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ON THE PROPERTIES OF A PLANE VECTOR IN CONNECTION WITH THE

STATIONARY FLOW OF ELECTRICITY IN AN INFINITE PLANE.

The development of the theory of imaginaries during the first half of the

century, and in particular the geometrical interpretation of the same has found

application in some of the most interesting branches of Mathematics and Phys-

ics. In factgwe may almost say that this branch of the pure Mathematics was

approached and investigated from the standpoint of a physicist rather than that

of the mathematician. This remark‘ is eminently true of the modern theory 0f

Algebraic Functions as put forward during the last forty years chiefly by the

labors of Riemann‘.

Lagrange2 seems to have been one of the first who recognized the relation

between the function of a complex argument and the problem of representing

any portion of a spherical surface upon a plane. After Lagrange the geomet-

rical theory was advanced at the hands of several writers, among whom Argand?

deserves to be specially, mentioned. The general problem of the representation

of any part of one surface-upon another surface so. that corresponding figures

upon the two should be ultimately similar, was proposed as a prize question by

I the Royal Society of Copenhagen and solved by Gauss‘. A general solution

was given, though the actual integration of the differential equations was effected

only for surfaces of revolution. Kirchhoff” in a paper published in 1845 deduced

a theory of electric flow for two dimensions founded upon Ohm’s Law which

formed the starting point for numerous subsequent investigations.

The appearance of Riemann's work in 1859 gave a new impetus to the sub-

ject, and while this is primarily a work of pure mathematics, it was written no

doubt from a physical standpoint, and with reference to problems connected with

the stationary flow of heat and electricity.0 We should notice also a work of

Haton de la Goupiliere7 which is founded upon the theory of the complex va-

riable.

 

1 “Grundlagen filr eine Allgemeine Theorie der Functionen einer Verfinderlichen Complexen

016556." 1859. Also see Gesammelte mathematische Abhandlungen.

2 “ Sur la Construction des Cartes Geographiques." ‘

3 “ Essai Sur une Maniere de Repréieflter les Quntités Imaginaires dans les Constructions Géomé-

triques.” Paris, 1806.

4 “ Astronomische Abhandlungen—1823.”

5“ Uelmr den Durchgang eines Elektrischen Stromes." etc. Poggendorfs Annalen. Bd. 64.

“ See in this connection. Klein. “ Uel)er Riemann's Theorie der Algebraischen Functionen."

7 “Mémoire sur une Nouvelle Theorie Générale des Lignes Isothermes et (Ill Potentiel Cylin‘

drique." Journal de l‘Ecole Polytechnique Cah. XXXVIII.
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2 ON THE PROPERTIES OF A PLANE VECTOR.

Of late years the subject of conform representation has received its fullest

treatment at the hands of Schwarz" and of I-Iolzmiiller," the latter having pub-

lished a collection of results in text-book form.

Let us take a function of a vector (or of a complex argument) and examine

briefly some of its properties.

Let
.

7,, ___ Ref" =f(,-em) = f(:).

dw ' a’w (I: . div
I=clfl .‘

Fir = a”: ' (Ir d:

(12;) _ giro . d: _ rt?” ([10

a’fl _ d5 5’]? _ I7;

div .dw

. --,_ = n —'dfi dr................(1)

which is the equation of condition that :0 shall be a function of the‘ vector ”‘3.

Differentiating both sides of the last equation we have

(1R .9 .iodfl'; 3,0076 ‘wdfi
(—6?- el + Rte (If? _ m (~17 —— R18 21’1”"

Equating real and imaginary parts

(IR _ 1.: <19 (2)
(1r '_ r (/1? ' I O I I I Q 0 I 0 I I I

(1R ({H

dfi=—Rld'r*...........(3)

which may be regarded as equivalent to (I). The same results may be express-

ed in rectangular form as follows :

 

- ‘ \

3 Articles in various journals, all of which appear in lllS “Gesnmmelte Math. Ahhandlungen."

9 "Theorie der Isogonalen Verwnndtschalten."

 

 



  

 

ON THE PROPERTIES OF A PLANE VECTOR. 3

£0 = 11 + £71 =f(.:)‘=f(x + 1)!)

(1:0 _ div (I: (170

(it _ (1'3 d.t' — d3

£179... (lat) (1’s_ {in}

d] _ (1’: {if—1 (is

div .n’w . .

;2j,‘—lzt:.. . . . . - . . . . . . . .(Ia)

i

Differentiating both rsides

which gives

From (an) and (3a)

{In (12/ d’.’ {{y _ 0

(it (7.1,- Fly ,1), “ '

Hence it follows that the systems of curves defined by the equations

21 (xy) = k - 7/(.13') = k’

cut orthogonally.

Differentiating (2n) and (3a) according to x and] and adding. there follows :

(1311+ ([311 _ a

rim“ (1" _ '
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4 ' ON THE PROPERTIES OF A PLANE VECTOR.

Performing the same operations with regard to y and x

{127’ . 91’.”
(ti-2"” dy”

=0.

That is to say if to: u + iv is a function of a vector, then both the real and

imaginary parts satisfy the equation-of Laplace. But in all cases of the sta-

tionary flow of heat and electricity in two dimensions, the potential function

satisfies the same equation. Hence we see that if

u =f(-w) = A»

is the equation of the lines of equi—potential, that of the stream lines is

72 = 95 (433/) = A”.

It is evident also that the latter may represent the lines of equipotential and the

former the correSponding stream lines.

An importantproperty of the differential co-efficient of a function of a vec-*

tor appears from the following consideration. Put

to = R659 = 7'01"?) = f(:;)

 

E EE+HFM<EE]
(/7cr_("9 d)? dr :4? \ (If! (fr (1,?

(75 - (if! . n’r

” + (1,;

Substituting from the equations (2) and (3)

 

 

m MWfljflkiMW
'(I'Zt’_("€ ‘0']? r (If)? 1/)? \ (I)? I’ dr (7,?

I}: —2‘5 h . . a’r

” + a};

r, gr] [gr {/0 2' we]

_a‘0 L” +..',; ,4 (23—; a;

_ 2"" . a’r
- ‘q 11 + (7,9

_’L°f.1?’ff9_f (if)
_("'fl Lr (I)? r (f)?
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_ ' ON THE PROPERTIES OF A PLANE VECTOR. ' ' 5

an expression which is independent of dr. Hence it follows that the value of

Me difi'ermtial caeflieietzt is independent of the direction in wlzielz the variation

takes place. Such functions were called by Cauchy manage/1e and are the only

ones capable of representing the stationary flow of heat and electricity in a plane.

Suppose now that so and 20° refer to corresponding points which for conven-

ience we take in separate planes. To 5 cemmunicate small arbitrary displace-

ments which may be represented by dz, and deg.

Let a’wl and (£20, be the displacements‘of 70 corresponding to the relation

w=f(z')

Then by virtue of the preceding proposition we have the equation

dcv, =a’w__,_

dz, -tlz,

from which it appears that the an le between dz, and tie, is equal to that between

deal and (1202 and the mgiuliof t e vectors in the two planes bear constant ratio

to one another. HenCe it follows that if any system upon one surface be repre-

sented on another by means of such a function that the two systems will be

ultimately similar. It is seen here that we have an extension of ordinary geomet-

ric inversion—this being simply a case of transformation by means of the function

‘20:

l
u
l
u
-
1

and furthermore all the theorems relating to properties of figures in the first

system can be translated into theorems expressing relations between the corre-

sponding figures of the second system. . " '» '5 ' ' ‘

The eolform character of figures connected by a function of a vector lends

to the theory its importance in connection with the class of problems under con~

sideration. For since any elementary rectangle bounded by equipotential lines

and lines of flow is transformed into a similar rectangle it follows that the repre-

sentation of any two dimension system will itself represent a possible case of

electric flow. Analytically this result appears as follows:

Let w = u + iv = a (x,y) V—Ez‘o (x, y) =f(-9) '

Then K721; = o V322 = o

  



 

6 I ON THE PROPERTIES OF A PLANE VECTOR.

Suppose‘x- and y are no longer independent variables, but defined by the

relationv

z=x+13'=F(C)=F(5+i>7)=¢(5.77) + zW5. 7/)

v2? = a V725!) = o

W= 1¢{s0(5.t).z'¢(5n7)} + iv {so($.t).2'¢ 5. 77)}

= u, (5, )7) + 2'62), (5, n)

hence we have

V2711 = a V201: 0

that is to say, if in any integral u (x, y) of the equation

' V214 = a

we substitute for 1.31 any function of a vector, then will the new function be an

integral of the/same equation. The integral of this equation can evidently be

written in-the form

go(u+i71)+go,(u——.iv)=a ' I .

where a is. the isothermal parameter of the system. If 6 be the parameter of the

orthogonal system the condition of perpendicularity gives

“Hay—ache) =, .
21

It is evident then that any case of stationary flow can be deduced from a

known simpler case provided the proper transforming function is known. This

.must fulfill the ordinary conditions of a potential function. It must be contin-

uous,single-valued and finite at all points except the electrodes. An infinite

value in one plane must correspond to one or more infinite values in the other

plane. As a simple illustration we may take the case of a rectangular system

in which the equations of the equipotential lines and lines of flow are

u=a and '71:!)

.‘

and subject it to the transformation

w = log (a)

b

 



 

  

ON THE .PROPERTIES OF A PLANE VECTOR. I 7

Hence u + iv = log rem

= log r + z)?

u = log r 7/ = p

r=e“

And the new system is a series of concentric circles and their orthogonals

trajectories. The equipotential lines

x=a . ‘(a'=a,+a’,a,+2d,. . .a,+1zd,)

go over into the series of circles whose radii are

r = e:

and the stream lines '

y==b 2" ,3 (b=é,+f,b,+2f,. . . . . . . .b,+tgf)

appear as

‘9‘" 0 = 2

Thus it will be noticed that a strip of the first plane bounded by the lines

x = i 0°. 1’ = 0, J’ = 27?

is represented on the entire area of the second plane. It is evident that by this _

transformation the Ptolemaic earth chart is deduced frdm that of Mercator. For

J! > 271' the value of 0 becomes not single but multiple: to avoid this an artifice

of Riemann was to suppose the .3 plane composed of thin overlying sheets‘, on

each of which the function has only a single value. In this case it is apparent

that the successive figures on the overlying streets are congruent. -

Let it be required to determine the flow when the positive electrodes are

situated at regular intervals on the circumference of a circle, the infinite extent

of the plane forming a negative electrode. We transfer the system last found by

means of the function * . i;

n...

20:1/z
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8 ON THE PROPERTIES OF A PLANE VECTOR.

If the centre of the system be taken at any point 2,, = roe‘fi- and if r be the de-

clivity of any right line passing through this point and 1” the length of any por-

tion of it, then we may write the vector equation

A . re"3 — reef“ = p‘efi’,

and for the conjugate figure

re""’a — roeT‘Po = pe-i)’ .

Dividing and taking logarithms

_I rem—roe‘flo

r—Blogmuoco-oluo-(4)

Performing the transformation indicated this becomes

T _ _ (143)" — rneipo

.

/ r ' .,K,

But the expre‘E’siori

(#3)" '— roeifio

can be regarded as the product of 7: factors of the form

re1m — ae“

when the last term denotes one of the 72"“ roots of the fixed centre. Hence the

expression becomes

II=0

II (re‘t’ — (a,e‘“‘u)

v=1

—~£lo
7?- 2i g v=n

II (rf‘fl—aye."*")

v=l

 

v=n

_2 I I re“ — (ae‘t), .
.._. a}. logmy

v=l

 



   

ON THE PROPERTIES. OF A PLANE VECTOR. 9

But by equation (4) each term of this expression denotes the declivity of a line

drawn from re‘fl to the corresponding root point, ae’A. Hence if 50,, 9132.. .50"

be the declivities of the n vectors 'drawn from any point of the locus to the root

points,

T=¢l+¢2+. . a re I a .5011.

Similarly for the equipotential lines, the equation of one of which can be placed

in the form

(rem -- reef“) (re "' "5 — rue-’51:) = e"

where e = e", It being the potential.

By transforming this becomes

men"— WW] [(re‘ - r)" — r.e- “’1’] = e" = 4*

=II[we——(«em inr —(«e-'1)1
”:1

Each factor of the expression represents thesquare of the distance from a point

‘of the locus to the corresponding root point. Denoting the dist'anCes by

11'! . . .4], .we have

111,. . . . .l,,=e“=c.

These two series of curves were called by Holzmiiller “ Regular Lemniscates

and Hyperbolas of the 71'” order.” The n foci of the lemniscates are situated

upon the circumference whose radius is '

a

(mod. 30* '== roi‘

For the equipotential lines of the primitive system, not enclosing the origin, that

is, for
‘

ll 12. . . . .1,,<ro

we have lemniscates of n branches separated from each other and enclosing the

foci.
‘

  



 

 

IO ON THE PROPERTIES OF A PLANE‘VECTOR.

To the circle through the origin corresponds the lemniscate of.one branch

1,1,. . . . .l,,=ro

having a multiple point of the n‘” order at the cientre, while to any circle

enclosing the origin corresponds the lemniscate of one branch

~ 1,1,.....1,>r,

without multiple point having a circle of infinite radius as limiting form.

Any straight line passing through the centre midway between two adjacent

electrodes cuts all lemniscates orthogonally. Hence it follows that the hypeibo-

las fall into 72 distinct and equal compartments of a plane. The equations of the

hyperbolas being

¢1+¢2+ - - - ~ .¢n=7‘

that of the asymptotes is

,\’=:—z(7+/m) (/1=0,I,. . .tt—I)

For 71 = 2 the system degenerates into the ordinary curves of Cassini and rec-

tangular hyperp'olats.1'so familiar in optics. In the above it will be noticed that

/ the current strength is the same for the different electrodes. ‘/

We proceed to consider a more general case. Electricity flows into an in-

‘finite plane at 7: given points, - ’ ' "

pl 1 P2 1 ' ' ' p11

and with current strengths, ' .

It, 112 . . . . It”

and1s conducted away at infinity. The required transformationIS effected if we

take 10 an entire rational function of 3 with sets of equal roots, the numbersin

each set being equal to the respective current strengths. The infinite extents of

the two planes then correspond. Each vanishing of the transformation func-

tiou corresponds to a unit current at a root point of the 3' plane. The other

conditions are evidently fulfiled. The.transformation function then becomes

The conjugate of which is

 



   

 

  

~ ‘ on THE PROPERTIES OF.A PLANE VECTOR. ~. 11

Hence,

[mod. 20 2 = £2" = II (a 41%),“ (E‘PvY’V

v=1

or if as before 1,, denotes the distance from any point to the electrode of same

index

v=n

(32" = "2 + 7/2 = II 1.2"" .

v=1

Hence the expression for the potential becomes

u = log (11"1 .12”: ~ . . . 1,,”1'.)

which differs from the former in that the exponent of the radius from any elec-

trode is equal to the strength of current entering at that point. Similarly for

the stream lines . . .

v=n

1

V w"; 7; +1.72 =3 II (5 —pV)/’v

v=l

V=1|

th¥1tfiv=JT (3—2,)“ .

v=1

Hence as in a previous case

Il=n

. ‘ II (z -—1>.)"'

fi”=:fl_w_*_
X' =75

II (2 —I_’v)""

v=1

V=fl

= I I c2il1y$0v

v=1

"which gives

r=hn+kn+-u--ME

It will be noticed that the preceding case is a special form of this.
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12 ON THE PROPERTIES 01? A PLANE VECTOR.

The figure shows equipotential lines and lines of flow for the case where

pl="l‘I P2=—I

[11:2 hzzl

the transforming function then being

w=(z— I)2(5+ I)

By elimination this would give an algebraic curve of the sixth degree. Adopt-

ing the ordinary notion we have .

[12 [2 = e“

where l, and [2 proceed from the root points. The line of zero potential is trans-

formed into the lemniscate of two branches ‘

1%:1

The double point of the first lemniscate of one branch is easily given by the

,2 .‘L-

(l i— (3)2 (l._. i- 6) = e"

Discarding the higher powers ofo this gives the equation

1,2 [2 + 21112 6 —— 11" (3‘ = [1212_-— 2/1 [26 + If r}

[1 = 212

that13, the segments of the axis formed by the double point are proportional to

the current strengths at the respective electrodes.

For the trajectories we have ’

291+¢2=T

which is a hyperbola of the third order. The figure shows the form of the same

for

The intersection of the asymptotes divides the axis into two segments which are

inversely as the current strengths at the electrodes.

The equation of any curve in the first plane of the form

flaw=o

 



  

ON THE PROPERTIES OF A PLANE VECTOR. 1 13

appears in the second 'plane as
1

f(P1h' 2’" ~ - - 1 ~Pnhaxh1¢1+ll2¢2+- - .I‘n‘f’n =0

For example the equation of an isoclinic of the first system is

R = a9

and the equation of the corresponding isoclinic of the second system is

llh’lah'
O I o u o lnhn=alh1‘P.-l'hgwg+...hnd.n

If we suppose the current strengths equal, the lines of equipotential become

a series of curves named by Darboux,Io Cassinoids. The transforming function

in this case becomes simply

v=lfi

w= Ina—1m)

v=l

I

Since the infimte extentsof the two planes correspond, 1t follows that through

every electrode of the new system passes a curve with two infinite branches.

,The Hyperbola falls in n compartments formed by its )1 rectilinear, asymptotes,

any two of which enclose an angle given by :r.

n

The asymptotes pass through a common point—the center of gravity of the

electrodes."

This property may also be shown by considering the mode of description

of the" curves. We may suppose the general curve to be the locus of the

. point of intersection of radii revolving about the electrodes as centres so as to

fulfil the condition

' h1¢1+h2¢2+- - - - - -/ln%=2’

Let the subscript a denote the asymptotic position of any two radii so that we

have

Ill 6”. = [In spun

 

‘° "Sur une classe remnrquable dc courbes et de surfaces algébraiques et sur la théorie des imagi-

naires.” Mam. dc Bordeaux VIII, IX. The paper was not accessible at the time its exiStence was

brought to the writer’s notice.

”See Lucas, “Geometric des polynomes,” yuumal (I: I’E‘wh palyIu/miguc, Cah. XLVI.

 



 

 

 

  

14 ON. THE PROPERTIES OF A PLANE VECTOR.

Let each side of the equation receive a small increment, which gives

1+ +7311 1++—:1
This shows that the angles moved over by the two radii are as the ratio It", : It, ,

that is, inversely as the current strengths of the electrodes from which they pro-

ceed. Let x, and x,” be segments of a line at infinity which are formed' by the

radii in their asymptotic positions and the first point of intersection after dis-

placement. In view of what he have just shown we 'then have

.. ._0. 0_ 5

'tI‘Jm—Z't‘]; —/lm'.hl

I“

.1311, = x", 11,,

and the asymptote through the point of ultimate intersection of the radii- cuts

the axis of the electrodes at their centre of gravity. Continuing the process till

all the electrodes ar‘eOincluded the truth of the theorem becomes evident.

We consider next the transformation effected by the function of the form

_ 55(3>
¢a

\
. . . o .where numerator and denommator are ent1re rat1onal functlons. Thls transfor—

mation gives the most general case of electric flow in an infinite plane where.

both positive and negative electrodes have any given position.. Each root of the

equation '

¢w=o

corresponds to an infinite value of w and hence. to a a negative electrode in the

2 plane. 80 likewise we have the corresponding values

w=o . go(z)=o_

the roots of which latter equation are positive electrodes. Inversely stated the

problem becomes the following: electricity flows into a plane at the points

I, ,1), . . . . . 13,. and is conducted away at points 9, , 9,, . . . . . qm.

,w/V/

 



 

 

 

ON THE PROPERTIES OF A PLANE VECTOR. _ [5

If It, , It, . . . . . [1,, be the strengths of the inflowing, k, , 1’, . . . . . k... V

those of the outflowing currents the transformation function becomes

V=1|

TI (z —A)“

v=l .

w=———-

fie—aw

v=l

and for the conjugate system

v=n

TIfi-flw

v=l

.j,» Tia—aw

v==l

$
1

ll

Hence by multiplication we have

Tie—mwG—aw

e2“ ='.(modw)2= :2"

»II@—aW@—%W

v=1

Each set 'of factors of numerator and'denominator represents the 2/1,,- power of

the distance from any point to the points p, and quvrespectively. Hence we may

write, ,

' 1111.121. , . . , 1,1».

It: ot.=lo ._—_________.

p g 51’“ 33": . . . . smkm

and the circle whose radius is e“ becomes the curve

$03...N»_,

slklszk" . . . ;ymkm -

 

 



 

    

16 ON THE PROPERTIES OF A PLANE VECTOR.

Similarly for the stream lines

v=fl

‘l"|' (3 —PV)/"'

_ v=l

20—. ”:1"

TI (5 -— mt}

v=l

V=fl

TTh—fiw

v=1

v=m

IIe—aw

v=l

 

Hence for the argument of any stream line

Tic—am» ITG¥EW
1/,f 7;)" (2'7: §l_.._-__-._... . ::"n __..-._.

IIé-va IIt-at
y=l v=1 ' ‘ , V

which can be written in accordance with what precedes

y:=m ”=1"

€217 = II efflly'mv. ‘l-‘l- c—2iky V’y

v=l v=l

or.

7:1‘1591 + [12902 + - - - [tum—(£35111 + ’ézl'l'z + - - ' hut/'1»)

In the two planes we have generally the corresponding sets of curves

' ' flRQ) = o

  
1171.127» . .‘ . . Ink"

I
f 3.1.3:. . .. FT..+"1¢1+- - - -/l»10»-1’x¢’x—7-' ~4m'ms =0

It is evident that for stationary flow we must have

V=fl ”=1”

‘ , 25.—29.=0

v==1 v=1

 



 

 

ON THE PROPERTIES OF A PLANE VECTOR. . - I7

.'where the Summation is extended over the entire system of electrodes all of

which are supposed to lie at a finite distance.

The case may also rise where the points of outflow are partly at a finite

and partly at an infinite distance. Suppose we have (considering only the finite

points) the equation

E I; ——- E k = ‘Il

Then if 11 and ,u be the degrees of the numerator and denominator of the

transforming function 'we must have

ll —- I! = a

The condition of stationary flow evidently makes it necessary that a cur-

rent of strength a must be conducted away at infinity. This may be assumed

to occur at a electrodes each conveying unit current. The function

 

9012)
w =

,r'.’ ‘4 ’ V ¢(,.’3)

,7 -/_.

becomes infinite for each root of the equation

11(2) =‘o

which gives immediately the finite lying points of outflow. It also becomes in-

finite for l
1

5=W.

\

The function may be written in the form

1(5)
. w = z ——

where 59, (.3) is of the degree A — [1.

For 3 == 00 we have therefore a value of w of the form

A—#
00 .

The physical fact shows that this may be interpreted as equivalent to A — ,1

infinite roots. '

 



 

 
 

 

 


