
Service Operation Management: Internal Web Application and API for Service

Development and Production Support

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Matthew Morelli

Spring, 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science

Service Operation Management: Internal Web Application and API for

Service Development and Production Support

CS4991 Capstone Report, 2022

Matthew Morelli

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

mjm7ngb@virginia.edu

ABSTRACT

A finance-area product team at a used car

retailer and financer based out of Richmond,

Virginia decided to improve access and usability

for various elusive, confusing, and time-consuming

functionalities for service development and

production support. As an intern for the company, I

achieved this using a custom API and web

application that combined said functionalities into

a centralized suite of tools. The project, titled

Service Operation Management (SOM), was built

first as an ASP.NET API and later integrated with

an ASP.NET web application. Using React and an

internal design library, my mentor and I developed

a usable and functional user interface so these tools

could be readily available for software developers

in the finance area. The functionality of the tools in

the SOM comes from both custom company

systems and Microsoft Azure, and it has effectively

increased the agility and efficiency of the team that

developed it. Plans include adding more tools,

building out the administration system for

customization purposes, as well as rolling the

system out to other finance product teams and

possibly even teams outside of the finance area.

1 INTRODUCTION

Software engineers often use a variety of tools

and technologies provided and accessed through

different media and platforms; this can hinder the

agility, efficiency, and organization of a product

team. Not only does this introduce complexity

within a single product team’s developer “toolkit”

and development stack, but different teams within

the same company may leverage wildly different

tools and technologies for their own unique

purposes.

During my summer 2022 internship this

problem was very evident within the finance area

product team that I was assigned to work with. The

finance team had devised a solution: a centralized

hub of tools useful to finance area developers. This

hub would be implemented in the form of an

application programming interface (API) and a

web application, the latter of which was my

primary intern project, which we called Service

Operation Management (SOM).

2 BACKGROUND

At the retailer, there are systems and other

software tools that are developed internally, as well

as software development tools and technologies

that are external and require purchase of a license

for use. Since the company has over 70 product

teams working on different software and using

different tools, efforts to keep track of them and

remember how to use them could become quite

convoluted. While both the internal and external

tools are well documented, that documentation is

usually stored in a GitHub repository (internal) or

on a website (external). Finding the tools and

reviewing documentation to properly use them

wastes lots of time that could be better spent

programming and debugging.

3 RELATED WORKS

The SOM was given this name because its

purpose is for service development and production

support. Information technology service

management (ITSM) describes any method that a

technology team uses to deliver their software

services to end users. This includes the

infrastructure, organizational plan, and other

activities required to keep their systems working

for the customer. The process of ITSM can be

influenced by a team’s DevOps process as well,

which ties together service delivery and agile

practices. DevOps has a focus on agility and

collaboration, and the SOM is certainly an ITSM

system with DevOps influence, as defined by

Atlassian (2022) [1]. Atlassian, a company that

creates products for software teams and

developers, provides enterprise solutions for

ITSM, whereas the SOM is a solution developed

internally.

Important decisions had to be made on the

form and function of the SOM frontend. In

software development, there are many

programming languages and frameworks for

building beautiful and responsive user interfaces

(UI) and user experiences (UX). React is a

JavaScript library that has gained popularity over

the past decade. Developed by Facebook in 2013,

it has been continuously improved up to the

present day.

Our team at the retailer likely chose React for

similar reasons companies like Netflix, Reddit,

Airbnb, and Dropbox choose it for a web

application. As Galik (2021) points out, React has

essentially automated the rendering process so that

less time is spent debugging complex programs,

and more time can be spent focusing on the minute

details that set a UI apart. Websites with lots of

dynamic behavior can take lots of time to render

on a screen. React also implements a virtual

Document Object Model in the browser so that

only components that have changed must be

updated, leading to faster render times and

smoother motion.

Arguably the most important feature to the

retailer is the concept of custom components. In

React, one can create reusable components that fit

a particular need, creating consistency between the

company’s many systems. The company I worked

with has built a suite of React components that can

be used by any team in the department. Beyond

these reasons, React is open source with a very

large contributing community and a wealth of

documentation on the internet, making it quite easy

to learn and debug [3].

The SOM also began as a generic API to allow

the tools to be accessible to other teams. From my

perspective as an intern, API development

appeared very common and popular within the

retailer. As Gino (2021) describes, modern

software development has become very reliant on

APIs. APIs create an interface for certain function

or data access that exists within an organization’s

systems. This allows companies to create an

environment of functionality that can be leveraged

by their own developers as well as those outside of

the organization, depending on the permissions for

their use. Creating uniform communication

channels between external and internal systems,

especially for functions or databases that are used

in various tasks or systems, gives a company a

competitive advantage and helps produce better

products for the consumer [2].

4 PROJECT DESIGN

The functionalities that sparked discovery and

development of the SOM were related to

debugging and testing software for financial data

and systems. The financial data that my team

works with is in the form of credit applications for

pre-approval and pre-qualification on vehicles, and

these applications are used for performing hard and

soft credit inquiries for customers. They contain a

bulk of personal information like age, address,

name, the last four digits of a Social Security

number, annual salary, and more. This data gets

sent to various systems, both internal and external,

and must be encrypted before leaving the initial

system where the application is submitted and

stored in a database. While hackers can steal data

within a database, it is far easier to intercept in

transit between systems. As it is exposed to many

high security threats in transit, it must be encrypted

for both purposes. Once it arrives in a system

where it must be reviewed by a human or

processed in plaintext, it must be decrypted.

4.1 Key Components and Inspiration

 For the finance team to improve their existing

application submission and data transfer systems,

they often need to decrypt encrypted application

data, or vice versa, and inspect it. An example of

this could be that a submitted credit application

caused an error when being processed. Perhaps

there is an aspect of the submission interface that

led the customer to enter some information

incorrectly, or a bug that changed the data into an

incorrect format. A software engineer will need to

inspect the unencrypted data by copying the

encrypted version out of the database, sending it to

the company’s internal decryption API, and

inspecting the response. This API is not intuitive to

use, and its use requires a web browser or platform

like Postman to send a web request, neither of

which is ideal for the inspection of application

data.

 The finance team also leverages instances of

Azure Service Bus, an enterprise messaging

broker, for various systems that communicate.

Systems publish and/or subscribe to messages that

pass through a queue. If these messages cannot be

delivered to a subscribing system or processed,

they fall into the dead-letter queue (DLQ). The

DLQ holds these messages and they can be

requeued, purged from the queue, or their payload

can be inspected. All the functionality lies within

Microsoft Azure, which can be interacted with via

a command line interface or the Azure Portal. The

finance team was dissatisfied with the usability of

these interfaces and experienced difficulty

navigating these tools.

 The encryption, decryption, and dead-letter

message managing functions are needed often, and

often in conjunction with each other. The lead

developer on my team built the SOM API that

combined these three tools, and planned to extend

that into a beautiful web interface with user and

team specific customization capabilities.

4.2 Web Application Architecture

 The login process and hierarchical structure of

the SOM web application was kept fairly basic to

allow for ease of use. Since the system is meant for

internal use by the retailer’s associates, I requested

an access key for the company’s single sign on and

multifactor authentication partner from the identity

and access management team. I then used this to

integrate the associate login process with the SOM

backend code. Once integrated, it was configured

to authenticate a user upon accessing any URL

associated with the SOM.

 As for the hierarchical structure, the decisions

my team made were fairly intuitive to anyone

familiar with basic web design principles. The

home page includes a description of the system’s

uses. The navigation bar, persisting across all

pages in the web application, included two tabs:

“Tools” and “Admin.” Upon hovering over

“Tools,” a dropdown menu appears including the

tabs “Encryptor,” “Decryptor,” and “Dead-Letter,”

which when clicked bring the user to their

respective pages. Additional tools added to the

SOM will be placed in this dropdown menu. The

“Admin” tab, when clicked, brings the user to the

admin configuration page. This page currently

shows options for adding groups of credit

application sample payloads, as well as adding

specific instances of application data payloads for

use in the encryptor and decryptor tools. It also

includes options for adding service bus connection

strings to use for accessing their respective dead-

letter management functions. Future developments

in team-based customization will also be present in

the administration page.

4.3 Web Interface Design

 The retailer has teams dedicated to developing

internal design libraries and frameworks. These are

similar to Bootstrap, a popular frontend

development framework, but are built with the

retailer’s branding in mind. The underlying code is

largely written in CSS (or variants thereof) and

JavaScript.

 Since the SOM web application’s frontend uses

React, my team opted to use the retailer’s React-

based component library to build out the interface.

This accelerated the development process, as I was

able to install the internal package into the SOM’s

dependencies, and access various component

libraries through simple JavaScript import

statements.

I was able to avoid the work of referencing

company branding documentation to write code for

stylesheets and React components solely for the

SOM. This not only reduced the development time,

but created a consistent look and feel across all

systems developed by the retailer’s various product

teams, including applications for web, desktop and

mobile.

5 RESULTS

The primary goals and achieved outcomes of

this system’s development were cohesion and

consolidation of finance development tools,

eliminating tedious steps from commonly used

tools, and increased efficiency in debugging,

managing, and developing finance software.

Regarding cohesion and consolidation, the SOM

now serves as a hub of tools that are commonly

used among developers in the finance area. Rather

than having tools that reside in Microsoft Azure

Cloud, Azure DevOps, and separate internal

systems and APIs, they are all accessible to

developers and can be leveraged either from the

SOM API or the web interface.

Decryption and encryption routines can take a

tremendous amount of time. Before the SOM, the

user would first need to obtain the SSL certificate

that performed the cryptography, which can take

between 5 minutes to a few days depending on the

current workload and the response time of the

associate who has the certificate. Once obtained,

the user would need to either build a simple

application using pre-built NuGet packages, or use

an API to access an existing encryption/decryption

application. Building a new application could take

1-3 days, and would be difficult to share with other

engineers and difficult to scale due to the variety of

systems that the retailer’s engineers use. Tapping

into an existing application would require tedious

5–30-minute setup to access only the relevant

cryptography-related code. With the SOM, this

work has been reduced to just obtaining the SSL

certificate and adding it to the SOM backend. Once

that is done, encryption and decryption time

becomes negligible for that certificate, as you

simply need to copy a payload of data, and paste it

into the SOM web application.

The service bus DLQ manager also reduced

time spent on tedious tasks. Viewing dead letter

message payloads can be done through Azure

Portal or other third-party applications, but our

engineers found that many of those applications

are paged very small (only showing a small

number of messages at a time) and require

installation. Purging or requeuing messages on

existing solutions is often limited to around 10

messages at a time, and the retailer’s retry handling

practices require that data be modified in a certain

way before a requeue. The SOM effectively

shortened time spent managing DLQs as the

manager can be accessed via a web browser and

there are no limits to the number of messages that

can be listed on the page, purged, or requeued at

once. The extra modification that needs to be done

before requeuing is also handled in the backend. It

is difficult to give an estimate of time saved, but it

is likely hours over long periods of DLQ

management.

6 CONCLUSION

The initial version of the SOM has benefitted

the retailer in numerous ways. It successfully

centralized a variety of tools to provide finance

area software engineers with a single point to

access many development and support tools. It also

eliminated tedious, mundane, and repetitive tasks,

effectively increasing the team’s agility, efficiency,

and productivity. It has become a commonly used

system among finance developers for managing

service bus messages between communicating

systems, as well as decrypting data for inspection

or testing different encryption certificates. The

benefits of the SOM are difficult to measure given

its short existence, but it has and will continue to

ease and enable the work of engineers at the

retailer given its great potential for continued

development.

7 FUTURE WORK

Existing plans for future work on the SOM

include enhancing the admin page to allow for

team-based customization and the addition of

dashboards for Azure service health and service

build and release pipeline statuses. The admin page

enhancements would primarily include

modifications to the underlying database. This

would allow for organization of users by team.

These users could then add specific DLQs,

certificates, pipelines, and services to their team

profile that would only be visible to members of

the team(s) responsible for them. Service health

notifies developers of issues impacting availability

such as errors, planned maintenance, or outages.

Having these in a centralized dashboard would

give developers more time to respond accordingly.

The SOM is also ideal for creating a more readable

and customizable build and release pipeline

dashboard, which currently exists in Azure

DevOps.

REFERENCES

[1] Atlassian. 2022. What is ITSM? A guide to IT

service management. Retrieved September 7,

2022 from https://www.atlassian.com/itsm

[2] Gino, I. 2021. Why Almost Every Company Is

Now An API Company. (September 2021).

Retrieved September 7, 2022 from

https://www.forbes.com/sites/forbestechcounci

l/2021/09/16/why-almost-every-company-is-

now-an-api-company/?sh=26083d001e29

[3] Galik, O. 2021. When And Why You Should

Use React. (March 2021). Retrieved

September 7, 2022 from

https://www.uptech.team/blog/why-use-react

https://www.uptech.team/blog/why-use-react

