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Abstract

Algorithms for solving the resource leveling problem (RLP) in construction projects are proven to increase

e�ciency, create predictability, and balance resource demand across adjacent time periods of the project's

duration while observing time and resource constraints. Leveling resources reduces the amount of change

between one time period and the next in the project's time-use resource histogram. Conventional optimiza-

tion methods of the RLP can become di�cult as the number of decision variables grow, because the solution

space increases exponentially as variables are added. Genetic algorithms are very capable when applied to

large-scale instances of the RLP, and here the author applies a genetic algorithm testing multiple objective

functions from literature with di�erent performance measures, including kurtosis, the Resource Improve-

ment Coe�cient, and non-parametric statistical analysis. Results show that given a large problem based on

practical data, genetic algorithms produce an unexploited large range of robust options via their embedded

search population for decision-makers and planners. These alternatives can even be selected mid-project up

to a certain point, while maintaining solution strength. There is a demonstrated tradeo� between number

of time-feasible alternate solutions and variance of the alternate decision variables.
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1 Introduction

1.1 Resource leveling

Second only to resource scheduling, resource leveling has the potential to dramatically reduce costs and

improve e�ciency in any set of tasks based on precedence relationships and a �nite number of resources

[1]. Based around an assumed critical path established during a scheduling algorithm, resource leveling then

takes non-critical tasks (tasks that despite their change in start time will not change the overall outcome

of the project duration) and reorders them by shifting their start times in order to reduce the number of

resources or expenses incurred during a project. In small projects (e.g. 5 to10 tasks), integer programming

can be used as a tool to arrive at a feasible, optimal solution. Using di�erent exact search methods and

heuristics to level resources in [2] and [3] are earlier attempts to solve this problem. The di�culty of the

resource leveling problem (RLP) lies in combinatorial explosion of the solution space as resources and tasks

are added. This makes pure optimization techniques ideal for smaller problems only. [2] suggests that the

larger problems are non-deterministic polynomial-time hard [4], and therefore are ideal for search heuristics

to examine the solution space. Many heuristics attempt to arrive at a near-optimal solution by establishing

an algorithmic search using a large population of search solutions that return the top solution from the group.

The following methods combine the robust solution features of the population and o�er comparisons between

nine di�erent objective functions using a normalized comparison between resources of di�erent capacities

with the Resource Improvement Coe�cient [5], as well as statistical comparison of the e�ect of the mutation

parameter using Friedman's test and an Bonferroni-Dunn adjusted p-value. This paper will demonstrate

that during a construction project, genetic algorithm solution populations are capable of providing robust

alternatives to the best solution using the population of near-optimal solutions and compare their statistical

and normalized performance across di�erent objective functions.

1.2 Theater Construction Management System

The goal of many research e�orts in this area is the expand the methodology by accessing smaller benchmarks

for comparison, but leaving the suggestion of further research on large speci�c problems to other papers.

This research seeks to remedy this issue by applying RLP methods to real-world data acquired from the

US Army's Theater Construction Management System. This repository of information contains data on the

man-hours and resources required to ful�ll given construction tasks, altered for reproducibility here and for

the analysis of these methods.
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2 Literature Review

2.1 Resource Leveling Methods

Resource leveling can be described as a depiction of the time-resource histogram which has tasks restructured

in order to closely resemble a rectangle as much as possible. This rectangular shape can also be described

as the kurtosis, or moment of the resource usage over time. A �at surface on the histogram indicates a

minimum �uctuation of resources throughout the construction project. [3] established a method based on

several assumptions in the construction project. First, activities are assumed to be continuous, and resources

are applied at a constant rate over the entire task. Second, the duration of activities and the network logic

is �xed in order to preserve the logical relationship that exists in the critical path. Finally, the project

termination time is �xed, so that the search heuristic may not change the overall time of the project. Every

set of resources will have some constraints which prevent the formation of a perfect rectangle, and the solution

space itself relies on software to provide the critical path based on tasks and resources present in the project.

[Harris] methodology revolves around the representation of the histogram itself, which is �rst provided by the

proper data for tasks and resources. A matrix detailing the days of operation for each tasks as columns and

the individual activities themselves as rows. Each matrix position that must be used by a task is assigned a

1, and a position that may be occupied is given a 2. Matrix positions that are unavailable are assigned a 0.

Each day's resource use is then calculated to form a base case for the histogram. A list of activities ordered

on the highest resources used is then formed, which has several tie breaking procedures based on total �oat

and sequence length. Each activity on this list is processed in order to �nd the best reduction in resource

consumption for the possible days where that activity may be scheduled based on preceding and following

activities. The matrix of days active for tasks is updated with the new position information after each task

is processed, and the �nal matrix is used to redraw the histogram representing the leveled resources. The

objective function is the reduction in each day's change in moment m from the prescribed shifts y1−y2 based

on the resource rate r for the equation ∆m = r(y1 − y2). This heuristic is relatively simple in application

because of its methodical step-by-step approach, and can therefore be used to tackle large problems while

avoiding the di�culty of being NP-complete in practice when applying optimization techniques.

An issue that is covered with assumptions by many pieces of RLP literature is the existence of multiple

resources. Many papers will assume a renewable resource, or equate resource usage in to unit costs such

as currency in order to simplify the solution space by constraint reduction. [6] attacks the multi-resource

problem using a genetic algorithm, which is uniquely suited to exploring this search space. These resources

are optimized simultaneously resulting in reduced resource �uctuation.

One of the �rst optimization approaches to the problem by Easa in [2] also starts from an established
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critical path. The model's assumptions are that only one resource is being leveled at a time. An alternative

to leveling multiple resources is to express every resource in the same units (e.g. dollars or time) and

apply the method. This integer programming approach involves minimizing an objective function that uses

the di�erence between the ideal resource rate expressed as the total resource available over time of the

project against the actual value, z =
∑T

i=1(e− + e+), where e−or e+ takes on the real positive value of

the resource rate (e−for below desired rate or e+positive for above desired rate), with the other being zero.

The speci�ed constraints ensure that the resource rates are not exceeded in any one time period i, and that

each activity yi is completed by the assigned resources. Additional constraints ensure that the shift xk for

each non-critical activity k does not fall outside the range of the project from time zero to the end of the

total �oat TFk. A second objective function that instead minimizes the absolute di�erence between some

other variables associated with each activity yi, z =
∑T

i=1(u− + u+). Variables u− and u+ are implemented

as programmable variables that minimize the di�erence between consecutive days of operation in order to

decrease the total �uctuation of resource usage over time. Two cases are examined, the �rst which attempts

to level the histogram of resource usage across the entire project, and the second case that attempts to

minimize the change in resource usage from one day to the next (consecutive �uctuations). A third case is a

small restructuring of the constraints which has the goal of conforming the resource histogram to a speci�c

desired response. The main drawback to this optimization method is that a single resource is optimized

at a time, or the resources must be expressed in uniform units in order to tackle a problem with multiple

resources.

Al-Sayegh and Hariga propose a method for splitting activities during the optimization process in [7]

by assigning costs to starting and stopping activities as well as the cost per-use for all resources executing

assigned activities. The authors then take this concept further in [8] where they sidestep the di�culties asso-

ciated with NP-completeness for large problems involving many resources and tasks with a �meta-heuristic�

by combining several techniques. The heuristic method used is Particle Swarm Optimization (PSO) . This

method initializes a number of solutions whose goal is to emulate the natural �ow of a swarm such as a group

of bees or a school of �sh, with the idea that information about the best solution in nature (location of food)

is assessed by the swarm through the sharing of information between members of the swarm. Each solution

in the swarm carries information about its velocity in the solution space, best local position based on the

objective function, and the best global solution in the swarm. The kth search position for each solution i

is related as an N−dimensional vector Xi(k) = [xi1(k), ..., xiN (k)]. The system is initialized such that the

starting binary solutions for each swarm member are feasible project schedules. Each iteration of the search

sees the members of the swarm update their position via their velocity (rate of change between previous

position and the current position) using the equations
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Vi(k) = wVi(k − 1) + c1r1
[
XL

1 −Xi(k − 1)
]

+ c2r2X
G −Xi(k − 1) (1)

Xi(k) = Vi(k) +Xi(k − 1) (2)

Where XL
i is the best local solution for the ith member of the swarm, XG

i is the best global solution,

and w, c1, and c2 are adjustable weights representing inertia, strength of local learning (or local gravity),

and strength of global learning, respectively. Both r1 and r2 are uniform random numbers between 0 and 1.

A maximum and minimum range is imposed on velocity in the form of [Vmin, Vmax], which are also con�ned

to a range between 0 and 1. Each bit or dimensional position information value xin(k) is represented as a

string of binary values denoting whether or not an activity is active during a time period. So an example

of this is to have the swarm solution be represented by Xi(k) = {(1, 1, 0), (0, 1, 1), (0, 0, 1)}, which would be

three noncritical tasks occupying di�erent time periods. After each update, the PSO algorithm in question

may or may not have a feasible solution. If it exceeds resources, the task is either moved backward if there

are non-critical prerequisite activities, or it is randomly moved with equal probability among other feasible

time states until a feasible solution is found. This process continues until a solution cannot be improved

upon, or a steady-state condition for the swarm members is found. The authors also note that a de�ciency

of the PSO method is individual members may trap themselves in local optima, and that the computational

complexity of the search algorithm must be balanced against the search strength in the number of swarm

members initialized.

Evolutionary algorithms like genetic algorithms and particle swarm optimization have led to more biology-

based heuristics. In [9], an improved ant-colony optimization mimics the pheromone trail left by ants in order

to search a solution space consisting of a directed graph. The solution strength of each ant a�ect the stochastic

process of choosing a node-arc path along the graph. Another element of leveling resources in a practical

application is simulated by adding stochastic processes to the duration of the activities as described in [10].

The authors also use a genetic algorithm, but take the model further by employing a Monte Carlo simulation

model by selecting predetermined values for the task lengths using a cumulative distribution function. By

analyzing project length in a stochastic fashion, this study allows for sensitivity analysis which can further

be incorporated in to risk analysis and decision making.

2.2 Comparison of Optimization Solutions and Robustness

The di�erent solutions provided by the population of the any algorithm which contains such a population
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over the course of its search allows for further analysis of each member of the population. No solution in a

heuristic search is guaranteed to be optimal, but due to the evolutionary nature of the algorithm carrying

parts of the best solutions forward in to each generation, we may see multiple solutions that are very near-

optimal but do no necessarily have similar decision variable values. In addition to having a population of

near-optimal solutions for comparison, the robustness of these solution populations may be of some utility.

Robustness is de�ned in The attractiveness of acquiring a robust solution stems from the natural world's

changing features which can a�ect measurements and observations. [11] apply the concept of robustness to

a single solution of an optimization problem in that the solution is resistant to small changes in the values

of the decision variables. In other words, the optimum point that the solution rests in or is near to resides in

a space that is closer to �at than sharply convex, or peaked. This ensures that the variables may be moved

without throwing the solution too far from its optimum (or in to infeasible space). The motivation for the

desire of this kind of robust solution is based in the real world idea of noise. Signals, measurements, and

uncertainty all play a part in every day solutions, and optimization methods for the practicing engineer must

be able to cope with these perturbations.

The kinds of noise that [12] discuss come from four di�erent areas. The �rst kind of noise is applied to

the objective function for the algorithm in question, such that an objective

F (X) =

ˆ ∞
−∞

[f(X) + z]p(z) (3)

Where z ∼ N
(
0, σ2

)
. This objective function results in a random change for each solution for every

calculation, which simulates some noise that is encountered for the problem at hand. The second kind of

noise discussed by [12] and is change applied directly to the decision variables via some small δi,

F (X) =

ˆ ∞
−∞

f(X + δi)p(δi)dδi (4)

This solution is considered robust if it maintains near-optimality despite these δi changes in the decision

variables. In other words, δi does not carry the new value of the objective F (X) very far from its original

value. While this noise is similar to the uniformly distributed noise, the key di�erence is the same continuous

application of the objective function over X+δi, instead of changing the value of the objective function after

the measurement was taken.

Since the solutions provided are stochastic in nature, they cannot be reliably compared using conventional

methods, such as comparing a single objective function value to another [11]. An algorithm like genetic

algorithms that contains a measure of uncertainty in every evaluation, be it decision variable or objective

function, should include a con�dence interval for the values of the decision variables or solutions achieved. In
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this way, the amount of variance provided in the solution can be measured and compared to make a better

judgment as to the e�ciency of the method in question.

Another special case of problem is the dynamic multi-objective optimization problem [13]. The introduc-

tion of time as a variable has a special relationship with the RLP, in that once time has passed for certain

variables, the problem becomes simpler, as there are less decision variables to optimize. That is, once the

start time for a given construction task has passed, that task is no longer available for adjustment by the

algorithm. At the same time, [13] considers the important implication of considering the evaluation of not

only the objective function value as �tness, but also the real values of the decision variables themselves. An

additional level of complexity to this problem is time scales. If resources are being applied hourly in varying

rates, does it make sense to re-compute the possible solutions at every hourly time step? What step value

does it make sense to compute at? The authors answer is that more e�cient methods are needed to compute

in a time-sensitive environment to ensure optimality and decision making.

Lastly, [14] sheds further light on comparison techniques for di�erent classes of algorithm comparison.

The main two tests considered are the Friedman Rank-Sum Test and the Quade Test. Both of these tests are

similar to analysis of variance (ANOVA) in that they test for di�erences between groups of data (treatments)

separated by factors. In this case, it is di�erent evolutionary algorithms (EAs). Because the EA solutions

lack normality, the Friedman and Quade Tests are utilized because they claim no Gaussian assumptions with

respect to distribution. The downside to those relaxed assumptions, however, is a loss of hypothesis strength.

The Friedman test statistic treats all of the data sets as if they were equal, while the Quade test takes each

data set and ranks them according to the largest di�erence between their maximum and minimum values.

This is a good feature when we are trying to preserve the diversity (robustness) of the solution.

3 Problem Description

The RLP remains a challenging problem for practicing engineers who manage a large quantity of resources.

As stated previously, the exponential increase in solution space from a modest increase in resources and tasks

to be optimized results in a problem that is di�cult to attack computationally. Once a problem solution

has been identi�ed however, the possibility that a single optimized solution for a large, complex operation is

going to su�ce is an unlikely proposition. Changing conditions, or noise, as described in [15] are a common

reason to seek robustness in an algorithm's ability to �nd a solution. To that end, genetic algorithms provide

some unique abilities in terms of noise addition by randomly mutating decision variables as well as randomly

swapping variables between solutions. I seek to analyze what robustness lies between the di�erent members

of a genetic algorithm population solutions of di�erent objective functions and how that may be exploited

in the RLP.
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The maintenance of heavy equipment and the overhead of carrying many construction workers highlights

the need for e�ective management of resources during the execution of the project to control costs. Resource

leveling reduces costs and complexity of projects by reducing the change in resources necessary over time

for a given project. Many past papers have not used real-world data, but taken a theoretical approach to

implementing resource leveling algorithms. Instead, this research focuses on data from military construction

projects in order to accurately test genetic algorithms and various objective functions in a large, multi-

resource projects. This research applies the concepts of variable similarity and model robustness to genetic

algorithms, whereby a set of many feasible, near-optimal solutions provide stakeholders with a varied array of

options to meet their prioritized demands in a complex project. Should the chose solution become infeasible

during the course of the project, the project planners have multiple alternative solutions to choose from

when capitalizing on the search populations provided by genetic algorithms. Many di�erent search methods

explored in literature �nd a way to either identify the shortcomings of exact search [2], or to discover a clever

heuristic to overcome the shortcomings of exact search when applied to large problems [3]. The Resource

Leveling Problem (RLP) is a class of problem that has the feature of being solvable in Non-deterministic

Polynomial time, or NP-hard. NP-hard problems are characterized by a combinatorial explosion of the

solution space as resources and tasks are added. This attribute makes pure optimization techniques ideal only

for smaller problems. Larger problems are NP-hard, and therefore is ideal for search heuristics to examine

the solution space. An area that is not well-explored is the robustness of genetic algorithms. Because genetic

algorithms use a population of solutions to explore the search space by chromosomal recombination and

mutation, at the end of the search a number of semi-optimal solutions exist. While no genetic algorithm

is guaranteed to be exact, having a number of feasible, high-quality solutions to o�er stakeholders is an

advantage that population-based searches like genetic algorithms hold over more exact or single-solution

search techniques.

4 Data and Methodology

4.1 Data and Objective functions

The construction tasks associated with a 30 to 60 soldier combat outpost have been pulled from the

Theater Construction Management System utilized by the US Army. These tasks begin with site clearing,

or horizontal construction, in which the site is bulldozed and graded in preparation for further vertical

construction. The horizontal constructions unit provides the machinery and soldiers to conduct these tasks.

After the horizontal leveling is completed, the vertical construction unit begins using human resources

composed of carpenters, masons, electricians, and plumbers to execute work on construction activities once
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Table 1: Objective Functions
Number Function Description

1 Z = min
∑T

i | Yi+1 − Yi | Minimize absolute di�erence between time periods

2 Z = min
∑T

i | Y
+
i+1 − Yi | Minimize positive di�erence between time periods

3 Z = min
∑T

i | Yi − Y | Minimize absolute di�erence between time periods and the mean
4 Z = min[max(Yi)] Minimize the max resource usage per time period
5 Z = min[max | Yi+1 − Yi |] Minimize the maximum absolute di�erence between time periods

6 Z = min[max | Yi − Y |] Minimize the max absolute di�erence between time period and the mean

7 Z = min
∑T

i (Yi)
2

Minimize the square of the time period resource usage

8 Z = min
∑T

i (Yi+1 − Yi)2 Minimize the square of the di�erence between time periods

9 Z = min
∑T

i

(
Yi − Ȳ

)2
Minimize the square of the di�erence between time period and the mean

horizontal construction is complete. The tasks for vertical construction include force protection towers,

HESCO barrier walls, a security gate, Southeast Asia huts (SEAHUT) for housing, an ammunition storage

building, an operations building, and a �at gravel helipad. These tasks use construction sub tasks from the

Army's Theater Construction Management System to draw information about construction times, resources

required, and the logical network path for each construction sub task. These sub tasks are then placed in

to Microsoft Project to gain the critical path information necessary for the resource-leveling of non-critical

tasks. With 59 tasks completed by 21 resources, viewing each graph visually (Appendix B) can be tedious.

Relying on kurtosis to help demonstrate the overall shape of the graph numerically help us quickly evaluate

candidate solutions.

The objective function in use minimizes the sum or squared di�erence of each tth resource on every ith

day from the expected average resource level, Ȳi, across the project duration. Each solution is evaluated for

its value of X which is then returned to the algorithm in question. In total there are nine objective functions

from [16]

These objective functions are compared using kurtosis and a normalized version of kurtosis called the

resource improvement coe�cient (RIC) [5]. The RIC is normalized for the quantity of resources being use,

which, unlike kurtosis, allows for direct comparisons between individual resources for the strength of the

leveling solution. Resources with a high capacity will still have better scores, as it is easier to level them out

by spreading more units of resource around. Resource with only a few or even a single unit of capacity or

assignment will fare the worst, but RIC is a fair comparison due to the normalized measure.

RIC =
n
∑
Y 2
i

(
∑
Yi)

2 (5)

Other objective functions have included expressing the unit cost of a resource in a speci�c time to order all
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resources, while other functions have minimized the objective expressed as resource usage �uctuations over a

sequential time period. In the case of universal costs, I believe that it is not as realistic to express a problem in

terms of cost in a military operation implied in the data, due to the nature of unit structure and equipment

allocations. The budgeting requirement for deploying military units mostly comprises the transportation

to the site of the counter-insurgency as well as the necessary logistics of keeping those units operating

once they have arrived. These cost-planning procedures are generally unconsidered by individuals planning

military construction operations, whose priorities are usually meeting mission construction objectives while

minimizing or avoiding casualties. Therefore, considering the resources as uniform costs is not appropriate

for this research. Minimizing �uctuations of day-to-day use, on the other hand, may be especially useful for

high-priority items like heavy equipment or highly technical �elds, like electricians or technical supervisor.

4.2 Methods

4.2.1 Genetic Algorithm

Genetic algorithms similar to [6] are a class of search heuristics which attempt to emulate the natural

progression of evolution prescribed by the mating of surviving pairs of a species and the possible mutations

of genes. This process is achieved by �rst initializing the genes, or real-valued sequences of start times for

the tasks within bounding constraints that imply their network precedence, and then calculating the �tness

of the initial sequence in the gene. A population of the user's preference is set where each member of the

population is a possible solution that is initialized with random values that fall within the parameters of

the search space. A prioritized list of the solutions is sorted with the best scoring genes at the top. The

solutions, or �genes,� all perform crossover at that point where each gene is randomly (or not randomly)

paired with another gene, and they swap chromosomes, which are represented as di�erent start times for

di�erent tasks. The point at which each gene is split in half is random. The start times after this split

point are swapped to form two new solutions. After all the genes have completed crossover, there is the

possibility of mutation, which can be set as a variable before the genetic algorithm search is initiated. After

the mutation, the objective scores for each gene is recalculated and all the genes are re-sorted according to

their objective score. Then elitism is applied, whereby only a certain number or percentage of the population

continue on to the next iteration. The remaining population is discarded, similar to survival of the �ttest.

The search sequence then repeats according to either a minimal increase in population strength (i.e. the

best solution does not get better), or a certain number of iterations have been run.
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4.2.2 Robustness

Each solution in a genetic algorithm lies in a convex optimum space which is usually near-optimal without

any guarantees of being the global optimum. While it is easy to identify robustness graphically in a one-

or two-dimensional setup like [15], it becomes di�cult to describe robustness graphically beyond three

dimensions (two decision variables and one objective function), or in the case of the given decision variables,

21 dimensions. Coupling that with the nine objective functions of interest (Table 1), and the problem

becomes di�cult to imagine as a picture. In looking at a graph of solutions plotted against a solution

strength in a one-dimensional case from [15], one could summarize robustness as maintaining as close a value

as possible to the optimal objective f while allowing for a diverse range in x. Or, using the normalized

values of RIC from [5], robustness among solutions RGA maintaining the best possible RIC values while

simultaneously seeking to maximize the amount of variance described the di�erent decision variable values

across a genetic algorithm population solution. The best scores for (6) would be those that are closer to

zero. Because the RIC for each solution a among all objective functions is normalized and each decision

variable xb occupies the same range for each solution, (6) may be used to compare the robustness of each

genetic algorithm's population.

RGA =

(∑A
a=1RICa −RICbest

)2
∑A

a=1 var(xa)
(6)

5 Experimental Setup and Preliminary Results

The genetic algorithm was initially computed di�erent values based on the inputs in Table 2, using a starting

seed of 1234 and R's default Marsenne Twister for random number generation. The initial population is

drawn from the critical path method start times, and the solution space is the available slack to the non-

critical tasks. In this way, the duration of the project is not increased while exploring the full range of

values for each decision variable. The GenAlg package from R was used to supply the algorithm and return

the best solution in each model population. Each population's size and the number of iterations remained

constant, as I discovered that after a certain point (approximately 7-12), increasing the number of iterations

has diminishing improvement on the average solution in some cases. The best solution was unmoved after

7-12 iterations, and each run was completed with 25 iterations on 50-solution population with the initial

results in Table 2. Additionally, increased elitism, where less solutions are carried over from the previous

generation, decreases the computation time shown in Table 2 due to a lower computational requirement

on the objective function by not computing the scores for the culled solutions. Mutation is kept low to
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avoid having wild solutions a�ect the overall progression of each population towards solutions. Mutation

was initially run at levels of 0.05, 0.10, and 0.15, and then later changed to 0.10, 0.20, and 0.30 for the �nal

runs to generate a large data set of solutions (N=1350). The limited-memory BFGS-bounded method [17]

was also initially examined (Table 2), con�rming that the solution space is in fact �lled with many local

optima. This preliminary setup allowed insight for further exploration of the algorithm's performance on

the problem data.

Table 2: Objective Function and Kurtosis Values
Model Mutation Chance Elitism OBJ -SSD from Average Average Kurtosis

1 0.05 10 34657.4 22.3522
2 0.10 10 34687.01 20.14292
3 0.15 10 35007.91 21.78503
4 0.05 20 35173.64 18.26831
5 0.10 20 34891.79 20.66061
6 0.15 20 34693.12 17.9332
7 0.05 30 34817.02 21.26747
8 0.10 30 34937.89 15.36339
9 0.15 30 35218.36 19.17767
10 L-BFGS-B NA 60277.47 54.94959

After analyzing the results from Table 2, a new set of runs using the objective functions from Table 1,

the mutation levels at 0.10, 0.20, and 0.30, and a constant elitism of 25. Each objective function was tested

against the three runs from the di�erent mutation levels, for a total of 27 runs. These 27 runs together

provided a net 1,350 solutions for the objective function performance to be analyzed. These were compiled

in to data sets for individual resource values for kurtosis and RIC with the appropriate factors indicated for

the run as a record.

6 Experimental Results

6.1 Objective function sensitivity to mutation

[16] supplies 9 such objective functions which are variations on the main objective functions found in litera-

ture. Simple scatter plots of RIC and Kurtosis values across all solutions showed a high degree of integration

between many of the objective functions across the di�erent resources (Figure 1). To compensate, I at-

tempted to aggregate the data across all objective function to see if there were Gaussian characteristics, but

many of the data became multi-modal at that point (Figure 2). After compiling the data for both kurtosis
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Figure 1: RIC and Kurtosis Scatter plots for Carpenters and General Labor

Figure 2: RIC QQ and Density Plots for Dump Trucks

and RIC, density plots, quantile-quantile plots, and chi-square tests for normality were run on all groups

within each objective function treatment (i.e. 150 solutions). Each group of data failed all of the tests.

With statistical test based on Gaussian assumptions unavailable, a recommended alternative to comparing

optimization solutions is non-parametric analysis using the Friedman Rank-Sum Test [14].

The Friedman rank-sum test uses a test statistic

χ2
F =

12n

k(k + 1)

∑
j

R2
j

k(k + 1)2

4

 (7)
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Table 3: Friedman's Test (Y < Adjusted P-value) Objective Function factored by Mutation Rate
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

OBJ1 Y Y Y Y Y
OB2 Y Y Y Y Y Y
OB3 Y Y Y Y
OBJ4 Y Y
OBJ5 Y Y Y Y Y Y Y Y Y Y Y
OBJ6 Y Y Y Y Y Y Y Y Y Y Y
OBJ7 Y Y Y Y Y Y Y Y Y Y
OBJ8 Y Y Y
OBJ9 Y Y Y Y Y Y Y Y Y Y Y Y

Which has a χ2
F distribution with k − 1 degrees of freedom. The authors in [14] recommend that the

di�erent non-parametric analysis techniques represented by the Friedman Test, the Friedman Aligned-Sum

test and Quade test are similar, but that the latter two should not be used when comparing more than 4-5

treatments as I am here. Therefore, the Friedman test is used to compare the di�erences among the di�erent

objective functions to test for signi�cant di�erences among the solutions. I then perform post-hoc analysis

as recommended in [14] by selecting the Bonferroni-Dunn adjustment to the p-value to add some power

to the test. The adjusted p-value was 0.0018, which a number of groups within the mutation factors fell

below for signi�cance (Table 3). This table indicates which objective functions may have mutation chance

play a signi�cant role in the performances of the genetic algorithm. Objectives 5, 6, 7, and 9 all had a

higher incidence of a statistical di�erence between the within objective function runs of a given mutation

chance. In other words, at a 95% con�dence interval with Bonferroni-Dunn adjustment with 8 degrees of

freedom, these objective functions are sensitive to mutation when comparing RIC scores among solutions

for the objective function and resource combinations indicated by a Y (for yes) in Table 3. Additionally,

the Grader, Heavy Equipment Operator, and Plumber (resources 11, 12, and 17, respectively) are also more

a�ected by di�erence in the mutation chance assigned to the genetic algorithm. These are all low-capacity

resources that are not only assigned the critical path tasks, which indicates that there will be a high amour

of variability when it comes to optimizing them in the RLP.

6.2 Optimality

Meeting the unique challenges of analyzing a non-parametric set of solutions requires visualization and an

understanding of the ultimate objective of the genetic algorithm robustness. Stakeholders desire multiple

options to suit a variety of changing constraints and goals, and a body of solutions which maintains a high

degree of variance while still preserving solution strength may be de�ned as robustness. With a tool like
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RIC to compare normalized resources, it is not necessarily prudent to devolve all resource management

in to currency in order to make the RLP easier. It will still be di�cult to compare solution statistically

due to the weak assumptions that the Friedman's test rests on. The ultimate goal of resource leveling is

the charts in Appendix B, where resource usage is leveled over time to turn the time-use histogram in to

a square box. Achieving robustness and preserving the RLP solution strength at the same time with a

genetic algorithm population ensures that there are alternate options should there be contingencies during

the project. Applying the Friedman's test with Bonferroni-Dunn adjustment (.0167), this time to the mean

RIC values supplied by each objective function and mutation combination as described in Table 4, yields a

p-value of 0.007, stating that the objective functions when compared with mean RIC are sensitive to di�erent

mutation values at 95% con�dence with Bonferroni-Dunn adjustment on 8 degrees of freedom. Based on

this information and Table 4, objective function number nine with a mutation probability of 0.10 appears to

be the best performing genetic algorithm for this method. Examining Figure 3 allows a comparison between

mean RIC and variance, where it can be seen that the OBJ9 solution at 0.10 mutation lies �rmly in the

middle of the pack when it comes to overall variance. If mean RIC is a good metric of the population's

robustness and more variance is desired, a better solution might be objective function number 4 at 0.30

mutation. Also worthwhile to note is that the solutions with higher mutation (0.30) are generally on the

right side of the graph, while the opposite is true for the lowest mutation value of 0.10. Additionally, objective

function number 5 performs quite poorly compared to the others, as all three of its solutions mean RIC are

above its neighboring solutions.

6.3 Robustness among the population

Using (6) to analyze the summed di�erences in robustness between all of a population's respective RIC

solution values and the best RIC value for that solution yields Figure 4. What we see is a vertical stretching

of Figure 3's graph as the di�erences between the best solution's RIC values and those of the population

are highlighted in models that do not maintain solution strength across their populations. Especially in the

case of objective function four's 0.30 mutation population, there is a huge shift from being a non-dominated

solutions (Figure 3) to being outperformed by all other options in terms of di�erence in the mean RIC between

the best and the other population solutions. Objective function seven's solution at 0.20 mutation chance is

much more attractive in this case, ensuring a high amount of choice among the population while maintaining

solution strength as measured by RIC. Table 5 illustrates the di�erence in scores between the RGA metric
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Table 4: Model values for mean RIC and variance
Objective Function Mutation Mean RIC Variance

1 0.10 914.26 1659.27
1 0.20 912.47 1719.37
1 0.30 910.62 2036.02
2 0.10 908.12 1634.60
2 0.20 907.88 1848.24
2 0.30 917.73 1980.37
3 0.10 912.78 1809.86
3 0.20 905.98 2148.49
3 0.30 915.06 1957.72
4 0.10 900.21 2049.20
4 0.20 892.05 1914.53
4 0.30 897.17 2337.90
5 0.10 1035.88 1834.70
5 0.20 943.77 2055.12
5 0.30 945.71 2350.03
6 0.10 906.64 1718.75
6 0.20 895.96 1897.36
6 0.30 892.43 2106.93
7 0.10 899.35 1790.44
7 0.20 895.93 2240.05
7 0.30 894.83 2080.14
8 0.10 912.35 1778.66
8 0.20 916.00 1990.66
8 0.30 909.84 2036.36
9 0.10 885.94 1964.35
9 0.20 889.40 1752.80
9 0.30 893.25 2121.09
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Figure 3: Pareto Optimal Frontier for Mean RIC ~ var(Decision Variables)

and Table 4. Some mean RIC values are exposed to have large di�erences between the solution and best

RIC values in the population. Objective function seven's solution at 0.20 mutation chance is highlighted in

Figure 5, demonstrating the wide range in decision variable values that exist across the population while

maintaining a relatively low RIC di�erence score.

6.4 Choosing Alternative Solutions

Examining the di�erent solutions that a model o�ers to meet stakeholder goals is an excellent advantage of

having di�erent solutions, but once a project is in process, choosing an alternative solution from within the

population of solutions is feasible only when the alternative solution also starts the same tasks prior to the

change point. In other words, the same construction tasks must be started by the alternative solution as

well as the current solution prior to the given point in time at which an alternative is sought. If no such

solution exists, then an alternative solution from the present population does not exist and the algorithm
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Figure 4: Pareto Optimal Frontier for RGA Numerator and Variance of Decision Variables

Figure 5: Decision Variable Values - First 10 Solutions
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Table 5: Model values for Best RIC, Variance, and RGA

Objective Function Mutation
∑A

a=1RICa −RICbest Variance RGA

1 0.10 18.80 1659.27 0.2129
1 0.20 14.49 1719.37 0.1221
1 0.30 13.33 2036.02 0.08733
2 0.10 10.86 1634.60 0.0722
2 0.20 19.58 1848.24 0.2075
2 0.30 18.89 1980.37 0.1802
3 0.10 9.38 1809.86 0.0486
3 0.20 13.41 2148.49 0.0837
3 0.30 17.02 1957.72 0.1481
4 0.10 17.49 2049.20 0.1492
4 0.20 19.46 1914.53 0.1977
4 0.30 133.18 2337.90 7.586
5 0.10 106.08 1834.70 6.132
5 0.20 49.01 2055.12 1.168
5 0.30 43.29 2350.03 0.7974
6 0.10 16.05 1718.75 0.1498
6 0.20 17.96 1897.36 0.1700
6 0.30 16.88 2106.93 0.1351
7 0.10 16.80 1790.44 0.1575
7 0.20 16.92 2240.05 0.1279
7 0.30 19.27 2080.14 0.1785
8 0.10 28.85 1778.66 0.4679
8 0.20 55.64 1990.66 1.556
8 0.30 44.08 2036.36 0.9542
9 0.10 31.91 1964.35 0.5186
9 0.20 16.03 1752.80 0.1467
9 0.30 33.59 2121.09 0.5320
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must be re-initiated. Distance measures such as a euclidean or Canberra distance o�er a readily accessible

method for comparing solutions at a decision point, but I discovered that many of the solutions identi�ed

were only near-feasible due to not starting some of the tasks prior to the change point. A simpler way of

examining feasible solutions is by performing a logical test. In this logical test we will determine if both

elements of the current and each alternative solution's decision values are on the same side of the change

point. If they are the same, then this solution can be a possible alternative moving forward in the project.

For each integer time point i in the project, the logical test in (8) is performed for all m decision variables

from the best solution a to all other 49 solutions.

xa,m &xa+1 ≤ i ‖ xa,m &xa+1 ≥ i (8)

Those instances resulting in answer of true for all i integer time periods from zero to the change point

are summed across each time period for the model, which is displayed in Figure 6. This graph displays the

rapid decay of solutions at approximately-one-third of the way through the project. At the outset of the

project the planner or stakeholder may consider the alternate solutions that remain feasible up until such a

time that (8) no longer results in any response of true. The area under the curve from Figure 6 represents

the total number of time-sensitive solutions available from a given model in this project, and is compared

against the variance of the model (Figure 7) and the numerator from RGA (Figure 8). Objective function

3, Z = min
∑T

i | Yi − Y |,with 0.20 mutation chance was the only model from both Figures 7 and 8 that

is non-dominated with respect to feasible functions over time, variance of the decision values, and robust

solution strength as measured by the metric RICa −RICbest. This objective function reduces the absolute

di�erence between each time period and the average resource usage for that resource type over the duration

of the project.

While this objective function has particularly good scores across the population with respect to RIC, the

contrast between model variance and model feasibility is highlighted between Figures 7 and 8. This tradeo�

is important in that seeking a population that has high feasibility across the project (robust population)

may result in lower variance among the decision variables, which has consequences for elitism and mutation

rate. A lower elitism, where less solutions are culled from the population in each generation, would certainly

increase feasibility of di�erent solutions since many of the solutions would be related by crossover from one

generation to the next. Additionally, a lower mutation rate would also lower the variance of the decision

variables and possibly increase alternate solution feasibility, but at a cost to the genetic algorithm's ability

to explore large solution spaces, which is why it is selected to solve the RLP in the �rst place.
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Figure 6: Feasible Alternate Solutions by Model over Project Length

Figure 7: Pareto Optimal Frontier AUC from (8) and Variance of Decision Variables

20



Figure 8: Pareto Optimal Frontier AUC from (8) and RGA Numerator

7 Conclusion

Planning and managing a construction project is an operation that contains many variables outside of the

control of any one person. Weather, worker health, equipment failure, and other stochastic elements may

a�ect the project at any point in time and require the manager to make a change to the plan. In searching for

e�ective ways to meet the computationally di�cult goal of resource leveling during a construction project,

genetic algorithms are shown to o�er a population which has been unexploited for provided alternative so-

lutions. These alternates o�er multiple scheduling options which preserve near-optimality. The alternate

solutions are shown to remain feasible after the project has started, up to a certain point. After this point,

the algorithm must be re-initiated with updated parameters. Combining the features of robustness, vari-

ability, and normalized comparison between resources of di�erent capacities with the Resource Improvement

Coe�cient established by [5] allows for a powerful comparison of the solutions within the population from
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genetic algorithms not previously made in resource leveling. A population with many alternate solutions

over the course of the project therefore maintains a strong robustness to its best solution. Comparing these

solutions shows that there exists a marked tradeo� between the variability of the decision variable values

and the amount of time-feasible solutions that may be found in a model.

This lowering of variability to achieve a measure of robustness in the population by selecting alternative

solutions from the model population represents speci�c consequences for the genetic algorithm as a search

heuristic. Genetic algorithms rely on mutation and crossover to spread the population across the solution

space. An e�ort to reduce this variability in order to achieve more feasible alternative solutions within the

population would reduce the genetic algorithm's ability to get as close to optimal as possible. More likely, the

best solution returned and the other solutions would be stuck closer together in local optima and could be

victims of a higher rate of genetic drift, where all solutions begin to resemble one another. Further research

in this area could include the use of speci�c objective functions to simultaneously encourage feasibility and

solution strength while still capitalizing on the strengths of the genetic algorithm to examine a large search

space thoroughly. Multi-objective genetic algorithms could be used in order to achieve a composite score

in order to satisfy this goal, and merits further investigation. Another area of interest is the application to

extremely large-scale projects using very large populations, in order to gauge if population size will have

a bene�cial e�ect on increasing the length of time during the project that feasible solutions might still be

found within the population. In this way, the genetic algorithm's expensive computational requirements in

terms of the large population could be exploited for alternatives.
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A Github Repository

The following Github page https://github.com/dfd3mt/Robust-Solutions-in-Resource-Leveling-GA-Populations

is a repository for the input �le and R scripts for each objective function, genetic algorithm run, metric func-

tion, and graphs used herein.

B Kurtosis Values

Table 6: Kurtosis of individual resources by model
Model 1 2 3 4 5 6 7 8 9

Auger 144.0216 144.0216 144.0216 144.0216 144.0216 144.0216 144.0216 144.2456 144.0216

Backhoe 4.3137 3.7904 1.8294 2.2026 2.898556 3.461732 3.9848 1.6414 3.9371

Carpenter -0.3361 -1.1277 -0.7261 -0.8854 -0.504387 -0.8976865 -1.1166 -1.0129 -0.9463

Supervisor 45.0478 22.1423 45.0478 28.1555 28.15551 28.15551 24.8479 25.9921 28.1555

Water Distributor 51.9208 31.7496 32.7469 5.6527 4.166488 5.999615 50.7804 5.5411 5.9996

Dozer w/heavy Ripper 37.6089 32.2909 37.6089 44.7008 44.70081 44.70081 37.6089 41.3075 44.7008

Dozer w/medium Ripper 30.3788 31.5295 30.3788 29.2899 29.2899 28.0647 30.3788 9.8530 29.2899

Excavator 18.6878 17.7363 16.4909 15.6693 14.7068 15.2965 21.5119 20.0629 18.6146

Forklift -0.4031 -0.8273 -0.9600 -0.4418 -0.7351 0.0370 -0.0566 -0.2061 -0.4166

General Labor 0.0217 0.0186 1.5031 -0.6432 -0.7007 0.1341 -0.5488 -0.1327 0.9866

Grader 4.0813 0.0075 3.2935 4.2537 1.2889 0.2283 1.8337 3.3065 5.1667

Heavy Equipment Operator 18.2086 18.2086 19.8883 18.2086 19.8883 19.8883 18.2086 19.3025 18.2086

Electrician -1.2209 -1.2051 -1.0678 -1.2170 -1.1806 -1.1766 -1.1232 -1.1400 -1.1348

Loader -0.3710 -0.0531 -0.3710 -0.3131 -0.3131 -0.9402 0.3353 0.0099 -0.3131

Metal Worker 7.0237 7.0237 7.0237 5.7585 11.7249 16.5927 7.0237 10.9922 16.5927

Paver 54.3441 60.4501 64.6436 28.2134 33.8493 13.9676 39.1883 12.4298 29.5632

Plumber 3.4266 10.7648 3.4266 7.3533 3.4266 10.7648 3.4266 5.6906 3.4266

Roller Vibratory 31.2983 22.4698 31.2983 32.4400 35.2254 24.2662 44.6305 11.2306 35.2254

Scraper 13.9724 13.9724 13.9724 13.3869 13.9724 13.9724 13.9724 3.9082 13.9724

Sweeper 2.4250 8.5766 2.4336 2.4625 2.3164 8.8381 2.4410 2.8139 2.3149

Dump Truck 4.9458 1.4614 5.0025 5.3653 4.8378 1.2211 5.2673 6.7944 5.3653

C Sample hourly use plots
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Figure 9: Auger use from initial state (left) to Model 6 (right)

Figure 10: Backhoe use from initial state (left) to Model 6 (right)
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Figure 11: Carpenter use from initial state (left) to Model 6 (right)

Figure 12: Supervisor use from initial state (left) to Model 6 (right)
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Figure 13: Water Truck use from initial state (left) to Model 6 (right)

Figure 14: Excavator use from initial state (left) to Model 6 (right)
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Figure 15: Forklift use from initial state (left) to Model 6 (right)

Figure 16:

Figure 17: General labor use from initial state (left) to Model 6 (right)
.
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Figure 18: Towed sweeper use from initial state (left) to Model 6 (right)

Figure 19: Dump Truck use from initial state (left) to Model 6 (right)
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