APPENDIX 3A

LPJmL Dynamic Global Vegetation Model¹
Standard Outputs

and

Inventory of Process Equations

¹ Excerpted from Schaphof 2018 (equation sources and authorities are provided in the technical supplement to cited paper, available at <u>GMD - LPJmL4 - a dynamic global vegetation model with managed land - Part 1: Model description (copernicus.org)</u>).

Standard Outputs Computed by LPJmL 4

	Variable	Units
	Soil carbon	$gC m^{-1}$
Carbon mools	Litter carbon	$gC m^{-1}$
Carbon pools	Vegetation carbon	gCm^{-1}
	Above ground biomass	$gC m^{-1}$
	Monthly net primary production	$gC m^{-1} month^{-1}$
Carbon fluxes	Monthly gross primary production	$gC m^{-1} month^{-1}$
Carbon nuxes	Monthly soil respiration	$gC m^{-1} month^{-1}$
	Annual fire carbon emissions	$gC m^{-1} a^{-1}$
	Monthly interception	$\mathrm{mm}\mathrm{month}^{-1}$
	Monthly transpiration	$mm month^{-1}$
Water fluxes	Monthly evaporation	$mm month^{-1}$
	Monthly runoff	$mm month^{-1}$
	Monthly discharge	$hm^{-3} day^{-1}$
	Monthly grid cell albedo	-
	Monthly fraction of absorbed PAR	-
	Foliage projected cover	-
	Crop yields	$gC m^{-1} a^{-1}$
	Sowing dates	day of the year

Equation Table Describing the Different Processes Represented in the LPJmL4 Model

Parameter/Variable	abbreviation	unit	Equation
	I	Energy balance	
Photosynthetic active radiation	PAR	$ m molm^{-2}day^{-1}$	$\begin{array}{l} \text{PAR} = 0.5 \cdot c_q \cdot R_{s_{\text{day}}} \\ c_q = 4.6 \cdot 10^{-6} \end{array}$
conversion factor from \boldsymbol{J} to mol for solar radiation at $550\;\text{nm}$	c_q		$c_q = 4.6 \cdot 10^{-6}$
daily incoming solar irradiance	$R_{s_{\hbox{\scriptsize day}}}$	$\mathrm{J}\mathrm{m}^{-2}\mathrm{day}^{-1}$	$\begin{array}{l} R_{s_{\text{day}}} = (c + d \cdot \text{ni}) \cdot Q_0 \cdot (\sin(\text{lat}) \cdot \sin(\delta) \cdot h_{1/2} + \cos(\text{lat}) \cdot \cos(\delta) \cdot h_{1/2}) \end{array}$
potential evapotranspiration	PET	mm day ⁻¹	$PET = PT \cdot E_{eq}$
equilibrium evapotranspiration	$E_{ m eq}$	mm day ⁻¹	$E_{\rm eq} = rac{s}{s+\gamma} \cdot rac{R_{n_{ m day}}}{\lambda}$
daily surface net radiation	$R_{n_{\hbox{\scriptsize day}}}$	$\mathrm{J}\mathrm{m}^{-2}\mathrm{day}^{-1}$	
latent heat of vaporization	λ	J kg ^{−1}	$\lambda = 2.495 \times 10^6 + 2380 \cdot T_{air}$
slope of the saturation vapour pressure curve	s	Pa K ^{−1}	$s = 2.502 \times 10^6 \cdot \exp[17.269 \cdot T_{air}/(237.3 + (237.3 +$
			$[T_{\rm air})]/(237.3 + T_{\rm air})^2$
psychrometric constant	γ	Pa K ^{−1}	$\gamma = 65.05 + 0.064 \cdot T_{air}$
Priestley-Taylor coefficient	PT		
net surface radiation	R_n	W m ^{−2}	
incoming solar irradiance (downward) at the sur-	R_s	W m ^{−2}	$R_s = (c + d \cdot \text{ni}) \cdot Q_0 \cdot \cos(z)$ or as input
face	D	W m ^{−2}	D = (l + (1 - l) - i) (A = T) or as input
outgoing (upward positive) net long-wave radia- tion flux at the surface	R_l	w m	$R_l = (b + (1 - b) \cdot \text{ni}) \cdot (A - T_{\text{air}})$ or as input
albedo	β		$\beta = \sum_{PFT=1}^{n_{PFT}} \beta_{PFT} \cdot FPC_{PFT} + F_{bare} \cdot (F_{snow} \cdot \beta_{snow} + F_{snow})$
anocuo	ρ		$\beta - \sum_{PFT=1} \beta PFT \cdot PT \cdot OPFT + P_{bare} \cdot (P_{snow} \cdot \beta_{snow} + (1 - F_{snow}) \cdot \beta_{soil})$
albedo bare soil	$\beta_{ m soil}$		(1 1 show) Pson)
albedo snow	$\beta_{ m snow}$		
plant compartments specific albedo	β_{PFT}		
coverage of bare soil	$F_{ m bare}$		
coverage of snow	$F_{ m snow}$		
empirical constant	<i>b</i>		see Prentice et al. (1993)
empirical constant	A		see Prentice et al. (1993)
mean daily air temperature	$T_{ m air}$	°C	
net outgoing daytime long-wave flux	$R_{l_{\sf n_{\sf day}}}$	$\mathrm{J}\mathrm{m}^{-2}\mathrm{day}^{-1}$	$R_{l_{\text{day}}} = R_l \cdot \text{daylength} \cdot 3600$
angular distance between the sun's rays and the local vertical	z		
proportion of bright sky	ni		ni = 1 - cloudiness
empirical constant	c		see Prentice et al. (1993)
	_	1	See 111

Parameter/Variable	abbreviation	unit	Equation
empirical constant	d		see Prentice et al. (1993)
solar constant	Q_0	$\mathrm{W}~\mathrm{m}^{-2}$	$Q_0 = Q_{00} \cdot (1 + 2 \cdot 0.01675 \cdot \cos(2 \cdot \pi \cdot i/365))$
solar zenith angle	z		$\cos(z) = \sin(\operatorname{lat}) \cdot \sin(\delta) + \cos(\operatorname{lat}) \cdot \cos(\delta) \cdot \cos(h)$
latitude	lat	radians	
hour angle	h		
solar declination	δ	radians	$\delta = -23.4 \cdot \pi / 180 \cdot \cos(2 \cdot \pi \cdot (i+10) / 365)$
half-day length	$h_{1/2}$	angular units	$h_{1/2} = \arccos(-(\sin(\operatorname{lat}) \cdot \sin(\delta))/(\cos(\operatorname{lat}) \cdot \cos(\delta)))$
duration of sunshine of a single day	daylength	hours	$daylength = 24 \cdot \frac{h_{1/2}}{\pi}$
Soil temperatures	$T_{ m soil}$	°C	$\frac{\partial T_{\text{soil}}}{\partial t} = \alpha \cdot \frac{\partial^2 T_{soil}}{\partial x^2}$
thermal diffusivity	$\alpha = \lambda/c$	$m^2 s^{-1}$	02-
thermal conductivity	λ	${ m W}~{ m m}^{-1}~{ m K}^{-1}$	
soil layer	l		
time step	t		
stability criterion	r		$r = \frac{\alpha \Delta t}{(\Delta z)^2}$
Heat capacity	c	$\rm J~K^{-1}~m^{-3}$	$c = c_{\min} \cdot m_{\min} + c_{\text{water}} \cdot m_{\text{water}} + c_{\text{ice}} \cdot m_{\text{ice}}$
soil minerals	c_{\min}		
soil water content	$c_{ m water}$		
soil ice content	$c_{ m ice}$		
corresponding shares of c_{\min} , c_{water} , c_{ice}	m	m^3	

Plant physiology

absorbed photosynthetically active radiation	APAR	$mol m^{-2} day^{-1}$	$APAR_{PFT} = PAR \cdot FAPAR_{PFT} \cdot \alpha_{apFT}$
fractional absorbed photosynthetically active radi-	$F\!AP\!AR_{\rm PFT}$		$FAPAR_{PFT} = FPC_{PFT} \cdot \left((phen_{PFT} - F_{SnowGC}) \cdot (1 - F_{Sno$
ation			$\beta_{\text{leaf,PFT}}$) - $((1 - \text{phen}_{\text{PFT}}) \cdot c_{\text{fstem}} \cdot \beta_{\text{stem,PFT}})$
scaling factor to scale leaf-level photosynthesis in	$lpha_{ ext{apFT}}$,
LPJmL4 to biome level			
daily phenological status	$phen_{PFT}$		
fraction of snow in the green canopy	$F_{ m SnowGC}$		
foliage projective cover of the respective PFT	FPC_{PFT}		$FPC_{PFT} = CA_{ind} \cdot P \cdot FPC_{ind}$
masking of the ground by stems and branches	$c_{ m fstem}$		
without leaves			
gross photosynthesis rate	$A_{ m gd}$	$gC m^{-2} day^{-1}$	$A_{\rm gd} = \left(J_E + J_C - \sqrt{(J_E + J_C)^2 - 4 \cdot \theta \cdot J_E \cdot J_C}\right) / (2 \cdot I_C)$
			θ) · daylength
light-limited photosynthesis rate	J_E	$\mathrm{mol}\ \mathrm{C}\ \mathrm{m}^{-2}\ \mathrm{hour}^{-1}$	$J_E = C_1 \cdot \frac{\text{APAR}}{\text{daylength}}$
for C ₃ -Photosynthesis			$\begin{aligned} A_{\mathrm{gd}} &= \left(J_E + J_C - \sqrt{(J_E + J_C)^2 - 4 \cdot \theta \cdot J_E \cdot J_C}\right) / (2 \cdot \theta) \cdot \text{daylength} \\ J_E &= C_1 \cdot \frac{\text{APAR}}{\text{daylength}} \\ C_1 &= \alpha_{C_3} \cdot T_{\mathrm{stress}} \cdot \left(\frac{p_i - \Gamma_*}{p_i + 2 \cdot \Gamma_*}\right) \end{aligned}$

Parameter/Variable	abbreviation	unit	Equation
C. C. Div		1	
for C ₄ -Photosynthesis			$ C_1 = \alpha_{C_4} \cdot T_{\text{stress}} \cdot \left(\frac{\lambda}{\lambda_{\max_{C_4}}}\right) $ $ p_i = \lambda \cdot p_a $
internal partial pressure of CO ₂	p_i	Pa	$p_i = \lambda \cdot p_a$
ambient partial pressure of CO ₂	p_a	Pa	
parameter describing the ratio of the intercellular	λ		
to the ambient CO ₂ concentration	<i>T</i>		
PFT-specific temperature inhibition function	$T_{ m stress}$		
intrinsic quantum efficiencies for CO ₂ uptake in	$lpha_{C_3}$		
C ₃ plants			
intrinsic quantum efficiencies for CO ₂ uptake in	$lpha_{C_4}$		
C ₄ plants			D [Oa]
CO ₂ compensation point	Γ_*		$\Gamma_* = \frac{[O_2]}{2 \cdot \mathcal{K}_C}$ $\tau = \frac{V_C \cdot \mathcal{K}_C}{V_m \cdot \mathcal{K}_C}$
specificity factor	au		$ au = \frac{V_C \cdot K_C}{V_m \cdot K_O}$
Michaelis-Menten constant of CO ₂	K_C		
Michaelis-Menten constant of O ₂	K_O	D	
partial pressure of O ₂	O_2	Pa	
Rubisco-limited photosynthesis rate	J_C	mol C m ⁻² hour ⁻¹	$J_C = C_2 \cdot V_m$
maximum Rubisco capacity	V_m	gC m ⁻² day ⁻¹	$V_m = \frac{1}{b} \cdot \frac{C_1}{C_2} ((2 \cdot \theta - 1) \cdot s - (2 \cdot \theta \cdot s - C_2) \cdot \sigma) \cdot APAR$
	σ		$\sigma = \sqrt{1 - \frac{C_2 - 2}{C_2 - \theta s}}$
	s		$s = 24/\text{daylength} \cdot b$
	C_2		$C_2 = \frac{p_i - \Gamma_*}{p_i + K_C \left(1 + \frac{ O_2 }{K_C}\right)}$
leaf respiration	R_{leaf}	gC m ⁻² day ⁻¹	$R_{\text{leaf}} = V_m \cdot b$
daily net photosynthesis	$A_{ m nd}$	$gC m^{-2} day^{-1}$	
dark respiration	R_d	$gC m^{-2} day^{-1}$	$R_d = (1 - \text{daylength}/24) \cdot R_{\text{leaf}}$
daily net daytime photosynthesis	$A_{ m dt}$	$gC m^{-2} day^{-1}$	$A_{\rm dt} = A_{\rm nd} + R_d$
canopy conductance	g_c	$\mathrm{mm}\mathrm{s}^{-1}$	$A_{\text{dt}} = A_{\text{nd}} + R_d$ $g_c = g_{\text{min}} + \frac{1.6A_{dt}}{p_a(1-\lambda)}$
PFT-specific minimum canopy conductance	g_{\min}	$\mathrm{mm}\mathrm{s}^{-1}$	Pa(1 A)
daily phenology status	$_{ m phen_{PFT}}$		$phen_{PFT} = f_{cold} \cdot f_{light} \cdot f_{water} \cdot f_{heat}$
limited by cold temperatures	$f_{ m cold}$		
relation to light	$f_{ m light}$		
relation to water availability	$f_{ m water}$		
limited by heat stress	$f_{ m heat}$		
inflection point of the respective logistic function	b_x		
slope of the respective logistic function	sl_x		
change rate parameter	$ au_x$		
CN ratio of above-ground tissue	$\text{CN}_{\text{sapwood}}$		
CN ratio of below-ground tissue	CN_{root}	0.0	
Temperature	$T\left(T_{\mathrm{air}}, T_{\mathrm{soil}}\right)$	$^{\circ}C$	

Parameter/Variable	abbreviation	unit	Equation
phenology autotrophic respiration aboveground tissue	$_{ m Phen_{PFT}} \ R_{ m sapwood}$	gC m ⁻² day ⁻¹	$R_{\text{sapwood}} = P \cdot r_{\text{PFT}} \cdot k \cdot \frac{C_{\text{sapwood,ind}}}{CN_{\text{sapwood}}} \cdot g(T_{\text{air}})$
autotrophic respiration belowground tissue respiration rate	$R_{ m root} \ r_{ m PFT}$	$gC m^{-2} day^{-1}$ $gC gN^{-1} day^{-1}$	$R_{\rm root} = P \cdot r_{\rm PFT} \cdot k \cdot \frac{C_{N_{\rm sapwood}}}{CN_{\rm root}} \cdot g(T_{\rm soil}) \cdot {\rm phen}_{\rm PFT}$
temperature function	g(T)	8 8 7	$g(T) = \exp\left[308.56 \cdot \left(\frac{1}{56.02} - \frac{1}{(T+46.02)}\right)\right]$
leaf respiration static parameter	R_{leaf}		$R_{\text{leaf}} = V_m \cdot b$
daily net primary production	NPP	$gC m^{-2} day^{-1}$	$\text{NPP} = 0.75 \cdot \left(\text{GPP} - R_{\text{leaf}} - R_{\text{sapwood}} - R_{\text{root}}\right)$

Plant functional types (PFT)

leaf mass	$C_{\mathrm{leaf,ind}}$	gC· ind ⁻¹	
fine root mass	$C_{ m root,ind}$	gC⋅ ind ⁻¹	
sapwood mass	$C_{\rm sapwood,ind}$	gC· ind ^{−1}	
heartwood mass	$C_{ m heartwood,ind}$	gC· ind ^{−1}	
average individual leaf area	$\mathrm{LA}_{\mathrm{ind}}$	$m^2 \cdot ind^{-1}$	$LA_{ind} = k_{la:sa} \cdot SA_{ind}$
ratio of leaf to sapwood area	$k_{ m la:sa}$		
sapwood cross-sectional area	$\mathrm{SA}_{\mathrm{ind}}$		
grass leaf biomass	C_{leaf}	gCm^{-2}	$C_{\text{leaf}} = \text{lr}_{\text{max}} \cdot \omega \cdot C_{\text{roots}}$
leaf-to-root mass ratio	lr		$lr = lr_p \cdot W_{\text{supply}} / W_{\text{demand}}$
maximum leaf-to-root mass ratio	$ m lr_{max}$		
tree height	H	m	$H = k_{\text{allom2}} \cdot D^{k_{\text{allom3}}}$
stem diameter	D	m	
crown area	CA_{ind}	$m^2 \cdot ind^{-1}$	$CA_{ind} = k_{allom1} \cdot D^{k_{rp}}$
constant wood density	WD	${ m gC~m^{-2}}$	$H = \frac{C_{\text{sapwood,ind}} \cdot k_{\text{la:sa}}}{\text{WD} \cdot C_{\text{leaf,ind}} \cdot \text{SLA}}$
individual leaf area index	$ m LAI_{ind}$		$\begin{aligned} \text{LAI}_{\text{ind}} &= \frac{C_{\text{leaf,ind}} \cdot \text{SLA}}{\text{CA}_{\text{ind}}} \\ \text{SLA} &= \frac{2 \times 10^{-4}}{DM_{\text{C}}} \cdot 10^{(\beta_0 - \beta_1 \cdot \log(\alpha_{\text{leaf}})/\log(10))} \end{aligned}$
specific leaf area	SLA	$\mathrm{m}^2~\mathrm{gC}^{-1}$	$SLA = \frac{2 \times 10^{-4}}{DM_C} \cdot 10^{(\beta_0 - \beta_1 \cdot \log(\alpha_{\text{leaf}})/\log(10)}$
leaf longevity	$lpha_{ m leaf}$	months	
parameter for SLA calculation	eta_0		Kattge et al. (2011)
parameter for SLA calculation	eta_1		Kattge et al. (2011)
dry matter carbon content of leaves	DM_C		Kattge et al. (2011)
foliar projective cover	$\mathrm{FPC}_{\mathrm{ind}}$		$FPC_{ind} = 1 - exp(-k \cdot LAI_{ind})$
mean number of individuals per unit area	P	$\mathrm{ind}\mathrm{m}^{-2}$	
establishment rate	$k_{ m est}$	saplings m ⁻² a ⁻¹	
background mortality rate	$\mathrm{mort}_{\mathrm{greff}}$	$ind m^{-2} a^{-1}$	$mort_{greff} = P \cdot \frac{k_{mort1}}{1 + k_{mort2} \cdot greff}$
yearly growth efficiency	greff		- 1 more 2
asymptotic maximum mortality rate	$k_{ m mort1}$		

Parameter/Variable	abbreviation	unit	Equation
parameter governing the slope of the relationship	$k_{ m mort2}$	1	1
between mortality and growth efficiency			
heat stress	$mort_{heat}$	ind $m^{-2} a^{-1}$	$mort_{heat} = P \cdot \frac{gdd_{tw}}{twpper}$
parameter value of the heat damage function	$\mathrm{tw}_{\mathrm{PFT}}$		
temperatures above threshold (accumulated)	$\mathrm{gdd}_{\mathrm{tw}}$	°C	NT.
Nesterov index	$NI(N_d)$		$NI(N_d) = \sum_{if P(d) \le 3mm}^{N_d} T_{max}(d) \cdot (T_{max}(d) - T_{dew}(d))$
daily maximum temperature	$T_{\rm max}$	°C	
dew-point temperature	$T_{ m dew}$	°C	
positive temperature day	d		$(1 \omega_0 \omega_0 \in m)$
probability of fire spread	P_{spread}		$P_{\text{spread}} = \left\{ egin{array}{ll} 1 - rac{\omega_0}{m_e}, & \omega_0 \le m_e \\ 0, & \omega_0 > m_e \end{array} ight.$
litter moisture	ω_0		,
moisture of extinction	m_e		
fire danger index	FDI		$FDI = \max \left\{ 0, 1 - \frac{1}{m_e} \cdot \exp\left(-NI \cdot \sum_{p=1}^n \frac{\alpha_p}{n}\right) \right\}$
slope of the probability risk function	α_p		
Human-caused ignitions	$n_{h,\mathrm{ig}}$		$n_{h,ig} = P_D \cdot k(P_D) \cdot a(N_D) / \underline{100}$
population density	P_D	ind km ⁻²	$k(P_D) = 30.0 \cdot \exp(-0.5 \cdot \sqrt{P_D})$
propensity of people to produce ignition events	$a(N_D)$	ignitions individual ⁻¹ d ⁻¹	$a(N_D) = \frac{N_{h,\text{obs}}}{t_{\text{obs}} \cdot \text{LFS} \cdot \overline{P_D}}$
average number of human-caused fires	$N_{h, \mathrm{obs}}$		
observation years	$t_{ m obs}$		
grid cell area	A	m^2	$A_b = \min(E(n_{ig}) \cdot \text{FDI} \cdot A_f, A)$
mean fire area	a_f	ha	$\overline{a_f} = \frac{\frac{\pi}{4 \cdot L_B} \cdot D_T^2}{10000}$
independent estimates of the numbers of lightning	$n_{l,\mathrm{ig}}$		10000
human-caused ignition events	$n_{h,\mathrm{ig}}$		
forward rate of spread	$ROS_{f,surface}$	m min ⁻¹	$ROS_{f,surface} = \frac{I_R \cdot \zeta \cdot (1 + \Phi_w)}{\rho_b \cdot \epsilon \cdot Q_{ir}}$
reaction intensity	I_R	kJ m ^{−2} min ^{−1}	, , , , , , , , , , , , , , , , , , , ,
propagating flux ratio	ζ		
multiplier that accounts for the effect of wind	Φ_w	1 -3	
fuel bulk density	$ ho_b$	kg m ⁻³	
effective heating number heat of pre-ignition	$\epsilon \ Q_{ m ig}$	kJ kg ^{−1}	
fire duration	$t_{ m fire}$	min	$t_{\text{fire}} = \frac{241}{1 + 240 \cdot \exp(-11.06 \cdot \text{FDI})}$
length to breadth ratio of elliptical fire	L_B		1+240-exp(-11.00-FD1)
length of major axis	D_T	m	$D_T = \text{ROS}_{f, \text{surface}} \cdot t_{\text{fire}} + \text{ROS}_{b, \text{surface}} \cdot t_{\text{fire}}$
surface as the backward rate of spread	ROS_b		
crown damage	CK		$P_m(\mathrm{CK}) = r_{\mathrm{CK}} \cdot \mathrm{CK}^p$

Parameter/Variable	abbreviation	unit	Equation
resistance factor	$r_{ m CK}$	0-1	
	Crop f	functional types (CFT	<u> </u>
phenological heat unit	PHU	1	$ PHU = -0.1081 \cdot (sdate - kevday)^2 + 3.1633 \cdot (sdate - kevday)$

phenological heat unit	PHU		
harvest indices	HI_{opt}		wingh
heat units	HU		
heat units accumulated	$\mathrm{HU}_{\mathrm{sum}}$		$\mathrm{HU_{sum}} = \sum_{t'=\mathrm{sdate}}^{t} \mathrm{HU}_{t'} \cdot v_{\mathrm{rf}} \cdot p_{\mathrm{rf}}$
phenological development stage	fPHU		$fPHU = HU_{sum}/PHU$
reduction factor for vernalization	$v_{ m rf}$		$v_{\rm rf} = ({\rm vdsum} - 10.0)/({\rm PVD} - 10.0)$
reduction factor for photoperiod	$p_{ m rf}$		$p_{\rm rf} = (1 - p_{\rm sens}) \cdot \min(1, \max(0, (\text{daylength} - p_b) / (p_s - p_b))) + p_{\rm sens}$
day of solstice	keyday		10/// 1 50115
minimum base temperature for the accumulation of heat unit	$T_{ m base_{low}}$		
20-year moving average annual temperature	atemp ₂₀		
CFT-specific scaling factor	$\mathrm{pf}_{\mathrm{CFT}}$		
Vernalization requirements	PVD		$ \begin{array}{c} {\rm PVD} = {\rm vern_{date20}} - {\rm sdate} - {\rm pPVD_{CFT}}, 0 \leq {\rm PVD} \leq \\ 60 \end{array} $
CFT-specific vernalization factor	$pPVD_{CFT}$		
julian day of the year of sowing	sdate		
multi-annual average of the first day of the year	$vern_{date20}$		
when temperatures rise above a CFT-specific ver- nalization threshold			
effective number of vernalizing days	vdsum		
parametrized sensitivity to photoperiod	$p_{ m sens}$		
duration of daylight (sunrise to sunset)	daylength	hours	
base photoperiod	p_b	hours	
aturation photoperiod	p_s	hours	
maximum leaf area index	LAI_{max}		
fraction of total biomass that is allocated to the roots	$f_{ m root}$		$f_{\text{root}} = \frac{0.4 - (0.3 \cdot \text{fPHU}) \cdot \text{wdf}}{\text{wdf} + \exp(6.13 - 0.0883 \cdot \text{wdf})}$
ratio between accumulated daily transpiration and accumulated daily water demand	wdf		
onset of senescence	ssn		
turning points in the phenological development	$\mathrm{fPHU}_c, \\ \mathrm{fPHU}_k$		

Parameter/Variable	abbreviation	unit	Equation
corresponding fraction of the maximum green LAI onset of senescence as point in the phenological development	$\begin{aligned} & \text{fLAI}_{\text{max}_c}, \\ & \text{fLAI}_{\text{max}_k} \\ & \text{fPHU}_{\text{sen}} \end{aligned}$		$\mathrm{fLAI}_{\mathrm{max}} = \frac{\mathrm{fPHU}}{\mathrm{fPHU}_{c-\mathrm{fPHU}}}$ $\mathrm{fPHU} + c \cdot \left(\frac{c}{k}\right)^{\mathrm{fPHU}_{k} - \mathrm{fPHU}_{c}}$
daily increment maximum green LAI	$ ext{LAI}_{ ext{inc},t} \ ext{fLAI}_{ ext{max}}$		$\mathrm{LAI}_{\mathrm{inc},t} = (\mathrm{fLAI}_{\mathrm{max}_t} - \mathrm{fLAI}_{\mathrm{max}_{t-1}}) \cdot \mathrm{LAI}_{\mathrm{max}}$
LAI	LAI		$LAI_t = \sum_{t'=\text{sdate}}^t LAI_{\text{inc}_{t'}} \cdot \omega$
harvest index	НІ		$\begin{aligned} \operatorname{LAI}_t &= \sum_{t'=\operatorname{sdate}}^t \operatorname{LAI}_{\operatorname{inc}_{t'}} \cdot \omega \\ \operatorname{HI} &= \begin{cases} \operatorname{fHI}_{\operatorname{opt}} \cdot \operatorname{HI}_{\operatorname{opt}}, & \text{if } \operatorname{HI}_{\operatorname{opt}} \geq 1 \\ \operatorname{fHI}_{\operatorname{opt}} \cdot (\operatorname{HI}_{\operatorname{opt}} - 1.0) + 1.0, & \text{otherwise} \end{cases} \end{aligned}$
	$\mathrm{fHI}_{\mathrm{opt}}$		$fHI_{opt} = 100 \cdot fPHU/(100 \cdot fPHU + exp(11.1 - 10.0 \cdot fPHU))$
storage organ	$C_{\rm so}$	gC m ⁻²	$C_{\text{so}} = \text{HI} \cdot (C_{\text{leaf}} + C_{\text{so}} + C_{\text{pool}})$
Excess biomass	$C_{ m pool}$	gC m ⁻² gC m ⁻²	(loar · so · pool)

Soil and litter carbon pools

heterotrophic respiration	R_h	$gC m^{-2} day^{-1}$ $gC m^{-2} layer^{-1}$ $a^{-1} layer^{-1}$	$R_h = R_{h,\text{litter}} + R_{h,\text{fastSoil}} + R_{h,\text{slowSoil}}$
carbon pool size of soil or litter per layer	C_l	gC m ⁻² layer ⁻¹	$\frac{dC_{(l)}}{dt} = -k_{(l)} \cdot C_{(l)}$
decomposition rates for litter	k	a ^{−1} layer ^{−1}	$ \frac{\frac{dC_{(l)}}{dt} = -k_{(l)} \cdot C_{(l)}}{k_{(l,p)} = \frac{1}{\tau_{10_{(p)}}} \cdot g(T_{\text{soil}}) \cdot f(\theta) } $
mean residence time	$ au_{10}$	a	(4)
soil volume fraction of the layer	heta		
fraction of soil organic carbon per layer	Cf_l		$\mathrm{Cf}_{(l)} = 10^{k_{\mathrm{soc}} \cdot \log_{10}(d_{(l)})}$
relative share of the layer l	$d_{(l)}$		
soil layer depth	$k_{ m soc}$	mm	
total amount of soil carbon	$C_{s_{ m total}}$	gC	$C_{(l)} = \sum_{\text{PFT}=1}^{n_{PFT}} d_{(l)}^{k_{\text{socpfT}}} \cdot C_{s_{\text{total}}}$
mean annual decomposition rate	$k_{ m mean}$	gC a ⁻¹	· · · · · · · · · · · · · · · · · · ·
mean decomposition rate for each PFT	$k_{ m mean_{PFT}}$		$k_{\text{mean}_{\text{PFT}}} = \sum_{l=1}^{n_{\text{soil}}} (k_{\text{mean}_{(l)}} \cdot \text{Cf}_{(l,\text{PFT})})$
annual carbon shift rates	$C_{ m shift}$	a^{-1}	$C_{\text{shift}_{(l,\text{PFT})}} = \frac{Cf_{(l,\text{PFT})} \cdot k_{\text{mean}_{(l)}}}{k_{\text{mean}_{\text{PFT}}}}$
infiltration rate of rain water into the soil	infil	mm	infil = $\Pr \cdot \sqrt{1 - \frac{SW_{(0)} - WPW_{(0)}}{W_{sat_{(0)}} - WPW_{(0)}}}$

Water balance

-		
soil water content at saturation	$W_{ m sat}$	mm
soil water content at wilting point	W_{pwp}	mm
total actual soil water content	SW	mm

Parameter/Variable	abbreviation	unit	Equation
daily precipitation	Pr	mm	routed in 4 mm portion in the infiltration equation
soil water content between saturation and field ca-	FW	mm	
pacity			
soil layer	l		
travel time through the soil layer	TT	hours	$\mathrm{TT}_{(l)} = \frac{\mathrm{FW}_{(l)}}{\mathrm{HC}_{(l)}}$
hydraulic conductivity	HC	mm h ⁻¹	$\mathrm{HC}_{(l)} = K_{s_{(l)}} \cdot \left(\frac{\mathrm{SW}_{(l)}}{W_{\mathrm{sat}_{(l)}}}\right)^{eta_{(l)}}$
saturated conductivity	K_s	$\mathrm{mm}\ \mathrm{h}^{-1}$	
percolation	perc	mm day ⁻¹	$\operatorname{perc}_{(l)} = \operatorname{FW}_{(t,l)} \cdot \left[1 - \exp\left(\frac{-\Delta t}{\operatorname{TT}_{(l)}}\right) \right]$
Interception	I	mm day ⁻¹	$I = \sum_{PFT=1}^{n_{PFT}} I_{PFT} \cdot LAI_{PFT} \cdot Pr$
PFT-specific interception storage parameter	I_{PFT}		∠Fr [=1 111 111
PFT-specific leaf area per unit of grid cell area	LAI_{PFT}		
daily precipitation	Pr	mm day ⁻¹	
Soil evaporation	E_s	mm day ⁻¹	
vegetation cover	f_v	%	
evaporation-available soil water	$w_{ m evap}$		
plant transpiration	E_T	mm day ⁻¹	$E_T = \min(S, D) \cdot f_v$
daily water stress	ω		
Soil water supply	S		$S = E_{\text{max}} \cdot w_r \cdot \text{phen}_{\text{PFT}}$
PFT-specific maximum water transport capacity	E_{max}	mm day ⁻¹	
water accessible for plants	w_r		$w_r = \sum_{l=1}^{n_{\text{soil}}-1} w_l \cdot \text{rootdist}_l$
relative water content at field capacity	w		
fraction of roots from surface to z	rootdist		$rootdist = 1 - \beta_{root}^z$
soil depth	z	mm	
root distribution parameter	$eta_{ m root}$		
fraction of water that corresponds to their foliage	$S_{ m PFT}$		$S_{\mathrm{PFT}} = S \cdot \mathrm{FPC}_{\mathrm{PFT}}$
projected cover			
root biomass	$\mathrm{bm_{root}}$	gC m ^{−2}	
Atmospheric demand	D		$D = (1.0 - \text{wet}) \cdot E_{\text{eq}} \cdot \alpha_m / (1 + g_m / g_c)$
maximum Priestley-Taylor coefficient	α_m		
conductance scaling factor	g_m		
fraction of $E_{\rm eq}$ that was used to vaporize inter-	wet		
cepted water from the canopy	T		
homogeneous segments of length	L		, , , n-1
outflow of a linear reservoir cascade	$Q_{ m out}$		$Q_{\text{out}}(t) = Q_{\text{in}} \cdot \frac{1}{K \cdot \Gamma(n)} \left(\frac{t}{K}\right)^{n-1} \cdot \exp(-t/K)$
instantaneous inflow	Q_{in}		

Parameter/Variable	abbreviation	unit	Equation
commo function	D()	1	I
gamma function	$\Gamma(n) \ K$		
storage parameter	Λ		L
linear reservoir segment of length	L	km	$K = \frac{L}{v}$
flow velocity	v	m s ⁻¹	
CFT-specific irrigation threshold	it		
amount of water required in the upper 50 cm soil	NIR	mm	$NIR = W_{fc} - w_a - w_{ice}, NIR \ge 0$
available soil water	w_a	mm	
frozen soil water	$w_{ m ice}$	mm	
water at field capacity	$W_{ m fc}$	mm	
conveyance efficiency	E_c		
application requirements	AR	mm	$AR = W_{\text{sat}} - W_{fc} - W_{\text{pwp}} \cdot d_u - w_{\text{fw}}, AR \ge 0$
gross irrigation requirements	GIR	mm	$GIR = \frac{NIR + AR - Store}{E_c}$
storage buffer	Store		
water distribution uniformity scalar	d_u		
available free water	$w_{ m fw}$	mm	
annual variation coefficients for precipitation	$\text{CV}_{ ext{prec}}$		
annual variation coefficients for temperature	$\mathrm{CV}_{\mathrm{temp}}$	- 0	
biomass after the last harvest event	$\mathrm{MC}_{\mathrm{leaf}}$	$\rm gCm^{-2}$	