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Abstract 

The human cognitive system is remarkably flexible and can rapidly adjust to shifting task 

demands and perceptual inputs. This flexibility is achieved through cognitive control, which 

comprises the goal-directed modulation of attention and behavior. Cognitive control is often 

measured by proxy, via speed and accuracy on behavioral tasks that are thought to access the 

brain networks of interest. However, there is much that remains unknown about how task-related 

neural subprocesses—visual perception, attention allocation, cognitive control, decision 

making—work together to produce behavior. My dissertation work uses computational modeling 

approaches to decompose behavior into its constituent mechanisms, with the overarching goals 

of understanding behaviors from the vantage point of neural mechanisms and quantifing those 

mechanisms in a meaningful way. I begin by introducing the flanker task as a viable means of 

tracking cognitive control on immediate timescales via a deep brain stimulation clinical case 

study. Next, I present competing theories for how and when cognitive control engages on a 

within-trial basis, and the mathematical details of generative models that instantiate each theory 

in a testable way. Using the best-fitting model across three experiments, I further investigate 

individual differences in the allocation of spatial attention. Finally, I package my findings into a 

tool for measuring and comparing mechanisms associated with cognitive control within- and 

between subjects, and demonstrate Bayesian-inspired methods for identifying meaningful 

cognitive changes through time.  
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Chapter 1: Introduction 

1.1    Motivation 

Human behaviors are infinitely complex, resulting from multiple levels of biological processes 

and interactions with the environment. Despite major developments in neuroscience methods for 

measuring and modulating brain activity over the past decade, there remains an explanatory gap 

between physiological changes at the level of the neuron and the behaviors that manifest 

downstream (Montague, Dolan, Friston, & Dayan, 2012). This incomplete knowledge about the 

relationship between brain and behavior is particularly problematic in the clinical setting, where 

understanding the root causes of an illness or injury is critical for identifying effective 

treatments. While drug interventions operate at the level of neurotransmitters, clinical diagnoses 

and treatments are ultimately based on behaviors and subjective reports (Wiecki, Poland, & 

Frank, 2015). To address these issues, the burgeoning field of computational psychiatry aims to 

mathematically define how the brain solves specific problems, and in the process, understand 

how mechanisms could be disrupted by illness or injury (Adams, Huys, & Roiser, 2016). 

Computational psychiatry encompasses data-driven approaches like machine-learning for 

identifying discriminable features between groups, and theory-driven approaches like generative 

modeling for mathematically specifying the neural computations that precede overt behaviors 

(Maia, Huys, & Frank, 2017; Yao, et al., 2018). Using theory-driven computational methods, the 
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goal of my dissertation work is to understand and quantify the biologically relevant mechanisms 

underlying behavior, with a focus on cognitive control.  

 

Cognitive control is a necessary set of functions in tasks involving planning, error detection, 

novelty, difficulty, and conflict: situations where relying on habitual behaviors are insufficient 

for optimal performance (Norman & Shallice, 1986). While it is known that cognitive control 

fluctuates as we complete the tasks of the day and upregulates attention as we encounter 

competing sources of information, the mechanisms and time courses of these processes remain a 

topic of active research. In the lab, questions about how and when cognitive control is mobilized 

are often investigated using speeded reaction time (RT) tasks that require inhibition of an 

automatic response. A well-studied example comes from the flanker task (Eriksen & Eriksen, 

1974; Kopp, Rist, & Mattler, 1996), in which participants are asked to indicate the direction of a 

central arrow while ignoring distractors that may be incongruent (<<<><<<) or congruent 

(>>>>>>>) to the target.  As a result of conflicting evidence for the correct response, participants 

exhibit congruency effects of slower and less accurate responses to incongruent trials compared 

to congruent (Gratton, Coles, & Donchin, 1992).  

 

In the interest of quantifying mechanisms of cognitive control, the flanker task serves as a 

centerpiece of the presented work. As illustrated by robust behavioral and neuroimaging effects 

across decades of research, the flanker task taps into the crossroads between low-level perceptual 

processing and high-level cognitive control. This, in combination with the objective, speeded 

format of the general paradigm made the flanker task an ideal testbed for model-based 

investigations of cognitive control and subsequent development of tools for subject-level 
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mechanistic assessment. My dissertation uses performance on variants of the flanker task to: 1) 

characterize the relationship between neural circuitry and global cognitive control; 2) develop 

and compare models representing alternative theories about the role of cognitive control in 

decision making using behavioral and electroencephalography (EEG) data; 3) investigate 

individual differences in the spatial allocation of visual attention under conditions requiring 

cognitive control and 4) present methods for quantifying and tracking latent cognitive control 

mechanisms through time, both within and between subjects.  

 

1.2    Organization 

In Chapter 2, I will present work that was done in collaboration with Per Sederberg and the 

Center for Neuromodulation at The Ohio State University, and was recently published in 

Frontiers in Psychiatry (Weichart, Sederberg, Sammartino, Krishna, Corrigan, & Rezai, 2020). 

As a precursor to the modeling work in Chapters 3-5, the goal of Chapter 2 is to demonstrate that 

the flanker task can access the brain’s capacity for cognitive control on a moment-to-moment 

basis. Previous studies have validated the flanker task for clinical use by confirming expected 

group-level differences in task-related behaviors requiring cognitive control. For example, 

adolescents with attention deficit hyperactivity disorder, who have difficulty focusing attention 

and ignoring distractions in their daily lives compared to healthy controls, also show reduced 

inhibitory control during incongruent flanker trials as measured by EEG (Wild-Wall, Oades, 

Schmidt-Wessels, Christiansen, & Falkenstein, 2009). My collaborators and I had the 

opportunity to test the validity of the flanker task in a novel way, via a longitudinal deep brain 

stimulation (DBS) case study. In our study, one patient with morbid, treatment-refractory obesity 

received DBS of the bilateral nucleus accumbens (NAcc) for the modulation of cognitive control 
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networks. I administered the flanker task while stimulation settings were sampled during device 

programming (i.e. active contacts, amplitude), then related acute changes in task performance to 

long-term treatment effects. The results show that flanker task performance indeed tracks acute 

changes in cognitive control as a direct result stimulation, and maps onto global treatment-related 

changes in the long term.  

 

Chapter 3 features a set of model comparison studies that was published in Psychological 

Review (Weichart, Turner, & Sederberg, 2020). Given that the flanker task appeared to tap into 

acute as well as global aspects of cognitive control in Chapter 2, the goal of Chapter 3 was to 

gain a deeper understanding of the mechanisms underlying behavior on the flanker task. The 

spotlight view of attention was the theoretical core of the project, which suggests that spatial 

attention is a finite resource that narrows in scope and increases in acuity during visual 

processing (Eriksen & St. James, 1986). With guidance from Per Sederberg and Brandon Turner, 

I systematically modified an existing model instantiation of the spotlight view (White, Ratcliff, 

& Starns, 2011) to investigate competing hypotheses for how decisions are made under 

conditions of perceptual conflict. Two dimensions of mechanisms were of particular interest: 1) 

the force that controls within-trial modulation of the attentional system and 2) the mode of 

competition between different sources of information during the task.  

 

In Chapter 4, I present a manuscript that is under review Attention, Perception, & Psychophysics 

as part of a special issue to honor Charles W. Eriksen. Through the work presented in Chapter 3, 

I identified a set of mechanisms that translated Eriksen’s verbal theory of the attentional spotlight 

into a generative model that successfully fit data across three experiments. In all three 
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experiments in Chapter 3, however, stimuli consisted of a single row of items, such that the 

spotlight was parameterized to handle 1-dimensional spatial inputs only. This is a departure from 

the verbal theory that describes a 2-dimensional spotlight, and there are several lines of 

behavioral evidence suggesting that the spotlight naturally takes on the shape of a horizontally-

biased ellipse (Andersen & Kramer, 1993; Feng, Jiang, & He, 2007; Hüttermann, Memmert, & 

Simons, 2014). Working with Per Sederberg, I reconfigured the best-fitting model from Chapter 

3 to operate in 2-dimensions and developed a variant of the flanker task in which stimuli were 2-

dimensional arrays. Model comparison methods uniquely allowed us to investigate individual 

differences in the shape of the attentional spotlight, which were potentially masked in the group-

level analyses performed in previous work.    

 

Chapter 5 focuses on packaging my work from Chapters 3 and 4 into tools for quantifying 

cognitive control, and includes portions of a manuscript that was submitted to Behavior Research 

Methods. Relating back to computational psychiatry, the broader goal of my dissertation work is 

to develop a means for quickly and objectively evaluating aspects of cognition in terms of 

biologically relevant mechanisms rather than behavior alone. In cognitive assessments of clinical 

populations, it is common to interpret performance scores relative to a priori cut-offs that are 

assumed to indicate impairment (Holdnack, et al., 2017). This method of assessment may result 

in gross over- or underestimation of within-participant changes in performance across time, 

depending on the relative distance to a diagnostic boundary. We need better ways of accounting 

for uncertainty in our measurements when interpreting cognitive measures, rather than working 

exclusively with single-value performance scores and normative standards. To this end, Per 

Sederberg and his lab have created a cognitive assessment toolbox called SUPREME (Sensing to 
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Understanding and Prediction Realized via an Experiment and Modeling Ecosystem). My 

contribution to the project was the 2-dimensional flanker task presented in Chapter 4 and the 

associated model presented in Chapter 3, as well as validation analyses for all 4 task-model pairs 

included in SUPREME. Chapter 5 provides the details and results of the flanker task portion of a 

2-session validation study, as well as model-based methods for identifying meaningful cognitive 

changes within and between individuals. 
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Chapter 2: Cognitive Task Performance during Titration 

Predicts Deep Brain Stimulation Treatment Efficacy 

Published in Frontiers in Psychiatry, February 2020 

 

As it pertains to my dissertation work, the purpose of this study was to determine if the flanker 

task is a viable way of accessing cognitive control at the level of an individual participant. We 

measured one female participant’s ability to engage cognitive control via the flanker task while 

she independently underwent standard device titration procedures for DBS of the NAcc for the 

treatment of obesity. Our primary hypothesis was that optimal device settings for long-term 

clinical outcomes would be retrospectively linked to acute improvement in flanker task 

performance during titration. Confirmation of our hypothesis demonstrates the sensitivity of the 

flanker task for within-subject assessments, and provides support for the modeling endeavors 

presented in Chapters 3-5. 

  

2.1    Introduction 

In the context of DBS, ‘titration’ is the process of adjusting stimulation parameters to reduce 

symptoms and avoid side effects. For movement disorders, DBS titration is typically 
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accomplished through trial-and-error methods whereby clinicians sample combinations of device 

settings (i.e. electrode polarity, amplitude, pulse width, and frequency) and assesses acute 

clinical effects (Volkmann et al., 2002, 2006). Trial-and-error methods have been successful 

when there is immediate, observable feedback (e.g. alleviation of Parkinson’s tremor) following 

device adjustment. When treating disorders of behavioral rather than movement regulation, 

however, trial-and-error methods become problematic. In contrast to the physical symptoms 

associated with movement disorders, behavioral disorders often do not include symptoms that 

can be objectively observed and measured in the clinical setting. The effects of stimulation can 

often take weeks or months to manifest (McIntyre et al., 2004), and it can take up to 1-2 years to 

determine the  therapeutic window for stimulation settings (e.g. Figee et al., 2013). 

 

There is an urgent need for a method of DBS titration that 1) relies on immediate effects with a 

latency of few minutes rather than weeks or months, 2) is objective, valid, and reliable, 3) is 

sensitive to incremental stimulation adjustments, 4) can be administered multiple times within a 

session without response biases, and importantly 5) predicts long-term clinical results. Here, we 

propose a cognitive task-based method for acute stimulation assessment during NAcc DBS 

titration. In light of compelling evidence that cognitive performance is sensitive to stimulation 

loci and strengths (Ezzyat et al., 2017), we investigated the possibility of using objective 

cognitive measures to guide the selection of optimal stimulation settings for NAcc DBS. 

Specifically, we chose an inhibitory control task to capture cognitive changes associated with 

different sets of stimulation parameters. Inhibitory control is broadly defined as the ability to 

suppress information that interferes with goal-driven behavior (Baumeister et al., 2014). Several 

lines of evidence have demonstrated that the NAcc plays a critical role in the complex 



 

 

9 

mechanisms underlying inhibitory control, including lesion studies in rats and local field 

potential studies in humans (Floresco, 2015).  

 

In the current study, we measured one female participant’s ability to engage inhibitory control 

via the flanker task (Eriksen & Eriksen, 1974) while she independently underwent standard 

device titration procedures for DBS of the bilateral NAcc. We selected the flanker task for the 

current project in light of behavioral and electrophysiological evidence that obese participants 

have slower reaction times and reduced error-related negativity EEG activity during inhibitory 

control tasks compared to healthy controls (flanker task: Kamijo et al., 2014; Stroop task: 

Gunstad et al., 2007, Smith et al., 2010; Go- No Go task: Mobbs et al., 2011). Additionally, 

functional magnetic resonance imaging (fMRI) work has shown that obese participants have 

reduced inhibitory control activity in the dorsolateral prefrontal cortex (dlPFC; Le et al., 2006) 

and anterior cingulate cortex (ACC; Volkow et al., 2008). These two regions have been 

exhaustively studied using the flanker task, with results demonstrating a direct relationship 

between dlPFC-ACC coactivation and flanker task performance (Luks et al., 2010; Huyser et al., 

2011; Fassbender, 2006; Clayson & Larson, 2011). 

 

Data collected during titration was analyzed retrospectively, after the patient had been identified 

as a DBS responder. Our primary hypothesis was that optimal device settings for long-term 

clinical outcomes would be linked to acute improvement in task performance during titration. 

This would support the idea that cognitive testing is a viable alternative to traditional methods of 

device titration, and is a worthwhile avenue for investigation in future work with a larger cohort 

of patients. After identifying clinically effective stimulation settings, we collected EEG data 
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from the patient to gain additional insight into the mechanisms underlying the observed effects of 

stimulation. Given that DBS of the NAcc has been successfully implemented as a treatment for 

other behavioral disorders by regulating the frontal-thalamic pathway (Passamonti et al., 2009; 

Sturm et al., 2003), we hypothesized that optimal device settings would result in increased 

frontal engagement during the flanker task as measured by EEG. This study serves as a first step 

toward developing a task-guided tool for DBS titration that has the potential to drastically 

improve the quality and efficiency of standard procedures for treating behavioral disorders.  

 

2.2    Materials and Methods 

2.2.1    Participants 

One female participant completed this non-randomized phase I safety and feasibility prospective 

open label interventional pilot investigating DBS as a treatment for obesity. Two other 

participants enrolled, but did not complete the study (Rezai et al., 2018) and did not reach 

responder criteria prior to the time of withdrawal. All participants met or exceeded the 40 kg/m2 

body mass index classification threshold for morbid obesity, were at least 24 months post Roux-

en-Y gastric bypass surgery without evidence of sustained weight loss, and were free of 

neurological or other severe medical conditions. Participants were recruited upon referral from a 

nutritionist. Magnetic resonance imaging (MRI) scans at baseline confirmed that participants had 

no damage to the NAcc target in either hemisphere. The study met institutional requirements for 

research involving human subjects, was approved by the Food and Drug Administration and 

Ohio State University’s Biomedical Sciences Human Subject Institutional Review Board 

(Protocol: 2011H0329), and was registered on ClinicalTrials.gov (Identifier: NCT01512134). All 

participants provided written informed after a full explanation of study procedures by a clinician. 
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The FDA approved an a priori responder criterion for minimal clinical effectiveness of 15% 

excess bodyweight loss. Details provided in the sections to follow refer only to the participant 

who completed the full study. 

 

2.2.2    Surgery 

DBS leads (Medtronic Neurological Model 3391) were implanted bilaterally in the NAcc via 

frame-based stereotactic procedures. The anatomical target was visualized using standard axial, 

coronal, and sagittal T1, T2 and inversion-recovery MRI-guided methods. The Medtronic Stealth 

navigation system (Stealth Framelink software; Medtronic Inc., Minneapolis, MN) was used to 

simulate the planned lead trajectory and confirm avoidance of vasculature. Ventral contact 

locations relative to the midcommisural point were: left hemisphere X=-6.51mm, Y=15.51mm, 

Z=-5.22mm; right hemisphere X=7.36mm, Y=13.60mm, Z=-5.36mm, where X is medial-lateral, 

Y is anterior-posterior, and Z is rostral-caudal. Lead locations within the NAcc were verified 

during surgery using single-cell microelectrode recordings, and were subsequently confirmed 

using a fusion of pre-op T1 anatomical MRI (3T) and 1-month post-op computed tomography 

(CT) scans. Anatomical reconstructions of lead placements were confirmed by an expert 

neuroanatomist. Reconstructed CT/MRI images of the implanted leads are shown in Figure 2.1. 

 

 

 



 

 

12 

 

Figure 2.1: Orientation of implanted leads. Postoperative anterior-posterior (A) and lateral (B) x-

ray images. Fusions of coronal (C) and left hemisphere sagittal (D) pre-op T1 anatomical MRI 

(3T) and 1-month post-op CT images showing lead placement. 

 
2.2.3    Titration  

Following a 6-week post-surgery recovery phase, the participant attended weekly 1- to 2-hour 

study visits with a physician for 12 weeks. During these study visits, device settings including 

polarity, amplitude, pulse width, and frequency were titrated based on the participant’s ratings of 

mood, energy, and anxiety, and avoidance of adverse side effects, per standard procedures. The 

physician used a systematic, iterative method to sample the parameter space of device settings 

during each visit. Contact stimulation could be monopolar or bipolar, and up to two contacts 
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were stimulated in each hemisphere at once. Exploratory settings were applied for 5-15 minutes 

each.  

 

During this procedure, the participant was intermittently asked to complete 1-5 blocks of the 

flanker task. The participant indicated the direction of a central arrow while ignoring congruent, 

incongruent, or neutral (ooo<ooo) distractors. For the incongruent condition specifically, 

participants in the flanker task need to engage inhibitory control mechanisms in order to 

overcome influence from the distractor arrows and correctly identify the direction of the target. 

Each block contained 36 trials, 12 from each condition. A custom program using the State 

Machine Interface Library for Experiments (SMILE; https://github.com/compmem/smile) 

generated the randomized task lists, presented stimuli, and logged responses. Stimuli were 

presented on a standard 14-inch laptop screen. The participant pressed the ‘J’ and ‘K’ keys on 

the keyboard to indicate left and right target directions respectively. Stimuli remained on the 

screen until a response was made, and a fixation cross appeared for a jittered duration of 0.5-1.0s 

in between stimuli. Cognitive testing via the flanker task was completely independent of device 

titration, such that the physician was not able to use the participant’s task performance to gauge 

the effectiveness of any particular device settings. Instead, the clinical research team made 

decisions about changing device settings based on week-to-week weight changes and the 

participant’s self-reports of mood and behavior. 

 

2.2.4    Long-Term Monitoring 

After the titration phase, stimulation was continuous for the first 10 months of the long-term 

follow-up phase. In an effort to conserve the battery life of the device, we introduced a brief trial 
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period of “cycling” stimulation during which the device was turned on during the day and 

automatically turned off at night. During this trial, we noted substantially-reduced battery 

consumption without negative reports from the patient, nor adverse effects on weight-loss. For 

the latter 20 months of the long-term follow-up phase, we therefore set the device to cycle 

between a 16-17-hour ‘ON’ state during the day and a 7-8-hour ‘OFF’ state at night. The 

participant attended monthly study visits for weight and body fat percentage measurements, 

nutritional counseling, and adverse effects monitoring. Stimulation parameters were adjusted as 

needed, based on participant feedback and in an effort to improve clinical effects. As in the 

titration phase, the flanker task was administered throughout long-term follow-up study visits if 

changes to the device settings were made. Weight and active stimulation settings were recorded 

each time a change was made, or at least once per month when settings were stable. Given that 

substantially more unique stimulation settings were tested during titration compared to long-term 

monitoring, stimulation settings were organized into bins based on active contacts and “high” or 

“low” voltage relative to 5V for the purposes of our analyses. Three sets of stimulation 

parameters were represented in both the titration phase and the long-term monitoring phase: 1) 

bilateral lower middle contacts, low amplitudes; 2) bilateral lower middle contacts, high 

amplitudes; and 3) both bilateral middle contacts, high amplitudes.  

 

2.2.5    EEG Recording 

The participant completed one EEG session after long term stimulation settings had been in a 

clinically effective range for 14 days (treatment settings at the time of the session: LEFT: Case+ 

1-, 5 V, 120 µs, 130 Hz; RIGHT: Case+ 9-, 3.5 V, 120 µs, 130 Hz). The participant completed 

two blocks of the flanker task (blocks 1-2) in a DBS-ON state. Bilateral stimulation was turned 
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off using a Medtronic wireless DBS Patient Programmer, and the participant completed two 

more blocks of the task in the DBS-OFF state (blocks 3-4). Stimulation was turned on again, and 

the participant completed two final blocks of the flanker task in the DBS-ON state (blocks 5-6). 

In order to capture acute neural effects of DBS, no more than two minutes passed from the time 

of switching the device ON or OFF to when a task block began. Blocks 1 and 2 were excluded 

from analyses in an effort to ensure that our results would be driven by the effects of stimulation 

rather than practice effects. Here, “practice effects” refer to incidental improvements in 

performance as participants acclimate to a task (Wenke et al., 2015; Mayr & Awh, 2009).  

 

Stimuli were presented and responses were recorded via a desktop PC connected to a 24” LCD 

display. The participant was fitted with an elastic cap embedded with 64 Ag-AgCl scalp 

electrodes arranged in an extended 10-20 array (BrainProducts GmbH, Munich, Germany), and 

seated in an electrically-shielded testing room. Electrodes were referenced to Cz. The signal was 

sampled at a rate of 1000 Hz via a DC-powered actiCHamp amplifier connected to a desktop PC. 

Electrode impedances were reduced to less than 25 Kohms prior to experimental testing, as 

recommended by the equipment manufacturer. EEG signal was monitored throughout the session 

for abnormalities using PyCorder software (BrainProducts GmbH, Munich, Germany) on the 

acquisition PC.  

 

All EEG preprocessing was completed using custom functions using the software package 

Python Time Series Analysis (PTSA; https://github.com/compmem/ptsa). Data were filtered 

from 0.25-20 Hz to eliminate low-frequency noise and electrical artifacts from the DBS 
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generator. Wavelet-enhanced independent component analysis (Castellanos & Makarov, 2006) 

removed artifacts from eye-blinks and saccades.  

 

2.3    Results  

2.3.1    Optimal Stimulation Settings for Weight Loss 

Approximately 5 months after the device was turned on, the participant reached a priori 

responder criteria of 15% excess weight loss. Over the course of the 36-month study, the 

participant lost a total of 98.8 pounds equal to 47% of her excess body weight, dropping from an 

initial body mass index of 55.8 to 39.3. Three sets of stimulation parameters were tested for 

long-term effects: (1) Bilateral stimulation of ventral-medial contacts at amplitudes less than or 

equal to 5V (minimum of 2V) resulted in the fastest rate of weight loss (47.80 lbs. lost over the 

course of 129 days of stimulation, mean change of -0.37 lbs./day). We therefore determined post 

hoc that these were the optimal settings for weight loss in this participant. (2) Stimulating the 

same contacts at higher amplitudes (>5V, maximum of 9V) were associated with only modest 

weight loss (1.61 lbs. lost over the course of 108 days of stimulation, mean change of -0.01 

lbs./day).  (3) Both bilateral medial contacts were stimulated at high amplitudes (>5V, maximum 

of 8V) for most of the study’s duration, resulting in a substantial net weight loss (47.00 lbs. lost 

over the course of 675 days), but at a less striking rate than optimal (mean change of -0.07 

lbs./day). Figure 2.2 shows the participant’s weight progression throughout the study.  
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Figure 2.2: Weight progression. Starting point is 335 lbs. at the pre-surgical baseline. Points 

correspond to individual weight measurements. Line colors correspond to the long-term device 

settings that were active in the period of time prior to each weight measurement. The horizontal 

line at 305 lbs. represents 15% excess body weight loss, the a priori threshold for determining 

responder status. OTHER: Points 1–6 include pre-surgical baseline and post-surgery recovery 

when no stimulation occurred; stimulation parameters could not be verified between points 14 

and 15 and between points 20 and 21; insufficient titration and long-term data for evaluating 

active stimulation parameters between points 9 and 11. 
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2.3.2    Task Performance 

Overall accuracy across all task blocks was near ceiling (accuracy across all conditions: 0.988, 

accuracy for incongruent trials only: 0.982). Task data from all visits were sorted based on active 

contacts and stimulation amplitudes relative to 5V. To remove within-session practice effects, 

the first block from each visit was excluded from further analyses (Wenke et al., 2015; Mayr & 

Awh, 2009). Because the incongruent task condition is most relevant for measuring inhibitory 

control, we only considered incongruent trials in our behavioral analyses. Incorrect trials and RT 

outliers were removed. RTs and within-trial trial numbers were log-transformed in an effort to 

satisfy normality assumptions (Gelman & Hill, 2006; Zou, Tuncali, & Silverman, 2003). Trial 

numbers since stimulation change were also log-transformed. Data from each stimulation 

parameter set were individually compared to DBS-OFF (Xie et al., 2017). Log RTs were 

analyzed using likelihood ratio tests of mixed-effects models where the factors were DBS status 

(ON, OFF) and log trial number. By-run intercepts and random slopes for the interaction terms 

were included as random effects.  

 

Following activation of optimal stimulation parameters (as determined by mean rate of weight 

loss; bilateral ventral-medial contacts, low amplitudes), the participant made significantly faster 

correct responses to incongruent task items compared with the device was turned OFF 

(𝛸2(1)=4.571, p=0.033). The participant’s RTs were not significantly affected by stimulation 

with any other parameter sets sampled during titration, including those tested for long-term 

treatment effects (bilateral ventral-medial contracts, high amplitudes: 𝛸2(1)=0.301, p=0.580; 

both bilateral medial contacts, high amplitudes:  𝛸2(1)=0.255, p=0.613). Long-term rate of 

weight-loss and acute cognitive performance (as measured by log trial-level RTs in the 
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incongruent task condition) for each set of stimulation settings are shown in Figure 2.3. Using 

the same factors and dependent variable, direct comparisons between optimal and sub-optimal 

parameter sets did not yield statistically significant results, and are reported in Appendix A. 

Comparing each active stimulation condition to DBS-OFF where the dependent variable was 

RTs for correct responses in the congruent condition also did not yield statistically significant 

results (bilateral ventral-medial contacts, low amplitudes: 𝛸2(1)=1.038, p=0.308; both bilateral 

medial contacts, high amplitudes: 𝛸2(1)=2.562, p=0.110; bilateral ventral-medial contacts, high 

amplitudes: 𝛸2(1)=0.0045, p=0.947). Because the regression analysis yielded a significant effect 

for incongruent but not congruent trials while optimal stimulation parameters were active, we 

believe DBS is specifically affecting inhibitory control rather than response speed in general.  
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Figure 2.3: Effects of stimulation on weight loss and flanker performance. A) Rate of long term 

weight loss (mean lbs. per day) for each set of stimulation parameters. B) Flanker task 

performance within-session. The horizontal axis is the log-transformed trial number, which is an 

indicator of how much time had passed since the relevant stimulation parameter set became 

active. The vertical axis is the patient’s log-transformed reaction time on each trial, which was 

our dependent variable metric for the patient’s performance on the flanker task. 
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2.3.3    EEG 

Incongruent trials were segmented into events and time-locked to stimulus onset. Events were 

3000 ms long, beginning 1500 ms pre-stimulus onset and baseline-adjusted to 100 ms pre-

stimulus. Events were rejected if kurtosis exceeded 5.0 or if amplitude range exceeded 

100V.  Electrodes were grouped into 4 quadrants, representing left anterior, right anterior, left 

posterior, and right posterior regions respectively (left anterior: F1, F3, FC1, FC3, FC5, C1, C3, 

C5; right anterior: F2, F4, FC2, FC4, FC6, C2, C4, C6; left posterior: CP1, CP3, CP5, P1, P3, 

P5, PO3, PO7; right posterior: CP2, CP4, CP6, P2, P4, P6, PO4, PO8).  

 

The participant performed with high accuracy throughout the EEG session (accuracy across all 

conditions: 0.985, accuracy for incongruent trials only: 0.986). RTs slowed after DBS was turned 

from ON to OFF (slope=0.067), and became faster when DBS was turned from OFF to ON 

(slope=-0.021). These results, however, were not statistically significant (ON to OFF: R2=0.164, 

p=0.443, α=0.05; OFF to ON: R2=-0.037, p=0.864, α=0.05). A 2-way ANOVA predicted EEG 

amplitude from the interaction of DBS status (ON, OFF) and log trial number following a change 

in stimulation. In order to assess EEG activity during the decision interval within each trial, we 

defined a post-stimulus time window of interest from 300-400 ms. This window has been 

selected for assessing voltage differences between congruent and incongruent flanker stimuli in 

past studies (Yeung et al., 2004), and allowed us to ignore irrelevant artifacts from early 

perceptual processes and motor-planning. Figure 2.4 shows T-values from the ANOVA at each 

electrode, split into 5 equal time bins within the window of interest. In both the left and right 

anterior quadrants, there was a drop in amplitude through time after DBS was turned OFF 
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compared to when it was turned ON. Correcting for multiple comparisons, these effects were 

significant (left anterior: F(28,27)=8.52, p=0.007, α=0.0125; right anterior: F(28,27)=9.23, 

p=0.005, α=0.0125). We did not observe a significant change in amplitude in the left or right 

posterior quadrants (left posterior: F(28,27)=4.73, p=0.038, α=0.0125; right posterior: 

F(28,27)=4.33, p=0.047, α=0.0125).  

 
 

Figure 2.4: t-statistics from the EEG analysis. We performed an ANOVA at each electrode to 

predict EEG voltage. Log trial number and DBS status (ON, OFF) were factors. The interaction 

of the factors was a significant predictor of EEG voltage in the left and right frontal quadrants of 

the participant’s scalp. Swaths of color represent t-values from the ANOVA within 5 sub-

windows of time after the stimulus appeared. 

 

2.4    Discussion 

2.4.1    Summary 

Standard trial-and-error methods of DBS device titration depend on immediate, measurable 

effects of individual sets of stimulation parameters. As clinical applications for DBS have 

expanded beyond movement disorders, device titration methods have not been adequately 
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adapted for behavioral disorders lacking overt physical symptoms. While current methods rely 

on subjective ratings of mood, energy, and anxiety to guide device titration and select parameters 

for long-term stimulation, we investigated cognitive task performance as a possible alternative. 

Based on previous work that has defined the role of the NAcc within a complex cognitive 

architecture (Sesia et al., 2010), we hypothesized that acute performance on an inhibitory control 

task during device titration could predict long-term treatment efficacy of NAcc DBS. 

Converging evidence from the current study indeed suggested a link between acute cognitive 

performance and subsequent clinical outcomes as determined by retrospective analyses.  

 

2.4.2    Interpretation of results 

Post-hoc linear mixed effects regression analyses indicated that the DBS settings linked to the 

fastest rate of weight loss produced an immediate, significant improvement in flanker task 

performance during device titration. This finding is in line with previous work investigating 

acute changes in task performance related to different DBS-ON states as a way to tangentially 

assess stimulation efficacy. Mikos and colleagues (2011), for example, used a computational 

model-based approach to link volumes of tissue activation at different contacts during DBS of 

the subthalamic nucleus to letter fluency in Parkinson’s disease patients. Their results suggested 

that cognitive performance correlates with treatment effects in motor disorders. Our results show 

that this connection potentially holds for behavioral disorders as well, even in cases when 

treatment results are not immediately observable.  

 

EEG results provided further insight into the neural mechanisms underlying the optimal DBS 

settings. DBS within the optimal parameter range resulted in a significant difference in cortical 
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amplitude at frontal electrodes compared to when DBS was OFF. These are the results that we 

would expect, given that cognitively normal subjects show a higher-amplitude EEG peak at 

frontocentral electrodes during inhibitory control tasks (Botvinick et al., 1999). We believe our 

EEG results reflect higher engagement of conflict monitoring processes when optimal DBS 

settings are active compared to a DBS-OFF state. Further work will need to determine how EEG 

effects are linked to long-term treatment outcomes, but these results are nevertheless in line with 

positron emission tomography and fMRI evidence of frontal dysfunctions in obese participants. 

In particular, obese individuals have reduced activity related to inhibitory control in the dlPFC 

(Le et al., 2006) and ACC (Volkow et al., 2008). As indicated by our results, DBS of the NAcc 

may be modulating these frontal networks and thus counteracting this hypoactivity and 

associated lack of inhibitory control in our participant.  

 

While low amplitude stimulation at ventral-medial contacts was optimal for weight loss, 

increasing amplitudes above 5V at the same contacts both diminished cognitive task performance 

and caused the participant’s weight loss to slow. Whereas high-amplitude stimulation is often 

used to achieve treatment effects by mimicking tissue lesions (Blond et al., 1992; Nuttin et al., 

1999), this is not necessarily a desirable approach for all cases. Diffusion tensor imaging 

connectivity analyses, which are included in Appendix A, illustrate why low amplitude 

stimulation proved to be effective for treatment in this case while high amplitude stimulation did 

not. Low amplitude stimulation significantly increased connectivity to dorsal attention networks 

and simultaneously decreased connectivity to the default mode network. High amplitude 

stimulation, on the other hand, resulted in expansive, nonspecific connectivity without a 

significant advantage of any network in particular. High-amplitude NAcc DBS has been argued 
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to benefit obsessive compulsive disorder due to blockade effects within an otherwise hyperactive 

information processing network connecting the basal ganglia, amygdala, thalamus, and 

prefrontal cortex (Sturm et al., 2003). For a disorder like obesity that is characterized by a 

hypoactive frontal-thalamic pathway (Passamonti et al., 2009), however, an approach geared 

toward targeted upregulation rather than attenuation appears to be more appropriate. Weight-loss 

alongside low-amplitude DBS of the NAcc was also recently observed in a handful of case 

studies (see Formolo et al., 2019 for recent review; Harat et al., 2016; Mantione et al., 2010; 

Tronnier et al., 2018). 

 

In order for cognitive testing to be a viable tool for titration, it is important to choose a cognitive 

task that is relevant to both the stimulation target and the behavioral disorder of interest. 

Selecting the flanker task for the present study involved careful consideration of NAcc function 

and its relationship to obesity. Critically located in the basal forebrain, the NAcc serves as a hub 

of communication among limbic (ventral tegmental area, substantia nigra, and basolateral 

amygdala), motor (pallidum and striatum), and executive functioning (prefrontal cortex) 

networks. Given its proximity to and functional relationships with several key structures in the 

reward pathway, NAcc stimulation has been proposed to modulate mood, impulsivity, and 

reward-seeking behaviors via dopaminergic signaling (Goto & Grace, 2005; Grace, 2000). The 

role of the NAcc in inhibitory control was of particular interest in the present study, with 

compelling support from animal literature showing that NAcc stimulation affects inhibitory 

control on an immediate time scale (Sesia et al., 2010).  Furthermore, evidence from local field 

potential recordings in humans showed that inhibitory control paradigms such as the flanker task 

specifically engage the NAcc (H.-J. Heinze et al., 2009; Voges et al., 2013). Our study aimed to 
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capitalize on the relationship between the NAcc, inhibitory control, and obesity to link 

immediate effects of DBS to treatment efficacy.  

 

2.4.3    Conclusions 

We propose that task-based titration can be extended beyond the flanker task and the NAcc, and 

future work will further investigate how we can use acute cognitive performance to predict long-

term treatment outcomes. Though the implications of our results are obviously limited due to our 

sample size, we have provided preliminary evidence that cognitive testing may be a valuable tool 

for titration.  
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Chapter 3: A Model of Dynamic, Within-Trial Conflict 

Resolution for Decision Making 

Published in Psychological Review, March 2020 

 
 
For the work in Chapter 2, my colleagues and I were presented with the unique opportunity to 

directly manipulate attention and control networks via DBS, and measure the patient’s 

subsequent behavior with the flanker task. Given that performance on the flanker task did indeed 

correlate with global cognitive control as measured by weight loss, the work presented in 

Chapter 3 aims to gain a deeper understanding of the specific cognitive mechanisms involved in 

completing the task. Here, I present competing verbal theories for how and when cognitive 

control is engaged during the task, formalize the theories into mathematical models, and compare 

theories by fitting the associated models to data from three experiments. 
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3.1    Introduction 

To achieve our goals and navigate a world that is teeming with distractions, humans rely on 

cognitive control to manipulate limited processing resources in a goal-directed manner. While it 

is known that cognitive control fluctuates as we complete the tasks of the day and upregulates 

attention as we encounter competing sources of information, the mechanisms and time courses of 

these processes remain a topic of active research. In addition to work showing post-feedback 

modulation of attention via cognitive control to improve future performance (Blais et al., 2007; 

Botvinick et al., 2004; Verguts & Notebaert, 2008), there is growing evidence that cognitive 

control acts at faster time scales as well (Braver, 2012; Goschke & Dreisbach, 2008; 

Ridderinkhof, 2002; Scherbaum et al., 2011). Several mechanisms have been proposed to 

underlie dynamic changes in attention and cognitive control, including competition between 

excitatory and inhibitory inputs (Frank, 2006; Scherbaum et al., 2012), asynchrony between 

processing areas in the brain (Verguts, 2017), and time itself (Hübner et al., 2010; Ulrich et al., 

2015; White et al., 2011). Given that all of these mechanisms within their respective 

computational frameworks can capture aspects of human behavior, substantial overlap in model 

predictions has made it difficult to draw any stable conclusions about how attentional processes 

are engaged. In the current study, we investigated the dynamic modulation of attention via 

cognitive control by developing, fitting, and comparing models representing competing 

hypotheses for how decisions are made under conditions of perceptual conflict. 

 

3.1.1    Conflict and cognitive control 

Growing evidence for moment-to-moment fluctuations in visual attention has led to questions 

about the impetus and time course of cognitive control. These questions are typically 
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investigated with paradigms like the flanker task, which require participants to inhibit an 

automatic response before making a decision. While congruent stimuli only contain evidence for 

the correct response, incongruent trials require participants to resolve conflict between the target 

and distractors before making a decision. As a result, participants are slower and less accurate at 

responding to incongruent trials compared to congruent (Gratton et al., 1992). This congruency 

effect is reduced when incongruent trials occur consecutively, and responses tend to be slower 

and more accurate following errors. Both results have been interpreted as evidence for 

modulation of cognitive control as a direct response to the presence of conflict (see Larson et al., 

2014 for review).  

 

Influential connectionist modeling work by Botvinick and colleagues (Botvinick, 2007; 

Botvinick et al., 1999, 2001, 2004; Yeung et al., 2004) suggested that a specialized monitoring 

center in the brain outputs a measure of conflict at the end of each trial, and subsequently triggers 

adjustments in cognitive control. After a conflict trial, an increase in cognitive control boosts 

attentional processing of the goal-relevant target, which in turn improves performance on the 

next trial. By analyzing flanker task simulation results, the authors found that the output of the 

conflict monitoring unit in their model resembled typical electroencephalography (EEG) effects, 

specifically, higher and more sustained peak voltage following errors compared to correct 

responses (Botvinick et al., 2001). The conflict monitoring hypothesis has garnered substantial 

support from neuroimaging work, localizing conflict detection functions to the ACC and 

identifying modulation of attentional control within the dlPFC (Kerns et al., 2004; MacDonald et 

al., 2000; Ridderinkhof et al., 2004; van Veen & Carter, 2002).  
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3.1.2    Within-trial mechanisms  

Other lines of work have questioned the timescale assumed by the conflict monitoring 

hypothesis. Evidence from behavioral and neurophysiological work has suggested that cognitive 

control is adjusted within-trial, in addition to after conflict occurs (Burle et al., 2002; 

Czernochowski, 2015; Nigbur et al., 2015; Ridderinkhof, 2002). Scherbaum and colleagues 

(2011), for example, collected EEG data while participants completed a modified flanker task 

with separate visual frequency tags for targets and distractors. By dissociating the attentional 

processing signals for the different stimuli, the researchers were able to identify within-trial 

adjustments in cognitive control alongside the occurrence of conflict, in addition to carry-over 

cognitive control engagement from previous trials. Alternatives to the conflict monitoring 

hypothesis have therefore proposed that cognitive control operates on multiple timescales 

(Braver et al., 2008; J. Brown et al., 2007; Davelaar, 2008). Braver’s dual mechanisms of control 

framework (Braver, 2012; DMC; Braver et al., 2008; De Pisapia & Braver, 2006) suggests that 

cognitive control operates in two modes: a stable ‘proactive’ mode that biases attention systems 

to anticipate and prevent conflict, and a variable ‘reactive’ mode that dynamically detects and 

resolves conflict as it occurs. Simulations of a DMC connectionist model closely matched 

behavior and blood oxygenation level dependent (BOLD) imaging data in the ACC and dlPFC 

during a cognitive control task, and provided evidence of shifting reliance on proactive and 

reactive control modes between task conditions (De Pisapia & Braver, 2006). As noted by Jiang 

and colleagues (2014), however, there is still little empirical evidence that the ACC, which has 

repeatedly been shown to monitor conflict, contains multiple distinct monitoring units operating 

at different timescales within-trial.  
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3.1.3    Models of cognitive control 

To further delve into within-trial mechanisms independent from carry-over effects from previous 

trials, theories about cognitive control have also been articulated within the sequential sampling 

class of models (SSMs). Connectionist models are particularly useful for capturing changes over 

the course of a task such as between-trial congruency effects, due to their complex, interactive 

architecture and ability to continuously update context (Ratcliff et al., 1999). The flanker SSMs, 

in contrast, were developed to explain within-trial mechanisms underlying robust conditional 

accuracy effects: faster errors than correct responses in the incongruent condition (Gratton et al., 

1988). In general, it is assumed that attention is influenced by distractor items at the beginning of 

a trial, but focuses on the target as cognitive control is engaged (De Jong et al., 1994; Desimone 

& Duncan, 1995; Mesulam, 1990). The flanker SSMs offer a range of accounts for how this 

process unfolds, drawing inspiration from the literature on attention (Hübner et al., 2010; White 

et al., 2011) and automaticity (Ulrich et al., 2015). Notably, all three of the existing flanker 

SSMs describe decision and attentional processes that are calculated as a function of time. As 

such, these models assume cognitive control processes engage based only on the stimulus at 

hand and the amount of time spent on a trial. This contrasts with the connectionist models, which 

assume cognitive control is based on layered inputs from continuously-interacting populations of 

neurons. 

 

In the current article, we introduce an SSM of the flanker task in which cognitive control and 

attention are emergent properties of the dynamics of the decision itself. Three core concepts from 

decades of research on cognitive control are foundational to this work: 1) conflict arises from the 

mutual activation of multiple choice options, 2) cognitive control is deployed as a direct response 
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to the presence of conflict, and 3) cognitive control biases visual attention toward goal-relevant 

information. We begin with a standard two-accumulator SSM framework, in which noisy 

evidence for each possible response accumulates through time until a decision boundary is 

reached. In our model, a measure of cognitive control is continuously calculated within-trial 

based on the total amount of evidence across responses. The area of the visually attended region 

is in turn calculated from the cognitive control output, narrowing onto the target as cognitive 

control increases or widening as the need for control relaxes away. As in the shrinking spotlight 

(SSP) model introduced by White, Ratcliff, and Starns (2011), the evidence for each response is 

calculated from the amount of attention allocated to target and distractors, respectively. The 

proposed model is a closed-loop system, in which cognitive functions are a passive byproduct of 

interacting processes within the broader decision and action. This framework presents a 

parsimonious alternative to modularized conflict monitoring and cognitive control in the 

connectionist models, and also serves as a biologically plausible alternative to the strictly time-

based processes in the SSMs.  

 

The idea of cognitive control as an emergent property of activation dynamics has been suggested 

previously (Mayr & Awh, 2009; Ward & Ward, 2006) and has been implemented in a 

connectionist model of the flanker task (Scherbaum et al., 2012). The current work stands apart, 

however, in a number of ways. First, our novel implementation of dynamic processing in an 

SSM framework allows us to focus on within- rather than between-trial mechanisms. Second, the 

SSM framework in combination with Bayesian-inspired analysis techniques gives us the power 

to go beyond generating data that only matches summary statistics, and to fit our model to full 

distributions choice-RT data at the individual-subject level. This allows us to assess our model’s 
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ability to capture the nuanced differences in performance from subject to subject. Third, we fit 

multiple model variants representing alternative mechanistic hypotheses to the same sets of 

observed data, and provide a quantified comparison of goodness-of-fit statistics. Given that 

nearly all published models are able to match observed data in some capacity, the ability to 

directly compare fit quality based on full distributions of data is critical for model falsifiability. 

We did not simply want to determine if a within-trial mechanism for cognitive control could 

generally capture the data, but rather wanted to identify which specific patterns of subject-level 

data were better fit by our model compared to a time-based alternative.  

 

3.1.4    Evidence accumulation processes 

We developed models with an attentional system driven by cognitive control as will be described 

in detail in Section 3.2, and compared them to models with an attentional system driven by time 

as in the SSP developed by White and colleagues (2011). Given that our mechanism of interest 

critically depends on the evidence for two-choice alternatives, defining the nature of competition 

between accumulators was a matter of importance. There is considerable discrepancy on this 

point when comparing the relevant connectionist models to the flanker SSMs. In connectionist 

models, units representing separate groups of neurons are organized into layers, which in turn 

correspond to different elements of a trial such as perception, attention, and decision. Units 

connect to one another in a weighted fashion, passing excitatory or inhibitory inputs from layer 

to layer. Though units critically affect each other, they typically maintain some level of 

independence due to random noise, nonlinear activation functions, probabilistic firing, and 

passive decay of activity (e.g. Liu et al., 2008; McClelland & Cleeremans, 2009). As such, 

activation of both “left” and “right” decision units in a flanker task may occur simultaneously. 
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The existing flanker SSMs, however, consider evidence for the two responses to be perfectly 

anticorrelated, and only evidence for the “left” or the “right” can be above zero at any given 

time. To compare these assumptions, the models in our investigation included evidence 

accumulation mechanisms that were either strongly-correlated as in the original flanker SSMs, or 

were weakly-correlated and governed by leak and lateral inhibition mechanisms to approximate 

elements of the connectionist framework. Specifically, model variants incorporated calculations 

from two well-studied SSMs: the feedforward inhibition (FFI) model (Shadlen & Newsome, 

2001) and the leaky-competing accumulator (LCA) model (Usher & McClelland, 2001, 2004).  

 

3.1.5    Summary and outline 

In our main comparison, each model contains a combination of mechanisms from two different 

categories: drive to attentional processes (time-based vs. control-based attentional processing), 

and competition between accumulators (strongly- vs. weakly- correlated). These alternative 

mechanisms are illustrated as a flowchart in Figure 3.1. As in the SSP, visual attention is 

conceptualized as a target-centered density function for a Gaussian distribution. The standard 

deviation of the attentional spotlight changes throughout a trial, either as a function of time itself 

or an internal calculation of cognitive control. Drift rates for the two accumulators in the decision 

process are determined by the area under the attentional spotlight allocated to the target and 

flankers, respectively. Evidence for each response is calculated within either the FFI or the LCA 

framework, such that the accumulators are strongly- or weakly- correlated with one another as 

they stochastically race toward a decision boundary. In the control-based models, cognitive 

control is represented as the cumulative distance between the total evidence and a threshold, . 

Because the conflict models were designed as a closed-loop system, this measure of cognitive 
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control feeds back into the calculation of the attentional spotlight standard deviation at the next 

moment in time. 
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Figure 3.1: Flowchart of alternative model mechanisms. Each of the four models in our main 

investigation contained a different combination of mechanisms for attentional focus (time-based 
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vs. cognitive control-based, Panel 1) and evidence accumulation (strongly-correlated vs. weakly 

correlated, Panel 4). Across all models, an attentional spotlight represented as a density function 

for a Gaussian distribution (Panel 2) shrinks throughout a trial. Drift rates are calculated from the 

area under the spotlight allocated to the target and flankers (Panel 3). Evidence is calculated 

within either an FFI or LCA framework (Panel 4). For control-based models, cognitive control is 

calculated as the cumulative distance between total evidence and a threshold (Panel 5). This 

measure is in turn used to calculate the standard deviation of the attentional spotlight in the 

control-based models, whereas the spotlight shrinks at a constant rate in the time-based models. 

 

We fit all models to data collected in three experiments. Experiment 1 was a standard flanker 

task with arrow stimuli, in which participants indicated whether a central target was pointing 

‘left’ or ‘right’. We were interested in observing how models with dynamic mechanisms for 

cognitive control would compare to those with time-based mechanisms in the standard paradigm, 

given that the time-based flanker SSMs have been shown to capture general congruency and 

conditional accuracy effects in the past (White et al., 2011). In Experiment 2, which was 

designed and administered by Servant and colleagues (2014), participants were asked to indicate 

whether a target circle was red or blue while ignoring congruent (same-color) or incongruent 

(different-color) distractor circles. Importantly, targets varied in color saturation across six 

different conditions while the color saturation of the flankers was held constant. Here, the models 

with strongly-correlated accumulation mechanisms would predict equal and opposite evidence 

for the ‘red’ and ‘blue’ responses across saturation conditions. Models with weakly-correlated 

accumulation mechanisms governed by leak and lateral inhibition, however, would predict 

variations in evidence for each response that correspond to the perceptual strength of the relevant 
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stimulus. In Experiment 3, EEG data were collected as participants completed a standard flanker 

task. With its high temporal resolution, EEG methods provided insight into the decision process 

during a standard flanker task that we could not get from behavior alone. Using a model-based 

EEG analysis with a latent input approach (Mack et al., 2013; Palestro et al., 2018; Turner et al., 

2017), we determined the correlation between each model’s calculations of attentional drive and 

observed neural activity at the level of each individual trial. Across these three experiments, we 

found converging evidence that control-based attention processes in combination with evidence 

accumulation mechanisms governed by leak and lateral inhibition provided the best fits to 

behavioral data and uniquely mapped onto observed decision-related signals in the brain. 

 

Our goal was to investigate the possibility of cognitive control as an emergent property of 

decision dynamics, within a framework that was amenable to data-fitting and quantifiable 

comparisons. Starting with an existing SSM that was designed to capture the behavioral effects 

of perceptual conflict, we developed, fit, and compared new model variants that represent 

competing hypotheses on the nature of within-trial decision processes. We have organized the 

current article as follows. First, we will provide an overview of the existing SSMs of behavior 

under conditions of perceptual conflict. Second, we will discuss the details of the models we 

developed to investigate the within-trial dynamics of the decision process in the flanker task, and 

the theoretical predictions of each. Third, we present the methods and results of the three 

experiments that served as a testbed for our model investigation, as well as the details of our 

model-fitting procedures. Lastly, we provide an interpretation of our results and a discussion of 

our findings.  
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3.2    Model development 

Two existing SSMs of the flanker task were central to our investigation: the shrinking spotlight 

model of White and colleagues (2011) and the dual-stage, two-process model of Hübner and 

colleagues (2010). Given our specific interest in within-trial mechanisms of attention, we 

selected these models due to their intended fidelity to findings from the attention literature. Both 

models were designed as variants of the diffusion decision model (DDM), in which a single 

accumulator accrues evidence through time toward one of two response boundaries (Laming, 

1968; Ratcliff, 1978). The single-accumulator structure is meant to represent the difference in 

firing between populations of neurons tuned to each choice (P. Smith & Ratcliff, 2004). While 

the standard DDM assumes evidence accumulation proceeds at a constant drift rate through time, 

the SSP and DSTP include alternate implementations of a time-varying drift rate in order to 

capture conditional accuracy effects in the flanker task.  

 

The SSP follows the zoom lens metaphor of attention, in which attention is represented by a 

gradient of strength about a central focal point that can expand and contract alongside the area of 

the visual field. Retinotopic mapping studies in fMRI have provided evidence that visual 

attention is indeed oriented around a central fixation point in a graded fashion (Brefczynski & 

DeYoe, 1999; Tootell et al., 1998) and that attention-related neural activity negatively scales 

with the size of the attended region in a zoom lens-like manner (N. Müller et al., 2003). This 

work contributed to the idea that attentional resources are finite, and that top-down selective 

processing is necessary for preferentially allocating attention to behaviorally-relevant stimuli and 

events (Mesulam, 1990, 1999). In the SSP, the spotlight concept is implemented as a density 

function for a Gaussian distribution that is centered on the target, and each item (e.g. arrow) in 
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the stimulus occupies one unit of perceptual space. The standard deviation of the spotlight 

shrinks as a function of time, and drift rate is calculated at each time step based on the area under 

the curve allocated to each item. Though attempts to fit the SSP to data from tasks other than the 

flanker task have yielded mixed results (Servant et al., 2014; Ulrich et al., 2015), the model is 

still able to capture a wide range of behaviors across task conditions (White et al., 2011) and 

includes recoverable parameters governing the time-varying drift rate (White et al., 2018).  

 

The DSTP, in contrast, builds off of the dual-process hypothesis, which proposes that two 

processing routes take effect when a stimulus appears: a direct, automatic route dominated by the 

perceptual qualities of the stimuli, and a slower, effortfully-controlled route that depends on the 

goal at hand (De Jong et al., 1994; Kornblum et al., 1990). As illustrated by Figure 3.2, the 

DSTP specifies two discrete stages of visual processing: 1) an early stage for identifying simple 

stimulus features and perceptual filtering, and 2) a late stage dedicated to processing the target. 

The early stage is divided into two racing diffusion processes: a stimulus selection phase and a 

response selection phase. Boundaries in each phase represent target and flanker stimuli, 

respectively. If the response selection phase terminates first, a response corresponding to the 

crossed boundary is made immediately, based only on the perceptual features of the stimulus. If 

the stimulus selection phase terminates first, the model transitions into the late, target-processing 

stage (stage 2). In Stage 2, the drift rate of the response selection phase shifts to reflect the 

outcome of the stimulus selection phase. The starting value of Stage 2 equals the value of the 

response selection process at the time that the stimulus selection process crossed a boundary. The 

direction of the drift rate in Stage 2 reflects the choice outcome of the stimulus selection phase. 

While this model can capture behavioral data patterns on a flanker task under various conditions 
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and has gained support from electromyography data (Servant et al., 2015), a recent parameter 

recovery study indicated that the drift rate parameters could not be reliably recovered from 

simulated data (White et al., 2018).  

 

 

Figure 3.2: Diagram of the dual-stage two-phase (DSTP) model. In Stage 1 (left panel), the 

stimulus selection and response selection phases are represented by racing diffusion processes. If 

the response selection phase finishes first, a response is made based only on the dominant 

perceptual features in the stimulus array. If the stimulus selection phase finishes first, no 

response is made in Stage 1, and either the target or the flankers are selected for controlled 

attentional processing. In Stage 2 (right panel), the response selection phase drift rate changes to 

reflect the outcome of the stimulus selection phase.  
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We selected the SSP as the basis of our model investigation, systematically modifying the 

original model to incorporate an attentional spotlight driven by cognitive control as well as 

strongly- and weakly-correlated evidence accumulation mechanisms. The continuous, single-

process format of the SSP was amenable to these modifications, whereas the multi-step 

architecture of the DSTP imposes constraints on when perceptual conflict can occur during a 

decision. Within our comparison of model mechanisms, our goal was to test the theory that 

cognitive control and related modulation of attention are emergent properties of the dynamics of 

the decision process. Our hypothesis, as implemented in the SSP framework, assumes that these 

dynamic processes interact and update continuously throughout a trial. While the cognitive 

control processes in the DSTP are generally time-based because the stimulus selection phase is a 

diffusion process with a constant drift rate, one could argue that attention in the DSTP depends 

on decision dynamics in addition to time alone. Specifically, the switch-point in the Stage 2 

response selection drift rate is determined by the outcome of Stage 1 processes, rather than 

occurring at a predetermined time point. We therefore fit the DSTP to the behavioral data across 

our three experiments in addition to our SSP variants as a point of comparison, given that the 

DSTP offers an alternative account of the decision-based attention processes of interest. 

Equations and details of our implementation of the DSTP can be found in the Appendix B. In the 

following sections, we provide the details of mechanisms we implemented within the SSP 

framework as part of our main investigation. 

 

3.2.1    Competition between accumulators 

While the original SSP was implemented within a diffusion model framework, we adapted the 

shrinking spotlight mechanism within a single-boundary, dual-accumulator framework. These 
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two classes of models make subtly different assumptions about which neural processes are 

represented by evidence accumulation. In the diffusion models, evidence represents the 

cumulative difference in firing across populations of neurons corresponding to each of two 

choice options. A response is made when this difference is sufficiently large, and a boundary 

representing one of the two choices is crossed. In contrast, evidence in the accumulator models 

reflects direct competition between the two most active populations of neurons during a decision. 

Here, a response is made when one population of neurons reaches a predetermined firing rate 

threshold. Models from these two classes have been fit to data and compared extensively over 

the past several years, with the general consensus being that different classes of models are 

appropriate for different kinds of decisions (P. Smith & Ratcliff, 2004). In our project, we were 

interested in testing which set of assumptions is appropriate for decisions involving perceptual 

conflict: are decisions in the flanker task based on the difference in neural representations of 

targets and distractors, or the active competition between them? 

 

Evidence accumulation in our models was mathematically defined using either LCA or FFI 

mechanisms. LCA is a well-known example of the accumulator class of models, and was 

designed to reflect observed biological mechanisms in the brain (Abbot, 1991; Amit et al., 1994). 

Each accumulator in the LCA model passively leaks evidence through time, and is inhibited 

based on the strength of the other accumulators. The FFI model, in contrast, features two 

accumulators with crossed inputs and no leak. As in Turner et al. (2016), we constrained the FFI 

model so that evidence accumulation for each choice was anticorrelated with that of the other. 

This implementation was meant to mimic the single-accumulator diffusion model framework, in 

which a movement toward one decision boundary necessitated a movement away from the other. 
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Similarly, for the constrained FFI model, one accumulator moving toward the decision boundary 

requires the other to move toward zero. Figure 3.3 provides illustrations of how evidence 

accumulation for two choice options occurs in the FFI and LCA models. Because evidence in the 

constrained FFI model is anticorrelated, the path of the decision process diffuses along a single 

plane and the total evidence can only increase if one accumulator reaches zero, as shown in 

Figure 3.3, Panel C. Figure 3.3, Panel F shows that the decision path in the LCA model is not 

isolated to a diagonal plane due to the independence of the accumulators. 

 

 

Figure 3.3: Comparison of FFI and LCA mechanisms. Left column: Graphical models of FFI (A) 

and LCA (D) processes from stimulus input to response, where dashed lines represent loss of 

evidence, open circles represent inhibition. Middle column: Simulated paths of evidence 

accumulation in FFI (B) and LCA (E) for two options in a single trial of a two-alternative choice 
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task. Right column: Phase plane plots of the same decision illustrated in panels B and E for the 

constrained FFI (C) and the LCA model (F). Black lines show the path of the decision process in 

a single trial by plotting evidence for each option against one another where 1.0 on each axis 

represents the decision threshold. 

 

3.2.1.1 Constrained FFI model 

Evidence for each accumulator  is denoted . As described in Turner, Sederberg, & 

McClelland (2016),  and activation  are represented by 

 

 

     

where   denotes the drift rate for accumulator .  represents drive for the opposing 

accumulator with respect to . To approximate the continuous differential equation for , 

we used the Euler method to discretize time, selecting a step size of dt=0.01 modified by a time 

constant of  (S. Brown et al., 2006). The degree of noise in the accumulation process is 

represented by , a driftless Wiener process distributed as . In line with the 

conventions of accumulator models, evidence  for each accumulator c was bound at zero so 

that neither accumulator could ever be negative. Evidence for each alternative accumulates 

through time until decision threshold  is reached, and a response is selected in favor of the 

winning accumulator. Response time, then, is equal to the sum of the time taken for one of the 

accumulators to reach  and non-decision time , which comprises early visual processing and 

motor preparation. Although different approaches could have been taken, accumulator starting 
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points were set in relation to the decision threshold  such that  for {1,2}. This 

choice of starting point has been selected in previous modeling work (Ditterich, 2010; van 

Ravenzwaaij et al., 2012) to align with findings from single unit recordings (Churchland et al., 

2008).  

 

3.2.1.2 LCA model 

While evidence in the constrained FFI model is strongly correlated, LCA accumulators are 

weakly correlated, linked only by lateral inhibition processes that repel the accumulators away 

from one another via parameter . Evidence for each choice passively decays throughout the 

accumulation process at a rate equal to leak parameter . Activation  at is given by  

 

                                         

Again, we used the Euler method to discretize time, selecting a step size of dt=0.01 modified by 

a time constant of . Evidence accumulates through time until the decision threshold  is 

reached, and a response is made after non-decision time . Evidence  was bound at 0 and 

starting points were set to a proportion of threshold  such that  for {1,2}.  

 

3.2.2    Drive to attention mechanisms 

Our core mechanistic hypothesis is that attention is directly modulated within-trial as an 

emergent property of decision-making dynamics. This hypothesis is based on evidence of within-

trial changes in attention and cognitive control from neuroimaging (Czernochowski, 2015; 
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Nigbur et al., 2015; Scherbaum et al., 2011) and connectionist models in which cognitive control 

is dynamically mobilized in response to the mutual activation of multiple response nodes (De 

Pisapia & Braver, 2006; Frank, 2006; Scherbaum et al., 2012; Verguts, 2017). Our proposed 

control-driven attention mechanism stands in contrast to existing SSMs of decision processes 

during the flanker task, in which attention is directly dependent upon time itself. To test our 

hypothesis against the assumption of time-dependent attention processes, we developed variants 

of the SSP with either time-based or control-based attentional spotlights. The time-based models 

mirror the original SSP so that attention, implemented as a density function for a Gaussian 

distribution centered on the target of a flanker array, gradually shrinks throughout a trial as a 

linear function of time. In the control-based models, cognitive control is calculated as the 

cumulative distance between total evidence and a threshold. The standard deviation of the 

attentional spotlight is in turn calculated as a function of cognitive control. These mechanisms 

are illustrated in Figure 3.1.  

 

Braver’s DMC framework (2012) suggests that under unpredictable conditions, cognitive control 

(specifically reactive control) is upregulated within-trial until the available level of attention is 

sufficient for conflict to be successfully resolved. Cognitive control therefore serves as an 

interface between the state of the system and limited resources, continuously making 

comparisons between the active and required levels of attention and updating them accordingly. 

To reflect hypothesized mechanisms for continuous attentional monitoring through time, 

cognitive control was operationalized as the cumulative distance between total evidence and a 

threshold ( ). The  threshold represents a learned level of evidence at which conflict can 

typically be resolved in the context of the task. At the beginning of a trial, total evidence is 
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maximally distant from , which results in the upregulation of attentional resources via cognitive 

control. As evidence increases throughout a trial and eventually surpasses , the active level of 

attention becomes sufficient for resolving conflict. Because no further attentional upregulation is 

required, cognitive control begins to decrease toward the end of the trial. Average simulations of 

within-trial cognitive control signals for each task condition are shown in Figure 3.4, alongside 

time signals for contrast. Simulations reveal higher peak levels of cognitive control on 

incongruent compared to congruent trials. This observation is consistent with theoretical 

accounts indicating that incongruent trials require more cognitive control for correct decisions 

than congruent (Botvinick et al., 1999; Gratton et al., 1992). In summary, we developed a 

measure of cognitive control that is based on the dynamics of the evidence accumulation process, 

generally builds through time, is able to relax toward the end of a trial, and naturally 

demonstrates differences between task conditions.  
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Figure 3.4: Control- and time-based signals to attention. Across models in our comparison, 

attentional spotlights shrink as a function of control (Left panel) or time (Right panel). Mean 

simulations of control and time signals are shown for a single trial in the congruent and 

incongruent conditions.  

 

Because our calculation of cognitive control is based on the sum of evidence at each time step, 

the mode of evidence accumulation (FFI vs. LCA) has notable effects on the moment-to-moment 

changes in cognitive control, and subsequently, the behavior of the spotlight. The accumulators 

in the FFI model are strongly correlated as shown by the phase plane plots in Figure 3.3, and 

total evidence only changes if one accumulator is forced to zero while the other continues to 

increase. Otherwise, an increase in evidence for one accumulator results in a decrease in 

evidence for the other, and the sum of evidence remains constant. For weakly-correlated LCA 

accumulators, however, total evidence fluctuates as rapidly as the accumulator values 

themselves. While spotlights in both FFI-control and LCA-control models share the general 

characteristics of narrowing through time at variable rates while maintaining the ability to widen 

as cognitive control relaxes, LCA-control naturally predicts a spotlight trajectory with higher 
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within-trial variability in comparison to FFI-control. Due to the possibility that noise alone 

would result in similarly-fitting models compared to the mechanisms of interest, we developed 

FFI and LCA model variants in which the spotlight is driven by time with additional within-trial 

variability. The standard deviation of the noise distribution was added as a free parameter, so that 

variability in the spotlight calculation could be added as needed to optimally fit the data. Figure 

3.5 shows calculations of attentional spotlight widths through time, generated from the FFI-

conflict and LCA-conflict models as well as time- and time+noise-based models. In the 

following sections, we will provide the mathematical details of each type of attentional spotlight 

mechanism that we explored in the current project. 

 

 

Figure 3.5: Model-generated spotlight widths through time. For each model, 50 trials were 

simulated from one participant’s best-fitting parameters. Panels show calculations of spotlight 

standard deviations through time, with each simulation displayed as a gray line to demonstrate 
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the between-trial variability captured by each model. A single additional simulation is shown as 

a red line to illustrate differences in within-trial variability. 

 

3.2.2.1    Time-based attention 

As in the original SSP, our two-accumulator implementations of the model calculate drift rate 

through time based on an attentional spotlight. Drift rate is governed by three free parameters: 

attentional strength , width of the spotlight at the beginning of a trial , and the rate at 

which the spotlight shrinks . Across models, the spotlight is a density function for a Gaussian 

distribution centered at 0 with standard deviation . The width of the spotlight is calculated 

continuously as a function of time, discretized as t:  

          

Equation 3.1 

and the area of the attended spatial region allocated to target and flanker items is given by  

 

 

where n is the number of flanker items on each side of the target on a horizontal plane. 

Allocation of spatial attention based on the area under a Gaussian curve is illustrated in Panel 2 

of Figure 3.1. Limits reflect the assumption that each item in the stimulus array occupies one unit 

of perceptual space (White et al., 2011). Drift rates for the correct  and incorrect  
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responses are calculated in each condition depending on the direction of the flanker items 

relative to the target via  

              

Equation 3.2 

. 

Equation 3.3 

 

3.2.2.2     Control-based attention 

In contrast to time being the driving force to the attentional spotlight, we defined a subset of 

models in which the spotlight standard deviation was calculated continuously as 

                                      

Equation 3.4 

where   represents cognitive control. As described previously, cognitive control was calculated 

based on the cumulative distance between the total amount of evidence in the system and a 

conflict resolution threshold , such that 

 

As in the time models, drift rates were calculated via Equations 3.2 and 3.3.  

 

3.2.2.3    Time with noise 

As shown in Figure 3.5, the control-based models allow for more variability in drive to the 

attention system compared to the time models. While this variability is a natural consequence of 
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calculating  based on the state of noisy accumulators, we wanted to investigate whether the 

addition of random variability would be equally suitable for fitting the data. As such, we 

developed variants of the time models that included an additional free parameter . Noise  was 

drawn from a driftless Wiener process such that . The standard deviation of the 

spotlight was then calculated from the noisy time-based signal, such that 

 

 . 

 

3.2.3    Summary of model variants 

Our current investigation was centered around four variants of the SSP, each containing a 

different combination of evidence accumulation mechanisms (strongly-correlated, FFI vs. 

weakly-correlated, LCA) and calculations for visual attention (time-based vs. control-based). 

Because the control-based models allow for variability in the behavior of the attentional spotlight 

whereas the time-based models do not, we included FFI and LCA variants of time models in 

which within-trial noise was injected into the spotlight calculation. Table 3.1 summarizes the 

free parameters included in each of these six models. To investigate an alternative method for 

decision-based mechanisms for attention and cognitive control, we also included the DSTP 

model. The 9 free parameters in the DSTP model are listed in Appendix B. 
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Table 3.1: Summary of free parameters across models in Chapter 3 

  Model 

Parameter Description 
FFI  
time 

FFI  
time+noise 

FFI  
control 

LCA  
time 

LCA  
time+noise 

LCA  
control 

 

rate of focus 
      

 

perceptual input strength 
      

 

starting spotlight width 
      

 

decision threshold 
      

 

non decision time 
      

 

within-trial variability  
 

  
 

 

 

conflict threshold   
 

  
 

 

leak    
   

 

lateral inhibition    
   

Total 5 6 6 7 8 8 
 

3.3    Experiments 

Data from three experiments served as the testbed for the seven model variants. The first 

experiment was a standard flanker task, which was intended to test each model’s ability to 

capture basic behavioral effects between conditions. The second experiment included a 

manipulation in which the perceptual strength of the target relative to the flanker items varied 

from trial to trial. These data were fit by adding free parameters to modify perceptual input 

strength (p) depending on the perceptual strength of each item in the stimulus array. The third 

experiment was a standard flanker task during which we recorded scalp EEG measurements. The 

models were fit to behavior alone for all experiments, and simulation methods were used in our 

analysis of data collected in Experiment 3 to observe which models most successfully mapped 

onto within-trial EEG voltage at each electrode.  
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3.3.1    Experiment 1 

Given that the SSP was designed to capture data in a standard flanker task and has successfully 

fit patterns of responses across conditions (White et al., 2011), we wanted to test all of our SSP 

model variants in this domain as well. Participants completed a standard flanker experiment, in 

which they indicated the direction of a central arrow while ignoring congruent, incongruent, or 

neutral distractor items. Although we only fit the models to data from congruent and incongruent 

trials, we hoped that the inclusion of neutral trials would boost flanker effects via increased rarity 

of incongruent trials (Gratton et al., 1992) while maintaining equal numbers of congruent and 

incongruent observations. 

 

3.3.1.1    Methods 

3.3.1.1.1    Procedure 

After providing written informed consent, participants were seated in a cubicle and asked to turn 

off all electronic devices. Instructions for the task appeared on the computer screen, and were 

read aloud by the experimenter. Each block began with a summarized instruction screen to 

remind participants of the appropriate response mappings while also providing an opportunity to 

take a short break from the task. The instruction summary remained on the screen until the 

participant pressed the ENTER key to proceed. During each trial, a fixation cross appeared in the 

center of the screen for 1000 ms before being removed. The trial stimulus then appeared on the 

screen after a jittered duration of 100-900 ms. Participants responded by pressing the ‘J’ key on 

the keyboard if the arrow in the center of the array pointed left, and the ‘K’ key if the center 

arrow pointed right. Participants were asked to respond with their right forefinger and right 

middle finger respectively. Only responses made 150 ms after the stimulus appeared were 
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recorded, and the stimulus was removed from the screen immediately after the participant made 

a valid response. Participants were given an unlimited amount of time to respond, but were 

instructed to respond as quickly and accurately as possible.  

 

3.3.1.1.2    Stimuli and apparatus 

A custom program using the State Machine Interface Library for Experiments (SMILE; 

https://github.com/compmem/smile) was written to present stimuli, track timing, and log 

responses. Stimuli were presented on a desktop computer equipped with Linux OS connected to 

a 15-inch display with a refresh rate of 60 Hz. Participants were seated in individual cubicles 

within view of an experimenter. Before beginning, participants completed 10 practice trials of 

the task. The task consisted of 8 blocks of a standard flanker task, each block containing 48 

trials. Including practice, participants completed 394 trials in total. Task condition (congruent, 

incongruent, neutral) and target direction (left, right) were counterbalanced within block. Stimuli 

were presented in white font on the horizontal midline of a dark gray field. Each stimulus 

consisted of a target arrow in the center of 6 flanker items, 3 to the left and 3 to the right.  

 

3.3.1.1.3    Participants 

27 undergraduate students at The Ohio State University participated in Experiment 1 in exchange 

for partial course credit. All participants provided informed consent in accordance with the 

requirements of the Institutional Review Board at the university. One participant’s data were 

excluded from analysis due to failure to exceed a chance level of performance on the task.  
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3.3.1.1.4    Model-fitting and comparison 

The seven models were fit to each participant’s data independently using probability density 

approximation (PDA) methods described by Turner and Sederberg (2014) and implemented via 

custom programs with RunDEMC (https://github.com/compmem/RunDEMC). Because the 

models within the current investigation do not have analytic likelihood functions, PDA methods 

allowed us to approximate how likely the choice and RT data Y would be under a set of model 

parameters θ. After specifying each model, we defined a set of prior distributions π(θ) for each 

parameter that will be discussed in the next section. Parameter sets were proposed via differential 

evolution with Markov chain Monte Carlo (DE-MCMC; Ter Braak, 2006; Turner et al., 2013; 

Turner & Sederberg, 2012), a genetic algorithm that makes proposals based on the relative 

success of previous proposals. Within DE-MCMC, a proposed parameter set in a chain is 

accepted with Metropolis Hastings probability, such that parameters have a higher probability of 

survival if they fit the data better than the previous proposal, and concurrent chains inform one 

another on each iteration. Using each proposed parameter set θ*, we simulated each model 

30,000 times to produce a set of data X such that X ~ Model(θ*). From these distributions, we 

constructed a simulated probability density function using an Epanechnikov kernel (Turner et al., 

2016; Turner & Sederberg, 2014) to estimate the form of X. We then calculated the density of 

each point in the observed data Y under the given set of parameters θ using the equation: 

 

Where  is an approximation of the functional form of simulated data X. We then approximated 

the likelihood function using the equation 

. 
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Finally, the posterior density for a given parameter set was approximated by combining the 

likelihood function and the set of prior distributions π(θ) with the equation:  

. 

This procedure was implemented in 50 chains for 600 “burn-in” iterations to identify the 

maximum a posteriori (MAP) estimate, followed by 1,600 sampling iterations to generate full 

posterior distributions. A purification step was implemented every 5 iterations for the accepted 

population, in which likelihood values were recalculated and replaced in order to prevent chains 

from getting stuck in spuriously high-likelihood regions of the posterior (Holmes, 2015; Turner 

et al., 2018). Priors were selected to be uninformative in terms of range, but to provide a 

moderate level of constraint in terms of functional form. As none of these models have been fit 

in a Bayesian paradigm, we had no precedent to rely upon for selecting a prior distribution for 

each parameter. Prior distributions were specified as follows, and were the same across models 

that utilized common parameters: 
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To compare the relative fit performances of the models, we calculated the Bayesian predictive 

information criterion (BPIC; Ando, 2007) for each model within-subject. We selected BPIC as 

our comparison metric for the present investigation because it is calculated in consideration of 

the full posterior distribution rather than a point estimate of the maximum log likelihood. This 

metric also accounts for model complexity by favoring models with fewer free parameters. To 

calculate BPIC values, a vector  of deviance values was calculated from the likelihood  for 

each set of parameters in the latter 1,400 sampling iterations of the posterior using the equation: 

. 

We then calculated the mean and minimum deviance as  and  respectively. The effective 

number of parameters  was calculated as . Finally, the BPIC value was 

calculated as: 

 

where lower BPIC values indicated a better fit. 

 

3.3.1.2    Results 

3.3.1.2.1    Behavior 

Responses shorter than 150 ms or longer than 2000 ms were excluded from analyses and model-

fitting (<4% of trials across subjects). Neutral trials were excluded from analyses due to an 

unforeseen pop-out effect in our data, such that participants were slightly faster at responding to 

neutral stimuli compared to congruent. Only congruent and incongruent trials were analyzed 

further. A summary of behavioral results is shown in Table 3.2. Behavioral results were analyzed 

using paired-sample t-tests, where the degrees of freedom for within-condition performance 

comparisons were based on the number of subjects who made at least one error in the condition 
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of interest. We observed the expected flanker task effects, including significantly lower accuracy 

on incongruent trials compared to congruent (t(25)=-2.919, p<0.01) and significantly slower RTs 

for incongruent trials compared to congruent (t(25)=7.520, p<0.001). Our data also demonstrated 

significantly faster errors than correct responses in the incongruent condition (t(22)=-3.778, 

p<0.01), but not in the congruent condition (t(9)=0.910, p=0.386). 

 

Table 3.2: Average accuracy and mean RTs (ms) across participants for Chapter 3, Experiment 1 

Condition Accuracy All RT Correct RT Error RT 

Incongruent 0.912 661 669 533 

Congruent 0.969 537 540 620 

 

3.3.1.2.2    Model fits 

BPIC values were calculated for each model and subject as a measure of goodness-of-fit. Values 

were mean-centered within subject, and are displayed as a heat map in Figure 3.6. Out of 26 total 

participants in Experiment 1, the LCA control model was the best performing model for 8 

participants, the FFI control model was the best performing model for 5 participants, the LCA 

time model was the best performing model for 2 participants, the DSTP model was the best 

performing model for 7 participants, and the FFI time model was the best performing model for 

4 participants. Accounting for the magnitude of the wins across subjects, the two conflict models 

outperformed their time-based alternatives and DSTP, though results were mixed overall.  
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Figure 3.6: Heat map of BPIC values, mean-centered within-subject for Experiment 1. Each 

column corresponds to a subject. Lower BPIC values (blue hues) indicate better model fits. The 

winning model for each subject is outlined in black. Average mean-centered values across 

subjects are shown in the panel to the right.  

 

Figure 3.7 shows observed choice-RT distributions averaged across participants, as well as mean 

distributions generated from each subject’s best-fitting parameters in our four main models of 

interest. All four models were able to capture typical flanker effects of slower, less accurate 

responses in the incongruent compared to the congruent condition, and faster errors than correct 

responses in the incongruent condition. Given that the SSP was specifically designed to capture 

robust congruency and conditional accuracy effects, it is unsurprising that all models were able 

to fit the standard pattern of data. Though the control-driven models were better suited for 

capturing the peaks of the correct response distributions than the time-driven models, across-

subject results reflect strong model mimicry. To gain more insight into the differences in 
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predictions among the models, we need to delve into the more nuanced patterns of behavior that 

were not necessarily robust across all subjects. 

 

 

 

Figure 3.7: Observed and model-generated choice-RT distributions. Observed RT distributions 

for correct (light gray histograms) and incorrect (dark gray histograms) responses were averaged 

across participants. Models were simulated 10,000 times for each condition, using each 
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participant’s best-fitting parameters. Lines show average model-generated distributions across 

participants. Distributions generated by the FFI time and FFI control models are shown in the top 

row, whereas distributions generated by the LCA time and LCA control models are shown in the 

bottom row.  

 

We provide analyses using two measures of response capture: error location indices (ELIs) and 

conditional accuracy functions (CAFs). An ELI value represents the proportion of incorrect 

responses that are faster than trials chosen at random (Servant et al., 2018). For example, a 

participant who performed less accurately when they made fast responses would likely have a 

high (close to 1.0) ELI, whereas a participant who performed less accurately when they made 

slower responses would likely have a low (close to 0.0) ELI. The SSP was developed to capture 

the general effect of fast errors specific to the incongruent condition of the flanker task, which 

manifests as higher ELI values in the incongruent compared to the congruent condition. While 

all four of the main models in the current investigation can capture this basic effect, we observed 

differences among the models in terms of their abilities to predict individual differences in ELIs 

in the incongruent condition. After fitting each model to data from each subject, we used best-

fitting parameters to generate predicted ELI values. Figure 3.8 shows correlations between 

observed and predicted ELI values in the incongruent condition for each model. Per the 

requirements of the calculation, participants were only included if they made at least one error in 

the incongruent task condition (23 participants).  These results suggest that the LCA control 

model is best able to capture the nuanced subject-level differences that we observed in our 

dataset. To assess significance, we applied a Fisher’s z transformation to each r correlation and 

calculated an observed z test statistic at an alpha level of 0.05 for each pairwise combination of 
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models. The observed vs. predicted ELI correlation for the FFI control model was significantly 

lower than that of the LCA control (z=2.284, p=0.011) and LCA time models (z=1.742, 

p=0.041). No other comparisons were significant (LCA control vs. LCA time: z=0.542, p=0.294; 

LCA control vs. FFI time: z=0.833, p=0.203; LCA time vs. FFI time: z=0.291, p=0.386; FFI 

time vs. FFI control: z=1.451, p=0.073). 

 

 

Figure 3.8: Observed and predicted ELI values for incongruent trials. ELI values calculated from 

each subject’s data in the incongruent condition (x-axis) are plotted against the ELI values 

generated from each subject’s best-fitting parameters (y-axis) in each model (panels). 

Correlations and lines of best fit are displayed on each panel.  

 

While ELIs were developed as a quantitatively interpretable alternative to CAFs, CAFs remain a 

common tool for illustrating behavioral effects in the flanker task. In the CAF, performance is 

plotted as a function of RT. Figure 3.9 shows average CAFs across subjects calculated from 

observed data in the incongruent condition, overlaid by average predicted incongruent CAFs 

generated from each subject’s best-fitting parameters for each model. As mentioned previously, 

all four models can capture fast errors in the incongruent condition, which is illustrated by lower 

accuracy in the initial RT bins. The models differ, however, in their abilities to capture slow 
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errors. Neither the LCA time nor the FFI time model appropriately captures the observed drop-

off in accuracy for longer RTs. The control models, however, are able to predict a decrease in 

cognitive control toward the end of a trial, which allows the models to capture patterns of 

accuracy that reach a peak before slightly decreasing. This is due to the nature of our conflict 

signal as illustrated by Figures 3.1 and 3.4, which allows for the widening of the attentional 

spotlight toward the end of a trial depending on the parameter values. The FFI control model, 

however, appears to overpredict the proportion of slow errors due the combination of the control 

mechanism and the strong correlation between accumulators, resulting in the lowest correlation 

between observed and predicted ELI values across the models as shown in Figure 3.8.   

 

 

Figure 3.9: Observed and predicted CAFs for incongruent trials. Data from each subject were 

sorted according to RT within 6 equally-spaced percentile bins. Performance and minimum RT 

for each bin were averaged across participants (red Xs). After generating 1,000 choice-RT pairs 

from each subject’s best-fitting parameters within each model, the same procedure was used to 

calculate CAFs for each model (gray lines).  

 

ELIs for the congruent condition were useful for distinguishing these models as well. Similar to 

Figure 3.8, Figure 3.10 shows ELI values calculated from observed data in the congruent 
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condition in relation to the predicted ELI values generated from best-fitting parameters in each 

model. Per the requirements of the calculation, participants were only included if they made at 

least one error in the congruent task condition (10 participants). Predictions using the LCA 

control model best mapped onto subject-level ELIs in the congruent condition compared to the 

other models. The observed vs. predicted ELI correlation for the LCA control model was 

significantly higher than that of the FFI time (z=3.088, p=0.001) and FFI control models 

(z=1.871, p=0.031), and the correlation for the LCA time model was significantly higher than 

that of the FFI time model as well (z=1.822, p=0.034). No other comparisons were significant 

(LCA control vs. LCA time: z=1.266, p=0.103; LCA time vs. FFI control: z=0.606, p=0.272; FFI 

control vs. FFI time: z=1.217, p=0.112). 

 

 

Figure 3.10: Observed and predicted ELI values for congruent trials. ELI values calculated from 

each subject’s data in the congruent condition (x-axis) are plotted against the ELI values 

generated from each subject’s best-fitting parameters (y-axis) in each model (panels). 

Correlations and lines of best fit are displayed on each panel.  

 

To observe specific differences in model predictions within the congruent condition, mean CAFs 

were generated separately for participants with low (0.11-0.31) and high (0.74-1.00) observed 
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ELIs as determined by median split. Figure 3.11 shows observed and model-predicted CAFs for 

low-ELI participants in the congruent condition, in which the observed data demonstrates a 

higher proportion of errors for longer compared to shorter RTs. While all models miss the mean 

performance values considerably, the LCA control, LCA time, and FFI control models are able 

to capture a general pattern of slow errors in the congruent condition. Though the LCA time 

model lacks the ability to relax attentional processing like the control models, it is presumably 

able to capture these slow errors via the leak  parameter. The FFI time model, however, has 

no mechanism for capturing slow errors in the congruent condition. 

 

 

Figure 3.11: Observed and predicted CAFs for congruent trials across low-ELI participants. Data 

from each subject were sorted according to RT within 6 equally-spaced percentile bins. 

Performance and minimum RT for each bin were averaged across participants (blue Xs). After 

generating 1,000 choice-RT pairs from each subject’s best-fitting parameters within each model, 

the same procedure was used to calculate CAFs for each model (gray lines).  

 

Figure 3.12 shows observed and predicted CAFs for high-ELI participants in the congruent 

condition. The observed data demonstrates a higher proportion of errors for shorter compared to 

longer RTs. Neither of the time models are able to predict fast errors in the congruent condition. 
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While the cognitive control-driven attentional system allows the FFI control model to predict fast 

errors, these processes in combination with a strongly-correlated accumulator structure result in 

an overprediction of slow errors. The LCA control model, however, is able to predict fast errors 

without inappropriately predicting slow errors as well. 

 

 

Figure 3.12: Observed and predicted CAFs for congruent trials across high-ELI participants. 

Data from each subject were sorted according to RT within 6 equally-spaced percentile bins. 

Performance and minimum RT for each bin were averaged across participants (blue Xs). After 

generating 1,000 choice-RT pairs from each subject’s best-fitting parameters within each model, 

the same procedure was used to calculate CAFs for each model (gray lines).  

 

3.3.1.3    Discussion 

The results of Experiment 1 demonstrate strong mimicry between models, but showed overall 

better fits for models with control-driven attentional mechanisms compared to time-driven 

alternatives as determined by our BPIC comparison. In interpreting the BPIC results, it is 

important to remember that these calculations favor less complex models. With 8 free 

parameters, it is therefore notable that the LCA control model outperformed the more 

parsimonious alternatives in a substantial number of cases. For the 4 instances in which the more 
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parsimonious FFI time model was the best-fitting model, it appears that the improvements in fit 

afforded by the more flexible models were not substantial enough to justify the additional 

complexity. The most complex model was the DSTP with 9 free parameters, and its flexibility 

resulted in best fits for 7 subjects. For a majority of subjects, however, the added complexity did 

not improve the fits over what the other models could provide, and the model barely performed 

better than FFI time on average. Interestingly, the control models provided better fits than the 

time+noise models in almost all cases, indicating that the control mechanisms themselves are 

tapping into an aspect of the data beyond improvements resulting from additional noise. Because 

each model makes the standard predictions for choice-RT distributions equally well, ELI and 

CAF analyses allowed us to investigate the predictions of the models at a finer granularity than 

what choice-RT summarizations could provide. Among the FFI time, LCA time, FFI control, and 

LCA control models, only LCA control could predict patterns of fast and slow errors in each 

condition that varied by subject. Although Experiment 1 has provided tentative evidence that 

cognitive control, rather than time alone, underlies attention processes in the flanker task, the 

data as a whole did not provide a strong dissociation between FFI and LCA mechanisms for 

interactions between the accumulators when considering general effects across subjects. To 

investigate the possibility that either  or  was independently responsible for the success of the 

LCA control model above FFI control, we fit variants of LCA control to data from Experiment 1 

in which  and  were fixed to 0, respectively. Although both models outperformed the FFI time 

model as determined by BPIC, neither of these variants provided better fits than the LCA control 

with free  and . Detailed results are provided in Appendix B. We also wanted to see if the 

success of the LCA control model over the LCA time model was due to the use of a nonlinear 

signal for guiding the attentional spotlight. Although a linear definition of time was adopted 
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within the original SSP model, our results with the control-based models suggested that a 

sublinear function for governing the spotlight might provide better fits to data. We developed a 

variant of the LCA time model (“LCA exponential time”) in which time was an exponential 

function increasing up to an asymptote, which was added as a free parameter. In a BPIC 

comparison shown Appendix B, this model fit worse than LCA control for all 26 subjects in 

Experiment 1.  

 

3.3.2    Experiment 2 

Because the results of Experiment 1 did not favor strongly-correlated FFI or weakly-correlated 

LCA evidence accumulation mechanisms, we next fit the models to data from a task that we 

believed would challenge these alternative hypotheses. In the standard flanker task, the nature of 

the arrow stimuli results in an equal amount of perceptual strength for each item in an array, and 

evidence for a left response is equal and opposite to evidence for a right response. As such, it is 

not surprising that both FFI and LCA accumulation dynamics were able to capture the data 

equally well. In Experiment 2, we opted to test the models under task conditions in which the 

perceptual strength of the flanker items was not necessarily equal to that of the target. The task, 

designed and administered by Servant et al. (2014), required participants to indicate the color of 

a target circle amid flanker circles of a congruent or incongruent color. As a manipulation of 

relative perceptual strength, the color saturation of the target circle varied from trial to trial while 

the saturation of flanker circles was held constant. Due to the strongly-correlated behavior of the 

accumulators in the FFI models, we predicted that the FFI models would be less capable of 

capturing the observed patterns of choices and RTs across conditions in this task relative to LCA 

models. Our hypothesis is in line with recent work showing that models with strongly-correlated 
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accumulators fail to capture observed patterns of data across a range of equal- and unequal-

evidence task conditions (Kirkpatrick et al., under review). 

 

3.3.2.1    Methods 

3.3.2.1.1    Procedure 

The data set used in the present investigation was collected at Aix-Marseille University by 

Servant et al. (2014). The paradigm and methods of the study are summarized here, but the 

reader is encouraged to read the original paper for further details. Participants were shown arrays 

of circles, and were asked to respond as to whether the color of the center circle was red or blue. 

After providing informed consent, participants received instructions, completed a practice block, 

then began the task. Each trial began with the appearance of three circles, which remained on the 

screen until participants responded with a maximum duration of 1500 ms. After the stimulus was 

removed from the screen, there was an inter-trial interval of 1500 ms. Color-mappings were 

counterbalanced between participants, such that half of the participants were instructed to 

respond ‘left’ to a red target and ‘right’ to a blue target, and the other half were instructed to 

respond ‘right’ to a red target and ‘left’ to a blue target. 

 

3.3.2.1.2    Stimuli and apparatus 

Participants completed 24 blocks of the task, each block containing 96 trials (2,304 trials in 

total). Stimuli were presented using PsychoPy software (Peirce, 2007) on a CRT color monitor 

with a refresh rate of 100Hz. Flanker circles could be the same color (congruent) or a different 

color (incongruent) relative to the target. Importantly, the color saturation of center target circles 

varied from trial to trial within six conditions (degrees of suprathreshold saturation levels: 15%, 
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25%, 35%, 45%, 60% and 80%), while the color saturation of flanker circles was held constant at 

80%. Task condition (congruent or incongruent), target hue (red or blue), and target color 

saturation (6 levels) were counterbalanced within block. Stimuli appeared along the horizontal 

midline of a black field. To respond, participants made left or right button presses with their 

corresponding thumb. Buttons were set atop plastic hand grips that were 3 cm in diameter and 7 

cm in height, with 20 cm in between. Examples of the stimuli are provided in Figure 3.13, based 

on Figure 2 in Servant et al., 2014. 

 

Figure 3.13: Examples of stimuli used in Experiment 2, based on Figure 2 in Servant et al., 2014. 

Each stimulus consisted of a target circle (red or blue), flanked by two circles of an incongruent 

(Left column) or congruent (Right column) color. Targets varied in saturation between 15 and 

80% (rows) while the color saturation of the flankers was held constant at 80%. While only 

stimuli with red targets are shown here, the paradigm was counterbalanced so that 50% of stimuli 

featured a blue target. 
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3.3.2.1.3    Participants 

Twelve students provided informed consent in accordance with the Declaration of Helsinki, and 

participated in the study in exchange for 10€/hour. Participants had normal or corrected-to-

normal vision and normal color vision. 

 

3.3.2.1.4    Model-fitting 

Prior to fitting the models, we first needed to make adjustments to the models to accommodate 

the conditions of the target saturation manipulation. Following the example of Servant et al. 

(2014), we made the assumption that the p parameter, representing perceptual input strength that 

behaves within the SSP as a scalar on the spotlight, was the logical candidate for tracking the 

perceptual strength of each item in the stimulus array. We therefore modified all models of 

interest to include six separate values of p representing the six conditions of target saturation 

included in the experiment. Drift rates   and  for each accumulator were calculated via the 

following modifications to Equations 3.2 and 3.3: 

      

Equation 3.5 

             

Equation 3.6 

where  and was selected depending on the color 

saturation of the target in each trial. In Equations 3.5 and 3.6,  was always scaled by 

 since the color saturation of flanker stimuli was held constant at 80% across trials. Values 

of  were constrained so that . In each model, the 
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vector of values  such that  was calculated via a 

sigmoidal function  

 

where  and , , and  were free parameters. We decided on 

this parameterization because we assumed perceptual input strength values of  varied 

monotonically as a function of perceptual strength, but did not have any strong hypotheses about 

the functional form of the relationship among them. The sigmoidal function provided an 

appropriate level of constraint while still being able to capture a wide variety of curves as 

illustrated in Figure 3.14.  

 

Figure 3.14: Range of sigmoid functions for calculating . Sigmoid functions were implemented 

to capture the attention allocated to stimuli in the six saturation conditions in Experiment 2. 

Panel A shows the effect of modifying the a parameter while keeping b and c constant. Panels B 

and C similarly show the effects of modifying the b and c parameters respectively, while the 

other parameters are held constant.   

 

Priors for parameters , , and  were selected to be mildly informative, and were defined as 

follows: 
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Priors for all other parameters as well as all model fitting procedures were otherwise identical to 

those described for Experiment 1. We modified the DSTP to include a sigmoid function for 

fitting the target color saturation conditions as well. Details of the modified DSTP models are 

included in Appendix B.  

 

3.3.2.2    Results 

3.3.2.2.1    Behavior 

Responses shorter than 150 ms were excluded from analyses and model-fitting (<0.01% of trials 

across subjects). Detailed behavioral results of Experiment 2 are presented in Servant et al. 

(2014). In summary, participants were significantly slower (t(11)=6.491, p<0.001) and less 

accurate (t(11)=-3.437, p<0.01) on incongruent trials relative to congruent, across target color 

saturation conditions. Participants were also significantly slower (15% saturation - 80% 

saturation: t(11)=11.583, p<0.001) and less accurate (15% saturation - 80% saturation: 

t(11)=7.425, p<0.001) on lower saturation trials relative to higher saturation trials, and the effect 

persisted both within incongruent (RT: t(11)=9.109, p<0.001; accuracy: 6.390, p<0.001) and 

congruent trials (RT: t(11)=11.646, p<0.001; accuracy: t(11)=7.571, p<0.001). Table 3.3 

contains mean RTs and error rates in each condition of Experiment 2.  
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Table 3.3: Average mean RTs (ms) and error rates (in parentheses) across participants for 

Chapter 3, Experiment 2 

 Target Saturation 

Condition 15% 25% 35% 45% 60% 80% 

Incongruent 477 (0.326) 458 (0.224) 443 (0.154) 437 (0.132) 425 (0.114) 422 (0.107) 

Congruent 449 (0.142) 421 (0.081) 410 (0.053) 399 (0.043) 391 (0.041) 386 (0.047) 

 

3.3.2.2.2    Model fits 

BPIC values for each model were mean-centered within subject, and are shown as a heat map in 

Figure 3.15. The LCA control model was the winning model in 8 out of the 12 participants, the 

FFI control model was the winning model for 3 participants, and the DSTP was the winning 

model for 1 participant. Accounting for the magnitude of the wins across subjects, the LCA 

control model outperformed all alternatives, including FFI control, while the FFI time and DSTP 

models fit the worst overall.  
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Figure 3.15: Heat map of BPIC values, mean-centered within-subject for Chapter 3, Experiment 

2. Each column corresponds to a subject. Lower BPIC values (blue hues) indicate better model 

fits. The winning model for each subject is outlined in black. Average mean-centered values 

across subjects are shown in the panel to the right.  

 
Figure 3.16 includes observed choice-RT distributions for each task condition (congruent and 

incongruent) and target color saturation condition (low: 15%, 25%, 35% and high: 45%, 60%, 

80%), averaged across participants. Mean distributions generated from each subject’s best-fitting 

parameters in our four main models of interest are shown as well. Similar to the results of 

Experiment 1 shown in Figure 3.7, the two control-based models provided better qualitative fits 

to the RT distributions for correct responses, compared to the time-based models. This again 

reflects the ability of the control-driven models to capture the nuanced differences in behavior 

across subjects, specifically subject-level differences in fast and slow responses across conditions 
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due to the nature of the control signal. More importantly, Figure 3.16 shows that the FFI and 

LCA models make drastically different predictions about the error RT distributions, particularly 

in the incongruent condition. While the LCA models are generally able to capture the peak and 

spread of the incongruent error RTs, the FFI models consistently predict a larger proportion of 

fast errors across target color saturation conditions than we observe in the data. This 

overprediction of fast errors is a natural consequence of the strongly-correlated evidence 

accumulation mechanism in the FFI models. The FFI models are able to predict different drift 

rates across saturation conditions due to differences in the perceptual input strength scaling 

parameters , and are therefore able to capture the general pattern of faster correct responses 

for high target saturation trials. Because of the strongly-correlated evidence accumulation 

mechanism, however, faster positive drift rates for one accumulator result in correspondingly 

faster negative drift rates for the other. As such, the FFI models are limited in their ability to 

concurrently capture observed RTs for correct and error responses across all conditions. In 

contrast, the flexibility of the weakly-correlated evidence accumulation mechanism in the LCA 

models allow the models to seamlessly adapt to conditions of unequal perceptual strength 

between target and flanker stimuli.   
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Figure 3.16: Observed and model-generated choice-RT distributions. Observed RT distributions 

for correct (light gray histograms) and incorrect (dark gray histograms) responses were averaged 

across participants. Models were simulated 10,000 times for each condition, using each 

participant’s best-fitting parameters. Lines show average model-generated distributions across 

participants. Distributions generated by the FFI time and FFI control models are shown in the left 

panel, and distributions generated by the LCA time and LCA control models are shown in the 

right panel. Choice-RT distributions for low target saturation trials are shown in the top row and 

high saturation trials are shown in the bottom row. 

 

3.3.2.3    Discussion 

We hypothesized that the flanker saturation manipulation in Experiment 2, in which targets and 

flankers differed in perceptual strength from trial to trial, would cause models with strongly- and 
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weakly-correlated evidence accumulation mechanisms to make contrasting predictions. Because 

an increase evidence for one choice option results in an equivalent decrease in evidence for the 

other choice, the FFI models do not predict any mechanistic differences for how participants 

process stimuli across different target saturation conditions. These models, therefore, depend on 

the values of the perceptual input strength scalars  to capture any behavioral differences 

between high- and low-saturation target conditions. As shown in Figure 3.16, however, the FFI 

models were only able to approximate RTs for correct responses at the expense of the error 

distributions--both the FFI time and the FFI control models predicted faster error RTs in the 

incongruent condition. The LCA models were more successful overall compared to the FFI 

models at fitting the shapes of all choice-RT distributions across saturation and congruency 

conditions, suggesting that the flexibility afforded by a weakly-correlated evidence accumulation 

structure is necessary for fitting these data.  

 

Consistent with the results of Experiment 1, models with control-based attention mechanisms 

provided better fits to the data compared to time-based alternatives. Despite being the most 

complex model in our comparison with 14 free parameters (compared to 7 in FFI time, 8 in FFI 

time+noise and FFI control, 9 in LCA time, and 10 in LCA time+noise and LCA control), the 

DSTP provided the worst quantitative fits as determined by BPIC. We included the DSTP in the 

current project to test our control-based attention mechanism against an alternative decision-

based mechanism. The results of Experiments 1 and 2 indicate that our control-based mechanism 

strikes a more effective balance between flexibility and parsimony than the DSTP.  
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Taken together, the results of Experiment 2 indicate that both LCA evidence accumulation 

mechanisms and control-driven attention mechanisms are necessary for appropriately predicting 

behavior under conditions of differing perceptual strength. 

 

3.3.3    Experiment 3 

One motivation for the current project was to develop a neurally-plausible mechanism for 

modulation of attention within-trial. Our theory, which we operationalized via our cognitive 

control-based models, is that modulation of attention is an emergent property of the dynamics of 

the decision process. While we do find evidence for cognitive control-based processes across 

Experiments 1 and 2 by fitting our models to behavioral data alone, we wished to determine 

whether our model-generated signal for cognitive control actually maps onto an observable, 

within-trial signal in the brain. In Experiment 3, we collected EEG data alongside the same 

standard flanker task administered in Experiment 1 and designed a model-based EEG analysis 

with a latent input approach to gain insight into the within-trial processes that we could not 

observe from behavior alone. Based on the results of Experiments 1 and 2, we predicted that 

LCA mechanisms in combination with control-based attentional mechanisms would most 

effectively track latent EEG measures.  

 

3.3.3.1    Methods 

3.3.3.1.1    Procedure and EEG Acquisition 

Participants completed a standard flanker task that was identical to the one administered in 

Experiment 1. After providing written informed consent, participants were fitted with an elastic 

cap embedded with 64 Ag-AgCl active scalp electrodes arranged in an extended 10-20 array 
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(BrainProducts GmbH, Munich, Germany), and seated in an electrically-shielded, sound-

attenuated testing room. Participants were asked to turn off all electronic devices and leave them 

outside of the testing room before the experiment began. The EEG signal was sampled at a rate 

of 1000 Hz via a DC-powered actiCHamp amplifier connected to a desktop PC. The ground 

electrode was located at Fpz and the reference was set to the average of mastoid electrodes TP9 

and TP10 during recording. Electrode impedances were reduced to less than 25Kohms via 

application of electrolyte gel as recommended by the equipment manufacturer. Instructions for 

the task appeared on the computer screen, and were read aloud by the experimenter. Participants 

were given the opportunity to take breaks from the task in between task blocks, but remained 

seated in the testing room throughout. During each trial, a fixation cross appeared in the center of 

the screen for 1000 ms before being removed. The trial stimulus then appeared on the screen 

after a jittered duration of 100-900 ms. Participants responded by pressing the ‘J’ key on the 

keyboard if the arrow in the center of the array pointed left, and the ‘K’ key if the center arrow 

pointed right. Participants were asked to respond with their right forefinger and right middle 

finger respectively. Only responses made 150 ms after the stimulus appeared were recorded, and 

the stimulus was removed from the screen immediately after the participant made a valid 

response. Participants were given an unlimited amount of time to respond, but were instructed to 

respond as quickly and accurately as possible. EEG signal was monitored by the experimenter 

throughout the session for abnormalities using PyCorder software (BrainProducts GmbH, 

Munich, Germany) on the acquisition PC.  
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3.3.3.1.2    Stimuli and apparatus 

Stimuli were presented and recorded via a desktop PC equipped with Linux OS connected to a 

24” LCD display with a refresh rate of 120Hz. As in Experiment 1, stimuli were presented via a 

custom program in SMILE. Stimuli were presented in white text on the horizontal midline of a 

dark gray field. Arrays on each trial consisted of a central target arrow pointing left or right, 

accompanied by 3 flanker items to the left and right that could be congruent (same direction), 

incongruent (opposite direction) or neutral (lowercase ‘o’ characters) relative to the target. 

Participants completed 20 blocks of the task, each block containing 48 trials that were 

counterbalanced by condition (congruent, incongruent, neutral) and target direction (left, right). 

In total, each participant completed 960 trials.  

 

3.3.3.1.3    Participants 

8 right-handed participants who were fluent in English were recruited from The Ohio State 

University, and were compensated at a rate of $10/hour. All participants provided informed 

consent in accordance with the requirements of the Institutional Review Board at the university.  

 

3.3.3.1.4    Model fitting 

Models were fit to behavioral data only, using procedures identical to those described in the 

methods for Experiment 1.  

 

3.3.3.1.5    EEG preprocessing 

All EEG preprocessing was completed using custom functions in the software package Python 

Time Series Analysis (PTSA; https://github.com/compmem/ptsa). Data were filtered at 30 Hz to 
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eliminate low-frequency noise, and were resampled to 100 Hz to match the time step parameter 

dt used in our model-fitting procedure. We employed wavelet-enhanced independent component 

analysis (wICA; Castellanos & Makarov, 2006) to remove artifacts from eye-blinks and 

saccades. Trials were segmented into epochs and time-locked to when the stimulus appeared on 

the screen. Epochs were 2500 ms long beginning 500 ms before stimulus onset, and were 

baseline-adjusted according to the mean voltage within a 200 ms pre-stimulus window. Epochs 

were rejected if kurtosis exceeded 5.0 or if the amplitude range exceeded 100V (17% of all 

trials).  

 

3.3.3.1.6    Model-based EEG analysis 

Given that the models in our investigation make different predictions about the behavior of the 

attentional spotlight within each trial, we wanted to determine which mechanism best mapped 

onto observed neural signals. As such, we used within-trial correlation analyses to assess the link 

between model-generated attention signals and EEG voltages at each electrode. Here, the 

“attention signal” refers to the function that controls the shrinking of the attentional spotlight in 

between stimulus onset and response within each model. In a time-based model, the attention 

signal would be a vector of  values for calculating spotlight width at each time step as described 

by Equation 3.1 in Section 2.2.1. In contrast, the attention signal in a control-based model would 

be a vector of  values representing a continuous measure of cognitive control for calculating the 

spotlight width as shown in Equation 3.4. 

 

We first fit the models to behavioral data from each participant, and identified MAP estimates 

for the parameters. The procedures that follow are described in terms of a single model, but were 
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repeated for LCA control, LCA time, LCA time+noise, FFI control, FFI time, and FFI 

time+noise. Using each set of best-fitting parameters, we generated 30,000 trials per task 

condition. Each simulation produced a choice (correct or incorrect), RT, and a vector of values 

representing the within-trial attention signal through time. We then matched each observed 

response made by the participant to a subset of responses generated by the model using the same 

participant’s best-fitting parameters. A “match” was determined based on the following criteria: 

1) the task condition of the simulation was the same as the task condition of the observed trial; 2) 

the choice output of the simulation (correct or incorrect) was consistent with the participant’s 

accuracy on the observed trial; 3) the RT of the simulation fell within a window from 

 to , where  is the step size for time discretization in our 

model-fitting procedure ( ; see Sections 2.1.1 and 2.1.2). Observed trials that matched 

fewer than 100 out of the 30,000 simulated trials in at least one model were discarded from 

further analyses (38.5% of trials). Despite excluding a large proportion of trials, 3,914 trials 

across participants were still included in our final analysis.   

 

Each remaining observed trial corresponded to a matrix of attention signal values, where each 

row represented a simulated trial and each column represented a time step within-trial. Mean 

attention signal values were then calculated across rows. The purpose of this procedure was to 

estimate attention processes underlying the participant’s observed behavior, within the 

contrasting theoretical frameworks of our models. The result was a model-generated vector of 

attention signal values for each trial, spanning the duration of the decision process and 

terminating at the point when the participant made a response. The next step was to assess the 

correspondence between model-generated attention signals and EEG voltage within-trial. 
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EEG data at each electrode was preprocessed and segmented into trial-level epochs as described 

previously. On each trial, we defined a decision-relevant time window from  seconds after 

stimulus onset to  seconds before the response, where  was the best-fitting non decision time 

parameter value for the subject at hand. We then calculated the Pearson’s r correlation between 

the vector of within-trial attention values (with shape [1, N], where N was the number of time 

steps between the start of the decision and the response), and the matrix of within-trial EEG 

voltage values (with shape [E, N], where E=64 electrodes). After repeating this procedure for 

every trial, the result was a matrix M of Pearson’s r values, where each row represented a trial 

and each column represented an electrode. We then applied a Fisher’s Z-transform to matrix M 

to satisfy the assumptions of statistical inference. One-sample t-tests were used to calculate a p-

value for each column of matrix M, where the null hypothesis was that the mean trial-level Z 

correlation at each electrode did not differ from 0. Significance was determined via the 

Benjamini-Hochberg procedure for adjusting for multiple comparisons, which entails a rank-

ordering of p-values at each electrode and a sliding significance criterion (Benjamini & 

Hochberg, 1995). This provided a single EEG topography for each model, illustrating the extent 

to which model-generated attention signals significantly correlated with within-trial EEG 

activity. Because the DSTP model does not contain a continuous within-trial mechanism for 

attention modulation, we fit the DSTP to the behavioral data from Experiment 3 but did not 

include it in the EEG analysis.  
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3.3.3.2    Results 

3.3.3.2.1    Behavior  

Responses shorter than 150 ms or longer than 2000 ms were excluded from analyses and model-

fitting (<2% of trials across subjects). As in Experiment 1, neutral trials were excluded due to 

unforeseen perceptual pop-out effects. A summary of behavioral results is shown in Table 3.4. 

We observed a similar pattern of results as in Experiment 1, specifically lower accuracy on 

incongruent trials compared to congruent (t(7)=-6.652, p<0.001) and slower RTs for incongruent 

trials compared to congruent (t(7)=4.935, p<0.05). We observed fast errors in both conditions, 

but the RT difference between correct and error responses was only significant among 

incongruent (t(7)=-6.392, p<0.001) and not among congruent trials (t(6)=0.187, p=0.858). 

 

Table 3.4: Average accuracy and mean RTs (ms) across participants for Chapter 3, Experiment 3 

Condition Accuracy All RT Correct RT Error RT 

Incongruent 0.936 738 756 486 

Congruent 0.990 552 553 520 

 

3.3.3.2.2    Condition-level EEG 

Stimulus-locked ERP results for correct responses in Experiment 3 replicated standard flanker 

effects (Kopp et al., 1996). In central-posterior electrode locations, an N2 peak occurred 340-400 

ms after stimuli appeared in the incongruent but not the congruent condition. We assessed 

significance by means of a non-parametric permutation test with threshold-free cluster 

enhancement (TFCE; S. Smith & Nichols, 2009). Each participant’s data were randomly shuffled 
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500 times with replacement, and we performed a 1-sample t-test at the level of each participant, 

electrode, and time point within-trial, where the null hypothesis was that there was no difference 

in voltage between congruent and incongruent trials. Using a critical family-wise error threshold 

of p=0.05, we identified one cluster encompassing electrodes CP1, Cz, CPz, and P1 at time 

points between 350 and 380 ms post-stimulus at which the voltage difference between the 

congruent and incongruent conditions was significant. Topographic plots and grand average ERP 

waveforms at CPz for the condition-level comparison are shown in Figure 3.17. 

 

Figure 3.17: Condition-level EEG results for Experiment 3. Topographic maps show voltage 

differences between congruent and incongruent conditions at 370 ms post-stimulus, before 

(Panel A) and after (Panel B) threshold-free cluster enhancement (TFCE). Panel C shows grand 

average ERP stimulus-locked waveforms for congruent and incongruent trials at electrode CPz. 

Significant condition-level differences as determined by TFCE are shown as green points. 

 

3.3.3.2.2    Model fits to behavior 

Because we used the same task paradigm in Experiment 3 as in Experiment 1, we expected to 

observe the same patterns in our model fits. Indeed, goodness-of-fit as measured by BPIC values 

replicated the mixed results we observed in Experiment 1. When we calculate the average mean-

centered BPIC values across subjects, the LCA control model outperforms the alternatives 
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(average mean-centered BPIC=-51.0) with the FFI control model coming in second place 

(average mean-centered BPIC=-28.7). A heatmap showing the full set of goodness-of-fit results 

is included in Appendix B. 

 

3.3.3.2.3    Model-based EEG results 

Using decision output generated from each model, we calculated correlations between the signals 

controlling the width of the attentional spotlight (e.g. time, time+noise, or cognitive control) and 

EEG voltage during the decision. Figure 3.18 illustrates the foundation of our model-based EEG 

analysis. Visually, we observe that the control models generate attention signals that gradually 

increase through time and begin to stabilize before a decision is made, similar to the EEG 

signals. The time and time+noise models both predict more linear signals. The time+noise 

models are able to predict variability in the rate of signal increase depending on the duration of 

the decision, but the time models predict an identical trajectory of the attention signal on every 

trial. 
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Figure 3.18: Observed EEG voltages and model-generated attention modulation signals. Data 

and simulations are shown for one subject. Analyses were completed at the level of every trial 

and electrode, but for the purposes of this visualization, EEG voltages were averaged across 

electrodes that demonstrated the highest correlation with model-generated attention signals (TP8, 

P2, C6, CP6, CPz, Pz, FC6, C2, CP1, T8, P1, P4, FC4). Data were divided into three bins based 

on three equal RT percentiles. Vertical lines represent the boundaries of the decision-relevant 
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interval between stimulus onset and the mean RT within-bin, limited by the mean best-fitting  

across models.  

 

Means across trial-level Z correlations between EEG voltage and model-generated attention 

modulation signals at each electrode are illustrated as topographic plots in Figure 3.19. All 6 

models predicted attentional mechanisms that were most correlated with EEG activity at right-

posterior electrode locations. Out of all of the models, only the correlations between attentional 

mechanisms in the LCA control model and EEG activity were statistically significant (critical 

value = 0.1; electrodes TP8, P2, C6, CP6, CPz, Pz, FC6, C2, CP1, T8, P1, P4, FC4).  

 

 

Figure 3.19: Mean Z correlation maps for observed EEG data and model-generated attention 

modulation signals. Data were generated by each model using each participant’s best-fitting 

parameters. For each trial, we calculated an average vector of drive to the attention mechanism 
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through time using each model’s simulations. Trial-level correlations between EEG voltage and 

model-generated attention were calculated. Pearson’s r values were Fisher’s Z-transformed, and 

p values were calculated for each model and electrode using a 1-sample t-test. Significance was 

determined via Benjamini-Hochberg correction for multiple comparisons, and are indicated by 

yellow points. 

 

To observe differences in model predictions of attention modulation and how they relate to 

neural signals, we calculated the pairwise differences in model predictions and EEG voltage 

correlations at the level of each trial, and then calculated means at each electrode. Three 

comparisons yielded significant electrode-level differences: LCA control vs. FFI control (C4, 

C2, C1, C3, CP4, CP2, CPz, CP1, CP3, P1, Pz, P2, P4), LCA control vs. FFI time (FC2, FCz, 

FC1, FC3, C4, C2, Cz, C1, C3, C5, CP4, CP2, CPz, CP1, CP3, CP5, P3, P1, Pz, P2, P4, POz, 

PO3, Oz) and LCA control vs. FFI time+noise (FC4, FC2, FCz, FC1, FC3, C6, C4, C2, Cz, C1, 

C3, C5, CP6, CP4, CP2, CPz, CP1, CP3, CP5, P6, P5, P3, P1, Pz, P2, P4, PO4, POz, PO3, Oz). 

Topographic plots in Figure 3.20 show that increased correlations between EEG voltage and 

attention modulation in LCA control, relative to the predictions of the other models, are 

widespread across the scalp. All other pairwise difference maps are shown in Appendix B. 
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Figure 3.20: Mean Z correlation difference maps for observed EEG data and model-generated 

attention modulation signals. After calculating Z correlation values for each model and each 

electrode, we calculated the pairwise difference topographic maps for each possible pair of 

models. P values were calculated for each model comparison and electrode using a 1-sample t-

test. Significant correlation differences were identified using a Bejamini-Hochberg correction for 

multiple comparisons, indicated by yellow points. 

 

3.3.3.3    Discussion 

Because we were interested in developing a neurally plausible model of the flanker task, we 

wanted to test whether the attention mechanisms in any of our models resembled the fluctuations 

of within-trial neural signals as measured by EEG. Attention mechanisms in all models were 

most correlated with EEG activity in right-posterior regions, as shown in Figure 3.19, but only 

the LCA control model yielded significant correlation results. This is an interesting pattern of 

findings in light of previous EEG studies designed to probe the spotlight view of spatial 

attention, which often reported attentional correlates at posterior electrodes as well (Awh et al., 

2000; Busch & VanRullen, 2010; Handy et al., 2001). These studies, however, tended to observe 

attention-related activity at central-posterior electrodes, and lateralized effects only occurred 
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when stimuli appeared in the edges of the visual field (Hillyard et al., 1998; Mangun & Hillyard, 

1988; M. Müller et al., 2003). For example, Mangun and Hillyard (1988) investigated the 

hypothesis that early sensory-evoked peaks would reflect a spotlight-like filtering of information. 

The authors identified gradual decreases in P1 and N1 amplitudes that varied as a function of 

distance between attended and evoking stimuli. These effects were specifically observed in 

posterior electrode locations, contralateral to the screen location of the attended stimuli. Because 

stimuli were only presented in the center of the screen in our paradigm, we believed our right-

lateralized results could reflect contamination by motor effects given that participants made all 

responses with the right hand. Because this would result in strong motor-related activity in the 

left hemisphere, it potentially obfuscated the attention-related activation. It is nevertheless 

notable that only the LCA control model generates a within-trial attention modulation signal that 

significantly correlates with the gradual ramp-up and relaxation of neural amplitudes as shown in 

Figure 3.18 at attention-relevant locations on the scalp.  

 

We calculated the pairwise differences maps shown in Figure 3.20 for two purposes: 1) to cancel 

out the motor effects that could have affected each individual model-based EEG analysis, and 2) 

to observe how each model compared to the others in terms of generating a neurally plausible 

attention modulation signal. Specifically for comparisons involving the LCA control model, we 

identified large differences in correlation means that were widespread across the scalp. This 

implies that the LCA control model was able to generate within-trial signals that resemble the 

general time course of EEG voltages better than the alternative models. While we do not make 

any strong claims here about the LCA control model capturing any specific neural processes, the 
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results of Experiment 3 support the notion that the mechanisms in the LCA control model behave 

in a way that is in line with observed voltage time courses in the brain. 

 

3.4    General discussion 

3.4.1    Summary  

In the current project, we presented a mechanistic theory of cognitive control in which within-

trial modulation of attention is a byproduct of interacting decision processes. We tested our 

theory by developing a set of SSMs, each making alternative assumptions about evidence 

accumulation and attention modulation mechanisms. Models included time-based attention 

processes like the existing flanker SSMs, or control-based attention mechanisms inspired by 

connectionist models (i.e. Botvinick et al., 2004; De Pisapia & Braver, 2006; Verguts 2017). 

Because the control-based models calculate attention modulation from the noisy accumulators 

while the time-based models operate in a strictly linear manner, we also included model variants 

that calculate attention based on time with additional random noise. When specifying the 

evidence accumulation processes in our models, we developed models with either strongly-

correlated accumulators defined by FFI mechanisms, or weakly-correlated accumulators defined 

by LCA mechanisms. These two mechanisms represent different hypotheses about the neural 

underpinnings of the decision process: the former assumes decisions are based on the difference 

in firing across populations of neurons, and the latter assumes decisions are based on the 

competition between the two most active populations of neurons. Though the competing 

hypotheses concerning attention modulation and evidence accumulation were implemented and 

compared within the SSP model, we fit the DSTP model as an additional point of comparison as 

well. The DSTP presents an alternative mechanistic explanation for decision-guided attention, in 
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which response selection processes are conditionally dependent upon the outcome of stimulus 

selection processes. Across three experiments, we found evidence that weakly-correlated LCA 

mechanisms in combination with dynamic, control-guided attention modulation mechanisms 

best-accounted for the data in each task condition. 

 

In Experiment 1, we fit the models to data from a standard flanker task. While all models fit the 

data well, the two control-based models provided the best fits as determined by BPIC. Further 

insights from ELI and CAF analyses revealed that the LCA control model was particularly 

effective at capturing nuanced differences in performance between subjects, including slow 

errors in the incongruent condition and fast errors in the congruent condition. To hone in on the 

mechanistic assumptions of the FFI and LCA mechanisms, Experiment 2 featured a 

manipulation of target color saturation. Because the FFI models assume that an increase in 

evidence for one response requires a decrease in evidence for the other, we found that the FFI 

models overestimated the speed of error distributions across conditions. The LCA models, and 

particularly the LCA control model, were more flexible and therefore able to capture behavior 

under conditions where targets and flankers differed in perceptual strength. In Experiment 3, we 

collected EEG data alongside a standard flanker task in an effort to determine if any of our 

model-generated attention modulation signals resembled within-trial processes in the brain. 

Using a model-based EEG analysis with a latent input approach, we found that the within-trial 

control signal generated by the LCA control model uniquely mapped onto the time course of 

EEG voltages in between stimulus onset and response. In an effort to summarize fit results across 

experiments, Figure 3.21 illustrates across-subject rank order sums, normed within experiment 
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such that lower values indicate better fits. Considering our results together, the LCA control 

model was the best-fitting model compared to all other alternatives. 

.  

Figure 3.21: Rank order sums of BPIC values for each model and experiment. The best-fitting 

model for each subject and experiment as determined by BPIC was assigned a rank of ‘1’, the 

second best model was ranked ‘2,’ and so on. Rank values were summed within-experiment and 

normed based on the number of subjects in each experiment. Black points indicate mean normed 

rank order sums across experiments 

 

3.4.2    Interpretation of results 

In the current project, we aimed to address a gap in the literature concerning within-trial 

mobilization of cognitive control and modulation of attention. Several dominant theories suggest 

that cognitive control operates on multiple timescales to appropriately focus attention on goal-

relevant information while also conserving cognitive resources (Braver et al., 2008; e.g. J. Brown 
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et al., 2007; Davelaar, 2008). These theories have often been operationalized within 

connectionist models, which feature biologically-inspired mechanisms for engaging cognitive 

control as a direct response to mutual activation of multiple choice units. Connectionist models, 

however, typically include within-trial mechanisms only en route to explaining between-trial 

effects, such as improved accuracy on flanker trials immediately following errors. Theories 

specifically designed to explain trial-level effects, such as fast errors in the incongruent flanker 

task condition, have instead been implemented within the SSM framework as variants of the 

single-accumulator DDM (Hübner et al., 2010; Ulrich et al., 2015; White et al., 2011). These 

models make specific predictions about attention processes that vary as a function of time, and 

mutually-inhibitory evidence accumulation mechanisms. Here, we introduced an SSM in which 

modulation of attention via cognitive control occurs as an emergent property of the dynamics of 

the decision process. Our model draws upon neurally-plausible mechanisms from connectionist 

implementations such as continuously-updated cognitive control and flexible evidence 

accumulation mechanisms, but was implemented in an SSM framework to allow for trial-level 

data-fitting and quantified model comparisons.  

 

Despite being designed to fit data from tasks that present conflicting infromation, the existing 

flanker SSMs do not include mechanisms for tracking or modulating parameters based on mutual 

activation of two options. Changes to drift rate occur as a function of time, regardless of the state 

of competition between the two choice alternatives. By considering only the difference in 

activation of the two choices, these models are potentially missing an important piece of the 

story concerning how the brain recruits cognitive control. Furthermore, the single-accumulator 

structure of the flanker SSMs make the powerful assumption that an increase in evidence for one 
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choice results in a decrease in evidence for the other. Given the assertion that inhibitory control 

decisions involve two separate routes of processing, automatic and controlled, it may be overly 

constraining to assume that evidence accumulation between two choices is perfectly 

anticorrelated. By developing separate groups of models with strongly-correlated FFI 

mechanisms and weakly-correlated LCA mechanisms, we aimed to directly test and compare 

competing hypotheses about how the brain represents competing information in inhibitory 

control tasks. While both FFI and LCA models were able to capture general behavior in a 

standard flanker task as shown by the results of Experiment 1, LCA processes were important for 

capturing subject-level differences in performance. The perceptual strength manipulation in 

Experiment 2 further dissociated the predictions of the FFI and LCA models. Models with FFI 

mechanisms failed to appropriately capture error distributions for incongruent trials across target 

saturation conditions, while the flexibility of the LCA models resulted in more successful fits. 

Together, these findings may suggest that decisions on inhibitory control tasks may be based on 

the direct competition between choice options as represented by weakly-correlated mechanisms 

in the LCA model, rather than the difference between them. Our results seem to stand in contrast 

to recent findings from a stop-signal study, which found that perfect negative dependence 

between racing accumulators predicted aspects of observed behavior better than independent 

accumulators (Colonius & Diederich, 2018). This, perhaps, is indicative of mechanistic 

differences between 2-alternative choices and go-nogo choices, or indicates that accumulator 

dependence exists as a gradient and manifests differently from task to task as has been suggested 

in the past (P. Smith & Ratcliff, 2004). Because it has been shown that the LCA model can 

mimic a standard DDM under conditions of balanced leak and lateral inhibition (Bogacz et al., 
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2006), the most parsimonious assumption favors the model that is flexible enough to capture all 

observed patterns in the data. 

 

We hypothesized that within-trial attentional mechanisms were based on some element of the 

decision process rather than the mere passage of time. As such, we defined sets of models with 

attention mechanisms driven by time like the original SSP, models driven by time with added 

variability, and models driven by cognitive control which was calculated from the accumulators 

at each timestep within the decision process. In Experiment 1 and even more strikingly in 

Experiment 2, the control models outperformed the time-based models in terms of fits to 

behavioral data. It is important to note that the control models consistently fit the data better than 

time models with added variability, indicating that control mechanisms were tapping into a 

signal present in the data beyond random noise. In Experiment 3, this contention was reinforced 

by model-based EEG findings, indicating that the LCA conflict model was the only one with a 

time course of visual attention mechanisms that significantly correlated with within-trial EEG 

voltage.  

 

Our findings provide a model-based, mechanistic complement to recent neuroimaging work that 

has investigated attention processes within-trial. One study recorded EEG data while participants 

completed a variant of the flanker task with a manipulation of visual probe locations. Probes 

were presented at different distances from the target on each trial in order to force modulation of 

the visual field (Nigbur et al., 2015). N1 ERP amplitudes, which have been shown to be an index 

of spatial attention (H. Heinze et al., 1994; Mangun & Hillyard, 1988), provided evidence that 

conflict resolution on incongruent trials occurred mainly via target enhancement, not distractor 
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suppression. The critical difference between Nigbur et al.’s findings and our own is that the N1 

ERP reflects early perceptual processing 150-200 ms after stimulus onset (Haider et al., 1964), 

which is distinct from decision-related processes of interest in the current study. Considering the 

two sets of results together, it is possible that initial stimulus-processing in the spotlight 

framework of attention depends on target enhancement only, but that higher-order decision 

processes require additional distractor suppression mechanisms. Indeed, previous studies in EEG 

(Philiastides et al., 2006; VanRullen & Thorpe, 2001) have shown that visual processing and 

decision-making reflect distinctly different mechanisms. Philiastides and colleagues (2006), for 

example, recorded EEG data while participants indicated either the color or category of stimuli 

with different levels of phase coherence. The researchers showed that a negative ERP at 170 ms 

post-stimulus onset reflected identification of the goal-relevant feature in a trial (color vs. 

category), and that later ERPs reflected components of the decision process (red vs. green or face 

vs. car). Importantly, only the late ERP components reflected trial-level difficulty or conflict 

between the two competing choice options. Nevertheless, further work is needed to understand 

the possible dissociation between perceptual processing and decision-relevant computations in 

the presence of conflict.  

 

Despite converging findings across three experiments, the current study is not without 

limitations. First, we mathematically defined within-trial cognitive control as the cumulative 

distance between total evidence and a learned threshold at which conflict can be resolved. We 

defined this function based on the DMC framework of Braver and colleagues (Braver, 2012; De 

Pisapia & Braver, 2006), in which cognitive control increases within-trial until attention is 

sufficient to resolve conflict, and then may decrease toward the end of a trial if no further 
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recruitment of attention is needed. Both increasing and decreasing properties were observed in 

neuronal firing patterns in the conflict-relevant ACC during a recent single-unit recording study 

(Hunt et al., 2018). Our specific definition of the cognitive control function, however, may not be 

precisely correct in terms of representing drive to attentional mechanisms. For example, a related 

mechanism described by Yeung and colleagues (2004) calculated conflict as the product of 

activations across possible responses. Within the SSM framework, however, the product of 

activations would result in an unchanging attentional spotlight if one accumulator sporadically 

reached zero, which would be a frequent occurrence on congruent trials. While it seems possible 

that the attentional spotlight would not be necessary on congruent trials, Servant and colleagues 

(2014) compared the original SSP to a variant in which the spotlight only shrank on incongruent 

trials. The authors found that the alternative model provided worse fits to behavioral data 

compared to the original model, and was specifically unable to capture the range in performance 

across subjects in the congruent condition. Future work will investigate the nature of the 

cognitive control signal as it relates to the amount of evidence in the system at a given time.  

 

A second limitation is that we investigated competing hypotheses within the SSP model. We 

made this choice despite results from other studies demonstrating that the SSP cannot capture 

patterns of data beyond the flanker task (notably, negative-going delta functions in the Simon 

task; Ulrich et al., 2015), and that a version of the SSP implemented in the LCA framework 

could not capture pre-motor partial error responses as measured by MEG (Servant et al., 2015). 

We believe with modifications such as those explored in the current project, the shrinking 

spotlight framework can indeed extend beyond what it was designed to capture. Preliminary 



 

 

103 

investigations of extensions for the LCA control SSP model presented here are currently 

underway, specifically for tasks involving gradations of conflict outside of the flanker paradigm.  

 

3.4.3    Conclusions 

In the current study, we sought to investigate the possibility of within-trial modulation of 

attention based on the dynamics of the decision process, within a modeling framework that is 

amenable to quantifiable comparisons. We systematically developed and compared models that 

featured time-based or control-based attention mechanisms, and strongly- or weakly-correlated 

evidence accumulation mechanisms. Across three experiments, we found that a flexible 

accumulator structure in combination with control-based attention processes provided the best 

fits to behavioral data. Additionally, we found that the within-trial attention modulation signal in 

the LCA control model uniquely correlated with neural signals in the brain. While we have 

focused on within-trial mechanisms in the current study, future work will investigate the 

possibility that the decision-related signals driving the within-trial effects of interest here can 

also result in between-trial effects, such that the end-state of cognitive control in one trial 

contributes to the starting point of the attentional spotlight on the next.  

 
 
 
 
 
 
 
  



 

 

104 

 
 
 

Chapter 4: Individual Differences in Attention Allocation 

during a 2-Dimensional Inhibitory Control Task 

In Chapter 3, I presented a set of models that were intended to mathematically formalize 

competing hypotheses for dynamic attention and cognitive control processes. With the exception 

of the DSTP, all of the models contained elements of the SSP developed by White, Ratcliff, and 

Starns (2011) to represent visual attention processes. While the SSP conceptualized attention as a 

1-dimensional Gaussian distribution, the verbal theory on which the model was based specified a 

2-dimensional spotlight that processes information in both the horizontal and vertical spatial 

directions. In Chapter 4, I extended the best-fitting model from Chapter 3 for processing 2-

dimensional stimuli. I then capitalized on my model based approach to investigate individual 

differences in the natural shape that the attentional spotlight takes on at the start of each trial. 

Previous group-level behavioral analyses have suggested that the spotlight takes the shape of a 

horizontally-biased ellipse, but a model-based approach shows that this is not necessarily the 

case for all subjects. As mentioned previously, the manuscript presented in Chapter 4 is under 

review at Attention, Perception, & Psychophysics.  
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4.1    Introduction 

 
Although the mechanisms underlying visual attention remain a topic of active research, it is 

widely accepted that the focal area of attention can vary in size (Castiello & Umiltà, 1992; C. 

Eriksen & St James, 1986; Henderson, 1991; Jonides, 1983; LaBerge, 1983; Lavie, 1995) and 

that processing is more efficient when the focal area is small, compared to when it is large (C. 

Eriksen & Schultz, 1979; C. Eriksen & Yeh, 1985; Pan & Eriksen, 1993; Umiltà, 1998). The 

Eriksen flanker task (B. Eriksen & Eriksen, 1974), which requires participants to respond to a 

target while ignoring target-congruent or -incongruent distractor stimuli, has proven to be a 

particularly useful tool for studying attention. Notably, Gratton and colleagues (1988) used the 

flanker task to reveal a time-related component to attentional processing efficiency, such that 

incongruent distractors cause markedly less processing interference as RTs increase. These and 

other behavioral and electrophysiological findings suggest that distractor stimuli have an 

influence on processing early in the trial, but that it decreases through time (Burle et al., 2002; 

Czernochowski, 2015; Nigbur et al., 2015; Ridderinkhof, 2002). In their seminal theory, Eriksen 

and St. James (1986) provided the explanation that attention behaves as a zoom lens or shrinking 

spotlight that starts out wide and diffuse at the beginning of a trial and gradually focuses on the 

target.  

 

The size and shape of the attentional spotlight has been extensively studied using mixtures of 

horizontally- and vertically-arranged flanker stimuli (C.-C. Chen & Tyler, 2002; Cohen & 

Shoup, 1993; Livne & Sagi, 2011; Vejnović & Zdravković, 2015) and visual search paradigms 

(Hüttermann et al., 2014; Luck et al., 1989; Panagopoulos et al., 2004). By manipulating the 

spatial distance, position, and stimulus onset asynchrony of distractors relative to targets, for 



 

 

106 

example, Pan and Eriksen (1993) concluded that the dimensions of the spotlight dynamically 

adjust from trial to trial based on the spatial configuration of the stimulus at hand. In line with 

these results, subsequent work showed that the spotlight can take on the shape of a ring (M. 

Müller & Hübner, 2002), a Mexican hat (N. Müller et al., 2005) or can be divided among non-

contiguous locations (Dubois et al., 2009; M. Müller et al., 2003; Treue & Martinez-Trujillo, 

2012) depending on the spatial arrangement of the stimuli and the demands of the task. Through 

group-level analyses of speed and accuracy, however, other studies have concluded that there is a 

dimensional bias to the spotlight, such that it is elliptical in shape, broadly distributed along the 

horizontal plane and narrowly distributed along the vertical plane (Andersen & Kramer, 1993; 

Feng et al., 2007; Hüttermann et al., 2013). While we acknowledge that the notions of a 

stimulus-dependent spotlight and a horizontal attention bias are not mutually exclusive, we 

contend that the extent to which these processing features tradeoff within individual participants 

has not been thoroughly investigated. 

 

In the current study, we used a 2-dimensional flanker task paradigm and a corresponding 

computational model to investigate the hypothesis that individuals vary in dimensional biases 

related to attentional allocation when controlling for the spatial configuration of stimuli across 

conditions. As shown in Figure 4.1, stimuli in the current study were designed to be identical in 

spatial distribution across conditions in an effort to limit stimulus-dependent modulation of the 

attentional spotlight. Within each condition, we manipulated the arrangement of target-congruent 

and -incongruent distractors to assess behavioral biases. We fit two variants of an SSM of 

within-trial decision processing during the flanker task to each participant’s data, which allowed 

us to calculate parameter estimates based on trial-level choices and RTs (Weichart, Turner, et al., 
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2020). Both model variants contain an attentional spotlight, implemented as the density function 

for a bivariate normal distribution that narrows onto the target throughout the decision process. 

The shape of the spotlight is specified by separate horizontal and vertical standard deviation (SD) 

parameters. In the circular spotlight model, the shape parameters were constrained to be equal in 

order to reflect the horizontally- and vertically-symmetric spatial configuration of the stimuli. 

The alternative elliptical spotlight variant subsumes the circular spotlight model, and allows the 

horizontal and vertical shape parameters to take on different values to optimally fit each 

participant’s data, if needed. Our results show that an elliptical rather than a circular spotlight is 

favored for most subjects, and demonstrate notable variability between subjects in terms of 

horizontal or vertical biases. 

 

4.2    Materials and Methods 

4.2.1    Participants 

26 undergraduate students were recruited from the University of Virginia to participate in 

exchange for partial course credit. All participants provided informed consent in accordance with 

the requirements of the Institutional Review Board at the university.  

 

4.2.2    Stimuli and Apparatus 

A custom program using the State Machine Interface Library for Experiments (SMILE; 

https://github.com/compmem/smile) was written to present stimuli, track timing, and log 

responses. The experiment was administered on a desktop computer with Windows 10, 

connected to a 24-inch, 1920 x 1080-pixel LED display with a refresh rate of 120 Hz. Stimuli 

were presented in white text on a dark gray background. Participants made responses using the 
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outer two keys of a four-key Black Box ToolKit response pad. Stimulus arrays were comprised 

of 13 left- or right-facing arrows arranged in a diamond formation. Distractor arrows took on one 

of five configurations, as illustrated in Figure 4.1, and participants were asked to indicate the 

direction of the arrow in the center of the array while ignoring all distractors. The stimuli were 

designed in consideration of research demonstrating that distractor interference is positively 

correlated with proximity of distractors to target (Pan & Eriksen, 1993; Andersen & Kramer, 

1993; Feng, Jiang, & He, 2007). In the easy condition, all distractors were congruent to the 

target. In the moderate and hard conditions, distractors were incongruent to the target in the 

outer and inner layers of the array, respectively. Horizontal and vertical conditions were 

included to test for asymmetries in dimension-level response competition. On each trial, the 

array was presented in one of eight locations around the screen. Possible locations were 

equidistant from the center of the screen in increments of 45 degrees. Task condition (easy, 

moderate, hard, horizontal, or vertical), target direction (left or right) and screen location (0, 45, 

90, 135, 180, 225, 270, or 315 degrees) were counterbalanced and randomized within-block.  

 

 

Figure 4.1: Examples of stimuli. Colors are used to highlight the contrasting directions 

configurations of left (red) and right (blue) arrows. All stimuli shown here contain a left-facing 

target, but analogous stimuli with right-facing targets were included in the experiment as well.  
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4.2.3    Procedure 

Participants provided informed consent and were seated in individual testing rooms. Instructions 

and example stimuli appeared on the screen, and instructions were also provided verbally by an 

experimenter. A practice module with visual feedback for correct and incorrect responses was 

administered until the experimenter verified that the participant understood the task (~1 minute). 

Prior to beginning the main task, the experimenter provided the following information: “You will 

complete eight blocks of the task, each lasting about 2 minutes. At the end of each block, you 

will receive a score based on speed and accuracy. Please try to get the highest score that you 

can.” Once the task began, a fixation cross appeared in the center of the screen and remained for 

the duration of the block. Stimuli appeared on the screen until a response was made, or for a 

maximum of 3000 ms. Participants responded by pressing the leftmost key on the response pad if 

the arrow in the center of the array pointed left, and the rightmost key if the center arrow pointed 

right. Only responses made at least 150 ms after the stimulus appeared were recorded. At the end 

of each block, participants received a numerical score between 0 and 100 that was calculated as 

shown in Equations 4.1-4.3: 

  

Equation 4.1 

 

 Equation 4.2 
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 Equation 4.3 

where  is a vector of RTs in seconds. Within this scoring metric, performance across conditions 

was scaled between chance (0.5) and perfect accuracy (1.0), and RTs were scaled to fall within 

an expected range of  to . Log transforms were used in 

Equation 4.2 to correct for rightward skew in the RT distributions, and 1.0 was added to prevent 

against negative log RT values. To earn a high score, participants needed to respond both quickly 

and accurately in all conditions. Across 8 blocks each consisting of 80 trials, participants 

completed a total of 640 trials. 

 

4.2.4    Computational Models 

The base model in our current investigation was designed after the zoom lens theory of Eriksen 

and St. James (1986), with decision and attention mechanisms implemented within an LCA 

(Usher & McClelland, 2001) model framework. Specifically, we modified the LCA-control 

model of the flanker task described by Weichart and colleagues (2020) to accommodate 2-

dimensional stimuli. Details of the LCA-control model are provided in the original article, but 

will be summarized here. In LCA-control and other accumulator models, trial-level decisions are 

thought to result from the noisy build-up of evidence for competing response options up to a 

threshold ( ). Evidence accumulation is governed by drift rates that reflect the strength of 

information provided by the stimulus, lateral inhibition ( ), and passive decay through time ( ). 

Each accumulator  with drift rate  and current evidence  is updated continuously as shown in 

Equation 4.4. 



 

 

111 

 

             

Equation 4.4 

Time was discretized via the Euler method, using a step size of  modified by a time 

constant of  The degree of noise is represented as a driftless Wiener process 

distributed as . Responses are made in favor of the first accumulator to exceed , 

and RTs are equal to the duration of the decision process plus a nondecision time parameter ( ). 

Similar to the shrinking spotlight model designed by White, Ratcliff, and Starns (SSP; 2011), 

LCA-control features an attentional spotlight that gradually focuses on the target throughout the 

trial, but, unlike the original SSP, the spotlight shrinks due to the dynamics of the decision 

process and not simply time. For our current purposes, the spotlight takes the form of a density 

function for a bivariate normal distribution centered on the target stimulus with initial horizontal 

and vertical SDs of  and , respectively. The spotlight shrinks as a function of an 

online measure of cognitive control , modified by a rate parameter ( ) as shown in Equations 

4.5 and 4.6.  

 

Equation 4.5 

 

Equation 4.6 

A ratio parameter  governs the relationship between  and , such that 

.  was fixed to 1.0 when fitting the circular spotlight model, but was a free parameter when 
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fitting the elliptical spotlight model. The behaviors of the attentional spotlights in the circular 

and elliptical spotlight models are illustrated in Figure 4.2. 

 

Figure 4.2: Representation of the shrinking 2-dimensional spotlight of visual attention. Over the 

course of a trial, illustrated from left to right, the spotlight shrinks and focuses on the center 

arrow of a stimulus array, rendered in each subplot at z=0. The strength of visual attention 

allocated to each arrow in a stimulus array is calculated from the density of a bivariate normal 

distribution within the corresponding unit square. The top panels show a circular spotlight, such 

that the shape parameters of the bivariate normal are constrained to be equal. The bottom panels 

show an elliptical spotlight, such that the two shape parameters are free to vary. 
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The mechanism for cognitive control is based on descriptions of reactive control discussed in 

Braver’s dual mechanisms of control framework (Braver, 2012; Braver et al., 2008; De Pisapia 

& Braver, 2006), and is calculated as the cumulative distance between total evidence and a 

conflict resolution threshold, . The continuous change in  is given by Equation 4.7. 

 

Equation 4.7 

Each individual arrow in a stimulus array occupies one square unit of perceptual space, and the 

spotlight is centered on the target. Drift rates corresponding to correct ( ) and incorrect ( ) 

responses are calculated as the total volume of the spotlight allocated to target-congruent and 

target-incongruent arrows, respectively. Within each unit square of the 5-by-5 stimulus array, we 

used the trapezoidal method to estimate the bivariate probability density at 100 equally-spaced 

points (Kalambet et al., 2018). The spotlight volume allocated to each unit square was then 

estimated from the integral of the density values over the range of interest, multiplied by the 

perceptual strength of a single arrow ( ) as shown in Equation 4.8. 

 

Equation 4.8 

Values of  and  were set to 0.1, and  coordinates fell within the unit square occupied 

by an arrow with vertices , such that 

 . The conceptualization of arrow stimuli within a 

coordinate place is illustrated in Figure 4.2. A summary of free parameters in our two models 

and their respective prior distributions are shown in Table 4.1. 
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Table 4.1: Model parameters and priors in Chapter 4 

Parameter Description Prior 

Decision threshold 
 

Lateral inhibition 
 

Evidence leak 
 

Nondecision time 
 

Initial spotlight SD (horizontal) 
 

Spotlight dimension ratio 
 

Rate of focus 
 

Conflict resolution threshold 
 

Perceptual input strength 
 

 

4.2.5    Model Fitting and Assessment 

We used the model-fitting procedures described in detail by Weichart and colleagues (2020) with 

probability density approximation methods (PDA; Turner & Sederberg, 2014) that were 

implemented via custom programs in RunDEMC (https://github.com/compmem/RunDEMC). 

Broadly, fitting a model to a set of trial-level data from an individual subject was a 6-step 

process: First, we specified the relevant model as a system of equations, prior distributions that 

were determined through a series of pilot investigations, and starting values for each free 
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parameter. Next, the model was simulated 30,000 times using the starting set of parameter 

values. This step generated distributions of data in each task condition. The probability density 

function of the simulated data was then approximated using an Epanechnikov kernel (Turner et 

al., 2016; Turner & Sederberg, 2014). The estimated functional form of the simulated data 

approximates the likelihood function of each observed response under the current set of 

parameter values. The posterior density of the parameter set was calculated as a combination of 

the likelihood function and the priors. A new proposal parameter set was then selected using 

differential evolution with Markov chain Monte Carlo (DE-MCMC; Ter Braak, 2006b; Turner et 

al., 2013; Turner & Sederberg, 2012), a genetic algorithm that selects parameter values 

according to the success of previous proposals. This procedure was implemented for 800 

iterations across 90 chains. Each model’s goodness of fit was assessed via Bayesian information 

criterion (BIC), which considers both the log likelihood of the best-fitting parameters (maximum 

log likelihood; MLL) and model parsimony (number of free parameters). BIC was calculated 

using Equation 4.9 

 

Equation 4.9 

where  is the number of data points and  is the number of free parameters in the model of 

interest (Claeskens & Hjort, 2001; Wit et al., 2012). BIC values for the circular and elliptical 

spotlight models were compared within-subject, with lower BIC values indicating a better fit. 
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4.3    Results 

4.3.1    Behavioral Results 

Performance scores based on speed and accuracy were calculated for each participant and task 

condition using Equations 4.1-4.3. As shown in the left panel of Figure 4.3, we observed the 

expected pattern of decreasing performance from the easy to the moderate condition 

 and from the moderate to the hard condition 

. Performance was also better across participants in the horizontal 

compared to the vertical condition . The right panel of Figure 4.3 

presents nuanced insight into the latter comparison. The majority (19 out of 26) of participants 

performed better in the horizontal compared to the vertical condition, but some participants (5 

out of 26) displayed the opposite pattern of results. This indicates that most participants were 

better at ignoring incongruent distractors that were placed immediately above and below the 

target, compared to those that were placed immediately to the left and right.  
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Figure 4.3: Behavioral results. Left Panel: Observed and model-predicted scores within 

condition. Bars show observed mean scores. Triangular and circular points show mean scores 

predicted by the elliptical and circular spotlight models, respectively. Error bars show 95% 

confidence intervals of scores across subjects. Right Panel: Score difference, horizontal vs. 

vertical conditions. Differences in task scores in the horizontal and vertical task conditions, 

calculated within-subject.  

 

4.3.2    Model Results 

Before assessing our results, we first compared maximum log likelihood (MLL) values from the 

circular and elliptical spotlight models at the level of each subject as a check for our fitting 

procedures. Because the elliptical model subsumes the circular variant, the MLL for the elliptical 

model should be greater than or approximately equal to that of the circular model in all cases. 

We indeed found this to be true for all subjects. We then calculated differences in BIC values 

between the two models in order to account for model complexity in addition to MLL when 

assessing model performance. Results are shown in Figure 4.4. BIC values for the circular model 



 

 

118 

exceed those of the elliptical model in cases where the addition of the free parameter  did not 

meaningfully improve the fit of the model (6 out of 26 subjects). For 20 out of 26 subjects, 

however, the additional flexibility of the elliptical model provided meaningfully improved model 

fits as determined by BIC. 

 

Figure 4.4: Subject-level differences in BIC values between the circular spotlight and elliptical 

spotlight models. The elliptical model outperforms the circular model for the majority of subjects 

(lower BIC values indicate better fit). 

 
We next wanted to observe the range of spotlight dimensions calculated within the elliptical 

model. We first determined the scaled difference between horizontal and vertical standard 

deviations  from each subject’s best-fitting parameter values in the elliptical spotlight 

model using Equation 4.10: 

 

Equation 4.10 
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where . The left panel of Figure 4.5 shows the range of best-fitting spotlight 

shapes for each subject: data from 17 out of 26 subjects were best-fit by a horizontally-biased 

spotlight (points above y=0.0), and data from 9 out of 26 subjects were best-fit by a vertically-

biased spotlight (points below y=0.0). As shown by the right panel of Figure 4.5, we identified a 

positive correlation between the extent of horizontal bias in spotlight shape and the extent of 

performance benefit in the horizontal relative to the vertical task condition . The 

direction of this relationship indicates that participants with a horizontally-biased attentional 

spotlight are better equipped to ignore distractors placed above and below the target compared to 

those placed to the left and right of the target, and participants with a vertically-biased spotlight 

show the opposite performance benefit.  

 

 

Figure 4.5: Model Results. Left Panel: Subject-level scaled differences in best-fitting horizontal 

and vertical shape parameters for the spotlight in the elliptical spotlight model. Right Panel: 

Behavior vs. parameter estimates. Spotlight shape asymmetry predicts behavioral performance in 

the horizontal and vertical conditions.  
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To investigate why the elliptical model tended to fit better than the circular variant, we simulated 

data in each model, and compared them to the behavior that our participants actually produced. 

We first found best-fitting parameters for each model and subject by identifying the particle in 

the joint posterior with the maximum weight. Using best-fitting parameters and the relevant 

model, we generated 10,000 choice-RT trials in each condition. We were then able to calculate a 

performance score for each model and subject using Equations 4.1-4.3. Ranges of condition-

level scores generated by each model are shown in the left panel of Figure 4.3, alongside the 

observed data. Figure 4.3 shows that both models predict the observed pattern of decreasing 

performance as we move from the easy, to the moderate, to the hard conditions. The elliptical 

model also captures the observed pattern of better performance in the moderate and horizontal 

conditions, compared to the hard and vertical conditions. Given that data from most participants 

favored a horizontally-biased spotlight (see Figure 4.5), elliptical model predictions reflect the 

fact that moderate and horizontal stimuli contained the identical configuration of distractors 

along the horizontal midline, as did the hard and vertical conditions (see Figure 4.1). While the 

elliptical model made accurate predictions in the moderate and horizontal conditions, it was 

unable to capture the pattern of better performance in the vertical condition compared to the hard 

condition. We suspect this is due to perceptual continuity or grouping effects that are not 

currently accounted for in the model, but that would disproportionately affect performance in the 

hard condition due to the deliberately “interrupted” configuration of the distractors in the array 

(Livne & Sagi, 2010; Manassi et al., 2012). Problems arising from a lack of perceptual 

continuity-related mechanisms appear to be exacerbated by over-constraint of the spotlight 

dimensions in the circular model. In addition to overestimating performance in the hard 



 

 

121 

condition, the circular model underestimates performance in both the horizontal and vertical 

conditions. Because the spotlight in the circular model is constrained to be round, it is unable to 

predict the observed differences in performance between the horizontal and vertical conditions 

that are shown in the right panel of Figure 4.3. 

 

4.4    Discussion 

Here, we used model-based analyses to investigate individual differences in the shape of the 

attended visual area while subjects responded to two-dimensional flanker task stimuli. Given 

evidence of an attentional spotlight that dynamically adjusts to the spatial configuration of 

stimuli from trial to trial (Pan & Eriksen, 1993), we developed stimulus arrays that were 

perceptually identical across conditions in order to identify subject-level biases in spotlight 

dimensions. We constructed two variants of a model that was designed after the zoom lens 

hypothesis of visual attention (C. Eriksen & St James, 1986; Weichart, Turner, et al., 2020). 

Consistent with previous results (Andersen & Kramer, 1993; Feng et al., 2007; Hüttermann et 

al., 2013), we found that most participants use an elliptical spotlight, specifically one with a 

horizontal bias. This was not the case for all subjects, however, and we identified a widely 

variable range of spotlight configurations. 

 

Previous studies investigating dimensional biases in visual attention have inferred the shape of 

the spotlight based on group-level differences in responses to horizontally- and vertically-

configured stimuli. To explore individual differences in attentional biases, our model-based 

methods allowed us to account for the spotlight configuration’s critical effects on the cascade of 

mechanisms that ultimately results in a specific pattern of behavior. Our results therefore add to 



 

 

122 

the existing literature on attentional allocation, highlighting individual differences in dimensional 

biases that should be considered in future work. For example, the models in the current study 

relegated behavioral differences between the horizontal and vertical conditions to differences in 

spotlight dimensions captured by values of  and . Follow-up work will investigate 

whether splitting the  parameter into separate horizontal and vertical values will further 

improve model fits, which would indicate that focusing attentional resources occurs at different 

rates between the two dimensions. Regardless of the precise mechanisms involved, we have 

presented conclusive evidence of dimension-dependent differences in attentional processes that 

have not been considered in existing mechanistic models of the flanker task. All other within-

trial flanker decision models have been designed to fit data from stimulus arrays oriented along a 

single horizontal plane (Hübner et al., 2010; Ulrich et al., 2015; White et al., 2011). Real-world 

challenges to visual attention, however, require integrated processing across multiple spatial 

dimensions. By failing to consider multidimensional stimuli, our results indicate that these 

models are potentially missing an important source of variability between individuals in visual 

processing mechanisms.  
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Chapter 5: Quantifying Mechanisms of Cognition with an 

Experiment and Modeling Ecosystem 

A major motivating factor in conducting the work presented in Chapters 2-4 was the hope that I 

would eventually build something that would be helpful for answering clinical questions. 

Because reduced performance in cognitive control-related tasks arise alongside several clinical 

disorders, the ability to pinpoint specific mechanistic deficits through model-based analyses 

could provide important insight to clinicians when providing diagnoses and treatments. In 

Chapter 5, I present the model from Chapter 3 and the task from Chapter 4 as tools for fast, 

detailed assessment of attention and cognitive control. My flanker task and model are part of a 4-

piece cognitive task battery, SUPREME, which was developed with my colleagues in Per 

Sederberg’s lab. Chapter 5 contains the details and results of a 2-session validation study, along 

with examples of using our model-based approach for quantifying cognitive changes through 

time. The manuscript, presented here in an abridged form to focus on the flanker task, has been 

submitted to Behavior Research Methods. 

 
 
5.1 Introduction 

Advancements in computational modeling have inspired new ways of studying psychological 

phenomena, making it possible to quantify elements of the processes underlying behaviors. 
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Alongside task paradigms designed to target specific cognitive functions, generative models have 

been used in cognitive psychology for decades to explore mechanistic theories of the 

computations involved in responding to stimuli. Broadly, generative models fit within a Bayesian 

framework consist of 1) a system of equations governing the biological processes relevant to the 

task; 2) a set of free parameters, whose values are responsible for producing different patterns of 

data by modulating the behavior of the equations; 3) a likelihood function, representing the 

probability of the data given a set of parameter values; and 4) a set of prior distributions, which 

specifies the range of plausible values for each parameter (Frässle et al., 2018; Friston et al., 

2014; Stephan & Mathys, 2014).  The power of generative modeling is that it allows us to 

mathematically articulate hypotheses about how different layers of processing function and 

interact, and in turn, formally test said hypotheses by fitting the models to data (Huys et al., 

2016). Interpreting behavior in terms of latent processes opens a world of possibilities for 

identifying the networks involved in complex cognitive functions (Herz et al., 2016; Nunez et al., 

2017).  

 
 
Since the National Institute of Mental Health developed the Research Domain Criteria (RDoC; 

Insel et al., 2010), generative models have been increasingly prevalent in psychiatric research as 

well. RDoC is a research framework predicated on the idea that observable symptoms and 

cognitive behaviors should be studied at all levels of processing, from neural circuits consisting 

of multiple brain areas down to individual neurons. To this end, several studies have applied 

model-based analyses to behavior from clinical groups, identifying mechanistic differences in 

how patients perform on cognitive tasks compared to healthy controls (Moustafa et al., 2015; Pe 

et al., 2013; C. White et al., 2010, 2016). Several reviews have praised generative modeling as a 
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potentially transformative tool for psychiatry, but have also noted the problem of balancing 

specificity (i.e. capturing relevant deficits in individual patient groups) with generalizability (i.e. 

being applicable in investigations of other patient groups) when developing tasks and models 

(Adams et al., 2016; Huys et al., 2016; Petzschner et al., 2017). Although a handful of studies 

have used model-based approaches to target specific dysfunctions relevant to a particular patient 

group of interest (Cavanagh et al., 2011; Cockburn & Holroyd, 2010; Frank et al., 2007; Mulder 

et al., 2010; Wiecki et al., 2015) the field currently lacks a comprehensive suite of tasks and 

associated generative models to measure a full range of cognitive mechanisms across participant 

groups.  

 
 
We have developed a toolbox of computerized tasks designed to measure an array of cognitive 

functions, ranging from low-level perceptual decisions to higher-level assessments of risk, and 

from working memory to long-term associative memory. Each task in our toolbox is 

accompanied by a theory-based computational model designed to quantify the latent processes 

underlying decisions at the level of each trial. We call our toolbox SUPREME: Sensing to 

Understanding and Prediction Realized via an Experiment and Modeling Ecosystem. SUPREME 

builds upon existing tasks and models in cognitive and mathematical psychology, respectively. 

Our goals were to develop a standard, comprehensive means of assessing cognitive functions, 

and to make mechanistic interpretability of cognitive processes via model-based analyses more 

accessible for researchers across areas of expertise. Although follow-up work will need to 

investigate model reliability and applicability to specific diagnostic categories, SUPREME 

represents a promising step toward a standard method of quantifying and comparing latent 

cognitive processes across participant groups.  
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5.1.1 Task Selection 

We aimed to create an ecosystem for comprehensive cognitive assessment, provided by a 

combination of RDoC construct-targeted tasks and mechanistic computational models. In 

developing SUPREME, we took care to select tasks that 1) are objective, quantifiable measures 

of the constructs of interest, 2) can be administered multiple times to the same participants with 

minimal response biases, 3) are simple enough for participants across a wide range of ages and 

cognitive abilities to complete, 4) are brief, such that each block takes less than five minutes to 

administer, 5) provide data that are amenable to computational model development and fitting 

(via constraining task conditions or continuous measures such as RTs in addition to trial-level 

responses), and 6) span multiple cognitive constructs and different levels of processing 

complexity. We ultimately selected four tasks that have been mainstays of the cognitive 

assessment literature for decades, and have been validated by behavioral, neuroimaging, and 

clinical data to capture group- and condition-level variability in cognitive performance.  

 
 
Cognitive constructs of interest were selected from RDoC, with a primary focus on the cognitive 

systems domain. The flanker task (Eriksen & Eriksen, 1974; Kopp et al., 1996) was included to 

measure attention and cognitive control by requiring participants to make decisions while 

ignoring distracting information. The task assesses attention by requiring the purposeful focusing 

of limited visual processing resources, and assesses cognitive control by requiring the 

suppression of prepotent response modes. In developing our variant of the flanker task, we 

wanted to create stimuli that were challenging enough to produce differences in performance 

among cognitively normal participants while still being simple enough for impaired participants 
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to complete as well. Our variant differs from the classic paradigm in a number of ways. First, 

target arrows were presented in the center of a 3 by 3-arrow diamond-shaped array, requiring 

participants to inhibit information in both the horizontal and vertical directions before responding 

to the target. Second, the configuration of distractor stimuli was based on research demonstrating 

the zoom lens conceptualization of visual attention (Brefczynski & DeYoe, 1999; Tootell et al., 

1998). To achieve a gradient of difficulty across task conditions, incongruent distractors could be 

positioned in either the inner or outer layer of the stimulus array. Third, stimuli were presented 

on the screen at one of eight possible spatial locations. Participants were therefore required to 

dynamically modulate their attention on each trial rather than focusing on a single spatial 

location. The stimuli used in our task variant are illustrated in Figure 5.1. Although I will focus 

on the flanker task in the context of my dissertation, the other tasks that were included in 

SUPREME will be briefly described as well. 

 

 We selected the random dot motion task (RDM) to measure the construct of perception, which 

encompasses the computations involved in translating sensory input into decision-guiding 

information. In the task, participants must interpret sensory information in the form of randomly-

moving dots and identify the direction of most coherent motion. Declarative memory--the 

encoding, storage, and retrieval of events--was measured with the continuous associative binding 

task (CAB). The CAB task requires participants to remember relationships between paired items, 

tapping into associative aspects of declarative memory rather than item recognition alone. 

Finally, the balloon analogue risk task (BART; Lejuez et al., 2002) was used to assess the 

positive and negative valence domains, via the constructs of reward valuation and frustrative 

nonreward, respectively. In the task, participants must balance the goal of increasing reward with 
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the risk of loss by interacting with a virtual balloon. Each task was developed alongside a 

corresponding computational model, which allowed us to gain insight into the mechanistic 

underpinnings of the cognitive constructs of interest. 

 
 
5.1.2 Model Development 

An early review by Maia (2015) defined two broad types of model-based analyses in 

computational psychiatry: 1) data-driven approaches in which machine learning methods are 

used to distinguish among known diagnostic categories of participants, and 2) theory-driven 

approaches, which specify mathematical relationships among variables that contribute to 

differences in group and individual behaviors. Our methods fall into the latter category, such that 

we developed sets of algorithms to mathematically describe the processes in between stimulus 

onset and response. Free parameters in our models represent cognitively interpretable variables, 

which, when fit to data, provide quantified measures of latent mechanisms that we could not 

observe from behavior alone. All of our models operate at the level of the individual trial, 

making it possible to calculate parameter estimates independently for each participant. Models 

for each task were developed from a combination of existing decision frameworks and 

mathematical articulations of current cognitive theories. Given that multiple theories exist for 

how the brain engages certain cognitive processes, our model development procedure was rooted 

in systematic implementation, fitting, and comparison of contrasting model variants (Kirkpatrick 

et al., under review; Weichart et al., 2020). Experiments were designed and models were 

developed symbiotically in pursuit of the following goals: 1) performance during experiments 

should involve the cognitive constructs of interest, 2) models should instantiate the cognitive 

constructs of interest, and 3) experimental conditions should allow for sufficient constraint, such 
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that the parameter estimates corresponding to the constructs of interest are informative. Here, 

‘informative’ refers to parameter estimates that are both accurate and precise, allowing us to 

meaningfully differentiate whether a mechanism is a plausible component of an individual’s 

decision making process. The models presented here provide neurally plausible accounts for the 

processes underlying the decisions in each task, and also provide the best fits to data compared to 

alternative accounts as determined by Bayesian comparison analyses.  

 
5.2 Methods  

5.2.1 Task  

85 participants were recruited to complete the task battery. 1-2 weeks after completing the first 

session, a subset of 65 participants returned to the lab and completed a second session. Blocks of 

the four tasks included in SUPREME were randomized within-session.  

 

Participants completed 4 blocks of our flanker task variant, each consisting of 48 trials. 

Participants were instructed to indicate the direction of the arrow in the center of the array while 

ignoring all distractors. Distractor arrows took on one of three configurations (easy, moderate, 

and hard). On each trial, the stimulus was presented in one of eight locations around the screen. 

Possible locations were equidistant from the center of the screen in increments of 45 degrees. 

Task condition (easy, moderate, hard), target direction (left or right) and screen location (0, 45, 

90, 135, 180, 225, 270, or 315 degrees) were counterbalanced and randomized within-block. The 

LCA control model from Chapter 3 was fit to data from each subject. Stimulus input to the 

model was limited to the center horizontal row of each array. 
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Figure 5.1: Illustration of stimuli in each condition of the flanker task (i.e. easy, moderate, and 

hard). A) Possible stimulus configurations. Colors were used to highlight the contrasting 

orientations of the arrows, but stimuli in the actual task were presented in white font against a 

dark gray background. B) Possible stimulus locations. Black asterisks show the 8 locations in 

which a stimulus could have appeared on each trial. 

 
5.2.2 Model 

Details of the LCA control model as presented in Chapter 3 are summarized here. Because the 

model is a variant of LCA, it contains free parameters representing decision threshold ( ), 

nondecision time ( ), lateral inhibition ( ), and passive decay of evidence ( ). To calculate the 

drift rate for each choice, we implemented a variation of time-dependent calculations originally 

described in the SSP (C. White et al., 2011). The SSP draws upon research that points to visual 

attention behaving as a zoom lens, such that perceptual resources are allocated around a central 

target within a finite area that can expand and contract as needed (Brefczynski & DeYoe, 1999; 

Mesulam, 1990, 1999; Müller et al., 2003; Tootell et al., 1998). In the model, an attentional 

spotlight takes the form of a density function for a Gaussian distribution with standard deviation 
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 centered upon the central target of the flanker task stimulus. Each arrow in the stimulus array 

occupies one unit of space and has a perceptual input strength of . Although our task paradigm 

features distractor items in both the horizontal and vertical directions, we fit our model based 

only on the arrows along the horizontal midline of the stimuli for the purposes of our current 

investigation. In our variant of the model, the standard deviation of the spotlight shrinks as a 

function of an endogenous calculation of cognitive control, modified by rate of focus ( ). Our 

calculation of cognitive control was based on theoretical descriptions of reactive control (Braver, 

2012; Braver et al., 2008; De Pisapia & Braver, 2006), which suggest that attention is modulated 

within-trial according to an online calculation of control resources relative to the perceptual 

conflict within the stimulus. As incongruent stimuli contain evidence for both possible choice 

options, a greater involvement of attentional mechanisms is required to make a response 

compared to the case of congruent stimuli. We operationalized the concept of reactive control as 

a cumulative distance between total evidence and a conflict threshold ( ). Despite neural and 

behavioral evidence of attention- and cognitive control-mediated changes in the decision process 

within-trial (Czernochowski, 2015; Nigbur et al., 2015; Scherbaum et al., 2011), SSMs typically 

calculate evidence as a direct function of time. In a recent model comparison study, we showed 

that our control-based spotlight implementation within the LCA framework provided better fits 

to data compared to time-based alternatives, and uniquely mapped onto decision-related signals 

measured by EEG (Weichart et al., 2020). A list of free parameters and the mechanisms they 

represent are provided in Table 5.1. 
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Table 5.1: Summary of flanker model free parameters in Chapter 5 

Parameter Description 

 

decision threshold 

 

nondecision time 

 

lateral inhibition 

 

passive decay of evidence 

 

initial spotlight width 

 

perceptual input strength 

 

rate of focus 

 

conflict threshold 

 
 
 
5.3 Results 

5.3.1 Behavioral validation 

The three conditions of the SUPREME flanker variant indeed provided a more stable gradient of 

difficulty compared to a standard flanker task, as shown in Figure 5.2. To make a fair 

comparison between tasks, we selected the first 64 trials per condition from each participant’s 

data in Experiment 1 from Chapter 3 to match the number of trials in the current experiment, and 

randomly selected first-session data sets from 26 participants in the current experiment to match 

the number of participants in Experiment 1 from Chapter 3. Figure 5.2A shows that the 95% 

confidence intervals of condition-level accuracy and speed in the standard flanker task 

overlapped substantially, with virtually no difference between the congruent and neutral 
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conditions. In contrast, data from the SUPREME flanker variant in Figure 5.2B shows an 

expected pattern of decreasing accuracy and increasing mean RTs alongside increasing condition 

difficulty. We also observe non-overlapping 95% confidence intervals for both accuracy and 

mean RTs when comparing the easy to the hard condition. 

 

 

Figure 5.2: Performance differences between a standard flanker paradigm and the SUPREME 

variant. Bar plots show means and 95% confidence intervals of accuracy and performance across 

26 subjects who completed 192 trials of a standard flanker paradigm (A) compared to the flanker 

task variant included in SUPREME (B).  

 
We calculated standard validation metrics for our SUPREME flanker task variant, using data 

from all 65 participants who completed both sessions. First, we developed a customized metric 

on a scale of 0 to 100 that accounts for both speed and accuracy, presented in Chapter 4. In order 

to earn a high score, participants had to consistently perform quickly and accurately across 

conditions. Test-retest reliability was “moderate” as determined by the Pearson’s r correlation 

between session-level metric scores (Devore & Peck, 1993 r=0.73), stability of individual 

differences was “moderate” as determined by Spearman rank order correlation (White, Lejuez, & 
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de Wit, 2008; , ), and internal consistency across four blocks was “high” as 

determined by Chronbach’s  (Strauss et al., 2006; ). 

 

 
5.3.2 Model validation 

When we fit the LCA control model presented in Chapter 3 to the data collected using 

SUPREME, we found that the conditions of the SUPREME flanker variant provided more 

constraint to parameter estimates compared to those of the standard task. Figure 5.3 shows the 

posterior distributions for each parameter in our model, mean-centered within-subject and then 

averaged across 26 subjects from Experiment 1 of Chapter 3 and session 1 of the current study. 

Despite the fact that the model was fit to data from substantially more trials per subject in the 

standard flanker task compared to the SUPREME task variant (256 vs. 192 trials), the posterior 

distributions are more constrained in the latter example. More constrained posteriors mean that 

we have a greater degree of certainty in our estimates of the parameter values, and the cognitive 

constructs they represent.  

 

 



 

 

135 

 

Figure 5.3: Posterior distributions for LCA-control model parameters in Experiments 1 from  

Chapter 3 and the SUPREME study in Chapter 5. The same model was fit to data from 26 

subjects in the standard flanker task and the SUPREME flanker task variant. Parameter values 

were mean-centered within-subject, and distributions were averaged across subjects. 

 
Qualitative analyses were used to verify that the model was able to capture the observed pattern 

of behavioral results. We identified a set of best-fitting parameter estimates for each participant’s 

data based on maximum log-likelihood. We generated 10,000 trials within each task condition by 

inputting each set of parameters back into the model. Figure 5.4A shows means and 95% 

confidence intervals of scores in each condition, averaged across subjects. For Figure 5.4B, we 

calculated the Pearson’s r correlation between each participant’s observed score across 

conditions and the model-predicted scores generated from each participant’s best-fitting 

parameters (r=0.82). From these analyses, we conclude that the model suitably fits the data and 

generates behavior similarly to our participants. 
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Figure 5.4: SUPREME flanker model results. A) Observed and model-generated scores in each 

condition of the flanker task. Models were simulated 10,000 times for each condition using each 

participant’s best-fitting parameters. Scores were calculated based on speed and accuracy. 

Observed mean and 95% CIs of scores are shown as colored bars. Mean and 95% CIs for model-

generated scores are shown as gray bars. B) Correlation between observed and model-generated 

scores across conditions. 

 
5.3.3 Model-based individual difference analyses 

The relationship between the brain and behavior is complex. Similar processing modes may lead 

to different patterns of behavior depending on which brain structures are involved, and the 

recruitment of different networks could result in nearly identical behavior (Sarter et al., 1996). 

Compensatory mechanisms are a potent example, whereby the brain upregulates alternative 

processing routes to maintain cognitive performance despite injury, neuropathology, or otherwise 

limited resources. At one extreme, several studies of traumatic brain injury patients note 

cognitive reorganization during rehabilitation, such that entire neural architectures reorient to 

decrease reliance on dysfunctional connections during cognitive operations (see Galetto & 



 

 

137 

Sacco, 2017 for review). Among healthy adults, task-related compensatory increases in anterior 

neural activity have been noted alongside sensory decline resulting from acute cognitive fatigue 

(Samuel et al., 2019) and as a function of age (Cabeza et al., 2004; Madden et al., 2009). Simple 

individual differences in processing speed at various levels of neural architecture affect how 

participants solve a task as well, which may or may not result in differences in overt behavioral 

performance (Schubert et al., 2019). Analytical methods that are considerate of mechanistic 

heterogeneity across subjects are therefore important for identifying differences in the processing 

routes and gaining insight into cognitive states. As a proof of concept, studies have shown that 

machine learning algorithms trained on best-fitting model parameters rather than data-derived 

summary statistics are more accurate predictors of young versus old age group membership 

(Wiecki et al., 2015), as well as diagnostic group classification (Petzschner et al., 2017; Weigard 

et al., 2020; Wiecki et al., 2016). 

 
One particular strength of our approach is the use of Bayesian analytical procedures, which allow 

us to identify full distributions of parameter values (the joint posterior distribution) that could 

have generated the observed data with some degree of likelihood. As such, we are uniquely 

positioned to determine both the particular set of values that can optimally recreate a 

participant’s data, as well as a means of quantifying the uncertainty in our measurements of each 

cognitive construct of interest. Because our models are also generative models, meaning they can 

produce simulated choices and RTs given a set of parameters, we can calculate posterior 

predictive distributions (PPDs) of task scores. PPDs represent the possible ways a participant 

could have performed, given our model-based assessment of their cognitive state at the time of 

test. Despite a participant only completing the task set once and producing a single score, PPDs 

serve as a model-based confidence interval. With the power to quantify the uncertainty in our 
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measurements via the joint posterior distribution and PPDs, we are able to identify meaningful 

differences in cognitive acuity at the level of task scores as well as the latent constructs that 

produced them. As an example, we fit the LCA control model to each participant’s first-session 

data and calculated the joint posterior distribution of parameter values. We then sampled 200 

particles from the joint posterior, simulated 10,000 trials in each task condition using each 

parameter set, and calculated a performance score from each model-generated data set. Figure 

5.5 shows the observed scores for two low-performing and two high-performing participants, 

underlaid with their respective PPDs. Calculations of the percent overlap among the PPDs 

demonstrate that the two scores from the high-performing participants are meaningfully different 

from those of the low-performing participants. 

 

 

Figure 5.5: Observed scores and PPDs of low-performing (A and B) and high-performing (C and 

D) participants. Observed scores are displays as black points, and PPDs are shown as violin 

plots. Meaningful differences were identified based on percent overlap of PPDs.  
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Typical behavioral measures such as mean RTs and accuracy provide a sense of each 

participant’s ability to perform the task successfully, but our model-based approach allows us to 

tap into the nuanced differences in how each individual is solving the task. Beyond comparing 

PPDs, analyses of each participant’s joint posterior distribution can reveal nuances in the latent 

cognitive processes underlying task performance. Figures 5.6 and 5.7 show that although the two 

pairs of participants from Figure 5.5 ultimately obtained nearly identical scores, their underlying 

cognitive states were very different. For instance, Figure 5.6 shows that participant B required 

more evidence before committing to a decision (represented by the decision threshold parameter 

) and also committed more attentional resources to processing the flanker stimuli (represented 

by the initial spotlight width parameter ) compared to participant A. This configuration of 

parameter values would have perhaps caused participant B to be slower to respond if all other 

parameters were equal. However, participant B also demonstrated substantially faster visual 

processing and motor control compared to participant A (represented by the nondecision time 

parameter ), which caused these two participants to ultimately achieve similar scores on the 

task. 
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Figure 5.6: Comparison of posterior parameter distributions for two low-performing participants. 

Facet titles indicate the parameter and the percent overlap between the relevant posterior 

distributions for participants A and B. 

 
Our assessment of high-performing participants C and D tell a different story, as illustrated in 

Figure 5.7. Participant C was notably inefficient at focusing the attentional spotlight and filtering 

out the flanker stimuli on each individual trial, as shown by the rate of focus parameter posterior 

( ). Participant C, however, appears to have compensated for a slow rate of focus via faster 

visual processing and motor control ( ) compared to participant D, as well as higher engagement 

with the task as determined by the general attention parameter ( ).  
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Figure 5.7: Comparison of posterior parameter distributions for two high-performing 

participants. Facet titles indicate the parameter and the percent overlap between the relevant 

posterior distributions for participants C and D. 

 
5.4  Discussion 

We have developed a battery of cognitive tasks that are simple, objective, quick to administer, 

and importantly, provide data that are amenable to model development and fitting. Most existing 

cognitive batteries, which are designed to provide individual metrics that summarize 

performance, do not provide sufficiently rich data for fitting computational models. In contrast, 

we developed our tasks and computational models in tandem, defining task conditions that 

constrain parameter estimates, while capturing fine-grained, individual variation in cognitive 

abilities. Our tasks -- in combination with our set of models -- provide a means for quickly and 

objectively evaluating cognitive mechanisms, beyond what we can learn from behavior alone. 

Here, we have provided validation analyses and model fits for a cohort of cognitively normal 

participants. In future work, we will extensively investigate how SUPREME can help answer 

targeted questions, such as how specific parameters relate to variability in neural signals 



 

 

142 

measured by EEG and fMRI, which parameters are affected by various neuropathologies, and 

further, how the parameters fluctuate through time according to symptom severity.  
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Chapter 6: Conclusions 

There is a disconnect between what we understand about the biological operations in the brain at 

the level of the neuron, and the behaviors that serve as the basis of psychiatric diagnoses. As 

noted by Montague and colleagues (2012), methods for assessing the cognitive functions that 

operate in between brain and behavior are essential for improving upon individualized treatment 

plans for psychiatric disorders. My dissertation work serves as an incremental step toward 

understanding behaviors requiring cognitive control in terms of neural mechanisms, using data 

from healthy subjects.  

 
The work presented in Chapter 2 investigated the sensitivity of the flanker task for measuring 

cognitive changes within an individual patient. We administered the flanker task alongside 

device titration to a patient receiving DBS of the NAcc, a structure known to be involved in 

functions related to cognitive control (Floresco, 2015). Converging results from behavioral and 

EEG analyses indicate that acute, significant improvement in task performance during titration 

serves as an early indicator of subsequent long term treatment effects (Weichart, Sederberg, et 

al., 2020). In Chapter 3, I investigated competing hypotheses for time-varying decision processes 

during the flanker task by developing a set of models that varied along dimensions representing 

drive to attention processes and competition between accumulators. Through three experiments, I 

found that the model that best-accounted for behavioral and EEG data includes an attentional 
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spotlight governed by an online calculation of cognitive control, and evidence accumulation 

mechanisms with leak and lateral inhibition (Weichart, Turner, et al., 2020). In Chapter 4, I 

utilized the best-performing model from Chapter 3 in an investigation of individual differences 

in the shape of the attentional spotlight during decisions involving multidimensional stimuli. In 

Chapter 5, I validated a modified flanker task along with an associated model, and presented 

methods for between-session assessments using PPDs and joint posterior distributions.  

 

As a whole, my dissertation work seeks to characterize how the healthy brain makes decisions 

requiring cognitive control. As dysfunctional decision making is central to a wide array of 

psychiatric disorders, a blueprint of the mechanisms underlying task-related behavior has the 

potential to be a useful tool for cognitive assessments in the clinical setting. For example, autistic 

(N. Adams & Jarrold, 2012) and depressed individuals (Ruchsow et al., 2004) have both been 

shown to perform poorly on the flanker task compared to healthy controls. Given the disparate 

sets of symptoms between the two groups, there may be different cognitive profiles at work that 

we would be able to quantify with a model-based approach, despite similar overt behavior. In 

future work throughout my career, I hope to utilize theory-based mechanistic models to 

investigate clinical questions, understand psychiatric disorders at the level of their component 

neural processes, and develop new tools for cognitive assessment. 
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Appendix A: Supplementary Materials for Chapter 2 

A.1 Additional Results 

Mean and standard deviations of RTs within the stimulation parameter sets of interest across 

titration sessions were as follows: 

1) Lower-middle contacts, low V (optimal): mean=0.582s, sd=0.182s 

2) Both middle contacts, high V: mean=0.592s, sd=0.182s 

3) Lower-middle contacts, high V: mean=0.599s, sd=0.151s 

4) DBS-OFF: mean=0.633s, sd=0.182s 

Results comparing correct RTs in the incongruent condition during stimulation with optimal 

stimulation parameter values (low V, ventral-medial contacts) to either set of suboptimal 

parameter values were not statistically significant: 

1) Lower-middle contacts, low V (optimal) vs. both middle contacts, high V: 𝛸2 (1)=2.276, 

p=0.131 

2) Lower-middle contacts, low V (optimal) vs. lower-middle contacts, high V: 𝛸2 (1)=1.164, 

p=0.281 

Results comparing correct RTs in the congruent condition during stimulation with optimal 

parameter values to either set of suboptimal parameter values were also not significant: 

1) Lower-middle contacts, low V (optimal) vs. both middle contacts, high V: 𝛸2 (1)=0.327, 

p=0.567 
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2) Lower-middle contacts, low V (optimal) vs. lower-middle contacts, high V: 𝛸2 (1)=0.167, 

p=0.682 

Results comparing correct RTs in the neutral condition during stimulation for each parameter set 

to DBS-OFF were not significant: 

1) Lower-middle contacts, low V (optimal) vs. DBS-OFF: 𝛸2 (1)=1.972, p=0.160 

2) Both middle contacts, high V vs. DBS-OFF: 𝛸2 (1)=0.166, p=0.684 

3) Lower-middle contacts, high V vs. DBS-OFF: 𝛸2 (1)=0.359, p=0.543 

Long-term results were presented as rate of weight loss, calculated by dividing the total weight 

change by the total number of days that each set of stimulation parameters were active. As each 

set of parameters were active for very different amounts of time (129, 675, and 108 days), our 

rate calculations may have been biased by duration-dependent changes in stimulation efficacy. In 

a follow-up analysis, we therefore considered weight loss only within the initial period of active 

stimulation in an effort to standardize these long-term durations. Although durations were not 

exactly equal because we did not collect weight data on every day of the study, we find that the 

results presented in the main manuscript are maintained: 

1) Lower-middle contacts, low V: 47.8 lbs. lost in 129 days 

2) Both middle contacts, high V: 22.2 lbs. lost in 119 days 

3) Lower-middle contacts, high V: 1.6 lbs. lost in 108 days 

For the main analyses, voltages were assigned to “low” and “high” groups relative to 5V. To 

demonstrate that our results are maintained beyond these specific group designations, we ran 

follow-up analyses with three voltage groups, each covering an equal range of 2.67V: low (2.00 

to 4.67V), medium (4.67 to 7.33V), and high (7.33 to 10.00V). Using the same linear mixed 

effects regression analysis described in the manuscript, we identified a significant flanker RT 
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effect for only one set of stimulation parameters: bilateral lower-middle contacts with medium V 

in the left hemisphere (L) and low V in the right hemisphere (R; 𝛸2 (1)=6.350, p=0.012). 

Applying these group delineations to the long-term weight loss data, we found that the same set 

of parameters that yielded a significant acute task effect also yielded the fastest rate of weight 

loss in the long term:  

1) Lower-middle contacts, L medium V, R low V: 45.8 lbs. lost in 121 days  

Another set of parameters yielded the same amount of weight loss, but over a much longer 

period of time:  

2) Both middle contacts, L high V, R high V: 45.8 lbs. lost in 611 days  

Other results were as follows:  

3) Lower-middle contacts, L low V, R low V: 2.0 lbs. lost in 8 days 

4) Lower-middle contacts, L medium V, R medium V: 5.7 lbs. gained in 14 days 

5) Lower-middle contacts, L high V, R high V: 7.3 lbs. lost in 94 days 

6) Both middle contacts, L medium V, R medium V: 1.2 lbs. lost in 64 days 

 

A.2 DTI Connectivity 

DTI connectivity analyses were conducted by my collaborators, Drs. Francesco Sammartino and 

Vibhor Krishna, and their results were included in the version of the manuscript that was 

published in Frontiers in Psychiatry. As I did not conduct the connectivity analyses myself, I 

excluded the associated methods and results from Chapter 2. I do believe, however, that 

reference to the connectivity results are critical for interpreting the behavioral and EEG findings 

as presented in Section 2.4.2. Methods and results of the connectivity analyses are therefore 

provided in the sections to follow. 



 

 

168 

 

A.2.1 Methods 

Patterns of structural connectivity were assessed using preoperative diffusion weighted imaging 

(60 diffusion directions, 2 mm iso-voxel, Philips Ingenia CX). The structural (T1-weighted and 

post-operative computed tomography images) and diffusion weighted images were co-registered 

and nonlinearly aligned to the MNI152 T1 template space 0.5mm. Despite only analyzing data 

from one subject, we co-registered images to MNI space in order to overcome the limitations of 

morphing standard network atlases to a single brain, as well as provide results in an interpretable, 

universal space. The volumes of tissue activation were calculated for each stimulation parameter 

set and electrode impedance using methods described by Vorwerk and colleagues (2013; also in 

Horn et al., 2017). The volumes of tissue activation for the same three sets of stimulation 

parameters used in our behavioral analyses (optimal: bilateral lower middle contacts, low 

amplitudes, suboptimal: bilateral lower middle contacts, high amplitudes and both bilateral 

middle contacts, high amplitudes) were used as seeds for probabilistic tractography (FSL, three 

fibers per voxel model, 25000 samples per voxel). A validated cortical multimodality atlas was 

used to generate target masks (Yeo et al., 2011). The connectivity maps resulting from each 

individual voltage change were thresholded to the 99 percentile of ‘robust’ intensity and were 

subjected to a linear mixed-effects model using AFNI’s 3dMVM program (Chen, Saad, Britton, 

Pine, & Cox, 2013) with the amplitude of stimulation as the within-subject variable. The 

resulting statistical maps thresholded by the false discovery rate corrected p-value of  <.01 were 

clusterized using an unsupervised density-based clustering algorithm (DBSCAN-R library; Ram, 

Jalal, Jalal, & Kumar, 2010) with parameters epsilon 1.6 and 5 minimum points. The measure of 

connectivity and directionality (i.e increased vs. decreased connectivity) was interpreted based 
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on the number of voxels intersecting the network masks, following a methodology reported by 

Klein and colleagues (2012).  

 

A.2.2 Results 

Volumes of tissue activation associated with three stimulation settings (optimal: bilateral lower 

middle contacts, low amplitudes; suboptimal: bilateral lower middle contacts, high amplitudes 

and both bilateral middle contacts, high amplitudes) were used as seeds for probabilistic 

tractography with target masks derived from a multimodality cortical atlas. Probability of 

connectivity was determined based on the number of voxels intersected by tractography in each 

network mask in the three settings groups. Optimal DBS settings were associated with higher 

probability of connectivity with right dorsolateral and dorsomedial prefrontal cortex as shown in 

Figure A1, panels A-D. When comparing the optimal versus suboptimal settings, the significant 

cortical clusters were localized within frontal regions (basal frontal, cingulate) as shown in 

Figure A1, panels E-H.  
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Figure A.1: DTI tractography. The probabilistic connectivity maps at optimal and optimal vs. 

suboptimal DBS settings are shown in sagittal and coronal projections with their respective 3D 

models. Panels (A–D): Significant voxels associated with optimal DBS settings (bilateral lower 

middle contacts, low amplitudes). Panels (E–H): Significant voxels comparing optimal vs. 

suboptimal DBS settings (bilateral lower middle contacts, high amplitudes). 
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Appendix B: Supplementary Materials for Chapter 3 

B.1    Dual-stage two-process (DSTP) model implementation 

B.1.1    Experiments 1 and 3 

The DSTP model designed by Hübner and colleagues (2010) specifies two discrete stages of 

visual processing: 1) an early stage for identifying simple stimulus features and perceptual 

filtering, and 2) a late stage dedicated to processing the target. For reference, a diagram of the 

DSTP model is provided in Figure 2 of the main manuscript. Stage 1 begins with two separate 

diffusion processes running in parallel, one representing the stimulus selection phase (which will 

be denoted “SS”)  and the other representing the response selection phase (which will be denoted 

“RS1”). Evidence accumulation within each phase was implemented as a stochastic differential 

equation: 

  

Here,  is evidence and  is the drift rate. The degree of noise in the accumulation process is 

represented by , a driftless Wiener process distributed as . To approximate this 

continuous differential equation, we used the Euler method to discretize time, choosing a step 

size of , modified by a time constant of  The drift rate for SS is a free 

parameter ( ) and the drift rate for RS1 is the sum of free parameters representing the strength 

of target and flanker stimuli, respectively: 
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where  is always positive and  is negative in the incongruent task condition and 

positive in the congruent task condition. In SS and RS1, evidence accumulated through time until 

either process reached a decision threshold. Evidence accumulation processes were bounded 

between decision thresholds relevant to each phase ( ) and 0. Starting points for each 

phase were determined from proportions  of the relevant threshold, such that 

 

. 

 If  reached  or 0 before  reached  or 0, a response was made immediately 

with an RT equal to the sum of the duration of RS1 and non−decision time . In RS1, crossing 

the  boundary meant the response corresponding to the target stimulus was selected, whereas 

crossing the 0 boundary meant the response corresponding to the flanker stimuli was selected.  If 

 reached  or 0 before  reached  or 0, a stimulus is selected for further 

processing in Stage 2. In SS, crossing the  boundary indicated selection of the target for 

further processing, whereas crossing the 0 boundary indicated selection of the flankers for further 

processing. Response selection in Stage 2 (denoted “RS2”) is another diffusion process with drift 

rate  and threshold . The starting point  of RS2 was the value of  at time  

when  reached a decision boundary.  was negative when the stimulus was incongruent 

and  crosses 0. As in Stage 1, crossing the  boundary in Stage 2 meant the response 

corresponding to the target stimulus was selected, whereas crossing the 0 boundary meant that 

the response corresponding to the flanker stimuli was selected. The RT was equal to the sum of 

the durations of RS1 and RS2, and non decision time parameter . Free parameters and priors in 

our implementation of the DSTP model are provided in Table B.1.  
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Table B.1: Summary of free parameters and priors in the DSTP 

Parameter Description Prior 
 

drift rate, RS1, target 
 

 

drift rate, RS1, flankers 
 

 

drift rate, SS 
 

 

drift rate, RS2 
 

 

decision threshold, RS1 & RS2 
 

 

decision threshold, SS 
 

 

starting point, RS1 
 

 

starting point, SS 
 

 

non decision time 
 

 
The model was able to capture basic effects such as a higher proportion of errors in the 

incongruent condition compared to congruent, and faster errors than correct responses in the 

incongruent condition. Figure S1 illustrates the performance of the DSTP model via model-

generated choice-RT distributions for each condition. The model performers similarly to the FFI 

time model, predicting more variability in RTs for correct responses in the incongruent condition 

than we observe in the data. As shown by conditional accuracy functions (CAFs) in Figure B.2, 

the DSTP model also does not predict slow errors in either the congruent or incongruent 

condition, similar to the FFI models in our investigation. Interestingly, the DSTP model is able to 

capture fast errors in the congruent condition, unlike the time-based models in our investigation. 

As discussed in the main text, the poor performance of the DSTP model in comparison to the 

conflict-based alternatives appears to be due in part to its complexity. 

 



 

 

174 

 

Figure B.1: Observed and DSTP model-generated choice-RT distributions. Observed RT 

distributions for correct (light gray histograms) and incorrect (dark gray histograms) responses 

were averaged across participants. Models were simulated 10,000 times for each condition, using 

each participant’s best-fitting parameters. Lines show average model-generated distributions 

across participants.  
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Figure B.2: Observed and DSTP-predicted CAFs for congruent and incongruent trials. Data from 

each subject were sorted according to RT within 6 equally-spaced percentile bins. Performance 

and minimum RT for each bin were averaged across participants in the congruent (blue Xs) and 

incongruent (red Xs) conditions. After generating 1,000 choice-RT pairs from each subject’s 

best-fitting parameters within each model, the same procedure was used to calculate CAFs for 

each model (gray lines).  

B.1.2    Experiment 2 

Experiment 2, designed and administered by Servant et al. (2014), required participants to 

indicate the color of a target circle amid flanker circles of a congruent or incongruent color. The 

color saturation of center target circles varied from trial to trial within six conditions (degrees of 

suprathreshold saturation levels: 15%, 25%, 35%, 45%, 60% and 80%), while the color 

saturation of flanker circles was held constant at 80%. An example of the stimuli used in 

Experiment 2 is provided in Figure 13 of the main manuscript. To fit the DSTP model, we 
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needed to make adjustments to accommodate the target color saturation manipulation. When 

modifying our SSP variants to fit data from Experiment 2, we replaced the perceptual input 

strength parameter  with six points along a monotonically increasing sigmoid function. We took 

a similar approach to modifying the DSTP. We made the assumption that the target color 

saturation manipulation would affect both RS1 and SS phases of Stage 1, with RS1 representing 

automatic feature-driven attentional processes and SS representing a more controlled mode of 

selecting a stimulus for further processing. Because RS2 in Stage 2 represents decision processes 

after the target has already been identified in the SS phase, specific perceptual features of the 

target like color saturation should not have an effect on  We therefore implemented 

sigmoidal functions to calculate drift rates in both RS1 and SS. Because the color saturation of 

targets varied between trials while the color saturation of flanker stimuli was held constant, we 

specified a vector  such that  

   

was calculated via a sigmoidal function  

 

where  and , , and  were free parameters. 

, representing the floor value of the sigmoidal function, was fixed to 0 since values of 

 were constrained to be positive in the original model.  was then calculated with the 

equation  

 

for each target color saturation condition , where  was negative on incongruent trials. 

Similarly for the SS phase, we specified a vector  such that  
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was calculated via a sigmoidal function 

 

Where , , , and  were free parameters. Here,  was free to allow drift rates in 

the SS phase to take on negative values. Examples of sigmoidal functions calculated from 

various values of , , and  are shown in Figure 14 of the main manuscript. Priors for free 

parameters governing the sigmoidal functions for phases RS1 and SS are provided in Table B.2. 

 

Table B.2: Summary of free parameters and priors in the DSTP added for Experiment 2 

Parameter Prior 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
B.2    Additional models fit to data from Experiment 1 

B.2.1    LCA control, fixed  and  

The LCA control model that was described in the main manuscript included free parameters for 

both leak ( ) and lateral inhibition ( ). To test if either  or  was independently driving the 

model’s success at fitting the data from Experiment 1, we additionally fit variants with free  and 

fixed  ( ), and free  and fixed  ( ). Figure S5 is a modified version of Figure 6, 

which illustrates BPIC values for each model, mean-centered within-subject. Our results show 

that the full LCA control model with free  and  outperform the fixed-parameter variants. By 
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calculating differences in BPIC values between the fixed  and fixed  variants across subjects, 

we found that the model with fixed  fit better than the model with fixed  on average (15 wins 

for model with fixed  compared to 11 wins for the model with fixed ). Compared to the full 

LCA-control model with free leak and lateral inhibition terms, however, neither model fit the 

data as well (14 wins for full model, 6 wins for model with fixed , 6 wins for model with fixed 

). Our results indicate that both leak and lateral inhibition are necessary for fitting the data across 

subjects within our control framework. 

 
B.2.2    LCA exponential time 

Although a linear definition of time was adopted within the original SSP, we developed a model 

variant in which time took the form of an exponential function that increased up to an asymptote. 

Because cognitive control in the LCA control model tends to increase throughout a trial and 

taper off toward the end, we wanted to see if a sublinear functional form for the signal guiding 

the attentional spotlight was sufficient for superior fits, independent of the cognitive control 

mechanism itself. As such, the “LCA exponential time” model was designed to be similar to 

LCA control. Similar to the equations for cognitive control ( ) provided in Section 2.2.2, the 

spotlight width in LCA exponential time is given by: 

 

where the change in  is given by: 

. 

As in the conflict models, the  prior was distributed as . The LCA 

exponential time model contained the same 8 free parameters as LCA control. Figure S3 

illustrates the contrasting functional forms of within-trial signals guiding the spotlight across 
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linear time, control, and exponential time model variants. The functional form of the exponential 

time signal monotonically increases up to an asymptote, represented by the free parameter . For 

similar implementations of an exponential function calculated as the distance from an asymptote, 

see Steyvers, Hawkins, Karayanidis, & Brown, 2019 and Turner, 2019. 

 

 

Figure B.3: Linear time-, control-, and exponential time-based signals to attention. Noiseless 

simulations of each signal type are shown for a single trial.  

 
We fit the model to data from Experiment 1 using the procedures described in Section 3.1.1.4. 

Model fits were verified by generating data from each participant’s best-fitting parameters, and 

comparing model-generated choice-RT distributions to the participant’s observed data. Mean 

distributions of observed and model-generated RTs for correct and incorrect responses in both 

task conditions are shown in Figure B.4. 

 

 
 

 



 

 

180 

 
 

 

Figure B.4: Observed and LCA exponential time model-generated choice-RT distributions. 

Observed RT distributions for correct (light gray histograms) and incorrect (dark gray 

histograms) responses were averaged across participants. Models were simulated 10,000 times 

for each condition, using each participant’s best-fitting parameters. Lines show average model-

generated distributions across participants.  

 
Despite providing decent qualitative fits to data, the LCA exponential time model did not fare 

well when quantitatively compared to the other models in our investigation. As shown by the 

heatmap of within-subject mean-centered BPIC values in Figure B.5, LCA exponential time was 

the worst-performing model across all alternatives. Although there remain an infinite number of 

ways we could have defined time, these results indicate that the cognitive control mechanism in 

the LCA control model is accounting for aspects of the data that a similar, time-based 

mechanism could not.  
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Figure B.5: Heat map of BPIC values, mean-centered within-subject for Experiment 1. Each 

column corresponds to a subject. Lower BPIC values (blue hues) indicate better model fits. The 

winning model for each subject is outlined in black. Average mean-centered values across 

subjects are shown in the panel to the right.  

 
B.3    Additional results from Experiment 3 

A comparison of model fits to the behavioral data collected in Experiment 3 is shown as a 

heatmap in Figure B.6. BPIC values were mean-centered within-subject, and lower values 

indicate better fits. When considering mean values across subjects, we observed similar results in 

Experiment 3 as in Experiment 1, such that the two control-based models outperformed the 

alternatives. 
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Figure B.6: Heat map of BPIC values, mean-centered within-subject for Experiment 3. Each 

column corresponds to a subject. Lower BPIC values (blue hues) indicate better model fits. The 

winning model for each subject is outlined in black. Average mean-centered values across 

subjects are shown in the panel to the right.  

 
In our model-based EEG analysis of data from a standard flanker task administered in 

Experiment 3, we calculated correlations between the signals controlling the width of the 

attentional spotlight (e.g. time, time+noise, or cognitive control) and EEG voltage during the 

decision. Correlation maps for each individual model are shown in Figure 3.19 of the main 

manuscript. Topographic plots in Figure B.7 show that increased correlations between EEG 

voltage and attention modulation in LCA control, relative to the predictions of the other models, 

are widespread across the scalp. None of the other difference maps reveal significant results. 
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Figure B.7: Mean Z correlation difference maps for observed EEG data and model-generated 

attention modulation signals. After calculating Z correlation values for each model and each 

electrode, we calculated the pairwise difference topographic maps for each possible pair of 

models. P values were calculated for each model comparison and electrode using a 1-sample t-

test. Significant correlation differences were identified using a Bejamini-Hochberg correction for 

multiple comparisons, indicated by yellow points. 

 
 


