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Abstract

Many modern technologies are based on devices with physical features on scales of tens of

nanometers. Thermal dissipation is a major challenge in these devices, and at these scales,

the interfaces between materials can influence the thermal transport more than the materials

themselves. Motivated by these applications, this work investigates the thermal conductance

at interfaces between non-metallic, crystalline solids at high temperatures. Existing models

accurately predict interfacial conductance at very low temperatures, but at room temperature

and above, they can differ from experiments by an order of magnitude or more. I have

performed classical molecular dynamics simulations that explicitly connect the behavior of

interfacial conductance to underlying phonon transport phenomena, with a focus on the

anharmonicity of atomic forces that is thought to be important at high temperature.

First, I used non-equilibrium molecular dynamics (NEMD) simulations to calculate

interfacial conductance as a function of temperature in systems with different anharmonicity.

The results confirm that anharmonicity is responsible for the high conductance observed

in previous simulations and experiments at high temperatures. However, the temperature

variation arises not only from anharmonicity at the interface itself, but also the anharmonicity

far into the abutting materials. Second, I used the wave packet method to quantify the

connection between anharmonicity and inelastic phonon scattering at the interface. The

results are consistent with the NEMD simulations, showing that inelastic scattering at the

interface is unlikely to explain the increase in conductance with temperature. Finally, I used

the wavelet transform to quantify the distributions of energy among normal modes during the
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Abstract iii

NEMD simulations. To complement those results, I also used normal mode decomposition

to calculate the mean free paths of the normal modes in the bulk materials as a function

of temperature. Those results support the conclusion that phonon scattering in the bulk

materials is responsible for the increase in conductance at high temperatures.

This work was carried out in both one-dimensional systems for simplicity of modeling and

in three-dimensional systems for transferability to applications. The insight into interfacial

conductance at high temperatures contributes to a long-standing discussion in the field of

nanoscale thermal transport. In terms of practical applications, these results will improve

the ability to predict and possibly manipulate the interfacial conductance of high-quality

interfaces in devices at typical operating temperatures. The understanding of ideal interfaces

also helps to lay the foundation necessary for future refinements of models for imperfect

interfaces.
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Chapter 1

Introduction

The ideas of the most well-informed philosophers are as yet uncertain regarding
the exact nature of the motion of heat; but the great point, at present, is to
regard it as motion of some kind, leaving its more precise character to be dealt
with in future investigations.

— John Tyndall, Heat: A Mode of Motion, 1868 [1]

Let us introduce heat transfer at solid/solid interfaces by seeing the problem in a real

technology: GaN-based transistors. GaN-based devices are attractive for applications that

demand high power at high frequencies, such as base stations for cellular telephone networks

and military radar [2, 3]. In this application, engineers seek materials with a wide bandgap

and a high electron mobility, both of which GaN exhibits. Table 1.1 lists the relevant

properties of GaN along with those of Si and SiC for comparison. Unfortunately, despite its

desirable electronic properties, GaN has a low thermal conductivity, so thermal dissipation

is a challenge. In fact, prevailing designs of GaN-based devices require the use of a SiC

substrate, despite its higher cost than Si, because of its higher thermal conductivity [3].

1.1 Why thermal conductance at interfaces?

Figure 1.1a shows a typical structure of an AlGaN/GaN transistor. During normal device

operation, moving electrons lose their kinetic energy into the atomic lattice, dissipating

1
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Table 1.1: Properties of Semiconductors Used in Radio-Frequency Devices [3]

Material Bandgap
(eV)

Mobility
(cm2V−1 s−1)

Thermal conductivity
(Wm−1K−1)

Si 1.1 1350 150
4H-SiC 3.3 700 330–450
GaN 3.4 1200–2000 130

(a) (b)

Figure 1.1: (a) The layout of a GaN-based high-power transistor, and (b) the temperature
profile measured in a device during operation. Reproduced with permission from Ref. [4],
c© 2007 IEEE.

thermal energy in the region labeled “Heater.” The thermal energy then diffuses downward

through the structure to the heat sink (not shown) on the far side of the substrate. As it

travels this path, the dissipated thermal energy encounters various resistances that determine

the temperature rise in the device.

Sarua et al. [4] used Raman thermography to measure the temperature profiles during

live operation of three such transistors, one of which is shown on the right side of Fig. 1.1b.

The peak temperature in the device occurs in the active region, roughly 210 ◦C above the

ambient (room) temperature. Of that temperature rise, 30–40% is due to the resistance of

the GaN/SiC interface, 40–50% is due to the SiC substrate, and the rest made up by the heat

sink. From the perspective of a thermal engineer, the 30 nm interface is nearly as problematic
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as the entire 300µm substrate. To make matters worse, the GaN/SiC interface resistance can

vary wildly, indicating that it is extremely sensitive to interface quality. In a nearly identical

device, Kuzmík et al. [5] measured a GaN/SiC interface resistance roughly four times larger

than measured by Sarua et al., and they determined that it was responsible for 65% of the

temperature rise in their device. Decreasing the interface resistance would therefore allow

operation at significantly higher power and lower temperature, meaning greater performance

and longer time to failure.

How could one reduce the GaN/SiC interface resistance? To answer this question requires

an understanding of the causes of that resistance. Since both materials are non-metallic,

thermal energy propagates through them via the vibrational motion of their constituent

atoms. Thus, the cause for thermal resistance is conceptually simple: any interruption to the

“ideal” propagation of vibrational motion of these atoms. Such interruptions occur both at

interfaces and in the bulk materials themselves. At the GaN/SiC interface, the propagation

of atomic vibrations is interrupted by the abrupt change of material properties, analogous to

an electromagnetic wave encountering a change in refractive index. Other phenomena can

cause interruptions as well: impurities, dislocations, strain, and even the passing motion of

other propagating vibrations. Unfortunately, researchers have only attained a qualitative

understanding of the effects of these mechanisms at interfaces. It has therefore proven

extremely difficult to measure their relative importance in even a single material system, let

alone to formulate a theory applicable to interfaces in general.

This problem motivates the work presented in this dissertation, and it appears in many

technologies besides GaN-based transistors. In some technologies, better thermal dissipation

leads to increased performance, in which case interface resistances are detrimental: examples

include microprocessors [6] and semiconductor lasers [7], in addition to the high-power devices

already discussed. Other technologies have better performance when heat flow is confined,

in which case engineers can use interfacial resistance as a useful feature: these include

thermoelectrics [8] and phase change memory [9]. Still other technologies contain both kinds
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of problems: in heat-assisted magnetic recording, for example, engineers need to increase

thermal dissipation from the near-field optical transducer, and they need to confine thermal

dissipation laterally in the recording medium [10]. To maximize the usefulness of the present

work, in the next section I frame this problem of heat transfer at interfaces in a general way.

1.2 Defining interfacial thermal conductance

Consider heat flowing between two solid materials in contact: a steady heat current Q̇ (in W),

perhaps from Joule heating or a laser interaction, across a cross-sectional area A (in m2)

causes the system to develop a non-uniform temperature profile T (x, y, z) (in K). In bulk

materials, the temperature profile is often found to fall linearly with distance, which enables

the definition of a constant thermal conductivity in Fourier’s empirical law: Q̇/A = −κ∇T .

At interfaces, the temperature profile may exhibit an abrupt discontinuity ∆T , which leads

to an analogous definition of the thermal conductance, h, at the interface: Q̇/A = h∆T . In

this work, for ease of comparison, values of h in 3D systems will generally be reported in

units of MWm−2K−1. The relationships between these various quantities are sketched in

Fig. 1.2. In this work, I will primarily refer to interfacial conductance, but occasionally I

find it more clear to discuss interfacial resistance, which is simply its inverse: R = h−1. Both

quantities are used pervasively in the literature.

In macroscopic systems, a temperature drop often appears due to imperfect contact

between the two surfaces. In other words, the true contact area between the two solids is

much smaller than the apparent contact area, reducing the interatomic interactions by which

heat can conduct directly. As interface quality improves, this contact conductance increases.

However, the conductance does not increase indefinitely: even materials in “perfect” contact

retain a large, but finite, thermal conductance between them. The present work investigates

the thermal conductance between materials in perfect contact only. All of the technologies

mentioned in Section 1.1 feature these types of interfaces.
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Material 1 Material 2

T

z

1= − 1

1 2

Q added Q removed

Q
A

Q
A

= h ∆T

dT
dz

k

L L

Figure 1.2: A sketch of the temperature distribution resulting from a steady heat current
through an interface between two materials. The thermal conductance, h, is the amount of
heat flux that can dissipate through an interface per degree of temperature difference.

In many applications, the distances L between interfaces are long, and the temperature

drops at interfaces are negligible compared to those in the bulk materials. In those cases,

attention should be focused on engineering the thermal properties of the bulk materials.

However, in many modern devices, the distances between interfaces can be extremely short

(tens of nm), and interfacial conductances become the dominant bottleneck. This can be seen

in Fig. 1.2, where shrinking the lengths L1 and L2 would increase the relative importance of

the temperature drop ∆T at the interface compared to the bulk materials. For context, a

carefully-grown aluminum/silicon interface has a conductance of roughly 350 MWm−2 K−1at

room temperature [11]. This is the same as the conductance of a thin film of silicon dioxide

roughly 10 nm thick [12]. Such a conductance is too large to present a bottleneck in a

macroscopic system, but it has a tremendous effect in nanoscale devices. For example, the

semiconductor industry is currently manufacturing devices with features at a half-pitch

of 14 nm. At these scales, a resistance equivalent to 10 nm of SiO2 cannot be ignored.

Unfortunately, despite over seventy years of research, our understanding of thermal transport

at interfaces remains mostly qualitative.
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1.3 Review of the literature

The first suggestion that thermal conductance can be finite even between materials in perfect

contact came from P. L. Kapitza’s experiments in 1941 with superfluid helium and copper [13].

For scale, he measured conductances on the order of h ∼ 10−3 MWm−2K−1. The “Kapitza

conductance” came to refer to the conductance between liquid helium and a solid. Researchers

soon realized, though, that a finite thermal conductance occurs at interfaces between solids

as well, with the same underlying physical mechanism. Therefore, researchers use the name

Kapitza conductance in discussions of both solid/liquid and solid/solid interfaces. Other

common names are thermal boundary conductance and interfacial thermal conductance. In

this work, I choose the latter name because (1) the name “Kapitza” lacks physical description

and (2) the term “boundary” is also used in the context of apparent thermal resistance due

to size effects (as in “boundary scattering”).

At room temperature, h at solid/solid interfaces is found empirically to be roughly 101–

103 MWm−2 K−1 if at least one of the materials is non-metallic [12].1 In this section, I survey

the experimental, theoretical, and computational investigations of phonon-mediated thermal

conductance from Kapitza’s work to the present. The discussion here is largely qualitative;

Chapter 2 contains a more quantitative discussion.

1.3.1 Early low-temperature research: 1941–1980s

The research immediately following Kapitza’s observations remained focused on the conduc-

tance between a solid and liquid He, but it formed the basis for later investigations of the

conductance between solids. Researchers developed several theories to explain Kapitza’s

observations, some explaining the resistance as a consequence of the unique properties of

liquid He. However, Khalatnikov suggested a more general explanation in 1952, known now as

the “acoustic mismatch model” (AMM): that the heat is primarily carried by acoustic waves

1The conductance between metals is significantly higher: 103–104 MWm−2 K−1. The understanding of
metal/metal conductance falls outside the scope of this work.
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(i.e., long-wavelength phonons), whose specular refraction at the metal/liquid He interface

explains the thermal resistance [14]. Experiments vindicated the AMM, at least at extremely

low temperatures (below ∼ 10−1 K). At higher temperatures, however, the data diverged

from the model, generally exceeding it by an order of magnitude when temperature increases

to just T ∼ 2K [15, 16].

The interest in phonon scattering at solid/solid interfaces followed gradually, and at first

only as a byproduct of low-temperature research on superfluidity and superconductivity. For

example, in the 1950s, Hulm [17] and Goodman [18] reported significant thermal resistance

due to phonon scattering at solid/solid boundaries while comparing the thermal conductivities

of metals in superconducting and normal states. In 1959, Little adapted Khalatnikov’s AMM

for solid/liquid He conductance to apply to solid/solid conductance [19]. To my knowledge,

the first direct experimental test of the AMM between solids was reported by Neeper and

Dillinger [20] in 1964. They measured conductances at In/sapphire interfaces at T = 1.1 to

2.1 K in agreement with the theory, at least within the considerable uncertainty arising

from the sound speeds in indium. Focused research on solid/solid conductance began in the

1970s, still remaining at low temperatures. Folinsbee and Anderson showed that the “excess”

conductance beyond the AMM at metal/liquid He interfaces also occurs at metal/solid -He

interfaces [21]. Anderson and coworkers also measured the thermal conductance between

Mylar and various metals at T = 0.04 to 1.0 K [22–24], which also significantly exceeded the

AMM, suggesting that the “Kapitza anomaly” is not unique to interfaces involving either

liquid or solid helium.

In addition to the experimental and theoretical work to this point, a report by Lump-

kin et al. [25] in 1978 was, to my knowledge, the first use of molecular dynamics (MD) simu-

lation to calculate thermal conductance at an interface. They simulated a one-dimensional

chain of atoms with harmonic forces, using the non-equilibrium method described in Chap-

ter 3. In keeping with the research interests of the time, the simulations were conducted at

T ≈ 2K. Due to computational constraints, they simulated chains of only 30 atoms. The
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calculated values of h agreed only within an order of magnitude with the AMM (in the

classical limit) and with a flux-corrected model following a suggestion by Simons [26]. In

retrospect, I believe that the discrepancy arises largely from artifacts of the non-equilibrium

simulation method, as discussed in Section 5.5, which are pronounced at low T and small

system sizes. The authors also observed that the simulated conductances were much smaller

than experimental measurements. They hypothesized that anharmonicity was responsible,

and they showed results of preliminary simulations in which anharmonicity did increase the

simulated conductance. However, the magnitude of the increase was too small to agree with

experiments. A decade later, in 1989, Ge et al. reported similar results in MD simulations of

100-atom chains [27].

Given the success of the AMM up to T ∼ 10−1K, researchers sought corrections to the

model that would improve its accuracy at higher temperatures as well. In retrospect, I classify

the suggested corrections into three different categories, each incorporating a different type

of physical phenomenon:

1. that the transmission coefficient should account for phonon “attenuation”—i.e., ther-

malization by scattering—in some small region in the bulk materials near the interface,

especially by electrons [22, 23];

2. that the distribution of phonons should account for the non-equilibrium induced by a

heat current, as a correction to the usual assumption of an equilibrium (Bose–Einstein)

distribution [26]; and

3. that the transmission coefficient should account for inelastic phonon transmission (i.e.,

processes not preserving frequency) enabled by anharmonicity of atomic forces [28, 29].

Among these, the first correction seems most widely accepted, and it satisfactorily explained

the “Kapitza anomaly” at temperatures up to 1–2 K, which sufficed for the low-temperature

physics applications that motivated the research at the time. The second correction was

accepted as an alternate framing of the same physical situation; Katerberg et al. [30] showed
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that the choice between Little’s or Simons’ model should depend on how temperature is

sampled from the phonon population in a given experiment. Finally, the third correction

seemed to explain anomalous transmission in experiments with monochromatic phonon

sources [31, 32], but it was not shown to quantitatively explain the anomalous conductance

under a thermal phonon source. Remarkably, although these three mechanisms were suggested

to correct the AMM to describe low temperatures, they are quite similar to corrections that

have been suggested for its successor at high temperatures: the diffuse mismatch model.

1.3.2 Extension to higher temperatures: 1980s–2000s

By the late 1980s, the microelectronics industry had managed to shrink feature sizes to

roughly 1µm [33], motivating exploratory research into solid/solid thermal conductance at

the operating temperatures of integrated circuits—hundreds of K, compared to previous

research at < 2K.

The transition to higher temperatures began in earnest with two seminal papers in

terms of both experimentation and theory by Swartz and Pohl. In 1987 [34], they reported

measurements of h(T ) over T = 1 to 300 K at the interface between a Rh99.5Fe0.05 wire

“thermometer” and a sapphire substrate, including a thin oxide (SiO2) interlayer. The

measured values of h(T ) agreed with the AMM at temperatures up to tens of K. However,

upon reaching room temperature, they measured h ∼ 100 MWm−2K−1, which is several

times smaller than the AMM prediction. They reasoned that, at high temperatures, thermal

energy propagated in shorter-wavelength modes (see Section 2.2.2) that scatter diffusely, not

specularly as assumed in the AMM. They therefore proposed the diffuse mismatch model

(DMM) in which phonons scatter completely diffusely. However, the measurements were

still much lower than the DMM prediction, and they attributed the low measured values to

the intermediate oxide layer. The actual details of the DMM are given in their extensive

1989 review article [35], which presents it alongside the AMM and compares the models in a

thorough account of the research into both solid/liquid He and solid/solid conductance.
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Around the same time, Maris and coworkers also developed both theoretical and exper-

imental methods to investigate conductance at higher temperatures. In terms of theory,

previous models had generally used the Debye model (see Section 2.2.1), which accurately

describes only very low-frequency phonons and therefore is a poor approximation at higher

temperatures (see Section 2.2.2). Therefore, in 1989, Young and Maris [36] proposed a

numerical method of calculating h(T ) using harmonic lattice dynamics calculations of an

interface between two atomic lattices. Their calculations are conceptually akin to the AMM

in their assumption that phonons transmit specularly at the interface. However, unlike

previous calculations using the AMM, their calculations account for full phonon dispersion

and account exactly for the refraction and mode conversion of vibrational waves between

three-dimensional, discrete atomic lattices. In the following year, Pettersson and Mahan

extended the model to apply to materials with different lattices [37].

To provide experimental comparison, Stoner and Maris [38, 39] developed an optical

pump–probe technique to measure h(T ) of several interfaces. They selected interfaces to

span a wider range of vibrational mismatch than previously measured, from Ti/sapphire

to Pb/diamond—i.e., in terms of ratios of Debye temperature TD, from ∼ 2.4 to 22.0 [40].

The measured conductances ranged from h ∼ 30 to 200 MWm−2K−1 at room temperature.

Their primary observation was that, for the well-matched interfaces, their AMM-like “lattice

dynamical” calculations predict the experimental data relatively well, within a factor of 2

or better. However, for the poorly-matched interfaces, the measurements are vastly greater

than the prediction. In the most severe case of the Pb/diamond interface, they measured a

conductance value of h ∼ 30 MWm−2K−1 at room temperature, which was 10 times higher

than the DMM prediction of h ∼ 2 MWm−2K−1 and 100 times higher than their specular

model’s prediction of h ∼ 0.35MWm−2K−1.

In the two decades since the reports by Swartz and Pohl and by Stoner and Maris, further

experimental results have generally supported their findings. Even with necessary corrections

for phonon dispersion [41, 42], the AMM and the DMM variously under- and over-predict
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experimental measurements at room temperature by an order of magnitude or more. Some

researchers [43, 44] have argued that the assumptions of completely diffuse and completely

specular scattering are unrealistic, and they have used a specularity parameter to “interpolate”

between the AMM and DMM. Unfortunately, many of the experimental measurements lie

outside of the range bounded by the two models, implying that other effects must also be

important. The lack of consistency also suggests that more than one mechanism is responsible

for the scatter in experimental data. In the following two sections, I discuss separately the

prevailing models for mechanisms that may reduce (Section 1.3.3) or increase (Section 1.3.4)

the conductance at a given interface.

1.3.3 Mechanisms for reduced conductance

A survey of the experimental literature shows that most measured values of thermal conduc-

tance are lower than the DMM would predict for the interface: see Refs. [4, 5, 34, 45–58].

Current consensus is that these low conductances are caused by various non-idealities at

the interface, such as roughness, impurities, dislocations, and so on. Since these features

are spatially localized, they selectively scatter high-frequency phonons, which explains why

the AMM is accurate at low temperature where those modes are not yet occupied (see

Section 2.2.2). Prasher and Phelan [59] suggested accounting for these non-idealities by

modifying the AMM to include phonon attenuation at the interface, which they applied to

explain the low conductances measured in Refs. [34] and [45]. Hopkins and coworkers have

also modified the DMM to include a similar attenuation effect, which they used successfully to

model the reduction in thermal conductance due to dislocations at semicoherent interfaces [55]

and due to controlled geometric roughening without interdiffusion of the materials [56, 57].

To model interfaces with significant interdiffusion, Beechem et al. [60, 61] modified the DMM

to include scattering in a virtual crystal of equivalent thickness to the interdiffused region,

which drastically improved the predicted conductance at Al/Cr interfaces [51, 54].
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Although these models for reduced conductance have been relatively successful, there

is still reason to be uncertain in their predictive power, since their underlying assumptions

have yet to be carefully tested. Given the difficulty of testing the phonon scattering models

experimentally, there have been several efforts to test them in MD simulations. For example, a

series of investigations has tested the connection between conductance and phonon scattering

at high-energy grain boundaries in silicon [62–64]. They showed that (1) the measured

phonon transmissivities do qualitatively depend on the interfacial disorder as presumed by

the phenomenological models, but that (2) even with knowledge of the precisely correct

transmissivities, the prevailing model for conductance predicts a value that differs from

the “computational measurement” by 50%. Other MD simulations appear to contradict the

presumptions of the models outright. For example, Zhou et al. [65] and Merabia et al. [66]

both reported that, as the geometric roughness of their simulated interfaces increased, the

conductance actually increased, which they attributed to the greater surface area between

the two materials. In order to obtain a conductance model with predictive power in thermal

engineering applications, these questions must be resolved.

1.3.4 Mechanisms for increased conductance

On the other hand, there are relatively few measurements of conductance that exceed the

DMM [38, 39, 50, 67, 68]. However, despite uncommon observation, this phenomenon has

drawn as much theoretical attention as the cases of decreased conductance. In 2006, Lyeo

and Cahill corroborated the findings of Stoner and Maris at highly mismatched Pb/diamond

and Bi/diamond interfaces [67], albeit observing a stronger increasing trend in h(T ). Very

recently, Hohensee et al. [68] have investigated this excess conductance as a function of pressure

at several other metal/diamond interfaces, corroborating the findings for Pb/diamond and

finding an even larger excess for Pt/diamond. Empirically, interfaces that exhibit conductance

higher than the models have been highly vibrationally mismatched, with ratios of Debye

temperatures greater than five. However, Duda and Hopkins [57] have pointed out an
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exception: the measurement by Minnich et al. [11] of an Al/Si interface that had been

prepared carefully to remove the usual oxide layer. The conductance exceeds the DMM by

∼ 40%, despite a Debye temperature ratio of only about 1.6 [40].

To explain the excess conductance, researchers have proposed several models that account

for roughly the same three types of phenomena as the models proposed to explain the “Kapitza

anomaly” at low temperatures:

1. energy coupling between phonons and electrons [69–72];

2. non-equilibrium phonon distributions [26, 73–75]; and

3. inelastic phonon processes [76–81].

The number of plausible models relying on such disparate physical phenomena speaks both

to the inherent complexity of the problem and to our own lack of understanding. Researchers

have devoted much effort to identifying whether one of the phenomena on this list might

explain most of the excess conductance.

1. In analyzing their experimental work, Stoner and Maris [39] considered the possibility

that the excess conductance is explained by electron–phonon coupling that provides

extra energy transmission channels not modeled in the DMM. However, they found

an excess conductance by an order of magnitude at both interfaces of Pb/diamond

and Pb/Bi/diamond, despite the Bi interlayer having a much smaller electron density.

Lyeo and Cahill [67] saw the same effect when comparing Pb/diamond and Bi/diamond

interfaces. They concluded that any electronic contribution is therefore unlikely to

be the dominant cause. In addition, similar conductance trends have been observed

in MD simulations that contain no electronic behavior [75, 82], suggesting that the

explanation could be entirely phononic. Experimental measurement of an interface

between poorly-matched non-metals could address this question directly. Unfortunately,

I am aware of no such direct measurement at an isolated interfaces, since the primary
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techniques for measuring conductance in systems with these small dimensions require a

metallic film. In summary, the importance of electron–phonon energy transmission is

likely to be small, but the question is not completely resolved.

2. The thermal conductance at an interface also depends on the phonon distribution,

which in a transport scenario is not at equilibrium, contrary to the assumptions of the

AMM and DMM. Two different causes of non-equilibrium are potentially important.

The first cause is a non-zero heat current, as analyzed theoretically by Simons [26]

and Chen [73]. The importance of this correction is unclear: in comparisons with

MD simulations, Aubry et al. [74] concluded that the correction is important, while

Landry and McGaughey [75] did not. The second potential cause of non-equilibrium is

the boundary condition at the interface caused by the mode-dependent transmissivity.

Landry and McGaughey hypothesized that this might better explain their simulation

results. This idea is potentially supported by the recent MD results of Wu and

Luo [83] and of Murakami et al. [84], which suggest a large contribution connected to

thermalization in the bulk material near the interface.

3. References [39] and [67] both suggested inelastic transmission as the most likely expla-

nation for their experimental results. Several models have been proposed that account

for inelastic processes [76–81], each using a different phenomenological model for the

details of the inelastic processes. See Section 2.4 for details on calculations. The models

show somewhat improved agreement with experimental and simulated results, but

all roughly at the same level, so their relative validity cannot be assessed. Recent

MD simulations [85] have shown, however, that the dominant inelastic channels are

frequency-halving and frequency-doubling, which lends particular support to the model

proposed in Ref. [78].

In summary, many theories have been proposed to explain the anomalously high conduc-

tance at poorly-matched interfaces, but it has proven extremely difficult to evaluate their
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validity. Among them, theories involving inelastic phonon processes are most promising, but

they still require much development before they are useful as predictive models.

1.4 Overview of this work

The objective of this work is to advance the understanding of the thermal conductance

between solids at high temperature. Given the context of Section 1.3, this means seeking an

explanation the large discrepancy between experimental measurements and the AMM and

DMM. In particular, I focus on understanding the mechanisms that can cause conductance

to exceed those models by an order of magnitude. The rest of this document is organized as

follows.

• Chapter 2: Theory and Methods. I outline the theory of thermal transport in

non-metals, with a focus on predicting the thermal conductance at an ideal interface

between perfectly crystalline solids. In doing so, I also describe the tools I use to

perform calculations within this theory: molecular dynamics simulations, lattice dy-

namics calculations, the Boltzmann transport equation, and the models for thermal

conductance.

• Chapter 3: Effects of Anharmonicity on Thermal Conductance. I use the

non-equilibrium molecular dynamics method to determine the thermal conductance as

a function of temperature, h(T ). By varying the interatomic anharmonicity in different

regions of the simulation domain, I control the inelastic processes in the system and

observe their effect on h(T ).

• Chapter 4: Effects of Anharmonicity on Phonon Transmission. I use the wave

packet method to determine the transmission of individual normal modes/phonons as a

function of their frequency, α(ω). I vary the interatomic anharmonicity and quantify

the effect on inelastic processes at the interface.
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• Chapter 5: Effects of Anharmonicity on Phonon Distribution. I use the

wavelet transform to determine the energy distribution among normal modes during the

non-equilibrium simulations of Chapter 3. I vary the interatomic anharmonicity and

quantify the deviation of the energy distribution from equilibrium. To help interpret

those results, I also use normal mode decomposition to determine the mean free paths

of energy in those normal modes.

• Chapter 6: Impact on Models of Thermal Conductance. I use the observations

of Chapters 3–5 to evaluate the various assumptions of the theories for thermal conduc-

tance described in Chapters 1 and 2. Based on these results, I identify inelastic processes

in the vicinity of the interface, rather than inelastic transmission across the interface,

as the most likely cause for the anomalously high conductance at high temperatures.

• Chapter 7: Conclusions. I summarize the major findings of this dissertation. In

light of those findings, I propose new avenues for investigation.



Chapter 2

Theory and Methods

In this chapter, I outline two complementary perspectives for modeling the physical phenomena

encountered in the applications described in Chapter 1. Perspective I tracks a given system

using its atomic coordinates (Section 2.1), which is conceptually simple and works for a

wide variety of systems. However, energy moves rapidly among the atomic coordinates,

which necessitates computations on a timescale of fs. This is the approach of molecular

dynamics. Perspective II tracks a system using its normal mode coordinates, which can

be obtained by transformation from the atomic coordinates and are more convenient for

modeling transport (Section 2.2). Energy moves among the normal mode coordinates in a

fashion amenable to modeling by the Boltzmann transport equation, which has led to mature

models for predicting thermal conductivity (Section 2.3). At interfaces, analogous models

exist for predicting conductance, but have not yet achieved comparable success (Section 2.4).

Finally, I outline the systems investigated in this work, which are designed to test those

theories of interfacial phonon transport (Section 2.5).

2.1 Perspective I: Atomic coordinates

In the classical atomistic picture, one can model any body of material as a collection of

N point masses interacting in a d-dimensional space, where d = 1, 2, or 3. To completely

17
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describe the solid therefore requires, at any given moment in time, a list of N positions ri

and a list of N velocities ṙi, making a total of 2d×N scalars. The coordinates of each atom

i evolve in time according to Newton’s equation of motion,

mir̈i(t) = Fi(r1, r2, . . . , rN , t). (2.1)

Fi is the total force on the atom, which is itself a function of various atomic positions but

typically not their velocities. To model any particular system—solids, liquids, gases, or a

combination of them—one supplies the following information:

• the mass mi of each atom;

• two initial conditions ri(tinitial) and ṙi(tinitial) for each atom, since Eq. 2.1 is second-order

in time; and

• the manner in which atoms exert forces on each other.

Many options exist for specifying the forces. In reality, those forces arise largely due to

the interactions of the electrons surrounding the atomic nuclei, which this model cannot

describe. If fidelity to a particular physical system is paramount, one can use a technique

based on quantum mechanics to calculate those forces, such as density functional theory [86].

Otherwise, one can approximate the “true” forces by specifying one or more interatomic

potential functions Un(r1, r2, . . . , rm) accounting for m-body interactions, from which the

system potential energy is

EP =
∑

n

∑

i,j,...,m

Un(ri, rj, . . . , rm).

Common examples are the Lennard-Jones potential for the noble gases (m = 2) [87] and the

Stillinger–Weber potential for tetrahedrally-coordinated solids (m = 3) [88]. The force on

each atom is then
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Fi = −∇iE
P.

Multiple potential functions Un may be used in the same simulation to model different

types of forces; for example, metallic and covalent interactions in a simulation of a Cu/Si

interface [89].

In principle, these rules suffice to fully describe the system.1 Macroscopic quantities can

be calculated as functions of the basic atomic coordinates. For example, the temperature of

a system in thermal equilibrium is given by the equipartition theorem:

T =
1

d kB

1

N

∑

i

mi〈v2i (t)〉, (2.2)

where 〈v(t)〉 is the temporal average of v(t). The pressure of a system is [90]

P = −
(
dE

dV

)

S

=
NkBT

V
+

1

dV

〈
N∑

i

ri · Fi

〉
, (2.3)

where V is the volume of the system.2 Phononic properties, of particular interest in this work,

can also be calculated directly from the atomic coordinates by various methods. I provide

the details of those methods in the chapters in which I present the corresponding results.

2.1.1 Molecular dynamics

A molecular dynamics (MD) simulation is simply the implementation of the classical atomistic

model in a computer program. For a thorough introduction to the practical implementation

of MD, I recommend the book by Frenkel and Smit [90]. Here I discuss only general aspects

1In this work, all systems are closed: the number of atoms, system volume, and total energy are fixed
(constant NVE ). Modifications can be made to model systems under different conditions (e.g., NVT or NPT ),
but they are not used in this work.

2Calculating pressure in MD simulation has some practical caveats; e.g., Frenkel and Smit [90] discuss the
effects of truncated and shifted potentials (F&S Section 3.2.2) and of choice of ensemble (F&S Section 4.5),
and Louwerse and Baerends [91] discuss a correction for potentials with m > 2 under periodic boundary
conditions.
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of MD. For details on the particular simulation settings used in this work, see Section 2.5.

For details on the actual code used, see Appendix A.

The scalar values corresponding to the per-atom variables ri,α and ṙi,α, where α indexes

the d vector components, are stored in memory as arrays of size N×d. The simulation-specific

information—mi, (ri,α(tinitial), ṙi,α(tinitial)), and Un—are specified by input from the user and

stored in appropriate arrays as well. To integrate the equations of motion numerically in

time—that is, to obtain (ri(t + ∆t), ṙi(t + ∆t)) based on knowledge of (ri(t), ṙi(t))—the

code uses the velocity Verlet algorithm, which is described in Section 4.3.1 of Ref. [90]. The

algorithm is simple but robust: it is accurate to second order in the timestep ∆t, is reversible

in time, and exhibits little long-term energy drift. To select a timestep that preserves energy,

the user determine the highest characteristic frequencies of motion fmax based on the masses

and forces in the system and choose ∆t ∼ 10−2f−1max. The simulation then uses the integration

scheme to evolve the system state one timestep at a time, until the simulation finishes.

In principle, this describes a fully functional MD program. To perform a particular

“computational experiment” is then quite similar in concept to performing a real experiment.

To paraphrase Frenkel and Smit, one needs to

1. prepare a sample: atomic masses, initial conditions, and potential functions;

2. control its environment: apply any system constraints such as temperature or pressure;

3. attach an instrument: e.g., a thermometer (Eq. 2.2) or barometer (Eq. 2.3);

4. process the resulting data.

As a final note, the largest computational expense is typically in the calculation of

interatomic forces, which is necessary to integrate the equations of motion. If a system

includes only two-body potentials (as in this work), a näıve algorithm that loops over all

atoms i and then over potential neighbors j 6= i requires computations of order O(N2).

However, the use of neighbor lists (or “Verlet lists”) and/or cell lists reduces the cost to O(N).

For further details, see Appendix A of this document and Appendix C of Ref. [90].
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2.2 Perspective II: Normal mode coordinates

The atomistic perspective is conceptually straightforward, but it is sometimes not the most

effective picture for modeling energy transport. One reason is the difficulty in accounting

for the divergence from classical behavior at low temperatures due to quantum mechanics

(Section 2.2.2). A second, related reason is that the equations of motion are strongly coupled

when written in terms of the atomic coordinates. While the system kinetic energy, EK, can

be written as a sum of terms that each contain exactly one coordinate (specified per atom i

and component α = x, y, z),

EK =
∑

i

1

2
mi|ṙi|2 =

∑

i

∑

α

EK
i,α(ṙi,α), (2.4)

the system potential energy, EP, cannot:

EP =
∑

i,j,...

U(ri, rj, . . .) 6=
∑

i

∑

α

EP
i,α(ri,α) (2.5)

As a consequence, each of the d × N equations of motion contains coordinates of several

different indices (i, α); i.e., they are coupled.3 Given the complete set of coordinates ri

at any given moment, calculations are required on a rapid timescale (10−16–10−15 s) to

accurately determine the future trajectory of the system. Those calculations correspond to

the computatonal cost of the MD method.

This suggests seeking a change of coordinates ri,α → ξq,ν such that the system energy can

then be written as a sum of decoupled terms, each of which contains only one coordinate ξq,ν

or its time derivative:

3One can see this directly, for example, by applying the Hamiltonian formulation of mechanics to obtain
the equations of motion from derivatives of the total system energy.
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EK =
∑

q

∑

ν

EK
q,ν(ξ̇q,ν) and (2.6)

EP =
∑

q

∑

ν

EP
q,ν(ξq,ν). (2.7)

Such a coordinate system is not guaranteed to exist, but if the transformation is possible, then

the d×N equations of motion governing those coordinates would be completely decoupled.

In other words, knowledge of ξq,ν(tinitial) and ξ̇q,ν(tinitial) at a single moment tinitial affords

exact knowledge of ξq,ν(t) and ξ̇q,ν(t) forever, without needing to know the behavior of any

other mode (q′, ν ′). Even if one obtains coordinates that are only nearly decoupled (see

Section 2.3.2), calculations can be done on a much longer timescale than with the strongly

coupled atomic coordinates.

Fortunately, such coordinate systems do exist in special cases. One such case is the simple

but powerful model for crystalline solids described by Born and von Kármán in 1912 [92]. In

this model, the boundaries of the d-dimensional domain are periodic; i.e., atomic positions

satisfy ri,α = ri,α ± Lα, where Lα is the length of the simulation domain in the α direction.

The domain is filled with a perfectly crystalline arrangement of N atoms, which interact with

their neighbors via a harmonic potential

U(ri, rj) =
1

2
k(|rj − ri| −∆req)

2. (2.8)

Each atom has some equilibrium position req,i at which ∇iE
P = 0. To take advantage of

periodicity, each of the N atoms is re-indexed as the jth basis atom in the lth unit cell in the

crystal. In this case, there does exist a coordinate system that satisfies Eqs. 2.6 and 2.7, and

those coordinates can be obtained from the atomic coordinates according to [93]
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ξq,ν(t) =
1√
N

∑

j,l

√
mj exp (−iq · req) e∗q,ν,j · [rj,l(t)− req,j,l] . (2.9)

These are commonly called “normal mode coordinates”, since one interprets the values4 of

(ξq,ν(t), ξ̇q,ν(t)) as the collective displacement and collective velocity of atoms in a spatial

pattern corresponding to the normal mode (q, ν). In crystalline systems, that spatial pattern

is described by a plane wave of wavevector q and polarization vectors eq,ν,j, one vector for

each basis atom j. The wavevector prescribes the relative motion of the unit cells in the

crystal, while the polarization vectors prescribe the relative motion of the basis atoms within

each unit cell. I use the convention that the wavevector is defined as

q =
∑

α

2π

λα
~α (2.10)

in terms of wavelengths λα projected along Cartesian unit vectors ~α.

The equations of motion governing the coordinates ξq,ν(t) can be derived from Newton’s

equations for the atomic coordinates (Eq. 2.1), using Eq. 2.8 to define the interatomic forces.

The result is a system of d×N equations that are completely decoupled, each one governing

the evolution of a separate normal mode (q, ν):

ξ̈q,ν = −ω2
q,νξq,ν , (2.11)

where ωq,ν is the natural angular frequency of the mode. In order to use Eqs. 2.9 and 2.11, one

must identify the wavevector q, polarization vector eq,ν,j, and frequency ωq,ν corresponding

to each of the d×N normal modes (q, ν).

4Note that the coordinates are complex-valued, and their complex phase stores the information regarding
the relative phase of the vibrational motion.
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Now, the total system energy is a sum of terms that each depend on exactly one coordinate,

E =
∑

q,ν

1

2
|ξ̇q,ν |2 +

∑

q,ν

1

2
ω2
q,ν |ξq,ν |2, (2.12)

which satisfies Eqs. 2.6 and 2.7. The velocity at which energy propagates in each mode is given

by its group velocity, vq,ν , which can be calculated from the frequency surface corresponding

to the polarization of that mode:

vq,ν = ∇qωq,ν . (2.13)

The problem, now, is how to actually identify those special wavevectors and polarization

vectors that can be substituted into Eq. 2.9 to successfully transform the atomic equations of

motion, Eq. 2.1, into the decoupled equations of motion, Eq. 2.11.

2.2.1 Lattice dynamics

The process of identifying the list of normal modes, the polarization vectors eq,ν,j, and the

frequencies ωq,ν is called a lattice dynamics calculation. A general algorithm to solve this

problem becomes clear if one writes each system of equations as a matrix equation. For

example, Eq. 2.1 for a monatomic 1D chain with nearest-neighbor interactions would look like

m




...

r̈i−1

r̈i

r̈i+1

...




=




. . . k

k −2k k

k −2k k

k −2k k

k
. . .







...

ri−1

ri

ri+1

...




, (2.14)
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while we seek Eq. 2.11 of the form




...

ξ̈q,ν−1

ξ̈q,ν

ξ̈q,ν+1

...




=




. . .

−ω2
q,ν−1

−ω2
q,ν

−ω2
q,ν+1

. . .







...

ξq,ν−1

ξq,ν

ξq,ν+1

...




. (2.15)

The transformation is therefore equivalent to diagonalizing the matrix in Eq. 2.14. A more

complex system than the 1D chain would lead to more entries in the matrix, but as long

as it is diagonalizable, the same method applies. This is the general approach of practical

lattice dynamics calculations. Each eigenvalue of the matrix in Eq. 2.15 provides a normal

mode frequency, and the associated eigenvector performs the same transformation written in

Eq. 2.9, thereby providing the wavevector q and polarization eq,ν for that normal mode.

We therefore have the machinery to take any crystalline material and identify a list

of coordinates ξq,ν and their associated properties q, eq,ν , and ωq,ν . Fortunately, this is a

sufficiently common task that software is already available to perform these calculations

efficiently. In this work, I use the program GULP [94], which is freely available for academic

researchers, to calculate the normal modes in the Ar-like materials simulated in this work.

The frequencies of normal modes with q along 〈100〉 directions, for example, are plotted as

blue lines in Fig. 2.1a. The dispersion relations along these high-symmetry directions can

also be calculated analytically [93] as

ων(q) =

√
4kν
m

sin
(qa

4

)
, (2.16)

where kν is an effective “interplanar” force constant that depends on polarization. For the

〈100〉 directions, the interplanar force constants for longitudinal and transverse waves are

related to the interatomic force constant by kL = 2k and kT = k (see Chap. 2 of Ref. [93]).
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Figure 2.1: Vibrational modes of the simulated Ar-like system, calculated by lattice dynamics
(solid blue) and by the Debye model (dashed black). (a) The dispersion relations of modes in
the 〈100〉 directions. (b) The density of states per frequency in 3D.

This dispersion relation is only representative of a small fraction of the normal modes

in the full three-dimensional Brillouin zone [40], so I also calculate and plot the density

of states in frequency, D(ω), in Fig. 2.1b.5 The highest densities of normal modes occur

near 2 THz and 1.4 THz, where the 〈100〉 dispersion branches are flat, indicating that ων(q)

throughout q space generally exhibits flat features near those frequencies. For comparisons

with experimental results and with MD-based calculations, see Section 2.5.

For completeness, I would like to mention the Debye model for the normal modes of a

crystal, which is still occasionally used in lieu of lattice dynamics calculations to estimate

the frequencies ωq,ν of the normal modes of a crystal. The Debye model assumes that the

frequency of each normal mode is proportional to the magnitude of its wavevector [40]:

ωq,ν = vD|q|. (2.17)

5Throughout this work, I follow the common convention of using angular frequency ω in developing theory
but linear frequency f in reporting actual values. The convention is not ideal, but I follow it to facilitate
comparison with other work.
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The group velocity is a constant, and the modes are said to be “dispersionless.” Originally,

the model used a single, averaged speed for all three polarization [40]. In order for the “Debye

crystal” to have the same number of degrees of freedom as the real crystal it models, the

maximum wavenumber is qD = (6π2N/V )1/3. This corresponds to a maximum frequency

ωD = vDqD, which leads to the definition of the Debye temperature

TD = ~ωD/kB =
~vD
kB

(
6π2N

V

)1/3

. (2.18)

The Debye temperature is often used as a fitting parameter to model the specific heat of solids.

The resulting temperature is then used to compare the relative “stiffness” of materials [40],

as in the literature reviewed in Section 1.3. It is also commonly used to represent the

rough boundary between low-temperature quantum behavior and high-temperature classical

behavior, as discussed in Section 2.2.2. Using this averaged-speed model, TD = 85 K [40] for

solid Ar, and TD = 49 K for the “heavy Ar” simulated in this work, corresponding to a Debye

temperature ratio of
√

3 ≈ 1.7. For more details on the true normal mode frequencies in

these systems, see Section 2.5.

To assess the accuracy of the Debye assumption, I have plotted Equation 2.17 in Fig. 2.1a

using the corresponding sound speeds for the Ar-like material simulated in this work. Instead

of using only one speed for all modes, here I assign a sound speed vD,ν for each polarization,

as Swartz and Pohl did in the DMM [35]. The Debye model assumes that Eq. 2.17 is isotropic

in reciprocal space [40], leading to the density of states plotted as the dashed black line in

Fig. 2.1b. The model is evidently a good approximation to the true normal modes at low

frequencies only. The Debye model is therefore acceptable at low temperatures, where energy

only occupies the low-frequency modes. However, the Debye model does not accurately

represent the high-frequency modes, and full lattice dynamics calculations should instead be

used in predicting transport at high temperature, as shown by Reddy et al. at interfaces [41].

Unfortunately, even if one uses lattice dynamics to obtain accurate normal modes of
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a crystal, the classical physics used until this point predicts the wrong energy occupancy

of those normal modes at low temperature. To quantitatively delineate these low- and

high-temperature regimes requires arguments based on quantum mechanics.

2.2.2 Quantization and phonons

Unfortunately, as Richard Feynman put it, “nature isn’t classical, dammit, and if you want

to make a simulation of nature, you’d better make it quantum mechanical” [95]. Therefore,

in this section, I outline the quantum mechanics relevant to phonon transport, and I identify

how its predictions differ from those of classical physics. To be clear, I do not refer to

the quantum mechanical behavior of the electrons surrounding the nuclei. That aspect is

important for obtaining accurate interatomic forces, as in Section 2.1. Rather, I refer to the

quantum mechanical behavior of the normal modes themselves: colloquially, the “freezing

out” of the high-frequency modes. Whether these effects are important in a given system

depends on the magnitudes of the normal mode frequencies ωq,ν . For scale, the normal modes

of silicon have associated frequencies ωq,ν in the range of approximately 0 to 16 THz [96].

One can therefore roughly estimate the temperature above which, at thermal equilibrium,

energy occupies all of the normal modes classically:6

Tclassical,Si ≈
~ωmax

kB
≈ 770 K.

The maximum vibrational frequency of GaN is even higher—roughly 22 THz [97]. Therefore,

an accurate model of thermal transport in devices at any reasonable temperature should

account for quantum mechanical effects.

To determine the equation of motion for the quantum mechanical system—i.e., the

Schrödinger equation—one translates the Hamiltonian from the classical picture. The system

dynamics are contained in a wavefunction Ψ that lives in (2d×N + 1)-dimensional space,

and one can choose to project it onto either the atomic coordinates of Section 2.1 or the

6Cf. the Debye temperature of silicon, TD ∼ 625K [40].
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normal mode coordinates of Section 2.2. The decoupled form of the classical Hamiltonian

when written in normal mode coordinates (Eq. 2.12) makes them the natural first choice.

In that case, the wavefunction depends on (d × N) normal mode displacements, (d × N)

normal mode velocities, and time: Ψ(ξ1, . . . , ξd×N , ξ̇1, . . . , ξ̇d×N , t). The classical normal mode

coordinates correspond to quantum mechanical operators ξ̂q,ν and ˆ̇ξq,ν , denoted by a “hat.”

The Schrödinger equation in these coordinates can be written by direct translation from the

classical Hamiltonian (see, e.g., Chap. 11 of Ref. [93]):

ĤΨ =

(∑

q,ν

1

2
ˆ̇ξ2q,ν +

∑

q,ν

1

2
ω2
q,ν ξ̂

2
q,ν

)
Ψ = i~

∂Ψ

∂t
. (2.19)

From here, one exploits the fact that Eq. 2.19, which governs the behavior of the entire

N -atom system, is mathematically identical to the equation describing a system of d×N

completely independent harmonic oscillators, each with a natural frequency of ωq,ν . In other

words, since the Hamiltonian is diagonal in these coordinates, we can seek a solution using

separation of variables:

Ψ = ψq1,ν1 · · ·ψd×Nψt. (2.20)

Each ψq,ν depends only on ξq,ν and ξ̇q,ν . By substitution into Eq. 2.19, one obtains an

independent equation governing each ψq,ν :

(
1

2
ξ̂2q,ν +

1

2
ωq,ν

ˆ̇ξ2q,ν

)
ψq,ν = Eq,νψq,ν , (2.21)

where the total system energy corresponding to the state Ψ is

E =
∑

q

∑

ν

Eq,ν . (2.22)

As promised, Eq. 2.21 is identical to the time-independent Schrödinger equation governing



2.2 Perspective II: Normal mode coordinates 30

a quantum harmonic oscillator, and it must bear the same solution.7 The energy in each

oscillator—i.e., in each normal mode—can therefore only take on discrete values of

Eq,ν = ~ωq,ν

(
nq,ν +

1

2

)
, where nq,ν = 0, 1, . . . , (2.23)

leading to the familiar result that normal mode (q, ν) can exist only in discrete vibrational

states nq,ν that differ in energy by ~ωq,ν .
8 The frequency is the same as that obtained using

the (classical) lattice dynamics of Section 2.2.1.

This implies that, in a system at temperature T , only modes (q, ν) with sufficiently

low frequency ωq,ν < kBT/~ are capable of accepting the ambient thermal energy of order

kBT . Modes of higher frequency are likely to be “frozen” in their ground state nq,ν = 0,

and therefore they do not contribute to thermodynamic and transport properties at that

temperature. This strange phenomenon explains, for example, the experimental fact that the

specific heats of crystals are much lower than the classical Dulong–Petit value at temperatures

T . ~ωmax/kB, where ωmax is the highest frequency of any normal mode in the crystal.

This picture finally enables the formal definition of a phonon: a single parcel of energy

corresponding to ∆nq,ν = 1. Unlike electrons, phonons are not fundamental particles, but

it can be convenient to treat them as such, since they do exhibit particle-like properties:

they are discrete (countable) and transport energy in finite amounts ~ωq,ν at a well-defined

velocity given by Eq. 2.13. Therefore, the state of a system Ψ can be specified in terms of

the energy distribution of a “population of phonons,” which simply means specifying the

number nq,ν of energy quanta in each of the d×N normal modes of the system. In a system

at thermal equilibrium, that number is given by the Bose–Einstein distribution [40]:

nq,ν = nB–E(ωq,ν , T ) =
1

exp
(

~ωq,ν

kBT

)
− 1

. (2.24)

7The normal mode coordinate operators do satisfy the same commutation relation as the usual position
and momentum operators, [ξ̂q,ν ,

ˆ̇
ξq,ν ] = i~ [93], which is necessary to make this argument.

8The solution for each nq,ν also specifies the probability distribution ψq,ν for the normal mode displacement,
but as far as I know, the latter is not used directly in any thermal transport calculations.
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In a system in thermal non-equilibrium, the distribution is governed by the Boltzmann

transport equation, described in Section 2.3.1.

Finally, I point out that any classical model (e.g., a molecular dynamics simulation) does

not contain any notion of phonons in this strict sense. Each normal mode coordinate ξq,ν ,

and therefore the energy in that mode, can vary continuously regardless of mode frequency.

However, it is ubiquitous usage to interchange “phonon” and “normal mode,” and I will often

do so in this work. The meaning is clear, I hope, in context. Results of MD simulations are

therefore only strictly valid at temperatures significantly greater than ~ωmax/kB. At lower

temperatures, MD simulations erroneously allow high-frequency modes to accept arbitrarily

small amounts of energy. However, interpreting MD results at low temperatures can be done

with caution by identifying the corresponding energy per mode, Eq,ν = ~ωq,ν nq,ν , with the

knowledge that in the classical limit, the equilibrium distribution is

lim
~→0

nB–E(ωq,ν , T ) =
kBT

~ωq,ν

(2.25)

such that Eq,ν = kBT . In principle, one can then account for the effect of quantization by

correcting the distribution function. For further discussion, see Chapter 5, in which I obtain

the energy per mode in non-equilibrium MD simulations.

2.3 Bulk transport

In this section I outline the theory for phonon transport in bulk crystals, since it is also

applicable to describe transport in the materials adjacent to an interface. The theory is based

on the expression for the heat flux in an arbitrary direction z based on the phonon picture

developed in the previous section:

Q̇z

A
=

1

V

∑

q

∑

ν

vq,ν,z ~ωq,νnq,ν , (2.26)
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where vq,ν,z is the projection of vq,ν onto the z axis and nq,ν is the number of phonons in

each mode. Commonly, the collection of numbers nq,ν is called the phonon distribution. All

of the other quantities on the right hand side—the list of normal modes, with the group

velocity and frequency of each mode—can be calculated using the lattice dynamics methods

of the previous section. Therefore, all that remains is to model the phonon distribution in

the material, which is done using the Boltzmann transport equation.

2.3.1 The Boltzmann transport equation

The Boltzmann transport equation (BTE) is a governing equation for the distribution function

of any large system of energy carriers in non-equilibrium [98]. In this work, we are interested

in steady, one-dimensional transport, in which case the energy in each normal mode varies

along the z axis. Equivalently, the number of phonons in each mode varies with z. In this

case, the BTE for each mode (q, ν) reduces to [99, 100]

vq,ν,z
dnq,ν(z)

dz
=

(
∂n

∂t

)∣∣∣∣
c

, (2.27)

where the entire term on the right hand side is a symbol representing the “collision integral.”

In its exact form, this term represents the extremely complex coupling between the mode

(q, ν) and each other mode. However, in many cases [101] one can make the single-mode

relaxation time approximation (SMRTA)

(
∂n

∂t

)∣∣∣∣
c

≈ −nq,ν(z)− nB–E(ωq,ν , T (z))

τq,ν
, (2.28)

where nB–E is the the Bose–Einstein distribution, Eq. 2.24, at the local “temperature” T (z).9

Phenomenologically, the SMRTA presumes that each normal mode relaxes to thermal equilib-

rium with the other modes, and that this relaxation occurs exponentially with some time

constant τq,ν . The relaxation time of each mode is an input to the model and must be

9This is commonly interpreted as the “equivalent equilibrium temperature” as discussed by Chen [100]. Min-
nich’s review [102] provides the quantitative definition of T (z), which he calls the “local pseudo-temperature.”
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determined by other means. Several different mechanisms might cause the thermal relax-

ation: one might consider impurity/defect scattering, electron–phonon scattering, boundary

scattering, and phonon–phonon scattering. In the systems I simulate in this work, the only

two applicable mechanisms are boundary scattering and phonon–phonon scattering. I discuss

the latter in more detail in Section 2.3.2.

For now, I assume that the SMRTA is valid and that one can obtain the corresponding

relaxation times τq,ν . Equation 2.27 then becomes a first-order differential equation and can

be readily solved for nq,ν , subject to boundary conditions. From this point, I discuss two

common uses of the equation: (1) calculating the thermal conductivity by approximating the

BTE to first order and (2) obtaining exact numerical solutions.

1. One obtains the “linearized BTE” by approximating

dn

dz
≈ dnB–E

dz

in Eq. 2.27 [100]. This is equivalent to assuming that the gradient of n′ is negligible

compared to the gradient of nB–E, which implicitly varies in space due to T (z). This

leads to a simple solution for the number of phonons in each mode:

nq,ν ≈ nB–E − vq,ν,zτq,ν
∂nB–E
∂T

dT

dz
. (2.29)

Substituting this expression into the heat flux summation, Eq. 2.26, and comparing it

to the Fourier law Q̇z = −κdT
dz

immediately provides an expression for predicting the

thermal conductivity κ in terms of phonon properties:

κz =
1

V

∑

q,ν

v2q,ν,zτq,ν~ωq,ν
∂nB–E
∂T

(2.30)

2. If the first-order approximation is insufficient, one can solve Eq. 2.27 directly. In most

scenarios, the transport is caused by small departures from equilibrium, such that
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n − nB–E � nB–E, in which case it numerically easier to obtain the deviation from

equilibrium n′ ≡ n− nB–E rather than n itself. In that case, Eq. 2.27 is rewritten as

n′q,ν(z)

dz
+

n′q,ν(z)

vq,ν,zτq,ν
= −∂nB–E

∂T

dT (z)

dz
, (2.31)

where, strictly speaking, the group velocity and relaxation time also vary with the local

temperature T (z). The solution is [43]

n′q,ν(z) = n′q,ν(z0) exp

[
−(z − z0)
vq,ν,zτq,ν

]

︸ ︷︷ ︸
A

−
∫ z

z0

∂nB–E
∂T

dT (z)

dz
exp

[
z′ − z
vq,ν,zτq,ν

]
dz′

︸ ︷︷ ︸
B

, (2.32)

which requires knowledge of the value n′q,ν(z0) on a boundary at z0. Physically, the

solution states that the excess number of phonons in a mode, n′q,ν , is the combination

of (A) a “ballistic” contribution from the boundary, which decays on the length scale of

the mean free path vτ , and (B) an “accumulated” correction to the equilibrium number

nB–E due to changes in T (z).

The first approach has been demonstrated to great effect in recent years by Ward,

Broido, and coworkers [103, 104], who use density functional theory to calculate the force

constants in bulk materials, from which they obtain the relaxation times of the allowed

three-phonon processes. Their predictions of thermal conductivity agree quite convincingly

with experimental data, which suggests that the theory outlined until this point in the chapter

provides an accurate model for thermal transport in many bulk crystals. The second approach

has also been demonstrated very successfully. Equation 2.32 is readily generalized to multi-

dimensional and unsteady transport, as detailed in a recent review by Minnich [102]. Those

analogues have been used to determine the thermal response of systems that macroscopic

heat diffusion models fail to describe, such as short-period superlattices [43], transistor hot
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spots [105], and recent experiments deliberately designed to probe sub-diffusive phonon

transport [106].

However, to date, models for interfacial transport have not yet shown success at a similar

level. The prevailing models are described in Section 2.4. In the intervening section, I provide

a brief introduction to the calculation of the relaxation times τq,ν in this work.

2.3.2 Coupling of normal modes

The systems simulated in this work are defect-free, so the primary mechanism for thermal-

ization is phonon–phonon scattering. In real crystals, the true interatomic forces are not

purely harmonic; Equation 2.8 is only the second-order term in a Taylor expansion of the

true interatomic potential. If we include higher-order terms in r, then the operations that

diagonalize Eq. 2.14 only approximately diagonalize the true force matrix, leaving off-diagonal

terms that couple the equations of motion.

This would seem to undermine the entire purpose of using normal mode coordinates, but

fortunately the coupling is typically weak enough that one can use the harmonic model in

combination with perturbations from a small third-order term. Peierls pioneered this analysis

in 1929 [107] in both the classical and quantum mechanical pictures. Essentially, energy

propagates in the manner of the harmonic normal modes but can exchange among certain

triplets of states [(q, ν), (q′, ν ′), (q′′, ν ′′)]. To reduce the cumbersome notation, here I refer to

each normal mode (q, ν) by a single index i. In the exchange, the energy in one mode must

change in the opposite direction to the energy in the other two modes, so without losing

generality I choose the convention

∆Ei + ∆Ei′ � ∆Ei′′ .

Coupling is possible among the triplets of states (i, i′, i′′) that correspond to a non-zero,

third-order term in the total system energy. Without performing detailed calculations, note



2.4 Interfacial transport 36

that such terms include the combination ξiξi′ξi′′ , which can only be non-zero if the triplet

satisfies the spatial resonance condition (see Eq. 2.9)

q + q′ = q′′ + G, (2.33)

whereG is any reciprocal lattice vector (including the zero vector), and the temporal resonance

condition (see Eq. 2.11)

ωi + ωi′ = ωi′′ . (2.34)

Equation 2.34 is also interpreted in the quantum mechanical picture as the conservation of

energy among three discrete jumps ~ω, so this is often called a “three-phonon process.” Thus,

note that extending Eq. 2.8 to include mth-order terms enables “m-phonon processes.”

For each triplet satisfying these conditions, one can calculate the characteristic timescale

of energy exchange, or relaxation time, τi,i′,i′′ , directly from knowledge of third-order terms

in the system potential energy [98]. In general, each mode i may be involved in many such

triplets, and those individual relaxation times can be combined to obtain a total relaxation

time τi for that mode [103, 108]. As an alternative, one can “empirically” calculate the total

relaxation time of each mode from molecular dynamics simulation using the method described

in Section 5.3. With the relaxation time obtained using either method, one can multiply it

by the group velocity vi of that normal mode to obtain a mean free path Λi.

Finally, armed with a list of normal modes (q, ν), one can use their properties from

the harmonic approximation along with their total relaxation times to calculate transport

properties using the BTE, as described in Section 2.3.1.

2.4 Interfacial transport

Just as for bulk transport, theories of interfacial transport are generally predicated on the

heat flux expression of Eq. 2.26. At an interface between two materials labeled 1 and 2, the
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expression provides the heat flux incident on the interface from each side, based on the normal

modes of each pure material. Although the normal modes of the entire interfacial system

do not correspond exactly to the normal modes of the isolated materials, one assumes that

they nearly diagonalize the force matrix, and that the off-diagonal terms can be captured by

modeling the energy exchange among these “nearly-normal” modes. This is similar to the

spirit of modeling the dynamics in an anharmonic system using the modes of a harmonic

system, as described in Section 2.3.2.10

Thus Eq. 2.26 provides the heat flux incident on the interface, but only some yet-unknown

fraction αq,ν of the energy in each mode transmits to the other material. Therefore, the total

heat flux from material 1 to material 2 is

Q̇1→2

A
=

1

V

∑

q+

∑

ν

vq,ν,z ~ωq,ν nq,ν αq,ν,1→2, (2.35)

where the normal modes are those of the pure material 1, and q+ denotes the modes with

wavevectors inclined toward the interface only. The heat flux from material 2 to material 1

is written in the same manner. The thermal conductance of the interface, h, can then be

calculated using the empirical macroscopic definition

h = lim
Q̇net→0

Q̇net

A ∆T
, (2.36)

where the net heat current is Q̇net = Q̇1→2−Q̇2→1 and the temperature jump is ∆T = |T1−T2|.

The small-flux limit corresponds to the regime in which the thermal response remains linear,

so that h does not vary with Q̇net. If the numbers of incident phonons nq,ν do not correspond

to an equilibrium distribution, then the temperatures Ti are not perfectly well-defined in a

thermodynamic sense. In that case, they are “effective” temperatures that correspond to an

equilibrium distribution with the same total energy [100, 102].

10One can also take the approach of determining the true normal modes of the full interfacial system, as in
the recent work of Gordiz and Henry [109]. However, the approach requires significantly more calculation, and
to my knowledge, no full theories for predicting conductance have yet been demonstrated in those coordinates,
so the predictive advantage is unclear.
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In the foregoing sections, I have discussed all of the phononic properties that appear in

Eq. 2.35 except for the transmissivity, αq,ν . Historically, most conductance modeling has

concentrated on determining effective estimates of αq,ν , while assuming that ωq,ν and vq,ν

are well-modeled by those of the harmonic modes (or, more crudely, the Debye model) and

that nq,ν ≈ nB–E(ωq,ν , T ). The AMM and DMM fall into this category, as well as most of

their later modifications. I discuss this approach in Section 2.4.1. Some research, although

significantly less, has also investigated the importance of understanding nq,ν beyond the

equilibrium assumption. Those findings are discussed in Section 2.4.2.

2.4.1 Models for transmissivity

As described in Section 1.3, the prevailing models for predicting conductance are the acoustic

mismatch model (AMM) and the diffuse mismatch model (DMM). Both models assume that

the incident phonon population is well approximated by an equilibrium distribution. They

also assume that the system is well approximated by harmonic interactions, in which case

energy in a mode (q1, ν1) in Material 1 can only transmit into modes (q2, ν2) in Material 2

with the same vibrational frequency, ωq1,ν1 = ωq2,ν2 . Such processes are commonly known as

“elastic.” This condition arises from the same reasoning as the condition in Eq. 2.34 for the

frequencies in three-phonon processes.

The constraint of elastic transmission makes it convenient to use αi→j(ω) rather than

αq,ν,i→j , and therefore the flux expression is often recast from wavevector space, as in Eq. 2.35,

to frequency space:

Q̇i→j

A
=
∑

ν

∫ 2π

0

dφ

∫ π/2

0

sin θ dθ

∫
dω vν(ω) cos θ ~ω Dν(ω) nB–E(ω, Ti) αν,i→j(ω), (2.37)

where θ is the incidence angle, φ is the azimuthal angle, and D(ω) is the density of normal

modes per frequency, per volume. This presumes a change of coordinates (qx, qy, qz) →



2.4 Interfacial transport 39

(ω, θ, φ), which requires caution in cases in which multiple wavevectors q in the same

polarization ν have the same frequency. Therefore, Eq. 2.37 can be used to calculate the

conductance in frequency space under the Debye assumption [35] or using an isotropic

dispersion with no local minima [42], but calculations using exact dispersion relations [36, 41]

are based in the more fundamental formulation in wavevector space. The AMM and DMM

then differ only in how the transmissivity α(ω) is calculated.

• The AMM treats phonon transmission as the specular refraction of elastic waves,

governed by equations exactly analogous to Snell’s law and the transmission of electro-

magnetic waves. In the first approximation [19], which is still occasionally used [110],

the transmission can be estimated without careful accounting for mode conversion,

using dispersionless sound speeds:

αν,i→j(ω) = 1−
(
Zν,i cos θν,i − Zν,j cos θν,j
Zν,i cos θν,i + Zν,j cos θν,j

)2

, (2.38)

where Zν,i = ρivnu,i(0) is the product of the material density and sound speed, and the

angles θν,i and θν,j are related by Snell’s law. Equation 2.38 is only strictly accurate for

transverse waves with polarization vectors in the plane of the interface, which cannot

couple to the other polarizations [111]. The model used by Maris and coworkers [36]

accounts for both dispersion and mode conversion, while adhering to the assumptions

of harmonic forces and specular refraction, providing in my view a faithful test of the

assumptions of the AMM. At high temperatures, this calculation grossly underpredicts

the experimental conductance at poorly-matched interfaces by as much as two orders

of magnitude, as discussed in Section 1.3.

• The DMM treats phonon transmission as the completely diffuse scattering of elastic

waves, based on the physical premise that transmitted phonons preserve their frequency

but lose any correlation with their orientation or polarization.11 As a result, the

11Duda et al. [79] discuss variations on the exact details of these constraints.
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transmissivity from i to j is a function of frequency only, and the diffuse assumption

implies that αi(ω) + αj(ω) = 1 [35]. Using Eq. 2.37 in the limit that Q̇net → 0 provides

the expression

αi→j(ω) =

∑
ν vν,j(ω) Dν,i(ω)∑

ν vν,i(ω) Dν,j(ω) +
∑

ν vν,j(ω) Dν,j(ω)
. (2.39)

As with the AMM, the original formulation of the DMM used sound speeds. Using the

full dispersion leads to a much different prediction at high temperatures than using

the Debye approximation [41, 42], providing a better test of the diffuse assumption. At

high temperatures, this calculation also underpredicts the experimental conductance at

poorly-matched interfaces, but not as severely as the AMM.

The shortcomings of these transmissivity models in terms of predicting experimental data

were discussed in Section 1.3. In this work I am interested in models using inelastic processes

to explain the anomalously high conductance at poorly-matched interfaces. For example,

Hopkins [78] proposed the Higher Harmonic Inelastic Model (HHIM) as an extension to

the DMM. In addition to the elastic (i.e., 2-phonon) processes allowed in the DMM, the

HHIM defines additional transmissivity terms α
(n)
ν,i→j corresponding to n-phonon processes.

The HHIM allows only processes involving combinations of phonons of equal frequency.

Hopkins et al. [80] also later proposed the Anharmonic Inelastic Model (AIM) which allows

combinations of arbitrary frequency, provided that they satisfy the conservation of energy

(as in Eq. 2.34). Other conductance models that incorporate inelastic scattering include

Refs. [76, 77]. All of these models have been shown to improve conductance predictions to

some degree, despite making fundamentally different assumptions about the nature of the

inelastic processes. Since little is known empirically about inelastic processes, researchers

have been largely unable to determine which models are most valid.

Some distinguishing information has been provided by Sääskilahti et al. [85], who used

MD simulations to probe in detail the types of phonon transmission events occuring at an
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interface. While elastic processes ωi = ωj contribute the majority of the conductance, they

observe that the remaining conductance is heavily dominated by frequency-doubling and

frequency-halving processes. This lends support to the underlying assumptions of the HHIM.

Future work should revisit the HHIM to validate it in more detail, perhaps by relaxing the

Debye assumption, and by using simulations such as those in Ref. [85] to compare with the

predicted contributions of each n-phonon process.

2.4.2 Models for the phonon distribution

Corrections to the phonon distribution may also contribute to the anomalous conductance at

mismatched interfaces. I am aware of two types of corrections that might be made: (1) due

to a non-zero heat current, and (2) due to the boundary conditions at the interface, which

couple energy among different modes.

1. Based on the linearized BTE (Eq. 2.29), a non-zero heat current causes the number of

phonons in each mode to deviate from the equilibrium value by approximately

nq,ν − nB–E ≈ −vq,ν,zτq,ν
∂nB–E
∂T

dT

dz
. (2.40)

While the AMM, DMM, and their derivatives use the “zeroth-order” approximation

nq,ν ≈ nB–E in Eq. 2.35 for the heat flux, Eq. 2.40 provides a first-order correction.

Simons [26] and Chen [73] provide analyses of the effect on the predicted conductance,

and both Aubry et al. [74] and Landry and McGaughey [75] have compared the

predictions with MD simulations with mixed results. The conductance hNE predicted

using the non-equilibrium correction is indeed significantly greater than the conductance

hE based on equilibrium distributions, which is qualitatively consistent as an explanation

for the excess conductance.

However, I note two potential issues with the explanation. First, Katerberg et al. [30]

observed that, although hNE > hE, the excess conductance is predicted to be greater at
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interfaces with closely matched properties, in apparent contradiction with experiments.

Second, the correction does not predict the continuing increase in h(T ) reported in

both experiments [67, 68] and MD simulations [75, 82].

2. Alternatively, one can use the full BTE solution in Eq. 2.32 to assemble a system of

equations, each governing a separate mode and coupled to one another at the interface

via the boundary conditions n′q,ν(z0). Solving the system numerically provides exact

values for n′q,ν(z), which can then be used in Eqs. 2.35 and 2.36 to calculate the

conductance; for example, see the calculations by Chen [43] for interfaces in Si/Ge

and GaAs/AlAs superlattices. However, this method requires the transmissivity α as

input, so until the community reaches a consensus on realistic methods for calculating

α, the phonon distributions and conductances obtained in this manner can only provide

qualitative insight at best.

2.5 Systems modeled in this work

The simulations performed in this work were designed to evaluate the various theories

summarized in Section 2.4. In choosing the model system, I am not concerned with reproducing

any real material in particular. I seek the simplest possible system in which I can observe

the effect of anharmonicity on interfacial thermal conductance and on phonon transport.

A system meeting these criteria, similar to systems used in past MD studies of interfacial

conductance [82, 85, 112], is the interface is between solid Ar (40 amu) and solid “heavy

Ar” (120 amu). The crystalline structure of both materials is given by the face-centered

cubic Bravais lattice with one basis atom. The interatomic forces are modeled using the

Lennard-Jones potential,

ULJ(ri, rj) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (2.41)
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where rij = |ri−rj|. It is computationally inexpensive to use and features extensive literature

for validation. In order to isolate the effect of anharmonicity, I also use the harmonic

approximation to ULJ about rij = ∆req:

Uharmonic(ri, rj) = −ε+
1

2
k(rij −∆req)

2, (2.42)

where ∆req = 21/6σ is the equilibrium separation, and the force constant is related to the LJ

parameters by k = 36(2)2/3 ε σ−2. Comparing the thermal transport in systems with forces

governed by ULJ and Uharmonic elucidates the effect of anharmonicity in Ar-like materials. I

also separate the effects of interfacial inelastic scattering (Section 2.4.1) and the incident

phonon distribution (Section 2.4.2) by using both harmonic and anharmonic forces in different

regions of the same system.

The particular values of the parameters used in this work are listed in Table 2.1. A major

difference with most other work is that I allow interactions only between atoms within the

distance rcut, which is chosen to include only nearest neighbors. The main reason is that,

since Uharmonic does not tend to zero as rij → ∞, it is ill-suited to describing the forces of

more distant neighbors. Therefore, I also limit the interaction of the LJ potential to nearest

neighbors only, so that Uharmonic remains a true approximation to ULJ. Note that, while only

pairs of nearest neighbors are allowed to interact, the range of those allowed interactions is

not limited by rcut, so that ULJ → 0 smoothly as rij → ∞. This differs from the common

usage of truncated and/or shifted potentials that define a distance rcut beyond which U = 0;

for example, see Section 3.2.2 of Ref. [90].

To facilitate comparison between the systems of different dimensionality, the parameters

in the 1D chain are chosen to reproduce the interactions among the {100} planes of the fcc

lattice, which are spaced apart at half the conventional lattice parameter and exert interplanar

forces equivalent to twice the interatomic forces [93]. As a result, both systems have the same

effective lattice parameter of a = 5.313 Å at T = 0 K (compared to the value of 5.311 Å

extrapolated from experimental data [113]), and the 1D chain exhibits the same phonon
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Table 2.1: Interatomic Potential Parameters Used in This Work

1D 3D
ULJ (Eq. 2.41) ε (eV) 0.01617 0.01617

σ (Å) 2.367 3.347

rcut (Å) 4.0 4.5

Uharmonic (Eq. 2.42) k (eV Å−2) 0.1650 0.08249

∆req (Å) 2.657 3.757

rcut (Å) 4.0 4.5

Table 2.2: Coefficients for Zero-Pressure Lattice Parameter of LJ Argon (Eq. 2.43)

1D 3D

a0 (Å) 5.313 5.313

a1 (Å K−1) 4.792× 10−3 1.813× 10−3

a2 (Å K−2) −7.171× 10−5 4.792× 10−6

a3 (Å K−3) 6.101× 10−6 1.394× 10−8

dispersion as the modes along the 〈100〉 directions of the 3D crystal.

To account for thermal expansion, simulations were performed to determine the zero-

pressure lattice constant of the LJ systems as a function of temperature. The simulations

produced values of a(T ) on the temperature ranges of T = 1 to 16 K (1D) and T =

5 to 60 K (3D), which fit well to a third-order polynomial function

a(T ) = a0 + a1T + a2T
2 + a3T

3. (2.43)

The fitted coefficients are provided in Table 2.2.

To assess how well the parameters of Table 2.1 model the atomic dynamics in solid

Ar, I have used normal mode decomposition (Section 5.3) to obtain the normal mode

frequencies from MD simulations of the 3D crystal at finite temperature. They are plotted in

Fig. 2.2 in comparison with experimental neutron scattering measurements in solid Ar by

Batchelder et al. [114]. The normal modes in the simulated system accurately reproduce the
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Figure 2.2: Phonon dispersion in Ar from experimental measurement, lattice dynamics
calculation, and molecular dynamics simulations at T = (5, 15, 25, 35, 45) K.

real normal modes at low T , and they also show the expected decrease of phonon frequencies

due to anharmonicity as T increases. The heavy Ar has the same phonon dispersion with

frequencies scaled by a factor of 3−1/2.

In all simulations, I found that integrating the equations of motion using a discrete

timestep of ∆t = 2 fs provided a satisfactory compromise between computational expense

and energy conservation. This ∆t corresponds to 1/250 of the period of the highest-frequency

normal modes seen in Fig. 2.2. In the worst case—the highest-temperature (50 K) non-

equilibrium simulations of Section 3.2.2—this discretization caused fluctuations in the total

energy on the order of 0.01 eV and an absolute drift of roughly 0.3 eV, corresponding to a

rate of +2.5× 10−5 eV ps−1 in the total system energy over the course of the 12 ns simulation.

For comparison, the simulations at 50 K have a total kinetic energy of roughly 75 eV among

11 232 atoms and a constant heat current of 0.01 eV ps−1.

The remaining simulation details vary by method, and they are provided in the corre-

sponding chapters.



Chapter 3

Effects of Anharmonicity on Thermal

Conductance

In this chapter, I focus on observing the macroscopic heat transfer at the interface, as

summarized in the thermal conductance. Specifically, I show how the thermal conductance

changes depending on the anharmonicity of the interatomic forces throughout the system—

both at the interface and in the bulk materials. I calculate the conductance using the

non-equilibrium molecular dynamics method, described in Section 3.1. I present the results

of the one-dimensional and three-dimensional simulations in Section 3.2, and I discuss their

implications in Section 3.3.

3.1 Non-equilibrium molecular dynamics

The non-equilibrium molecular dynamics (NEMD) method is analogous in format to a steady-

state experimental measurement of thermal conductance. Given some sample structure, the

simulation adds a steady heat current to one region and removes the same heat current from

another region. In response to the heat current between the source and sink, the temperature

distribution in the material becomes non-uniform, eventually reaching a steady state. The

46



3.1 Non-equilibrium molecular dynamics 47

6a
 ×

 6
a

77a

a

2a 2a77a

z
x
y

Ar

source sink

heavy Ar a

Figure 3.1: Geometry of the domain for non-equilibrium simulations in three dimensions.

relationship between the heat current and resulting temperature distribution provides thermal

transport properties such as thermal conductivity and thermal conductance.

3.1.1 Methodology

All of the NEMD simulations in this work use a similar system geometry. The domain is

periodic in all directions; i.e., atomic positions satisfy ri,α = ri,α ±Lα, where Lα is the length

of the simulation domain in the α direction.

The three-dimensional domain has dimensions of 6× 6× 80 conventional unit cells, as

sketched in Figure 3.1. For a given system temperature, the length of each cubic cell is

specified by Equation 2.43 and Table 2.2. The heat current is oriented along the long

dimension of the domain (z axis). On each end, two (002) planes are held fixed as walls (144

atoms), and the velocities of the next four (002) planes are scaled at each timestep to add or

remove the steady heat current. The length of each “bulk material”—i.e., the distance from a

heat source or sink to the interface—is therefore approximately 20 nm.

The one-dimensional domain has dimensions such that the system has the same total

number of atoms, N = 11520, and the same number of atoms per region. The length of each

bulk material is approximately 1.5 µm. The much longer domain was chosen for two reasons:

to allow the same degree of statistical averaging as in the 3D system, and to adjust for the

smaller thermal resistance of the 1D system.
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Each simulation consists of three stages: (1) equilibration at the overall system temperature

T with no heat current, (2) “turning on” the heat current until the temperature distribution

reaches a steady state, and (3) data collection.

1. The simulation begins with the atoms in their equilibrium positions, EP = 0, and

with kinetic energy equivalent to twice the nominal temperature. For simplicity, the

initial atomic velocities are set to the corresponding uniform magnitude of |v| =

(2dkBTnominal/m)1/2 with random orientation. Any resulting net momentum of the

system is subtracted out from the initial condition to prevent drift. The simulation

then runs for 20 ps, at which point the system has reached thermal equilibrium at

a true temperature slightly less than Tnominal due to anharmonicity of the potential

energy. Although inelegant, this procedure ensures that simulations at the same Tnominal

have the same true temperature, which can be difficult to enforce precisely if using a

thermostat for initialization and switching to NVE for data collection.

2. After equilibration, the heat source and heat sink are “turned on.” Different methods

are available for transferring the heat current. They can be grouped into two types: (1)

those that maintain a known temperature in the region and (2) those that maintain a

known heat current. Whichever quantity is specified, the other is unknown and must be

measured during data collection. Both types of methods have been used widely in the

literature to calculate thermal transport properties. Unfortunately, I am aware of no

algorithm that produces an ideal temperature reservoir, which would absorb all incident

phonons without reflection while emitting a perfectly thermalized spectrum—i.e., a

phononic black body. The development of such algorithms is a challenge in itself and

remains an active field of research; see, for example, Ref. [115] published this year. In

the absence of a better algorithm, I fix the heat current using the scheme described by

Jund and Jullien [116] for all of the NEMD simulations in this work. In Section 3.1.2 I

assess the effect of this algorithm on the phonon spectra in my simulations.
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In selecting the magnitude of the heat current, it must be large enough to create a

measurable ∆T at the interface, but small enough to remain in the linear regime in

which Q̇ ∝ ∆T is valid. In addition, the velocity adjustment should correspond to a

small ratio of the kinetic energy per atom per timestep. With these constraints in mind,

the heat current in each simulation was prescribed proportionally to Tnominal, such that

Q̇ = 3.2 × 10−12 W for each K in the 1D system or 3.2 × 10−11 W for each K in the

3D system. The heat current is applied for 4 ns before data collection to allow the

temperature distribution to reach a steady state.

3. Finally, temperature is sampled locally over time to obtain an accurate measurement

of the steady-state temperature distribution. I decompose the system into spatial

subdomains of M atoms each and calculate the local temperature of each subdomain as

T =
1

d kB

1

M

M∑

i

mi〈v2i 〉. (3.1)

Just as with Equation 2.2, the use of Equation 3.1 is problematic if the M atoms in

the subdomain are not in thermal equilibrium. In Section 3.1.2 I present evidence that,

in all of the NEMD simulations in this work, the M atoms in each subdomain are very

near thermal equilibrium, at least in regard to the atomic picture. The d×M normal

modes of the subdomain, however, may not be near thermal equilibrium, as discussed in

Section 5.2, so the local temperature calculated using Equation 3.1 must be interpreted

carefully.

In the 3D systems, I define 160 subdomains, each containing one [002] plane (M = 144).

Since the heat current is directed along the z axis, all of the atoms in each subdomain

must have the same average kinetic energy, and averaging their temperatures is justified.

In the 1D systems, no atoms share the same average kinetic energy, but I also use M =

144 in order to reduce statistical fluctuations. This is equivalent to applying a smoothing

procedure to the average kinetic energies, and since I calculate the conductance by
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fitting linear models to the temperature distributions, the spatial binning does not

affect the calculation.

The temperature data are collected for 8 ns. The temperature is sampled in each

subdomain in intervals of 1 ps. Running averages and standard deviations are stored

in memory and written to disk every 40 ps, which reduces access time and disk

requirements.

Each simulation thus provides a one-dimensional temperature distribution T (z). I use

the common procedure for extracting the thermal conductance at the interface: I fit a linear

model to the temperature profiles in the two “bulk-like” regions and extrapolate them to

the interface. I define ∆T as the difference between the extrapolated values, from which I

calculate h = Q̇∆T−1.

3.1.2 Verification

First, I present the results of a single NEMD simulation and, before attempting to calculate

the conductance, I assess the details of the transport. The steady-state temperature profile

T (z) of a one-dimensional system with Lennard-Jones forces is shown in Figure 3.2. The

nominal temperature of the simulation is T = 10 K. Each black dot represents the temperature

of a single “subdomain,” with the shaded area corresponding to one standard deviation in the

temperature fluctuations.

To assess the thermalization of energy in the system, I arbitrarily select two regions on

each side of the interface. One region contains 1440 Ar atoms in z ∈ (−0.765,−0.383) µm,

and the second region contains 1440 heavy Ar atoms in z ∈ (0.383, 0.765) µm. These regions

are marked in red and blue, respectively, in Figure 3.2, and are labeled with their average

temperature. In each region, I assess the extent to which energy has equilibrated among the

atomic coordinates (Section 2.1) and among the normal mode coordinates (Section 2.2).
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Figure 3.2: The steady-state temperature profile resulting from a one-dimensional NEMD
simulation with Lennard-Jones forces at T = 10 K.
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Figure 3.3: Assessing the equilibration of energy during NEMD simulations in the 1D LJ
system. (a) Atomic speed distributions sampled during the simulation (dots) and predicted
by theory (lines). (b) The density of states sampled from the simulation (colored lines) and
predicted (black lines).

In the atomic coordinates, I first calculate the temperature in each region assuming

equipartition, finding Tatomic,left ≈ 11.3 K and Tatomic,right ≈ 9.3 K. I then compare the

Maxwell–Boltzmann distributions at those temperatures,

gM–B(v) =

√
m

2πkBTatomic

exp

(
− mv2

2kBTatomic

)
, (3.2)

to the actual distributions of atomic velocities sampled in each region. Those theoretical and

measured distributions are plotted in Fig. 3.3a. The agreement suggests that, in each region,

energy has indeed equilibrated among the atomic coordinates.
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Figure 3.4: The same as Figure 3.3, but in a system with harmonic forces.

I also assess the equilibration of energy among the normal mode coordinates by calculating

the density of states in frequency space D(ω). In each region, the average kinetic energy

per frequency per length, EK(ω), is equivalent to the Fourier transform of the temporal

autocorrelation of the atomic velocities:

EK(ω) = F

{∑

i

mi

2
〈ṙi(t) · ṙi(0)〉

}
. (3.3)

This kinetic energy spectrum is equal to the energy per mode times the density of states:

EK(ω) = EK
q,ν(ωq,ν)D(ω). The system is classical, so if it is in thermal equilibrium, then the

energy per mode is simply kBT . However, it is not known beforehand how close the system

actually is to equilibrium. In Fig. 3.3b, I plot the quantity

Dequiv =
EK(ω)

kBTequiv
, (3.4)

where Dequiv is only equal to the true density of states, D(ω), if the system is in thermal

equilibrium. I define the equivalent temperature, Tequiv, as the temperature if the system

corresponding to the total kinetic energy in the system:1

1I use Parseval’s theorem along with the fact that, even if the precise form of D(ω) is unknown, its integral
must result in the number of states per length, 2/a, since in 1D, I set a to twice the interatomic spacing.
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Tequiv =
a

2kB

∫
EK(ω)dω, (3.5)

where EK(ω) is measured from the simulation using Equation 3.3. This is consistent with

the concept used, for example, by Chen [43] and by Minnich [102]. I use this equivalent

temperature in Eq. 3.4 to plot Dequiv(ω) in red and blue in Fig. 3.3b. Also plotted in black is

the theoretical density of vibrational states in a one-dimensional chain with harmonic forces:

Dharmonic(ω) =
2

πa

√
4k2
m
− ω2. (3.6)

The sampled Dequiv(ω) in each region closely resembles the theoretical Dharmonic except at

high frequencies, which I attribute to broadening due to phonon–phonon scattering in the

anharmonic system. Note that the cutoff frequencies are correctly reproduced in comparison

with the 〈100〉 dispersion relation shown in Figure 2.2. In addition, the calculated values of

Tequiv agree within a few percent with the calculated Tatomic. Overall, I conclude that the

energy in the system is well thermalized among both the atomic and normal mode coordinates

in the Lennard-Jones system.

For comparison, in Figure 3.4 I have also plotted the same quantities from an NEMD

simulation in a harmonic system. Due to the lack of anharmonic phonon–phonon scattering

as a mechanism for thermalization, one might suspect that energy would not equilibrate

among the coordinates. However, the thermal energy does appear well equilibrated. Note

that the lack of broadening from phonon–phonon scattering allows the sampled Dequiv(ω) to

reproduce the ideal Dharmonic(ω) very closely. Therefore, I conclude that the energy in the

system is well thermalized in the harmonic system as well.2

At this point, I have shown that the temperature profiles calculated using Tatomic also

correspond to sensible values of Tequiv. The linear fits in Regions 1 and 2 can therefore be

2Closer inspection of Fig. 3.4b reveals a non-equilibrium in Dequiv(ω) in the Ar. At frequencies below
roughly 1.2 THz, D(ω) exhibits a deficit, which balances an apparent excess in D(ω) above 1.2 THz. This
effect is investigated further in Chapter 5, and it does not change the present conclusions.
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Figure 3.5: The thermal conductance h measured using a range of heat currents Q̇ in
one-dimensional systems (left) and three-dimensional systems (right).

used to calculate the conductance h as described above. As a final point of verification, I test

whether the magnitudes of heat current used in these simulations are small enough so that

the linearity of Equation 2.36 is satisfied; i.e., so that h is constant with Q̇. Figure 3.5 shows

the conductances measured in both one- and three-dimensional systems as a function of the

imposed heat current. The error bars denote ±2s/
√
n, where s is the standard deviation of

n = 6 simulations with randomized initial conditions. The heat currents used in the final

simulations are marked with arrows. Based on these results, I am satisfied that the heat

currents are large enough to resolve h but small enough to remain linear in ∆T .

3.2 Results: Thermal conductance

To test the theories for h(T ) described in Section 2.4, I use this simulation scheme to calculate

h(T ) at Ar/heavy Ar interfaces. In both one- and three-dimensional systems, I report the

conductance with three different arrangements of interatomic forces:

a) all Lennard-Jones (anharmonic),

b) all harmonic, and
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c) all harmonic except between the two atoms (1D) or atomic planes (3D) immediately

adjacent to the interface, which interact through the Lennard-Jones potential.

In presenting the following results, I use the letters (a), (b), and (c) to refer to these

arrangements of forces.

3.2.1 In one dimension

Three representative steady-state temperature profiles collected in one-dimensional systems

are shown in Figure 3.6. Each corresponds to a different arrangement of forces as described

above. The resulting conductance h is inversely proportional to the temperature drop at the

interface, and since the same heat current is used in all three simulations at Tnominal = 6 K,

the relative magnitudes of ∆T can be directly compared across the three plots. The calculated

conductance is therefore highest in (a), and it is smaller in (b) and (c) in which the values ∆T

are roughly equal. Aside from the conductance, T (z) in the bulk materials has a significantly

greater slope in (a) than in (b) and (c), corresponding to a smaller thermal conductivity.

This is consistent with the anharmonic forces in (a) compared to the harmonic forces in the

bulk materials in (b) and (c), which exhibit practically horizontal profiles (i.e., k →∞).

These simulations are repeated across a range of nominal temperatures from T = 2 to 12 K,

in increments of 2 K, to collect the data displayed in Figure 3.7. Each data point is the mean

of n = 30 simulations,3 The relative magnitudes of h resulting from different arrangements

of forces are consistent with the comparison among the single simulations. Furthermore,

note that the “excess” conductance in the LJ system grows with temperature, while the

conductance in the harmonic system is nearly perfectly constant with T . The conductance in

the harmonic system with the LJ interface is slightly higher, which is not readily apparent in

Figure 3.6, but by a much smaller margin than in the all-LJ system. For comparison, I’ve also

plotted the value of interfacial conductance predicted using Eq. 2.36 under the assumptions

3This is a much larger number of simulations than typical, which was necessitated by the much wider
temperature fluctuations in the 1D profiles than in 3D: compare Figures 3.6 and the error bars denote
±2s/

√
n. and 3.8.
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Figure 3.6: Steady-state temperature profiles in one-dimensional systems at Tnominal = 6 K
with (a) all LJ bonds, (b) all harmonic bonds, and (c) all harmonic bonds except a single LJ
bond at the interface.
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that nq,ν → nB–E(ωq,ν , T ) and that scattering is elastic. In a one-dimesional, classical system,

this gives [25]

h =
kB
2π

∫ ∞

0

α(ω) dω, (3.7)

where the transmissivity as a function of phonon frequency, α(ω), is given by Eq. 4.5. Despite

the crude assumptions, the model agrees well with the conductance values calculated in the

harmonic system, both in magnitude and in the lack of temperature dependence.

3.2.2 In three dimensions

Likewise, three temperature profiles collected in three-dimensional systems at Tnominal = 30 K

are shown in Figure 3.8. They are qualitatively similar to the one-dimensional temperature

profiles, except that the conductance in case (c) is significantly larger than case (b), although

still not nearly as large as in case (a).

These simulations are repeated across a range of nominal temperatures from T = 2 to

50 K, in increments of 4 K, to collect the data displayed in Figure 3.9. Each data point is the

mean of n = 10 simulations, and the error bars denote ±2s/
√
n. The qualitative results are

similar to those of the one-dimensional simulations, although h appears to take a different

functional dependence on T .

3.3 Discussion

The results, both in the one- and three-dimensional systems, are consistent with hypotheses

that elevated conductance at high temperatures arises due to some type of inelastic phonon

processes, as enabled by anharmonic forces. However, they indicate that accounting for

inelastic transmission in the phonon transmissivity (Section 2.4.1) is unlikely to explain h(T ).

Rather, they suggest that accounting for inelastic effects on the phonon distribution

(Section 2.4.2) is likely more important. However, these results do not provide enough
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Figure 3.8: Steady-state temperature profiles in three-dimensional systems at Tnominal = 30 K
with (a) all LJ bonds, (b) all harmonic bonds, and (c) all harmonic bonds except a single LJ
bond at the interface.
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Figure 3.9: The thermal conductance h(T ) in three-dimensional Ar and heavy Ar.
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information to distinguish between the two types of models presented in that section: (1)

the heat flux effect and (2) the interfacial boundary condition effect. These conclusions are

based on the following observations:

• Having anharmonicity throughout the system raises the conductance significantly in

both one- and three-dimensional systems. Having anharmonicity at only the interface

also raises conductance, but only slightly. This lends support to models incorporating

inelastic processes not only at the interface itself, but in some nearby region as well.

• Unfortunately, as mentioned in Section 3.1, the algorithm used to enforce the heat current

does not produce a known energy spectrum. In addition, the energy spectrum calculated

using Equation 3.3 cannot distinguish between left-traveling and right-traveling modes,

making it difficult to assess the models for the flux-induced non-equilibrium distribution

proposed by Simons [26] and others.

• Figure 3.4 also suggests that an interface-induced non-equilibrium distribution persists

into the bulk argon material. This is due to the ballistic transport in the harmonic

system, consistent with the slight non-equilibrium energy distribution suggested in

Figure 3.4.

In Chapter 4, I present results to assess the first point in more detail, while in Chapter 5 I

present results that help to further distinguish between the second and third.



Chapter 4

Effects of Anharmonicity on Phonon

Transmission

Chapter 3 presented the effect of anharmonicity on the macroscopic heat transfer at an

interface, as captured in the thermal conductance h(T ). The macroscopic effects observed in

that chapter must be explained by some microscopic phenomena. The theory established

in Section 2.4 provides a list of phononic quantities that could be responsible, of which the

two likely candidates are the transmissivity αq,ν and the distribution nq,ν . In this chapter, I

present results assessing the effect of anharmonicity on αq,ν , and in doing so I also consider

the potential effect on h(T ). I calculate αq,ν using the wave packet method, described in

Section 4.1. I present the results in Section 4.2, and I discuss their implications in Section 4.3.

The effect of anharmonicity is to enable transmission into modes of different frequency (inelas-

tic processes), but the net transmissivity decreases, contrary to my expectation. Therefore,

it appears that an increase in transmission is unlikely to be the sole mechanism by which

anharmonicity increases h(T ).

60
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4.1 The wave packet method

Wave packet simulations are the computational analogue of “phonon-pulse experiments,”

which are described in Section III.C.1 of Ref. [35]. Given a sample structure consisting of an

interface between two phases, energy is deposited into a narrow band of normal modes in one

of the materials and allowed to propagate and refract through the interface. The fraction of

energy that successfully passes through the interface provides an aggregate transmissivity of

the initial band of normal modes.

4.1.1 Methodology

By convention I orient the systems so that the wave packet originates in the “left” material and

transmits into the “right” material. The wave packet simulations are similar in geometry to

the NEMD simulations, except with different lengths of each material. In the 1D simulations,

the domain consists of 2800 Ar atoms and 2000 heavy Ar atoms, for a total length of about

1.28 µm. In the 3D simulations, the domain consists of 30× 30× 40 unit cells of Ar (144 000

atoms) abutting with 30 × 30 × 20 unit cells of heavy Ar (72 000 atoms). The large 3D

domain is necessary for simulations of wave packets at non-normal incidence angles, as shown

in Section 4.2.2.

I essentially follow the method described by Schelling et al. [117] and those who later

generalized the method to non-normal incidence [64, 74, 118, 119]. The process can be broken

into three parts: (1) system initialization with energy concentrated about a single normal

mode, (2) simulation of the partial reflection/transmission event, and (3) data collection.

1. Each simulation begins with energy concentrated about a particular normal mode

(q0, ν0) in reciprocal space and about a spatial location r0 in the left material. To do

so, atoms are given an initial displacement from their equilibrium positions req, such
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that the position of the jth basis atom in the lth unit cell is

rj,l(tinitial) = rj,l,eq+Re

{
B

ωq0,ν0

eq0,ν0,j exp [i (q0 · rj,l,eq − ωq0,ν0tinitial)] exp

(
−|rj,l − r0|2

η2

)}
,

(4.1)

where the wave packet amplitude is Bω−1, and its characteristic width is η. See

Section 2.2 for explanation of the other quantities. The initial velocities are therefore

vj,l(tinitial) =
drj,l(tinitial)

dt
= Re {−iωq0,ν0 [rj,l(tinitial)− rj,l,eq]} . (4.2)

2. The molecular dynamics simulation proceeds according to the rules of Section 2.1.1. If

the initial conditions were set correctly, the wave packet propagates naturally at its

group velocity toward the interface and partially transmits. The simulation should end

when the transmitted and reflected packets have completely left the interface.

3. The energy on each side, and therefore the transmissivity, can be calculated directly

from the atomic positions and velocities.

Ideally, the initial packet is composed of a narrow band of modes, in which case we assign

the resulting transmissivity to the central mode (q0, ν0). The width of the initial packet in

q-space therefore leads to an uncertainty in assigning αq0,ν0,1→2.

I note that previous works have used a version of Eq. 4.1 where the maximum displacement

is not divided by the frequency; i.e., having a prefactor of just B instead of Bω−1. I use the

latter because it ensures that packets of equal B correspond to the same energy, and can

therefore be associated with normal mode vibrations of the same temperature in a system

at thermal equilibrium. This distinction is irrelevant in the harmonic (i.e., small-amplitude)

limit, as has been simulated in Refs. [64, 74, 117–119]. In this case, the transmission is

linear; i.e., it does not depend on amplitude. However, the distinction is important in this

work, since I am interested in anharmonic processes that are inherently non-linear: inelastic

transmission that depends on vibrational amplitude.
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Therefore, I seek to associate with each value B a (roughly) equivalent temperature Tequiv.

From Eq. 4.2, the value of B corresponds to the maximum velocity of any atom in the wave

packet. A plane wave of that amplitude has a root-mean-square value of B/
√

2, which I

equate to the root-mean square velocity of an atom in a system at thermal equilibrium at

temperature T :

B√
2
∼
√
dkBT

m
. (4.3)

Based on this relation, a reasonable definition of an equivalent temperature is

Tequiv ≡
mB2

2dkB
. (4.4)

In interpreting the following results, I use Eq. 4.4 to provide an approximate connection

between wave packet amplitudes and the NEMD simulations of Chapter 3.

4.1.2 Verification

I verify the method by first performing simulations in one-dimensional systems with harmonic

bonds only. In such systems, the transmissivity can be calculated analytically [120]:

α1→2(ω) =
4Γ1Γ2

(Γ1 + Γ2)
2 + ω4(m1 −m2)

2 , (4.5)

where

Γi = 2ω

√
mik −

m2
iω

2

4
, (4.6)

where k is the harmonic force constant. In the following, I show that transmissivities

calculated using the wave packet method are consistent with those calculated using Eq. 4.5.

The trajectories of two wave packet simulations in 1D, harmonic systems are shown in

Fig. 4.1: (a) one starting in Ar with q0 = 0.3 qmax and (b) the second starting in heavy Ar



4.1 The wave packet method 64

−250 −125 0 125 250

100

50

0

z, nm

t, 
ps

(a)q
0
 = 0.3 q

max

18% 82%

Ar heavy Ar

−250 −125 0 125 250

100

50

0

z, nm

 

(b)q
0
 = 0.6 q

max

20% 80%

heavy Ar Ar

Figure 4.1: Snapshots of atomic velocities v(z, t) in two wave packet simulations with all
harmonic forces and the percentages of reflected and transmitted energy. (a) Ar to heavy Ar,
q0 = 0.3 qmax. (b) Heavy Ar to Ar, q0 = 0.6 qmax. The initial amplitudes are given in the text.
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Figure 4.2: Transmissivity of normal modes as a function of their frequency in systems with
harmonic forces throughout. For clarity, the uncertainty is only shown for one point in each
data series.

with q0 = 0.6 qmax, where qmax = 2π
a
. The width of all packets is η = 30a, and the amplitudes

in both simulations correspond to Tequiv = 2 K: (a) B = 0.288 Å/ps and (b) B = 0.166 Å/ps.

Each plot provides five snapshots of the velocities vi of atoms i within 250 nm of the interface

at intervals of 25 ps. After 100 ps, the reflected and transmitted packets have completely left

the interface, and the ratios of reflected and transmitted energy are calculated.

To test the methodology, I ran 38 simulations (22 starting in Ar, 16 in heavy Ar) similar to

those shown in Fig. 4.1 at different wavenumbers and compiled the transmissivity values. The

results are plotted as a function of normal mode frequency, αq,i→j(ωq), in Fig. 4.2, along with
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the prediction of Eq. 4.5.1 The dominant uncertainty arises from assigning the transmissivity

to the nominal wavenumber q, despite the wavepacket containing components from a band of

wavenumbers of characteristic width 2π/η. The corresponding frequency range is marked by

error bars for two representative points. The data agree very well with Eq. 4.5, and I am

satisfied that this implementation of the wave packet method produces correct results.

Finally, I also verify the assertion that only elastic (frequency-preserving) scattering

is possible in a system with only harmonic forces. For each simulation from Ar to heavy

Ar—i.e., the red crosses in Fig. 4.2—I determine the spectra of energy transmitted, α(ω0, ω
′),

and reflected, β(ω0, ω
′), from an initial frequency ω0 into a final frequency ω′. The initial

frequency in each simulation is known from the initial wavenumber, and the spectrum of final

frequencies is obtained by Fourier transform of the final velocities. Specifically, I use the final

atomic velocities as a spatial signal vi(tfinal) = vfinal(z), which is related to the spectrum of

kinetic energy in the final system, EK
q0

(q′) = EK(q0, q
′), by a Fourier transform in z:

EK(q0, q
′) =

∣∣∣∣∣F
{√

m(z)

2
vfinal(z)

}∣∣∣∣∣

2

, (4.7)

where the atomic masses have also been converted to a spatial signal, mi = m(z). Parseval’s

theorem ensures that the total energy in the spectrum is equal to the total kinetic energy in

the system:

EK(q0) =

∫
EK(q0, q

′) dq′ =
1

2

N∑

i

miv
2
i . (4.8)

By including only atoms of one material, one can also obtain the spectra of only the energy

that has been reflected back into material 1 or transmitted into material 2:

1Throughout this work, I follow the common convention of using angular frequency ω in developing theory
but linear frequency f in reporting actual values.
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Figure 4.3: Reflectivity and transmissivity of modes from initial frequency f0 into final
frequency f ′ in the Ar/heavy Ar system with harmonic forces throughout.

EK
1 (q0, q

′) =

∣∣∣∣∣F
{√

m(z < 0)

2
vfinal(z < 0)

}∣∣∣∣∣

2

and (4.9)

EK
2 (q0, q

′) =

∣∣∣∣∣F
{√

m(z > 0)

2
vfinal(z > 0)

}∣∣∣∣∣

2

. (4.10)

In terms of these quantities, I define the reflectivity and transmissivity spectra as

β(q0, q
′) =

EK
1 (q0, q

′)

EK(q0)
and α(q0, q

′) =
EK

2 (q0, q
′)

EK(q0)
, (4.11)

respectively. To evaluate the extent of elastic and inelastic processes, these are readily

converted to frequency space by using the dispersion relation, Eq. 2.16.

Thus I plot β(ω0, ω
′) and α(ω0, ω

′) in Fig. 4.3. The plots show that, in each simulation, all

of the energy is reflected and transmitted into the same frequency ω′ as the initial frequency

ω0 (within the uncertainty due to the finite packet broadness). This confirms the expectation

that only elastic transmission occurs in a harmonic system.
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4.2 Results: Phonon transmission spectra

To test the hypotheses that thermal conductance increases at high temperature due to

additional transmission via inelastic scattering [38, 39, 67, 68], I now use this simulation

scheme to calculate α(ω0, ω
′) at interfaces with anharmonicity. In both one- and three-

dimensional systems, I report the transmissivity spectra in systems with all harmonic bonds

except between the two atoms (1D) or atomic planes (3D) immediately adjacent to the

interface, which interact through the LJ potential. These systems correspond to the systems

in which I presented NEMD simulations of conductance in case (c) of Section 3.2. Varying

the amplitude of the wave packet provides insight into interfacial transmission in systems at

different temperatures, as captured roughly by the equivalent temperature defined in Eq. 4.4.

4.2.1 In one dimension

From the arguments of Chapters 1 and 2, one expects that adding anharmonicity to the forces

at the interface should enable inelastic reflection and transmission processes. Therefore I

perform simulations in the same 1D, harmonic systems as in Section 4.1.2, except that I use the

LJ potential to describe the interactions between the two atoms at the interface. Figure 4.4

shows snapshots of vi(t) from two q = 0.3 qmax packets originating in Ar with different

amplitudes, corresponding to (a) B = 0.288 Å/ps (Tequiv = 2 K) and (b) B = 0.706 Å/ps

(12 K). On each plot, the fraction of energy reflected/transmitted in each mode is noted next

to the corresponding packet in the signal at t = 100 ps.

I make two observations. First, there is a new reflected packet that was not present in the

all-harmonic system (Fig. 4.1a). The packet evidently has a slower group velocity, indicating

that it has a higher frequency. This confirms that the anharmonic forces at the interface have

enabled an inelastic process. Second, the reflectivity and transmissivity now change with

amplitude, consistent with the fact that the inelastic process is non-linear. As expected, the
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Figure 4.4: Snapshots of atomic velocities v(z, t) in two wave packet simulations with LJ
forces at the interface: (a) Tequiv = 2 K and (b) Tequiv = 12 K.

rate of the inelastic process increases with amplitude. However, somewhat surprisingly, the

total transmissivity decreases.

I repeat these simulations across the same range of wavevectors as used in the harmonic

system in Section 4.1.2. In each simulation, I associate the initial frequency ω0 with the

final spectra of reflected and transmitted energy in ω′, which produces the reflectivity and

transmissivity spectra plotted in Fig. 4.5 for Ar → heavy Ar and in Fig. 4.6 for heavy Ar

→ Ar. For the packets originating in Ar, the anharmonicity at the interface enables energy

transfer into reflected modes of frequency ω′ = 2ω0, and even some into modes of frequency

ω′ = 3ω0. However, there is no appreciable energy transfer into transmitted modes of different

frequency. On the other hand, for packets originating in heavy Ar, I observe negligible energy

transfer into any frequencies ω′ 6= ω0. The only detectable inelastic energy transfer is some

faint transmission into modes of frequencies ω′ = 2ω0 in the range of ω′ ∼ 0.6–0.8 THz in

Fig. 4.6d.

In both cases, the net effect of anharmonicity at the interface is to decrease the transmis-

sivity, albeit only slightly in the direction of heavy Ar→ Ar. The effect of inelastic scattering

is evidently much more pronounced for packets originating in Ar than those originating in

heavy Ar. I attribute this to the fact that, for the same equivalent temperature, the heavy Ar

atoms experience a smaller displacement, inversely proportional to the square root of their

mass [93]. The heavy Ar must therefore be raised to a higher equivalent temperature before

the constituent atoms experience the same anharmonicity.
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Figure 4.5: Energy reflection and transmission spectra from Ar to heavy Ar with LJ forces at
the interface. (a) Reflection and (b) transmission spectra with amplitude corresponding to
Tequiv = 2 K, (c,d) the same with Tequiv = 12 K, and (e) the total reflectivity and (f) total
transmissivity at both amplitudes.
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Figure 4.6: Same as Fig. 4.5, but from heavy Ar to Ar.
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4.2.2 In three dimensions

The insights from the one-dimensional simulations may not necessarily be transferable to

three-dimensional systems. In this section, I present results to help determine whether

the observation that interfacial anharmonicity reduces transmissivity in 1D systems also

holds in 3D systems, where the additional dimensionality allows more possibilites for mode

coupling [111]. To that end, I performed simulations of wave packets at non-normal incidence

in three-dimensional systems. In Fig. 4.7, I show the x-components of atomic velocities

during simulations of a wave packet with a wavevector of

q0 = 0.3qmax,[013] = 0.3

(
2π

3a
y +

2π

a
z

)
, (4.12)

where qmax,[013] is the maximum wavevector in the [013] direction. Snapshots (a)–(c) show

the transmission event in a system with all harmonic forces, while snapshots (d)–(f) are from

a system that is harmonic but with LJ forces at the interface. Only the velocities of atoms

in the (200) monolayer bisecting the wave packet are shown. I used GULP to calculate the

three polarization vectors, and I chose one of the transverse-like modes:

eq0,ν0 = −0.876608x + 0.481205iy. (4.13)

In both packets I used the same maximum velocity of B = 1.44 Å/ps, corresponding to

Tequiv = 50 K. I calculated αq0,ν0 for each simulation, which is marked in plots (c) and (f).

As in the 1D simulations, the transmissivity is lower in the system with anharmonic forces at

the interface. However, no new mode is identifiable in plot (f).

I repeated these simulations for the range of wavenumbers q0 = [0.1, 0.2, 0.3, 0.35]qmax,[013]

and a range of amplitudes corresponding to Tequiv = [10, 30, 50] K. The resulting transmissivity

values are listed in Table 4.1. In general, the behavior of αq0,ν in 3D looks similar to the

behavior in 1D. As a function of wavenumber, the transmissivity is high and flat at low q0,

and it decreases sharply and monotonically as q0/qmax,[013] approaches 0.4, at which point the
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Å
/
p
s

−1

0

1

−10

0

10

 
 

T
equiv

 = 50 K

 

 
(d) 0 ps

v
,
Å
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Figure 4.7: x-components of atomic velocities during simulations of wave packets at non-
normal incidence. The systems are three-dimensional with (a–c) all harmonic forces and (d–f)
LJ bonds at the interface.
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Table 4.1: Transmissivity Values from 3D Wave Packet Simulations

αq0,ν

q0/qmax,[013] harmonic 10 K 30 K 50 K
0.10 0.86 0.86 0.86 0.86
0.20 0.86 0.86 0.85 0.85
0.30 0.72 0.71 0.70 0.66
0.35 0.44 0.43 0.42 0.39

frequency in Ar surpasses the maximum frequency in heavy Ar. As a function of amplitude,

the transmissivity is practically independent of Tequiv for low-q0 modes, but decreases slightly

with Tequiv for high-q0 modes. The preferential effect on high-q0 modes is consistent with the

fact that the anharmonicity is localized spatially to the interface, therefore most strongly

affecting vibrations with short wavelengths.

4.3 Discussion

The results in both one- and three-dimensional systems confirm that anharmonicity in the

atomic forces enables inelastic scattering processes at an interface. Those processes allow

energy coupling among modes of different frequency, and the rate of the energy transfer

does increase with the amplitude of the incident vibration. However, in all cases examined

here, the inelastic processes increase energy transfer to reflected modes, even in cases of

inelastic transmission (Fig. 4.6), thereby decreasing the total transmissivity with increasing

amplitude. Therefore, the results do not support the hypothesis that elevated conductance

at high temperature arises due to increased transmissivity via inelastic phonon processes.

These conclusions provide interesting insight in the context of recent literature. As

described in Sections 1.3.4 and 2.4.1, the opening of “inelastic channels” at high temperatures

is the primary explanation for experimental conductance measurements far in excess of the

AMM and DMM [38, 39, 67, 68]. Recently, Sääskilahti et al. [85] showed that inelastic

processes do indeed occur at the interface during NEMD simulations, and furthermore that
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frequency-doubling and frequency-halving processes are dominant. This is consistent with

the results of Section 4.2. However, they show that inelastic processes do significantly

enhance conductance, in apparent contradiction with my conclusions. In order to reconcile

our findings, a comparison should be made between the single-mode transmission picture in

my work and their inelastic conductance spectrum ginel(ω, ω′) calculated during an actual

NEMD simulation. As shown by the work of Kimmer et al. [64] and Aubry et al. [74],

our existing theories of conductance are not yet mature enough to provide a quantitative

connection between the transmission of isolated modes and the conductance of a thermal

energy distribution.

In comparing the two pictures, one important difference is that the wave packet simulations

of this chapter occur at “zero temperature” aside from the energy in the packet itself: the rest

of the crystal is in its equilibrium state. Therefore, the energy propagating in the wave packet

does not experience the same environment that it would during a thermal transport scenario.

It is possible, then, that there are additional scattering processes which would occur during a

full NEMD simulation, but which are suppressed during the wave packet simulation. This is a

shortcoming of the wave packet approach. However, I am not aware of an alternative method

to obtain the per-mode transmissivities αq0,ν0 , as are desired for predictive conductance

models, during simulations at (or near) thermal equilibrium. Furthermore, the shortcoming

of the wave packet model does not detract from the conductance calculations of Chapter 3,

which also suggest the same conclusion: that inelastic processes at the interface itself may not

contribute much to the total conductance. In those simulations, energy occupies the normal

modes in a near-equilibrium distribution (Section 3.1.2), and would presumably undergo any

processes that may not be observable in the present wave packet simulations. However, the

resulting conductance values are still much lower that the conductances calculated in the

systems with all LJ forces.

That being said, other recent computational work does corroborate the conclusion that

inelastic processes at the interface might play a smaller role than expected. Wu and Luo [83]
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performed NEMD simulations while varying the third-order force constants in the bulk and at

the interface. The conductance increased significantly with anharmonicity in the bulk, but did

not change measurably with anharmonicity at the interface. Similarly, Murakami et al. [84]

used both equilibrium MD and NEMD to show that the conductance is dominated by inelastic

scattering not at the interface itself, but in a “transition region” near the interface in which

scattered phonons rethermalize. This is related to the other commonly-mentioned explanation

for excess thermal conductance: the non-equilibrium distribution of phonons, as introduced

in Section 2.4.2 and investigated further in Chapter 5.



Chapter 5

Effects of Anharmonicity on Phonon

Distribution

Between the transmissivity αq,ν and the distribution nq,ν , the two phononic quantities

suspected to be responsible for the thermal conductance trends calculated in Chapter 3, the

results of Chapter 4 suggest that αq,ν alone is unlikely to explain h(T ). In this chapter,

I present results assessing the effect of anharmonicity on nq,ν . As the classical proxy for

nq,ν , I calculate the spatial variation of the energy per mode, Eq,ν(z) = ~ω nq,ν , using the

wavelet transform, described in Section 5.1. I present calculations of Eq,ν(z) during 1D and

3D NEMD simulations in Section 5.2. In order to interpret the energy distributions, I also

calculate the mode relaxation times τq,ν in Ar and heavy Ar using the method of normal

mode decomposition, described in Section 5.3. I present those relaxation times in Section 5.4,

along with the corresponding mean free paths. Finally, in Section 5.5, I discuss a hypothesis

to explain the conductance at high temperatures that is best supported by the available facts.

5.1 The wavelet transform

There are multiple options for analysis tools with which one can obtain the energy per mode,

Eq,ν . In particular, I seek to analyze the energy per mode in the NEMD simulations of

76
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Chapter 3, which are not in thermal equilibrium, so it is useful to consider the spatial variation

of the energy per mode: Eq,ν(z). Therefore, I choose the wavelet transform as my primary

analysis tool, as implemented for MD by Baker et al. [121], precisely because the wavelet

spectrum w̃(z, q)1 of a signal w(z) preserves information in both z and q. If, for example,

w(z) represents snapshots of atomic velocities during an NEMD simulation, then one can

directly convert w̃(z, q) to Eq,ν(z). In contrast, the spatial Fourier transform w̄(q) of w(z)

completely encodes any spatial variation into the amplitudes and phases of the plane-wave

basis, making the z-dependence non-transparent. Another option to obtain Eq,ν(z) would be

start with the atomic velocities over time, w(t, z), and obtain the temporal Fourier transform,

w̄(ω, z). One could then convert w̄(ω, z) to the spatial variation of energy per frequency,

E(ω, z). However, extracting Eq,ν(z) from E(ω, z) is difficult, since the analysis in the time

and frequency domains does not distinguish among different normal modes with the same

frequency.

5.1.1 Methodology

The wavelet transform w̃(q, z) of a signal w(z) takes the same form as other integral transforms,

such as the Fourier and Laplace transforms:

w̃(z′, q′) =W{w(z)} =

∫ ∞

−∞
w(z)ψ∗z′,q′(z) dz. (5.1)

The difference lies in the kernel functions ψz′,q′ . Different definitions of wavelet-type kernel

functions are possible. I follow the convention of Baker et al. [121] in which each “daughter

wavelet,” corresponding to a specific location z′ and wavenumber q′, is defined as

ψz′,q′(z) = π−1/4
(
q′

q0

)1/2

exp [iq′(z − z′)] exp

[
−1

2

(
q′

q0

)2

(z − z′)2
]
, (5.2)

1Given a signal w(z), I write its wavelet transform with a tilde and its Fourier transform with a bar.
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which is a scaled and translated version of a “mother wavelet” ψz′,q0 whose dominant wavenum-

ber is q0. This definition is normalized so that the energy density per length, per wavenumber

is conveniently calculated as

Eψ(z′, q′) =
1

Cq0
|w̃(z′, q′)|2. (5.3)

The constant C accounts for the fact that, unlike the plane waves that form the basis functions

for the Fourier transform, the wavelets are not orthogonal:

C =

∫ ∞

−∞

|ψ̄z′,q0(q)|2

|q|
dq, (5.4)

where ψ̄z′,q′0(q) is the Fourier spectrum of the mother wavelet ψz′,q0(z). Equations 5.1–5.4

suffice to discuss the results of this chapter. For additional details on practical implementation

of the transform, refer to Refs. [121, 122].

The results presented in this chapter were obtained from the same NEMD simulations

presented in Chapter 3. All atomic velocities were written to disk every 40 ns (20 000 steps) in

the same data collection period during which the temperature profiles were collected. Based

on the atomic velocities, I then used the combination w(z) =
√
m(z)/2 v(z) as the signal to

be transformed, so that the wavelet energy density calculated by Eq. 5.3 corresponds to the

density of kinetic energy per length, per wavenumber. To reduce noise, each of the energy

distributions reported below is the average of distributions calculated from ten independent

simulations under the same conditions.

In the 1D systems, the equilibrium site of each atom has a unique value of z, so the

atomic velocities can be translated directly into w(z). In the 3D systems, I average together

the velocities of atoms in the same (002) plane (i.e., those whose equilibrium positions have

the same z coordinate) to form the signal w(z). This is equivalent to sampling only the

normal modes with q parallel to the 〈001〉 direction. The different polarizations ν can be

sampled by selecting the corresponding component of atomic velocities in calculating w(z).
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Figure 5.1: (a) The energy distribution in terms of equivalent temperature, Tequiv, calculated
using the wavelet transform in a system at thermal equilibrium. (b) A histogram of Tequiv.

For example, to probe the energy density of a longitudinal mode along 〈001〉, I use the

z-component of the atomic velocities to construct w(z). In the practical implementation of

the transform, I choose the wavenumber of the mother wavelet as q0 = (5a)−1 and minimum

and maximum wavenumbers corresponding to constants η = 0.05 and φ = 1 as described

by Baker et al. [121]. These settings produce energy spectra with useful information in the

range of wavenumbers between q/qmax = 0.04 and 0.7.

To facilitate interpretation, in all of the following results, I use the equipartition principle to

convert the energy density at each point, EK(z, q), to an “equivalent” temperature Tequiv(z, q)

in K. This would be the temperature of a system with an equal energy density distributed

uniformly; i.e., at thermal equilibrium.

5.1.2 Verification

In order to verify that the method has been correctly implemented, and to establish a basis

for comparison, I calculate the energy density in a system at equilibrium. As a test system, I

simulate an interface between 3D Ar/heavy Ar with LJ forces at Tnominal = 2 K, but with

zero heat current applied. The resulting energy distribution is shown in Fig. 5.1a in terms of

Tequiv(z, q).
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As expected for a system at thermal equilibrium, the energy appears relatively evenly

distributed both in space (horizontal axis) and among normal modes, as enumerated by

wavenumbers (vertical axis). The true average temperature is T = 1.86 K, slightly lower than

the nominal temperature of 2 K because of the simple method for setting atomic velocities

(Section 3.1.1). To capture the magnitude of fluctuations in the data, I show a histogram

of the calculated values of Tequiv(z, q) in Fig. 5.1b. The fluctuations in the measured energy

distribution are equivalent to temperature fluctuations of ∼ 0.1 K, which are sufficiently small

to resolve the non-equilibrium effects presented in the next section, specifically in Figs. 5.2

and 5.3.

5.2 Results: Energy distributions

In the following sections, I present the distributions of kinetic energy calculated by the wavelet

transform in one- and three-dimensional NEMD simulations.

5.2.1 In one dimension

The distributions of energy density in six 1D NEMD simulations are shown in Fig. 5.2. Each

row was collected at the same Tnominal: (a,b) 2 K, (c,d) 6 K, and (e,f) 12 K, corresponding to

the temperature range of conductance data presented in Section 3.2.1. Refer to Fig. 3.6 to

see the temperature profiles T (z) corresponding to the simulations at Tnominal = 6 K. The

left column (a,c,e) shows the distributions arising in systems with LJ forces, and the right

column (b,d,f) shows the distributions in harmonic systems.

At low temperature (2 K), the LJ and harmonic systems have a similar energy distribution.

There is an excess of energy in the Ar side in modes with wavenumbers higher than ∼ 0.4 qmax.

This can be understood by referring to the dispersion relation (Eq. 2.16), which shows that

given the mass ratio of 3 between the two materials, the highest frequency in heavy Ar

corresponds to a wavenumber of
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LJ forces Harmonic forces

Figure 5.2: Energy distributions, represented in terms of equivalent temperature, calculated
using the wavelet transform during 1D NEMD simulations at (a,b) 2 K, (c,d) 6 K, and
(e,f) 12 K.
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q

qmax

=
2

π
arcsin(3−1/2) ≈ 0.39

in the Ar. As the temperature increases, (c,e) anharmonic phonon scattering in the LJ system

allows the energy to redistribute along the q axis, while (d,f) the lack of phonon scattering in

the harmonic system prevents the excess energy from thermalizing. Note that in panels (c,e),

the energy distribution has not quite completely thermalized among the normal modes in

the heavy Ar. This indicates that the mean free paths in the heavy Ar are longer than in

the Ar, which is consistent with the lower temperature and the normal mode decomposition

calculations presented in Section 5.4.1.

5.2.2 In three dimensions

I have also calculated the energy density in 3D simulations. Although in principle it is

possible to calculate the energy density for each mode in the full Brillouin zone, for simplicity

and ease of comparison with the 1D simulations, I only present here the energy density in

longtitudinal and transverse modes along the 〈001〉 direction. The resolution in both z and q

is low, since each signal represents the velocities of only 72 planes, versus 11232 atoms in the

1D systems.2 However, one can still see that, as in the 1D systems, the LJ and harmonic

systems have similar distributions of energy at low temperature, with an excess of energy in

Ar above 0.4 qmax. As the temperature increases, the energy thermalizes in the LJ system

but remains confined to the high-wavenumber modes in the harmonic system.

5.3 Normal mode decomposition

To interpret the energy distributions presented in Section 5.2, it is useful to know the mean

free paths of modes in the bulk materials. In this section, I use normal mode decomposition

(NMD) to calculate those mean free paths over the ranges of temperatures encountered in

2The atoms in the immobile walls are excluded from the signals.



5.3 Normal mode decomposition 83

LJ forces Harmonic forces

Figure 5.3: Energy distributions, represented in terms of equivalent temperature, calculated
using the wavelet transform during 1D NEMD simulations at (a,b) 10 K, (c,d) 30 K, and
(e,f) 50 K.
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the NEMD simulations. For a thorough discussion of the method, refer to the recent review

by McGaughey and Larkin [123]. In the following overview, I survey the concepts necessary

to interpret the results presented in Section 5.4.

5.3.1 Methodology

Broadly speaking, the NMD method consists of the following steps:

1. Specify the atomic structure of the material of interest and perform lattice dynamics

calculations (Section 2.2.1) to obtain ωq,ν and eq,ν of each mode in the harmonic system

(i.e., the low temperature limit).

2. Perform an MD simulation of the same structure at thermal equilibrium, recording

snapshots of ri,α and ṙi,α at a sufficiently high rate to capture the highest-frequency

modes and for a sufficiently long duration to reduce statistical noise.

3. Use those data, along with the normal mode properties from Step 1, to calculate ξq,ν(t)

and ξ̇q,ν(t).

4. Calculate the autocorrelation of ξq,ν(t) and ξ̇q,ν(t) in time. In cases where the single-

mode relaxation time approximation (SMRTA) is accurate (Eq. 2.28), the autocorre-

lation function will closely resemble an exponentially damped oscillation in the time

domain or, equivalently, a Lorentzian peak in the frequency domain (see Appendix A.1

of Ref. [124]). In this work, I use the frequency domain, and the width of the peak is

inversely proportional to the total relaxation time τq,ν .

The analysis using the normal mode displacements, ξ, is problematic at high temperatures,

where their contribution to the system energy is increasingly anharmonic and the equipartition

theorem breaks down [123]. Therefore, in this work I only use the normal mode velocities, ξ̇,

whose contribution to the Hamiltonian is always harmonic. To clarify Step 4: after calculating
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ξ̇q,ν(t) of each mode using Eq. 2.9, I use it to calculate the kinetic energy spectrum in that

mode:

EK
q,ν(ω) =

1

2πtf

∣∣∣ ¯̇ξq,ν(ω)
∣∣∣
2

, (5.5)

where tf is the duration of the sampled signal ξ̇q,ν(t), and the bar denotes the Fourier transform

¯̇ξq,ν(ω) =
∫ tf
0
ξ̇q,ν(t) exp(−iωt) dt. Equation 5.5 is normalized so that, given a duration tf

much longer than the timescale of oscillations, the average kinetic energy in the mode is

〈EK
q,ν〉 =

∫ ∞

0

EK
q,ν(ω) dω. (5.6)

If the SMRTA is valid, then the “measured” energy spectrum calculated according to Eq. 5.5

will resemble a Lorentzian function given by

EK
q,ν(ω) =

1

2
kBT

Γq,ν/π

(ω − ωq,ν)
2 + Γ2

q,ν

, (5.7)

where I have used the fact that, in a system at thermal equilibrium, 〈EK
q,ν〉 = 1

2
kBT . The

frequency of the normal mode is ωq,ν , and the total relaxation time is τq,ν = (2Γq,ν)
−1.

I have used Eqs. 5.5 and 5.7 to determine the normal mode frequencies and relaxation

times in the simulated Ar and heavy Ar systems whose parameters are given in Section 2.5.

Each system is specified by its dimensionality, material, and temperature: e.g., 3D Ar at 20 K.

In all calculations, each simulation domain has periodic boundary conditions, and the data are

collected at thermal equilibrium. The 1D systems consist of 5000 atoms (∼ 1.33 µm), and the

3D systems consist of 4000 atoms (∼ (5.31 nm)3). Although the size of the 3D system appears

small compared to the mean free paths presented in Section 5.4.2, the periodic boundary

conditions ensure that no boundary scattering occurs, so it is possible to simulate systems

using domains smaller than the mean free path. The results presented in Ref. [123] show that

the system size of (10a)3 is sufficiently large to reproduce bulk transport behavior. I chose to

analyze 400 modes in the 1D system and 435 modes in the 3D system, all sampled uniformly



5.3 Normal mode decomposition 86

throughout the first Brillouin zone. In 3D, the modes correspond to the 145 q-points in the

irreducible Brillouin zone with spacing ∆qα = 2π/Lα = π/(5a).

For each system, I performed ten simulations under identical conditions except with a

different initial configuration of randomized velocities. Each simulation ran for 220 timesteps

(∼ 2 ns) to equilibrate before data collection, at which point the atomic velocities were

sampled once every 32 timesteps, corresponding to a maximum observable frequency of

15.6 THz, for a duration of another 220 timesteps. These are similar to the settings used in

Ref. [123]. Finally, for each mode in the system, I obtained EK
q,ν(ω) in the ten simulations

using Eq. 5.5 and averaged them together to fit to the form of Eq. 5.7.

I found that the following fitting procedure provided good results. The frequencies and

linewidths were obtained by fitting log
[
EK

q,ν(ω)
]
, which provides better sensitivity than

fitting EK
q,ν(ω) itself. Then, Eq. 5.7 was fit to the data points within 2 orders of magnitude

of the maximum value in a given spectrum. Finally, the points within ±20% of the fitted

value of ωq,ν were used to re-fit the equation, yielding final values of ωq,ν and Γq,ν .

5.3.2 Verification

In order to verify my implementation of the method, I reproduced the calculation in Ref. [123]

for the relaxation times in LJ argon at a temperature of 10 K. To facilitate comparison, for

this calculation I used a matching cutoff distance of rcut = 2.5σ = 8.378 Å in the LJ potential,

rather than the value of rcut = 4.5 Å used elsewhere in this work to include only nearest

neighbors. All other settings mentioned in the previous section are the same as those of

Ref. [123]. Two examples of calculated | ¯̇ξq,ν(ω)|/(2πtf) (colored dots) and the corresponding

fitted Lorentzians (colored lines) are shown in Fig. 5.4a. The spectra are fit well by Eq. 5.7

over four orders of magnitude, indicating that the SMRTA is valid for this system. For each

mode, the frequency calculated from harmonic lattice dynamics is also plotted (gray lines).

As expected, the actual normal mode frequencies are close to the harmonic values, but slightly

lower due to anharmonic softening at elevated temperature. Similar fits were obtained for
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Figure 5.4: NMD results for the same system simulated in Ref. [123]. Compare with their
Fig. 3. (a) Calculated and fitted spectra of kinetic energy (dots and lines) in two modes with
their harmonic frequencies (vertical lines). (b) The relaxation times of all sampled modes.

all of the sampled modes, and the resulting frequencies and relaxation times are shown in

Fig. 5.4b. They are normalized by the LJ time scale,
√
mσ2/ε, for direct comparison with

Fig. 3 of Ref. [123]. The data are very closely reproduced.

As a final point, I performed the same calculations in the 3D LJ Ar material with only

nearest-neighbor interactions at T = (5, 15, 25, 35, 45) K to obtain the dispersion relations

ωq,ν(q) as a function of temperature. Those results are plotted in Fig. 2.2 and discussed

in Section 2.5. The normal mode frequencies agree remarkably well with experimental

measurements of the dispersion in real Ar at 4 K, and they exhibit the expected softening

with temperature.

5.4 Results: Relaxation times

With the NMD method established, I use it here to obtain the relaxation times of normal

modes in Ar and heavy Ar over the same temperature ranges used in the NEMD simulations

of Chapter 3. I present the results separately for the one- and three-dimensional systems.
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Figure 5.5: Energy spectra in two arbitrary normal modes sampled from (a) one-dimensional
LJ Ar at 8 K and (b) three-dimensional LJ Ar at 35 K.

5.4.1 In one dimension

I have fitted the frequencies and relaxation times of 1D Ar and heavy Ar at temperatures

ranging from 2 K to 12 K. Two such fits to data at 8 K are shown in Fig. 5.5a. The collected

spectra are only well fit by Lorentzian functions over roughly one order of magnitude,

which shows that the SMRTA is less valid in 1D systems than in 3D systems. This is not

entirely surprising, since researchers have long recognized that thermal transport in one-

dimensional chains is poorly behaved and has a deep research field of its own—for example,

see Refs. [107, 125–131]—that is well beyond the scope of this work. The main issue relevant

here is that phonon–phonon processes are limited in 1D chains due to their low dimensionality,

leading to phenomena such as divergent thermal conductivity with system length [107, 131].

For the present purposes, the limitation on possible phonon–phonon scattering processes is a

likely explanation for the imperfect fitting of the kinetic energy spectra to Lorentzian peaks.

Nevertheless, in the absence of a better model for the normal mode energy spectra, fitting

to Eq. 5.7 provides a reasonable estimate of the timescale of energy relaxation. This is similar

in spirit to the estimates in Ref. [123] using the virtual crystal approximation to extract the
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relaxation times in random alloys. The resulting relaxation times are shown in Figure 5.6.

They encompass 3–500 ps in Ar at 2 K and 4–1000 ps in heavy Ar at 2 K. In each system, the

relaxation time falls roughly as ω−1 at low frequencies and more steeply at high frequencies.

Increasing temperature also shortens the relaxation time, roughly as T−1. As the temperature

increases past ∼ 8 K, the relaxation times in both systems begin to grow shorter than the

periods of oscillation of the normal modes, as indicated on the plots by gray lines.

The relaxation time of each mode can then be readily transformed into a mean free path

using knowledge of the group velocity: Λq,ν = |vq,ν |τq,ν . In the one-dimensional chain, the

group velocity can be calculated analytically based on the sinusoidal dispersion relation,

Eq. 2.16. The resulting mean free paths are shown in Figure 5.7. Over the range of simulated

temperatures, the mean free path of most normal modes decreases by an order of magnitude

or more. The mean free paths of the lowest-frequency modes are in the range of hundreds

of nm at T = 2 K and decrease to tens of nm at T = 12 K.

5.4.2 In three dimensions

Likewise, I have fitted the frequencies and relaxation times of 3D Ar and heavy Ar at

temperatures ranging from 5 K to 45 K. Two such fits to normal mode spectra at 35 K are

shown in Fig. 5.5b. These spectra are better modeled by Eq. 5.7 than the spectra in the 1D

system.

The relaxation times of all of the sampled modes are shown in Figure 5.8. They encompass

10–200 ps in Ar at 5 K and 20–400 ps in heavy Ar at 5 K. The relaxation time falls roughly as

ω−2 at low frequencies, as expected [132, 133], but exhibits a more complicated dependence

at higher frequencies. I then convert these relaxation times into mean free paths, plotted

in Fig. 5.9. Unfortunately, the group velocities vq,ν = ∇ων(q) throughout the 3D Brillouin

zone are more difficult to calculate analytically than in 1D (see Section 3.4 of Ref. [123]),

and the q-point density in the V = (10a)3 system is too coarse to numerically approximate

the gradient by finite difference. Therefore, I only obtain the mean free paths of modes along
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Figure 5.6: Relaxation times for normal modes in one-dimensional Ar (blue to red) and heavy
Ar (cyan to orange) at temperatures T = [2, 4, 6, 10, 12] K.
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the 〈100〉 and 〈111〉 directions for which Eq. 2.16 is valid, given the correct interplanar force

constants [93]. The mean free paths decrease by an order of magnitude over the range of

simulated temperatures, similar to the decrease observed in 1D systems. The mean free paths

of the lowest-frequency modes are in the range of 100 nm at T = 5 K, and they decrease to

tens of nm at T = 45 K.

5.5 Discussion

The results presented in this chapter enable further discussion on two issues: (1) the transition

from ballistic to diffusive transport with increasing temperature and (2) the role of the phonon

distribution in conductance at high temperature.

5.5.1 Ballistic and diffusive transport

First, the energy distributions presented in Section 5.2 show that, in both the 1D and 3D

systems, the transport is ballistic in simulations at the lowest Tnominal and diffusive at the

highest. Some ballistic-to-diffusive transition must occur in the intervening temperatures, and

the mean free paths presented in Section 5.4 provide information to elucidate that transition.

The temperature trends in the energy distributions are qualitatively consistent with those in

the mean free paths—as temperature increases in the LJ system, the mean free path decreases

and the energy distribution tends to equilibrate among the normal modes.

However, I am not fully confident in the quantitative comparison between the two

calculations. The calculations appear to be consistent in the 3D system, but not in the

1D system. For example, in the 3D system at Tnominal = 10 K, the energy in modes above

q/qmax ∼ 0.4 appears to have relaxed partially, but not completely, indicating that the mean

free paths are on the same order of magnitude as the lead length of 20 nm. Indeed, the

corresponding mean free paths in Fig. 5.9 are about 10 nm. On the other hand, the 1D

system at Tnominal = 6 K also exhibits a partially-ballistic, partially-diffuse energy distribution.
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Figure 5.8: Relaxation times for normal modes in three-dimensional Ar (blue to red) and
heavy Ar (cyan to orange) at temperatures T = [5, 15, 25, 35, 45] K.
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However, the corresponding mean free paths in Fig. 5.7 are only a few nm, much shorter

than the lead length of 1.5 µm. In principle, it may be possible in the future to make this

comparison more rigorously by using the relaxation times as input to iterative solutions of

the Boltzmann transport equation (Eq. 2.32) to obtain nq,ν , and hence Eq,ν . This approach

is not new [102], but as mentioned in Section 2.4.2, applying it to interfaces requires the

transmissivity αq,ν as input, for which there is still little consensus on effective models.

Therefore, at present, it is unclear whether solutions to the BTE can provide physically

meaningful results in interface-dominated transport.

When compared with the results of Chapter 3, it also appears that the shift from ballistic

to diffusive transport may be associated with a change in the trend of h(T ). The energy

distributions show that the transition occurs around roughly 6 to 8 K in the 1D systems

(Fig. 5.2.1) and around 20 K in the 3D systems (Fig. 5.2.2). The trends in h(T ) also

appear to change behavior near those temperatures. This aligns with the findings of Liang

and Keblinski [134, 135], who investigated the effect of ballistic transport on interfacial

conductance by inducing diffusive scattering at the far walls.

5.5.2 The phonon distribution and thermal conductance

Although the ballistic effects on interfacial conductance are interesting in certain applications,

such as in superlattices [43], they are also often treated as an artifact in determining the “true”

conductance under a thermal distribution of phonons. It is therefore preferable to conduct

simulations in the diffusive regime, in which scattering mechanisms are strong enough to

thermalize the phonon distribution. In that context, the results of this chapter help identify

the subset of simulations in which transport is diffusive: evidently, the 1D simulations at

Tnominal & 8 K and the 3D simulations at Tnominal & 20 K. In those regimes, the values of

h(T ) calculated in Chapter 3 increase with temperature roughly linearly, which corroborates

previous findings in MD [75, 82].
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In this section, I seek a qualitative explanation for this behavior in h(T ) that is related

to nq,ν , since the results of Chapter 4 suggest that the other suspected culprit, αq,ν , is

unlikely to be responsible. However, within the noise of the collected data, I observe the

apparently uninteresting behavior that nq,ν → nB–E(ωq,ν , T ) as T increases in the diffusive

regime: see Figs. 5.2e and 5.3e. Therefore, in agreement with Landry and McGaughey [75], I

find no support in my simulations for Simons’ correction [26] to the distribution to account

for disruption by a non-zero heat current. My results do, however, support the idea that

the distribution is strongly disrupted by the interface, albeit at low temperatures, not high

temperatures.

The physical picture most consistent with these results can be seen as a conglomeration of

models described by Duda et al. [81], Wu and Luo [83], and Murakami et al. [84] to explain

the results of molecular dynamics simulations. In this picture, the transmissivity remains

relatively unchanged as temperature increases. However, the temperature increases the rate

of inelastic phonon processes in the bulk materials, which are responsible for the anomalous

conductance.

The results presented in Chapters 3, 4 , and 5 in the 1D and 3D Ar/heavy Ar system

are consistent with this picture. The transmissivity does not change much with increasing

vibrational amplitude and therefore “equivalent temperature” (Section 4.2). Notably, the

maximum frequency of transmission stays fixed at 1.15 THz, which is the highest frequency

of any modes in the heavy Ar. Therefore, the phonons reflected back into the Ar lead

have a highly non-equilibrium distribution, with excess energy in modes above q/qmax = 0.4

(Section 5.2). That reflected energy must transfer into modes of lower wavenumber/frequency

before it can later transmit through the interface. At low temperatures, such processes

happen very slowly, and the reflected energy can only contribute at a slow rate to the flux

through the interface. As temperature increases through the ranges simulated in this work,

the relaxation times decrease by an order of magnitude or more (Section 5.4), which allows

the non-equilibrium distribution of phonons to rethermalize more rapidly. This enables the



5.5 Discussion 95

excess high-frequency phonons to transfer energy at a faster rate to lower modes and transmit

through the interface, leading to a higher thermal conductance (Section 3.2).



Chapter 6

Conclusions

“And then came the grandest idea of all! We actually made a map of the country,
on the scale of a mile to the mile! ”

“Have you used it much?” I enquired.

“It has never been spread out, yet,” said Mein Herr.

— Lewis Carroll, Sylvie and Bruno Concluded, 1893 [136]

In this chapter, I summarize the findings of this work in a concise map that might be

more easily spread out, in hopes that it can be judged alongside other work on this topic. I

provide this summary in Section 6.1, and based on those conclusions, I suggest new directions

for exploration in Section 6.2.

6.1 Summary of contributions

In this work, I have investigated the thermal conductance at interfaces between non-metallic,

crystalline solids. At very low temperatures (tens of K or less), the acoustic mismatch

model (AMM) and its derivatives accurately predict the interfacial conductance between

solids. However, as written by Prof. Gang Chen in his text, “despite intense research,

there is no generally accepted way to calculate the thermal boundary resistance at higher

temperatures” [100]. In many cases, the diffuse mismatch model (DMM) provides somewhat

better agreement than the AMM, but it has still been shown to both underpredict and
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overpredict experimental data by an order of magnitude or more. In Chapters 1 and 2, I

identified several reasons that experimental measurements are believed to differ from the

DMM, and I put them roughly into two categories: those that tend to decrease conductance

below the DMM, and those that tend to enhance it. The mechanisms for reduced conductance

are relatively well understood, at least qualitatively, and I do not address them in this

work. However, the mechanisms for increased conductance are very poorly understood.

Several different physical mechanisms have been proposed to explain the same experimental

measurements of conductance far in excess of the DMM and AMM (Sections 1.3.4 and 2.4).

The leading hypothesis appears to be that the excess conductance arises from the onset of

inelastic phonon transmission across the interface [39, 67, 68, 82]. Several models have been

proposed to account for this effect in various ways [76–78, 80], but little has been done to

evaluate their relative validity.

Therefore, the main goal of this work was to compare various hypotheses to explain the

anomalously high thermal conductance at ideal interfaces at high temperature. The central

scientific contribution of this work is to assemble a diverse set of evidence, all collected in the

same material systems, based on which I identify the most likely explanation: that the excess

thermal conductance is caused by an increased rate of thermalization of phonons near the

interface. This main conclusion is based on several basic findings that I have presented in

Chapters 3 to 5, which represent contributions in their own right. I summarize them here in

a framework leading to the main conclusion. First, here are the findings that address the

connection between the trend in h(T ) and inelastic phonon processes:

• Anharmonicity of interatomic forces correlates with an increasing trend in h(T ) (Sec-

tion 3.2). In a system with only harmonic forces, h(T ) is constant.

• Anharmonicity of interatomic forces also correlates with inelastic phonon processes at

an interface (Section 4.2) and in bulk materials (Section 5.4).
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Therefore, I infer that the increasing trend in h(T ) can indeed be explained by inelastic

phonon processes of some kind. I then determine the importance of inelastic processes at the

interface alone:

• In systems with anharmonic forces at the interface only, and harmonic forces everywhere

else, h(T ) is constant in 1D systems (Section 3.2.1) and increases only weakly in 3D

systems (Section 3.2.2).

• In the same systems, the transmissivity of individual modes actually decreases slightly,

despite the anharmonic forces enabling inelastic scattering (Section 4.2).

From these observations, I infer that inelastic processes at the interface are not the dominant

mechanism for the increasing trend in h(T ) at high temperature. This does not support the

prevailing explanation. Finally, I consider the importance of inelastic processes elsewhere:

• At low temperatures, the interface acts as a low-pass phonon filter that causes a strong

non-equilibrium phonon population in the material with the higher maximum frequency

(Section 5.2).

• As temperature increases in an anharmonic system, the phonon relaxation times decrease

(Section 5.4) and the phonon distribution approaches an equilibrium distribution

(Section 5.2).

The increasing trend in h(T ) is therefore correlated with the phonon distribution approaching

equilibrium: nq,ν → nB–E(ωq,ν , T ). Therefore, I see no evidence that a deviation of nq,ν from

equilibrium, as in the correction proposed by Simons [26], causes increases in h(T ) at high

temperature. On the contrary: I infer that the excess conductance is actually enabled by the

phonon–phonon scattering processes in the bulk material, as described in Section 5.5.2.

Although this conclusion aligns with some previous work [81, 83, 84], it differs from several

experimental [38, 39, 67, 68] and theoretical works [29, 76, 78, 80, 85, 137] that explain the

excess conductance in terms of inelastic transmission. In particular, the recent work by
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Hohensee et al. [68] not only supports the explanation based on inelastic transmission, but it

also provides some experimental evidence that phonon rethermalization is not the dominant

mechanism as proposed here. They observed that the thermal conductance at several

metal/diamond interfaces is insensitive to the presence or absence of nitrogen impurities in

the diamond, within their experimental uncertainty. If near-interface rethermalization were

the dominant cause for the excess in h(T ), the rethermalization rates would presumably be

different in nitrogen-rich and nitrogen-free diamond, but no such difference was evident in

the conductance measurements. In addition, diamond is a very stiff material with relatively

small anharmonicity, and it remains to be shown whether the phonon–phonon scattering

rates are high enough to explain the high conductance. These are important questions to be

addressed in further evaluating the present hypothesis.

Whichever hypothesis proves correct—whether the excess h(T ) is driven by inelastic

transmission or inelastic rethermalization—future work should further investigate inelastic

processes at non-sharp interfaces, unlike those used in this work. In other words, the

understanding of individual scattering mechanisms (interdiffusion, roughness, etc. in addition

to the phonon–phonon scattering examined in this work) is reaching the point where it will be

possible to understand their simultaneous effect on interfacial transport, which is necessary

at real interfaces. Other computational work has generally shown that a “small” departure

from a sharp interface can actually enhance conductance, whether by a layer of intermediate

vibrational impedance [112], interdiffusion [112, 138], or roughness [65, 66]. In most cases,

increasing the degree of the “defect” eventually results in a reduced conductance, so that there

is some small, optimum level for enhancing conductance. Most experiments to date appear

to be in the latter regime, observing only reduced interfacial thermal conductance due to

interdiffusion [51], dislocations [55], and roughening [56, 139]. However, recent experiments

by Gorham et al. [58] show that ion irradiation can indeed increase the thermal conductance

at Al/Si interfaces, both with and without the native oxide interlayer, in support of the

computational work. Adding the role of inelastic scattering to this picture will be an important
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but non-trivial task. Some experimental work does suggest that inelastic processes may be

important even at interfaces that are less vibrationally mismatched than the metal/diamond

interfaces: for example, see the measurements of h(T ) at metal/Al2O3, Cr/Si, and Pt/AlN

interfaces by Hopkins et al. [52, 53]. At several of these interfaces, the measured h(T )

falls significantly below the DMM, presumably due to conductance-reducing mechanisms

discussed in Section 1.3.3. However, the trend in h(T ) rises much more sharply than the

DMM prediction, in contrast with the reduced and flattened trend in h(T ) observed at

roughened Al/Si interfaces [56, 57], for example. These different observed trends suggest

that inelastic processes have different levels of relative importance in systems with strong

scattering from other mechanisms, which presents the challenge of simultaneously modeling

several scattering mechanisms that may not be independent. From another perspective,

these systems with different levels of contributions from each scattering mechanism present

opportunities for further evaluating the details of the inelastic processes—e.g., elucidating the

relative importance of interfacial and bulk inelastic scattering—as Hohensee et al. [68] have

done in their comparisons of metal/diamond conductance with types 1A and 2A diamond.

The findings of this work represent a contribution to the fundamental science outlined in

Sections 1.3 and 2.4. They could also have value, I hope, in the research and development

of devices such as those described in Section 1.1. Traditionally, the primary consideration

in quickly judging the conductance between two materials has been the matching of elastic

(i.e., harmonic) properties. Recently, attention has also turned to interfacial bonding as

an important parameter [140], especially at weak interfaces. In light of this work, anhar-

monic properties may also warrant investigation as an important determinant of interfacial

conductance, both in terms of intrinsic material properties (e.g., Grüneisen parameters) or

potentially by manipulation through doping or strain engineering.
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6.2 Future work

There are many possible avenues to clarify and extend the conclusions of this work. Here, I

suggest just a few.

• Formulating a model. The true test of the conclusions of Section 6.1 is whether a

model accounting for bulk inelastic scattering actually provides agreement with the h(T )

trends calculated in Chapter 3. In my view, this is an important intermediate milestone

on the road to modeling experimental measurements of h(T ), since the complexity of

real interfaces far exceeds our current understanding of interfacial transport.

• Deeper investigation of the same systems. In the chain of inferences presented in the

previous section, some are weaker than others, and further investigations could be

warranted. For example, I pointed out in Chapter 4 that, although the wave packet

simulations see a decrease in αq,ν with amplitude, perhaps this is an artifact of the

“0 K” system. Simulations would be useful that could identify mode-wise transmissivity

under “realistic” conditions with fully occupied populations of phonons, for example

using the methods of Sääskilahti et al. [85]. As another example, solutions to the BTE

(Eq. 2.32) would be an extremely valuable way to check the consistency of all of the

quantities calculated in this work: h, α, n, and τ .

• Different materials. Most of the experimental observations of excess conductance have

been made between highly mismatched materials [38, 39, 50, 67, 68], much more so

than the Ar and heavy Ar simulated in this work. It could be interesting to simulate

materials whose elastic properties are more highly mismatched. Similarly, one might

better reproduce some other aspect of the experimental observations, such as the

mismatch in anharmonic properties; the interfaces of greatest excess conductance were

formed between diamond and a heavy metal such as Pb or Bi.



6.2 Future work 102

• Non-ideal interfaces. Although the excess conductance at certain interfaces holds

fundamental interest, the transport at the vast majority of real interfaces is dominated

by defects and other conductance-reducing effects (Section 1.3.3). In my view, any

applications of the findings of this work in real systems would also contend with (or

leverage!) those effects. Therefore, it would be valuable to understand the role of

inelastic processes in systems with non-ideal interfaces as well.



Appendix A

Molecular dynamics code

I wrote a program in the C programming language to produce the MD results in this work.

At the time of writing, the code and its documentation are available in a public repository

hosted at https://bitbucket.org/namqle/nqlmd and will be maintained there indefinitely.

If unavailable there, the code is available to interested readers on request. In this appendix, I

reproduce the manual accompanying the code.

A note on tricks for improving computational efficiency: Since in this work I am interested

only in solid systems with no diffusion, atoms maintain the same neighbors throughout

the simulation, and the simulations would not benefit from the use of cell lists. Therefore

only the use of neighbor lists is implemented in my code. In addition, I have implemented

shared-memory parallelization using OpenMP, which was especially useful to reduce the wall

time during debugging of very large simulations. The parallelized code is available in the

public repository under the “parallel” code branch; the main version is not parallelized.

A.1 Getting started

nqlmd is code for running classical molecular dynamics (MD) simulations. It’s written in C. I

wrote it to do my dissertation research, which means (1) it’s very bare-bones, and (2) it’s

geared toward simulations of heat transfer in solid, insulating materials. If you’re looking for
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a general-purpose MD program with good documentation, a large user community, lots of

potential functions, and so on, better choices might be LAMMPS or NAMD. However, for

very simple simulations, or for situations that require diving into source code, the simplicity

of nqlmd might be attractive.

Last warning: I’ve only used this on Linux and OS X computers. So, for example, the

makefile won’t work on a Windows machine. It’s all just plain C code though, so there

should be no trouble compiling “manually.” Famous last words.

A.1.1 Getting the code

The code lives in a public Git repository at https://bitbucket.org/namqle/nqlmd. If you

like Git, you know what to do. Otherwise, you can also find a link there to download a zip

file. As of this writing, Bitbucket says that the package is 20.3 MB, which is a dirty lie—it

should just be a couple hundred kB. Either way, you should end up with a directory whose

contents are listed on the webpage (and, if all goes well, in README.md).

For Git users, note that there are three branches: master, dev, and parallel. master

should be a (relatively) stable version, while dev often has new features, some of which you

might find useful. parallel was an attempt to parallelize the code, which successfully imple-

mented shared-memory parallelization using OpenMP. Distributed-memory parallelization

using MPI would be nice, but has not yet been implemented. (Help would be welcome. . . )

A.1.2 Compiling it

Navigate to the src/ directory, where you should find a handful of code and header files.

There’s also a makefile, and if you’re lucky, you might be able to simply type make. The

code uses the C99 standard, and the makefile assumes gcc as your C compiler.

If that’s no good, you can probably compile it yourself. For me, the simplest working

command is something like

gcc -std=c99 main.c common.c read_script.c md.c forces.c routine.c cleanup.c -o ../bin/nqlmd

http://lammps.sandia.gov
http://www.ks.uiuc.edu/Research/namd/
https://bitbucket.org/namqle/nqlmd
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issued in src/. (If you care, Section A.3 has more details about these files and the code

itself.)

If all goes well, by hook or by crook there will be an executable in bin/ called nqlmd.

A.1.3 Testing it

Go to examples/example01/, where you should find an input script (example01.script)

along with a few different choices of initial configuration files (example01_0K.init, example01_40K.init,

and example01_80K.init). If you peek in the input script, you should see a line that specifies

which initial configuration file is actually being used; see Section A.2.1.

In examples/example01/, try

../../bin/nqlmd example01 &

which should set a simulation off running in the background. It takes 14 seconds to finish on

my desktop from 2010. The simulation should have written a log file called example01.log—

check this out.

The input script also specifies a routine called write_cfg, which writes the complete

atomic configuration at regular specified intervals. Therefore, you should also see that the sim-

ulation generated one *.cfg file every 500 timesteps. These are written in a format compatible

with the visualization program Atomeye (http://li.mit.edu/Archive/Graphics/A/).

A.2 Running your own MD simulations

Once you’ve compiled and tested nqlmd, you’re ready to run your own simulations!

A.2.1 Setting up the simulation

All you need are two files: (1) an input script to tell nqlmd what to do and (2) a file containing

the intial configuration of the system.

http://li.mit.edu/Archive/Graphics/A/
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1. The input script. The name of the script must be 〈something〉.script.1 This is

a plain text file with one instruction per line, which nqlmd reads sequentially. Each

instruction consists of a keyword followed by its corresponding arguments. All recognized

keywords are listed in Table A.1. Note that lines beginning with the ‘#’ character are

ignored as comments.

# Comments begin with the ‘#’ symbol

<keyword 1> <argument 1a>

<keyword 2> <argument 2a> <argument 2b>

# You can have multiple comments to remind yourself what’s happening

<keyword 3> <argument 3a>

...

Two topics warrant a bit more detail:

(a) Potentials: Two special keywords are pot_style and pot_params, which specify

interatomic potential functions. Available interatomic potentials are listed in

Table A.2.

Say a simulation contains two atomic types, Si and Ge. Si atoms could be assigned

type 1, and Ge atoms assigned type 2. Then three pot_styles will need to be

defined, along with corresponding pot_params: for types 1–1, 2–2, and 1–2.

(b) Routines: Another special keyword is routine, which establishes “something to

be done during the simulation”. A routine might be executed every timestep

(e.g., integrate), or at specified intervals of steps. Available routines are listed

in Table A.3.

1Important: the 〈something〉 part of the filename will be used as the “jobname”. Output files will be saved
using the same jobname, with different file extensions. See Section A.2.3.
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2. The initial configuration file. The name of this file is specified in the input script

by the keyword init_file. This file contains the atomic configuration from which the

simulation starts, formatted like this:

One header line for comments, which is ignored

<total number of atoms, N>

<id1> <type1> <mass1> <x1> <y1> <z1> <vx1> <vy1> <vz1>

<id2> <type2> <mass2> <x2> <y2> <z2> <vx2> <vy2> <vz2>

...

<idN> <typeN> <massN> <xN> <yN> <zN> <vxN> <vyN> <vzN>

You’ll need to generate this file using some kind of external script; as an example, see

the Python script gen_crystal.py provided in scripts/.

The fields are self-explanatory, except perhaps id and type. The id in fact is not used

by nqlmd, but can be helpful for post-processing. The type determines interatomic

interactions. In a given simulation, the atom types should count up sequentially starting

at 1. For how they’re used, see the keyword pot_style in Table A.1, with more details

in Section A.3.1.

For examples of these two files—well, see the examples. In examples/.

A.2.2 Running the simulation

Easy: call the executable with one command line argument, which must be the prefix of your

input script’s filename. In other words, if your input script is named conductivity.script,

run it with

<path>/<to>/nqlmd conductivity

That’s it.
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Table A.1: List of keywords and their arguments for input scripts. Use them roughly in this
order.

keyword arguments comments
sim_units 〈unit system〉 Can either be “aap” (Å, amu, ps, eV) or “si” (m, kg, s, J).

NOTE: pressure is always in Nm−(d−1); d is # of dimensions.

sim_dim 〈# dimensions〉 Integer number of dimensions to simulate: “1”, “2”, or “3”. De-
termines the number of arguments expected for sim_box and
sim_pbc, as well as format of the file specified by init_file.

sim_box 〈xmin〉 Lower bound along the x axis of the simulation domain, in
length units specified by sim_units.

〈xmax〉 Corresponding upper bound.
. . . And so on. In total, specify 2 × sim_dim numbers.

sim_pbc 〈PBCx〉 Can either be “1” (on) or “0” (off).
. . . Specify a value for each dimension.

group 〈group id〉 Integer ID for this group of atoms. NOTE: group ID “0” (zero)
is reserved to encompass “all atoms”.

〈xmin〉 Define a region in the same manner as with sim_box. All
atoms found inside this region at the beginning of the simula-
tion are considered in this group.

〈xmax〉
. . .

init_file 〈config file〉 The name of a file containing the initial atomic configuration.

pot_style 〈atom type 1〉 Set the potential 〈style〉 to govern interactions between 〈atom
type 1〉 and 〈atom type 2〉. See Table A.2.〈atom type 2〉

〈style〉

pot_params 〈parameter 1〉 Format depends on the pot_style. See Table A.2.
. . .

timestep 〈timestep〉 Time between steps, in units specified by sim_units.

set_routine 〈routine ID〉 Integer ID that determines the routine’s “place in line” when
the routine list is executed: “0”, “1”, “2”, . . . .

〈routine name〉 See Table A.3 for a list of available routines, along with their
expected parameters.

〈parameter 1〉 First parameter for this routine.
. . .

unset_routine 〈routine ID〉 ID of a routine to “turn off.”

run_until 〈step #〉 Proceed with MD simulation until the given step #. NOTE:
step numbers persist over simulations within the same script.
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Table A.2: List of available interatomic potential styles and their arguments.

style arguments comments Ui,j(ri,j) =

harmonic 〈k(2)〉 2nd-order force constant, in
[energy]/[length]2

{
1
2
k(2)(ri,j − req)2, ri,j ≤ rcut

0, ri,j > rcut〈req〉 Equilibrium distance
〈rcut〉 Interaction cut off distance

anharmonic 〈k(2)〉 In [energy]/[length]2




1
2
k(2)(ri,j − req)2

+1
6
k(3)(ri,j − req)3

+ 1
24
k(4)(ri,j − req)4, ri,j ≤ rcut

0, ri,j > rcut

〈k(3)〉 In [energy]/[length]3

〈k(4)〉 In [energy]/[length]4

〈req〉 Equilibrium distance
〈rcut〉 Interaction cut off distance

lj 〈ε〉 Energy scale




4ε

[(
σ
ri,j

)12
−
(

σ
ri,j

)6]
, ri,j ≤ rcut

0, ri,j > rcut

〈σ〉 Length scale
〈rcut〉 Interaction cut off distance

A.2.3 Simulation output

In the following, I abbreviate “prefix of your input script’s filename” as “jobname”. So,

if your input script is conductivity.script, the jobname is conductivity. As you run

a simulation, the program will always keep a log written as 〈jobname〉.log. This is the

minimum possible output to expect.

Several routines will cause additional output. A special one, write_macro, causes the

program to write thermodynamic data to 〈jobname〉.log during simulations. Other routines

cause output to new files. For example, the routine called temp_profile calculates the

temperature profile across a specified dimension of the simulation domain, and it records

data in 〈jobname〉.profile.

The descriptions of routines in Table A.3 specifies any output files to expect.
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Table A.3: List of routines for use in input scripts.

routine arguments comments
integrate 〈scheme〉 Can either be “verlet” or “vverlet” (velocity Verlet),

implemented following Frenkel & Smit [90].
〈group id〉 Optional. If not specified, assumes group ID “0” (all

atoms). Useful to omit “wall” atoms from integration.

build_nblist 〈interval〉 # steps between building neighbor lists (“Verlet
lists” [90]).

〈radius〉 Distance inside which to track neighbors.

barostat 〈target p〉 Target pressure for Berendsen barostat [141] in Nm−(d−1).
〈compressibility〉 Approximate system compressibility in Nm−(d−1).
〈time constant〉 Time constant for pressure control in time units.

heat_flux 〈group id〉 Group of atoms to affect.
〈energy/time〉 Heat current to add using scheme of Jund and Jullien [116].

Can be negative to remove heat current.

temp_profile 〈dimension〉 Can be “1”, “2”, or “3” (x, y, or z): the dimension along
which to scan temperatures

〈# of bins〉 Integer # of bins to spatially discretize in the given di-
mension

〈sample interval〉 # steps between sampling the temperature in each bin
〈write interval〉 # steps between writing the average and standard de-

viation of temperature in each bin, calculated over past
samples. Data are written to 〈jobname〉.profile.

write_macro 〈interval〉 # steps between writing system-wide data to
〈jobname〉.log.

write_micro 〈interval〉 # steps between writing atomic data to 〈step〉.micro.
Anticipate large file sizes!

write_lammps 〈interval〉 # steps between writing atomic data to
〈step〉.lammpstrj, readable by VMD (http:

//www.ks.uiuc.edu/Research/vmd/). Anticipate
large file sizes!

write_cfg 〈interval〉 # steps between writing atomic data to 〈step〉.cfg,
readable by Atomeye (http://li.mit.edu/Archive/

Graphics/A/). Anticipate large file sizes!

http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Research/vmd/
http://li.mit.edu/Archive/Graphics/A/
http://li.mit.edu/Archive/Graphics/A/
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A.3 A closer look

This section takes a quick glance under the hood, which will hopefully facilitate future

revisions by myself and others.

A.3.1 Overview

The code consists of seven parts:

main Main program control.

common Global constants. Sim data structure.

read_script Reads 〈jobname〉.script.

routine Initializes routines on setup, and executes

them during simulations.

md Runs the actual MD simulations.

forces Calculates interatomic forces.

cleanup Wraps up the job; e.g., prints timing info.

The file common.h defines a type of data structure called a Sim. At the beginning of a job,

main.c creates an instance s of this structure; at any given moment during execution, s

contains all of the information about the job. For example, s->N is the integer number of

atoms in the simulation domain, s->sim_dim is the number of dimensions spanned by the

domain, and s->atom_r[i][d] is the current position of the atom with index i, projected

onto dimension d (0 → x, 1 → y, etc.). Likewise, s->atom_v[][] contains current velocities.

A.3.2 Common revisions and how to make them

For some common types of features to add, here are some corresponding checklists of necessary

changes to the code. Good luck.
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If you want to. . . Then. . .
Increase max numbers of things
(atoms, types, line length, etc.)

• common.h: change corresponding global variables

Add a new potential • common.h: add global constants to define a new
POT_STYLE_NAME_* and POT_STYLE_ID_*

• read_script.c: in read_script(), add appro-
priate entries for the pot_style and pot_params

keywords
• forces.c: in forces(), add the appropriate case

to the switch on pot_style_id

Add a new routine • routine.h: add new constant ROUTINE_ID_*

• routine.c: add case to routine_setup(), and
add case to routine_run()

• common.h: add any necessary variable declarations
to Sim_def

• common.c: initialize variables

Add a new unit system • common.h: add any necessary conversion factors
and physical constants (see below)
• read_script.c: add case for the sim_units key-
word
• read_script.c: if E units are inconsistent with
M L2 T−2, then convert any pot_params that in-
clude energy units (search for !strcmp(s->units,

"aap") for an example)
• routine.c: in routine_run(), add con-
versions/calculations to BAROSTAT, HEAT_FLUX,
TEMP_PROFILE, WRITE_MACRO, WRITE_MICRO, and
WRITE_CFG
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