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Abstract 

Genome-scale metabolic network reconstructions (GENREs) are a powerful 

computational tool for mathematically modeling the metabolic processes within a cell at a 

systems-level. The development of improved curation methods through strategic data integration 

would improve our ability to use GENREs to understand metabolic diseases and to inform 

metabolic engineering1,2. Metabolomics aims to identify metabolites within a biological system, 

which can then be integrated into a GENRE to increase its accuracy3. Due to the cost of 

gathering metabolomics data, there is a need to identify which media conditions would hold the 

most value for model curation. To this end, we developed a novel data-driven GENRE curation 

pipeline using a combination of well-established packages and in vitro aerobic growth screen 

data4–7. Production sub-networks were created using weighted parsimonious flux balance 

analysis with different objective functions based upon single products across 44 candidate 

minimal media conditions with varied carbon sources. We were able to generate a prioritized list 

of media conditions that induced the greatest variation among ensemble members, representing 

the conditions for which gathering metabolomics data would be most informative. The resulting 

data-driven GENRE was applied to determine the optimal dietary input for the generation of 

therapeutic compounds within the gastrointestinal microbiome. This study developed a novel 

data-driven GENRE curation pipeline for determining the optimal biosynthesis of therapeutic 

compounds with reduced uncertainty in network structure and increased curation efficiency. 

Keywords: Genome-scale Metabolic Network Reconstructions, Metabolomics, Systems Biology

Introduction 

The gastrointestinal (GI) microbiome represents a diverse set of organisms that play a 

critical role in human health by contributing to immune system modulation, metabolic functions, 
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and other important activities8–10. GI microbiome alteration has been linked to the pathogenesis 

of multiple GI diseases, including playing a role in the pathogenesis of inflammatory bowel 

disease (IBD)11. The reported cases of IBD are on the rise within The United States, with 

approximately 3 million adults affected as of 2015 which is a 50% increase from cases in 199912. 

Individuals are typically diagnosed between 15 and 35, but approximately 5% of all IBD cases 

occur within kids, which corresponds to as many as 80,000 children with the disease13. Those 

affected by IBD experience clinical GI symptoms and emotional burdens as a result of the 

chronic symptoms, resulting in direct and indirect costs at a population level of between $14.6 

and $31.6 billion in the United States as of 201414.  

Metabolism is one of the primary mechanisms by which the GI microbiome interacts 

with the host organism15. Prebiotics are compounds which confer specific changes to the 

composition and/or activity of the GI microbiome, which could be used to lessen the burden of 

IBD on patients16. These compounds can be used to increase production of therapeutically 

relevant metabolites in the gut of the host such as indole, succinate, and acetate. Tryptophan 

catabolites, such as indole, have been shown to contribute to many processes promoting 

intestinal homeostasis17. Succinate has been shown to positively regulate energy homeostasis and 

glucose control10,18. Short chain fatty acids, including acetate, play a critical role in the 

maintenance of gut and immune homeostasis19. Utilization of prebiotics to increase production of 

these molecules can result in positive health outcomes, especially in those afflicted with diseases 

such as IBD20. 

Escherichia coli is one of the most studied and best characterized model organisms21. 

While E. coli resides in the gut of most people, research has largely focused on pathogenic 

strains of the bacteria representing an opportunity for further research into mechanistic host-
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microbiome interactions involving the bacteria22,23. Lactobacilli and bifidobacteria are often 

considered when discussing probiotic bacterial strains, however E. coli has recently been 

characterized as a health-promoting bacterium providing its host defense against P. aeruginosa 

colonization and mortality24. Specifically, E. coli metabolic output was determined to be a 

critical indicator of resistance to infection. Therefore, E. coli represents the ideal organism for 

the characterization of a novel model development pipeline as it applies to optimizing 

biosynthesis of therapeutic compounds.   

Recent advances in sequencing technology have led to drastic cost reductions in the 

overall cost of sequencing a genome. Currently it costs approximately $1,000 to sequence a 

genome, with cost decreases outpacing Moore’s Law, which has led to thousands of sequenced 

genomes being produced25. The increased number of high-quality sequenced genomes has 

allowed for a greater understanding of a host of biological functions. Genome-scale metabolic 

network reconstructions (GENREs) are a computational framework that utilize genomic data and 

biochemical network structure to facilitate further understanding of an organism’s metabolism. 

Newly sequenced genomes can be annotated and used in conjunction with biochemical databases 

and experimental data in order to create high-quality GENREs26. The current methodology for 

manually generating high-quality GENREs requires a great degree of labor and time on the order 

of several months or even years27. Automated methods such as ModelSEED have been able to 

reduce this figure to approximately 48 hours using only an assembled genome sequence4. 

However, these methods only reach 66% accuracy based upon gene essentiality and Biolog data. 

Therefore, additional steps must be taken to develop a pipeline through which a high-quality 

GENRE may be produced, while minimizing the time to achieve this quality. Integration of -

omic data including metabolomics, transcriptomics, and proteomics into GENREs is a well-
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established method to improve upon model performance and contextualize data, with a variety of 

methods being developed for these functions28–31. Metabolomics aims to identify metabolites 

within a biological system, which can then be integrated into a GENRE to increase its accuracy. 

When implementing metabolomics data into the model, a simple glucose minimal media or 

context-specific media is used during sample preparation. The choice of media condition directly 

impacts the extracellular metabolome of the bacteria, impacting metabolomics data and, 

therefore, data integration into the existing model32. Due to the cost of gathering metabolomics 

data, there is a need to identify which media conditions would hold the most value for model 

curation. The development of an efficient data-driven curation pipeline will allow for a larger 

application of GENREs leading to advances in our understanding of metabolic diseases, inter-

species interactions, evolutionary processes, metabolic network properties, metabolic 

engineering, and allow for the prediction of cellular phenotypes1,2. 

Within this project, we have generated a novel data-driven curation pipeline for 

GENREs, which will help to guide future model reconstruction projects within the field. Further, 

we have applied this curation pipeline to create a well-curated metabolic reconstruction of E. coli 

K-12 allowing for an increased understanding of its metabolism within an aerobic environment 

through in silico predictions and in vitro growth data. The curated model and curation pipeline 

were further applied to effectively identify metabolic strategies to optimize production of 

therapeutic metabolites.  

Results 

Model Curation Pipeline 

A novel data-driven curation pipeline for GENREs was developed within this project that 

incorporates several well-developed tools (Figure 1)5,6,33,34.  The complete genome sequence of E. coli K-

12 as well as the complete annotation of its genome was used as a starting point for the curation 
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pipeline35,36. We have utilized the annotated genome of E. coli K-12 in conjunction with ModelSEED to 

generate a draft reconstruction5. The reconstruction was transferred to COBRApy using Mackinac to 

enable further development of the model and the application of advanced analyses provided by 

COBRApy33,34. In vitro growth data from E. coli K-12 substr. MG1655 grown aerobically in Biolog 

microarray plates was gathered from the EcoCyc database37. Data covered four different microarray plates 

resulting in growth data across a variety of minimal media conditions with varied carbon, nitrogen, sulfur, 

and phosphorus sources. We integrated the growth data using a python package called Medusa to generate 

an ensemble of 53 GENREs, which manage uncertainty in network structure and improve the model’s 

predictive capabilities6,38. In this pipeline, the curated ensemble is then used in conjunction with a 

predictive algorithm to determine the optimal media conditions for metabolomics data generation and 

further curation. The selection of the optimal media conditions is governed by the model simulations that 

indicate which conditions will allow for the optimal curation of the ensemble. Metabolomics data is 

particularly useful for model curation because it provides data that accounts for both the metabolic inputs 

and outputs. Simulations are performed on the base ensemble using the media conditions for which 

metabolomics was gathered. The models are constrained such that there is required production of 

 

Figure 1. Novel Data-driven GENRE Curation Pipeline. A draft metabolic model is created using an annotated 

genome from the PATRIC database input into the automated reconstruction tool ModelSEED. Phenotypic growth 

data on a variety of minimal media conditions is integrated into the model using Medusa to create an ensemble of 

models, each of which being an equally feasible solution. Metabolomics predictions are generated using the base 

ensemble network structure to determine the optimally informative media condition for metabolomics data 

generation. Metabolomics data is generated for the optimal media conditions and then used to constrain the base 

ensemble to create a final data-driven ensemble that is consistent with genetic, phenotypic growth, and 

metabolomics data.  
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metabolites detected through the metabolomics data. Reactions are added to the model from a universal 

reaction bag until the model is capable of producing all excreted metabolites and biomass. The resulting 

ensemble represents a data-driven set of models that recapitulate observed growth phenotypes and 

metabolomics data.  

A 

 

B 

 
Figure 2. Process of Generating Data to Evaluate Optimal Metabolomics Media Conditions.  

(A) A modified version of Parsimonious Flux Balance Analysis was performed using genomic likelihoods from 

ProbAnnoPy to generate constituent anabolic networks47,48. Reactions with greater likelihoods were preferentially 

included. Each sub-network has input metabolites which represent a media condition and a demand reaction for a 

certain metabolic product. The production likelihood metric is an average of all the reaction likelihoods associated 

with the reactions included in the sub-constituent network. This metric is used as a summary statistic that allows 

for the comparison of sub-constituent networks across GENREs, where a higher production likelihood 

corresponds with greater genetic evidence for that particular constituent anabolic network. (B) Production 
likelihoods are generated for each member of the ensemble with each possible combination of media condition 

and product33. Each ensemble member and media condition pair are treated as a sample with the production 

likelihood for each product as its features. This dataset is then visualized and used to develop a metric quantifying 

the variation between ensemble members to ultimately select ideal media conditions for metabolomics data 

generation.   
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Optimal Media Condition Prediction Algorithm 

In order to determine the media condition for which generating metabolomics data would 

be most valuable, we developed a novel algorithm quantifying variation in network structure. 

Sub-networks were generated to capture portions of network structure by optimizing towards 

production of a single metabolite, while minimizing overall flux through the network and 

weighting reactions by their genetic likelihoods7,39,40 (Figure 2A). A total of 1,515 out of 1,681 

reactions within the ensemble had a ProbAnnoPy-associated genetic likelihood, while 1,076 of 

these reactions have likelihoods greater than 0 (Supplementary Figure 1). This result 

demonstrates the limitation of genome annotations even for a well-studied model organism, thus 

requiring additional data types to characterize the metabolism of the organism. The genetic 

likelihood of every reaction within the constituent anabolic network is averaged to summarize 

each sub-network, termed a production likelihood. The distribution of production likelihood 

scores for each simulated metabolite can be seen in Supplementary Figure 2.  

A high-dimensional dataset was then created using the production likelihood metric for a 

combination of metabolites and minimal media conditions in order to sample various network 

states (See methods for additional details; Figure 2B). The minimal media conditions used were 

only varied by the carbon source as a proof of concept, but the algorithm can analyze entirely 

different media conditions. Carbon sources were chosen from Biolog microarray plates for which 

growth was observed in E. coli and biochemical knowledge of reactions associated with the 

metabolite existed. The resulting dataset represented a 33-dimensional feature space, which was 

visualized in two dimensions through multidimensional scaling (MDS; Figure 3). From the 

visualization, samples cluster more similarly between media conditions than between ensemble 

members indicating media conditions drive greater differences in network structure than exists 

inherently between ensemble members. Additionally, multiple media conditions cluster similarly  
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to one another, likely due to accessing similar portions of the network structure. For instance, D-

glucose and galactose cluster similarly due to occupying similar portions of E. coli’s metabolism.  

Next, we developed a metric that quantifies the variation between ensemble members for 

a particular media condition. Increased variation in ensemble members represented increased 

flux through areas of the network with increased uncertainty. In order to quantify induced 

variation, a centroid was calculated for each media condition using production likelihoods for 

each product as coordinates and ensemble members as samples (D-Mannitol in Figure 3). The 

sum of distances to the centroid in high-dimensional space was used as a metric for the variation 

induced by a media condition (Figure 4). The media conditions with the highest sum of distances 

value represent the ideal targets for metabolomics generation. These results will be used for 

future metabolomics data generation and integration into the GENRE. The top three media 

conditions based upon this metric are deoxyadenosine, alpha-D-lactose, and L-threonine.  

 
 

Figure 3. Multidimensional Scaling of Production Likelihood Data. MDS of the underlying data shows a 2-d

imensional representation of variation in ensemble members. Each color represents a media condition and points 

on the graph represent ensemble members. For each media condition there are 53 corresponding ensemble        

member points. D-Mannitol is highlighted as an example of this, with an X representing its centroid which is    

used in the variation metric developed in this study.  
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Optimal Biosynthesis of Therapeutic Products 

To apply the model resulting from the developed curation pipeline, we sought to 

determine the optimal dietary input for maximizing production of therapeutic products in E. coli. 

The therapeutic compounds: indole, succinate, and acetate were focused on within this analysis. 

Due to an inability to generate experimental data, a final ensemble using the pipeline could not 

be created. Therefore, we utilized the base ensemble with integrated growth screen data created 

through Medusa. A set of 600 media conditions were created using a combination of carbon 

sources, nitrogen sources, and the same base used while integrating growth data as described in 

Plata et al.41. 25 nitrogen sources and 24 carbon sources were randomly selected from the set of 

positive phenotypic microarray conditions for E. coli. A joint optimization problem was formed 

for each therapeutic compound where flux was maximized through a biomass objective function 

and export of the therapeutic compound. Further, the model was constrained to 90% of its 

maximum growth to ensure a potential physiologically possible solution rather than biasing the 

 

Figure 4. Distance Distribution of Media Condition Targets. Individual data points within a media condition’s 

boxplot represent the distance of an ensemble member to its media condition’s centroid. The plots are organized 

in ascending order by priority with the largest distance sums on the right.  
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model too heavily towards the production of the therapeutic compound. Simulations were 

completed across all media conditions and ensemble members. Media conditions produced 

varied results across ensemble members. Therefore, the average flux through the therapeutic 

compound export reaction was used to asses media conditions. Through this analysis, a set of 

media conditions to optimize synthesis of indole, succinate, and acetate were identified (Figure 

5).  

Discussion 

As a result of this project, we have generated a metabolomics data-driven pipeline, which 

will help to guide future model reconstruction projects within the field. Further, we have created 

a well-curated metabolic reconstruction of E. coli K-12 allowing for an increased understanding 

of its metabolism within an aerobic environment through in silico predictions and in vitro growth 

Indole Acetate Succinate

Maltose + L-Tryptophan Media L-Malate + L-Aspartate MediaCitrate + L-Threonine Media  
Figure 5. Optimal Media Conditions for Biosynthesis of Therapeutics.  Model simulations were run on each 

ensemble member across 600 candidate media conditions with varied nitrogen and carbon sources. The uppermost 

histograms represent the average therapeutic export flux across the ensemble as the result of each of the 600 media 

conditions. The maximum average flux through the therapeutic export reaction was used to determine the optimal 

media condition for biosynthesis, which was located at the rightmost portion of the distribution. The lower 

histograms represent the distribution of reaction flux values through the export reaction for each of the 53 

ensemble members used to complete the simulation. The red dashed line represents the mean of this distribution. 

A combination of Maltose and L-Tryptophan was found to result in maximum production of indole. Citrate and 
L-threonine media was identified for acetate. L-malate and L-aspartate media was identified as optimal for 

succinate production.  
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data. Through a predictive algorithm, we were able to determine the optimal media conditions 

for metabolomics data generation and subsequent integration. Thus, draft network structure can 

be used to inform curation efforts efficiently. Further, the created curation pipeline represents an 

effective compromise between automated techniques and manual curation efforts. Minimal 

required data generation and a predictive metabolomics algorithm reduces model curation time, 

enabling researchers to more effectively curate GENREs. The curated model allowed for a better 

understanding of metabolic pathways related to indole, acetate, and succinate. The improved 

confidence in metabolic capabilities related to the production of these therapeutic compounds 

allowed for the identification of the optimal dietary input to maximize production of these 

metabolites. Optimal dietary input for E. coli can be used to inform future prebiotic design with 

the potential to design a probiotic/prebiotic combination to maximize production of therapeutic 

metabolites within the GI microbiome.  

Due to coronavirus-related changes, experimental work was unable to be completed 

during the Spring semester. Consequently, in vitro phenotypic microarray data was unable to be 

gathered within an anaerobic environment. Anaerobic data of this form could be found from two 

studies which were compiled in the EcoCyc database, but provided inconsistent results37. 

Therefore, we instead performed aerobic simulations using the wealth of aerobic data available 

on EcoCyc from multiple studies. Performing this analysis in an aerobic environment modified 

the resulting metabolomics and biosynthesis predictions which would likely differ in the context 

of anaerobic metabolism. Future work will focus on gathering this data so that more accurate 

predictions of E. coli K-12 metabolism within the GI microbiome can be created. 

Additionally, metabolomics data was not able to be gathered due to coronavirus-related 

changes. As a result, proper validation of the metabolomics algorithm could not be performed 
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due to a lack of extracellular metabolomics data for E. coli K-12 across multiple minimal media 

conditions. In the future, metabolomics data will be gathered to determine the accuracy of 

metabolomics predictions. A general overview of how the metabolomics algorithm will be 

validated is described within the Methods. Due to a lack of metabolomics data, we were unable 

to integrate metabolomics data into our base ensemble. Analyses within this project were thus 

constrained to the output base ensemble from Medusa. Future validation of the curation pipeline 

will be conducted to gain a better understanding of the utility of different steps within the 

pipeline as well as the quality of the output model as a whole. We will make gene essentiality 

predictions with the curated E. coli metabolic model from the curation pipeline, and then we will 

validate these predictions using experimentally-derived gene essentiality data to assess the 

accuracy of the generated metabolic model42. In addition, we will generate growth predictions 

across all Biolog phenotypic microarray conditions and compare these to experimental results. 

Positive growth conditions were utilized within the data integration step, but negative growth 

conditions cannot be included in the Medusa pipeline. Therefore, growth predictions represent an 

excellent test set to assess if the model contains metabolic capabilities not representative of E. 

coli. Validation through growth predictions and gene essentiality will be performed on each step 

of the curation pipeline to assess the value gained at each step. Comparisons will be made to the 

existing manually-curated model, iJO1366, for E. coli K-1243. 

Materials and Methods 

In Vitro Single-Carbon Source Utilization Screen Data Collection and Processing 

Aerobic phenotype-microarray data was collected through the EcoCyc database, which 

contained a compilation of five separate studies that performed the Biolog in vitro phenotype 

microarray on E. coli K-12 substr. MG165537,44–46. Data covered four phenotype microarray 
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plates: PM1, PM2A, PM3, and PM4 which covered a variety of different carbon, nitrogen. 

phosphorus, and sulfur sources. Four out of five studies contained data on all plates, while one 

only provided data on PM1. Growth was classified into four categories: no growth, low growth, 

growth and inconsistent results based upon the results of the underlying studies. For the purposes 

of this analysis, the distinction between low and high growth did not matter so both of these 

categories were considered growth. Instances where the underlying study results conflicted were 

classified by the majority result. Cases where there was not a majority result were classified as 

no growth. Further, media conditions for which the varied source was not present within the 

universal reaction bag were excluded from the analysis due to limited biochemical knowledge of 

reactions incorporating the metabolite.  

Model Curation Pipeline 

The sequenced genome of E. coli K-12 was taken from the PATRIC database and 

annotated using their genome annotation service5. The annotated genome was input into the 

PATRIC metabolic reconstruction service which uses the ModelSEED algorithm to create a draft 

GENRE4. Growth data was gathered from the EcoCyc database and processed as described 

above.  

Growth data was integrated into Medusa to produce a base ensemble6. The Biolog base 

medium utilized in Medusa was the same as described in Plata et al.41. The ModelSEED 

universal reaction bag was used for gap filling reactions in the Medusa pipeline. Metabolites 

from the Biolog data which were missing from the model were added, including an exchange 

reaction to allow for movement of the media into the system. Instances where the Biolog media 

condition was not available in the universal reaction bag were excluded from the analysis. 110 

cycles of iterative gap filling were used to create a total of 53 ensemble members in this analysis. 
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154 total media conditions were used to perform gap filling, pulled from the phenotypic 

microarray data as described above.  

The base ensemble output from Medusa was used to predict the optimal media conditions 

for metabolomics integration as described below. The following methodology were not followed 

within this analysis due to an inability to conduct experimental work. Selected media conditions 

are used to generate metabolomics data. Metabolomics data is filtered to determine the 

metabolites that are secreted by the organism. The ensemble is constrained such that there is 

forced production and excretion of the detected metabolites then gap filling is performed until 

the model is capable of reproducing the experimental data and producing biomass. The resulting 

ensemble represents a high-quality data-driven model that recapitulates physiological 

metabolomic data and growth phenotypes.   

Constituent Anabolic Network Generation 

Probabilistic pFBA-based constituent anabolic network generation was accomplished 

using three Python packages, Cobrapy, Mackinac, and ProbAnnoPy7,33,34. The complete 

ModelSEED universal reaction bag was downloaded from the GitHub repository and filtered 

based on the annotation quality 330 score, including all reactions with an ‘OK’ quality status or 

better4. For each reaction in the ModelSEED universal reaction bag, we used ProbAnnoPy to 

generate a reaction likelihood based on the FASTA file for E. coli K-12 obtained from the 

PATRIC database5. The Cobrapy implementation of Parsimonious Enzyme Usage Flux Balance 

Analysis (pFBA) was altered to allow for each reaction’s linear constraint to be set individually 

based on the reaction likelihood. The linear constraint for each reaction was set to one minus the 

reaction likelihood (a value between 0 and 1). There were reactions included in the universal 

reaction bag that were lacking from the ProbAnnoPy template model, therefore resulting in 
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several gene-associated reactions lacking reaction likelihood scores. The reactions without 

likelihoods were left at a full minimization penalty (linear constraint value of 1). We chose to 

penalize the reactions without likelihoods to bias our results towards the construction of 

networks for which all reactions had evidence of presence. The linear constraints applied to each 

reaction based on likelihood acted as a weighting (inclusion penalty) for the minimization step in 

pFBA, resulting in the reactions with greater likelihood having a lower penalty for carrying flux; 

therefore, the reactions had a higher likelihood of being included in the constituent anabolic 

networks. Using this methodology, we generated constituent anabolic networks by setting a 

certain input media condition and constraining flux through the single metabolite objective 

function. We ran our likelihood-weighted pFBA flux minimization across each ensemble 

member and isolated the reactions that carried flux to get the desired product. The resulting 

networks consist of the direct reactions that would be part of a production pathway as might be 

shown in a typical biosynthesis pathway figure, while also accounting for all of the secondary 

and energy metabolites. Additionally, this algorithm is optimizing for three core characteristics 

in the constituent networks: 1) minimum flux through the network (loosely, the minimum 

number of reactions), 2) maximum average reaction likelihood across the constituent network, 

and 3) output flux within 90% of the optimal yield of the metabolic product.  

Optimal Media Condition Prediction Algorithm  

The base ensemble created from integrating minimal media growth screen data with 

Medusa captures the uncertainty underlying the draft metabolic reconstruction. Using this 

ensemble of models, constituent anabolic networks were generated across 44 minimal media 

conditions and 33 products. Minimal media conditions within this analysis were defined through 

the base Biolog media characterized by Plata et. al with an additional carbon source being varied 
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from condition to condition47. The chosen carbon sources were selected from Biolog PM1 for 

which there was evidence of E. coli growth. Further, carbon sources were constrained to those 

that were present within the existing model. The methodology presented here is capable of being 

expanded to include any number of media conditions and variations, the chosen media conditions 

were purely a demonstration of the technique limited by the computational demands of these 

simulations. The total number of constituent anabolic networks generated is the product of the 

number of products, media conditions, and ensemble members (76,956 in this analysis). 

Constituent anabolic networks were summarized by calculating the average genetic likelihood of 

reactions contained within the network. Media conditions and ensembles were grouped together 

as samples with the production likelihood for each product as features. In order to identify the 

media condition which induced the greatest variation in the ensemble, a centroid was calculated 

for each media condition based upon the ensemble member’s features. The summed distance of 

each ensemble member to the centroid for a particular media condition was used as an 

assessment of the variation induced in underlying network structure. Media conditions with the 

greatest value of this metric represented targets for metabolomics data integration.  

Figure Generation 

MDS visualizations were created using Scikit-learn package with a Euclidean 

dissimilarity metric in Python48. Ensemble images were repurposed from a previous paper38. 

Pathway diagrams were created within Escher49. Remaining figures were created using Python 

and Matplotlib50. 

Code and Data Availability 

All data and code utilized within this project are available with the following GitHub: 

https://github.com/ben-neubert/ecoli. 

https://github.com/ben-neubert/ecoli
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Supplementary Figures 

 

 

 

 
Supplementary Figure 1. Distribution of Production Likelihoods Across Products. Each boxplot represents 

the production likelihood value across all media condition and ensemble member combinations. Production 

likelihood values vary heavily from product to product, highlighting the differences between ensemble members 

and media conditions. 

 
Supplementary Figure 2. Distribution of Likelihood 

Scores. Boxplot showing all non-zero likelihood values 

across the E. coli model. Likelihood scores were generated 

using ProbAnnoPy in conjunction with an annotated genome 

of E. coli K-12.  


