
A

Presented to
the faculty of the School of Engineering and Applied Science 

University of Virginia

in partial fulfillment
of the requirements for the degree

by

Data-Driven Intention Inference and Its Application to 
Human-Robot Coordination

Dissertation

Doctor of Philosophy

Yongming Qin

August 2023



APP307A- 4)&&T

5his

is submitted in partial fulfillment of the requirements
for the degree of

Author�

Advisor�

Advisor�

$ommittee .ember�

$ommittee .ember�

$ommittee .ember�

$ommittee .ember�

$ommittee .ember�

$ommittee .ember�

Accepted for the School of Engineering and Applied Science�

+ennifer -� 8est
 School of Engineering and Applied Science

Dissertation

Doctor of Philosophy

Yongming Qin

This Dissertation has been read and approved by the examing committee:

Tomonari Furukawa

John A. Stankovic

Zongli Lin

Gregory J. Gerling

Lu Feng

August 2023



ABSTRACT As robots become increasingly integrated into daily life, their

ability to effectively coordinate with human-maneuvered agents, including hu-

mans, cars, and drones, becomes crucial. However, existing techniques for human-

robot coordination have treated all human agents uniformly, without considering

the unique characteristics of each agent. This PhD dissertation proposes a re-

search framework that incorporates the specific attributes of individuals involved

in the coordination process and aims to design adaptive coordination abilities for

robots.

Inspired by how humans interact and collaborate with familiar individuals, this

research investigates how robots can learn from human behavior to enhance their

coordination capabilities. Humans intuitively infer each other’s intentions and

take into account the historical behavior of others to improve collaboration. The

proposed research tackles three key aspects: 1) Developing an efficient approach

to model human intentions based on historical behavior data. Different types of

intentions are classified, and each intention is mapped to a corresponding motion

pattern. 2) Inferring human intentions and utilizing the model to determine the

current motion pattern for effective coordination. 3) Incorporating inferred in-

tentions and motion patterns into robotic applications. The proposed approaches

are applied to two specific applications: state estimation and robotic escorting.

The effectiveness of the proposed approaches is validated through simulations

and real experiments. The novel model for intention and motion patterns demon-

strates significant advantages in efficiently describing human behavior. In both

the state estimation of a human-maneuvered quadrotor and the robotic escorting

of a human using a mobile robot, the proposed approaches exhibit benefits such

as higher estimation accuracy, enhanced flexibility, and improved user satisfac-

tion.
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1. Introduction

1.1 Motivation

With the increasing deployment of robots in isolated workspaces, their presence in our

daily lives around humans is becoming more prevalent [ 1 ,  2 ]. Small aerial vehicles now as-

sist in photography, three-dimensional (3D) reconstruction, and monitoring, while ground

vehicles transport people and goods to various destinations. Public service robots have

emerged to interact with humans, providing information and guiding individuals [  3 ]. Assist-

ing robots aid in carrying heavy objects and installing materials [  4 ,  5 ]. Domestic robots have

demonstrated capabilities in performing daily household tasks, including kitchen activities,

clothes handling, and sweeping [ 5 ]. However, to operate seamlessly in human-populated en-

vironments, these robots must effectively interact with various human-maneuvered agents,

including humans themselves, as well as agents controlled by humans such as cars and drones.

Therefore, the coordination between robots and humans is crucial for their coexistence and

cooperation.

Past approaches to human-robot coordination can be categorized into three distinct types,

as illustrated in Figure  1.1 . The first type, known as physics-based approaches, encompasses

the description of human motion through explicit dynamical models based on Newton’s laws

of motion, which are then utilized to design the coordination strategy [  6 ,  7 ]. These ap-

proaches often employ proportional control strategies for robot tracking and following. The

second type, referred to as blackbox-based approaches, leverages deep learning techniques

to generate robot actuation [  8 ]. In this approach, the neural network takes human infor-

mation as input and produces the corresponding robot control commands as output. It

essentially learns the mapping between human behavior and robot actions. The third type,

pattern-based approaches, describes human motion using predefined patterns [ 9 ]. These ap-

proaches predict future human motion based on these patterns and subsequently design the

coordination strategies for robots to effectively respond to the anticipated human motion.

These three approaches have proven successful in enabling robots to operate in close

proximity to humans and have gained widespread application. However, these approaches

were designed without considering the unique characteristics exhibited by individuals. It is

14



(a) Physics based (b) Blackbox based (c) Pattern based

Figure 1.1. Past work on human-robot motion coordination can be classified
into three types: physics based, blackbox based, and pattern based approaches.

essential to acknowledge that each person is distinct, displaying specific habits and motions.

Therefore, it becomes crucial to customize the coordination of robots for each specific human,

accounting for their individuality. None of the three approaches addressed this need for

tailored coordination between robots and humans.

1.2 Development

The proposed research draws inspiration from human interaction and collaboration, aim-

ing to replicate and enhance these abilities in robots. Humans possess the capacity to infer

each other’s intentions and incorporate knowledge of others’ historical behavior. To imbue

robots with similar capabilities, several key challenges must be addressed: extracting motion

characteristics from historical data, inferring human intention, utilizing human intention

effectively, and developing the coordination abilities of robots.

In light of these challenges, the proposed research seeks to achieve the following objectives:

1) efficient modeling of human intention using historical data, 2) accurate inference of human

intention, and 3) the proposal and validation of effective human-robot coordination through

practical implementations.

By accomplishing these objectives, the proposed research makes contributions in the

following areas: 1) the efficient extraction of a human’s unique characteristics from historical

data, and 2) demonstrating the advantages of inferring human intention through two specific

robotic applications: state estimation and robotic escorting.

15



Figure  1.2 shows a diagram of robotic applications with humans involved. The human

behaves to influence the robot while the robot observes the human and acts correspondingly.

Figure 1.2. A diagram of robotic applications with humans involved

Figure 1.3. The general framework of the proposed research

Figure  1.3 shows the general framework of the proposed research, which takes advantage

of both physics-based approaches and pattern-based approaches. There are two processes:

preprocessing and real-time processing. The preprocessing captures the special characteris-

tics of a human from the historical data. Human behavior is described by human intentions

and motion patterns. The human intention is a discrete value (such as intention 1, 2, 3,

...) that presents what the human plan to do. Each intention is mapped to one motion

pattern where the pattern is extracted from the historical data. Human behavior is finally

represented as an intention-pattern model.

The real-time processing is for the robotic applications which are state estimation and

robotic escorting in this research. The human intention is first inferred based on real-

time data. Then by checking the intention-pattern model with the current intention, the

16



current motion pattern is known. Physics-based approach and the current motion pattern

are combined to serve each robotic application.

Figure  1.4 show the specific framework of state estimation. Human-maneuvered agents

such as quadrotors teleoperted by people and cars driven by people are treated on the

input side. The input of preprocessing is the observation data collected in advance and the

input of real-time processing is the real-time observation. By combining the physics-based

approach of state estimaiton and the pattern-based approach, the output of estimated state

is improved.

Figure  1.5 shows the specific framework of robotic escorting. For robotic escorting, a

robot moves in front of a human and complies with the human aim without direct com-

munication. The input of preprocessing is the human demonstration data and the input

of real-time processing is the human head direction indicating the human intention. By

combining the physics-based approach of common robotic escorting and the pattern-based

approach, the robot can better coordinate the human actions in the environment.

Figure 1.4. The specific framework for state estimation

1.3 Summary of Contributions

This research proposes a framework that learns the unique characteristics of a human

from historical data and incorporates the specific attributes of individuals for human-robot

coordination. The main contributions are summarized as below.

17



Figure 1.5. The specific framework for robotic escorting

• Efficientlly model human intentions based on historical behavior data of small datasets.

• Infer the human intention with high accuracy.

• Propose and validate the approaches through two applications. For the first applica-

tion of estimating states of human-maneuvered agents, the proposed research achieves

higher accuracy of state with 3 times smaller maximum error and 8.7 times smaller

mean squared error (MSE) compared to the based approach. For the second applica-

tion of robotic escorting, the proposed research leads to smaller prediction error and

better user experience.

1.4 Dissertation Structure

In the rest of this dissertation, Chapter 2 proposes the approach for inferring the human

intention. Chapter 3 and Chapter 4 respectively present the incorporation of human intention

in benefiting state estimation of of human-maneuvered agents and robotic escorting. Finally,

Chapter 5 concludes the proposed research and discuss some future directions based on the

research.
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2. Data-Driven Intention Inferrence

Understanding the aim of a target that is either a human or a robot is a key skill for intelligent

systems to coexist with humans or with each other. Related studies play an important role

in many areas, such as motion prediction, human-robot interaction (HRI), surveillance, and

autonomous driving [  10 ,  11 ]. Approaches of intention estimation have been developed to

estimate such aims based on observations and have attracted increased interest in the last

decades [ 12 ,  1 ,  2 ].

The approaches proposed in the past for intention estimation can be classified into two

types. In the first, physics-based approaches describe the target motion with explicit dy-

namical models based on Newton’s law of motion and associate the intentions with the

models [  13 ,  14 ]. Some approaches interpret different intentions with the motion model of

different parameters, such as velocities, turning direction, and goals. Kawase et al. [  15 ] con-

sidered different turning directions to predict the circular motion for target tracking. Conte

et al. [ 16 ] predicted the future motion incorporating the human heading direction as an in-

dicator of the target goal for an HRI task. Multiple model (MM) approaches directly utilize

several models and relate models to intentions. Liu et al. [  17 ] predicted the trajectory of

an aircraft based on the interacting multiple model (IMM) approach and assigned a larger

weight to the dynamic model with a heading angle closer to the intended direction. Qin

et al. [  18 ] associated intentions with recurring motion patterns which are then described by

motion models with different control inputs.

In the second, pattern-based approaches learn the motion behavior from data without

explicitly defining the parameterized functions. Bennewitz et al. [ 19 ] learned the motion

patterns of people from collections of trajectories and derived a hidden Markov model to

estimate the current and future positions. Ravichandar et al. [ 20 ] trained a neural network

(NN) that models the target motion and converges to the goal position. Then different goal

positions representing different intentions are coupled with the NN model. Elfring et al. [ 21 ]

learned the typical motion patterns of humans from data and utilized a person’s intended

position for improved motion prediction. Dermy et al. [ 22 ] learned a set of motion primitives

from HRI demonstrations and inferred the intention of the human partner for collaboration.
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Lasota et al. [ 23 ] determined the most favorable parameters for the prediction methods from

task data and improved the motion prediction performance.

Physics-based approaches can be easily interpreted and adapted to new cases. Pattern-

based approaches infer related information from data and save the effort to specify parame-

ters [  24 ]. This chapter presents a data-driven multiple model framework for estimating the

intention to take the benefit of both. In contrast to conventional approaches which assume

the one-to-one relations between intentions and models, the proposed framework infers the

multiple-to-multiple relations from labeled observations. Both the multiple-to-multiple re-

lations and the model probabilities of an IMM state estimation approach are incorporated

in a recursive Bayesian framework for intention estimation. The strength of the proposed

approach lies in the incorporation of the multiple-to-multiple relations which are more com-

mon in real cases and also incorporate the dependency information on observations. The

proposed framework improves the accuracy of estimation and increases flexibility without

specifying the strict one-to-one relations.

The chapter is organized as follows. The next section ( 2.1 ) describes the intention estima-

tion problem, its solution using a state estimation approach assuming one-to-one relations,

and the resulting limitations. Section  2.2 presents the proposed framework including the

recursive Bayesian intention and the inference of multiple-to-multiple relations from labeled

observations. Experimental validation investigating the effectiveness of both the inference

and the intention estimation is presented in Section  2.3 . Conclusions are summarized in the

final section (  2.4 ).

2.1 Intention and State Estimation

2.1.1 Intention Estimation

For a target, the discrete motion model and the observation model are generically given

by

xxxk = fff(xxxk−1,uuuk,wwwk) (2.1)

zzzk = hhh(xxxk, vvvk) (2.2)
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where fff and hhh are the motion and the observation models respectively, xxxk is the state of the

target at step k, uuuk is the input, zzzk is the observation, and wwwk and vvvk are the motion and

observation noises respectively. A viewer observes the target and estimates the intention.

Mostly there is no cooperation between the target and the viewer, thus fff and wwwk may not

be well known while ukukuk is fully unknown. On the other hand, hhh and vvvk are fully known since

they are with the sensor(s) of the viewer. With a short time interval, it is valid to assume

that wwwk and vvvk are Gaussian.

The intention is an expression describing an aim or a plan, such as “turning right” and

“picking a cup”. This chapter denotes intentions discretely as a set {η(a)}, a ∈ N where N

represents all natural numbers. The intention sources from the target, but the understanding

of intention is subject to humans. Without knowing the exact intention of the target side,

this chapter deals with the intention from the viewer side. The intention at step k is defined

as a function of the past observations from step 1 to step k:

ηk = π(zzz1:k). (2.3)

which depends on the viewer and is not explicitly known. Instead, segments of observations

that are labeled with intentions ηa are considered to be given. The labeled observations are

denoted as a set {zzz
(a)
ls:le}, which indicates the observations from start step ls to end step le are

labeled with intention η(a). l ∈ N represents the lth segment. Two segments do not overlap,

i.e, the intention at each step is unique. The problem of intention estimation is resultantly

defined as the estimation of ηk with no knowledge on uuuk and π and some knowledge on fff

and wwwk, given hhh, zzzk, vvvk and {zzz
(a)
ls:le}.

2.1.2 Interacting Multiple Model State Estimation

For state estimation, the goal is to estimate the target state xxxk from observations zzz1:k.

Lacking information of fff and uuuk results in high motion uncertainty. The MM state estima-

tion methods deal with motion uncertainty by describing the motion with several motion

models, which are denoted as {m(i)}, i ∈ N. Most MM methods utilize models of known mo-

tion behaviors with different parameters such as variants of the constant velocity (CV) and
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constant acceleration (CA) models. Suppose that fff of Eq. (  2.1 ) at step k is approximated

by a single linear Gaussian model. The motion model m(i) is given by

xxxk = AAA
(i)
k xxxk−1 + BBB

(i)
k uuu

(i)
k + www

(i)
k . (2.4)

where AAA
(i)
k is a system matrix, BBB

(i)
k is a control matrix, and www

(i)
k is Gaussian with mean 000 and

covariance QQQ
(i)
k . The symbol (i) indicates the model m(i). The observation model ( 2.2 ) is also

supposed to be linear Gaussian:

zzzk = CCCkxxxk + vvvk (2.5)

where CCCk is the observation matrix, and vvvk is Gaussian with mean 000 and covariance RRRk.

Figure 2.1. The IMM state estimation approach and its application to inten-
tion estimation assuming one-to-one relations between intentions and motion
models
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The shaded area of figure  2.1 shows the IMM approach to estimate the target state.

The motion behavior is described with a set of models {m(1), m(2), m(3), ...}. Having the

observation zzzk of the state xxxk, Kalman filter (KF) is applied for each model ( 2.4 ). Each

KF updates the target state of mean ˆ̄xxx(i)
k−1|k−1 and covariance Σ̂ΣΣ

(i)
k−1|k−1 to mean x̄xx

(i)
k|k and

covariance ΣΣΣ(i)
k|k. Each ˆ̄xxx(i)

k−1|k−1 and Σ̂ΣΣ
(i)
k−1|k−1 are derived from the IMM filter reinitialization

incorporating all of x̄xx
(i)
k−1|k−1 and ΣΣΣ(i)

k−1|k−1. The output x̄xxk|k and covariance ΣΣΣk|k are calculated

by the estimate fusion of all x̄xx
(i)
k|k and ΣΣΣ(i)

k|k[ 25 ].

2.1.3 Conventional Multiple Model Intention Estimation

Denote η
(a)
k as the event that at step k the intention is η(a), i.e, ηk = η(a). Conventional

multiple model framework assumes one-to-one relations between intentions and motion mod-

els. The probability of an intention is assumed to be the probability of the corresponding

model:

Pr(η(a)
k ) = Pr(mi

k), i = a,

where Pr(·) indicates the probability of an event. As shown on the right side of figure  2.1 ,

the intention estimation is performed based on this assumption.

There are two main limitations to estimate intention assuming one-to-one relations. First,

one intention may not map to one single model exactly. The target behavior of one intention

can be too complex to be described by one model. In addition, the model probability

does not incorporate the information that an intention is likely to happen with specific

observations. Second, multiple model methods are motivated to improve the performance

of state estimation. The models designed for satisfactory intention estimation may conflict

with state estimation, which reduces the flexibility.

2.2 Proposed Data-Driven Multiple Model Framework

Figure  2.2 shows the proposed framework for intention estimation. Recursive Bayesian

intention estimation is designed including modules of intention prediction and intention cor-

rection. The intention prediction module predicts the probabilities of all intentions at the
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current step based on the probabilities at the previous step. The intention correction mod-

ule corrects the intention probabilities by incorporating the multiple-to-multiple relations

inferred from labeled observations and the model probabilities from IMM. Section  2.2.1 

presents the recursive Bayesian intention estimation, and section  2.2.2 presents the inference

of the multiple-to-multiple relations from labeled observations.

2.2.1 Recursive Bayesian Intention Estimation

The probability of one intention η(a) at step k is derived as

Pr(η(a)
k |zzz1:k) =

∑
i

Pr(η(a)
k , m

(i)
k |zzz1:k)

=
∑

i
Pr(η(a)

k |m(i)
k , zzz1:k)Pr(m(i)

k |zzz1:k)

∝
∑

i
Pr(m(i)

k , zzzk|η(a)
k , zzz1:k−1)Pr(η(a)

k |zzz1:k−1)Pr(m(i)
k |zzz1:k)

∝
∑

i
Pr(m(i)

k , zzzk|η(a)
k , zzz1:k−1)Pr(m(i)

k |zzz1:k)︸ ︷︷ ︸
likelihood

Pr(η(a)
k |zzz1:k−1)︸ ︷︷ ︸

from prediction

. (2.6)

Equation ( 2.6 ) corresponds to the correction module of the estimation. In the likelihood term,

Pr(m(i)
k , zzzk|η(a)

k , zzz1:k−1) represents the multiple-to-multiple relations between intentions and

motion models. And Pr(m(i)
k |zzz1:k) is the model probabilities, which is derived from the IMM

state estimation.

Pr(η(a)
k |zzz1:k−1) is calculated based on Pr(η(a)

k−1|zzz1:k−1) which is the intention probability at

previous step. This process is performed by the prediction module. The proposed framework

assumes the probability of transitioning from an intention η(a) at step k − 1 to an intention

η(b) at step k, Pr(η(b)
k )|η(a)

k−1), b ∈ N, is constant and known, which results in a Markovian

process. Given the previous probabilities of all intentions, the prediction probability of each

intention is derived as

Pr(η(a)
k |zzz1:k−1) =

∑
b

Pr(η(a)
k |η(b)

k−1)Pr(η(b)
k−1|zzz1:k−1). (2.7)
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Figure 2.2. The proposed intention estimation framework that infers and
utilizes the multiple-to-multiple relations between intentions and motion mod-
els from labeled observations.

Similarly, the IMM state estimation assumes the probability of transitioning from a model

m(i) at step k−1 to a model m(j) at step k, Pr(m(j)
k |m(i)

k−1), j ∈ N, is also constant and known,

which is another Markovian process. The predicted model probability is given by

Pr(m(i)
k |zzz1:k−1) =

∑
j

Pr(m(i)
k |m(j)

k−1)Pr(m(j)
k−1|zzz1:k−1).

For each KF in IMM state estimation, the observation residual is given by

z̃̃z̃z
(i)
k = zzzk − CCCkx̄xx

(i)
k|k−1, (2.8)
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As indicated by IMM approach, the model likelihood is assumed as

Pr(z̃̃z̃z(i)
k |m(i)

k , zzz1:k−1)
assume= |2πSSS

(i)
k |−

1
2 exp [ − 1

2(z̃̃z̃z(i)
k )>(SSS(i)

k )−1z̃̃z̃z
(i)
k ]. (2.9)

where SSSk is the residual covariance of KF. The model probability is given by

Pr(m(i)
k |zzz1:k)

= Pr(m(i)
k |zzz1:k−1)Pr(z̃̃z̃z(i)

k |m(i)
k , zzz1:k−1)∑

j Pr(m(j)
k |zzz1:k−1)Pr(z̃̃z̃z(j)

k |m(j)
k , zzz1:k−1)

, (2.10)

which serves as the second part of the likelihood term in Eq. (  2.6 ). It is noted that

Pr(η(a)
k |η(b)

k−1) and Pr(m(i)
k |m(j)

k ) can be described by diagonal matrices with few parame-

ters. Refer Li et al. [  25 ] or Qin et al. [  18 ] for the mathematical derivation of IMM and its

application to intention estimation.

In summary, the derivation of Pr(η(a)
k |zzz1:k−1) and Pr(m(i)

k |zzz1:k) has been described by

Eq. ( 2.7 ) and Eq. (  2.10 ). For calculating Pr(η(a)
k |zzz1:k) of Eq.  2.6 , the derivation of the

remaining term Pr(m(i)
k , zzzk|η(a)

k , zzz1:k−1) is proposed in the next subsection.

2.2.2 Multiple-to-Multiple Relations

The multiple-to-multiple relations represented by Pr(m(i)
k , zzzk|η(a)

k , zzz1:k−1) include not only

η
(a)
k of intention and m

(i)
k of model but also the observations. This means the relation of

η
(a)
k and m

(i)
k can be different for distinct observations, which is common in real cases. This

chapter considers only the impact of the recent observation zzzk. Thus, the multiple-to-multiple

relations

Pr(m(i)
k , zzzk|η(a)

k , zzz1:k−1) = Pr(m(i)
k , zzzk|η(a)

k )
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Assuming the relations are independent from the time,

Pr(m(i)
k , zzzk|η(a)

k ) = Pr(m(i), zzz|η(a))

= Pr(m(i)|zzz, η(a))Pr(zzz|η(a)). (2.11)

The raw labeled observations {zzz
(a)
ls:le} do not contain information of Pr(m(i)) directly.

The proposed framework first processes {zzz
(a)
ls:le} using the IMM approach to generate the

information of Pr(m(i)). Then the data of a tuple (Pr(m(i)), zzz, a) is derived where i and a

are discrete and zzz are multiple dimensional continuous variables.

The proposed framework takes the grid-based idea to process zzz [ 13 ]. The space of one

dimension of zzz is evenly divided into partitions. Then each zzz of {zzz
(a)
ls:le} can be assigned to

one of the partitions of all dimensions. To derive Pr(m(i)|zzz, η(a)), the average of all Pr(m(i))

belonging to each partition is calculated for each pair of i, a. To derive Pr(zzz|η(a)), the number

of zzz belonging to this partition is calculated for each a.

By finding the partition that a new observation zzzk belongs, Pr(m(i)|zzzk, η(a)) and Pr(zzzk|η(a))

can be given by the values of this partition. Thus, the multiple-to-multiple relations Pr(m(i)
k , zzzk|η(a)

k , zzz1:k−1)

have been derived from the labeled observations, which is a data-driven solution.

2.3 Experimental Validation

The proposed framework was evaluated by estimating the intention of a maneuvered

quadrotor, which is a robotic application of this class with high demand. Three steps were

performed. The first two steps compared the proposed framework with the conventional

framework of Figure  2.1 in a software-in-the-loop (SITL) simulation environment. In the

first step, the number of models is equal to the number of intentions where the conventional

framework is applied generally. The accuracy of the intention estimation is evaluated through

the parametric study using the metric of F1 score [  26 ]. Second, model sets of different

numbers of models are tested to show the accuracy and flexibility of the proposed framework.

The probabilistic representation of multiple-to-multiple relations is showed to verify the
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capability of inferring the relations. Third, the framework was implemented on the real-

world data of a quadrotor.

Figure 2.3. The labeled observations with intentions. The first 100 sec was
used to infer the multiple-to-multiple relations, and the remaining 60 sec was
used to conduct the intention estimation.

Table  2.1 lists the parameters used for simulation. The quadrotor dynamics was cal-

culated in Gazebo, which also created motion noise artificially. As the most fundamental

and typical motion, the linear horizontal motion of the quadrotor was considered. The

quadrotor’s state, xxx, is given by:

xxx = [p, ṗ, θ, θ̇]>

where p is the position in the moving direction, ṗ is the linear velocity, θ is the attitude

(pitch angle), and θ̇ is the angular velocity. p and θ of the quadrotor were observed. The

variances of the observation noise were specified as [0.25, v2
o ] where vo was varied in the

parametric study. Figure  2.3 shows the noisy observations and the corresponding three in-

tentions: η(a) of decelerating (a = 1), hovering (a = 2), and accelerating (a = 3). The

labeling was based on the viewer’s perception of the quadrotor acceleration. As the accel-

eration is independent from the position p, the validation considers the multiple-to-multiple

relations Pr(m(i), zzz|η(a)) based on θ instead of the whole zzz, which makes it easier to depict

the probabilistic representations.
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Table 2.1. Parameters for simulation
Parameter Value

labeled intentions Decelerating, Hovering, Accelerating
Motion noise Specified in Gazebo

Observation noise variances [0.25, v2
o ]

Duration of observations
for inferring relations [s] 100

Duration of estimation [s] 60

Table 2.2. Parameters of the proposed framework
Parameter Value

Time step [s] ∆t = 0.05
Variances of noise QQQ [0, 1, 0, 0.36]
Variances of noise RRR [1, (1.5vo)2]

Model Set 1 (vm1 = 0, vm2 = [0, −0.2, 0.2])
Model Set 2 Set 1 ∪ (vm1 = 1, vm2 = 0)
Model Set 3 Set 2 ∪ (vm1 = 0, vm2 = [ − 0.1, 0.1])
Model Set 4 Set 3 ∪ (vm1 = 0, vm2 = [ − 0.3, 0.3])

Through the analysis of the quadrotor, each motion model is given by

AAA(i) =



1 dt 0 1

0 1 0 0

0 0 vm1 dt

0 0 0 1


, BBB(i)uuu(i) =



0

0

vm2

0


. (2.12)

and the observation matrix CCCk is a four-dimensional identity matrix. vm1 and vm2 are varied

parameters for below description. Since a quadrotor flies forward or backward by adjusting

the pitch angle, vm1 = 0 and vm2 of different values can represent different intentions, for

instance, vm1 = 0 and vm2 > 0 for the accelerating intention. Besides, vm1 = 1 and vm2 = 0

result in a CV model. Table  2.2 lists the parameters of the proposed framework and the

conventional framework.
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Figure 2.4. The most probable intentions of both frameworks, the intention
probabilities Pr(η(a) of the proposed framework, and the model probabilities
Pr(m(i) of both frameworks

2.3.1 Equal Numbers of Intentions and Models

This section considers the case that three models of Model Set 1 in Table  2.2 are used

for estimating the three intentions. Figure  2.4 shows the most probable intentions based on

Pr(η(a)
k ) and Pr(m(i)

k ). The most probable intention is derived as

ηk =

 arg maxa Pr(η(a)
k ) proposed

arg maxi Pr(m(i)
k ) conventional.

(2.13)

Since Pr(m(i)
k ) is generated by the IMM approach, it is same for the proposed framework and

the conventional framework; Pr(η(a)
k ) is of the proposed framework. The dynamic change

of Pr(η(a)
k ) indicates the uncertainty of the estimated intention. The F1 scores are 0.65 and
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0.55 respectively. The accuracy of the proposed framework is higher than the conventional

framework even though the conventional framework is designed for the cases that the numbers

of intentions and models are equal. This is because perfect one-to-one relations rarely exist.

(a) Proposed framework (b) Conventional framework

Figure 2.5. F1 score evaluating the intention estimation accuracy with re-
spect to vo of observation noise and the parameter vm of three models that
vm1 = 0, vm2 = [0, −vm, vm]. Higher score indicates higher accuracy.

Figure  2.5 shows the F1 score over vo of observation noise and the parameter vm of

three models that vm1 = 0, vm2 = [0, −vm, vm]. It is first seen the accuracy of the proposed

framework is higher on average. The accuracy becomes lower when the observation noise gets

larger for both frameworks, which is reasonable since the frameworks obtain little information

to estimate the intention if the observation is considerably noisy. However, while the model

parameter vm affects the accuracy of the conventional framework significantly, the influence

on the proposed framework is small. The proposed framework is resilient to the change of

model parameters by incorporating the relative relations of all models instead of the sole

relation to one single model.

2.3.2 Different Numbers of Intentions and Models

This section compares the proposed framework and the conventional framework using

all of the four model sets. Figure  2.6 gives an example of the probabilistic representations

of Pr(m(i)
k |zzzk, η

(a)
k ) when Model Set 2 is used. The multiple-to-multiple relations of three
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Figure 2.6. Multiple-to-multiple relations of Pr(m(i)|zzz, η(a)) between the
three intentions and the four models of model set 2

Figure 2.7. The most probable intentions of both frameworks when the four
models of model set 2 are used
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intentions and four models result in 12 histograms. As seen from the distributions, no

apparent relation between one intention and one model appears, which is common in real

cases. The memory space is proportional to the multiplication of the number of intentions,

the number of models, and the number of partitions of zzz.

Figure  2.7 shows the estimated intentions of each framework when model set 2 is used.

The F1 scores are 0.70 and 0.13 respectively. Since one-to-one relations between intentions

and models no longer hold, the accuracy of the conventional framework becomes significantly

low compared with the case of Model Set 1.

Table  2.3 shows the F1 scores and mean squared errors (MSEs) of estimated θ for all

model sets. The intention accuracy of the proposed framework stays high for all model sets.

For both frameworks, the MSE of estimated θ is larger for Model Set 1 compared to other

sets since Model Set 1 needs to consider both state estimation and intention estimation

satisfying the strict one-to-one relations. Since state estimation is usually designed for or

along with intention estimation, the proposed framework features increased flexibility when

designing models for state and intention estimation.

Table 2.3. F1 score of each framework and the MSE of the estimated θ for
both frameworks

Model Set 1 2 3 4
F1 score (proposed) 0.65 0.70 0.72 0.72

F1 score (conventional) 0.55 0.13 0.10 0.10
MSE (e-3 rad) 2.74 1.28 1.04 1.03

2.3.3 Test on Real-World Data

The proposed framework was further verified on real-world data. Figure  2.8(a) shows

the experimental environment and a quadrotor as the target. Optitrack motion capture

system was used to provide the observations. Figure  2.8(b)  2.8(c)  2.8(d) show examples of

the estimation results. Real-time estimation is showed in the supplemental material.
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(a) Experimental environment and the target

(b) Decelerating (c) Hovering (d) Accelerating

Figure 2.8. The experimental environment, the target, and examples of the
estimation results

2.4 Summary

This chapter has presented a data-driven multiple model framework for estimating the

intention of a target from observations. The framework infers the multiple-to-multiple rela-

tions between intentions and motion models from labeled observations. Both the multiple-

to-multiple relations and model likelihoods are incorporated for intention estimation. Ex-

perimental analysis shows that the proposed framework features higher accuracy compared

with the conventional framework especially when one-to-one relations do not hold. The es-

timation performance is resilient to parameter changes of models, which results in superior

flexibility when designing models for state and intention estimation.
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3. State Estimation Benefiting from Intention Inference

Most dynamic targets to track or engage are either human-maneuvered or humans them-

selves. Estimating the state of such a human-maneuvered target is essential and important,

and has attracted tremendous interest in the last decades [ 27 ,  28 ,  29 ,  30 ]. Despite the

importance, difficulty in the estimation of the human-maneuvered target lies in the motion

uncertainty. Even though the motion model of the target may be well or precisely known,

the control of the human is often unknown [ 31 ]. The motion, as a result, becomes consider-

ably different from the expectation. This gives rise to need for the ability to handle motion

uncertainty [  13 ].

For a human-maneuvered target, estimation techniques proposed in the past to handle

motion uncertainty can be classified into two types. In the first, a single accurate motion

model is developed and used to describe the motion behavior. Due to their robust estima-

tion upon past observations, various Bayesian methods, including the parametric Kalman

filters (KFs) and the nonparametric particle filters, have been applied by characterizing the

estimation problem and identifying the best estimation technique for the problem [  15 ,  32 ,

 33 ,  34 ,  35 ,  36 ,  37 ]. Steckenrider et al. [  38 ] proposed to introduce higher-order terms to the

motion model through Taylor series expansion and adaptively estimated the target state.

Gindele et al. [  39 ] improved the motion model by incorporating the situational context and

extending the state space. Since human control is unknown most of the time, conserva-

tive motion behaviors such as constant velocity (CV) and constant acceleration (CA) have

been incorporated as the most probable human controls [  31 ]. Instead of the motion model,

Mehra [  40 ] estimated the covariances of motion noise and observation noise when the filter

is detected not working optimally. Almagbile et al. [  41 ] evaluated three adaptation methods

of noise covariances and showed improvements over the conventional Kalman filter. It is

effective to control uncertainty when the deterministic motion accuracy can no longer be

improved. In addition to the model and its uncertainty, other work has dealt with unknown

human control and its uncertainty from the motion noise [  31 ]. The human control domi-

nates the motion behavior when the target has a large unconstrained workspace. Bogler [  42 ]

represented the time-varying human control deterministically by piecewise constants and es-
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timated the control in addition to the state. Chakrabarty et al. [  43 ] assumed the exogenous

input and its derivative to be bounded for a class of nonlinear systems in state estimation.

Conte et al. [  16 ] used head motion as an additional indicator when the target is a human

and improved the estimation accuracy. While they are more detailed and more adaptively

represented, these motion models cannot keep capturing the target motion and estimating

its state well particularly if the motion is drastically changed by a human. This is due to

the limited representation of a single model.

In the second, multiple models, which are either superposed or switched, have been

used to estimate more varying motion behavior [ 44 ,  45 ,  46 ,  47 ,  48 ]. The multiple-model

(MM) estimation methods extend existing techniques to handle multiple models and cover

a wider range of motion behavior [  25 ]. Blom et al. [ 44 ] proposed the interacting MM (IMM)

method that uses a fixed set of motion models with Markovian switching coefficients. The

transition probability and model likelihood were introduced to recursively adapt the model

probabilities. Li et al. [ 49 ] proposed the variable-structure MM (VSMM) method to overcome

the limitations of using a fixed set of models in describing the motion. The VSMM method

introduces model set adaption besides the model adaptation and thus can describe and

estimate even a broader range of motion behavior. Recently, Xu et al. [ 50 ] has engaged

with estimating varying motion behaviors by adapting parameters where a fixed coarse grid

and an adaptive fine grid of the parameters were combined to determine the models that

best match the target motion behavior. Despite the wider covering, it is still insufficient

to capture and estimate the target if the human control changes considerably. The MM

methods are rather formulated to cover a larger state space given the most probable human

control. Since the drastic control change may magnify changes in state space, the resulting

target state could be beyond the permissible space of the MM estimation. In addition, the

use of the deterministic control makes the estimation underestimated as the human control

is most uncertain.

This chapter presents an approach for estimating the state of a human-maneuvered tar-

get by associating the recurring motion behaviors with human intentions. The proposed

approach consists of a pre-process, which constructs the so-called intention-pattern model to

encapsulate the human intention, and the main process, which allows state estimation using
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the intention-pattern model. In the pre-process, the intention-pattern model is constructed

from the prior observations by running a revised IMM estimation, extracting motion behav-

iors of each human intention, aligning them and probabilistically representing its behavior.

The main process, then, uses standard state estimation such as KF extensively using the

probabilistically represented intention-pattern model. The strength of the proposed approach

lies in the incorporation of the intention-pattern model as the incorporation can make the

estimation not only accurate in mean but also precise in covariance.

The chapter is organized as follows. The next section describes the estimation problem

and its solution using the IMM estimation method, which is not only a generalized formu-

lation but also the technique used in the pre-process of the proposed approach. Section  3.2 

presents the proposed estimation approach including the pre-process and the main process.

Numerical validation investigating the effectiveness of both the intention-pattern model and

the state estimation is presented in Section  3.3 . Conclusions are summarized in the final

section.

3.1 Estimation of a Human-maneuvered Target Using IMM Estimation

3.1.1 Estimation Problem Formulation

Figure 3.1. The problem of estimating a human-maneuvered target from observations.

Figure  3.1 shows a schematic diagram of the problem of estimating the state of a human-

maneuvered target in case the target is a multirotor. When maneuvering a target, a human

operator interacts with a controller using an interface device such as a vehicle panel or a

joystick. The controller may be implemented in the interface device, in the target, or both.

Some parameters of the controller, such as the maximum speed of the target, are usually

configurable to realize different motion behavior. The information of human operation and
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configurable parameters are not known as no communication with the target is available.

The estimator does not affect the human operator and target as well. Having the target

observed in the field of view (FOV) of a fixed sensor such as a stereo camera, the goal of

the problem is to design the estimator to estimate the target state from observations. The

discrete motion model of the target and the observation model are generically given by

xxxk = fff(xxxk−1,uuuk,wwwk) (3.1)

zzzk = hhh(xxxk, vvvk) (3.2)

where fff and hhh are the motion and the observation models respectively, xxxk is the state of the

target at step k to estimate, uuuk is the input, zzzk is the observation, and wwwk and vvvk are the

motion and observation noises respectively. Because it is a target maneuvered by a human,

fff and wwwk may not be well known while ukukuk is fully unknown. On the other hand, hhh and vvvk

are fully known since they are with the sensor(s) of the estimator. With short time interval,

it is valid to assume that wwwk and vvvk are Gaussian. The problem is resultantly defined as the

estimation of xxxk with no knowledge on uuuk and some knowledge on fff and wwwk, given hhh, zzzk and

vvvk.

3.1.2 IMM Estimation

Lacking information of fff and uuuk results in high motion uncertainty. The MM estima-

tion methods deal with motion uncertainty by describing the motion with several motion

behaviors called modes, which are denoted by S = {sj}, j ∈ N where N represents all natural

integers. With the definition, a mode sj is used to represent the motion at step k when it

approximates the motion behavior well, i.e., sk = sj. To describe the behavior with minimum

complexity, a mode sj is most commonly described by a mathematical model mi, which is

collectively represented by M = {mi}, i ∈ N. A model mi thus represents the motion behav-

ior at a step, i.e., sk = sj = mi. Li et al. Li et al. [  51 ] is referred for more description. Most

MM estimation methods utilize models of known motion behaviors with different parameters
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such as variants of the CV and CA models. As an example, suppose that fff of Eq. (  3.1 ) at

step k is approximated by a single linear Gaussian model. The motion model mi is given by

xxxk = AAA
(i)
k xxxk−1 + BBB

(i)
k uuu

(i)
k + www

(i)
k . (3.3)

where AAA
(i)
k is a system matrix, BBB

(i)
k is a control matrix, and www

(i)
k is Gaussian with mean 000 and

covariance QQQ
(i)
k . The symbol (i) indicates that the model mi is used. The observation model

( 3.2 ) is also supposed to be linear Gaussian:

zzzk = CCCkxxxk + vvvk (3.4)

where CCCk is the observation matrix, and vvvk is Gaussian with mean 000 and covariance RRRk.

Figure 3.2. The IMM estimation method.

Figure  3.2 shows the framework of the IMM estimation method to estimate the target

state. The motion behavior is described with a set of models {m1, m2, m3, ...}. Having the
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observation zzzk of the state xxxk, KF is applied for each model (  3.3 ) with the linear Gaussian

assumption. Each KF updates the target state of mean ˆ̄xxx(i)
k−1|k−1 and covariance Σ̂ΣΣ

(i)
k−1|k−1 to

mean x̄xx
(i)
k|k and covariance ΣΣΣ(i)

k|k. Each ˆ̄xxx(i)
k−1|k−1 and Σ̂ΣΣ

(i)
k−1|k−1 are derived from the IMM filter

reinitialization incorporating all of x̄xx
(i)
k−1|k−1 and ΣΣΣ(i)

k−1|k−1. The output x̄xxk|k and covariance

ΣΣΣk|k are calculated by the estimate fusion of all of x̄xx
(i)
k|k and ΣΣΣ(i)

k|k.

The mathematical derivation is as follows. The event that the model mi matches the

mode at step k is denoted as m
(i)
k , {sk = mi}. The probability of m

(i)
k is denoted as

µ
(i)
k , Pr{m

(i)
k } where Pr{·} indicates the probability of an event. The IMM estimator

assumes the probability of transitioning from a model mi at step k to a model mj at step

k + 1 is constant and known as πij:

Pr{m
(j)
k+1|m

(i)
k } = Pr{sk+1 = mj|sk = mi} = πij, (3.5)

where i, j ∈ N. For one cycle, the predicted model probability, µ̂
(i)
k|k−1, is given by

µ̂
(i)
k|k−1 , Pr{m

(i)
k |zzz1:k−1} =

∑
j

µ
(j)
k−1πji (3.6)

where zzz1:k−1 are the observations from step 1 to step k−1. The weight that m
(j)
k−1 contributes

to m
(i)
k is derived as

µ
j|i
k−1 , Pr{m

(j)
k−1|m

(i)
k , zzz1:k−1} = µ

(j)
k−1πji/µ̂

(i)
k|k−1 (3.7)

The KF of each model starts with the derivation of input:

ˆ̄xxx(i)
k−1|k−1 , E[xxxk−1|m(i)

k , zzz1:k−1] =
∑

j
x̄xx

(j)
k−1|k−1µ

j|i
k−1, (3.8a)

Σ̂ΣΣ
(i)
k−1|k−1 =

∑
j

[
ΣΣΣ(j)

k−1|k−1 + (x̄xx(i)
k−1|k−1 − x̂xx

(j)
k−1|k−1)(x̄xx

(i)
k−1|k−1 − x̂xx

(j)
k−1|k−1)>

]
µ

(j|i)
k−1. (3.8b)
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According to the KF formulation, the predicted mean and covariance are derived as

x̄xx
(i)
k|k−1 = AAA

(i)
k x̂xx

(i)
k−1|k−1 + BBB

(i)
k uuu

(i)
k , (3.9a)

ΣΣΣ(i)
k|k−1 = AAA

(i)
k Σ̂ΣΣ

(i)
k−1|k−1(AAA

(i)
k )> + QQQ

(i)
k . (3.9b)

For correction, the KF gain is first computed through

KKK
(i)
k = ΣΣΣ(i)

k|k−1(CCCk)>(SSS(i)
k )−1 (3.10)

where the residual covariance is given by

SSS
(i)
k = CCCkΣΣΣ(i)

k|k−1(CCCk)> + RRRk (3.11)

The corrected mean and covariance are derived as

x̄xx
(i)
k|k = x̄xx

(i)
k|k−1 + KKK

(i)
k z̃̃z̃z

(i)
k , (3.12a)

ΣΣΣ(i)
k|k = (III − KKK

(i)
k CCCk)ΣΣΣ(i)

k|k−1, (3.12b)

where the observation residual is given by

z̃̃z̃z
(i)
k = zzzk − CCCkx̄xx

(i)
k|k−1 (3.13)

For IMM estimation, the model likelihood L
(i)
k is assumed as

L
(i)
k , Pr{z̃̃z̃z

(i)
k |m(i)

k , zzz1:k−1}
assume= |2πSSS

(i)
k |−

1
2 exp [ − 1

2(z̃̃z̃z(i)
k )>(SSS(i)

k )−1z̃̃z̃z
(i)
k ] (3.14)

and the model probability µ
(i)
k is given by

µ
(i)
k , Pr{m

(i)
k |zzz1:k} =

µ̂
(i)
k|k−1L

(i)
k∑

j µ̂
(j)
k|k−1L

(j)
k

. (3.15)
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The overall mean and covariance are derived as

x̄xxk|k , E[xxxk|zzz1:k] =
∑

i
x̄xx

(i)
k|kµ

(i)
k (3.16a)

ΣΣΣk|k =
∑

i
[ΣΣΣ(i)

k|k + (xxx(i)
k|k − x̄xxk|k)(xxx(i)

k|k − x̄xxk|k)>]µ(i)
k . (3.16b)

Owing to the introducing of transition probability Pr{m
(j)
k+1|m

(i)
k } of Eq. (  3.5 ) and the like-

lihood L
(i)
k of Eq. ( 3.14 ), the model probabilities µ

(i)
k adapt to match the current motion.

Suppose the model m(i) matches the current mode better, the filter of m(i) contributes more

on x̄xxk|k and ΣΣΣk|k by having a higher model probability µ
(i)
k .

For estimation with one motion model, the single motion model ( 3.1 ) cannot impair

its inconsistency from the actual motion when the human has changed the target motion

considerably. The IMM method estimates in a larger state space due to the usage of multiple

models, but it still uses the most probable deterministic human control such as the CV and

CA. If the control is different, the multiple models of the IMM method may not be able

to cover the space of estimation and could lead to a wrong estimation. The uncertainty

could also be underestimated since the unknown human control, which is most uncertain, is

handled deterministically. This limitation of the conventional techniques affects the quality

of estimation when the target is human-maneuvered.

3.2 Proposed Approach Using Intention-Pattern Model

Since the contributions of this chapter are the construction of a intention-pattern model

and the state estimation using the intention-pattern model, this section describes each con-

tribution in a subsection. Section  3.2.1 presents the overview of the construction of an

intention-pattern model, followed by the details of the two major components, which are

the intention inference and the intention-pattern modeling. The implementation of the con-

structed intention-pattern models into the state estimation is then detailed in Section  3.2.2 .
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3.2.1 Construction of Intention-Pattern Model

Overview

Figure 3.3. Construction of intention-pattern model. (·)[i] represents the ith
dimension of (·).

Figure  3.3 shows the construction of the intention-pattern model where an example il-

lustration is given on the right side. The prior analysis of the target behavior leads to the

extraction of a set of human intentions H = {η(i)|∀i} and the corresponding approximate

control terms, UUU (i). Each human intention η(i) is an expression describing an aim or a plan,

such as "moving forward" and "turning right".

Each human intention at step k is defined as a function of the recent states of Nh steps:

ηk = α(xxxk−Nh+1:k). (3.17)
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Compared with the human actions which are of one step and are associated with the control

input uuuk, the human intentions are labels of continuous states of multiple steps.

The corresponding control term could vary, but let it be constant for simplicity. Because

the intention is defined for a period, the figure illustratively shows each control term with two

steps. Given a sequence of observations zzz1:K , the human intention at step k, ηk = η(i) ∈ H, is

first inferred for all steps, i.e., η1:K = {η1, ..., ηK}. We assume that the observations are fully

observable for simplicity. After smoothing the observations and deriving the state trajectory

x̌xx1:K , the proposed construction technique identifies segments in state space exhibiting the

extracted intention, x̌xxks(i,j):ke(i,j) , j ∈ N, where ks(i,j) and ke(i,j) are the starting and the ending

steps. Three segments of intention η(1) and two segments of intention η(2) are shown in the

example illustration. The segments of the same intention are aligned to characterize the

pattern of motion probabilistically. The intention-pattern model, describing the relationship

between the input intention and the output motion pattern, is finally represented by a set

of Gaussian distributions.

Intention Inference

Since states xxxk−Nh+1:k are not directly available, this section proposes the approach to

infer the human intention ηk based on observations. Given observations zzz1:k in addition to

the control terms corresponding to the extracted intentions, UUU (i), ∀i, the first process of the

intention inference is to run the IMM estimation. There is only one motion model, but the

motion is simulated for each intention UUU (i):

xxxk = AAAkxxxk−1 + UUU (i) + wwwk, (3.18)
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where AAAk and wwwk are determined from the analysis of target motion. Having Eq. (  3.4 ) as

an observation model, the KF updates the mean xxxk|k and the covariance ΣΣΣk|k similarly to

Eqs. (  3.9 )-( 3.13 ) for each intention:

x̄xx
(i)
k|k−1 = AAAkx̄xx

(i)
k−1|k−1 + UUU (i) (3.19a)

ΣΣΣ(i)
k|k−1 = AAAkΣΣΣ(i)

k−1|k−1(AAAk)> + QQQk. (3.19b)

KKK
(i)
k = ΣΣΣ(i)

k|k−1(CCCk)>(SSS(i)
k )−1 (3.19c)

SSS
(i)
k = CCCkΣΣΣ(i)

k|k−1(CCCk)> + RRRk (3.19d)

z̃̃z̃z
(i)
k = zzzk − CCCkx̄xx

(i)
k|k−1, (3.19e)

x̄xx
(i)
k|k = x̄xx

(i)
k|k−1 + KKK

(i)
k z̃̃z̃z

(i)
k , (3.19f)

ΣΣΣ(i)
k|k = (III − KKK

(i)
k CCCk)ΣΣΣ(i)

k|k−1. (3.19g)

The likelihood of the motion model at step k is given by Eq. (  3.14 ). Since the intention is

determined for a period, let the number of steps that defines an intention be Nh steps. The

intention likelihood is defined and derived as the joint likelihood of the model likelihoods

L
(i)
k :

Lk(UUU (i)) =
k∏

κ=k−Nh+1
L

(i)
k (UUU (i)) =

k∏
κ=k−Nh+1

|2πSSS(i)
κ |−

1
2 exp [ − 1

2(z̃̃z̃z(i)
κ )>(SSS(i)

κ )−1z̃̃z̃z(i)
κ ]. (3.20)

The control term that maximizes the intention likelihood is then selected:

ik = arg max
i

{Lk(UUU (i))|∀i}, (3.21)

if the intention likelihood is above the threshold:

Lk(UUU (ik)) ≥ L∗(UUU (ik)).
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The corresponding intention ηk is given by

ηk =

 η(ik) Lk(UUU (ik)) ≥ L∗(UUU (ik))

ø Otherwise
(3.22)

where ø indicating an empty element means that there is no matching intention. The recur-

sive operation infers intention for all steps, η1:K .

Intention-Pattern Modeling

The first process of the intention-pattern modeling, the extraction of the intended mo-

tions, checks the intention ηk and identifies its period. Let the jth segment of the ith inten-

tion extracted from the smoothed state trajectory x̌xx1:K be x̌xxks(i,j):ke(i,j). The second process

of alignment aligns the extracted segments by co-locating their origins x̌xxk0(i,j):

k0(i, j) = 0,

x̌xxk0(i,j) = x̌xxk0(i) = const.,

where the step of the origin k0(i, j) ∈ {ks(i, j), ..., ke(i, j)}.

Figure 3.4. A set of Gaussian distributions representing the motion pattern
which is the output of intention-pattern model.
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The final process of motion pattern characterization derives the intention-pattern model

by probabilistically characterizing the aligned segments. Figure  3.4 shows the characteriza-

tion after three segments, green, blue and purple, are aligned. As the number of segments

increases, it is valid to assume that the variation of the motion follows a Gaussian distribu-

tion:

x̌xx(i)
κ ∼ N

(¯̌xxx(i)
κ , Σ̌ΣΣ

(i)
κ

)
,

where κ is a step of the intention-pattern model after alignment, and the mean and the

covariance are

¯̌xxx(i)
κ = 1

n
(i)
κ

∑
j

x̌xx(i,j)
κ ,

Σ̌ΣΣ
(i)
κ = 1

n
(i)
κ

∑
j

(x̌xx(i,j)
κ − ¯̌xxx(i)

κ )(x̌xx(i,j)
κ − ¯̌xxx(i)

κ )>.

n(i)
κ is the number of segments at step κ for the ith intention [  24 ]. The intention-pattern

model is finally derived as

x̌xx
(i)
k ∼ N

(¯̌xxx(i)
κ , Σ̌ΣΣ

(i)
κ

)
δ(k − κ),

or

¯̌xxx(i)
k = ¯̌xxx(i)

κ δ(k − κ), (3.24a)

Σ̌ΣΣ
(i)
k = Σ̌ΣΣ

(i)
κ δ(k − κ), (3.24b)

where δ(·) is a Dirac delta function. This means that the intention-pattern model is defined

by a set of Gaussian distributions:

N (i) = {N
(¯̌xxx(i)

κ , Σ̌ΣΣ
(i)
κ

)
|∀κ}. (3.25)
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3.2.2 Estimation Using Intention-Pattern Model

Figure  3.5 shows the schematics of the proposed state estimator using the intention-

pattern model. Given a new observation zzzk, Eqs. ( 3.19 )-( 3.22 ) outputs the intention of the

current step, ηk = η(ik). The estimator then checks the corresponding Gaussian distributions

N (ik) to find the matching step κk with respect to the recent estimate state xxxk−1|k−1:

L(xxxk−1|k−1|N (ik)) = max
κ

Pr{xxxk−1|k−1|N
(¯̌xxx(ik)

κ , Σ̌ΣΣ
(ik)
κ

)
} (3.26)

κk = arg max
κ

Pr{xxxk−1|k−1|N
(¯̌xxx(ik)

κ , Σ̌ΣΣ
(ik)
κ

)
}. (3.27)

The step κk of N (ik) is chosen if the intention-pattern model of the ikth intention is satisfac-

tory:

L(xxxk−1|k−1|N (ik)) ≥ L∗(N (ik)), (3.28)

and the step κk matches the current step k.

Having the step κk of the intention ik identified, the state is predicted by

x̄xxk|k−1 = AAAkx̄xxk−1|k−1 + ŪUU
(ik)
k , (3.29a)

ΣΣΣk|k−1 = AAAkΣΣΣk−1|k−1(AAAk)> + TTT
(ik)
k + QQQk. (3.29b)

where the control term UUU
(ik)
k and the covariance of the control uncertainty, TTT

(ik)
k , are derived

from the intention-pattern model as

ŪUU
(ik)
k = ¯̌xxx(ik)

κk+1 − AAAk
¯̌xxx(ik)

κk
, (3.30a)

TTT
(ik)
k = E[(UUU (ik)

k − ŪUU
(ik)
k )(UUU (ik)

k − ŪUU
(ik)
k )>]

= E
{
[x̌xx(ik)

κk+1 − ¯̌xxx(ik)
κk+1 − AAAk(x̌xx(ik)

κk
− ¯̌xxx(ik)

κk
)][x̌xx(ik)

κk+1 − ¯̌xxx(ik)
κk+1 − AAAk(x̌xx(ik)

κk
− ¯̌xxx(ik)

κk
)]>

}
= Σ̌ΣΣ

(ik)
κk+1 + AAAkΣ̌ΣΣ

(ik)
κk

AAA>
k , (3.30b)
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Figure 3.5. Estimation taking advantage of the proposed intention-pattern
model. The red indicates the proposed parts compared with the conventional
KF.

Equation (  3.29 ) shows that the covariance propagation is more than that of the conventional

KF-based estimation by the addition of TTT
(ik)
k . The correction is conducted by Eqs. (  3.19c )-( 3.19g )

of KF with ik on behalf of i.

Because the proposed approach estimates the state incorporating the human intention,

the mean of the estimated state is potentially more accurate than the conventional state

estimation if observations are not available or reliable. The covariance of the estimated state

is also more precise since it is updated adding the uncertainty of the human intention and

prevents underestimation. Finally, it is to be noted that the proposed state estimation allows

future prediction with human intention in addition to the current estimation by recursively

predicting the state with Eq. (  3.29 ).
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3.3 Numerical Validation

Having the strength of the intention-pattern model identified, it is essential to test the

proposed approach numerically and identify the capability and limitations. The approach

was evaluated by applying to the state estimation of a human-maneuvered multirotor, which

is one of the applications of this class with high demand. To identify the capability and

limitations in depth, a simulated environment was created and used.

Figure  3.6 shows the controller interface used to create the multirotor motion and the

resulting hovering, accelerating and decelerating motions in the software-in-the-loop (SITL)

simulation environment whereas Table  3.1 lists the parameters used for simulation. With the

right joystick of the controller interface, the human issues void command for hovering and

forward or backward command for accelerating or decelerating. The multirotor dynamics was

(a) Controller interface

(b) Decelerating (c) Hovering (d) Accelerating

Figure 3.6. The controller interface of the SITL simulation environment and
the motion examples of the multirotor for three intentions.

calculated in Gazebo, which also created motion noise artificially. As the most fundamental
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Table 3.1. Parameters for simulation.
Parameter Value

Human commands Void, Forward, Backward
Simulation motion noise Specified in Gazebo

Simulation observation noise variances [o2
s1, o2

s1, o2
s2, o2

s2]
Cruising inclination limit [rad] 0.17

and typical motion, the linear horizontal motion of the multirotor was considered. The

multirotor’s state, xxx, is given by:

xxx = [p, ṗ, θ, θ̇]>

where p is the position in the moving direction, ṗ is the linear velocity, θ is the attitude

(pitch angle) and θ̇ is the angular velocity. The estimator was assumed to observe all the

state variables of the multirotor, i.e., zzz = [zp, zṗ, zθ, zθ̇]>. The observations were created by

adding noise to the true state where the noise variances are indicated as [o2
s1, o2

s1, o2
s2, o2

s2]

since the variances are varied in the parametric study. Figure  3.7 shows the time-varying

human command, true state and observation. The observation was created with [os1, os2] =

[1, 0.05]. The observation noise was set high as the proposed approach is effective when the

observation is uncertain or unavailable. The first 100 sec was used to construct the intention-

pattern model, and the state estimation using the proposed approach was conducted with the

observation of the remaining 60 sec. The command varies dynamically, and the multirotor

motion is seen to reflect the commands of forward, void and backward.

Through the analysis of the multirotor state estimation problem, the motion and obser-

vation models used by the proposed approach were linear. The motion matrix AAAk is given

by

AAAk =



1 dt 0 1

0 1 0 0

0 0 1 dt

0 0 0 1


. (3.31)
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Figure 3.7. The human command and the true state and observation trajectories.

whereas the observation matrix CCCk is a four-dimensional identity matrix. Table  3.2 lists

the parameters of the proposed approach for both the intention-pattern model construction

and the state estimation. The number of prediction steps between observations is denoted

as np since it takes a different value for each process/study. While the variances of the

observation noise is known, those of the motion noise were determined from the theoretical

and experimental analyses. UUU (1), UUU (2) and UUU (3) were chosen to infer the decelerating intention

η(1), the hovering intention η(2) and the accelerating intention η(3) respectively. θU is a

parameter to control the value of UUU (i) for parametric study.

Section  3.3.1 investigates the validity of the construction process of intention-pattern

model through the parametric study. Section  3.3.2 then validates the estimation performance

using the intention-pattern model.
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Table 3.2. Parameters of the proposed approach.
Parameter Value

Time step [s] ∆t = 0.05
Number of predictions between two observations np

Variances of motion noise QQQ [0, (1 − os1/4)2∆t2, 0, 22∆t2]
Variances of observation noise RRR [o2

s1, o2
s1, o2

s2, o2
s2]

Human intention Decelerating, Hovering, Accelerating
UUU (1) [0, 0, −x̄

(i)
k−1|k−1[3] − θU , 0]>

UUU (2) [0, 0, −x̄
(i)
k−1|k−1[3], 0]>,

UUU (3) [0, 0, −x̄
(i)
k−1|k−1[3] + θU , 0]>

Smoothing technique Triangular moving average
Duration of construction [s] 100
Duration of estimation [s] 60

3.3.1 Construction of Intention-Pattern Model

Figure  3.8 shows the inferred intentions and those in the corresponding smoothed tra-

jectories when θU was 0.2. The smoothed trajectories are segmented based on the inferred

intentions. The position is seen to appropriately increase and decrease when the human

intention is with accelerating and decelerating respectively. Since UUU (1), UUU (2) and UUU (3) differ

from each other in the pitch angle θ, the pitch angle plot also shows intentions clearly: θ

near 0 indicates hovering; positive θ with large magnitude indicates accelerating; negative

θ with large magnitude indicates decelerating. Figure  3.9 shows the aligned segments and

the variances of each resulting intention-pattern model when np = 1. It is first seen that

the aligned segments are consistent, which indicates that the proposed intention inference is

valid. More consistency is shown in position than in pitch angle partly because the Gaussian

assumption is not flexible enough to describe the pitch angle. The derived variances show

that the intention-pattern models are modelled probabilistically from observations and could

be used to perform state estimation more precisely.

To analyse the dependency of the intention inference, the F1 score [  26 ] evaluating the

inference performance was derived with different levels of observation noises and control

terms. The parameters varied were os2 for the observation noise and θU for the control term

since the pitch angle θ characterizes the intention. The ground truth intention was defined
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Figure 3.8. The inferred intention and the corresponding smoothed trajectory.

based on the real θ value: hovering when |θ| ≤ 0.05; accelerating when θ > 0.05; decelerating

when θ < −0.05. The F1 score is calculated as

2
TP+FP

TP + TP+FN
TP

where TP, FP, and FN each represents the number of steps of true positive, false positive and

false negative [  26 ]. The F1 score which is closer to 1 indicates better inference. Figure  3.10 

shows the distribution of the F1 score over os2 and θU . As seen from the figure, the smaller

the noise, the better the inference. For θU , there is a best value in the middle; either too

large or too small will result in poor inference.
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(a) Aligned segments (decelerat-
ing)

(b) Variances of Gaussians (decel-
erating)

(c) Aligned segments (hovering)

(d) Variances of Gaussians (hover-
ing)

(e) Aligned segments (accelerat-
ing)

(f) Variances of Gaussians (accel-
erating)

Figure 3.9. Construction of the intention-pattern model for three intentions.

Figure  3.11 shows the resulting performance of each intention-pattern model. The two

red broken lines show the range of motion pattern defined by the variance of the intention-

pattern model constructed from the first 100 sec whereas the solid black lines the motions

of the same intention-pattern model identified in the next 60 sec. It is seen that motions

extracted in the 60 sec are well along with the range of the intention-pattern model. This

verifies the validity of the probabilistically represented intention-pattern model.
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Figure 3.10. F1 score evaluating the intention inference accuracy with respect
to simulation observation noise and the control term UUU (i).

(a) Decelerating (b) Hovering (c) Accelerating

Figure 3.11. Validation of the constructed intention-pattern model.
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3.3.2 Estimation Using Intention-Pattern Model

Having the intention-pattern model constructed using the first 100 sec, Figure  3.12 shows

the result of state estimation incorporating the constructed intention-pattern model in the

subsequent 60 sec. Unlike the intention-pattern model, the state estimation uses np = 5 since

the effect of the proposed approach can be seen with the motion prediction. The ground

truth and the result of the conventional KF estimation without intention incorporation are

also shown for comparison. The estimation result of the proposed approach is seen to be

closer to the ground truth than that of the conventional approach. The estimation of p and

ṗ particularly shows the responsive estimation of the proposed approach when the target

motion is changed by the human while the conventional estimation exhibits notable delay.

The faster response is due to the use of the intention-pattern model. The conventional

approach could improve estimation by frequent accurate observation, but observations are

often uncertain or unavailable.

Figure 3.12. State estimation by the proposed and the conventional approaches.
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Figure  3.13 shows the absolute error of estimated mean of each state variable with respect

to time. While seeing less difference in θ and θ̇, the error of the proposed approach in

p and ṗ consistently and significantly stays low compared to the conventional approach.

The difference is particularly large when the human changes the target motion since the

conventional approach does not take the human intention into account. The maximum error

and the mean squared error (MSE), integrating the absolute errors to a single quantity, are

improved by almost three times and 8.7 times, respectively, when the proposed approach

was deployed.

Figure 3.13. Absolute error of mean estimated by the proposed and the
conventional approaches.

Figure  3.14 shows the variance of each state variable estimated by the proposed and

the conventional approaches. The result shows that the proposed approach exhibits larger
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variances than those of the conventional approach when the error is large. Since the proposed

approach infers human intentions and adds their uncertainties, its variance is estimated more

precisely and adequately. The variance of the conventional approach, on the other hand,

is significantly smaller though the mean estimation is wrong. Having the human control

deterministically treated without inferring intentions, the uncertainty of the conventional

approach is markedly underestimated.

Figure 3.14. Variance estimated by the proposed and the conventional approaches.

The performance of the proposed approach in state estimation was further examined

through the parametric study. Figure  3.15 shows the MSE of the proposed approach when

os1 and np were varied. os1 was varied to examine the effect of the observation noise since

it contributed less at the construction of the intention-pattern model. The result of the
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conventional approach is also shown for comparison. It is first seen that the MSE of the

proposed approach is significantly lower than that of the conventional approach when os1 is

large. The large os1 increases the dependency of state estimation onto the prediction. As

a result, the proposed approach, incorporating human intention and effective in prediction,

can thus keep the MSE low. The result also shows that the MSE of the proposed approach

remains low even when np is large. np also increases the dependency of state estimation onto

the prediction, so the proposed approach becomes better than the conventional approach in

accuracy. Meanwhile, the proposed and the conventional approaches exhibit a similar MSE

when os1 is low and np is one. This is because the estimation becomes correction-driven

since the frequency of the accurate correction becomes high.

(a) Proposed approach

(b) Conventional approach

Figure 3.15. MSE with different observation noise and the number of pre-
diction steps between observations
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3.4 Summary

This chapter has presented an approach that estimates the state of a human-maneuvered

target incorporating human intention, which consists of a pre-process constructing a intention-

pattern model, and the main process allowing state estimation using the intention-pattern

model. The pre-process constructs the intention-pattern model from the prior observations

and probabilistically represents the model. The main process, then, uses standard state

estimation such as KF extensively leveraging the probabilistically represented intention-

pattern model. In the application of the proposed approach to the state estimation of a

human-maneuvered multirotor, the numerical result has first shown that the constructed

intention-pattern model represents the human intention appropriately. The result of state

estimation of the human-maneuvered multirotor then shows that the proposed approach

estimates the state more accurately than the conventional approach particularly when ob-

servations are uncertain or unavailable. The proposed approach has also demonstrated that

it can estimate the covariance more precisely.
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4. Robotic Escorting Benefiting from Intention Inference

4.1 Introduction

After the deployment of numerous robots in isolated workspaces, there has been a grow-

ing presence of robots in daily life, collaborating with humans [  1 ,  2 ,  52 ]. One particular

application is robotic following, where a robot moves alongside a human and maintains a

relative position [ 53 ,  54 ]. Studies have shown that having a robot in front of a human induces

less anxiety compared to having it behind, and it offers convenience when the human needs to

physically interact with the robot [  55 ]. The application of having a robot in front is referred

as robotic escorting in this paper. Related approaches have attracted increasing interest

in the last decade, as they offer various potential applications such as exercise companions,

touchless shopping carts, and sanitary transportation in hospitals [  56 ].

To successfully escort in front of a human, the robot needs to predict human behavior and

move proactively [  57 ]. There are two main categories of prediction techniques, differing in the

description of human behavior [  58 ]. The first category employs physics-based approaches,

which utilize explicit dynamic models based on Newton’s laws of motion to describe human

behavior. These dynamic models are commonly used within recursive Bayesian estimation

frameworks [ 13 ,  34 ,  35 ]. As the human input is unknown to the robot, Bogler [ 42 ] and

Chakrabarty et al. [ 43 ] made assumptions about the input of the dynamic model. Other

approaches ignore the input and assume conservative motion behaviors, such as constant

velocity (CV) and coordinated turn (CT), as the most probable behavior [  31 ]. The second

category comprises pattern-based approaches that learn human motion behavior from data

without explicitly defining parameterized functions. Bennewitz et al. [ 19 ], Elfring et al. [ 21 ],

and Ravichandar et al. [  20 ] learned motion patterns from collections of trajectories. Dermy

et al. [  22 ] learned a set of motion primitives from human-robot interaction demonstrations

and inferred the intent of the human partner for collaboration. Qin et al. [  18 ] utilized motion

patterns to describe and identify recurring human behavior.

Physics-based approaches of the first category have been extensively utilized in the field of

robotic escorting. Early studies conducted by Ho et al. [  59 ], Jung et al. [  60 ], and Cifuentes

et al. [  61 ] employed proportional control to assign fixed goal positions for the robot at a
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predetermined distance in front of the observed human. These approaches utilized simple

kinematic motion models, such as CV, CT, or non-holonomic motion models, incorporated

within a Bayesian filter to track the human’s movements. Subsequent work by Saiki et al.

[ 53 ] and Hu et al. [  57 ] extended these approaches to consider more complex motions, such

as the combination of walking straight and turning. However, despite their achievements,

these approaches heavily rely on the human consistently providing accurate indicators (e.g.,

head direction) to control the robot at each time step. This requirement poses challenges in

accommodating distracted behavior and often leads to increased fatigue.

While prior research on robotic escorting predominantly focused on physics-based ap-

proaches, this paper harnesses the potential of pattern-based methods to characterize hu-

man behavior and guide robot movements. Human behavior is captured through a model

encompassing intent and motion patterns. By leveraging demonstration data, the model is

translated into a graph structure with vertices and edges on the environmental map. Com-

bining this information with head direction, the human’s intent is inferred by identifying

the appropriate vertex, enabling autonomous robot movement towards that vertex. Due

to the richer information contained in the model, the proposed approach achieves superior

long-term prediction compared to the head direction-based methods alone. The robot’s

movement towards a vertex is autonomously guided by a path planner, thus reducing the

demand for human attention. Notably, changes in human head direction only impact the

robot’s movement if they lead to a new intent vertex, mitigating the impact of distracted

behavior.

Safety concerns is important in robotics [  62 ,  63 ,  64 ,  65 ] and the trust beween human and

the robot also play major role [ 66 ]. This paper further verifies the proposed approaches with

specifically designed experiments and use study.

Safety concerns are of paramount importance in the field of robotics, as highlighted by

several studies [  62 ,  63 ,  64 ,  65 ]. In addition, building trust between humans and robots is

equally crucial [  66 ]. To address these critical aspects, this paper not only proposes novel

approaches but also conducts meticulously designed experiments and user studies to verify

their effectiveness. By combining rigorous testing and user feedback, this research aims to

contribute to the advancement of both safety and trust in human-robot interactions.
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The paper is organized as follows. Section  4.2 introduces the problem of robotic escorting

and highlights the limitations of conventional solutions. Section  4.3 presents an innovative

escorting approach that characterizes human behavior using a model of intent and motion

patterns. To evaluate the effectiveness of the approach, Section  4.4 provides a thorough

analysis of the modeling techniques employed and presents the results of extensive exper-

iments conducted to assess the performance of the escorting system. Finally, Section  4.5 

summarizes the key findings and draws meaningful conclusions. To simplify the description,

this chapter will use the term “intent” to encompass both “intent” and “intention”.

4.2 Escorting and Fundamentals

4.2.1 Robotic Escorting Problem

Figure 4.1. The problem of robotic escorting. The robot moves in front of
the human while complying with the human’s aim to maintain the relative
position (the offset distance D and the azimuth θm).

Figure  4.1 presents a schematic diagram of robotic escorting, where a robot is expected

to move in front of the human. The targeted robot’s position is offset from the human by

a distance D and an azimuth θm, with the goal of aligning the robot’s absolute orientation
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with that of the human. The relation at step k in a two-dimensional (2D) space can be

expressed as 
xr

k

yr
k

θr
k

 =


xh

k

yh
k

θh
k

 +


D cos(θh

k + θm)

D sin(θh
k + θm)

0

 , (4.1)

where the superscript ()r and ()h denote the robot and human, respectively. The variables

x and y represent the position, while θ represents the orientation [  57 ]. Notably, θm = 0 in

the case of escorting.

This paper addresses different types of mobile robots. The robot motion model is de-

scribed generally as:

xxxr
k = fff r(xxxr

k−1,uuu
r
k) + wwwr

k, (4.2)

where xxxr
k = [xr

k, yr
k, θr

k]> represents the robot state, uuur
k is the control input, and wwwr

k represents

the motion noise. The robot state is observed in the world coordinate using techniques

such as simultaneous localization and mapping (SLAM). The robot’s sensors capture human

information, including the human’s position and head direction, which are then transformed

to the world coordinate system.

To enable proactive movement in escorting, the robot predicts the future human states

by employing a human motion model. The general form of the motion model is given as

xxxh
k = fffh(xxxh

k−1,uuu
h
k) + wwwh

k (4.3)

where xxxh
k represents the human state, uuuk

k denotes the human input that affects the state, and

wwwh
k represents the motion noise. Prediction, especially for longer periods, heavily relies on

the human input uuuh
k which is however unknown to the robot.

65



The equation (  4.3 ) can be formulated in various ways depending on the chosen state xxxh
k,

human input uuuh
k and their corresponding fffh,wwwh. For the purpose of prediction, Eq. (  4.3 ) can

be expressed as a velocity motion model


xh

k

yh
k

θh
k

 =


xh

k−1

yh
k−1

θh
k−1

 +


cos(θh

k−1) 0

sin(θh
k−1) 0

0 1


vh

k

ωh
k

 ∆t + wwwh
k. (4.4)

This model assumes that human motion is governed by two velocities: a rotational velocity

ωk and a translational velocity vk [ 13 ]. Here, ∆t represents the time between two steps. The

state prediction is achieved by iteratively computing Eq. (  4.4 ). To predict the state over a

longer period, assumptions of CV (vh
k ≈ vh

k−1) or CT (ωh
k ≈ ωh

k−1) are introduced.

As stated in Hu et al. [ 57 ], the velocity motion model Eq.( 4.4 ) is applicable to normal

walking scenarios, where humans primarily move forward without significant sideways mo-

tion. However, humans behavior is agile, and their input changes over time. Moreover, the

interaction between the robot and the human can influence human motion. Consequently,

the dynamic models represented by Eq. ( 4.4 ) can describe motion over multiple steps but ex-

hibit limitations in capturing human motion over longer durations, such as periods exceeding

2 seconds.

4.2.2 Escorting with Head Direction

Since the prediction of human states using Eq. ( 4.4 ) shows limitations, additional in-

formation about the human head direction is employed since it exhibits human intent and

allows the prediction of human motion in a longer run [  56 ,  67 ]. By observing the head yaw

φh
k and utilizing Eq. ( 4.4 ), the predicted position of the human after n steps can be calculated

as follows:

xh

k+n

yh
k+n

θh
k+n

 =


xh

k

yh
k

θh
k

 +


cos(φh

k) vh
k n∆t

sin(φh
k) vh

k n∆t

fφ(φh
k, n∆t)

 . (4.5)
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The first two rows indicate that the human position after n steps will be aligned with the

head yaw φh
k. The third row indicates that the human orientation will be adjusted by a

function fφ, which depends on the head yaw φh
k and the time period of n∆t. The function

fφ is determined empirically based on the relationship between the head direction and the

future orientation of the human. It is to be noted that the uncertainty of the predicted

human position primarily stems from the incorrelation of the head motion with the human

motion.

To ensure that the robot maintains a desired distance ahead of the human, the goal pose

of the robot xxxr∗
k+n is calculated as follows:

xr∗
k+n = xh

k+n + D cos θh
k+n,

yr∗
k+n = yh

k+n + D sin θh
k+n,

θr∗
k+n = θh

k+n.

Finally, the control inputs for the robot uuur
k+n are determined to achieve autonomous escorting

and can be derived as a function of |fff r(xxxr
k+n−1,uuu

r
k+n)−xxxr∗

k+n|. The sequence of control actions

aims to minimize the distance between the predicted future robot poses and the desired robot

poses.

The conventional escorting approaches described above utilize the head yaw to compute

the control command at each time step. Although these approaches enable the human to

control the robot in a teleoperation-like manner, they exhibit several limitations. The head

yaw φh
k does not always indicate the direction in which the human is moving, as the human

may get distracted and look in other directions. Moreover, relying on the head yaw for

prolonged periods can be mentally and physically exhausting for the human operator.

4.3 Proposed Escorting

Figure  4.2 illustrates the diagram of the proposed approach. Prior to escorting, the

human operates the robot within the environment, generating demonstration data through

the utilization of a built-in SLAM technique. This data encompasses the robot’s trajectory
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and the map of the environment. From this data, an intent-pattern model, representing the

model of intent and motion patterns, is constructed and represented as a graph denoted

by G{V, E}. During the escorting phase, the human’s intent is inferred by identifying the

appropriate vertex in the graph based on the head direction. The discovered vertex is then

passed to the navigation stack, which plans the path towards the vertex and controls the

robot accordingly.

Section  4.3.1 details the process of constructing the intent-pattern model from the col-

lected demonstrations, while Section  4.3.2 outlines the methodology for inferring the intent

using this model.

Figure 4.2. The diagram of the proposed approach which describes human
behavior with the intent-pattern model and utilizes the model to infer the
human intent for escorting.

4.3.1 Modeling Demonstration Data

Human behavior often extends over a certain duration, making it challenging to describe

such prolonged behavior using motion models like Eq. (  4.3 ). To address this, the proposed

approach introduces the intent-pattern model to represent human behavior within a given

period. The intent-pattern model establishes one-to-one relationships between intents and

motion patterns. With this model, if the current behavior aligns with a specific motion

pattern, the corresponding intent is likely to be occurring. Conversely, if a human intent is

present, the future states can be derived using the corresponding motion pattern.
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Figure 4.3. Modeling the demonstrations as an intent-pattern model, which
is represented as a graph consisting of vertices and edges
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To construct the intent-pattern model, this paper applies the Wizard of Oz concept

and utilizes demonstrations that the human operates the robot [  68 ]. A SLAM technique is

employed to localize the robot and build a map of the environment. The robot’s trajectory

is represented as xxx1:k = {xxx1, . . . ,xxxk} where xxxk = [xr
k, yr

k, φr
k]> denotes the robot’s pose.

Figure  4.3 presents an example of constructing the intent-pattern model from demon-

strations. The map is initially divided into grids, each indexed with a side length of l. In

the figure, the grid indices are represented by natural numbers i, i1, i2, ... for explanatory

purposes. The trajectory is then segmented within each grid, as illustrated by the orange

dotted lines, with each dot representing a trajectory point at a specific step.

The proposed approach assumes that the points within each grid follow a Gaussian

distribution, given an appropriate grid side length l. For grid i, a point is sampled as

xxx(i) ∼ N
(
x̄xx(i),ΣΣΣ(i)

)
. (4.7)

The mean and covariance are calculated as follows:

x̄xx(i) = 1
n(i)

∑
ki

xxx(i,ki), (4.8a)

ΣΣΣ(i) = 1
n(i)

∑
ki

(xxx(i,ki) − x̄xx(i))(xxx(i,ki)
κ − x̄xx(i))>, (4.8b)

where n(i) denotes the number of points in grid i, and ki represents the index of each point [ 24 ].

The mean is treated as a graph vertex, denoted as V (i) = x̄xx(i). Connections between grids

are represented by edges. For example, the edge E(i,i1) in the figure connects vertex V (i) and

V (i1).

An intent is defined as moving from a start vertex to an end vertex. The start vertex

represents the robot’s current position, while the end vertex signifies the robot’s desired goal

position. The motion pattern associated with an intent consists of the edges that connect

the start and end vertices. Motion patterns are derived as sets of Gaussian distributions

connected from one to another. For instance, in Figure  4.3 , the motion pattern of the intent

from V (i5) to V (i) comprises the Gaussian distributions of V (i5), V (i2), and V (i), along with
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their corresponding connections. The intent-pattern model is ultimately represented as

a graph G{V, E}, with each vertex being a Gaussian distribution as defined in Eq. (  4.7 ).

4.3.2 Inferring Intents as Navigation Goals

The proposed approach infers the intent by determining the vertex that the robot is

currently closest to and the vertex that the robot should navigate towards. Figure  4.4 

illustrates an example scenario for explanation purposes, where both the robot and the

human are moving along an edge. The robot’s state is denoted as xxxr
k, and the human’s head

yaw is represented by φh
k. To calculate the nearest vertex to the robot, this paper computes

the probability of each vertex being the current position of the robot:

ik = arg max
i

Pr
{
xxxk|N

(
x̄xx(i),ΣΣΣ(i)

)}
(4.9)

= arg max
i

(2πΣΣΣ(i))− 1
2 exp

{
− 1

2[xxxr
k − x̄xx(i)]>(ΣΣΣ(i))−1[xxxr

k − x̄xx(i)]
}
.

This is achieved by maximizing the likelihood of the robot’s state given the Gaussian dis-

tribution associated with each vertex. Considering that there may be grids with a small

number of points, the nearest vertex is determined based on distances when the number of

points surrounding the robot’s position [xr
k, yr

k] is below a specified threshold:

ik = arg min
i

[
(xr

k − x̄(i))2 + (yr
k − ȳ(i))2

]− 1
2 . (4.10)

where x̄(i) and ȳ(i) are the elements of x̄xx(i).

Next, the goal vertex is selected, taking into account both the intent-pattern model and

the head direction. The goal vertex is chosen among the vertices in the graph G{V, E}.

The BFS algorithm is utilized to find the connected vertices of the current position vertex,

V ik [ 69 ]. The number of expanding layers in the BFS algorithm is denoted as nBF S. In

figure  4.4 , V ik,1 and V ik,2 are on the BFS layer 1 while V ik,3, V ik,4 and V ik,5 are on the BFS

layer 2. This paper aims to find more connected vertices, as it increases the likelihood of

identifying the goal vertex that aligns with the head yaw, potentially avoiding sharp turns

and enabling smooth robot motion.
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The connected vertices of V (ik) are represented as V (ik,�) ∈ {V (ik,1), V (ik,2), ...}. The

orientation from V (ik) to each connected vertex is calculated using

φ(ik,�) = atan2(y(ik,�) − yr
k, x(ik,�) − xr

k), (4.11)

where x(ik,�), y(ik,�) denote the elements of V
(ik,�)

k . Taking the head yaw φh
k as a variable, the

probability of selecting each connected vertex is calculated as a normal distribution:

Pr{V (ik,�)} = N (φ(ik,�)|φh
k, σ(ik,�)) (4.12)

= (2πσ(ik,�))− 1
2 exp{−1

2[(φ(ik,�) − φh
κ)/σ(ik,�)]2}

where the head yaw φh
k serves as the mean and a manually set deviation parameter, σ(ik,�),

determines the spread of the distribution. The goal vertex of xxxr
k and φh

k is chosen based on

the maximum probability:

Vk = V (ik,�∗), (4.13)

�∗ = arg max
�

{Pr{V (ik,�)} | ∀�}.

The proposed approach integrates the selected goal vertex with the navigation stack to

leverage existing techniques for practical performance [  70 ]. The navigation stack consists of

a global planner which plans the path from the current position to the goal position and a

local planner which generates control commands for the robot. The navigation stack also

incorporates a SLAM technique to localize the robot and map the environment, enabling

real-time sensing of the surroundings and collision avoidance by the local planner.

During ongoing escorting, if the human moves out of the field of view (FOV), the robot

will continue towards the last available navigation goal and come to a stop upon reaching it.

However, if the navigation goal is obstructed by other objects or becomes unreachable, the

navigation stack will halt the robot. In summary, the robot ensures safety by avoiding colli-

sions with environmental objects while in motion and stops if no new goal can be computed

based on the human’s head direction.
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Figure 4.4. To infer human intent, the head direction of the human is com-
pared with the directions between the current vertex and all the connected
vertices obtained through the BFS algorithm.
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4.4 Experimental Validation

(a) Robot (front) (b) Robot (back)

Figure 4.5. The experimental robot. A rear-facing camera is utilized for
observing the human’s head direction.

Figure  4.5 showcases the THK Seed robot that was utilized for the experimental valida-

tion. The robot is equipped with an omnidirectional wheeled platform, a 2D LiDAR in the

front, and a rear-facing camera for observing the human’s head direction. Table  4.1 presents

the parameters employed in the proposed approach. The robot incorporates a navigation

stack with the Gmapping SLAM technique, and the head direction is observed using Medi-

apipe [  71 ]. The grid side length l and the level number of the BFS algorithm, nBF S, were

varied as part of a parametric study.

Figure  4.6 displays the maps of the two environments, and Table  4.2 presents the corre-

sponding parameters. The first environment presents a small-scale office space with tables

and chairs. The second environment encompasses an entire floor of a building, featuring

corridors and rooms, thus representing a large-scale setting.

4.4.1 Graphical Representation of Modeling

This section focuses on the analysis of the graphical representation of the intent-pattern

model. Figure  4.7 presents the demonstration trajectory in the first environment with the

arrows depicting the robot poses and the human head yaws. The left figure illustrates the

trajectory from 0 s to 70 s, while the right figure displays the remaining duration. Figure  4.8 
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(a) Office environment (b) Building environment

(c) Office map (d) Building map

Figure 4.6. Sample photos and maps of the two experimental environments

showcases the graphical representations of the intent-pattern model using different grid side

lengths l. The left figure corresponds to l = 0.5 m, while the right figure represents l = 1

m. Notably, the left figure with a smaller grid side length exhibits higher vertex and edge

density, providing more detailed information about the demonstration trajectory.

The metrics of the motion patterns are presented in Figure  4.9 , considering variations

in the grid length l and the duration of the demonstration. These metrics include the

number of vertices, the number of edges, the total length of the graph, and the average angle

of connected edges. The average angle reflects the smoothness of the robot’s movement

when traversing the graph. A larger angle indicates less smooth movements. Figure  4.9(a) 

demonstrates that a larger grid length reduces the graph size but leads to a larger angle,

implying less smooth movements. Based on this analysis, a grid length of approximately 0.8

m appears to be a reasonable choice.
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(a) 0 s - 70 s (b) 70 s - 140 s

Figure 4.7. Demonstration data of the office environment. The arrows rep-
resent the robot poses and the human head yaws.
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Table 4.1. Parameters of the implementation
Parameter Value

Robot THK Seed
Size of Robot Base [m] 0.7 × 0.5

Time step [s] ∆t = 0.2
Grid Side Length l [m] 0.2 - 2

Level Number of BFS nBF S 1,2,3
Detecting Head Yaw Mediapipe

Control Navigation Stack
Global Planner Navfn
Local Planner Timed Elastic Band

SLAM Gmapping

Table 4.2. Parameters for environments
Parameter Value Value

Environment Office Building
Size [m] 8 × 8 25 × 35

Duration of
demonstration [s] 140 175

Characteristic Small Large

Figure  4.9(b) examines the metrics in relation to the demonstration duration, with l

= 0.8 m. The number of vertices, the number of edges, and the total length of the graph

increase as the duration of the demonstration extends, reaching a plateau after around 100 s.

This indicates that the graph size grows with additional demonstration data but eventually

reaches a limit due to the fixed number of grids in the map. The angle remains table after

80 s, suggesting that a certain amount of demonstration data is sufficient.

4.4.2 Intent Inference and Motion Prediction

This section aims to verify the performance of intent inference and motion prediction

using the proposed model. Figure  4.10 presents a comparison of different approaches in

predicting future robot positions. The proposed approach is compared with two conventional

approaches: “orientation” and “head”. The conventional approaches require the human

position, whereas the proposed approach only requires the head direction. For the sake of
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(a) Grid length l is 0.5 m (b) Grid length l is 1 m

Figure 4.8. Graphical representation of intent-pattern model with different
grid side lengths

(a) With respect to grid length l (b) With respect to the duration of demonstration

Figure 4.9. Metrics of the graphical representation with respect to different
parameters: number of vertices, number of edges, and edge length are plotted
on the left vertical axis, while the average angle of connected edges is shown
on the right vertical axis.

comparison, this paper approximates the human position to be the robot position since the

human is close proximity to the robot during robotic escorting. The “orientation” approach

predicts future positions based on the robot’s current position and orientation using the

differential drive model of Eq. (  4.4 ). The “head” approach predicts future positions based

on the robot’s current position and the head yaw of the human using Eq. ( 4.5 ).

Figure  4.10(a) provides a trajectory view of the predictions. The arrows representing

“robot pose” depict the robot trajectory from the demonstrations, while the other arrows
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(a) Trajectory view (b) Trajectory view for distracted be-
havior

(c) Error of prediction compared to the
demonstration data

(d) Prediction error with respect to the prediction
length and the number of BFS layers nBF S

Figure 4.10. Comparison of prediction performance among different ap-
proaches for future robot positions

show the predictions of the different approaches. Figure  4.10(c) plots the average error of

the prediction endpoint, which is 1 m ahead of the human. The average errors of the three

approaches (“orientation”, “head”, “proposed”) are 0.26 m, 0.25 m, and 0.11 m, respectively.

It is evident that the arrows of the proposed approach align closely with the demonstration

trajectory and exhibit smaller deviations.

A peak in the performance of the “head” approach occurs around 12 s. This is because

sometimes the human looks in directions other than the moving direction to check their sur-

roundings. This behavior can be considered distracted behavior. Figure  4.10(b) presents

the trajectory view of the prediction for sample positions where the absolute angle between

the head yaw and the moving direction is larger than 0.4 rad. For distracted behavior, the

average error of the three approaches (“orientation”, “head”, “proposed”) are 0.33 m, 0.52 m,
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and 0.17 m, respectively. The proposed approach still yields the smallest error, highlighting

its advantage in addressing distracted behavior.

Figure  4.10(d) demonstrates the prediction error with respect to the prediction length

and the number of BFS layers nBF S. The “orientation” approach performs best in the range

of 0.2 m to 0.6 m. Beyond 0.8 m, the proposed approach exhibits smaller errors, showcasing

its ability to predict future position over longer periods. The sparsely dotted blue line (nBF S

= 2) and densely dotted blue line (nBF S = 3) outperforms the solid blue line (nBF S = 1)

after 0.8 m. This confirms the effectiveness of using BFS to find more connected vertices,

leading to improved predictions of future positions.

4.4.3 User Study

Figure 4.11. Three test paths for the user study

This section evaluates the performance of the proposed escorting approach in real en-

vironments through a user study. Five participants tested the escorting performance and

compared it with a conventional approach as described in Section  4.2.2 . They were instructed

to move from one position to another within the environment. Three specific paths were

selected from the building map, as shown in figure  4.11 . Prior to the user study, a demonstra-

tion was performed to construct the intent-pattern model, and the graphical representation

was shown to the participants. Then, the instructions for each approach were explained to

the participants.

80



For the proposed approach, the instructions included: the robot will follow the head

direction and use motion patterns to determine future directions based on the head direction.

For conventional escorting approach, the instructions included: the robot will rely solely on

the head direction for determining directions, and increased head rotation result in increased

robot rotation. The completion time and success rate were recorded for each participant,

as these metrics play a crucial role in determining the overall user experience. If the robot

collided or deviated from the designated route more than twice, the test was considered a

failure. After completing the tests, the participants were asked a comparison question: which

approach do you find easier to operate, and which approach would you prefer to use in a

supermarket setting?

Figure  4.12 presents the completion time results of the user study, with failures indicated

by the symbol “F”. The failure rates for the proposed and conventional approaches were 1/15

and 4/15, respectively. The average completion time for the proposed approach was 27.1

s, while for the conventional approach it was 40.2 s. The proposed approach demonstrated

shorted completion time and a higher success rate, indicating its advantages over the con-

ventional approach. In response to the comparison question, all five participants chose the

proposed approach and rated it as easier to operate. One participant noted that the con-

ventional approach allowed for more precise control of the robot, but it took time to become

familiar with the controls and requires greater attention. For complex environments like a

supermarket, all participants expressed a preference for using the proposed approach.

(a) Proposed (b) Conventional

Figure 4.12. Completion time of the user study. The symbol “F” indicates failure.
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4.4.4 Collision Avoidance

This section showcases the effectiveness of collision avoidance for ensuring safety during

the escorting process. Two specific cases were considered: when another person unexpectedly

appears in the path of the robot and when an object not present in the map suddenly appears

in the environment. According to the design, the robot is expected to navigate around these

obstacles if there is sufficient space to do so. Figure  4.13 presents the results of the safety

test, with the upper row showing corresponding photos and the lower row displaying the

navigation view. The photos capture a moment in which the robot is in motion, while

the navigation views provide insights into the status of the navigation stack. The graphical

representation of the intent-pattern model is represented by the vertices and connected edges,

with the goal vertex of human intent depicted as a red column. The robot itself is visualized

as a 3D model.

During the test, the robot behaved as intended, demonstrating effective obstacle avoid-

ance capabilities. In the first case, the robot successfully maneuvered around the travel case

obstacle. In the second case, the robot initially halted in front of the person and then at-

tempted to navigate around them. These tests effectively validate the safety aspects of the

proposed approach in real-world applications.

4.5 Summary

This chapter introduces a novel approach to robotic escorting that enables autonomous

movement of the robot in front of a human while aligning with the human’s aim without direct

communication. The proposed approach leverages demonstration data to model human

intents and motion patterns as a graph. By inferring the human’s intent based on the current

head direction and the modeled graph, the robot effectively identifies the most probable

vertex as an indication of the future human position. Subsequently, the robot autonomously

moves towards the corresponding vertex, eliminating the need for the human to continuously

provide accurate head direction at every time step. This capability significantly improves

the adaptability of the system to accommodate distracted human behavior and reduces the

cognitive burden on the human operator. Parametric studies and experimental validations

82



(a) Escorting with other individuals (b) Escorting with objects

Figure 4.13. The safety test of collision avoidance with dynamic obstacles.
The robot successfully avoids collisions with other individuals obstructing its
path during the escorting task and with objects not present in the map.

demonstrate the enhanced position prediction capabilities and the ability of the proposed

approach to handle distractions effectively. Additionally, a user study was conducted, with

participants consistently rating the proposed approach as easier to operate and requiring

less attention compared to conventional methods. The proposed approach paves the way for

more efficient and natural human-robot interaction in escorting tasks.
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5. Conclusions

The proposed research has provided a comprehensive and systematic study of considering

human intention in robotic applications, covering modeling, inferring, and incorporating

human intention. The proposed approaches have been extensively validated through sim-

ulations and real experiments, contributing to a deeper understanding of building more

customized human-robot coordination based on human intention. The findings open up new

avenues for future research and hold promise for developing more advanced and personalized

human-robot coordination systems.

In the area of intention estimation, this work has made significant progress by introduc-

ing the proposed framework. However, there is still much future work to be done. One

potential direction is extending the framework to handle high-dimensional data where the

relationships among variables and intentions are too complex to be captured by grid-based

probabilistic representation. Deep learning approaches hold promise in addressing this chal-

lenge. Additionally, since intentions are long-term concepts that do not change frequently,

further research is needed to process the raw step-based results and incorporate the proba-

bilities of all intentions. Given the success of data-driven approaches in robotics, the related

approaches of machine learning will play more important role in the future [ 72 ,  73 ,  74 ].

The proposed work has also made important strides in state estimation of a human-

maneuvered target using human intention. However, there are ongoing efforts to expand this

approach to address partially observable problems and leverage model predictive control.

While observations are necessary for constructing the intention-pattern model, the state

may not be fully observable. The proposed approach, which is effective in prediction-driven

estimation, offers great potential for autonomous robots, making model predictive control

one of the most promising extensions.

Regarding robotic escorting, this work represents an important step forward in the field

of robotic escorting. However, the current model construction is limited to the demonstrated

area, which restricts the robot’s ability to navigate to positions outside of this predefined

region. Although this limitation ensures safety and alleviates concerns for both users and

building owners, there is room for further development. Future work will focus on extending

84



the framework to encompass unknown areas by integrating the proposed approach with

conventional techniques. By combining the strengths of both approaches, the robot will be

able to navigate through unexplored regions while still benefiting from the intent-pattern

model. The proposed framework is designed to facilitate collaboration between a human

operator and the robot. However, for individuals in the environment who are not actively

participating and whose behavior is not accessible, as well as their level of distraction being

more uncertain, the effectiveness of the proposed framework is limited. Further research is

required to infer the intentions of non-cooperative individuals in the presence of the robot [  75 ,

 76 ,  77 ,  78 ].

Human actions show causal relations in many tasks such as using tools to assemble a

table. In light of the research conducted on inferring human intentions with causal relations

based on tool usage for human-robot cooperation, one area of future work involves refining

and generalizing the representation of causal relations as motion patterns. To enhance the

applicability and adaptability of the framework, it is important to explore methods for

automatically discovering and representing motion patterns across a broader range of tasks.

This would involve investigating techniques such as machine learning and data mining to

uncover common patterns to represent the causal relations.

Another promising direction for future research is the integration of contextual infor-

mation to enhance the accuracy and robustness of inferring human intentions. Contextual

factors such as environmental conditions, social cues, and user preferences can significantly

influence human behavior [  79 ,  80 ]. By incorporating contextual information into the infer-

ence process, the framework can adapt to dynamic and diverse situations, leading to more

precise predictions of human intentions and more effective assistance from robots.
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