable to function without

a backend to receive data from. The backend,

written in Java via the Spring Boot framework,

handles requests from the frontend via various

endpoints for different purposes. Within each

endpoint, the backend would query the

knowledge graph in a specific way to get the

exact data needed. For example, one of our

endpoints was to retrieve all entities that were

connected to a specific entity, which was

specified by an entity ID parameter that could

be passed in. These queries were written using

Gremlin, a graph query language that

streamlined querying the knowledge graph. To

ensure the backend was always working

properly, we implemented various unit tests

using Spring Boot's built-in testing

capabilities.

3.5 CI/CD PIPELINES

To ensure efficient and reliable deployment of

our application, we implemented continuous

integration and continuous deployment

(CI/CD) pipelines using GitLab runners.

These pipelines automated key stages of our

development workflow, including building,

testing, and deploying the application. Each

code commit triggered the pipeline to run

different tasks including linting, testing, and

building. In doing so, we could automatically

ensure that code quality was maintained, and

potential issues were addressed promptly,

before being pushed. Additionally, the

pipelines streamlined the deployment process,

allowing successfully tested builds to

transition seamlessly into production

environments with minimal manual

intervention.

4. RESULTS

While there were still a few features we

wanted to implement, my team and I

successfully developed an application that

achieved its core objectives. The application

effectively and automatically ingested open-

source data, integrated it into a knowledge

graph, and provided users with an intuitive

interface to explore and interact with the

graph’s interconnected data.

One of the highlights of the experience was the

opportunity to present our project during the

company's all-hands meeting in August.

During the presentation, we demonstrated the

core features of the application, explored some

of the technical innovations, and shared details

of our overall internship experience. This not

only highlighted our technical achievements

but also allowed us to showcase the

collaborative effort and learning that went into

building the project.

5. CONCLUSION

This project successfully addressed the

challenge of managing vast amounts of open-

source data through a knowledge graph-based

solution built on AWS services. By combining

an automated data pipeline and a knowledge

graph with an intuitive web application, we

created a system that effectively organizes

complex relationships within open-source

data. The project not only achieved its core

objectives of data integration and accessibility

but also provided valuable experience in

working with modern technologies like AWS,

Angular, and Spring Boot. The foundation we

established offers a robust platform for future

development and demonstrates an effective

approach to handling the growing volume of

open-source data.

6. FUTURE WORK

A key feature for future development would be

the implementation of an interactive graph

visualization feature. Such a feature would

enable users to visually navigate through

entity relationships, offering an intuitive

understanding of the knowledge graph's

structure. Users could interactively explore

connections between entities, zoom into

specific clusters of relationships, and discover

patterns that might not be apparent otherwise.

Amazon Neptune has a feature like this which

we played around with, but we were never able

to imtegrate it into our own application.

Something else we wished we could have done

was to create our own entity extraction service.

Although DBpedia Spotlight served our

immediate needs for entity recognition and

enrichment, developing an in-house solution

would offer several advantages. A custom

service could be tailored to our needs,

improving the accuracy and relevance of

extracted information. Additionally, this

would eliminate a dependency on an external

service, enhancing system reliability and

providing greater control over the data

pipeline as a whole.

REFERENCES

Bratanič, T. (2022, March 28). From Text to a

Knowledge Graph: The Information

Extraction Pipeline. Neo4j.

https://neo4j.com/blog/text-to-knowledge-

graph-information-extraction-pipeline/

Kiff, L. (2024, February 16). Exploring the

Revolution: Graph Databases in Modern

Data Management. Tom Sawyer Software.

https://blog.tomsawyer.com/knowledge-

graph-vs-graph-databases

Kumar, A. (2024, August 4). Neo4j vs.

Amazon Neptune: Graph Databases in

Data Engineering. Analytics Vidhya.

https://www.analyticsvidhya.com/blog/20

24/08/neo4j-vs-amazon-neptune/

Petkova, G. (2024, January 26). Knowledge

Graphs: Redefining Data Management for

the Modern Enterprise. Ontotext.

https://www.ontotext.com/blog/knowledg

e-graphs-redefining-data-management-

for-the-modern-enterprise/

Singh, P. (2015). 2 Million Blog Posts Are

Written Every Day, Here’s How You Can

Stand Out. MarketingProfs.

https://www.marketingprofs.com/articles/

2015/27698/2-million-blog-posts-are-

written-every-day-heres-how-you-can-

stand-out

https://neo4j.com/blog/text-to-knowledge-graph-information-extraction-pipeline/
https://neo4j.com/blog/text-to-knowledge-graph-information-extraction-pipeline/
https://blog.tomsawyer.com/knowledge-graph-vs-graph-databases
https://blog.tomsawyer.com/knowledge-graph-vs-graph-databases
https://www.analyticsvidhya.com/blog/2024/08/neo4j-vs-amazon-neptune/
https://www.analyticsvidhya.com/blog/2024/08/neo4j-vs-amazon-neptune/
https://www.ontotext.com/blog/knowledge-graphs-redefining-data-management-for-the-modern-enterprise/
https://www.ontotext.com/blog/knowledge-graphs-redefining-data-management-for-the-modern-enterprise/
https://www.ontotext.com/blog/knowledge-graphs-redefining-data-management-for-the-modern-enterprise/
https://www.marketingprofs.com/articles/2015/27698/2-million-blog-posts-are-written-every-day-heres-how-you-can-stand-out
https://www.marketingprofs.com/articles/2015/27698/2-million-blog-posts-are-written-every-day-heres-how-you-can-stand-out
https://www.marketingprofs.com/articles/2015/27698/2-million-blog-posts-are-written-every-day-heres-how-you-can-stand-out
https://www.marketingprofs.com/articles/2015/27698/2-million-blog-posts-are-written-every-day-heres-how-you-can-stand-out

