
Mitigating Memory Resource Contention in Warehouse

Scale Computers

A Dissertation

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy

Computer Science

by

Lingjia Tang

May 2012

Approvals

This dissertation is submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

Lingjia Tang

Approved:

Mary Lou Soffa (Advisor)

Jack W. Davidson

Westley Weimer (Chair)

Kamin Whitehouse

Joanne Bechta Dugan

Accepted by the School of Engineering and Applied Science:

Dean, School of Engineering and Applied Science

May 2012

Abstract

The class of modern datacenters hosting large-scale Internet services such as web-search,

mail, and social networking has gained significant momentum in today’s computing environ-

ments. However, these datacenters, recently coined as warehouse scale computers (WSCs),

are extremely expensive to construct and operate. Improving software performance and

server utilization is key to improving the efficiency and reducing the enormous cost in

WSCs.

Modern WSCs are constructed using commodity multicore processors, on which part

of the memory subsystem is shared. When multiple applications are co-located on a mul-

ticore machine, contention for the shared memory resources, such as caches and memory

bandwidth, may occur. This contention can cause severe cross-core performance interfer-

ence and significantly degrade application performance. Mitigating resource contention is

critical for improving application performance. However, despite the wealth of research ef-

fort on contention management, little is known about how emerging large-scale web-service

applications interact with the shared memory resources on commodity processors and how

this contention can be mitigated to improve the performance of these applications.

In addition to performance, mitigating contention is also critical for improving the server

utilization in WSCs. As multicore processors with expanding core counts continue to domi-

nate the server market, the overall utilization of WSCs depends heavily on the consolidation

of workloads to take advantage of the total computing potential provided by modern proces-

sors. However, many of the applications running in WSCs are user-facing, latency-sensitive

applications with quality of service (QoS) requirements. These QoS requirements can be

violated by the performance interference that can occur when multiple applications are

consolidated on a single machine. As a result, the current common practice in WSCs is

iii

to disallow the co-location of latency-sensitive applications with other applications. This

approach is undesirable as it results in low machine utilization in WSCs and millions of

dollars wasted.

This dissertation presents novel compilation and runtime approaches to significantly

mitigate contention and thus improve performance, QoS and machine utilization in data-

centers. Specifically, the main contributions of this dissertation include: 1) comprehensive

investigation and characterization of the impact of memory resource sharing on industry-

strength large-scale datacenter workloads, which expose new characteristics and insights

contrary to recent literature; 2) the design of a heuristic based system and a runtime sys-

tem to intelligently map application threads to cores to promote positive resource sharing

and mitigate resource contention to improve application performance; and 3) the design of

novel compilation techniques and runtime systems that statically and dynamically manipu-

late applications’ contentious nature to enable the co-location of applications with varying

QoS requirements and as a result, greatly improve server utilization in WSCs.

iv

Acknowledgements

Many many people have helped me and contributed to my growth along the way. I first

want to thank my advisor Mary Lou Soffa for always having faith in me even when no one

else did. Thanks for your invaluable insights, guidance, support and encouragement.

Thanks to my dear husband, my awesome collegue and my best friend, Jason Mars, who

encourages me to carry on when times are difficult. Without you and Dr. Soffa, I would have

left the graduate school. So thanks for the all the enthusiastic pep talks, brainstormings,

working with me together for every paper deadline, and your healthy criticisms.

Also, I thank Jack Davidson, Westley Weimer, Kamin Whitehouse and Joanne Bechta

Dugan for serving on my dissertation committee. Their unique perspectives and comments

helped enrich my dissertation work. I also thank Jack and Kevin Skadron for their help

during my job search.

I thank Robert Hundt and Neil Vachharajani who were fantastic hosts for me at Google.

I learned a great deal from them during those two summers. Thanks Robert for being

super supportive all along. Thanks Dick Sites and all the Google folks for the insightful

discussions. It was great fun to work with you all.

Thanks to my fellow graduate students, especially Tanima Dey and Wei Wang, who are

also my coauthors and worked really hard with me on paper submissions.

Thanks to my friends in Charlottesville, Rui, Songbin, Jie, Xiaohua, Chong, Guofeng

and many more for their support and for making Charlottesville a fun place.

Last but not least, many thanks to my parents, Anan Liu and Fusheng Tang for trying

their best to give me the best education and always being there for me. Love you both!

v

Contents

1 Introduction 1

1.1 Memory Resource Sharing and Contention 2

1.2 Implications of Memory Resource Contention 3

1.2.1 The Impact of Contention on Performance 3

1.2.2 The Impact of Contention on Server Utilization 4

1.2.3 Trade-offs Between Performance and Utilization 4

1.3 Mitigating Contention . 6

1.4 Two Strategies for Mitigating Contention 6

1.4.1 Mitigating Contention to Improve Performance 7

1.4.2 Mitigating Contention to Improve Utilization 9

1.5 Summary of Contributions . 10

2 Background and Related Work 13

2.1 Warehouse Scale Computers . 13

2.1.1 Cost . 14

2.1.2 Application QoS . 14

2.1.3 Job Scheduling, Application Colocation and Utilization 15

2.1.4 Machine Level . 18

2.2 Related Work . 18

2.2.1 Impact of Memory Resource Sharing 18

2.2.2 Novel Hardware Solutions to Mitigate Contention 19

2.2.3 Software Runtime and OS Approaches to Mitigating Contention . . 19

2.2.4 Cache Contention Aware Compilation 21

vi

3 The Impact of Memory Resource Sharing 23

3.1 Memory Resource Sharing . 24

3.2 Intra-Application Sharing . 26

3.2.1 Experiment Methodology . 26

3.2.2 Measurement and Findings . 28

3.2.3 Investigating Performance Variability 29

3.2.4 Summary . 32

3.3 Inter-Application Sharing . 33

3.3.1 Experiment Design . 33

3.3.2 Measurement and Findings . 34

3.3.3 Varying Thread Count and Architecture 38

3.3.4 Summary . 40

4 Thread-to-core Mapping 43

4.1 A Heuristic Approach to TTC Mapping . 44

4.1.1 Evaluating the Heuristics . 48

4.2 An Adaptive Approach to TTC Mapping 49

4.2.1 Evaluating AToM . 50

5 Compiling for Niceness 52

5.1 QoS-Compile Overview . 53

5.2 Identify Contentious Code Regions . 55

5.2.1 Contentiousness and Sensitivity . 56

5.2.2 Identify Contentious Regions . 61

5.3 Compiler Transformations for Rate Reduction 64

5.3.1 Padding . 64

5.3.2 Nap Insertion . 66

5.3.3 Understanding Cooldown and Warmup 68

5.4 Evaluation . 68

5.4.1 Setup and Methodology . 69

5.4.2 Model for Code Region Identification 69

vii

5.4.3 Compiler Transformations . 73

5.4.4 QoS-Compile: Put it All Together 77

5.4.5 Google Applications . 82

5.5 Summary . 83

6 Reactive Niceness 84

6.1 Reactive-Niceness Overview . 85

6.2 RN-Compile: Compiling for Reactive Niceness 88

6.3 RN-Runtime: Dynamic Detection and Reaction to QoS Degradation 89

6.3.1 Runtime . 90

6.3.2 Detection and Reaction . 92

6.4 Evaluation . 95

6.4.1 Setup and Methodology . 96

6.4.2 Effectiveness of Reactive-Niceness: Simple Heuristic 96

6.4.3 Effectiveness of Reactive-Niceness: Targeted Heuristic 99

6.4.4 Effectiveness of Reactive-Niceness: Phase Level Behavior 101

6.4.5 Overhead . 105

6.4.6 Energy Efficiency of using Reactive-Niceness 106

6.4.7 Varying Architecture . 107

6.5 Summary . 109

7 Conclusions and Future Directions 110

7.1 Summary of Themes and Results . 111

7.2 Future Direction . 113

7.2.1 Managed Runtime for QoS and utilization in WSCs 113

7.2.2 Runtime systems and research infrastructure for WSCs 113

viii

List of Figures

1.1 Topology of a Dual Socket Intel Clovertown 2

1.2 Current Two Options in WSCs. Option A, disallowing colocation of appli-

cations, achieves peak application performance at the sacrifice of machine

utilization. Option B improves machine utilization and reduces the num-

ber of server machines needed. However, applications may suffer significant

performance degradation, which can impair latency-sensitive applications’

capability to deliver acceptable QoS. 5

1.3 Dissertation Overview - Understanding the impact of contention and 2 strate-

gies to mitigate contention to improve performance and utilization 7

1.4 Enabled capabilities by our software systems. (A) illustrates the strategy

1, the TTC mapper’s effect - improved performance comparing to baseline

colocation situation, shown in Figure 1.2. (B) illustrates the strategy 2,

Static/Dynamic Compilation for Niceness’s effect. Strategy 2 improves the

QoS of the high priority application to meet its QoS requirement. By doing

so, strategy 2 turns previous forbidden colocations into “safe” colocations and

thus improves the server utilization, comparing to the baseline of disallowing

colocation shown in Figure 1.2. 8

2.1 TCO (Total Cost of Ownership) cost breakdown for a datacenter using com-

modity servers . 14

2.2 Task placement in a cluster. The cluster manager does not co-locate latency-

sensitive applications with others to protect their QoS from performance

interference, causing low machine utilization. 16

ix

2.3 Server Utilization Histogram from HP datacenters. 17

2.4 Activity profile of a sample of 5,000 Google servers over a period of 6 months. 17

3.1 Separate Caches, Separate FSBs (X.X.X.X.) 25

3.2 Sharing Cache, Separate FSBs (XX..XX..) 25

3.3 Sharing Cache, Sharing FSB (XXXX....) 25

3.4 Performance of different thread-to-core mappings when each application is

running alone. The higher the bars, the better the performance. The per-

formance variability is up to 20% for each application, indicating that the

memory resource sharing has a significant performance impact on these appli-

cations. Also, notice that bigtable is benefiting from sharing last level cache;

while contentAnalyzer and webSearch suffer from the contention for memory

resource among sibling threads. 28

3.5 LLC misses per million instrs . 29

3.6 Normalized average LLC misses per million instructions 30

3.7 Bus ratio . 30

3.8 Normalized bus ratio . 31

3.9 L2 Requests in MESI States and in Prefetch State 31

3.10 ContentAnalyzer. Normalized to solo performance 35

3.11 Websearch. Normalized to solo performance 35

3.12 Bigtable. Normalized to solo performance 35

3.13 ContentAnalyzer. Normalized to solo performance with {X.X.X.X.} 36

3.14 Websearch. Normalized to solo performance with {X.X.X.X.} 36

3.15 Bigtable. Normalized to solo performance with {X.X.X.X.} 36

3.16 Topology of Dual Socket Intel Westmere . 38

3.17 2 threads of a latency sensitive application colocated with 6 threads of a

batch application, normalized to the latency sensitive application’s solo per-

formance in {X...X...} mapping . 39

x

3.18 6 threads of a latency sensitive application colocated with 2 threads of a

batch application, normalized to the latency sensitive application’s solo per-

formance in {XXX.,XXX.} mapping . 39

3.19 2 threads of latency sensitive applications running alone on Westmere . . . 41

3.20 6 threads of latency sensitive applications running alone on Westmere . . . 41

3.21 6 threads of latency sensitive applications co-running with 6 threads of batch

applications on Westmere; . 41

4.1 Bus Burst Transactions (full cache line) per millisecond per one thread . . . 45

4.2 LLC misses/ms, LLC requests Share/ms and LLC reference/ms 46

4.3 Decision Tree . 48

4.4 Adaptive Thread-To-Core Mapping on Clovertown 51

4.5 Adaptive Thread-To-Core Mapping on Westmere 51

5.1 QoS-Compile Overview . 54

5.2 Contentiousness. Each bar shows the performance degradation of a corunner

caused by the application across x-axis. 58

5.3 Sensitivity. Each bar shows the performance degradation of the application

across x-axis caused by each of the 8 different corunners. 58

5.4 Average Contentiousness vs. Sensitivity . 60

5.5 PMUs used for predicting contentiousness 63

5.6 L3 Miss Rate is not strongly correlated with the real measured contentiousness 70

5.7 L3 Reference rate is not strongly correlated with the real measured con-

tentiousness . 70

5.8 Predicted contention score using our model is highly correlated with the real

measured contentiousness for SPEC benchmarks 70

5.9 Sphinx’s PMU contention score calculated using our prediction model . . . 72

5.10 Bst8mb’s degradation when running with sphinx. The higher, the more

degradation. Figure 7 trends similarly with this figure, indicating the profiler

is identifying the correct contentious code regions. 72

xi

5.11 This graph shows the accuracy of the contention score given by our prediction

model in predicting the contentiousness of milc. 73

5.12 Padding sledge l’s effect on its co-runner blockie and bst. As padding

thickness increases, sledge l’s execution rate deceases, blockie and bst’s

QoS improves. The padding granularity is every 5 instructions 74

5.13 Napping sledge l’s effect on co-runners, blockie and bst. Nap granular-

ity is 1ms. As nap duration increases, sledge l’s execution rate deceases,

blockie and bst’s QoS improves. 74

5.14 Napping sledge l’s effect on co-runners. Nap granularity is 10ms. 74

5.15 sledge l padding vs. nap for bst4mb . 75

5.16 sledge l padding vs. nap for bst8mb . 75

5.17 sledge l padding vs. nap for bst50mb. 75

5.18 SPEC benchmark’s performance when it is co-located with the original lbm,

lbm with nap insertion (10ms, 10ms) and nap insertion (10ms, 20ms), nor-

malized by each benchmark’s performance when it is running alone 77

5.19 SPEC benchmark’s performance when it is co-located with the original milc,

milc with nap insertion (10ms, 10ms) and nap insertion (10ms, 20ms), nor-

malized by each benchmark’s performance when it is running alone 78

5.20 Gained Utilization when allow co-location. 79

5.21 bst8mb running with sphinx . 80

5.22 Google benchmark’s performance when it is co-located with the original

sledge3, sledge3 with nap insertion (10ms, 10ms) and nap insertion (10ms,

20ms), normalized by each benchmark’s performance when it is running alone 81

5.23 Google benchmark’s performance when it is co-located with the original er-

naive4mb, er-naive4mb with nap insertion (10ms, 10ms) and nap insertion

(10ms, 20ms), normalized by each benchmark’s performance when it is run-

ning alone . 82

6.1 Reactive-Niceness Overview . 86

6.2 Reactive-Niceness Compilation . 88

xii

6.3 Reactive-Niceness Runtime Architecture . 90

6.4 DFA for targeted Heuristic . 94

6.5 QoS of each benchmark co-running with sledge, normalized to solo QoS.

(simple) . 97

6.6 Utilization of sledge with each configuration. (simple) 97

6.7 QoS of each benchmark co-running with lbm. (simple) 97

6.8 Utilization of lbm with each configuration. (simple) 97

6.9 QoS of each benchmark co-running with milc. (simple) 97

6.10 Utilization of milc with each configuration. (simple) 97

6.11 QoS of each benchmark co-running with sledge, normalized to solo QoS.

(targeted) . 99

6.12 Utilization of sledge with each configuration. (targeted) 99

6.13 QoS of each benchmark co-running with lbm. (targeted) 100

6.14 Utilization of lbm with each configuration. (targeted) 100

6.15 QoS of each benchmark co-running with milc. (targeted) 100

6.16 Utilization of milc with each configuration. (targeted) 100

6.17 Sphinx normalized IPC with original sledge and with sledge with RN H1 102

6.18 Sphinx normalized IPC with original sledge and with sledge with RN H2 103

6.19 Sphinx normalized IPC with original milc and with simple milc 104

6.20 Sphinx normalized IPC with original milc and with targeted milc 104

6.21 Average nap duration for milc with simple vs. milc with targeted 104

6.22 Overhead of monitoring for high-priority application. 105

6.23 Overhead of nap engine for low-priority application. 105

6.24 Efficiency of allowing co-location with Reactive-Niceness vs over-provisioning.

(targeted) . 106

6.25 QoS of each benchmark co-running with sledge, lbm, and milc. (targeted) 108

6.26 Utilization of sledge, lbm and milc with each configuration. (targeted) . 108

xiii

List of Tables

3.1 Sharing configurations for sets of 2 cores and sets of 4 cores 25

3.2 Experiment Platform . 26

3.3 Production Datacenter Applications . 27

3.4 Optimal Thread-To-Core Mapping in Solo and Co-location Situations . . . 38

4.1 Predicted Thread-To-Core Mapping Using the Heuristic Approach 49

5.1 Contention Benchmarks Suite: SmashBench 64

5.2 Comparing our contentiousness predictor to predictors used in prior works.

Our predictor was trained with the SmashBench suite of contentious kernels

and tested against all SPEC 2006 benchmarks. 71

5.3 Production Warehouse Scale Computer Applications 80

6.1 Three configurations for simple heuristic 96

6.2 Three configurations of targeted heuristic 101

xiv

Chapter 1

Introduction

Contents

1.1 Memory Resource Sharing and Contention 2

1.2 Implications of Memory Resource Contention 3

1.2.1 The Impact of Contention on Performance 3

1.2.2 The Impact of Contention on Server Utilization 4

1.2.3 Trade-offs Between Performance and Utilization 4

1.3 Mitigating Contention . 6

1.4 Two Strategies for Mitigating Contention 6

1.4.1 Mitigating Contention to Improve Performance 7

1.4.2 Mitigating Contention to Improve Utilization 9

1.5 Summary of Contributions . 10

Web-service datacenters and cloud computing economies of scale have gained significant

momentum in today’s computing environments. Companies such as Google, Microsoft,

Yahoo, Facebook, Apple and Amazon host large-scale data intensive applications including

search, email, maps, docs, video, social networking and other cloud services that require

execution on a Warehouse Scale Computer (WSC) [6]. A warehouse scale computer often

houses tens of thousands of machines to provide the computing resources needed to serve

millions of users and typically costs hundreds of millions of dollars to construct and operate.

This large cost stems from purchasing servers, power, cooling and other infrastructural and

operational cost [13, 17].

1

Server Rack

0 1

4 MB L2

FSB

2 3

4 MB L2

Memory Controller Hub

2x333 MHZ FSB (Quad

Pumped)

10.6 GB/s per FSB

 4X FB-DDR2-533

4.3GB/s/Channel

 4 DIMMS/Channel

Machine

Mem Bus

4 5

4 MB L2

6 7

4 MB L2

Figure 1.1: Topology of a Dual Socket Intel Clovertown

To reduce the cost and to improve the efficiency of WSCs, it is important to improve both

software performance and server utilization [6]. For example, improving performance

and server utilization can reduce the cost for infrastructure construction, server purchase

and power consumption. At the massive scale of modern WSCs of web-services companies

such as Google, 1% improvement in either performance or utilization translates to millions

of dollars saved. However, memory resource contention inhibits the efficiency of WSCs.

1.1 Memory Resource Sharing and Contention

One of the major challenges that limit the efficiency in WSCs is the contention for memory

subsystem resources on the servers that populate WSCs. Modern WSCs are constructed

using commodity multicore machines as they are inexpensive and easily replaceable. Typ-

ically, these server machines have multiple sockets hosting processors with multiple cores.

The processing cores may share a number of caches, buses and controllers. As an example,

Figure 1.1 shows a typical dual-socket machine configuration found in production WSCs.

Each socket on this system has two separate L2 caches shared by a pair of cores and all

four cores on a socket share a Front Side Bus (FSB). This type of machine organization is

commonplace in state-of-the-art server processors. The sharing of these memory resources

across multiple cores often has a significant impact on application performance. This impact

may be constructive or destructive.

• When multiple cores share a resource, the threads running on those cores can con-

2

structively use this resource in a number of ways. For example, when threads share

a cache, data sharing requires only one copy of the data in the shared cache rather

than multiple copies spread out across private caches. Furthermore, memory bus and

coherence traffic is reduced since data is fetched from memory only once and does not

ping-pong back and forth between separate private caches.

• However, multiple threads, either from an individual application or multiple appli-

cations, can also contend for shared resources. Memory resource contention has

a destructive impact on performance. For example, a thread can bring its own data

into a shared cache, evicting the data of a neighboring thread and resulting in per-

formance interference and degradation. Threads can also contend for prefetchers,

memory controllers and bus bandwidth, detrimentally affecting performance.

1.2 Implications of Memory Resource Contention

Memory resource contention has a negative impact on both application performance and

server utilization, significantly limiting the efficiency of modern warehouse scale computers.

1.2.1 The Impact of Contention on Performance

The destructive performance impact caused by contention can often be significant. Prior

work reports up to 60% performance degradation due to contention using SPEC CPU2006

benchmarks and state-of-the-art server machines [63, 15, 40]. Therefore, it is greatly benefi-

cial to mitigate contention and to exploit the potential positive resource sharing to improve

application performance.

However, currently, there is little understanding about the interaction between the

shared memory subsystem and the emerging large-scale datacenter workloads. Prior work

largely relies on popular small-scale benchmark suites such as SPEC and PARSEC, and

has reached conflicting conclusions about whether cache sharing has a significant perfor-

mance impact, especially for contemporary multi-threaded applications [61]. To the best of

our knowledge, no prior work has investigated the memory resource sharing for industry-

strength emerging datacenter workloads. Although modern WSCs have generally adopted

3

the policy of disallowing colocation of certain applications to avoid potential performance

interference, the severity of the interference due to contention is unclear. Due to the lack

of understanding, current software systems in WSCs do not acknowledge or manage the re-

sources sharing among application threads, resulting in potential performance inefficiencies.

1.2.2 The Impact of Contention on Server Utilization

In addition to performance, the interference caused by memory resource contention also

proves particularly problematic to large-scale web-service applications as it may prevent

these applications from providing satisfactory quality of service (QoS). On one hand, in

order to reduce the machine and operational cost, it is essential for datacenters to con-

solidate various workloads on multicore servers to improve machine utilization [46]. On

the other hand, warehouse scale computer workloads are composed of diverse applications

with varying QoS requirements and priorities. Key applications, usually those that are

user-facing and provide interactive service such as search, mail and maps, are latency sen-

sitive and have fairly strict QoS requirements. Other applications such as backup service

and file compression are batch applications that are not latency sensitive or have a lower

QoS priority. When co-locating applications on a multicore platform, the performance

and QoS of high priority applications may suffer unacceptable amounts of degradation due

to resource contention [58, 37]. Moreover, high priority applications may even suffer more

QoS degradation than low priority applications, resulting in unacceptable priority inversion.

As a result, modern warehouse scale computers often resort to disallowing co-location of

latency-sensitive applications with any other applications, which leads to costly low machine

utilization [6]. This over-provisioning of compute resources is one of the major reasons the

utilization in modern WSCs remains low, recently reported to be below 30% on average [42].

1.2.3 Trade-offs Between Performance and Utilization

Figure 1.2 further illustrates the performance interference caused by contention and its im-

plications for the tradeoffs among performance, QoS and utilization in WSCs. Disallowing

colocation of applications, shown as Option A, achieves peak application performance at the

4

s
o

lo

 Q
o

S

P
e
rf

o
rm

a
n

ce

s
o

lo

1x

 Q
o

S

P
e
rf

o
rm

a
n

ce

High Priority
Application

Low Priority
Application

1x

c
o

-
lo

c
a

ti
o

n

c
o

-
lo

c
a

ti
o

n

Option A:
Disallow Colocation.

Option B:
Allow Colocation.

application A

application B QoS requirement
0.9x

Figure 1.2: Current Two Options in WSCs. Option A, disallowing colocation of applications, achieves peak
application performance at the sacrifice of machine utilization. Option B improves machine utilization and
reduces the number of server machines needed. However, applications may suffer significant performance
degradation, which can impair latency-sensitive applications’ capability to deliver acceptable QoS.

sacrifice of machine utilization. The alternative, allowing colocation, shown as Option B,

improves machine utilization at the risk of impairing latency sensitive applications’ capabil-

ity to deliver acceptable QoS. The current approach in modern warehouse scale computers

is fairly ad-hoc with a mix of these two options. WSCs may allow colocation of appli-

cations that do not necessarily have strict QoS requirements, and thus simply submit to

suffering performance degradation for the sake of better machine utilization. However, for

latency-sensitive applications, WSCs often resort to disallowing co-location of these types

of applications with any other applications, which translates to low machine utilization at

the cost of millions of dollars.

In conclusion, memory resource contention has significantly limited both the application

performance and server utilization in WSCs; and consequently, mitigating memory resource

contention is critical for improving efficiency in WSCs.

5

1.3 Mitigating Contention

This dissertation argues for the design of novel software systems that are aware of the im-

pact of resource sharing on applications, intelligently mitigate potential memory contention

and promote positive resource sharing to improve software performance. In addition, this

dissertation argues for novel software systems to mitigate contention to provide QoS man-

agement on multicore machines for applications with various QoS requirements to improve

server utilization.

In addition to the current lack of understanding, there are multiple challenges for de-

signing systems that can mitigate contention to improve performance or QoS on multi-

core platforms. Applications may contend for a plethora of memory components includ-

ing a hierarchy of caches, prefetchers, memory controllers and buses. The interaction be-

tween the applications and these various components can be fairly complicated. In ad-

dition, due to the current limited transparency and monitoring capabilities for hardware

behaviors, it is challenging for system software to dynamically detect and diagnose the

occurrences of memory resource contention. System software also does not have control

over hardware resources such as caches and memory bandwidth, which renders respond-

ing to contention and managing applications’ QoS quite challenging. As a result, despite

the amount of research attention given to contention problems on multicore platforms

[28, 45, 10, 19, 44, 51, 52, 27, 32, 15, 29, 24, 63, 23, 24, 7, 4, 60], mitigating the impact of

contention on an application’s performance and QoS, enforcing the relative QoS priorities

of co-running applications, while maximizing machine utilization, remains key challenges in

modern warehouse scale computers.

1.4 Two Strategies for Mitigating Contention

This dissertation first comprehensively investigates the impact of memory resource sharing

on industry-strength large-scale datacenter workloads and provides new information and

insights. The result of our investigations demonstrate that, contrary to conclusions from

recent work [61], across several key datacenter applications including web-search, there is

both a sizable benefit and a potential degradation from improperly sharing microarchitec-

6

Understand the interaction
 between WSC applications and

the memory subsystem

Manage resource
sharing among

application threads to
improve software

performance

Manipulate
applications’

characteristics to
improve server

utilization

Figure 1.3: Dissertation Overview - Understanding the impact of contention and 2 strategies to mitigate
contention to improve performance and utilization

tural resources on a single machine, such as on-chip caches and bandwidth to memory. This

dissertation then presents two complementary software strategies, shown in Figure 1.3, to

mitigate memory resource contention for improving performance and server utilization of

WSCs.

1.4.1 Mitigating Contention to Improve Performance

Strategy 1: Manage resource sharing among threads to improve performance using Intelli-

gent Thread-to-Core Mapping.

The basic idea of an intelligent thread-to-core mapper is to take advantage of the memory

resource topologies (an example is shown in Figure 1.1) to promote more positive sharing

and reduce negative sharing among threads. The processing cores on this machine do not

share the same resources. For example, as shown in the figure, core 0 and 1 share a L2

cache, front side bus (FSB) and a memory controller. However, core 0 and 2 do not share

L2 cache, and core 0 and 4 do not share FSB. Therefore, when mapping threads to cores,

the mapper essentially manages what resources are shared among threads. For example,

some threads share data and may benefit from cache sharing. Thus these threads should

be mapped to cores that share a cache. Others threads are contentious with each other

and thus should be mapped to cores that do not share a cache or even FSB to mitigate

7

(A) Mitigate contention:
improve performance

 Q
o

S

P
e
rf

o
rm

a
n

ce

1x

c
o

-
lo

c
a

ti
o

n

c
o

-
lo

c
a

ti
o

n

 Q
o

S

P
e
rf

o
rm

a
n

ce

1x

c
o

-
lo

c
a

ti
o

n

c
o

-
lo

c
a

ti
o

n

(B) Mitigate contention:
improve QoS and server utilization

High Priority
Application

Low Priority
Application

QoS requirement
0.9x

Figure 1.4: Enabled capabilities by our software systems. (A) illustrates the strategy 1, the TTC mapper’s
effect - improved performance comparing to baseline colocation situation, shown in Figure 1.2. (B) illustrates
the strategy 2, Static/Dynamic Compilation for Niceness’s effect. Strategy 2 improves the QoS of the high
priority application to meet its QoS requirement. By doing so, strategy 2 turns previous forbidden colocations
into “safe” colocations and thus improves the server utilization, comparing to the baseline of disallowing
colocation shown in Figure 1.2.

interference. An intelligent thread-to-core mapper can take advantage of these application

characteristics and the memory topologies to mitigate contention and improve performance.

This research finds that the performance variability between the worst and the optimal

thread-to-core mappings can be significant for datacenter workloads. More interestingly, the

best thread-to-core mapping for a given application does not only depend on the applica-

tion’s sharing and memory characteristics; it is also impacted dynamically by the character-

istics of other applications that are co-running on the same machine simultaneously. Based

on this insight, we design two approaches for intelligent thread-to-core (TTC) mapping.

The desired outcome of our strategy for mitigating contention to improve performance is

illustrated in Figure 1.4 (A).

• Heuristic-based approach

The application characteristics that impact performance in various thread-to-core

mapping scenarios are identified. These characteristics include the amount of data

sharing among threads, the amount of memory bandwidth an application requires,

and the cache footprint of the application. We present an algorithm that takes advan-

8

tage of these applications characteristics to identify efficient thread-to-core mappings.

• Dynamic approach

We also present an adaptive approach, AtoM, which uses a competition heuristic to

search for the best performing mapping online. The approach includes two phases:

a learning phase, when AToM empirically has various TTC mappings compete to

learn which mapping performs best, and an execution phase, when the winning TTC

mapping is run for a fixed or adaptive period of time.

1.4.2 Mitigating Contention to Improve Utilization

Strategy 2: Manipulate applications’ characteristics to improve server utilization using Stat-

ic/Dynamic Compilation for Niceness

The second strategy comprises novel compilation and runtime systems to directly ma-

nipulate an application’s contentious nature and reduce the interference it can cause to its

corunning applications. By doing so, we facilitate more “safe” colocations where contention

is mitigated so that latency-sensitive applications can provide acceptable QoS. The desired

outcome of our strategy for mitigating contention to improve utilization is illustrated in

Figure 1.4 (B).

• Static Approach: Compiling for Niceness

Two key insights underlie this compiling approach. Firstly, a compilation-based ap-

proach is both well-suited and desirable for WSCs. Large-scale web-service applica-

tions such as web-search, maps, email and video are developed and hosted by the

companies that operate the WSCs, and their source code is available and recompiled

regularly. Secondly, in the era of multicore and the emerging computing domain of

WSCs, the objectives of compiler optimization ought to be multifaceted. In addition

to optimizing each application for its own individual performance, we argue for the

additional objective of optimizing for an application’s “niceness”; that is, to reduce

its potential interference to its co-running applications.

Our approach, QoS-Compile, uses novel compilation techniques to directly manip-

ulate the contentiousness of low priority applications to ensure the QoS of a higher

9

priority co-runner. With this, high machine utilization can be achieved through al-

lowing colocation while providing satisfactory QoS. QoS-Compile uses a prediction

model to pinpoint code regions that aggressively demand memory resources. It then

targets these regions, transforms their code layouts to reduce their contentiousness by

throttling down their memory request rate. Thus its interference to the QoS of its co-

runners is reduced. To the best of our knowledge, QoS-Compile is the first compilation

approach to address the QoS challenges caused by contention for multi-programmed

workloads.

• Dynamic: Reactive Niceness

Enabled by the above static approach, we design a lightweight dynamic approach,

Reactive-Niceness, to further improve QoS and utilization. Reactive-Niceness in-

struments the contentious regions to enable the flexible manipulation of their con-

tentiousness at runtime. Dynamically, Reactive-Niceness detects contention-caused

QoS degradation and adaptively throttles down the memory request rate of those con-

tentious regions in the low-priority application. The degree of execution rate reduction

on low-priority applications is based on the severity of observed QoS degradation of

the high-priority application and a feed-back control, enabling the flexibility needed

to further improve machine utilization and achieve more precise QoS management.

In summary, this dissertation advances the state-of-the-art for understanding and man-

aging the impact of memory resource contention on large-scale emerging WSC workloads

and provides effective software systems to mitigate contention to significantly improve both

application performance and server utilization in WSCs.

1.5 Summary of Contributions

We first conduct a thorough investigation of the impact of sharing memory resources (e.g.,

shared caches and memory bandwidth) on key commercial datacenter applications including

Google’s web-search engine and bigtable (a peta-scale data storage software). This work

is the first to characterize the impact of memory resource sharing on real-world large-

10

scale datacenter applications, exposing new insights about these emerging workloads and

demonstrating the significant impact of memory contention. Chapter 3 examines:

• Intra-application sharing: We investigate the impact of memory resource sharing

on threads that belong to a single multithreaded application [58] (Section 3.2). While

prior work has found neither positive nor negative effects from cache sharing across

benchmark suites, we find that across these datacenter applications, there is both a

sizable benefit and a potential degradation from improperly sharing resources.

• Inter-application sharing: We investigate the impact of memory resource sharing

on threads that belong to multiple multithreaded applications [58] (Section 3.3). Our

investigation demonstrates that memory resource contention among multiple applica-

tions often cause significant performance degradation. Our investigation also shows

that, contrary to common intuition, the optimal thread-to-core mapping for a given

application changes depending on its execution environment, including the underlying

machine, whether it is running alone, and if not, which application is its corunner.

We then apply the discoveries and insights from the investigation and design intelligent

thread-to-core mappers to mitigate contention and improve software performance in WSCs.

Chapter 4 presents:

• Heuristics based thread-to-core mapper: We identify the application character-

istics that impact performance in the various thread-to-core mapping scenarios and

provide a technique for deriving algorithms from these characteristics for heuristics

based thread-to-core mapping to improve performance efficiency in WSCs [58] (Sec-

tion 4.1).

• Automatic thread-to-core mapper (AToM): We also present the design of an

adaptive approach that uses a competition heuristic to learn the best performing

mapping online to improve performance. This approach is agnostic to the underlying

microarchitecture [58] (Section 4.2).

To address the server utilization and QoS challenges, we design a static compilation ap-

proach, QoS-Compile, for effective QoS management on multicores to facilitate workload

11

consolidation and improve server utilization in WSCs. QoS-Compile is the first compilation

approach to addressing the QoS challenges caused by contention for multiple co-running

applications. Chapter 5 presents:

• Profiling techniques to identify contentious code regions: We design a predic-

tion model that is based on the performance counters to pinpoint code regions that

aggressively demand memory resources [57, 56] (Section 5.2).

• Novel code transformations to dampen code regions’ contentious nature:

We design two compilation techniques that reduce a code region’s contentiousness and

the potential performance interference it can cause to co-runners [57] (Section 5.3).

In addition to static compilation techniques, we design a statically-enabled runtime

system, Reactive-Niceness (RN), to further improve server utilization and achieve more

accurate QoS management of latency-sensitive applications. Chapter 6 presents:

• RN-Compiler: We present a profiling guided compilation approach that enables the

adaptive manipulation of contentiousness of the low-priority application. The RN-

Compiler identifies the contentious code regions of an application and inserts hooks

in these regions that are used to invoke runtime manipulation [55] (Section 6.2).

• RN-Runtime: We present a runtime system that continuously monitors the QoS

of high-priority applications, detects when contention is occurring dynamically, and

directs the manipulation of the contentiousness of low-priority applications based on

an adaptation policy. We also present two adaptation policies for flexible adjustments

of the tradeoffs between QoS and utilization [55] (Section 6.3).

Collectively, this dissertation takes a major leap forward in understanding and mitigating

memory resource contention to improve efficiency in the emerging domains of large-scale

web-services and modern warehouse scale computers. We demonstrate the need for new

types of software systems in modern WSCs and design effective mechanisms to fundamen-

tally address the detrimental impact of memory resource contention on efficiency of WSCs

to greatly improve both performance and server utilization.

12

Chapter 2

Background and Related Work

Contents

2.1 Warehouse Scale Computers . 13

2.1.1 Cost . 14

2.1.2 Application QoS . 14

2.1.3 Job Scheduling, Application Colocation and Utilization 15

2.1.4 Machine Level . 18

2.2 Related Work . 18

2.2.1 Impact of Memory Resource Sharing 18

2.2.2 Novel Hardware Solutions to Mitigate Contention 19

2.2.3 Software Runtime and OS Approaches to Mitigating Contention . 19

2.2.4 Cache Contention Aware Compilation 21

2.1 Warehouse Scale Computers

This chapter reviews the background and related work of this dissertation. We first present

the background of modern warehouse scale computers including its cost breakdown (Sec-

tion 2.1.1), the QoS metrics of applications that are running in these datacenters (Sec-

tion 2.1.2), and the job scheduling on a cluster level (Section 2.1.3) as well as on a machine

level (Section 2.1.4). We then present related work, especially on the topic of memory

resource contention from both software and hardware communities (Section 2.2).

13

DC amortization

22%

DC interest

19%

DC opex

8%

server amortization

23%

server interest

5%

server opex

1%

server power

11%

PUE overhead

11%

Figure 2.1: TCO (Total Cost of Ownership) cost breakdown for a datacenter using commodity servers

2.1.1 Cost

To better understand the importance of improving performance and server utilization, let us

first examine the cost of a modern warehouse computer. Figure 2.1 is from “The Datacenter

as a Computer: An Introduction to the Design of Warehouse-Scale Machines” by Barroso

et al. [6]. It presents a 3-year total cost of ownership (TCO) breakdown of a datacenter

housing commodity servers, including both capital cost and operational cost. As shown in

the figure, servers, power and datacenter construction are several major components of the

TCO. Improving performance and utilization can reduce the cost for all these components.

Better performance and higher server utilization indicate less servers needed for a given

amount of work, less power consumed by these servers and a smaller datacenter to host

these servers.

2.1.2 Application QoS

Applications that are running in a warehouse scale computer often have various quality-

of-service (QoS) priorities. User-facing applications such as web-search, maps, email and

other Internet services are latency-sensitive, and have high QoS priorities. Applications

14

such as file backup, offline image processing, and video compression are batch applications

that often have no QoS constraints. For these, latency is not as important.

In this dissertation, we define the QoS of an application in terms of the relevant perfor-

mance metric specified in its internal service level requirements (SLAs). For example, the

QoS of Google’s web-search is measured using query latency and queries-per-second. This

is in contrast to Bing’s [22, 30], which uses the quality of search results provided. And a

job’s QoS level of 95% corresponds to the normalized 95% of its performance when an entire

machine is dedicated to that job. More details and examples of applications and their QoS

or performance metrics are presented in Section 3.1 Table 3.3.

2.1.3 Job Scheduling, Application Colocation and Utilization

In this section, we examine the current job scheduling in a modern WSC, the applica-

tion colocation policy and the current server utilization. In the modern datacenter, job

scheduling is done in a hierarchical fashion. A global job scheduler manages a number of

machines and selects a particular machine for each job. Once a job is mapped to a machine,

the machine-level scheduler then decides the mapping and scheduling of the job and its

threads. In this section, we focus on the cluster level scheduler. We discuss the machine

level scheduler in the next section.

In modern warehouse scale computers, each web-service is composed of one to hundreds

of application tasks, and each task runs on a single machine. An application task is com-

posed of the application binary, associated data, and a configuration file that specifies the

machine level resources required. These resources include the number of cores, amount of

memory, and disk space that are to be allocated to the task. The configuration file for a

task may also include special rules for the cluster manager such as whether to disallow co-

locations with other tasks. Based on the resource requirement, the cluster manager, which

is responsible for a cluster of servers, uses an algorithm similar to bin-packing to place each

task on a single machine [43].

15

cluster
manager

...

core3

server

core1 core4core2

latency-sensitive

core3

server

core1 core4core2

batch batch

core3

server

core1 core4core2

batch batch

core3

server

core1 core4core2

batch batch

core3

server

core1 core4core2

batch batch

tasks

...

latency-sensitive

...

Figure 2.2: Task placement in a cluster. The cluster manager does not co-locate latency-sensitive applica-
tions with others to protect their QoS from performance interference, causing low machine utilization.

Application Colocation

As multicores become widely adopted in datacenters, the cluster manager often consolidates

multiple disparate tasks on a single server to improve the machine utilization. However, to

avoid the performance interference, latency-sensitive applications that have strict QoS are

not co-located with any other applications. A simplified illustration of the application task

placement process is shown in Figure 2.2 [37, 38, 36]. Latency-sensitive tasks that disallow

co-location inadvertently occupy more resources on a server leading to unnecessary server

overprovisioning and low machine utilization.

Sever Utilization

The current server utilization in warehouse-scale computers is typically quite low, often

below 30%. Figure 2.3 presents a histogram of utilization for two production workloads,

“web 2.0” applications and enterprise IT applications, from enterprise-scale commercial

deployments [42]. The data presented is from utilization traces collected over many days,

aggregated over more than 120 servers (production utilization traces were provided courtesy

of HP Labs). As shown here, the servers spend the vast majority of time under 10%

utilization.

16

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Utilization (%)

T
im

e
 (

%
)

IT

Web 2.0

Figure 2.3: Server Utilization Histogram from HP datacenters.

Figure 2.4: Activity profile of a sample of 5,000 Google servers over a period of 6 months.

17

Figure 2.4 presents a histogram of average CPU utilization of more than 5,000 servers

during a six-month period in Google production datacenters [6]. As shown in the figure,

servers rarely operate near their maximum utilization. The average utilization shown here

is around 30%. The policy of disallowing colocation of latency-sensitive applications is one

of the main reasons for the low utilization.

2.1.4 Machine Level

Once application tasks are mapped on a machine, on the individual machine level, general

purpose system software such as the Linux kernel is adapted for and used in the datacenter

for finer grain scheduling. The state-of-the-art kernel scheduler focuses on load balancing

and prioritizes cache affinity to reduce cache warm-up overhead. It does not take memory

resource sharing into account. The scheduler’s thread-to-core mapping is determined with-

out regard to, or knowledge of, the application characteristics or the underlying resource

sharing topology. Although developers can specify which cores to use manually, this must

be done on an application by application, architecture by architecture basis. As a result,

this option is seldom used as it places a significant burden on the developer.

2.2 Related Work

2.2.1 Impact of Memory Resource Sharing

Currently, little is known about the impact of memory resource sharing on large-scale web-

service datacenter applications. A great amount of prior work has concluded that contention

has a significant impact on the performance of traditional workloads using common bench-

mark suites such as SPEC [63, 15, 40]. However, recent work by Zhang et al. concludes

that contemporary multithreaded applications are not affected by cache sharing using a

multithreaded benchmark suite PARSEC [61]. To the best of our knowledge, no prior work

has investigated the impact of memory resource sharing for industry-strength emerging dat-

acenter workloads. The commonly used benchmark suites (such as SPEC, PARSEC) do

not necessarily represent these workloads, and thus may be misleading.

18

2.2.2 Novel Hardware Solutions to Mitigate Contention

Hardware techniques such as cache partitioning and bandwidth partitioning to reduce re-

source contention and improve performance and fairness on multicores have received much

research attention [28, 45, 10, 19, 44, 51, 52, 27, 32]. In addition, there also have been a

number of work aimed at better modeling cache contention [8] and monitoring cache con-

tention [62]. Most of the prior work focuses on improving the system’s overall performance

or performance fairness and does not address the QoS challenges.

Recently, platform support that enforces different QoS priorities has been proposed

[16, 21, 12, 18]. Among these studies, a promising direction for QoS management is hard-

ware execution throttling. Herdirch et al. [18] use what is likely to be future hardware

capabilities, core specific dynamic voltage scaling and clock modulation to throttle down

low priority applications to reduce their performance interference on the high priority ap-

plications. Ebrahimi et al. [12] and Iyer et al. [21] propose hardware changes to throttle

memory requests to provide QoS management. Although these hardware solutions have

shown promising results using simulations, they require significant changes to current com-

modity micro-architectures and cannot be applied to multicore platforms that are already

in production or to be deployed in the near future.

2.2.3 Software Runtime and OS Approaches to Mitigating Contention

[Contention Aware Scheduling] A research direction that recently attracted a wealth

of attention is contention aware scheduling [15, 29, 24, 63, 23, 24, 7, 4, 60]. Contention

aware scheduling techniques use predictors or models to decide what applications should be

co-running together to minimize the performance degradation or to improve performance

isolation. Although contention-aware scheduling may improve the overall performance or

fairness of a workload composed of a mixture of highly contentious and not contentious

applications, its effectiveness is highly dependent on the composition of the workload. In

addition, the current work does not address thread-to-core (TTC) mapping for multiple

multi-threaded applications when the resource sharing can have either positive or nega-

tive impact. Moreover, scheduling approaches do not provide direct manipulation of the

19

contentious nature of an application.

• [TTC Mapping] So far there is little work on software approaches to intelligently

mapping threads to cores to promote positive resource sharing, reduce contention

and improve performance. Most of the above work uses single threaded applications

and focus on only on the resource contention aspect between multiple applications,

ignoring the contention and potential benefit among threads that belong to a single

application. For example, Banikazemi et al. [4] present a scheduler to adaptively

schedule threads of single-threaded applications to cores to take advantage of the

cache topology to alleviate resource contention. Tam et al. [54] present a technique

to cluster communicating threads onto the same chip to reduce the communicating

latency. Their approach targets multithreaded-applications. However, their technique

only focuses on the constructive effect of sharing resource without considering the

potential resource contention.

• [QoS management for improving utilization] There are currently no general

software solutions for achieving the QoS management and enforcement of QoS priori-

ties as described in Figure 1.4 (B). Our static/dynamic compilation approaches differ

from the scheduling efforts in that, firstly, our approaches do not decide which applica-

tion should be running with which. Instead we focus on the complimentary question:

when multiple applications are already scheduled to be running simultaneously on a

multicore platform, how to reduce the contention and guarantee their QoS? Secondly,

most of the above studies on contention aware scheduling focus on improving overall

performance or performance fairness instead of guaranteeing different QoS priorities

for different applications. In this dissertation, our static/dynamic compilation system

provides a mechanism to trade a small amount of performance of low priority applica-

tions to enable more “safe” co-locations and thus improve machine utilization in the

WSC.

• [Indicators for Application Contention Characteristics] One important com-

ponent for contention-aware scheduling and adaptive runtimes is the indicators for

application contention characteristics. This is related to the dissertation because our

20

profiling technique relies on indicators to identify contentious code regions. Knauer-

hase et al. [29] use last level cache miss rate as an indicator of contentiousness of

an application. Zhuravlev et al. [63] demonstrate that cache contention is not the

dominant cause for performance degradation of co-running applications on CMPs;

contentious behaviors that happen in many components of the memory sub-system

all contribute to the performance degradation. They also conclude that last level

cache miss ratio is one of the best predictor for co-running applications’ performance

degradation. Mars et al. [40] use changes in LLC miss rate as an indicator to detect

contention. Approaches that use prediction models are also proposed. Jiang et al. [24]

estimate an application’s contentiousness by estimating the extra cache misses caused

by co-location based on the application’s reuse distance profile. This dissertation

presents a more accurate prediction model than the state-of-the-art approaches.

In addition to contention-aware scheduling mentioned above, software solutions to pro-

vide QoS guarantee using page coloring/remapping have been proposed [31, 11, 49]. Most

page coloring methods require significant modifications to the kernel and knowledge of de-

tails of cache designs. However, cache designs on modern multicores are highly guarded

industry secrets. Mars et al. [40] design CAER, an adaptive runtime that detects and

responds to contention online. This is the first proposed software approach to detect con-

tention, which periodically pauses the execution of an application, monitors the difference

in last level cache miss rate to infer contention.

2.2.4 Cache Contention Aware Compilation

Researchers recently have started to explore using code transformations and restructur-

ing to improve cache sharing and reduce contention on multicores [26, 25, 61, 50]. Most

such research focuses on compilation techniques to improve data sharing for multi-threaded

programs. Kandemir et al. [25] propose a code restructuring scheme for improving cache

locality by optimizing loop iterations distribution and scheduling on multicores. Our stat-

ic/dynamic compilation approaches for niceness do not address the interaction of cache

sharing or contention within an application. Instead, our techniques regulate the memory

21

pressure an application puts on the shared resources, changing how applications interact

with each other in terms of contending for the shared memory resources. Methods to reduce

cache pollution by using special instructions to manage cache are also proposed. Sandberg

et al. [48] use non-temporal prefetch instructions to improve performance of cache sharing

among a mix of workloads on commodity multicores.

22

Chapter 3

The Impact of Memory Resource Sharing

Contents

3.1 Memory Resource Sharing . 24

3.2 Intra-Application Sharing . 26

3.2.1 Experiment Methodology . 26

3.2.2 Measurement and Findings . 28

3.2.3 Investigating Performance Variability 29

3.2.4 Summary . 32

3.3 Inter-Application Sharing . 33

3.3.1 Experiment Design . 33

3.3.2 Measurement and Findings . 34

3.3.3 Varying Thread Count and Architecture 38

3.3.4 Summary . 40

This chapter characterizes the performance impact of memory resource sharing on key

workloads in modern warehouse scale computers. As mentioned in Chapter 2, currently,

little is known about the impact of memory resource sharing on these large-scale industry-

strength applications. In this chapter, we first investigate intra-application sharing (Sec-

tion 3.2), characterizing the impact of resource sharing on threads that belong to a single

multithreaded application. In this case, the threads may share data so it may either ben-

efit or degrade from the resource sharing. We then investigate inter-application sharing

(Section 3.3), characterizing the impact on threads that belong to multiple multithreaded

23

applications.

As shown in this chapter, our investigations demonstrate that, contrary to conclusions

from recent work [61], across several key datacenter applications including websearch, there

is both a sizable benefit and a potential degradation from improperly sharing microarchi-

tectural resources on a single machine, such as on-chip caches and bandwidth to memory.

More interestingly, the best thread-to-core mapping for a given application does not only

depend on the application’s sharing and memory characteristics; it is also impacted dynam-

ically by the characteristics of other applications that are co-running on the same machine

simultaneously.

3.1 Memory Resource Sharing

On multi-socketed multicore platforms such as the dual socket Intel Clovertown shown in

Figure 1.1, processing cores may or may not share certain memory resources including the

last level cache (LLC) and memory bandwidth as discussed in the previous section. Thus for

a given subset of processing cores, there is a particular sharing configuration among the cores

of that subset. For example, for two processing cores on the Clovertown machine shown

in Figure 1.1, there are three possible sharing configurations between two cores, shown in

Table 3.1. For a set of four processing cores on the same Clovertown machine, there are

three different sharing configurations among the four cores. Each sharing configuration is

also illustrated in Figures 3.1, 3.2 and 3.3. The cache hierarchy and memory topology of

the specific machine determine the possible sharing configurations among multiple cores.

For example, on a multi-socket Dunnington, the sharing configurations span combinations

of sharing and not sharing scenarios of the three memory components: the L2 cache, L3

cache, and the front side bus (FSB).

Whether an application’s performance is constructively or destructively impacted by

the sharing configuration of the cores on which it is running depends on whether the ap-

plication thread’s data sharing characteristics mimic the sharing configuration of the cores.

Figures 3.1, 3.2 and 3.3 show three mappings corresponding to three sharing configurations

on our experimental platform, the Intel Clovertown. Here we introduce a notation for the

24

0 1 2 3

4 MB L2 4 MB L2

4 5

4 MB L2

6 7

4 MB L2

MCH

2x333 MHZ FSB (Quad Pumped)

10.6 GB/s per FSB

FSB

Figure 3.1: Separate Caches,
Separate FSBs (X.X.X.X.)

0 1 2 3

4 MB L2 4 MB L2

4 5

4 MB L2

6 7

4 MB L2

MCH

2x333 MHZ FSB (Quad Pumped)

10.6 GB/s per FSB

FSB

Figure 3.2: Sharing Cache, Sep-
arate FSBs (XX..XX..)

0 1 2 3

4 MB L2 4 MB L2

4 5

4 MB L2

6 7

4 MB L2

MCH

2x333 MHZ FSB (Quad Pumped)

10.6 GB/s per FSB

FSB

Figure 3.3: Sharing Cache, Shar-
ing FSB (XXXX....)

Table 3.1: Sharing configurations for sets of 2 cores and sets of 4 cores

Cores LLC(L2) FSB set of cores

2 Cores
Share (S-LLC): 2
cores - 1 L2

Share (S-FSB): 2
cores - 1 FSB

{0,1}, {2,3}, {4,5} {6,7}

Distribute (D-
LLC): 2 x (1 core - 1
L2)

Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}

Distribute: 2 x (1
core - 1 L2)

Distribute (D-FSB):
2 x (1 core - 1 FSB)

{0,4},{0,5},{0,6},{0,7},...

4 Cores
Share: 2 x (2 cores - 1
L2)

Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}

Share: 2 x (2 cores - 1
L2)

Distribute: 2 x (2
cores - 1 FSB)

{0,1,4,5}, {2,3,6,7}

Distribute: 4 x (1
core - 1 L2)

Distribute: 2 x (2
cores - 1 FSB)

{0,2,4,6}, {1,3,5,7}

set of cores the threads are mapped to on this Clovertown topology. We use X to high-

light the cores the threads are mapped to. For example, {XXXX....} indicates four threads

mapped to cores {0, 1, 2, 3} on the same socket, as shown in Figure 3.3. To study the

performance impact of resource sharing in a controlled and isolated fashion, we compare

the performance differences of an application in different thread-to-core mappings. This

sheds light on how sharing of each type of resource impacts performance of various applica-

tions with different data sharing patterns. For example, the performance difference between

mapping {XX..XX..} and {X.X.X.X.} reflects the impact of sharing last level cache (LLC);

and the performance difference between mapping {XX..XX..} and {XXXX....} reflects the

impact of sharing FSB. When there is significant performance variability, a resource-aware

thread-to-core mapping is needed.

25

Table 3.2: Experiment Platform

CPU Xeon E5345

GHz 2.33ghz

Cores 2x4

L2 4x4MB 16 way

FSB 2 x 10.6GB/s

Memory Bus 4 x 4.3GB/s

Memory 32GB

3.2 Intra-Application Sharing

We first investigate the performance impact of memory resource sharing for several key data-

center applications. Experiments and measurement are conducted using different thread-to-

core (TTC) mappings to study the impact of intra-application sharing, defined as resource

sharing among the threads of an individual multi-threaded application.

3.2.1 Experiment Methodology

We first describe our experiment setup including the platform, benchmark applications,

performance metrics and experiment design.

The primary platform used for this investigation is a dual socket Intel Clovertown (Xeon

E5345), shown in Figure 1.1 and Table 3.2. Each socket has 4 cores. Each 2 cores on the

same socket are sharing a 4MB 16 way last level cache (L2). The platform is running Linux

kernel version 2.6.26 and a customized GCC 4.4.3. This platform is commonly deployed

in Google production datacenters. We also conducted experiments on the Intel Westmere,

which is presented in Section 3.3.3.

Table 3.3 presents a detailed description of the five datacenter applications we used

in this study. It also shows which of the datacenter applications used in this work are

latency sensitive and which are batch. This work focuses on the performance of the key

latency sensitive applications. We use each application’s specified performance metric in

this investigation. The performance metrics are also shown in Table 3.3. The load for each

application is real world query traces in production datacenters. A load generator is set

up to test the peak capacity behavior of these applications. The performance shown is

26

Table 3.3: Production Datacenter Applications

applications description metric type

content ana-
lyzer

content and semantic analysis,
used to take key words or text
documents and cluster them by
their semantic meanings [2]

throughput latency-
sensitive

bigtable storage software for massive
amount of data [9]

average la-
tency

latency-
sensitive

websearch industry-strength internet search
engine [5]

queries per
second

latency-
sensitive

stitcher image processing and stitch-
ing, used for generating street
views [53]

N/A batch

protobuf protocol buffer [3] N/A batch

applications’ stable behavior after the initialization phase. Because our measurements use

a large amount of queries from production, these applications’ behaviors and characteristics

are representative of real-world execution.

[Experiment Design] In this section we conduct experiments when the application

is running alone to study the interaction within a multi-threaded application with the

underlying resource sharing and the resulting performance variability. Three measure-

ments are conducted with three thread-to-core mappings: {XXXX....}, {XX..XX..}, and

{X.X.X.X.}. The performance difference between mapping configurations demonstrates

how sharing LLC, sharing FSB, or sharing both can constructively or destructively impact

the performance of applications of interest. In each mapping, we use taskset to map

threads to cores. This allows us to study the resource sharing outside of the default OS

scheduler’s algorithm. This methodology is shown to be valid for measuring the impact

of cache sharing by prior work [61]. Applications are parameterized to have a fixed load

execute across 4 cores. All experiments were run three times and the average measurement

is presented. The performance variability between runs for each configuration is around

1%.

27

{XX..XX..}: S−LLC, D−FSB
{XXXX....}: S−LLC, S−FSB

 0.7x

 0.8x

 0.9x

 1x

 1.1x

 1.2x

 1.3x

con_Analyzer bigtable websearch

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

{X.X.X.X.}: D−LLC, D−FSB

Figure 3.4: Performance of different thread-to-core mappings when each application is running alone. The
higher the bars, the better the performance. The performance variability is up to 20% for each application,
indicating that the memory resource sharing has a significant performance impact on these applications.
Also, notice that bigtable is benefiting from sharing last level cache; while contentAnalyzer and webSearch
suffer from the contention for memory resource among sibling threads.

3.2.2 Measurement and Findings

Figure 3.4 demonstrates the performance variability due to different TTC mappings for

the latency sensitive applications presented in Table 3.3. For each application, the x axis

shows the subset of cores to which the application is mapped. The y axis shows each

application’s performance in each TTC mapping scenario, normalized by its performance

using the mapping {X.X.X.X.}.

The results show that the performance impact of memory resource sharing for these

applications is significant, up to 22% for contentAnalyzer, 18% for bigtable and 8% for web-

Search. Secondly, each application prefers different sharing configurations. Both content-

Analyzer and webSearch prefer to run on separate LLCs and separate FSBs. The mapping

{X.X.X.X.} has 10% performance improvement for webSearch and 20% for contentAnalyzer

compared to mapping {XXXX....}, when all threads are on the same socket sharing 2 LLCs

and a single FSB. On the other hand, bigtable achieves the best performance when running

on the same socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} mapping has a 18%

degradation. When taking a deeper look, for contentAnalyzer and webSearch, the difference

between the 1st bar and the 2nd bar indicates the impact of cache sharing when available

FSB bandwidth remains the same; the difference between the 2nd and the 3rd bar indicates

28

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000

co
n

_
A

n
al

y
ze

r

b
ig

ta
b

le

w
eb

se
ar

ch

L
L

C
 m

is
se

s
p

er
 m

il
li

o
n

 i
n

st
rs

{X.X.X.X.}: D−LLC, D−FSB
{XX..XX..}: S−LLC, D−FSB
{XXXX....}: S−LLC, S−FSB

 0

 1,000

 2,000

Figure 3.5: LLC misses per million instrs

the impact of sharing FSB versus having separate FSBs.

For bigtable, sharing LLC has a constructive impact on performance. The 3rd bar

is slightly higher than the 2nd bar, indicating that FSB bandwidth may not be a main

bottleneck from bigtable. On the other hand, the reduced coherence latency on the same

socket may give mapping {XXXX....} a slight advantage over {XX..XX..}.

3.2.3 Investigating Performance Variability

To confirm that different memory sharing configurations provided by the different thread-

to-core mapping is the main cause of the performance variability, we also conducted exper-

iments to collect performance counters information. Performance counters including last

level cache misses, bus transactions, MESI states of LLC requests are collected using pfmon

[14].

[Last Level Cache Misses] Figure 3.6 shows the average number of last level cache

misses per million instructions for each application’s execution in each TTC mapping sce-

nario normalized to the scenario {X.X.X.X.}. Misses per million instructions is used because

in this experiments we are comparing the misses caused by a fixed section of code. Fig-

ure 3.6 shows that the LLC misses trend is fairly consistent with the performance trend in

the different mapping scenarios. Content Analyzer and webSearch both have an increase in

29

b
ig

ta
b

le

w
eb

se
ar

ch

n
o

rm
al

iz
ed

 L
L

C
 m

is
se

s
p

er
 m

il
li

o
n

 i
n

st
rs

{X.X.X.X.}: D−LLC, D−FSB
{XX..XX..}: S−LLC, D−FSB
{XXXX....}: S−LLC, S−FSB

 0.6x

 0.7x

 0.8x

 0.9x

 1x

 1.1x

 1.2x

 1.3x

 1.4x

co
n

_
A

n
al

y
ze

r

Figure 3.6: Normalized average LLC misses per million instructions

 6,000

 8,000

 10,000

 12,000

co
n

_
A

n
al

y
ze

r

b
ig

ta
b

le

w
eb

S
ea

rc
h

B
u

s
re

q
u

es
ts

 p
er

 m
il

li
o

n
 i

n
st

rs

{X.X.X.X.}: D−LLC, D−FSB
{XX..XX..}: S−LLC, D−FSB
{XXXX....}: S−LLC, S−FSB

 0

 2,000

 4,000

Figure 3.7: Bus ratio

30

b
ig

ta
b

le

w
eb

S
ea

rc
h

n
o

rm
al

iz
ed

 b
u

s
re

q
u

es
ts

 p
er

 m
il

li
o

n
 i

n
st

rs

{X.X.X.X.}: D−LLC, D−FSB
{XX..XX..}: S−LLC, D−FSB
{XXXX....}: S−LLC, S−FSB

 0.8x

 0.85x

 0.9x

 0.95x

 1x

 1.05x

 1.1x

 1.15x

 1.2x

co
n

_
A

n
al

y
ze

r

Figure 3.8: Normalized bus ratio

 40,000

 50,000

 60,000

 70,000

 80,000

 90,000

{
X

.X
.X

.X
.}

{
X

X
..

X
X

..
}

{
X

X
X

X
..

..
}

{
X

.X
.X

.X
.}

{
X

X
..

X
X

..
}

{
X

X
X

X
..

..
}

{
X

.X
.X

.X
.}

{
X

X
..

X
X

..
}

{
X

X
X

X
..

..
}

L
2

 R
eq

u
es

ts
 p

er
 m

s
in

 d
if

fe
re

n
t

st
at

es

Cont_Analyzer Bigtable Websearch

Prefetch

Invalid

Shared

Exclusive

Modified

 0

 10,000

 20,000

 30,000

Figure 3.9: L2 Requests in MESI States and in Prefetch State

31

last level cache misses when transitioning from not sharing LLC to sharing LLC, indicating

contention for LLC occurs among threads. This explains the performance degradation from

these two applications’ 1st bar to 2nd and 3rd bars in Figure 3.4. Bigtable on the other

hand, has a decrease in LLC misses when transitioning from not sharing LLC to sharing

LLC, indicating the cache sharing is constructive and threads are sharing data that fits in

the LLC. This explains the performance improvement from Bigtable 1st bar to 2nd and 3rd

bar in Figure 3.4.

[FSB Bandwidth Consumption] Figure 3.8 shows the average number of bus trans-

action requests per million instructions in different mapping scenarios, normalized by the

rate in scenario {X.X.X.X.}. The number of bus transactions is measured using the

BUS TRANS BURST event, which counts the number of full cache line requests (64 bytes).

The bus bandwidth consumption is consistent with the last level cache misses and perfor-

mance trends. The increase in last level cache misses causes the increase in bus requests

which degrades performance. For contentAnalyzer and webSearch, bus requests per million

instructions in mapping scenarios {XX..XX..} and {XXXX....} are similar. However, their

performance is worse in the mapping scenario {XXXX....}. This is due to the contention

for the FSB. For the same amount of bus requests, having 2 FSBs provides a performance

advantage. This is also supported by the observation that contentAnalyzer has higher bus

requests than webSearch, and contentAnalyzer suffers a bigger degradation transitioning

from using 2 FSBs to sharing a single FSB on one socket.

[Data Sharing] We further investigated the level of data sharing within each applica-

tion to explain why some applications are benefiting and others are suffering from cache

sharing. Figure 3.9 shows the number of L2 Requests per millisecond in five states: Modi-

fied, Exclusive, Shared, Invalid and Prefetch. This figures shows that bigtable has the most

amount of sharing between data in the LLC, which is also consistent with the observation

that bigtable benefits from cache sharing.

3.2.4 Summary

In this section we show that the impact of sharing the last level cache can either be positive

or negative and can be significant (up to 10%). Bus contention also has a fairly significant

32

impact on performance and contributes another 10% performance variability. For applica-

tions that have higher levels of sharing, a positive side effect of placing all threads close

to each other and sharing a bus is observed. These results demonstrate the importance

of an effective thread-to-core mapping that mimics the application’s inherent data sharing

pattern.

3.3 Inter-Application Sharing

In this section, we present the performance impact of memory resource sharing when co-

locating multiple applications on a machine. We define inter-application resource sharing as

resource sharing between applications. As we discussed in Chapter 1, co-location is impor-

tant for improving machine utilization, especially for a multi-socketed multicore machine.

However, co-location may introduce detrimental performance degradation due to contention

for shared resources. For some platforms, certain memory components may be always shared

among all threads from all applications. For example, for the dual-socket Clovertown used

in our experiments, the memory controller hub and memory bus are always shared among

all execution threads. However, for resources such as the LLC and FSB, an application

can, share only LLC(s) or only FSB(s) or both, among its own threads, or with another

application. As we show in the previous section, resource sharing within an application

may have either constructive or destructive impact. However, when there is no explicit

inter-process communication between applications, resource sharing between applications is

either neutral or destructive. Depending on the application and its co-runners, the amount

of impact from sharing different resources between applications may vary. In this section,

we study the impact of LLC and FSB sharing and how the impact affects thread-to-core

mapping decisions in the presence of co-location.

3.3.1 Experiment Design

Similar to Section 3.2, we study the impact of resource sharing by comparing the perfor-

mance variability for key applications in three TTC mappings scenarios. The three TTC

mappings are: {XXXX****}, {XX**XX**}, and {X*X*X*X*}. For this study, we use * to

33

denote a thread of the co-running application. We use the batch applications stitcher and

protobuf (described in Table 3.3) as co-running applications. Since batch applications are

often co-located with key latency sensitive applications in production, and we are focusing

on the three important latency sensitive applications, we measure the performance for each

of the three latency sensitive applications, contentAnalyzer, bigtable and webSearch, when

sharing resources with each co-runner in each of the three sharing configurations.

3.3.2 Measurement and Findings

Figure 3.10 shows contentAnalyzer ’s performance when it is co-running with other appli-

cations. The first cluster of bars show contentAnalyzer ’s performance when it is co-located

with stitcher, and the second cluster, when it is co-located with protobuf. In this figure,

the contentAnalyzer ’s performance is normalized by three different baselines. Specifically,

its performance when co-located in each thread-to-core mapping scenario is normalized by

its performance when running alone in the corresponding mapping scenario. For example,

the first bar in the first cluster shows contentAnalyzer ’s performance when it is running

with stitcher. The thread-to-core mapping is denoted as {X*X*X*X*}, X denoting content-

Analyzer ’s threads and * denotes stitcher ’s threads. This performance is normalized by

contentAnalyzer ’s performance when it is running alone using mapping {X.X.X.X.}. This

figure demonstrates the performance interference caused by adding stitcher and by adding

protobuf when contentAnalyzer is bound to a certain subset of cores. Interestingly, in dif-

ferent TTC mapping scenarios, the same co-runner causes different amounts of degradation

to contentAnalyzer. This is because in different mapping scenarios, co-locating a co-runner

to the available idle cores leads to sharing of different resources between co-running applica-

tions. The first bar in the first cluster shows a degradation of 35% caused by sharing both

LLC and FSB between contentAnalyzer and stitcher. The second bar shows a degradation

of 22% caused by only sharing the FSB bandwidth between the two applications. Note

that the performance degradation shown by the third bar is due to interference caused by

stitcher for sharing the memory controller hub and the rest of the memory system with

contentAnalyzer, which is unavoidable in the topology of the platform in our experiment.

Figure 3.13 shows contentAnalyzer ’s performance when it is running alone and it is

34

+stitcher +protobuf

P
er

fo
rm

an
ce

{X*X*X*X*}: D−LLC, D−FSB
{XX**XX**}: S−LLC, D−FSB
{XXXX****}: S−LLC, S−FSB

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

 1x

 1.1x

 1.2x

Figure 3.10: ContentAnalyzer. Normalized to solo performance

+stitcher +protobuf

P
er

fo
rm

an
ce

{X*X*X*X*}: D−LLC, D−FSB
{XX**XX**}: S−LLC, D−FSB
{XXXX****}: S−LLC, S−FSB

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

 1x

 1.1x

 1.2x

Figure 3.11: Websearch. Normalized to solo performance

+stitcher +protobuf

P
er

fo
rm

an
ce

{X*X*X*X*}: D−LLC, D−FSB
{XX**XX**}: S−LLC, D−FSB
{XXXX****}: S−LLC, S−FSB

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

 1x

 1.1x

 1.2x

Figure 3.12: Bigtable. Normalized to solo performance

35

P
er

fo
rm

an
ce

{X*X*X*X*}: D−LLC, D−FSB
{XX**XX**}: S−LLC, D−FSB
{XXXX****}: S−LLC, S−FSB

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

 1x

 1.1x

 1.2x

solo +stitcher +protobuf

Figure 3.13: ContentAnalyzer. Normalized to solo performance with
{X.X.X.X.}

P
er

fo
rm

an
ce

{X*X*X*X*}: D−LLC, D−FSB
{XX**XX**}: S−LLC, D−FSB
{XXXX****}: S−LLC, S−FSB

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

 1x

 1.1x

 1.2x

solo +stitcher +protobuf

Figure 3.14: Websearch. Normalized to solo performance with {X.X.X.X.}

P
er

fo
rm

an
ce

{X*X*X*X*}: D−LLC, D−FSB
{XX**XX**}: S−LLC, D−FSB
{XXXX****}: S−LLC, S−FSB

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

 1x

 1.1x

 1.2x

solo +stitcher +protobuf

Figure 3.15: Bigtable. Normalized to solo performance with {X.X.X.X.}

36

co-running, normalized by a single baseline: its performance when running alone in the

mapping {X.X.X.X.}. Our key observation here is that the best thread-to-core mapping

for contentAnalyzer changes. When it is running alone, its best mapping is {X.X.X.X.}.

When running with protobuf, it is still {X*X*X*X*}. When running with stitcher, the best

mapping changes to {XXXX****}. With the same co-runner, the performance variability of

contentAnalyzer between the worst and the best mapping can be fairly significant. When

running with protobuf, the performance swing between different mappings is around 11%.

Figures 3.11 and 3.14 show webSearch’s performance when it is co-running with stitcher

and protobuf. Similar to Figure 3.10, in Figure 3.11, each bar represents the performance of

webSearch when co-located in a certain mapping scenario, normalized by its performance

when running alone in the same mapping scenario. Figure 3.14 shows its performance when

co-located, normalized by a single baseline, namely, when it is running alone and mapped

to {X.X.X.X.}. Figures 3.11 and 3.14 show that WebSearch’s performance variability has

a similar trend as contentAnalyzer ’s. Also similarly, the optimal mapping for webSearch

changes depending on if it is running alone or which application it is running with. One

difference worth noticing between contentAnalyzer and webSearch is that when webSearch

is co-located with protobuf, its best mapping is {XX**XX**}.

In contrast to both contentAnalyzer and webSearch, bigtable prefers to share the LLC

and FSB among its own threads both when it is running alone and when running with other

applications as shown in Figure 3.12 and 3.15. However, there is a significant performance

swing between thread-to-core mappings. When it is running with stitcher, there is a 40%

performance difference between the three mappings.

Based on these experiment results, we can categorize these applications based on the

underlying sharing configurations they prefer when running alone and running with other

applications. The categorization is shown in Table 3.4. This table presents the optimal

mapping for each application and highlights the changes in mapping preferences in different

situations. In the table, S stands for ”shared” and D stands for ”distributed”. In contrast to

the conclusions about PARSEC suite in prior work [61] (presented in Table 3.4’s last row),

our experiments demonstrate that industry-strength datacenter applications have diverse

preferences in resource sharing and TTC mappings.

37

Table 3.4: Optimal Thread-To-Core Mapping in Solo and Co-location Situations

Benchmark Solo w/ Stitcher w/ Protobuf

bigtable {XXXX....}: S-LLC, S-
FSB

{XXXX****}: S-LLC, S-
FSB

{XXXX****}: S-LLC, S-
FSB

contentAnalyzer {X.X.X.X.}: D-LLC,
D-FSB

{XXXX****}: S-LLC, S-
FSB

{X*X*X*X*}: D-LLC,
D-FSB

webSearch {X.X.X.X.}: D-LLC,
D-FSB

{XXXX****}: S-LLC, S-
FSB

{XX**XX**}: S-LLC,
D-FSB

PARSEC does not matter N/A N/A

12 MB L3

2 3 4 50 1

12 MB L3

8 9 10 116 7 DIMM

MEM MEM

Figure 3.16: Topology of Dual Socket Intel Westmere

3.3.3 Varying Thread Count and Architecture

In this section, we describe experiments to evaluate whether the above observations are also

applicable when the number of threads, the architecture or the memory topology changes.

Varying Number of Threads

We studied the impact of memory resource sharing when the latency sensitive applica-

tions have 2 and 6 threads. All experiments are conducted on Clovertown described in

Section 3.2.1. Figure 3.17 presents the scenario when each latency sensitive application is

configured to have 2 threads. This figure presents the latency sensitive application’s per-

formance when it is running alone, co-located with 6 threads of stitcher, and co-located

with 6 threads of protobuf. In the figure, we use C for contentAnalyzer, W for webSearch,

B for bigtable, S for stitcher and P for protobuf. The y axis shows each of the three latency

sensitive applications’ performances normalized by the performance when running alone in

the {X...X...} mapping. Figure 3.18 presents the scenario when each latency sensitive

application is configured to have 6 threads. In this figure, the performance of each latency

sensitive application is measured when it is running alone, co-located with 2 threads of

stitcher, and co-located with 2 threads of protobuf.

In general, our results show that in both 2-thread and 6-thread cases, each application’s

sharing preferences are similar to its preferences in the 4-thread case. For example, bigtable

38

 1.1x

 1.2x

C_solo C+S C+P W_solo W+S W+P B_solo B+S B+P

P
e
rf

o
rm

a
n

c
e

{X***X***}
{X*X*****}
{XX******}

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

 1x

Figure 3.17: 2 threads of a latency sensitive application colocated with 6 threads of a batch application,
normalized to the latency sensitive application’s solo performance in {X...X...} mapping

 1.1x

 1.2x

C_solo C+S C+P W_solo W+S W+P B_solo B+S B+P

P
e
rf

o
rm

a
n

c
e

{XXX*XXX*}
{XXXXX*X*}
{XXXXXX**}

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

 1x

Figure 3.18: 6 threads of a latency sensitive application colocated with 2 threads of a batch application,
normalized to the latency sensitive application’s solo performance in {XXX.,XXX.} mapping

prefers sharing cache among its threads when it has 2 threads, 4 threads and 6 threads.

ContentAnalyzer prefers sharing cache and FSB with its own thread when running with

stitcher and prefers distributing its threads when running alone or with protobuf. For

webSearch, when running with stitcher, the optimal mapping is always sharing with its own

threads. Moreover, similar to the 4-thread case, for each application, its optimal thread-to-

core mapping changes when its co-runners change.

Varying Architecture

We also conducted experiments on a Intel’s Westmere platform, shown in Figure 3.16. Our

experiment platform is a dual-socket Intel Xeon X5660. Each socket has 6 cores. The

memory topology of this architecture is quite different from Clovertown used in previous

sections. All six cores on the same socket share a 12 MB last level cache. Each chip has its

own integrated memory controller and has 3 channels of 8.5GB/s/channel bus connecting

to DIMM. Processors are connected through QuickPath interconnect (QPI). We conduct

39

experiments to evaluate the performance impact of sharing the LLC and memory bandwidth

on the same socket versus distributing threads to two sockets for our three key latency

sensitive datacenter applications.

Figures 3.19 and 3.20 present the results when each application is running alone with

2 threads and 6 threads. We use a similar notation to present the thread-to-core mapping.

For example, {X.....X.....} indicates two threads are mapped to two different sockets on

this architecture. In both figures, each application’s performance is normalized to its per-

formance when its threads are evenly distributed across 2 sockets. These results show that,

due to the different memory resource sharing patterns, different thread-to-core mappings

can cause significant performance variability. This is similar to results on Clovertown. On

Westmere, the performance swing is as high as 10%. Bigtable behaves similarly on both

architectures as it always benefits from cache sharing. However, interestingly, while con-

tentAnalyzer on Westmere benefits from cache sharing in the 2-thread case, in the 6-thread

case, it suffers from cache sharing. In the 8-thread case, which we do not show here, its per-

formance degradation due to cache sharing is over 20%. On the other hand, on Clovertown,

it always suffers from cache sharing. This discrepancy between its sharing preference on

two architectures may be due to the fact that Westmere has a 12MB LLC instead of 4MB

LLCs on Clovertown. Whether an application can benefit from last level cache sharing also

depends on the size of the cache and the number of threads that are executing.

For the co-location study, we present the results when 6 threads of latency sensitive

application co-running with 6 threads of corunner (Figure 3.21). The y axis shows each

latency sensitive application’s performance, normalized to its performance when running

alone in mapping scenario {XXX...XXX...}. This result shows that on Westmere, depend-

ing on the co-runner, the optimal thread-to-core mapping may also change. This is also

consistent with the observation on Clovertown.

3.3.4 Summary

In this section, our investigations show that, depending on the co-runner, sharing LLC

and FSB with the corunner can have a significant impact. An application’s performance

swing between its best and worst thread-to-core mapping can be significant. Also, the

40

 0.85x

 0.95x

 1x

 1.05x

 1.1x

 1.15x

con_Analyzer bigtable webSearchN
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

{X.....,X.....}
{XX....,.......}

 0.9x

Figure 3.19: 2 threads of latency sensitive applications running alone on West-
mere

 0.85x

 0.95x

 1x

 1.05x

 1.1x

 1.15x

con_Analyzer bigtable webSearchN
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

{XXX...,XXX...}
{XXXXXX,......}

 0.9x

Figure 3.20: 6 threads of latency sensitive applications running alone on West-
mere

 0.85x

 0.95x

 1x

 1.05x

 1.1x

 1.15x

C+S C+P B+S B+P W+S W+PN
o

rm
a
li

z
e
d

 P
e
rf

o
rm

a
n

c
e

{XXX***,XXX***}
{XXXXXX,******}

 0.9x

Figure 3.21: 6 threads of latency sensitive applications co-running with 6 threads of
batch applications on Westmere;

41

optimal thread-to-core mapping is different for each application and may change when the

application’s corunner changes. This result indicates the importance of an intelligent system

for thread-to-core mapping that is aware of the underlying resource topology and possible

sharing configurations.

42

Chapter 4

Thread-to-core Mapping

Contents

4.1 A Heuristic Approach to TTC Mapping 44

4.1.1 Evaluating the Heuristics . 48

4.2 An Adaptive Approach to TTC Mapping 49

4.2.1 Evaluating AToM . 50

At the datacenter scale, a performance improvement of 1% for key applications, such as

websearch, can result in millions of dollars saved. In Chapter 3, we demonstrate a perfor-

mance swing of up to 25% for websearch, and 40% for other key applications, simply from

remapping application threads to cores. The optimal thread-to-core mapping decision is also

dynamic. It changes when the application changes, when the number of threads changes,

when the architecture changes and when co-located application changes. These observa-

tions necessitate an intelligent thread-to-core mapping system to provide the performance

that is currently left on the table.

In this chapter, we present two approaches to mitigating resource contention, exploiting

positive resource sharing and ultimately improving performance using intelligent thread-to-

core mapping:

• Heuristics approach: by leveraging knowledge of an application’s sharing character-

istics, we can predict both how an application’s threads should be mapped when

running alone as well as with another application (Section 4.1).

43

• Adaptive approach: an online system for arriving at the intelligent thread-to-core

mapping (Section 4.2).

Finally, we conclude that our adaptive learning approach is a preferable approach for

identifying good thread to core mappings in the datacenter. It arrives at near optimal

decisions and is agnostic to applications’ sharing characteristics. When using the adaptive

approach, we observe a performance improvement of up to 22% over status quo thread-to-

core mapping and performance within 3% of optimal mapping on average

4.1 A Heuristic Approach to TTC Mapping

To achieve a good thread-to-core mapping to best utilize shared resources, it is important to

characterize applications’ interaction with these shared resources, and pinpoint the potential

bottlenecks among the shared resources. This dissertation has identified three important

memory characteristics of an application that can be exploited to understand the preferences

in memory resource sharing configurations, including: its memory bandwidth consumption,

the amount of data sharing within the application, and its footprint in the shared cache.

[Memory Bandwidth Usage] We first investigate our applications’ memory band-

width usage. On Clovertown, we focus on the FSB bandwidth because FSB is a main

sharing point for memory bandwidth on this architecture. Our previous experiments in

Chapter 3 show that when threads are sharing the FSB, their performance may degrade.

The amount of degradation may differ for each application, depending on which application

is co-located with it. We hypothesize that the amount of bus bandwidth usage for each

application is a good indicator for determining its proper FSB sharing configuration.

Figure 4.1 presents the bus bandwidth consumption per thread pinned to one core for all

five applications. The bus request rate is measured using the BUS TRANS BURST event. 15,000

bus transactions/ms for a thread of contentAnalyzer translates to 15, 000× 64Byte = 0.96GB/s.

The total bus transactions/ms for all fours threads running on four cores can be as high as

0.96GB/s× 4 = 3.8GB/s. The theoretical FSB peak bandwidth on this platform is 10.6

GB/s. When using a micro-benchmark that measures peak bandwidth, STREAM [41], the

observed maximum sustained bandwidth is 5.6GB/s. When four threads of contentAnalyzer

44

E
v
en

ts
 p

er
 m

il
li

−
se

co
n
d

 0

 5,000

 10,000

 15,000

 20,000

 25,000

con_Analyzer bigtable webSearch stitcher protobuf

Figure 4.1: Bus Burst Transactions (full cache line) per millisecond per one thread

are sharing a single FSB, the bus utilization is close to 70%. Using a similar calculation,

stitcher ’s bandwidth demand is 1.6GB/s per core. This figure shows that stitcher has

the highest bus bandwidth usage. WebSearch and bigtable have medium bus demands

and protobuf has the lowest bus bandwidth demand. This is consistent with the mapping

preferences shown in Table 3.4. When webSearch and contentAnalyzer are running alone,

because of the medium-high bus demand, it is preferable to spread threads on two sockets

and use 2 FSBs. However, when they run with stitcher, both prefer not to share a FSB

with stitcher because stitcher has a much higher bus demand and can cause more perfor-

mance degradation. On the other hand, when running with protobuf, both webSearch and

contentAnalyzer both benefit from sharing FSB with protobuf instead of their own threads.

Bigtable benefits from sharing last level cache and FSB when it is running alone, thus it is

preferable for bigtable to share these two resources with its own threads when running with

other applications. This experiment demonstrates that bus bandwidth consumption is an

important characteristic when determining good thread-to-core mappings.

Our experiments in Sections 3 and 4 also demonstrate that sharing a cache can cause

significant performance impact. There are two key characteristics to consider when studying

the interaction between an application and a shared cache: the amount of data sharing

among an application’s threads and the application’s footprint in the shared cache.

[Data sharing] In Section 3 we show that the percentage of cache lines that are in the

”share” states can indicate an application’s level of data sharing. Figure 4.2 presents the

45

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

contentAnalyzerbigtable webSearch stitcher protobuf

E
v
en

ts
 p

er
 m

il
li

se
co

n
d others

shared
misses

 0

Figure 4.2: LLC misses/ms, LLC requests Share/ms and LLC reference/ms

average LLC reference rate for a thread of each application. In this figure, we bin LLC

references into three categories: LLC misses, LLC references that are in ”share” state, and

others (including prefetch state and cache hit that are not in ”share” state). Bigtable has

the highest percentage of cache requests that are in the share state and contentAnalyzer has

the lowest. This is consistent with our findings that bigtable prefers to share LLC when it

is running alone as well as when it is running with other applications while contentAnalyzer

does not. On the other hand,webSearch has a relatively high level of data sharing. However,

sharing the last level cache among its threads would cause performance degradation. This

is because when deciding if sharing a cache would improve or degrade an application’s

performance and which thread the application should share the cache with, we need to

consider not only data sharing but also the potential of cache contention.

[Cache Footprint] When the total size of two or more threads’ footprints is larger than

the shared cache, contention occurs. Previous work [63, 29, 40] show that last level cache

miss rate can be used as an indicator to estimate the footprint size of an application and to

predict the potential performance degradation an application may cause to its co-runners.

Figure 4.2 presents the LLC miss rate for all five applications. This figure shows that

contentAnalyzer has a higher LLC miss rate than webSearch and less percentage of share

state cache lines. This is consistent with the fact that contentAnalyzer suffers more from

cache contention than webSearch, shown in Figure 3.4. An application’s cache characteristics

46

are important when deciding a good TTC mapping. And both data sharing and cache

footprint need to be considered.

Algorithm 1: Resource-Characteristics-Based Mapping Heuristics
Input: P: Latency-sensitive app; C: Corunning app
Output: a thread-to-core mapping

1 if P.DataSharing = high then
2 map(P, share LLC);
3 if P.Bus Usage < C.Bus Usage then
4 map(P, [share LLC, sharing FSB]) ;
5 else
6 map(P, [share LLC, distributed FSB]) ;
7 end

8 else
9 if P.Bus Usage < C.Bus Usage then

10 map(P, sharing FSB) ;
11 if P.LLC Footprint = high then
12 map(P, [distributed LLC, sharing FSB]);
13 else
14 map(P, [share LLC, sharing FSB]);
15 end

16 else
17 if P.LLC Footprint < C. LLC Footprint then
18 map(P, [share LLC, distributed FSB]);
19 else
20 map(P, [distributed LLC, distributed FSB]);
21 end

22 end

23 end

Based on an application’s characteristics in terms of their resource usage when running

alone, we can predict a good thread-to-core mapping that takes advantage of the memory

sharing topology when applications are co-located. Algorithm 1 shows a heuristic algorithm

to make such a decision. The decision tree this algorithm is based on is shown in Figure

4.3.

The basic idea behind the heuristic is that since we can characterize applications based

on their potential bottlenecks (bus usage, shared cache usage and the level of data sharing),

when co-locating, we should maximize the potential benefit from sharing and avoid mapping

threads that have the same resource bottleneck. For example, if the application has a high

level of data sharing, the mapping should allow its threads to share resources such as

LLC. We also prioritize the latency-sensitive application’s performance (denoted as P in

the algorithm) over its corunner (C) ’s. For example, the heuristic algorithm compares the

resource usage of P’s threads with that of the co-running applications’ threads, and selects

the thread(s) that have the least usage of the same resource to co-locate.

47

Yes
No

P: Data Sharing is high?

Yes

No

P: Share Cache, Share bus

P: Share Cache, Distributed Bus

Yes No

P: Share Cache, Share Bus

P.Bus < C.Bus ?

P.Bus < C.Bus ?

Yes No

P: Share Cache, Share Bus?

P: Share Cache

P. CacheFootprint < C. CacheFootprint

P: Distributed Cache, Distributed Bus

Figure 4.3: Decision Tree

4.1.1 Evaluating the Heuristics

To evaluate the heuristic algorithm, we apply it to six co-running application pairs and

compare the predicted best mapping with the ground-truth best mapping. We use FSB

bandwidth consumption to compare the Bus Usage in the algorithm; and use LLC miss rate

as an approximate proxy to compare applications’ LLC Footprint. To take data sharing

into account when comparing cache footprints for an multithreaded application, we use

LLC MissRate× (1−
LLC shared state requests

LLC all requests
) (4.1)

The prediction result using heuristic algorithm is presented in Table 4.1.

Our heuristic approach correctly predicts the best mapping in 4 out of 6 co-running

pairs. In two cases, the heuristic algorithm also makes fairly good decisions: the perfor-

mance difference between the predicted mapping and the optimal mapping is less than 2%

for both (Figures 3.14 and 3.15). The advantages of our heuristic approach are that it is

effective and requires only simple runtime support. However, there are two main limitations

of this approach. First, these characteristics must be collected for each application. Second,

because each architecture has different topologies and sharing points, a new algorithm needs

48

Table 4.1: Predicted Thread-To-Core Mapping Using the Heuristic Approach

Benchmark w/ Stitcher w/ Protobuf

bigtable Optimal:
{XXXX****};

Optimal:
{XXXX****};

Predicted:
{XXXX****}

Predicted:
{XX**XX**} (sub-
optimal: 1% worse)

contentAnalyzer Optimal:
{XXXX****};

Optimal:
{X*X*X*X*};

Predicted:
{XXXX****}

Predicted:
{X*X*X*X*}

webSearch Optimal:
{XXXX****};

Optimal:
{XX**XX**};

Predicted:
{XXXX****}

Predicted:
{X*X*X*X*} (sub-
optimal: 1% worse)

to be generated on an architecture by architecture basis. Also, characteristics of an applica-

tion may not be perfectly captured. For example, using LLC miss rate to approximate the

cache footprint is not perfect [39], especially when there is data sharing between threads.

These limitations motivate an adaptive approach that is more flexible and portable.

4.2 An Adaptive Approach to TTC Mapping

In this section we present AToM, an Adaptive Thread-to-core Mapper. Our experiments

in the previous sections show that the optimal thread-to-core mapping may change when

the number of threads, co-running application, or architecture changes. These variations

indicate that an adaptive learning approach is promising for the intelligent thread-to-core

mapping. AToM uses a competition heuristic to adaptively search for the optimal thread-to-

core assignment for a given set of threads. This approach includes two phases: a learning

phase and an execution phase.

[Learning Phase] During the learning phase, AToM empirically puts various thread-

to-core mappings against each other to learn which mapping performs best. Each thread-

to-core mapping is given an equal amount of time, and the best performing mapping is

selected as the winner of the competition. Although randomly mapping threads to cores

may generate a large amount of varying mappings, because most of memory topologies are

symmetric, the search space for equivalent mappings is greatly reduced. For example, for

2 core mapping cases, there are only three classes of mappings (Table 3.1) that represent

49

three different sharing configurations.

[Execution Phase] During this phase the winning thread-to-core mapping is run for a

fixed or adaptive period of time before another competition is held. In this work, we allow

our execution phase to run indefinitely. The datacenter applications presented in this work

have steady phases, and each competition produces the same winner. Therefore, reentering

the learning phase only produces an unnecessary overhead.

4.2.1 Evaluating AToM

In this work, we have constructed a prototype of AToM tuned for the datacenter. During

the learning phase, AToM cycles through three taskset configurations for a period of 10

minutes each. For an application in the datacenter we use a long period to minimize noise

in our competition. The datacenter applications presented in this work are long running

programs, running for days and weeks at a time; however for our experimental runs we allow

only 2 hours of execution. Figures 4.4 and 4.5 present the results of our experimentation

on both Clovertown and Westmere. In the figures, we use C for contentAnalyzer, W for

webSearch, B for bigtable, S for stitcher and P for protobuf. The y axis shows each of

the three latency sensitive applications’ performance, normalized by its performance when

running alone in the {X...X...}mapping. In both figures, the x axis shows 9 machine loads,

including each of our latency sensitive applications running alone and co-located with our

batch applications. Each application is configured to run on 4 cores. The y axis shows

the performance of our latency sensitive application normalized to the worst assignment.

As this figure shows, AToM is quite effective, achieving near optimal performance. In each

case, AToM outperforms the average case (average random assignment) by up to 22%, and

is significantly better performing than the worse case assignments.

50

C

C
+

S

C
+

P B

B
+

S

B
+

P W

W
+

S

W
+

P

m
ea

n

P
er

fo
rm

an
ce

average
adaptive
optimal

 1x

 1.1x

 1.2x

 1.3x

 1.4x

 1.5x

 1.6x

Figure 4.4: Adaptive Thread-To-Core Mapping on Clovertown

 1.14x
 1.16x
 1.18x
 1.2x

C

C
+

S

C
+

P B

B
+

S

B
+

P W

W
+

S

W
+

P

m
ea

n

P
er

fo
rm

an
ce

average
adaptive
optimal

 1x
 1.02x
 1.04x
 1.06x
 1.08x
 1.1x

 1.12x

Figure 4.5: Adaptive Thread-To-Core Mapping on Westmere

51

Chapter 5

Compiling for Niceness

Contents

5.1 QoS-Compile Overview . 53

5.2 Identify Contentious Code Regions . 55

5.2.1 Contentiousness and Sensitivity . 56

5.2.2 Identify Contentious Regions . 61

5.3 Compiler Transformations for Rate Reduction 64

5.3.1 Padding . 64

5.3.2 Nap Insertion . 66

5.3.3 Understanding Cooldown and Warmup 68

5.4 Evaluation . 68

5.4.1 Setup and Methodology . 69

5.4.2 Model for Code Region Identification 69

5.4.3 Compiler Transformations . 73

5.4.4 QoS-Compile: Put it All Together 77

5.4.5 Google Applications . 82

5.5 Summary . 83

Chapter 4 presents intelligent thread-to-core mapping for mitigating memory resource

contention and improving application performance. In this chapter, we present a novel

approach to mitigating contention and improving server utilization in modern warehouse

scale computers.

52

As modern warehouse scale computers continue to leverage commodity multicore proces-

sors with increasing core counts, there is a growing need to consolidate various workloads on

these machines to fully utilize their computation power. However, in Chapter 3, we demon-

strate that when multiple applications are co-located on a multicore machine, contention for

shared memory resources can cause severe cross-core performance interference. To ensure

that the quality of service (QoS) of user-facing applications does not suffer from perfor-

mance interference, WSC operators resort to disallowing co-location of latency-sensitive

applications with other applications. This policy translates to low machine utilization and

millions of dollars wasted in WSCs.

In this chapter, we presentQoS-Compile, the first compilation approach that statically

manipulates application contentiousness to enable the co-location of applications with vary-

ing QoS requirements, and as a result, can greatly improve machine utilization. In essence,

to co-locate applications of different QoS priorities, our compilation technique uses pessimiz-

ing transformations to throttle down the memory access rate of the contentious regions in

low priority applications to reduce their interference to high priority applications. Our eval-

uation using synthetic benchmarks, SPEC benchmarks and large-scale Google applications

show that QoS-Compile can greatly reduce contention, improve QoS of applications, and im-

prove machine utilization. Our experiments show that our technique improves applications’

QoS performance by 21% and machine utilization by 36% on average.

5.1 QoS-Compile Overview

There are two key insights of QoS-Compile. Firstly, WSCs typically house a known set of

long running applications, such as web search and maps, running for weeks and months at a

time. A cluster-level scheduler maps multiple applications to each individual machine, and

thus the co-location persists for this period until a job finishes running. The various QoS

priorities of these applications are known throughout the lifetime of the WSC. In addition,

binaries of these applications are available and the profiling can be performed continuously

both in production and in test settings. Within this environment, a compilation approach

is particularly useful for tailoring the binaries of these applications to “play nice” together.

53

profiler

 L1: ld
ld

 mov
 jmp L1

contention
score

time

model: contention score = f(PMUs)

miss rate and ratio do not accurately indicate

 L1: ld
nop
ld

nop
mov

 jmp L1

compiler

 L1: ld
ld

 mov
 nap ()
 jmp L1

low priority
application

Figure 5.1: QoS-Compile Overview

Secondly, in the era of multicores and the emerging computing domain of WSCs, the objec-

tives of compiler optimization ought to be multifaceted. Simply optimizing each application

for its own individual performance irrespective of the surrounding execution environment

may not be ideal. In this work, we argue for the additional objective of optimizing for an

application’s “niceness,” to reduce its potential interference to its co-running applications.

QoS-Compile consists of two steps. First, the application is profiled to identify its

contentious code regions. Second, transformations are applied to these regions to reduce

their contentiousness.

[Identifying Contentious Regions] Resource contention is only manifested during

runtime, and as a result, a static code analysis to identify such code regions may not be

feasible. Our technique uses a profiling analysis to characterize the memory resources usage

of an application when it is running alone. The intuition is that if a code region aggressively

uses shared memory resources (shared caches and memory bandwidth, etc) when executing,

this region may interfere with a co-runner that is sensitive to contention. To predict a

code region’s contentiousness, we established a performance monitoring unit (PMU) based

prediction model via regression. As Figure 5.1 shows, our profiler dynamically samples

PMUs when an application is executing, estimates the contentiousness of code regions using

the prediction model, and selects code regions that are above a certain contention threshold.

Being able to pinpoint just the regions responsible for contention is a key benefit of QoS-

Compile as we only throttle down the memory access rate of these regions. Applications

may have short bursts of contentiousness or be contentious only during certain phases. Our

54

compiler transformations are applied only to the code that is responsible for these bursts

or phases. The details of the profiling technique are presented in Section 5.2.2.

[Compiling for “Niceness”] After identifying the contentious code regions, QoS-

Compile then specializes the code layout of these regions to reduce their contentious nature,

as shown in Figure 5.1. QoS-Compile is essentially a software rate-based technique as it

throttles down the memory request rate of a low priority application, reducing the resulting

pressure on the memory subsystem and allowing the neighboring high priority applications

to consume more of these resources. In this work, we develop two transformations for mem-

ory request rate reduction: padding and nap insertion. Using these two transformations,

QoS-Compile provides a wide range of throttling granularities. These granularities range

from intermittent bursts of just a few instructions before a brief pause, to thousands of

instructions before each longer nap. Our padding transformation provides fine granularity

throttling while nap insertion provides coarser granularities. Both of these transformations

include parameters for adjusting the amount of rate reduction, which in turn controls the

amount of interference and QoS degradation suffered by co-runners. This tunability is

important for achieving the desirable balance between QoS and machine utilization. The

details of the compilation transformations are presented in Section 5.3.

[Using QoS-Compile in a Modern WSC] In modern WSCs, high priority latency-

sensitive jobs, such as web-search and maps, are run on machines for weeks and months at a

time. These jobs often use a fraction of the cores on a single machine. However, to protect

their QoS, the co-location of other jobs on these machines is often disallowed. QoS-Compile

can be used, on demand, to compile low priority batch jobs, such as video encoding/decoding

and compression, to enable their co-location on these underutilized machine resources. QoS-

Compile can also be composed with a number of multi-versioning schemes [34] to enable its

rate reduction transformations only when co-running with a high priority application.

5.2 Identify Contentious Code Regions

In this section we present our novel profiling technique and its core component, a perfor-

mance counter based prediction model, to identify contentious code regions. Section 5.2.1

55

investigates and answers two key questions about a code regions’ contentious nature that

prior work has no answer or conflicting answers for. Section 5.2.2 then presents our technique

to identify contentious code regions based on the insights gained from our investigation.

5.2.1 Contentiousness and Sensitivity

To identify contentious code regions, it is important to first have an in-depth understanding

of application contention characteristics, including an application’s contentiousness, which

is the potential performance degradation it can cause to its co-runners, and an applica-

tion’s sensitivity to contention, which is the potential degradation it can suffer from its

co-runners. In this section we present formal definitions of both contentiousness and con-

tention sensitivity, and investigate key questions about the nature of each and how they

relate.

We first investigated whether contention characteristics (both contentiousness and sen-

sitivity to contention) are consistent characteristics of an application. One hypothesis for

identifying contentious code regions is that contentiousness is a consistent characteristic of

a code region. We define consistent as, for a given machine, the relative ordering between

all applications’ contentiousness and sensitivity in general does not change across different

co-runners.

Secondly, we investigated the correlation between an application’s contentiousness and

its sensitivity to contention. An important observation is that both an application’s con-

tentiousness, and its sensitivity to contention, involve the usage of shared resources. One

intuition is that contentious applications may also be sensitive to contention and vice versa.

Prior work has had conflicting conclusions about the relations between an application’s con-

tentiousness and contention sensitivity. There are four possible outcomes. An application

can be 1) contentious and sensitive; 2) not contentious and insensitive; 3) contentious but

not sensitive; and 4) not contentious but sensitive. Among these four outcomes, Jiang et

al. [24, 35] conclude that typical applications’ contentiousness and sensitivity are strongly

correlated and should be classified as either contentious and sensitive, or not contentious

and insensitive. Xie et al. [59] on the other hand, argue the existence of applications that

are not contentious but sensitive. Meanwhile, other recent works [63, 29] argue that a

56

contentious application that has high cache misses is likely to be very sensitive as well.

[Definition] Before answering these questions, we first present formal definitions of

both contentiousness and contention sensitivity. On multicore processors, an application’s

contentiousness is defined as the potential performance degradation it can cause to co-

running application(s) due to its heavy demand on shared resources. On the other hand,

an application’s sensitivity to contention is defined by its potential to suffer performance

degradation from the interference caused by its contentious co-runners.

As demonstrated in previous work [24], an application A’s sensitivity is formally defined

using the following formula,

SensitivityA =
IPCA(solo) − IPCA(co−run)

IPCA(solo)
(5.1)

where IPCA(solo) is A’s IPC when it is running alone and IPCA(co−run) is the statisti-

cal expectation of the A’s IPC when it co-runs with random co-runners. We extend this

definition to include A’s contentiousness as,

ContentiousnessA =
IPCBi(solo) − IPCBi(co−runA)

IPCBi(solo)

(5.2)

where A’s contentiousness is quantified as the statistical expectation of the IPC degra-

dation A causes to its random co-runner.

We can estimate SensitivityA and ContentiousnessA by co-locating A with various co-

runners Bi, and take the average of A’s measured contentiousness and contention sensitivity.

A’s sensitivity to corunner Bi can be defined as,

SensitivityA(co−runBi
) =

IPCA(solo) − IPCA(co−runBi
)

IPCA(solo)
(5.3)

and the A’s average measured sensitivity is,

SensitivityA(avg) =

∑n
i SensitivityA(co−runBi

)

n
(5.4)

Similarly, we can define A’s contentiousness when it is co-running with Bi and its average

57

0%

5%

10%

15%

20%

25%

30%

35%

40%

lb
m

lib
qu
an
tu

m

m
ilc

so
pl
ex

m
cf

sp
hi
nx

om
ne
tp
p

xa
la
nc
bm
k

gc
c

as
ta
r

bz
ip

hm
m
er

de
al
II

h2
64

pe
rlb
en
ch

sje
ng

po
vr
ay

na
m
d

co
n
te
n
?
o
u
sn
e
ss

 LBM

LIBQUANTUM

MILC

MCF

SOPLEX

SPHINX

OMNETPP

XALAN

avg. contenCousness

Figure 5.2: Contentiousness. Each bar shows the performance degradation of a corunner caused by the
application across x-axis.

0%

5%

10%

15%

20%

25%

30%

35%

40%

m
cf

om
ne
tp
p

sp
hi
nx

so
pl
ex

xa
la
nc
bm
k

lib
qu
an
tu
m

m
ilc

lb
m

bz
ip

gc
c

pe
rlb
en
ch

as
ta
r

sj
en
g

h2
64

na
m
d

po
vr
ay

hm
m
er

de
al
II

S
e
n
si
@
v
it
y

LBM

LIBQUANTUM

MILC

MCF

SOPLEX

SPHINX

OMNETPP

XALAN

avg. sensiBvity

Figure 5.3: Sensitivity. Each bar shows the performance degradation of the application across x-axis
caused by each of the 8 different corunners.

contentiousness as,

ContentiousnessA(co−runBi
) =

IPCBi(solo) − IPCi(co−runA)

IPCBi(solo)
(5.5)

ContentiousnessA(avg) =

∑n
i ContentiousnessA(co−runBi

)

n
(5.6)

In this work we use Equation 5.4 to estimate sensitivityA, and Equation 5.6 to estimate

contentiousnessA.

[Experiment Design] To evaluate these key questions as regards to the nature of

contention characteristics of an application, we have performed a series of experiments

using 18 benchmarks of SPEC CPU2006 benchmarks suite. These benchmarks represent a

diverse range of application workloads and memory behaviors, including different working

set sizes, cache misses, and offcore traffic. All experiments were conducted on Intel Core i7

920 (Nehalem) Quad Core with 2.67GHZ processors, 8MB last level cache shared by four

cores and 4GB memory. For each experiment, we selected two of the 18 benchmarks, co-

located them on neighboring two cores, and measured each benchmark’s contentiousness and

sensitivity in each experiment using Equation 5.3 and Equation 5.5. We then calculated each

benchmark’s average contentiousness and sensitivity using Equation 5.4 and Equation 5.6.

58

We conducted exhaustive co-running of all possible co-running pairs, which is a total of 162

(18×182) co-running experiments executed to completion on ref inputs. Each experiment

was conducted three times to calculate the average. Note that SPEC runs are fairly stable

and there is little variance between runs.

[Is contentiousness a consistent characteristic of an application?] Figure 5.2

presents our benchmarks’ contentiousness. This contentiousness is calculated using Equa-

tion 5.5, which indicates the performance degradation each of the 18 benchmarks causes to

its co-runner. The 18 benchmarks are shown on the x-axis. For each of the 18 benchmarks,

we show its measured contentiousness when it is co-running with each of the eight most

contentious co-runners respectively. Each bar represents a co-runner. Only 8 corunners

are shown in the figure because of the space limit. The dotted line shows the average con-

tentiousness of each benchmark, computed by averaging each benchmark’s 18 contentious-

ness values across 18 co-runners using Equation 5.6. The 18 benchmarks on the x-axis are

then sorted by their average contentiousness. The line graph for average contentiousness

shows a general descending trend.

Figure 5.2 demonstrates that contentiousness is a consistent characteristic of an applica-

tion. The relative order of benchmarks’ contentiousness stays fairly consistent regardless of

which co-runner is present. For example, when comparing each benchmark’s contentious-

ness when it is co-running with lbm, shown by the first bar for each 18 benchmark, we

notice that the contentiousness of 18 benchmarks are almost all in descending order along

the y-axis mirroring the dotted line. This also applies to all other co-runners as well. The

graph also shows that lbm is the most contentious benchmark among the 18 benchmarks.

[Is sensitivity a consistent characteristics of an application?] Similar to Fig-

ure 5.2, Figure 5.3 shows the sensitivity to contention of each of the 18 benchmarks when

co-located with the most contentious applications. This sensitivity is calculated using Equa-

tion 5.3, indicating how much degradation the eight co-runners cause to each of the 18

benchmarks. These 18 benchmarks are sorted according to their average sensitivity, cal-

culated using Equation 5.4. Similar to Figure 5.2, this figure shows that sensitivity is

also consistent for each application. Although the descending trend is not as consistent as

Figure 5.2, the general trend is strong.

59

0%

5%

10%

15%

20%

25%

30%

35%

as
ta
r

bz
ip

de
al
II

gc
c

h2
64

hm
m
er

lb
m

lib
qu
an
tu
m

m
cf

m
ilc

na
m
d

om
ne
tp
p

pe
rlb
en
ch

po
vr
ay

sj
en
g

so
pl
ex

sp
hi
nx

xa
la
nc
bm
k C

o
n
te
n
@
o
u
sn
e
ss
 a
n
d
 S
e
n
si
@
v
it
y

avg. conten1ousness

avg. sensi1vity

Figure 5.4: Average Contentiousness vs. Sensitivity

[Contentiousness vs. Sensitivity: are they strongly correlated?] In Figure 5.4,

we juxtapose contentiousness and sensitivity. In this graph, for each application across the

x-axis, the first bar shows the average contentiousness of this application with the eighteen

co-runners presented in Figures 5.2 and 5.3. The second bar shows each benchmark’s average

sensitivity to the same set of co-runners. Figure 5.4 clearly demonstrates a large disparity

between application contentiousness and sensitivity. As shown in the figure, applications

such as lbm and libquantum are highly contentious and only mildly sensitive, while other

applications such as omnetpp and xalan are highly sensitive, and slightly contentious. Also

notice that, in Figures 5.2 and 5.3, the sorted orderings of the 18 benchmarks (x-axis)

are almost completely different. In fact, the correlation coefficient between contentiousness

and sensitivity using linear regression is 0.48, which further shows they are not strongly

correlated.

Summary To summarize, through our experimentation we find,

1. Contentiousness and sensitivity are an application’s consistent characteristics. Fig-

ure 5.2 shows that applications with higher contentiousness tend to be consistently

more contentious regardless of co-runners. This general trend also applies to sensitiv-

ity, as shown in Figure 5.3.

2. Contentiousness and sensitivity of general purpose applications are not strongly cor-

related as shown in Figure 5.4. While we do not observe applications that are only

sensitive or only contentious, four outcomes occur in practice; applications can be 1)

60

contentious and sensitive; 2) not contentious and insensitive; 3) contentious but not

highly sensitive; 4) not highly contentious but sensitive.

5.2.2 Identify Contentious Regions

In the previous section, we show that contentiousness is an inherent consistent characteristic

of an application or a code region. In this section, we present the profiling analysis used to

identify contentious code regions of an application. The core component of our analysis is a

model based on hardware performance counters for the dynamic scoring of sequences of exe-

cuted code. The intuition behind using the information provided by hardware performance

counters is that if a code region aggressively consumes certain memory resources, it is likely

to be contentious for the resource when it is co-running with other applications. In this

section, we first discuss how we constructed the model. We then describe how this model

is used during a profiling run to identify the static code regions that are most contentious.

[General Model for Contentiousness] We use a linear model to combine the im-

pact of contention in multiple shared resources, including last level cache (LLC), memory

bandwidth and prefetchers. The contentiousness of a dynamically executed code region

is determined by the amount of pressure the region puts on the shared memory subsys-

tem. Thus, it can be predicted based on usage of shared resources, shown as the following

equation,

C = a1 × LLC usage+ b1 ×BW usage+ c1 × Pref usage, (5.7)

where C is contention score, BW is bandwidth and Pref is prefetchers.

Each code region may have a different combination of cache, bandwidth and prefetch

usage. How contentious each code region is relative to other regions depends on the relative

importance between cache, bandwidth and prefetcher contention. The relative importance

is reflected as coefficients a1, b1 and c1.

[Leveraging PMUs] Modern architectures provide numerous performance counters

for various aspects of the microarchitecture. Our second step is to identify the appropriate

performance monitoring units (PMUs) to estimate the terms in Equation 5.7.

BW usage: It is fairly easy to quantify and measure bandwidth usage using PMUs. For

61

example, we can use the number of cache lines the last level cache brings in from memory

per second.

LLC usage: It is challenging to measure cache usage using PMUs. PMUs can provide

information on the cache access frequency and the cache miss rate, but currently they do

not provide information on the cache footprint or occupancy. To approximate LLC usage,

we measure how much data is fetched from the shared cache and not the memory for a

given interval.

Prefetcher usage: Not all architectures provide performance counters for all prefetch-

ers. However, the main impact of prefetchers is reflected as increased bandwidth and cache

usage. Thus, prefetcher usage can be estimated using cache and memory bandwidth usage.

Guided by the above insights, we identify the appropriate PMUs on the Intel Core

i7 (Nehalem). On this platform, we identify the number of cache lines the last level cache

brings in per millisecond (LLCLinesIn/ms), as shown in Figure 5.5, to capture the aggregate

pressure an application puts on the bandwidth. We identify (L2LinesIn - L3LinesIn)/ms

to estimate the shared L3 cache usage. It reports the rate of data being fetched into

private caches from the shared cache. Because both L3LinesIn and L2LinesIn include the

prefetchers’ traffic, we do not need an extra PMU to measure the prefetcher usage. Using

the above PMUs, Equation 5.7 becomes:

C = a1 × (L2LinesIn rate− L3LinesIn rate) + b1 × L3LinesIn rate (5.8)

where C is contention score.

[Regression to Establish the Prediction Model] After identifying the appropriate

PMUs, we use multiple regression to determine the coefficients in Equation 5.8. We use

the SmashBench suite [37, 38] (Table 5.1), developed in Google, to train our model.

SmashBench is composed of contentious kernels that span a spectrum of contentious memory

access patterns and working set sizes. We measure each kernel’s contentiousness using the

average performance degradation it causes to other kernels within the suite when co-running.

Using the measured contentiousness and the measured PMUs profile, including the average

L2LinesIn/ms and L3LinesIn/ms, we then conduct regression analysis to determine the

62

Shared Cache

L2 L2 L2 L2

Core Core Core Core

Remaining Memory Subsystem

Application

LLC Lines In

(contentiousness)

L2 Lines In

(sensitivity)

Figure 5.5: PMUs used for predicting contentiousness

model coefficients (Equation 5.7). The regression result is:

C = 1.663× (L2LinesIn/ns− L3LinesIn/ns)

+ 8.890× L3LinesIn/ns+ 0.044 (5.9)

The p value for (L2LinesIn/ns - L3LinesIn/ns) is 0.018, 5.11e-07 for L3LinesIn/ns,

and 2.015e-06 for the entire regression. All are smaller than 0.5, indicating statistically

significant effects. The R-squared is 0.8876, indicating a strong fit. The coefficients show

the relative importance between the bandwidth usage and the LLC usage, indicating that

memory bandwidth contention has a more dominating effect.

The regression results show that our model combines the contention of multiple resources

and is highly indicative of the performance interference a code region may cause. The

prediction accuracy of the model is evaluated in Section 5.4.

[Identifying Code Regions] Identifying code regions based on the PMU model is

fairly straightforward, and involves correlating PMU information with its corresponding

source code. There are a number of approaches for conducting the correlation. In this

work, we use a simple approach. We first record the application’s PMU statistics (L2 and

L3 lines in rate) every 1ms. Meanwhile, we record the number of instructions executed

in every sample interval. These serve as markers in the dynamic instruction trace for the

63

Benchmark Footprint Description

bst 4mb, 8mb,
50mb

random accessing a bi-
nary search tree

naive 4mb, 8mb,
50mb

random accessing an ar-
ray

er-naive 4mb, 8mb,
50mb

fast random accessing
an array

blockie small,
medium,
large

a number of large 3D
arrays. A portion of
one array is continu-
ously copied to another.

sledge small,
medium,
large

two large arrays, copies
data back and forth be-
tween arrays with this
sledgehammer pattern.

Table 5.1: Contention Benchmarks Suite: SmashBench

sequence of instructions that are responsible for the PMU data. We use the collected PMU

profile and Equation 5.9 to calculate a contention score for every 1ms instruction interval.

We then use a PIN [33] tool to replay the execution. Using the recorded interval markers

we analyze the set of source level basic blocks that comprise the 1ms interval. We select

the hottest set of basic blocks of that region, typically comprising more than 90% coverage

of the interval, and assign these blocks the corresponding contentiousness score that was

produced by our model.

5.3 Compiler Transformations for Rate Reduction

QoS-Compile provides two compilation techniques, padding and nap insertion, for both fine-

grain and coarse-grain memory request rate reduction. In this section, we describe both of

these techniques and discuss the tradeoffs between them.

5.3.1 Padding

Our padding transformation inserts non-memory instructions between memory instructions

in a contentious code region. These instructions consume CPU cycles but do not issue mem-

ory requests. Therefore, in essence, they limit the amount of memory requests issued in a

64

given time interval. When the amount of padding increases, the code region’s pressure on

the memory subsystem decreases. We implement padding by inserting no operation instruc-

tions (nop) in contentious code regions at the basic block level using MAO [20]. Padding

provides a fine grain mechanism for reducing a code region’s execution rate, memory request

rate, and its interference to co-runners. Inserting these nops artificially inflicts a slowdown

that can be as small as the number of cycles consumed by a single nop.

Application specific and microarchitecture specific factors need to be considered when

deciding a sensible padding policy for a given interference reduction goal. The application

specific factors include:

1. The code region’s memory characteristics. The contentious level of a code region

affects the amount of padding needed. The more contentious, the more padding

needed. In addition, many memory characteristics such as the footprint affect the

latency of memory instructions, which in turn affects the amount of padding needed.

We discuss more about this effect shortly.

2. Binary instruction characteristics. The instruction mix, for example, the ratio of

memory instructions (loads, etc) versus other instructions (CPU instructions) also

needs to be considered. For a given amount of instructions, the more dense memory

instructions are, the more padding may be required to reduce the pressure they cause

to the memory system.

In addition, microarchitecture specific factors include:

1. How nops are executed on the architecture;

2. The memory hierarchy design and the access latencies for different levels in the mem-

ory hierarchy.

Many of the above factors essentially affect the memory latency of instructions, which

is important when deciding a padding policy for a given interference reduction goal. This

is mostly because that an application can be stalled on the memory instructions when the

data is being fetched. During this period, nops may not have an effect on slowing down the

application execution rate or memory request rate because the program is already stalled.

65

For example, a load may take hundreds of cycles to complete. When stalled on a use, a

large amount of nops after this load may be useless for rate reduction. Therefore, each nop,

depending on where it is inserted and the latency of memory instructions before it, may

have a different impact on the memory request rate. This makes it difficult to accurately

predict the rate reduction effect for a padding policy.

There are two main parameters for padding: granularity and thickness. Padding gran-

ularity is how often to pad (for example, every 3 instructions) and the thickness is how

much nops to insert at every insertion point. In this paper, given a list of contentious basic

blocks identified by the QoS-Compile’s profiler, we instrument padding at the beginning

of each basic block. If a basic block contains more instructions than the specified padding

granularity, we instrument within the basic block as well. The amount of padding inserted

is determined by the thickness parameter. Generally, as discussed, the more dense memory

instructions are, the longer latency they incur, the thicker padding is needed.

5.3.2 Nap Insertion

Our nap insertion technique inserts intermittent sleep to contentious code regions. Putting

a contentious code region to epochal short “nap” mode reduces the pressure it puts on the

memory subsystem and the interference it can cause to its co-runners. Similar to padding,

two important parameters for nap insertions are granularity (how often the contentious

code should nap) and nap duration (how long a nap interval should be, which is similar to

padding thickness). However, comparing to padding, nap insertion is a much coarser-grain

rate control as naps can occur for milliseconds at a time.

Another difference between nap insertion and padding is that, while padding indirectly

controls the execution rate by inserting instructions to prolong the execution time, nap in-

sertion on the other hand, directly controls the time allotted between naps and the duration

of the nap, thus having a more accurate and predictable rate reduction control than padding.

To estimate the effect of nap insertion on memory request or execution rate reduction, we

use the following equation:

Rexecution =
nap granularity

nap granularity + nap duration
(5.10)

66

where nap granularity is the duration of the execution interval between inserted naps and

nap duration is the length of a nap. Given the execution rate Rexecution of a low priority

application, L, we can estimate the improved QoS of its high priority co-runner, H. We

denote H’s improved QoS using QoSimprd co−run:

QoSimprd co−run = 1− (1−QoSorig co−run)×Rexecution (5.11)

where QoSimprd co−run and QoSorig co−run are both normalized by H’s QoS when running

alone, and QoSorig co−run is H’s QoS when co-running with the original L; QoSimprd co−run

is H’s QoS when co-running with the napping L. Padding can also use Equation 5.11 to

predict the improved QoS when padded code region is reducing to a certain execution rate

Rexecution. However, as we discuss later, because of the coarse grain control, nap insertion

is less skewed by the cooldown/ warmup effect.

Algorithm 2: NapInsertion
Input : Binary, nap granularity, nap duration

Output: Binary with inserted nap

1 instrument a global variable counter;
2 foreach BasicBlock in Binary do
3 if (BasicBlock.contention score > contention threshold) and (BasicBlock.coverage >

coverage threshold) then
4 InstrumentNap(BasicBlock, nap granularity, nap duration);
5 end

6 end

Algorithm 3: InstrumentNap
Input : BasicBlock, nap granularity, nap duration

Output: BasicBlock with inserted nap

1 At the beginning of the BasicBlock, instrument the following code: counter ++;
2 if (counter > counter threshold) then
3 cur time← read time stamp register ;
4 if (cur time− pre time >= nap granularity) then
5 sleep(nap duration);
6 prev time← read time stamp register ;
7 counter ← 0;

8 end

9 end

The main algorithm to conduct nap insertion is presented in Algorithm 2 and the in-

strumentation function is presented in Algorithm 3. The nap is only inserted to top basic

blocks that are above a contention score threshold and are above a certain execution time

coverage. The contention score of each basic block is generated by our profiling approach in

67

Section 5.2.2. To reduce the overhead of checking the time stamp, we also use a counter to

keep track of how many times the selected contentious basic blocks are executed and only

to check the elapsed execution time when the counter is above a threshold.

5.3.3 Understanding Cooldown and Warmup

When applying a given amount of rate reduction to a code region, it may seem intuitive

that it should provide the same amount of the interference reduction to a given co-runner.

However, the granularity at which the intermittent rate reduction is conducted indeed mat-

ters. This is because of the memory pressure cool-down and cache warm-up effect. Again,

we use L to denote a low priority application to which we conduct padding or nap insertion,

and H to denote a high QoS priority application whose QoS we are aiming to improve.

When padding or a nap just starts to throttle down memory requests, it would take a while

for L’s pressure on the memory subsystem to cool down, especially if the data are residing

below the cache. The memory system will still be serving L’s requests issued before the

padding or nap for a short period of time. Meanwhile, it takes a while for H to warm

up the cache to achieve its optimal performance when it is running alone. We call this

period the cooldown/warmup window. During this window, the yielding of shared resources

is not instant and may negatively impact the effectiveness of the rate reduction mechanism.

This effect may not be negligible, especially for padding, because padding happens at a

fine granularity (a number of cycles or ns). However, the severity of this window may be

greatly reduced for nap insertion because nap insertion can be at a coarser granularity. In

Evaluation (Section 5.4), we will further investigate the interaction of nap granularity and

this cooldown/warmup effect.

5.4 Evaluation

In this section, we first evaluate the effectiveness of our prediction model and profiling

technique in identifying contentious code regions. We then evaluate the application of our

padding and nap insertion compiler transformations to reduce the contentiousness of an

application and improve its co-runner’s QoS. We then investigate the impact of leveraging

68

QoS-Compile to improve utilization using both SPEC benchmarks and Google applications.

5.4.1 Setup and Methodology

Our evaluation is conducted on two platforms:

• Intel Nehalem. Intel Core i7 920 Quad Core with 2.67GHZ processors, 8MB last level

cache shared by four cores and 4GB memory. This platform runs Linux 2.6.29.6 and

GCC 4.4.6.

• Intel Clovertown. A dual socket Intel Clovertown (Xeon E5345). Each socket has 4

cores. Each 2 cores on the same socket are sharing a 4MB 16 way last level cache

(L2). This platform runs Linux kernel version 2.6.26 and a customized GCC 4.4.3.

The workloads used in our evaluation include the SmashBench contentious kernel suite

(summarized in Table 5.1), SPEC CPU2006, and large-scale Google applications such as

websearch. SmashBench and SPEC experiments are conducted on the Intel Nehalem config-

uration and the Google experiments are conducted on production servers hosting the Intel

Clovertown configuration. Each benchmark is compiled using GCC at the O2 level. All

SPEC applications are run using ref inputs. Each experiment was conducted three times

to calculate the average performance. SmashBench, SPEC and Google benchmark runs are

fairly stable with a variance of 1% or less between runs.

5.4.2 Model for Code Region Identification

The key component of the profiling system is the PMU model used to correlate the memory

subsystem activity of a code region to its contentious nature and potential for causing

interference.

[Model Accuracy] To evaluate the accuracy of our PMU model (Equation 5.9), we

compare our PMU model’s predicted contentiousness of SPEC benchmarks with their

real measured contentiousness. We profile each benchmark’s PMUs (L2LinesIn rate and

L3LinesIn rate), and calculate the predicted contentiousness using Equation 5.9 with the

acquired PMU profiles. The prediction is then compared against each benchmark’s ob-

served contentiousness, measured as the average performance degradation it causes to a set

69

R² = 0.2238

0

5000

10000

15000

20000

25000

30000

35000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
L3
_
M
is
s
R
a
te

Measured Avg. Conten6ousness

Figure 5.6: L3 Miss Rate is not strongly correlated with the real measured contentiousness

R² = 0.07632

0

10000

20000

30000

40000

50000

60000

70000

80000

0 0.1 0.2 0.3 0.4

L3
_
R
e
fe
re
n
ce
 R
a
te

Measured Avg. Conten7ousness

Figure 5.7: L3 Reference rate is not strongly correlated with the real measured contentiousness

R² = 0.83427

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4

P
re
d
ic
te
d
 C
 u
si
n
g
 L
IN
E
S
IN

Measured Avg. Conten9ousness

Figure 5.8: Predicted contention score using our model is highly correlated with the real measured con-
tentiousness for SPEC benchmarks

70

Predictor R2

LLC Miss Rate 0.2238
LLC Reference Rate 0.07632
Our Prediction Model 0.83427

Table 5.2: Comparing our contentiousness predictor to predictors used in prior works. Our predictor was
trained with the SmashBench suite of contentious kernels and tested against all SPEC 2006 benchmarks.

of co-runners.

As a baseline, we compare our predictive model to state of the art estimators proposed

by prior work [63]. Figure 5.6 and 5.7 show the results when using LLC miss rate and

LLC reference rate to predict applications’ contentiousness. The correlation coefficients (R)

are 0.47 and 0.28, respectively, showing that neither LLC miss rate nor LLC reference rate

alone can accurately indicate application contentiousness. Figure 5.8 presents our prediction

results compared to the real measured contentiousness for SPEC CPU2006 benchmarks.

Recall that our model is trained using a different set of benchmarks (e.g., SmashBench) and

here we evaluate it on SPEC. For SPEC, the prediction’s linear correlation coefficient R is

0.91, indicating that our prediction model can accurately score contentiousness. Table 5.2

summarizes the correlation results and the correlation coefficient R of each model. Table 5.2

shows that our model is significantly better than prediction using LLC miss rate or LLC

reference rate, as proposed in prior work. Keep in mind that our prediction model is trained

with a separate set of applications, the SmashBench suite, and evaluated here on SPEC2006.

[Pinpointing Code Regions] To evaluate the effectiveness of pinpointing the con-

tentious code regions using our PMU model, we compare benchmarks’ PMU model results

with the degradation they cause to their co-runners. Figure 5.9 presents sphinx’s con-

tention score calculated using its performance counter profile when it is running alone,

based on Equation 5.9. The x-axis is time. Here sphinx is using ref input. The y-axis is

the contention score using PMU model of sphinx’s execution phases. Figure 5.9 shows that

sphinx is not evenly contentious through the entire execution, but, instead, there are several

phases (humps in the figure) that are more contentious than the rest. Figure 5.10 presents

bst8mb’s degradation when running with sphinx. This figure also presents the entire ex-

ecution of sphinx using ref input. Comparison between Figure 5.9 and 5.10 shows that

PMU contention score correctly identifies execution phases that are contentious (e.g cause

71

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 100 200 300 400 500 600 700 800 900 1000

P
M

U
 c

o
n
te

n
ti
o
n
 s

c
o
re

time

sphinx

contention score

Figure 5.9: Sphinx’s PMU contention score calculated using our prediction model

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

d
e
g
ra

d
a
ti
o
n

time

bst8mb’s degradation w/ sphinx

degradation

Figure 5.10: Bst8mb’s degradation when running with sphinx. The higher, the more degradation. Figure
7 trends similarly with this figure, indicating the profiler is identifying the correct contentious code regions.

more degradation to a co-runner). The execution phases with higher PMU contention score

(humps in Figure 5.9 are consistent with the higher degradation (humps in Figure 5.10).

Similarly, Figure 5.11 presents the results for benchmark milc. The y-axis shows the

actual measured slowdown of sledge caused by milc through the entire execution of milc

using ref input. Sledge is selected because its performance is stable, which facilitates clear

demonstration of the contention phases of milc. The y-axis also presents the phase-level

contention score of milc. We overlay these two lines in the figure for better comparison.

Note that contention score does not aim to predict the real degradation. Instead, it is

designed to indicate the level of contentiousness of various code regions. Figure 5.11 shows

that the shapes of two lines match consistently, indicating that the predicted contention

score accurately captures the contentious phases of milc.

72

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100 200 300 400 500 600 700 800 900 1000

S
lo

w
d

o
w

n
 /

 C
o

n
te

n
ti
o

n
 S

c
o

re

time

Actual Slowdown of sledge
Contention Score of milc

Figure 5.11: This graph shows the accuracy of the contention score given by our prediction model in
predicting the contentiousness of milc.

5.4.3 Compiler Transformations

In this section, we evaluate the two transformations used in QoS-Compile, padding and

nap insertion, using the SmashBench suite. This evaluation focuses on the effectiveness of

our transformations for improving a co-running application’s QoS. We applied our trans-

formations to the whole program of the contentious kernels without the use of the model

to identify specific regions. All experiments in this section were conducted on the Intel

Nehalem described in Section 5.4.1.

In Figures 5.12, 5.13, and 5.14 we show the QoS (in terms of execution rate) impact of

allowing pairwise co-location of sledge l (sledge large) with 6 co-runners when lever-

aging QoS compile. The dashed line shows the QoS of sledge l and the solid lines shows

the QoS of each of the 6 corunners when colocated with sledge l. In these experiments,

sledge l is assumed to be our low priority applications while each of its 6 co-runners are

assumed to be high priority. The x-axis shows various settings for padding and nap inser-

tion. Figure 5.12 presents the results of applying padding to sledge l, and Figures 5.13

and 5.14 show the results when applying nap insertion to sledge l.

Figure 5.12 shows that, as the padding thickness increases, sledge’s execution rate

decreases, and the QoS of blockie and bst improves. For example, when running with

the original sledge l, blockie l’s normalized QoS is 0.6x of its solo optimal QoS. After

we apply padding to sledge l, blockie l’s QoS is improved to almost 0.9x , which is a

73

.2x

.3x

.4x

.5x

.6x

.7x

.8x

.9x

1.x

1.1x

0 20 40 60 80

Q
o
S
/E
x
e
cu
*
o
n
 R
a
te

padding thickness (instr)

blockie_s

blockie_m

blockie_l

bst4mb

bst8mb

bst50mb

sledge_l_padd

ed

Figure 5.12: Padding sledge l’s effect on its co-runner blockie

and bst. As padding thickness increases, sledge l’s execution rate
deceases, blockie and bst’s QoS improves. The padding granularity
is every 5 instructions

.2x

.3x

.4x

.5x

.6x

.7x

.8x

.9x

1.x

1.1x

0 1 2

Q
o
S
/E
xe
cu
*
o
n
 R
a
te

Nap Dura*on (ms)

blockie_s

blockie_m

blockie_l

bst4mb

bst8mb

bst50mb

sledge_l_n

ap

Figure 5.13: Napping sledge l’s effect on co-runners, blockie and
bst. Nap granularity is 1ms. As nap duration increases, sledge l’s
execution rate deceases, blockie and bst’s QoS improves.

.2x

.3x

.4x

.5x

.6x

.7x

.8x

.9x

1.x

1.1x

0 10 20

Q
o
S
/E
xe
cu
*
o
n
 R
a
te

Nap Dura*on (ms)

blockie_s

blockie_m

blockie_l

bst4mb

bst8mb

bst50mb

sledge_l_na

p

Figure 5.14: Napping sledge l’s effect on co-runners. Nap granu-
larity is 10ms.

74

.2x

.3x

.4x

.5x

.6x

.7x

.8x

.2x .4x .6x .8x 1.x 1.2x

b
st
4
m
b
 Q
o
S

sledge_l execu2on rate

Nap: 1ms

Nap: 10ms

Padding: 5 instr

Figure 5.15: sledge l padding vs. nap for bst4mb

.2x

.3x

.4x

.5x

.6x

.7x

.8x

.2x .4x .6x .8x 1.x 1.2x

b
st
8
m
b
 Q
o
S

sledge_l execu2on rate

Nap: 1ms

Nap: 10ms

Padding: 5 instr

Figure 5.16: sledge l padding vs. nap for bst8mb

.2x

.3x

.4x

.5x

.6x

.7x

.8x

.9x

1.x

.2x .4x .6x .8x 1.x 1.2x

b
st
5
0
m
b
 Q
o
S

sledge_l execu3on rate

Nap: 1ms

Nap: 10ms

Padding: 5 instr

Figure 5.17: sledge l padding vs. nap for bst50mb.

75

50% improvement. An interesting observation is that the amount of improvement is not the

same for various co-runners. For example, bst8mb’s normalized QoS when running with the

original sledge l is 0.35x, almost 3 times slower than when it is running alone. However

after applying padding, its QoS is only improved to 0.5x. Another interesting observation

is that the amount of interference reduction and QoS improvement slows down as padding

thickness increases. The improvement is more significant around padding thickness 30 to 50,

but for some benchmarks the improvement plateaus after 50. This indicates a potentially

diminishing return of increasing padding thickness beyond a certain point.

Figures 5.13 and 5.14 show the results when applying nap insertion to sledge l. The

difference between these two figures is the napping granularity. Figure 5.13’s granularity is

1ms, meaning that nap is inserted every 1ms of the execution. The x-axis shows the nap

duration, ranging from no nap at all to 2 ms nap every 1ms of execution. Figure 5.14 shows

the results when the nap granularity is 10ms. These figures demonstrate the effectiveness of

nap insertion: as nap duration increases, co-runner’s QoS improves. Comparing Figure 5.13

and Figure 5.14 also demonstrates the impact of the nap granularity. Interestingly, napping

every 10ms performs significantly better than napping every 1ms for several co-runners. For

example, for bst8mb, when running with sledge l nap 10ms 20ms (nap 10 ms every 20ms),

its normalized QoS is above 0.7x of its solo optimal QoS, compared to only 0.5x when it

is running with sledge l nap 1ms 2ms. This improvement is consistent with the cooldown

and warmup effect.

Figures 5.15, 5.16 and 5.17 further illustrate the different impact of padding and nap

with various configurations. In each figure, the x-axis shows the sledge l’s normalized ex-

ecution rate. The y-axis shows its co-runners’ normalized QoS. In each figure, we plot three

lines showing the effect of three compilation techniques, padding, nap 1ms and nap 10ms.

From these figures we can compare, with the same reduced execution rate for sledge l,

which technique achieves the best QoS improvement. Figures 5.15 and 5.17 show that nap

and padding perform similarly for bst4mb and bst50mb as the three lines are very close to

each other. However, Figure 5.16 shows that nap 10ms performs significantly better than

the other two. For example, when sledge l is running at 0.4x (40% of its original exe-

cution speed), nap 10ms improves bst8mb’s QoS to 0.65x compared to only 0.4x for both

76

 0.85x

 0.9x

 0.95x

 1x

mcf omnet libquantum xalan soplex sphinx milc

Q
o
S

/P
er

fo
rm

an
ce

w/ lbm original
w/ lbm_nap_10_10
w/ lbm_nap_10_20

 0.65x

 0.7x

 0.75x

 0.8x

Figure 5.18: SPEC benchmark’s performance when it is co-located with the original lbm, lbm with nap
insertion (10ms, 10ms) and nap insertion (10ms, 20ms), normalized by each benchmark’s performance when
it is running alone

padding and nap 1ms. This result is consistent with the cooldown and warmup discussion

in Section 5.3.2. Longer padding or napping granularity allows co-runners to warm up the

cache and achieve better QoS performance. Since the experimental platform has a 8MB

last level cache, among bst4mb, bst8mb and bst50mb, bst8mb is the most cache contentious

benchmark, and therefore benefit the most from longer nap granularity. We also observe

similar results when applying padding and nap insertion to other synthetic benchmarks,

which are not shown here.

5.4.4 QoS-Compile: Put it All Together

In this section, we evaluate QoS-Compile, the combination of profiling to identify con-

tentious code regions and compilation techniques to dampen contentiousness and improve

the QoS of co-runners. The goal of this evaluation is to study the effectiveness of QoS-

Compile in 1) improving the QoS of high priority applications when running with low

priority applications; and 2) improving machine utilization, meaning that the low priority

applications can still reasonably utilize the machine under the constraints of maintaining

the QoS of high priority applications at a satisfactory level. We conduct this series of

experiments using 8 memory-intensive benchmarks from SPEC CPU 2006 on the Intel Ne-

halem described in Section 5.4.1. Our evaluation in Section 5.4.3 shows that nap insertion

performs better than padding. As such, we focus on nap insertion in this section.

[Application level] For each benchmark, we first profiled to sample its PMUs and

77

 0.85x

 0.9x

 0.95x

 1x

mcf omnetpp libquantum xalanc soplex sphinx lbm

Q
o
S

/P
er

fo
rm

an
ce

w/ milc original
w/ milc_nap_10_10
w/ milc_nap_10_20

 0.65x

 0.7x

 0.75x

 0.8x

Figure 5.19: SPEC benchmark’s performance when it is co-located with the original milc, milc with nap
insertion (10ms, 10ms) and nap insertion (10ms, 20ms), normalized by each benchmark’s performance when
it is running alone

calculated its contention score using our PMU model (Equation 5.9). We then identified

its code regions (basic blocks) with contention scores that are above a specified threshold.

In our experimentation, we used 0.3 as the threshold. We conducted nap insertion to those

basic blocks using the algorithm presented in Section 5.3.2. To evaluate QoS-Compile’s

effectiveness, we conducted pair-wise co-run experiments to co-locate a benchmark, pre-

sumed to be our low priority application, with 7 other benchmarks, presumed to be the

high priority application, and measured the QoS degradation due to its interference.

Figures 5.18 and 5.19 present results for lbm and milc. Figure 5.18 shows the normalized

performance of each SPEC benchmark when it is running with lbm. The x-axis shows each

benchmark presumed to be the high priority co-runner. The y-axis shows its normalized

performance. The higher the bars, the better. For each co-runner benchmark, a cluster

of three bars show its performance when it is running with lbm, with lbm 10 10 (lbm is

napping 10ms every 10 ms) and with lbm 10 20, normalized by its performance when it is

running alone. These 7 co-runner benchmarks are the memory-intensive SPEC benchmarks.

We did not present results for other CPU bound SPEC benchmarks because in general they

do not suffer degradation from memory resource contention. These figures demonstrate the

effectiveness of QoS-Compile. QoS-Compile greatly improves lbm’s “niceness”: reducing

lbm’s interference to its co-runner and improving co-runner’s QoS performance. For exam-

ple, mcf’s QoS is improved 22%, from only 0.74x of its solo optimal QoS when it is running

with the original lbm to above 0.9x of the optimal when it is running with the napping lbm.

78

 0.8x

 1x

lbm milc

 0.2x

G
ai

n
ed

 U
ti

li
za

ti
o

n
nap_10ms_10ms
nap_10ms_20ms

 0x

 0.6x

 0.4x

Figure 5.20: Gained Utilization when allow co-location.

In general, every benchmark’s QoS when running with lbm 10 20 is above 90% of the solo

optimal QoS. Figure 5.19 presents similar results for milc.

Because QoS-Compile can greatly improve QoS, it provides opportunities for warehouse

scale computers to allow co-location knowing that using QoS-Compile, the QoS degradation

of the co-located high priority application would be within an acceptable threshold (10%, for

example). Figure 5.20 shows the gained machine utilization when allowing co-location fa-

cilitated by QoS-Compile. Utilization is measured using lbm nap’s normalized performance

(execution rate normalized by the original lbm performance when it is running alone). For

example, 48% gained utilization for napping lbm 10 10 indicates that lbm is running at

48% of its original execution rate. That is, as opposed to disallowing co-location to en-

sure the QoS of the high priority application, using QoS-Compile, we allow 48% additional

computation while protecting the QoS of its co-runner.

As we mentioned previously in Chapter 1, without QoS-Compile, WSC operators cur-

rently have only two options, either allow co-location and suffer a significant QoS penalty or

disallow co-location and suffer a utilization penalty. As these figures together demonstrate,

QoS-Compile allows users to trade a small amount of QoS to improve machine utilization.

In this experiment, we allow 10% QoS degradation, and in return, gain 40% of utilization

of the extra otherwise idle core. Changing the nap granularity and nap interval provides

a knob that can be used to tune the tradeoff between QoS degradation and the amount of

utilization gained. The more QoS degradation headroom, the more utilization.

79

 550000

 600000

 650000

 700000

 750000

 800000

 850000

 900000

 950000

 0 100 200 300 400 500 600 700 800 900 1000

In
s
tr

u
c
ti
o

n
s
/m

s

time

bst8mb’s instructions/ms with sphinx

w/ original sphinx
w/ sphinx_10_10

Figure 5.21: bst8mb running with sphinx

workload description metric

websearch Websearch scoring and retrieval (QPS) queries
per sec

cluster-docs Unsupervised Bayesian clustering tool to take
keywords or text documents and ”explain”
them with meaningful clusters.

throughput

cluster-
keywords

Unsupervised Bayesian clustering tool to take
keywords or text documents and ”explain”
them with meaningful clusters.

throughput

goog-retrieval Web indexing query latency
(ms)

maps-detect-
face

Face detection for streetview automatic face
blurring

user time
(secs)

maps-detect-lp OCR and text extraction from streetview user time
(secs)

maps-stitch Image stitching for streetview user time
(secs)

Table 5.3: Production Warehouse Scale Computer Applications

80

keywords retrieval face lp stitcher

Q
o
S

w/ sledge3 original
w/ sledge3_nap_10_10
w/ sledge3_nap_10_20

 0.6x

 0.65x

 0.7x

 0.75x

 0.8x

 0.85x

 0.9x

 0.95x

 1x

websearch docs

Figure 5.22: Google benchmark’s performance when it is co-located with the original sledge3, sledge3 with
nap insertion (10ms, 10ms) and nap insertion (10ms, 20ms), normalized by each benchmark’s performance
when it is running alone

[Phase level] QoS-Compile not only reduces the overall average QoS degradation, it

also pinpoints the contentious regions and mitigates the QoS degradation those regions

can cause when executing. This makes QoS-Compile also suitable for applications that

only have phases of contention. To further evaluate QoS-Compile’s effectiveness in pin-

pointing and managing the contentious phases, we sample the performance of co-runners

throughout the entire execution to observe their performance variability due to interfer-

ence. Figure 5.21 presents bst8mb’s performance (instructions/ms) when it is running

with the original sphinx, compared to its performance when running with napping sphinx

(sphinx 10 10, napping 10ms every 10ms). The x-axis shows time. We sample the entire

execution of sphinx with ref input. The y-axis is bst8mb’s performance. Bst8mb is a

contentious kernel and when it is running alone it has quite stable performance. Therefore

the performance variability shown in the figure is purely due to interference from sphinx.

As the figure shows, during the early half of the execution, original sphinx causes signifi-

cant performance degradation to bst8mb, demonstrated by the low IPS during the first 400

samples. QoS-Compile correctly identifies the contentious phase and improves the bst8mb’s

IPS greatly. For the later half of the execution, the QoS-Compile also identifies bst8mb’s

performance valleys and improves it greatly.

81

keywords retrieval face lp stitcher

Q
o
S

w/ er−naive 4mb original
w/ er−naive4mb_nap_10_10
w/ er−naive4mb_nap_10_20

 0.6x

 0.65x

 0.7x

 0.75x

 0.8x

 0.85x

 0.9x

 0.95x

 1x

websearch docs

Figure 5.23: Google benchmark’s performance when it is co-located with the original er-naive4mb, er-
naive4mb with nap insertion (10ms, 10ms) and nap insertion (10ms, 20ms), normalized by each benchmark’s
performance when it is running alone

5.4.5 Google Applications

To evaluate our compilation technique’s effectiveness in improving co-runner’s QoS, we also

conducted experiments using several large-scale warehouse scale computer applications. The

experimental platform is an Intel Clovertown machine used in production (as described in

Section 5.4.1). The production applications are presented in Table 5.3. The QoS metric

for each application is the application-specific performance metric in its internal SLA, also

presented in Table 5.3. The load for each application is a trace of large amount of real

world queries in production WSCs. A load generator was set up to feed the queries to these

applications. The performance shown is applications’ stable behavior after the initialization

phase, and the performance is stable between runs. Figure 5.22 and Figure 5.23 present

results. In these experiments, each Google application is co-located with 2 threads of Smash-

Bench benchmarks. Figure 5.22 presents Google applications’ QoS when co-located with

sledge l. The x-axis shows each Google application. And the y-axis is each application’s

normalized performance. Each application’s QoS are measured in 3 running scenarios pre-

sented as a cluster of three bars: when it is co-located with 2 threads of original sledge l,

with 2 threads of napping sledge that naps 10ms every 10ms, and with sledge that naps

20ms every 10ms. Each application’s QoS performance is normalized to its performance

when it is running alone. Figure 5.23 presents Google application’s QoS performance when

co-located with a cache contentious benchmark, er-naive4mb. Figure 5.22 and Figure 5.23

82

demonstrate that nap insertion is effective in improving an application’s “niceness” and

improving its co-running Google applications’ QoS. For example, nap insertion improves

websearch’s QoS from 0.77x to 0.9x when running with sledge l, and from 0.68x to 0.87x

when running with er-naive4mb. QoS-Compile can improve QoS significantly and pro-

vides warehouse scale computer operators with flexibility of allowing co-location with a

slight hit on QoS. For example, if warehouse scale computer scheduler specifies that 0.9x

of the optimal peak QoS is an acceptable threshold for websearch, with QoS-Compile, we

can allow co-location of websearch with other co-runner such as sledge l to improve the

machine utilization. Without QoS-Compile, 0.65x of its solo QoS when running with the

original sledge l may be too significant to allow co-location, and thus leaving the machine

under-utilized.

5.5 Summary

In this chapter, we have presented QoS-Compile, the first compilation approach that stati-

cally manipulates application contentiousness to enable the co-location of applications with

varying QoS requirements, and as a result, can greatly improve machine utilization. Using

a novel prediction model, QoS-Compile first pinpoints an application’s contentious code

regions that tend to cause performance interference. QoS-Compile then transforms those

regions to reduce their contentious level. In this work we have shown that binary code

transformations to throttle down the execution rate and the memory access rate of the

contentious regions in low priority applications is an effective approach to reduce their

interference to high priority applications. Through our experimentation, we find that QoS-

Compile improves applications’ QoS performance by 21% and machine utilization 36% on

average. In the era of multicores and the emerging computing domain of WSCs, the ob-

jectives of compiler optimization ought to be multifaceted. In this work, we argue for the

additional objective of optimizing for an application’s “niceness”, to reduce its potential

interference to its co-running applications.

83

Chapter 6

Reactive Niceness

Contents

6.1 Reactive-Niceness Overview . 85

6.2 RN-Compile: Compiling for Reactive Niceness 88

6.3 RN-Runtime: Dynamic Detection and Reaction to QoS Degradation 89

6.3.1 Runtime . 90

6.3.2 Detection and Reaction . 92

6.4 Evaluation . 95

6.4.1 Setup and Methodology . 96

6.4.2 Effectiveness of Reactive-Niceness: Simple Heuristic 96

6.4.3 Effectiveness of Reactive-Niceness: Targeted Heuristic 99

6.4.4 Effectiveness of Reactive-Niceness: Phase Level Behavior 101

6.4.5 Overhead . 105

6.4.6 Energy Efficiency of using Reactive-Niceness 106

6.4.7 Varying Architecture . 107

6.5 Summary . 109

Chapter 5 presents a compilation approach, QoS-Compile, for statically manipulating an

application’s contention characteristics to reduce the performance interference it may cause

to corunning applications and ultimately facilitate workload consolidation and improve

server utilization. Essentially, QoS-Compile is a conservative approach. It throttles down

the execution of an application’s contentious regions, regardless of whether the QoS of the

84

corunning high priority application actually suffers from performance interference or not.

In this chapter we present a statically enabled dynamic approach, Reactive-Niceness,

to enable the adaptive manipulation of the contentiousness of low-priority applications to

ensure the QoS of high-priority co-runners. Reactive-Niceness monitors the QoS degradation

of the high-priority applications online and diagnoses whether resource contention among

applications is the root cause of the degradation. If so, it prescribes the necessary amount of

throttling down dynamically and by doing so, reducing the QoS degradation of high-priority

application. The biggest advantage of this online approach is its dynamic detection and

reaction, which helps achieve better server utilization and more accurate QoS control than

the static approach. Using Reactive-Niceness on SPEC2006 and SmashBench workloads,

we are able to improve utilization by more than 70% in many cases, and more than 50%

on average, while enforcing a 90% QoS threshold. We also improve the energy efficiency of

modern multicore machines by 47% on average over a policy of disallowing co-locations.

6.1 Reactive-Niceness Overview

Reactive-Niceness provides a software mechanism that automatically and adaptively regu-

lates the pressure that a low-priority batch application applies to shared memory subsystem

resources to ensure the QoS of high-priority latency-sensitive application. One key insight

of Reactive-Niceness is that a dynamic approach is needed to effectively detect contention

at runtime and reactively adjust the “niceness” of a low priority application only when

contention with high-priority co-runners is occuring. This reactive “niceness” enables the

flexibility needed to further improve machine utilization and more accurately manage QoS.

Reactive-Niceness combines both static compilation and dynamic adaptation. Reactive-

Niceness first uses a profile guided compilation approach to identify the code regions in

low-priority applications that aggressively demand memory resources and may cause re-

source contention, and instruments those regions to enable the flexible manipulation of

their contentiousness. The profiling and static compilation enable the dynamic engine to

manipulate the execution of the low-priority application. They also assist in the diagnosis

of contention and trigger the runtime system only during phases when problematic code

85

Contentious
Region

Monitor
Nap

Engine

Monitored
QOS

High Priority
Application

Low Priority
Application

RN-Runtime

Low Priority
Application

Compiler

RN-Compiler

Figure 6.1: Reactive-Niceness Overview

regions are executing.

At runtime, Reactive-Niceness dynamically detects contention-caused QoS degradation

and adaptively throttles down the execution rate and memory request rate of those con-

tentious regions in the low-priority application. The particular high priority application a

low priority application will be co-located with is not known when it is compiled. Therefore,

a runtime approach that can dynamically adjust its execution rate based on its interfer-

ence to the corunner is especially desirable. The degree of execution rate reduction on

low-priority applications is based on the severity of observed QoS degradation of the high-

priority application, allowing for more drastic responses to higher levels of contention. As

contention lessens dynamically, the execution rate of the low-priority application is then

increased to maximize machine utilization. The dynamic execution rate manipulation facil-

itates “safe” colocation; cores that would otherwise be idle to avoid the unpredictable and

potentially significant QoS degradation are now utilized.

Reactive-Niceness consists of two components, RN-Compiler and RN-Runtime, as shown

86

in Figure 6.1.

[RN-Compiler] The RN-Compiler is a static profile-driven compiler approach that

uses a performance counter based profiling analysis to identify contentious code regions and

insert markers on those regions to steer the runtime adaptation. The profiling analysis used

to identify contentious code regions is similar to the analysis in QoS-Compile, presented in

Section 5.2.2. As shown in Figure 6.1, these inserted markers trigger the RN-Runtime, via

the Nap Engine, when contentious code regions are executed. These triggers call upon the

runtime to directly manipulate the rate of memory accesses generated by the low-priority

application through the Nap Engine interface. The binaries produced by the RN-Compiler

can also be run without the RN-Runtime. In this case, the inserted markers are benign,

and the application runs as normal. The overhead of having these markers present in the

binary are minimal, and a full evaluation of these overheads is presented in Section 6.4.

The advantage of a profiling guided approach is to pinpoint the potentially problematic

code regions for better dynamic contention detection. Dynamically detecting resource con-

tention is quite challenging for system software. Purely relying on the dynamic observation

of the QoS degradation may lead to false positives for contention detection, as contention

may not be the only reason for QoS degradation. The profiling guided approach facilitates

an more effective and low-overhead contention detection. The RN-Compiler is described in

more detail in Section 6.2.

[RN-Runtime] The RN-Runtime is responsible for monitoring the QoS of high-priority

applications, detecting when a low-priority application is interfering with the performance

of the high-priority application, and dynamically deciding the degree of memory access rate

reduction to apply to alleviate the performance interference. As shown in Figure 6.1, a

lightweight dynamic runtime that monitors application QoS is attached to the high priority

application. This runtime periodically reports an application’s QoS through a shared mem-

ory buffer. The Nap Engine that is attached to the application binary of the low-priority

application reads the most recent QoS reports from this buffer to steer the online contention

response. The RN-Runtime and the adaptive policies are described in detail in Section 6.3.

[Using Reactive-Niceness in a Modern WSC] Figure 6.1 also illustrates how

Reactive-Niceness is used in the context of a WSC. All low-priority applications in the

87

 L1: ld
ld

 mov
 jmp L1

contention
score

time

model: contention score = f(PMUs)

miss rate and ratio do not accurately indicate

 L1: ld
ld

 mov
 invoke_rt()

 jmp L1

Low Priority
Application

Profiler

Compiler

Figure 6.2: Reactive-Niceness Compilation

WSC are compiled with a flag denoting that it is a low-priority application. The appli-

cations are then compatible for execution with Reactive-Niceness enabled. When these

applications are scheduled to co-run with a high-priority application, QoS monitoring is

turned on, and the Nap Engine enacts the adaptation policy.

6.2 RN-Compile: Compiling for Reactive Niceness

In this section we present RN-Compile, our static compilation to enable dynamic contention

mitigation and QoS improvement at runtime. The RN-Compile process is illustrated in

Figure 6.2. To compile a low-priority application, we first identify its contentious code

regions using a profiler that scores code regions as they execute. We then insert markers

in those regions that periodically invoke the RN-Runtime. Because markers target the

problematic regions, the runtime engine is only triggered when the contentious regions are

executing.

88

Our approach to identifying the contentious code regions is fairly straightforward and

is based on the prediction model using performance counters presented in Section 5.2.2.

During profiling, performance counters (L2 and L3 cache lines in rate) are sampled every 1

ms and the contention score is calculated using Equation 5.9. To correlate the contention

score to the corresponding static code regions, the number of instructions retired in each

1 ms execution interval is also sampled and recorded. After the profiling run, a PIN [33]

tool is used to replay the execution. Based on the recorded instruction profile, our PIN tool

identifies the hottest basic blocks that are executed during each 1 ms execution interval and

assigns the corresponding contention score to these basic blocks. The PIN tool then selects

the basic blocks with high contention score.

After these highly contentious basic blocks are identified, instead of applying compilation

transformations to these regions as in QoS-Compile (Section 5.3), we instrument markers,

invoke rt(), to the contentious code, shown in Figure 6.2. At runtime, these markers invoke

the RN-Runtime to dynamically decide the throttling policy. To minimize the potential

overhead of frequent calls to the runtime, we have implemented a number of optimizations.

Most notably, we use a self-tuning global checker that allows the call to the runtime to be

executed only after a sufficient execution iterations of the same basic block. This is especially

helpful when a large number of markers are inserted in the critical path of execution. Instead

of executing the function call every time, an increment and compare is executed in the

average case.

6.3 RN-Runtime: Dynamic Detection and Reaction to QoS

Degradation

In this section, we present RN-Runtime, our runtime engine that dynamically detects the

QoS degradation of high priority applications due to resource contention, and adaptively

manipulates the contentiousness of low-priority applications to mitigate QoS degradation.

89

PMU

Monitor

detect
contention

AnalyzerNap()

yes

no

Nap Engine

High Priority
Application

Low Priority
Application

Runtime Engine

IPC

Figure 6.3: Reactive-Niceness Runtime Architecture

6.3.1 Runtime

Figure 6.3 illustrates the design for RN-Runtime. The runtime engine is composed of two

main components: Monitor and Nap Engine. In our implementation, the Nap Engine is

linked into the low-priority application and the Monitor is either linked into, or attached to

the PID of, the high-priority application. The Nap Engine and the Monitor communicate

through a shared memory buffer.

[Monitor] The Monitor is responsible for monitoring the QoS of high priority appli-

cations. In this design we use instruction-per-cycle (IPC) as a proxy for QoS. The IPC is

often used in production datacenters as a QoS proxy because it is readily available using

hardware performance counters and can be sampled with little overhead. For example,

Google Wide Profiling (GWP) is currently deployed in Google’s fleet to collect IPC and

other counters for performance monitoring and debugging [47]. The Monitor uses a periodic

probing technique, leveraging a timer interrupt to sample the hardware performance coun-

ters every 1 ms, and storing the recent sequence of IPC samples in a circular buffer in the

shared memory. As we show in Section 6.4, this period probing technique incurs a minimal

overhead (often less than 1%).

90

[Nap engine] Based on the monitored QoS, the Nap Engine detects resource con-

tention and QoS degradation, and accordingly reacts by deciding the appropriate execution

rate reduction for the low-priority application. The Nap Engine is only invoked by the in-

strumented markers when the low-priority application is executing the contentious regions.

Instead of invoking the Nap Engine every time an instrumented contentious basic block is

executing, a timer based on the time stamp register, read using the RDTSC instruction

[1], is used in the instrumentation to only yield control from the low-priority application to

the Nap Engine periodically (2 ms in our experiments). To further reduce the overhead of

timer checking, we also use this timer to adapt the global checker mentioned in Section 6.2

by approximating the amount of runtime invocations to skip before reading the timestamp

counter again. This approximation requires a simple calculation based on the time past

since the prior invocations and is adaptively adjusted upon every timestamp read. Due in

part to these optimizations, the overhead of invoking the Nap Engine is low, never exceeding

5%, and is evaluated in Section 6.4.

When invoked, the Nap Engine’s main tasks are to firstly detect contention and QoS

degradation based on the information provided by the Monitor, and secondly if contention

is detected, analyzes and decides how to appropriately throttle down the low-priority ap-

plication to mitigate the degradation. The Nap Engine controls the execution rate of a

low-priority application by putting the execution of a contentious code region to epochal

intermittent short “nap” mode. Naps reduce the memory request rate and execution rate

of the low-priority application and the pressure it puts on the shared memory subsystem.

This in turn prioritizes the memory requests of the co-running high-priority applications,

and the QoS degradation it suffers due to the resource contention with the low-priority

application is greatly reduced or eliminated for the duration of the nap. Two main param-

eters that affect the behavior and the effectiveness of napping include the frequency and

the duration of naps. The Nap Engine controls these parameters and decides whether and

when a nap should occur (essentially how long the low-priority application should execute

at a normal rate) and how long of a nap it should take to effectively improve the QoS of the

corunning high-priority application. Flexible policies and heuristics for contention detection

and reaction can be implemented in RN-Runtime, which are further discussed in the next

91

section.

6.3.2 Detection and Reaction

In this section, we present two adaptation policies used in RN-Runtime to detect resource

contention and QoS degradation, and to reactively control the execution rate of the low-

priority application to mitigate contention if necessary. It is challenging to design a software

approach to detecting contention as it occurs. This is mostly due to the fact that contention

in various hardware components such as shared caches and memory controllers is not ex-

posed to the software. For example, during runtime, information such as the amount of

data belonging to the high-priority application that is evicted by a corunning low-priority

application from the shared cache is not visible to the software. We design probabilistic

empirical approaches to tackling the challenge of dynamic contention detection based on

the online monitoring and feedback control. Once contention and QoS degradation are de-

tected, the Nap Engine is also tasked to decide the appropriate rate reduction to apply to

the low-priority application to reduce the QoS degradation.

In this work, we design two heuristics for the Nap Engine: simple and targeted.

The simple heuristic directly relies on QoS monitoring information of the high-priority

application and is designed to provide users with a flexible, tunable “knob” to manage

the tradeoffs between QoS and utilization. For example, the heuristic can be configured

to prioritize QoS and conservatively reduce utilization or prioritize utilization and risk the

QoS. However, the simple heuristic does not strive for a strict QoS goal, such as improving

the QoS of high priority application to above 90% of its normal QoS when running alone.

The targeted heuristic on the other hand, is designed to accommodate a pre-specified QoS

target. Targeted makes the detection based on closely monitoring the impact of throttling

of the low-priority application on the QoS and uses an analytical model to adjust the

appropriate nap duration adaptively.

[Heuristic 1: Simple] The basic idea of simple is to detect and react purely based

on the monitored QoS of the high priority application. In our runtime implementation, we

use instruction-per-cycle (IPC) as a proxy for QoS and simple adjusts the nap duration

based on the dynamically monitored IPC. The details of our algorithm are described in

92

Algorithm 4: Nap Engine (Heuristic 1: Simple)

Input : threshold low, threshold high, nap ratio low, nap ratio mid, nap ratio high

1 ipc = latest IPC sample from the shared IPC buffer;
2 if (ipc < threshold low) then

3 nap duration← nap ratio low × exec duration ;
4 else if (ipc < threshold high) then

5 nap duration← nap ratio mid× exec duration ;
6 else

7 nap duration← nap ratio high× exec duration ;
8 end

9 nap(nap duration);

Algorithm 4. When the contentious code region is executing, the Nap Engine is invoked

periodically (each execution duration). The Nap Engine then reads the latest IPC sample

of the high-priority application (HP). Two thresholds (threshold low, threshold high) are

used to bucket the monitored IPC into low, medium and high. The nap duration is decided

based on which bucket the IPC is in. The lower the IPC, the longer the nap duration. In

addition to IPC, application specific performance metrics such as query latency can also

be monitored and bucketed. The rationale of this heuristic is that although many factors

other than contention may cause QoS degradation (such as load temporal changes), we will

conservatively throttle down the low priority application (LP) once the QoS degradation

is observed. The parameter configurations (IPC thresholds and nap ratio) decide how

QoS-biased (conservative) or utilization-biased (optimistic) the Simple heuristic is. The

sensitivity of those parameters is discussed in Section 6.4.

[Heuristic 2: Targeted] The primary design goal of targeted is to adaptively adjust

the nap duration to improve the QoS to a user-specified goal (such as a minimum QoS of

normalized 90% of a specific QoS target). The basic idea of targeted is to detect and

react based on measuring how the QoS of high-priority application is effected by naps of

low-priority applications. Figure 6.4 illustrates the logic of targeted. There are three

basic states for LP, which the Nap Engine tracks. Periodically, the nap engine is invoked to

analyze the QoS samples of HP and the analysis result triggers potential state transitions.

• Intermittent nap state. The intermittent nap state indicates that naps are

inserted to throttle LP’s execution rate. The QoS of the HP is sampled both when

the LP is napping and when the LP later wakes up from the nap and is executing.

93

Check

Execute

Intermittent
Nap

∆IPC is small
vo

lun
tar

y c
he

ck

∆
IPC

 is
 sm

all

∆IPC is significant
∆IPC is significant

Figure 6.4: DFA for targeted Heuristic

The difference between the two samples, delta IPC is used to adjust the next nap

duration. The bigger the difference, the more significant the impact of contention is,

and the longer the nap duration should be. The detailed model of adapting the nap

duration is shown later. When the IPC delta is smaller than the pre-specified QoS

degradation threshold, it indicates that napping does not have a significant impact.

And LP transition to the execution state.

• Execution state. In execution state, LP executes at the full rate with no naps

inserted. However, LP does not stay in execution state indefinitely. A countdown is

set to trigger the transition to voluntary check state after a pre-specified execution

period.

• Check state. The purpose of the check state is to periodically detect if contention

occurs after a period of execution. The detection is similar to intermittent nap

state. LP is put to nap for a short interval and then is run for a short interval. The

difference of the IPC samples of HP during these two intervals is used to decide if

contention is occurring. If so, LP transitions to the intermittent nap state; if not,

the execution state.

The algorithm for targeted heuristics is described in Algorithm 5. A parameter conservative

factor is used to guard how close the monitored QoS degradation is to the pre-specified

94

threshold (delta IPC, for example) before the napping is used to throttle down the LP.

In Algorithm 5, we estimate the appropriate nap duration based on the QoS goal (the

degradation threshold QoSthresh, such as 90% of optimal QoS) and the observed difference

between IPC of HP when LP is napping (IPCnap) and when LP is executing (IPCexec).

To estimate the appropriate nap duration we solve the following equation:

QoSthresh

1−QoSthresh

=
IPCnap − IPCexec

IPCexec
×

exec duration

exec duration+ nap duration
(6.1)

where exec duration is the duration of the execution interval between inserted naps.

Algorithm 5: Nap Engine (Heuristic 2: Targeted)

Input : QoS goal, conservative factor, execute period

1 if (LP state == execution state && execute countdown > 0) then

2 execute countdown−− ;
3 return; /* no napping, running ahead */ ;

4 else if (LP state == execution state && execute countdown = 0) then

5 nap(check interval) ;
6 ipc nap← read the average IPC of HP when LP is the last napping duration from the shared

IPC buffer ;
7 LP state← check state; /* voluntarily nap for a short period to test if contention

is back by checking delta IPC */ ;

8 else if (LP state == nap state || LP state == check state) then

9 ipc exec← read the average IPC of HP when LP is the execution interval from the shared IPC
buffer ;

10 delta ipc← (ipc nap− ipc exec)/ipc nap ;
11 if (delta ipc < conservative factor ∗ QoS goal) then

12 execute countdown← execute period ;
13 LP state← execution state ;
14 return; /* significant contention is not detected nap does not seem to have a

big enough effect on IPC */ ;

15 else

16 nap duration← calculate duration(delta ipc,QoS goal) ;
17 nap(nap duration) ;
18 ipc nap← read the average IPC of HP when LP is the last napping duration from the

shared IPC buffer ;
19 LP state← nap state ;

20 end

21 end

6.4 Evaluation

We use the same prediction model as in QoS-Compile, which is evaluated in Section 5.4. So

in this section, we focus on evaluating the effectiveness of both heuristics in controlling the

95

Configurations thresh low thresh high nap ratio

util biased 0.5 1.0 {0, 1, 2}

balanced 0.8 1.5 {0, 1, 2}

QoS biased 0.5 1.0 {1, 2, 3}

Table 6.1: Three configurations for simple heuristic

QoS degradation that results from resource contention and in improving server utilization.

We also take a comprehensive look into the dynamic behavior of Reactive-Niceness and its

reaction to contentious phases throughout the execution. Lastly, we evaluate the overhead

and power efficiency of Reactive-Niceness.

6.4.1 Setup and Methodology

Our evaluation is conducted on a 2.67 GHZ Quad Core Intel Nehalem processor, described

in Section 5.4.1 with an 8MB last level cache (L3) shared by four cores with 4GBs of main

memory. This platform runs Linux 2.6.29.6 and a customized GCC 4.4.6. The workloads

used in our evaluation include the sledge application from the SmashBench contentious

kernel suite [37, 38] (developed at Google, summarized in Table 5.1), and applications from

SPEC CPU2006. All benchmarks are compiled using GCC at the O2 level. All SPEC

applications are run using ref inputs. In our evaluations in Section 5.4, we have shown

that SPEC 2006 and Google applications have similar amounts of performance degradation

due to contention. In addition, throttling down low-priority applications at millisecond

granularity has similar effect on improving the QoS of a high-priority SPEC or Google

application. Due to the lack of workload access during our experimentation, in this section

we use SPEC as our main experimental benchmark suite. Each experiment is conducted

three times to calculate the average performance. Benchmark runs are fairly stable with a

performance variance of 1% or less between runs.

6.4.2 Effectiveness of Reactive-Niceness: Simple Heuristic

As mentioned in Section 6.3.2, our simple heuristic provides “knobs” that control whether

the emphasis of Reactive-Niceness is biased towards QoS or machine utilization. Table 6.1

presents the three configurations we use in our evaluation. These include util bias,

96

 1x

lbm sphinx bzip milc namd

N
o
rm

al
iz

ed
 Q

o
S

base
util_bias
balanced
QoS_bias

 0.4x

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

Figure 6.5: QoS of each benchmark co-running with
sledge, normalized to solo QoS. (simple)

+namd

U
ti

li
za

ti
o
n

util_bias
balanced
QoS_bias

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

+lbm +sphinx +bzip +milc

Figure 6.6: Utilization of sledge with each config-
uration. (simple)

 0.8x

 0.9x

 1x

sphinx bzip milc namd

N
o
rm

al
iz

ed
 Q

o
S

base
util_bias
balanced
QoS_bias

 0.4x

 0.5x

 0.6x

 0.7x

Figure 6.7: QoS of each benchmark co-running with
lbm. (simple)

+bzip +milc +namd

U
ti

li
za

ti
o
n

util_bias
balanced
QoS_bias

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

+sphinx

Figure 6.8: Utilization of lbm with each configura-
tion. (simple)

 0.8x

 0.9x

 1x

lbm sphinx bzip namd

N
o
rm

al
iz

ed
 Q

o
S

base
util_bias
balanced
QoS_bias

 0.4x

 0.5x

 0.6x

 0.7x

Figure 6.9: QoS of each benchmark co-running with
milc. (simple)

+sphinx +bzip +namd

U
ti

li
za

ti
o
n

util_bias
balanced
QoS_bias

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

+lbm

Figure 6.10: Utilization of milc with each configu-
ration. (simple)

97

balanced, and QoS bias, representing an emphasis on higher utilization, a balance be-

tween utilization and QoS, and higher QoS respectively. Threshold low, threshold high

and nap ration are parameters for Algorithm 4 to control, respectively, the binning of mon-

itored instructions-per-cycle (IPC) of the high-priority application and the nap duration of

the low-priority application. In general the longer the nap ratio, the more throttling down

the heuristic applies to the low priority applications, and the more biased the heuristic is

towards the QoS of high priority applications.

Figures 6.5, 6.7 and 6.9 present the QoS of the high-priority application when we apply

Reactive-Niceness to a low priority application with three configurations of simple heuristic.

In each of these figures, the x-axis shows the high-priority applications and the y-axis shows

their QoS when each of them is co-running with a low-priority application, normalized to its

QoS performance when running alone on the machine. For each high-priority application,

a cluster of four bars demonstrates four settings for the corunning low priority application.

The first bar shows the QoS of the high priority application when it is corrunning with the

original low-priority application without the Reactive-Niceness. The rest of the three bars

show its QoS when we apply RN with three configurations of the simple heuristic to the

low-priority application. Each of three low-priority applications, sledge, lbm, and milc is

used in Figures 6.5, 6.7, 6.9 respectively.

Figures 6.6, 6.8 and 6.10 show the corresponding utilization gained for each of the low-

priority applications. Note that we are measuring the utilization of the computing resources

used by the low-priority application.

From the figures, we observe that when applying Reactive-Niceness with our simple

heuristic, the QoS of each high-priority application is significantly improved (by up to

26%) relative to the configuration of allowing the co-location of both applications without

Reactive-Niceness (first bar in Figures 6.5, 6.7 and 6.9). Recall that without Reactive-

Niceness, such colocation of low- and high-priority applications would be disallowed due to

the possible QoS degradation. Compared to such a baseline of disallowing co-location, we

gain a significant amount of utilization when allowing co-location with Reactive-Niceness,

often more than 50%. Various configurations in simple heuristic also provide a wide range

of options for balancing QoS and utilization. In this experiment, the utilization-biased

98

 1x

lbm sphinx bzip milc namd

N
o
rm

al
iz

ed
 Q

o
S

base
conserv_90
relaxed_90
conserv_80

 0.4x

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

Figure 6.11: QoS of each benchmark co-running
with sledge, normalized to solo QoS. (targeted)

nmd

U
ti

li
za

ti
o
n

conserv_90
relaxed_90
conserv_80

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

lbm sphinx bzip milc

Figure 6.12: Utilization of sledge with each con-
figuration. (targeted)

configuration achieves significantly higher utilization than other two configurations, and

the QoS of each high-priority application only slightly degrades. This demonstrates that

with parameter tuning, the simple heuristic can be effective in improving QoS while gaining

a significantly amount of processor utilization.

6.4.3 Effectiveness of Reactive-Niceness: Targeted Heuristic

Our more sophisticated targeted heuristic enables a more precise enforcement to achieve

the desired QoS requirements. This heuristic has effectively three “knobs,” one for the

specific QoS threshold to enforce, and the other two for how conservatively (strictly)

this QoS threshold must be enforced (parameters QoS goal, conservative factor and

execution period in Algorithm 5). With more conservative parameters, the application

QoS is less likely to drop below the specified threshold; however, a larger amount utilization

may be sacrificed. We explore this tradeoff in our evaluation.

Figures 6.11 – 6.16 are similar to those presented above. For this set of graphs we use our

targeted heuristic with the three configurations presented in Table 6.2. The configurations

conserv 90, relaxed 90, and conserv 80 represent a conservative setting at a 90% QoS

threshold, a relaxed setting at 90%, and a conservate setting at an 80% QoS threshold,

respectively. Figures 6.11, 6.13 and 6.15 show the effect of using our targeted heuristic

on the QoS of the high-priority applications. Note that two horizontal lines are drawn in

each graph denoting the 90% and 80% QoS thresholds. Figures 6.12, 6.14 and 6.16 show

99

 0.8x

 0.9x

 1x

sphinx bzip milc namd

N
o
rm

al
iz

ed
 Q

o
S

base
conserv_90
relaxed_90
conserv_80

 0.4x

 0.5x

 0.6x

 0.7x

Figure 6.13: QoS of each benchmark co-running
with lbm. (targeted)

bzip milc nmd

U
ti

li
za

ti
o
n

conserv_90
relaxed_90
conserv_80

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

sphinx

Figure 6.14: Utilization of lbm with each configu-
ration. (targeted)

 0.8x

 0.9x

 1x

lbm sphinx bzip namd

N
o
rm

al
iz

ed
 Q

o
S

base
conserv_90
relaxed_90
conserv_80

 0.4x

 0.5x

 0.6x

 0.7x

Figure 6.15: QoS of each benchmark co-running
with milc. (targeted)

sphinx bzip nmd

U
ti

li
za

ti
o
n

conserv_90
relaxed_90
conserv_80

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

lbm

Figure 6.16: Utilization of milc with each configu-
ration. (targeted)

100

Configurations ex period(ms) conserv factor QoS goal

conservative 90 6 0.4 90%

relaxed 90 12 1.0 90%

conservative 80 9 0.4 80%

Table 6.2: Three configurations of targeted heuristic

the corresponding processor utilization gained for each configuration.

As shown in these figures, the targeted heuristic is quite effective in bringing the QoS

of the high priority applications to the desired QoS threshold, beating it in many cases and

coming very close in the worst cases with our conservative settings. When using a relaxed

setting, we observe a bump in the utilization, and our QoS target is often met. The decision

as to how conservative or relaxed the QoS target is depends on the objectives and discretion

of the application service provider and whether higher utilization is desired or stricter QoS

polices are specified.

[Simple vs. Targeted] Our simple and targeted heuristics offer two options to

application service providers: one allowing the tuning of the tradeoff between utilization

and QoS when a specific QoS target is not specified, the other when the specific QoS

degradation threshold is known. When configured appropriately, the simple heuristic can

perform quite well. However, it may require a significant amount of parameter tuning to

search for the appropriate configuration. The appropriate configuration may also change

when the co-running applications change. The targeted does not require such parameter

tweaking because it is self tuning and feedback directed. More comparison between simple

and targeted is presented in the following section.

6.4.4 Effectiveness of Reactive-Niceness: Phase Level Behavior

We further evaluate the phase-level effectiveness of RN-Runtime in improving the QoS of

high-priority applications.

Figure 6.17 presents the IPC of sphinx when it is running with the original sledge,

comparing to its IPC when running with sledge on RN-Runtime using the simple heuristic.

The IPC samples are normalized to sphinx’s IPC profile when running alone to demonstrate

the IPC degradation due to contention. In this experiment, simple heuristic is using

101

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original sledge
w/ sledge on RN-Runtime, simple heuristic

Figure 6.17: Sphinx normalized IPC with original sledge and with sledge with RN H1

balance configuration and sphinx is using ref input. To calculate the normalized IPC, we

collect the IPC profiles of sphinx when it is running alone (solo) and running with sledge.

IPC is sampled every 1 ms and all profiles of the entire execution of sphinx are down

sampled to 1000 data points. The normalized IPC at point i is calculated as IPCcorun i

IPCsolo i
.

Therefore, the closer the normalized IPC to 1, the less the degradation. In Figure 6.17, the

line denoting the original sledge shows phase-level changes of the IPC degradation due to

contention. For example, around samples 100 to 200, and 300 to 400, there are noticeable

phases of degradation increase. Also the degradation is less significant during the later

half of the execution. Figure 6.17 also clearly demonstrates the IPC improvement achieved

by RN-Runtime along the entire execution of sphinx. Instead of around 60%-70% of the

normalized IPC when running with the original sledge , Reactive-Niceness improves the

normalized IPC to above 80% through most of the execution.

Similar to Figure 6.17, Figure 6.18 presents sphinx’s normalized IPC when it is running

with sledge using targeted heuristics (conservative 90 configuration), also compar-

ing to its normalized IPC when running with the original sledge. Despite the distinctive

phases of varying levels of degradation when running with the original sledge as discussed

previously (for example, samples 100-200 and 300-400), targeted heuristic consistently

guarantees around 90% IPC for sphinx through the entire execution. This is different from

the simple heuristic shown Figure 6.17 where the improved normalized IPC fluctuates be-

102

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original sledge
w/ w/ sledge on RN-Runtime, targeted heuristic

Figure 6.18: Sphinx normalized IPC with original sledge and with sledge with RN H2

tween 70% and 90%. This comparison highlights the difference between the simple and

targeted heuristics. While simple is effective in improving the QoS, targeted heuristic

is effective in adapting, achieving and maintaining a stable QoS level as specified.

Similar to Figures 6.17 and 6.18, Figures 6.19 and 6.20 present the normalized IPC of

sphinx when it is running with the original milc, as well as milc with Reactive-Niceness. In

Figures 6.19 and 6.20, the RN-Runtime for milc uses the simple heuristic and targeted

heuristic respectively. The IPC of sphinx when running with the original milc demon-

strates the varying levels of contention and degradation. For example, during samples 600

to 800, the degradation is significantly smaller (normalized IPC close to 1) than the rest of

the execution. A few samples with normalized IPC higher than 1 are due to aliasing of down-

sampling. In this set of experiments, targeted heuristic is configured as conservative 90,

meaning RN-Runtime aims at less than 10% of the QoS degradation for sphinx. Simple

heuristic is configured with QoS biased configuration to achieve the similar QoS goal as

targeted. Figures 6.17 and 6.18 demonstrate the effectiveness of Reactive-Niceness. The

QoS of sphinx is significantly improved after applying RN to corunning milc; the normal-

ized IPC of sphinx is stable and between 0.9 and 1.

Figure 6.21 presents the corresponding average nap duration of milc for every 2 ms’ ex-

ecution, decided dynamically by RN-Runtime based on dynamic contention detection. The

longer the nap duration, the lower the utilization. Figure 6.21 shows that simple heuristic

103

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o
rm

a
liz

e
d
 I
P

C

time

w/ original milc
w/ RN-milc-simple

Figure 6.19: Sphinx normalized IPC with original milc and with
simple milc

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o
rm

a
liz

e
d
 I
P

C

time

w/ original milc
w/ RN-milc-simple

Figure 6.20: Sphinx normalized IPC with original milc and with
targeted milc

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500 600 700 800 900 1000

a
v
e
ra

g
e
 n

a
p
 d

u
ra

ti
o
n

time

simple
targeted

Figure 6.21: Average nap duration for milc with simple vs. milc with
targeted

104

 0.5x

 0.7x

 0.8x

 0.9x

 1x

 1.1x

lbm milc namd bzip2 sphinx mean

E
x

ec
.

T
im

e
(n

o
rm

.)

base native
with monitor

 0.6x

Figure 6.22: Overhead of monitoring for high-priority application.

 0.5x

 0.7x

 0.8x

 0.9x

 1x

 1.1x

lbm milc sledge mean

E
x

ec
.

T
im

e
(n

o
rm

.)

base
with nap engine

 0.6x

Figure 6.23: Overhead of nap engine for low-priority application.

demonstrates certain adaptability. After sample 600 when the contention is not as signif-

icant, naps become shorter. However, in general, the nap duration is significantly shorter

using the targeted heuristic, while achieving similar QoS improvement as the simple

heuristic. This is because targeted heuristic can estimate the amount of QoS degradation

and the necessary amount of nap/throttling for achieving the QoS goal, and adaptively

adjust the nap based on the estimation; while simple heuristic may over-conservatively

throttle down the low-priority application, especially when it is configured to bias towards

QoS.

6.4.5 Overhead

Figure 6.22 presents the performance costs of the monitoring the QoS of the high-priority

application. The overhead is minimal. The overhead suffered by high-priority applications

is less than 1% on average with a max of 2% in the case of milc.

Figure 6.23 shows the performance overhead of invoking the Nap Engine to throttle

105

m
il

c−
lb

m

b
zi

p
2
−

lb
m

sp
h
in

x
−

lb
m

n
am

d
−

lb
m

lb
m

−
m

il
c

b
zi

p
2
−

m
il

c

sp
h
in

x
−

m
il

c

n
am

d
−

m
il

c

m
ea

n

K
il

o
 I

n
st

s
p
er

 w
at

t

separate machines
RN (targeted conserv_90)

 0

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

lb
m

−
sl

ed
g
e

m
il

c−
sl

ed
g
e

b
zi

p
2
−

sl
ed

g
e

sp
h
in

x
−

sl
ed

g
e

n
am

d
−

sl
ed

g
e

Figure 6.24: Efficiency of allowing co-location with Reactive-Niceness vs over-provisioning. (targeted)

down low-priority applications. The overhead of probing the Nap Engine is slightly more

costly, approaching 5% for milc. However, the Nap Engine is only causing overhead to the

low-priority application, and the performance cost is not as important.

The low cost of our runtime approach is due to the fact that we only invoke the runtime

system at the 1 ms granularity for both low and high-priority applications. The overhead

of reading and recording performance counters is also minimal. The cost is slightly higher

for the low-priority application because we add a lightweight check at the point of every

compiler-inserted marker. Coarsening the granularity can further reduce these overheads;

however the tradeoff must be made between a lower overhead and a higher penalty for

potential delays in detecting contention as it occurs.

6.4.6 Energy Efficiency of using Reactive-Niceness

Figure 6.24 presents the improved energy efficiency when allowing co-location with Reactive-

Niceness. These experiments were performed using a P3 International Kill A WattR© power

meter connected to our Quad Core Intel Nehalem machine to measure whole system watt

consumption during execution. For each cluster of bars in the figure, the energy efficiency

106

is calculated by the instructions processed per watt for a three minute time period after the

machine wattage stabilizes during each run. The higher the bar, the more energy efficient.

The x-axis shows the workloads, the high priority and low priority application pairs. The

first bar for each workload shows the energy efficiency when using separate machines for

low and high priority applications; the second bar shows the energy efficiency of co-locating

both high and low priority applications using Reactive-Niceness with the targeted policy

and the conserv 90 configuration shown in Table 6.2. We observe a significant energy

efficiency improvement for many workloads. Application pairs that include less contentious

applications, such as namd, produce a greater benefit as there is less napping occuring.

Meanwhile, highly contentious pairs, such as sphinx-lbm, show a more modest benefit. On

average there is a 42% improvement of using Reactive-Niceness to allow co-location over

using two separate machines for low and high priority applications.

6.4.7 Varying Architecture

To investigate the effectiveness of Reactive-Niceness across architectures, we performed

experiments on a 2.6GHZs Quad Core AMD Phenom X4 system with 6MB last level cache

and 3GB of main memory. This machine is also running Linux 2.6.29.6 and our customized

GCC 4.4.6.

Figures 6.25 and 6.26 show the results for our targeted heuristic using the same con-

figurations shown in Table 6.2. As shown in these figures, Reactive-Niceness is also quite

effective on this platform. For both lbm and milc we achieve 80% to 90% utilization while

significantly reducing the performance interference on our high-priority applications. The

contentiousness of sledge is severe on this processor. For the lbm-sledge pair, we observe

that when lowering the QoS threshold to 80% from 90% we more than double the utiliza-

tion. Overall, our conservative settings meet and exceed our QoS requirements for each

of the experiments shown in Figure 6.25, and our relaxed configuration satisfies the QoS

constraint in for majority of the applications.

107

conserv_90
relaxed_90
conserv_80

 0.4x

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

 1x

lb
m

−
sl

ed
g

e

sp
h

in
x

−
sl

ed
g

e

b
zi

p
−

sl
ed

g
e

m
lc

−
sl

ed
g

e

n
m

d
−

sl
ed

g
e

sp
h

in
x

−
lb

m

b
zi

p
−

lb
m

m
lc

−
lb

m

n
m

d
−

lb
m

lb
m

−
m

il
c

sp
h

in
x

−
m

il
c

b
zi

p
−

m
il

c

n
m

d
−

m
il

c

N
o

rm
al

iz
ed

 Q
o

S

base

Figure 6.25: QoS of each benchmark co-running with sledge, lbm, and milc. (targeted)

 100%

lb
m

−
sl

ed
g

e

sp
h

in
x

−
sl

ed
g

e

b
zi

p
−

sl
ed

g
e

m
lc

−
sl

ed
g

e

n
m

d
−

sl
ed

g
e

sp
h

in
x

−
lb

m

b
zi

p
−

lb
m

m
lc

−
lb

m

n
m

d
−

lb
m

lb
m

−
m

il
c

sp
h

in
x

−
m

il
c

b
zi

p
−

m
il

c

n
m

d
−

m
il

c

U
ti

li
za

ti
o

n

conserv_90
relaxed_90
conserv_80

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

Figure 6.26: Utilization of sledge, lbm and milc with each configuration. (targeted)

108

6.5 Summary

In this chapter, we combine static compilation and dynamic adaptation to address the chal-

lenge of cross-core interference on the QoS of high priority applications. We have presented

Reactive-Niceness, a static/dynamic compilation approach to improving machine utiliza-

tion in WSCs by enabling the adaptive manipulation of the contentiousness of low-priority

applications to ensure the QoS of high-priority co-runners. Reactive-Niceness consists of

a profile guided compilation technique that identifies and inserts markers in contentious

code regions, and a lightweight runtime that monitors the QoS of high-priority applications

and reactively triggers short naps of low-priority applications when cross-core interference

is detected. Our evaluation shows that Reactive-Niceness is able to improve utilization by

more than 70% in many cases, and more than 50% on average, while enforcing a 90% QoS

threshold.

Finally let us compare the static approach, QoS-Compile, presented in Chapter 5, with

the hybrid approach Reactive-Niceness presented in this chapter.

• QoS-Compile, as a static compilation solution, is more simplistic, lightweight and does

not require deploying a runtime system. Since QoS-Compile only throttles down the

contentious code regions, it avoids unnecessary throttling down and utilization loss

when contentious code regions are not executing.

• Reactive-Niceness, taking advantage of the QoS-Compile’s prediction model, dynam-

ically throttles down low-priority applications based on the amount of contention and

QoS degradation detected. Because of the flexibility, it achieves better server utiliza-

tion, especially when the co-running high priority application is not sensitive and not

affected by the low-priority applications. Another advantage of Reactive-Niceness is

more accurate QoS management, especially when using the targeted heuristic.

109

Chapter 7

Conclusions and Future Directions

Contents

7.1 Summary of Themes and Results . 111

7.2 Future Direction . 113

7.2.1 Managed Runtime for QoS and utilization in WSCs 113

7.2.2 Runtime systems and research infrastructure for WSCs 113

This dissertation comprehensively investigates the impact of memory resource sharing on

industry-strength large-scale datacenter workloads and shows that, contrary to conclusions

from recent work [61], memory resource sharing has a significant performance impact on

emerging large-scale web-service applications in modern warehouse scale computers. This

dissertation also presents two complementary software strategies to mitigate memory re-

source contention for improving performance and server utilization of WSCs. We design

a heuristic based system and a runtime system to intelligently map application threads to

cores to promote positive resource sharing and mitigate resource contention to improve ap-

plication performance. We design novel compilation techniques and runtime systems that

statically and dynamically manipulate applications’ contentious nature to enable the co-

location of applications with varying QoS requirements, and as a result, greatly improve

server utilization in WSCs.

110

7.1 Summary of Themes and Results

[The impact of memory resource contention for WSC workloads] Our investigation

studies both the impact of memory resource sharing among threads from a single application

and among threads from different co-running applications.

• Intra-application Sharing Our investigations demonstrate that, across several key

datacenter applications including websearch, the impact of sharing the last level cache

among threads can either be positive or negative and can be significant (up to 10%).

Bus contention also has a fairly significant impact on performance and contributes

another 10% performance variability. For applications that have higher levels of shar-

ing, a positive side effect of placing all threads close to each other and sharing a bus

is observed.

• Inter-application Sharing Contention between multiple applications for the shared

caches and memory bandwidth can often cause significant performance degradation for

emerging WSC workloads. As a result, an application’s performance swings between

its best and worst thread-to-core mapping can be significant (up to 40%).

• Optimal Thread-to-Core Mapping The best thread-to-core mapping for a given

application does not only depends on the application’s sharing and memory charac-

teristics, it is also impacted dynamically by the characteristics of other applications

that are co-running on the same machine simultaneously.

[Intelligent thread-to-core mapping]We design intelligent TTCmapping approaches

to mitigating memory resource contention to improve performance, including a heuristic-

based approach and an adaptive approach.

• Heuristic-based TTC Mapping We show that by leveraging knowledge of an ap-

plication’s sharing characteristics, we can predict both how an application’s threads

should be mapped when running alone as well as with another application. We identify

the application characteristics that impact performance in the various thread-to-core

mapping scenarios, and our algorithm can accurately predict the optimal TTC map-

111

ping in most cases. In other cases, its predictions generate no more than 2% worse

results than the optimal.

• Adaptive TTC Mapping We conclude that our online adaptive learning approach

is a preferable approach for arriving at good thread to core mappings in the datacenter

as it is more flexible and portable. It arrives at near optimal decisions and is agnostic

to applications’ sharing characteristics. By employing the adaptive thread-to-core

mapper, AtoM, the performance of the datacenter applications is improved by up to

22% over status quo thread-to-core mapping and performs within 3% of optimal.

[Static/Dynamic Compilation for QoS and Utilization]We design both static and

dynamic approaches to mitigating memory resource contention to improve server utiliza-

tion. Our approaches manipulate low-priority applications’ contentious nature to improve

the corunning latency-sensitive applications’ QoS. By providing such QoS management on

multicores, our approaches enable the co-location of applications with varying QoS require-

ments and thus greatly improve server utilization in WSCs.

• Identify Code Regions We demonstrate that contentiousness is a consistent char-

acteristic of an application and a code region. We then design a performance counter

based prediction model that can accurately identify code regions that are contentious

in nature. The linear correlation efficient of our model is 0.91, showing high prediction

accuracy.

• QoS-Compile We design two novel compilation transformations padding and nap

insertion and demonstrate their effectiveness in reducing the memory request rate of

a code region and the interference the code region can cause to co-running applications.

Finally, our experiments show that by combining our code region identification and

compilation transformations, QoS-Compile improves applications’ QoS performance

by 21% and machine utilization 36% on average for both SPEC benchmarks and key

Google applications on state-of-the-art server machines.

• Reactive-Niceness Our experiments demonstrate that Reactive-Niceness is able to

improve server utilization by more than 70% in many cases, and more than 50%

112

on average, while enforcing a 90% QoS threshold. We are also able to improve the

energy efficiency of modern multicore machines by 47% on average over the policy of

disallowing co-locations that is commonly used.

7.2 Future Direction

There are a number of other important and promising research directions for improving the

efficiency of WSCs. In this section, we discuss managed runtimes for QoS and utilization,

and other runtime systems and infrastructure that is critical for researching WSCs.

7.2.1 Managed Runtime for QoS and utilization in WSCs

Managed runtimes, such as the Java VM, are commonly used in WSCs. For example,

Gmail arguably constitutes one of the largest java codebases in the world. However, it

is unclear how to mitigate the negative impact of memory resource contention for VM

workloads. I plan to extend my research in static/dynamic compilation to design a QoS-

Aware VM. The VM provides a potentially broader design space than native runtimes

and thus more opportunities to address the challenges of memory resource contention and

QoS in a datacenter. In addition to restructuring code layouts to reduce contention, novel

language constructs can be designed to annotate information of a code region such as

its QoS target, priorities and its sensitivity to performance interference. Based on this

information, dynamic runtime can decide accordingly if necessary QoS management such as

throttling down other applications is needed. I also plan to investigate how to use the virtual

execution and garbage collection capabilities of managed runtimes to provide a harness for

novel dynamic memory re-layout techniques to reduce memory resource contention.

7.2.2 Runtime systems and research infrastructure for WSCs

Research on architecting large-scale datacenters is still in its relative infancy. There are

still numerous questions and opportunities as how to design an effective software stack

especially for WSCs. I plan to conduct further research on designing large-scale cross-

layer runtime systems that intelligently orchestrate and manage resources at on-chip level,

113

machine-level and cluster-level, for improving performance, QoS and reducing cost in WSCs.

The runtime system will integrate the performance and information of applications as well

as the underlying hardware resource monitoring. It also needs to break the communication

boundaries between various management levels existent in current systems. During the

process of this research, I will also design methodologies, simulations, benchmarks and

mini-cloud environment that can facilitate the community to conduct datacenter research

without accessing the production workloads and datacenters. The lack of access has always

been an obstacle for the community. I believe that my experience of close collaboration

with the industry will help me provide such validated research environment.

114

Bibliography

[1] Intel 64 and ia-32 architectures software developer’s manual volume 2b: Instruction

set reference, m-z.

[2] Latent semantic analysis. http://en.wikipedia.org/wiki/Latent semantic analysis.

[3] Protocol buffer. http://code.google.com/p/protobuf/.

[4] M. Banikazemi, D. Poff, and B. Abali. Pam: a novel performance/power aware meta-

scheduler for multi-core systems. SC ’08: Proceedings of the 2008 ACM/IEEE confer-

ence on Supercomputing, Nov 2008.

[5] L. Barroso, J. Dean, and U. Holzle. Web search for a planet: The google cluster

architecture. IEEE Micro, 23(2), 2003.

[6] L. Barroso and U. Hölzle. The datacenter as a computer: An introduction to the design

of warehouse-scale machines. Synthesis Lectures on Computer Architecture, Jan 2009.

[7] M. Bhadauria and S. McKee. An approach to resource-aware co-scheduling for cmps.

ICS ’10: Proceedings of the 24th ACM International Conference on Supercomputing,

Jun 2010.

[8] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread cache con-

tention on a chip multi-processor architecture. 11th International Symposium on High-

Performance Computer Architecture, pages 340– 351, 2005.

[9] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chandra,

A. Fikes, and R. Gruber. Bigtable: A distributed storage system for structured data.

ACM Transactions on Computer Systems (TOCS), 26(2):4, 2008.

115

[10] J. Chang and G. Sohi. Cooperative cache partitioning for chip multiprocessors. Pro-

ceedings of the 21st annual international conference on Supercomputing, page 252, 2007.

[11] S. Cho and L. Jin. Managing distributed, shared l2 caches through os-level page

allocation. MICRO 39: Proceedings of the 39th Annual IEEE/ACM International

Symposium on Microarchitecture, Dec 2006.

[12] E. Ebrahimi, C. Lee, O. Mutlu, and Y. Patt. Fairness via source throttling: a config-

urable and high-performance fairness substrate for multi-core memory systems. ASP-

LOS ’10: Proceedings of Architectural support for programming languages and operating

systems, Mar 2010.

[13] EPA. Epa report to congress on server and data center energy efficiency. Technical

report, U.S. Environmental Protection Agency, 2007.

[14] S. Eranian. What can performance counters do for memory subsystem analysis? Pro-

ceedings of the 2008 ACM SIGPLAN workshop on Memory systems performance and

correctness: held in conjunction with ASPLOS’08, pages 26–30, 2008.

[15] A. Fedorova, M. Seltzer, and M. Smith. Improving performance isolation on chip

multiprocessors via an operating system scheduler. PACT ’07: Proceedings of the 16th

International Conference on Parallel Architecture and Compilation Techniques 2007,

Sep 2007.

[16] F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A framework for providing quality of service

in chip multi-processors. Proceedings of the 40th Annual IEEE/ACM International

Symposium on Microarchitecture, pages 343–355, 2007.

[17] J. Hamilton. Internet-scale service infrastructure efficiency. SIGARCH Comput. Archit.

News, 37(3):232–232, 2009.

[18] A. Herdrich, R. Illikkal, R. Iyer, D. Newell, V. Chadha, and J. Moses. Rate-based

qos techniques for cache/memory in cmp platforms. ICS ’09: Proceedings of the 23rd

international conference on Supercomputing, Jun 2009.

116

[19] L. Hsu, S. Reinhardt, R. Iyer, and S. Makineni. Communist, utilitarian, and capitalist

cache policies on cmps: caches as a shared resource. PACT ’06: Proceedings of the

15th international conference on Parallel architectures and compilation techniques, Sep

2006.

[20] R. Hundt, E. Raman, M. Thuresson, and N. Vachharajani. Mao: An extensible micro-

architectural optimizer. In 2011 9th Annual IEEE/ACM International Symposium on

Code Generation and Optimization (CGO), pages 1 –10, april 2011.

[21] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin, L. Hsu, and

S. Reinhardt. Qos policies and architecture for cache/memory in cmp platforms. SIG-

METRICS ’07: Proceedings of the 2007 ACM SIGMETRICS international conference

on Measurement and modeling of computer systems, Jun 2007.

[22] V. Janapa Reddi, B. C. Lee, T. Chilimbi, and K. Vaid. Web search using mobile cores:

quantifying and mitigating the price of efficiency. In Proceedings of the 38th annual

international symposium on Computer architecture (ISCA ’10), New York, NY, USA,

2010. ACM.

[23] Y. Jiang, X. Shen, J. Chen, and R. Tripathi. Analysis and approximation of optimal

co-scheduling on chip multiprocessors. PACT ’08: Proceedings of the 17th international

conference on Parallel architectures and compilation techniques, Oct 2008.

[24] Y. Jiang, K. Tian, and X. Shen. Combining locality analysis with online proactive job

co-scheduling in chip multiprocessors. High Performance Embedded Architectures and

Compilers, pages 201–215, 2010.

[25] M. Kandemir, S. Muralidhara, S. Narayanan, Y. Zhang, and O. Ozturk. Optimizing

shared cache behavior of chip multiprocessors. 42nd Annual IEEE/ACM International

Symposium on Microarchitecture, pages 505–516, 2009.

[26] M. Kandemir, T. Yemliha, S. Muralidhara, S. Srikantaiah, M. Irwin, and Y. Zhnag.

Cache topology aware computation mapping for multicores. PLDI ’10: Proceedings of

117

the 2010 ACM SIGPLAN conference on Programming language design and implemen-

tation, Jun 2010.

[27] D. Kaseridis, J. Stuecheli, J. Chen, and L. John. A bandwidth-aware memory-

subsystem resource management using non-invasive resource profilers for large cmp

systems. 2010 IEEE 16th International Symposium on High Performance Computer

Architecture (HPCA), pages 1–11, 2010.

[28] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partitioning in a chip mul-

tiprocessor architecture. PACT ’04: Proceedings of the 13th International Conference

on Parallel Architectures and Compilation Techniques, Sep 2004.

[29] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using os observations to

improve performance in multicore systems. IEEE Micro, 28(3):54–66, 2008.

[30] C. Kozyrakis, A. Kansal, S. Sankar, and K. Vaid. Server engineering insights for large-

scale online services. IEEE Micro, 30, July 2010.

[31] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gaining insights

into multicore cache partitioning: Bridging the gap between simulation and real sys-

tems. IEEE 14th International Symposium on High Performance Computer Architec-

ture, pages 367–378, 2008.

[32] F. Liu, X. Jiang, and Y. Solihin. Understanding how off-chip memory bandwidth

partitioning in chip multiprocessors affects system performance. High Performance

Computer Architecture (HPCA), 2010 IEEE 16th International Symposium on DOI -

10.1109/HPCA.2010.5416655, pages 1–12, 2010.

[33] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.

Reddi, and K. Hazelwood. Pin: building customized program analysis tools with

dynamic instrumentation. In Proceedings of the 2005 ACM SIGPLAN conference on

Programming language design and implementation, PLDI ’05, pages 190–200, New

York, NY, USA, 2005. ACM.

118

[34] J. Mars and R. Hundt. Scenario based optimization: A framework for statically en-

abling online optimizations. In CGO ’09: Proceedings of the 7th annual IEEE/ACM

international symposium on Code generation and optimization, CGO ’09, pages 169–

179, Washington, DC, USA, 2009. IEEE Computer Society.

[35] J. Mars and M. L. Soffa. Synthesizing Contention. In Workshop on Binary Instrumen-

tation and Applications, 2009.

[36] J. Mars, L. Tang, and R. Hundt. Heterogeneity in “homogeneous” warehouse-scale

computers: A performance opportunity. IEEE Computer Architecture Letters, 2011.

[37] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Bubble-up: Increasing uti-

lization in modern warehouse scale computers via sensible co-locations. In MICRO ’11:

Proceedings of The 44th Annual IEEE/ACM International Symposium on Microarchi-

tecture, New York, NY, USA, 2011. ACM.

[38] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Increasing utilization in

warehouse scale computers using bubble-up! Special Issue: IEEE Micro’s Top Picks

from 2011 Computer Architecture Conferences, 2012.

[39] J. Mars, L. Tang, and M. L. Soffa. Directly characterizing cross core interference

through contention synthesis. In Proceedings of the 6th International Conference on

High Performance and Embedded Architectures and Compilers, HiPEAC ’11, pages

167–176, New York, NY, USA, 2011. ACM.

[40] J. Mars, N. Vachharajani, R. Hundt, and M. Soffa. Contention aware execution:

online contention detection and response. CGO ’10: Proceedings of the 8th annual

IEEE/ACM international symposium on Code generation and optimization, Apr 2010.

[41] J. D. McCalpin. Stream: Sustainable memory bandwidth in high performance com-

puters. http://www.cs.virginia.edu/stream/, Feburary 2005.

[42] D. Meisner, B. T. Gold, and T. F. Wenisch. Powernap: eliminating server idle power. In

Proceedings of Architectural support for programming languages and operating systems,

ASPLOS ’09, pages 205–216, New York, NY, USA, 2009. ACM.

119

[43] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das. Towards characterizing cloud

backend workloads: insights from google compute clusters. SIGMETRICS Perform.

Eval. Rev., 37(4):34–41, Mar. 2010.

[44] K. Nesbit, M. Moreto, F. Cazorla, A. Ramirez, M. Valero, and J. Smith. Multicore

resource management. Micro, IEEE DOI - 10.1109/MM.2008.48, 28(3):6 – 16, 2008.

[45] M. Qureshi and Y. Patt. Utility-based cache partitioning: A low-overhead, high-

performance, runtime mechanism to partition shared caches. MICRO 39: Proceedings

of the 39th Annual IEEE/ACM International Symposium on Microarchitecture, Dec

2006.

[46] P. Ranganathan and N. Jouppi. Enterprise it trends and implications for architecture

research. High-Performance Computer Architecture, 2005. HPCA-11. 11th Interna-

tional Symposium on DOI - 10.1109/HPCA.2005.14, pages 253– 256, 2005.

[47] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt. Google-wide profiling: A

continuous profiling infrastructure for data centers. IEEE Micro, 30:65–79, 2010.

[48] A. Sandberg and D. Eklöv. . . . Reducing cache pollution through detection and elimi-

nation of non-temporal memory accesses. SC ’10 Proceedings of the 2010 ACM/IEEE

International Conference for High Performance Computing, Networking, Storage and

Analysis, Nov 2010.

[49] L. Soares, D. Tam, and M. Stumm. Reducing the harmful effects of last-level cache pol-

luters with an os-level, software-only pollute buffer. Microarchitecture, 2008. MICRO-

41. 2008 41st IEEE/ACM International Symposium on, pages 258 – 269, 2008.

[50] S. Son, M. Kandemir, M. Karakoy, and D. Chakrabarti. A compiler-directed data

prefetching scheme for chip multiprocessors. PPoPP ’09: Proceedings of the 14th ACM

SIGPLAN symposium on Principles and practice of parallel programming, Feb 2009.

[51] S. Srikantaiah, M. Kandemir, and M. Irwin. Adaptive set pinning: managing shared

caches in chip multiprocessors. ASPLOS XIII: Proceedings of the 13th international

120

conference on Architectural support for programming languages and operating systems,

Mar 2008.

[52] S. Srikantaiah, M. Kandemir, and Q. Wang. Sharp control: controlled shared cache

management in chip multiprocessors. MICRO 42: Proceedings of the 42nd Annual

IEEE/ACM International Symposium on Microarchitecture, Dec 2009.

[53] R. Szeliski. Image alignment and stitching: a tutorial. Found. Trends. Comput. Graph.

Vis., 2(1):1–104, 2006.

[54] D. Tam, R. Azimi, and M. Stumm. Thread clustering: sharing-aware scheduling on

smp-cmp-smt multiprocessors. In Proceedings of the 2nd ACM SIGOPS/EuroSys Eu-

ropean Conference on Computer Systems 2007, EuroSys ’07, pages 47–58, New York,

NY, USA, 2007. ACM.

[55] L. Tang, J. Mars, and M. L. Soffa. Reactive niceness: Static/dynamic compilation for

qos in warehouse scale computers. In submission.

[56] L. Tang, J. Mars, and M. L. Soffa. Contentiousness vs. sensitivity: improving con-

tention aware runtime systems on multicore architectures. In Proceedings of the 1st

International Workshop on Adaptive Self-Tuning Computing Systems for the Exaflop

Era, EXADAPT ’11, colocated with PLDI ’11, pages 12–21, New York, NY, USA,

2011. ACM.

[57] L. Tang, J. Mars, and M. L. Soffa. Compiling for niceness: Mitigating contention

for qos in warehouse scale computers. In CGO ’12: Proceedings of the 10th annual

IEEE/ACM international symposium on Code generation and optimization, 2012.

[58] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa. The impact of memory

subsystem resource sharing on datacenter applications. In Proceedings of the 38th

annual international symposium on Computer architecture, ISCA ’11, pages 283–294,

New York, NY, USA, 2011. ACM.

121

[59] Y. Xie and G. H. Loh. Dynamic Classification of Program Memory Behaviors in CMPs.

In The 2nd Workshop on Chip Multiprocessor Memory Systems and Interconnects,

2008.

[60] D. Xu, C. Wu, and P.-C. Yew. On mitigating memory bandwidth contention through

bandwidth-aware scheduling. PACT ’10: Proceedings of the 19th international confer-

ence on Parallel architectures and compilation techniques, Sep 2010.

[61] E. Zhang, Y. Jiang, and X. Shen. Does cache sharing on modern CMP matter to the

performance of contemporary multithreaded programs? PPoPP 2010, pages 203–212,

2010.

[62] L. Zhao, R. Iyer, R. Illikkal, J. Moses, S. Makineni, and D. Newell. Cachescouts: Fine-

grain monitoring of shared caches in cmp platforms. PACT ’07: Proceedings of the

16th International Conference on Parallel Architecture and Compilation Techniques,

Sep 2007.

[63] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared resource contention

in multicore processors via scheduling. ASPLOS ’10: Proceedings of the fifteenth edition

of ASPLOS on Architectural support for programming languages and operating systems,

Mar 2010.

122

	 Introduction
	Memory Resource Sharing and Contention
	Implications of Memory Resource Contention
	The Impact of Contention on Performance
	The Impact of Contention on Server Utilization
	Trade-offs Between Performance and Utilization

	Mitigating Contention
	Two Strategies for Mitigating Contention
	Mitigating Contention to Improve Performance
	Mitigating Contention to Improve Utilization

	Summary of Contributions

	 Background and Related Work
	Warehouse Scale Computers
	Cost
	Application QoS
	Job Scheduling, Application Colocation and Utilization
	Machine Level

	Related Work
	Impact of Memory Resource Sharing
	Novel Hardware Solutions to Mitigate Contention
	Software Runtime and OS Approaches to Mitigating Contention
	Cache Contention Aware Compilation

	 The Impact of Memory Resource Sharing
	Memory Resource Sharing
	Intra-Application Sharing
	Experiment Methodology
	Measurement and Findings
	Investigating Performance Variability
	Summary

	Inter-Application Sharing
	Experiment Design
	Measurement and Findings
	Varying Thread Count and Architecture
	Summary

	 Thread-to-core Mapping
	A Heuristic Approach to TTC Mapping
	Evaluating the Heuristics

	An Adaptive Approach to TTC Mapping
	Evaluating AToM

	 Compiling for Niceness
	QoS-Compile Overview
	Identify Contentious Code Regions
	Contentiousness and Sensitivity
	Identify Contentious Regions

	Compiler Transformations for Rate Reduction
	Padding
	Nap Insertion
	Understanding Cooldown and Warmup

	Evaluation
	Setup and Methodology
	Model for Code Region Identification
	Compiler Transformations
	QoS-Compile: Put it All Together
	Google Applications

	Summary

	 Reactive Niceness
	Reactive-Niceness Overview
	RN-Compile: Compiling for Reactive Niceness
	RN-Runtime: Dynamic Detection and Reaction to QoS Degradation
	Runtime
	Detection and Reaction

	Evaluation
	Setup and Methodology
	Effectiveness of Reactive-Niceness: Simple Heuristic
	Effectiveness of Reactive-Niceness: Targeted Heuristic
	Effectiveness of Reactive-Niceness: Phase Level Behavior
	Overhead
	Energy Efficiency of using Reactive-Niceness
	Varying Architecture

	Summary

	 Conclusions and Future Directions
	Summary of Themes and Results
	Future Direction
	Managed Runtime for QoS and utilization in WSCs
	Runtime systems and research infrastructure for WSCs

