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Abstract

In emergency situations, the first responders need to collect, aggregate, filter and interpret

information from different static and real-time sources and provide timely interventions

and treatments to victims in a short period of time. Dealing with such a huge information

load at the incident scene requires a significant amount of human cognitive effort. This

thesis presents a cognitive assistant system for emergency medical services (EMS) that

aims at improving situational awareness of the first responders by automated collection and

analysis of data from the incident scene and providing suggestions on the most effective

response actions to them. The proposed system relies on a Behavior Tree (BT) framework

that combines the knowledge of EMS protocol guidelines with speech recognition, natural

language processing, and machine learning methods to (i) extract critical information from

responders’ conversations and verbalized observations, (ii) infer the incident context, and

(iii) decide on safe and effective response interventions to perform. We use a data-set of

8302 real EMS call records from an urban, high volume regional ambulance agency in the

United States to evaluate the responsiveness and cognitive ability of the system and assess

the safety of the suggestions provided to the responder. The experimental results show that

the developed cognitive assistant achieves an average top-3 accuracy of 89% in selecting

the correct EMS protocols and an average F1-score of 71% in suggesting the protocol

specific interventions while providing transparency and evidence for the suggestions. We

also simulate the streaming speech from emergency scenes to examine the effectiveness

of the developed model in providing timely accurate suggestions. The simulation results

show that the proposed cognitive assistant is able to achieve an average 70% F1-score in

predicting correct interventions with only 45% of the input speech.

Keywords— Cognitive assistant systems, Emergency medical services, Behavior trees, Natural

language processing, Machine learning
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Chapter 1

Introduction

1.1 Background

Emergency medical responders and firefighters are supposed to initially assess and control the

situation at the accident scene and provide basic life support to the victims before transporting them

to the hospital. During the rescue operations, they need to quickly process a significant amount

of information with different levels of importance and confidence, such as the status and medical

history of the victims, the circumstances of the accident scenes and communication with the com-

mand center. However, detecting, gathering, filtering and processing these data at the incident scene

requires lots of human cognitive effort. Such cognitive efforts can be saved, and consequently, the

speed and accuracy of emergency response can be improved if the emergency medical responders

and firefighters are aided by a cognitive assistant system for emergency medical services. These

improvements, even tiny, can largely affect the rescue results.

Currently, emergency medical technicians make decisions and provide interventions based on

their observations in the emergency scene and their training and knowledge of emergency medical

service (EMS) protocols. The purpose of EMS protocols is to standardize medical procedures for

all emergency medical services and thus achieve excellent, consistent pre-hospital care for patients.

They also serve as a framework to help emergency medical technicians (EMTs) make decisions

when operating in crises. In our work, we applied Old Dominion EMS Alliance (ODEMSA) proto-

cols [1] which are used by four Virginia Planning Districts as a reference for analyzing the collected

data and generating suggestions to the first responders.

Previous research [28, 10, 4] proposed the use of assistive technologies to improve first respon-
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ders’ situational awareness and decision making. For example, using wearable assistive agents for

trauma documentation and management [10, 11], developing a portable communication framework

for coordinating multiple agents (e.g., medical and communication devices, EMS vehicles) in dis-

tributed emergency response [14, 4, 24], simulating dynamic interactions between different human

agents and potential digital agents in a hospital emergency environment using state-machine based

models [33], real-time information extraction under noise for emergency response [28], and an in-

formation visualization agent that presents information gathered based on intent predicted using

recent observations collected at emergency scene [23]. However, to the best of our knowledge,

none of the existing research focuses on dynamically recommending situation-aware EMS protocol

specific interventions for real-time emergency response decision support.

1.2 Challenges and Contributions

This thesis presents a design of a cognitive assistant system, CognitiveEMS, that analyzes

speech data from the responders’ communications and observations at the scene, to infer the inci-

dent context, and suggest on the best response actions or interventions to perform based on standard

EMS protocols. The proposed cognitive assistant can be implemented as a wearable virtual assis-

tant, interacting with a team of first responders before, during, and after arrival to incident scene

or during EMS training exercises. The overall architecture of the system is described and shown in

Fig. 1-1. In this thesis, we mainly focus on developing the perception and cognition capabilities for

such a cognitive assistant system. There are several challenges in the design of a cognitive assistant

for EMS:

∙ Emergency medical responders make decisions and provide interventions based on their

training and knowledge of local EMS protocols. To perform a similar task, a cognitive assis-

tant system needs to be trained with the same knowledge and have the ability to process the

information from the scene and make decisions in real-time.

∙ Despite limited availability of pre-collected EMS scenario datasets, most of this data is not

properly labeled according to the EMS guidelines. Significant amount of manual effort and

domain expertise are needed for labeling such data.

∙ At an incident scene, the speech data might be noisy or missing critical information needed

for inference, which might affect the quality of decision making and intervention suggestion
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by the cognitive assistant.

∙ Many of the EMS protocol specific interventions are safety critical in nature (e.g., Fentanyl

in pain management protocols or endotracheal intubation in respiratory distress protocols)

and might cause serious consequences for the patient if mistakenly suggested by the system

and performed by the responder.

Figure 1-1: The system architecture of CognitiveEMS [28]

To address these challenges, this thesis adopts a Behavior Tree (BT) framework for real-time

retrieval of the critical information from the scene and infer the correct EMS protocol specific

interventions based on the retrieved information. The main contributions of the proposed framework

can be summarized as follows:

∙ We develop a weakly supervised method for selection of the most appropriate EMS protocols

to be followed based on the situations inferred from the scene and the knowledge of the EMS

protocol guidelines. Our evaluation using 3657 labeled EMS records indicate that this method

achieves an average top-3 accuracy of 89%.

∙ We present two kinds of methods for prediction and suggestion of the most effective interven-

tions by the cognitive assistant: a knowledge-driven method based on developing executable

behavioral models of the EMS protocols using BTs and a supervised data-driven ML method

based on learning models from historical EMS records. Our results show that BT methods

achieve comparable accuracy (F1 score) in predicting correct interventions but worse con-

vergence rate in dealing with streaming input data compared to the ML models. Meanwhile,
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the BT method provides more transparency and evidence for the suggested intervention and

does not rely on the availability of labeled data.

∙ We introduce a method for assigning confidence for the protocol and intervention sugges-

tions made by the BT model to reduce the risk of performing safety-critical interventions

and prevent harm to patients. When considering the potential risks of performing incorrect

interventions by responders, the suggestions provided by the BT model on average lower risk

compared to the best performing supervised ML models using the same setting.

∙ We simulate the streaming input text data from emergency scenes to evaluate the perfor-

mance of both the knowledge-driven behavioral model and the supervised data-driven ML

model. The simulation results show both models can generate reliable suggestions with only

part of the narratives and the supervised data-driven ML model has better performance in

intervention prediction.
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Chapter 2

Related Work

2.1 Cognitive Assistant Systems

Cognitive assistant systems, or intelligent cognitive assistant (ICA) systems, are defined as a

set of intelligent architectures and systems equipped with common sense knowledge and reasoning

capabilities [16]. Cognitive assistant systems have been widely applied in smart health applica-

tions [17, 36, 11]. Ha’s work [17] proposed the architecture and prototype implementation of an

assistive system operating on Google glass to perform real-time scene interpretation by combining

the first-person image capture and sensing capabilities of Glass with remote processing. In Zhang’s

work [36], an agent-based computer-aided scheduling (ACAD) system was proposed to organize

multiple emergency departments to automatically dispatch appropriate rescue units to handle differ-

ent types of emergencies. Croatti’s paper [11] introduced and discussed traumatic documentation

and management of personal medical assistant agent technology based on the Faith-Desire-Intention

(BDI) architecture to assist the trauma team to accurately track and generate alerts in real time dur-

ing trauma resuscitation.

In the context of emergency medical services, existing systems attempt to reduce the cognitive

load of responders by providing new interfaces for on-scene reporting of electronic events [20,

15]. ImageTrend [20] provides a virtual data input interface for EMS responders. However, an

important part of the scene report is still a narrative written in free-form text that describes the

observations and actions made by the first responder at the scene of the emergency. In [15], the

authors developed a mobile portal solution that helps collect data by dynamically customizing data

fields. But these systems still rely on touch screens and messaging interfaces that are difficult to
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operate in an emergency scene. Hence this thesis aims at automatically extracting data from the

responders’ speech to reduce the cognitive burden of the first responders.

2.2 Clinical Decision Support Systems

Clinical decision support (CDS) is formally defined as the process that provides clinicians, staff,

patients, or other individuals with knowledge and person-specific information, intelligently filtered

or presented at appropriate times, to enhance health and health care [25]. The goal of CDS systems

is to improve the health care decision outcomes by providing the relevant knowledge and analyses to

the decision makers, i.e., clinicians, patients, and health care organizations. CDS systems have been

used since as early as 1970, such as, Dombal’s system for diagnosis of abdominal pain [12] using

Bayes’s theorem and Shortliffe’s MYCIN rule based system for selection of antibiotic therapy [32]

for patients with infections. Kuperman et al. demonstrated HELP, a CDS system integrated with

hospital information system that generates automated alerts upon detection of abnormalities in the

patient records [30]. In the Next section, we will provide a summary of the finite state machine and

behavior tree modeling techniques and their applications in decision-making tasks.

2.3 Behavior Selection Models

In artificial intelligence, a behavior selection model or an action selection model is a model

that selects an appropriate behavior or action for one or more intelligent agents. Typical behavior

selection models include finite state machines (hierarchical finite state machines), decision trees,

behavior trees, hierarchical task networks, hierarchical control systems, utility system, and dialogue

tree.

2.3.1 Finite State Machine

Finite State Machines (FSM) is one of the most basic mathematical models for behavior se-

lection tasks [6, 22, 37]. The FSM consists of a set of states, transactions, and events. FSM are

widely used because it has a ubiquitous structure; it is intuitive and easy to understand and im-

plement. In Chung’s work [6], the authors proposed a novel heart rate estimation and verification

algorithm based on FSM framework, which used the crest factor in the periodogram obtained after
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motion artifact removal and the estimated heart rate change in the continuous window as the es-

timation accuracy index. In Li’s work [22], the authors tried to address the problem of changing

the behavior sequences of the robots in manipulation tasks with human intervention by proposing

a framework based on the FSM to model the robot action sequences in manipulation tasks. The

framework showed how the robot slides its autonomy level by considering the results of the tran-

sition action and the input from the human operator. The framework could be easily extended to

include higher levels of autonomy. In Zhang’s work [37], the authors developed an automatic road

driving controller based on an FSM framework to describe the controller through feedback control

laws under each state and state transition condition. The authors also tested the controller in the

traffic simulator and evaluated its performance.

However, when the complexity of system modeling and the number of states increase, the flaws

of FSM can cause problems. To build a more reactive system using FSM, more transitions are

needed and this consequently reduces the maintainability, scalability, and reusability of the sys-

tem [9].

2.3.2 Behavior Tree

Behavior trees (BTs) is a behavior modeling framework emerged from game industry and it is

extended to intelligent agents and robotics applications. BTs encode the control logic as a tree struc-

ture, with each sub-task modeled as leafs and combining the sub-tasks into behaviors through nodes

in different positions in the tree. Bojic et.al. [5] developed a functional prototype of foundation

for intelligent physical agents (FIPA)-Request Interaction Protocol by using their JBehaviorTrees

framework which extends Java agent development framework (JADE) behaviors via BTs model.

They showed both FSM implementation and the implementation via BTs can be used interchange-

ably, while the BTs model provides better modularity and code reusability. Hu et.al. [19] modeled

and implemented the semi-autonomous surgical tasks via BTs framework. The modeled surgi-

cal procedure of brain tumor ablation was presented by RAVEN surgical robot and stereo visual

feedback. It was demonstrated that the system could correctly detect the tumor and automatically

generate ablation plans. Pereira et.al. [27] proposed a framework based on BTs that applied rein-

forcement learning nodes to add learning capabilities in current behavior-based intelligent agents.

They showed how the learning framework works and validated that the choice of learning node

would converge after iterations and the learning process would not affect the execution of the other
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nodes in the tree. Dometios et.al. [13] developed a novel real-time speech based perception system

integrating all subsystems as modules and hierarchical decision architecture, which were organized

as a behavior tree. A speech recognition system and a depth camera were used to achieve robust

human-system communication and end-effector motion planning. With a set of spoken commands,

the system could satisfy user’s needs and preferences. Paxton et.al. [26] proposed a BT-based task

editor integrating high-level information from known object and pose estimation with spatial rea-

soning and robot actions to create robust task planning. Evaluations and implementations of this

system in various industrial robots and cases were performed in this paper. Hannaford et.al. [18]

proposed the construction of BTs for example set of medical procedures and showed examples of

functional medical algorithms implemented using BTs framework.

Stochastic behavior tree (STB) is also introduced in [9] to make the probabilistic descriptions

of the actions and conditions in a behavior tree. STB describes the interaction of a BT node with

its children in terms of a Discrete Time Markov Chain (DTMC). This enables the BT to propagate

performance estimates from one level in the tree to the next. Applying the scheme in a recursive

fashion then makes it possible to compute the properties of an arbitrarily complex BT composition

of actions. [8]

Based on the review of the related work and the application scenarios mentioned above, we can

summarize the unique features of the BTs as follows:

∙ Each sub-tree of a BT can be seen as a module. Thus, BTs are modular in all scales ranging

from the whole tree to all the leaves of the tree [9]. This feature results in that the projects

with BTs framework are easier to read, design, and maintain.

∙ BTs enable reusable code. That makes it easier to build a large, complex, long-term project

using BTs framework.

∙ BTs are highly responsive because of their continuously-ticking mechanism, which makes it

possible for specific actions to be executed or aborted according to the leaf nodes’ return sta-

tus at every ticking. These returned statuses are tightly connected with the environment and

ensure that the BT models can react to the changes in the situation quickly and efficiently [9].

∙ A BT needs to traverse all the conditions in the tree to implement the closed-loop task exe-

cution [9]. In some applications, this all-condition-checking is too expensive.

∙ Although learning the ability of BTs is still an open problem, the work of Pereira et al. pro-
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vides the formalization of adaptive and constrained behavior-based agents using BTs and

reinforcement learning [27]. More recent and ongoing work in this area is expected to im-

prove this framework further and allow the agents to work in more complex environments.

∙ The tools for developing BTs are much less mature than other modeling frameworks such as

logic programming and FSMs.
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Chapter 3

Problem Formulation

Our goal is to design a cognitive assistant system that can infer critical information about the

situations at the accident scene, including physical status and medical history of the patients, from

responders’ conversations and verbalized observations. This information are represented in the form

of medical or EMS semantic concepts and are mapped into the standard EMS protocols to provide

suggestions on the best interventions to perform. For example, the opioid overdose protocol (Fig. 4-

1b) indicates when the first responders observe that a patient is suffering from hypoxemia (i.e.,

patient’s 𝑆𝑝𝑂2 level is lower than the normal range), they need to provide supplemental oxygen to

the patient. Emergency medical technicians need to gather, record and analyze these information

and then make interventions based on some specific emergency medical service protocols. To assist

the responders to analysis situations and take interventions, our system records speech data from first

responders, which are typically oral report to describe the situations in the accident scene and make

inference about what intervention should be taken based on emergency medical service protocols.

Formally, we consider a set of standard emergency medical service protocols 𝑃 . For each

protocol 𝑃𝑖, we use a set of critical concepts (e.g., signs, symptoms, and medical history of patient)

to model the conditions for which the protocol should be selected by the first responder to manage

the emergency situation. We define 𝐶 as the set of all the concepts describing the protocol set 𝑃 .

We define 𝐼 as the set of all possible interventions recommended by the protocols in 𝑃 . At any time

𝑡, we assume all the information verbalized by the first responder so far are included in a segment of

speech data denoted as 𝑆𝑡. Then, we can summarize the problem as follows. At an arbitrary time 𝑡,

the cognitive assistant needs to find the appropriate subset 𝐼𝑗 in the intervention set 𝐼 based on the

knowledge of 𝑃𝑖 in the EMS protocol set 𝑃 according to a subset of 𝐶 extracted from the speech

11



data 𝑆𝑡.

To solve this problem, we separate it into three consecutive sub-tasks:

1. Extract a subset of 𝐶 to represent the situation for an arbitrary time 𝑡 from the speech data

𝑆𝑡;

2. Rank the EMS protocols in 𝑃 and find a subset of EMS protocol 𝑃𝑖 in 𝑃 whose usage

scenario is closest to what is described by the speech data 𝑆𝑡;

3. Find the intervention subset 𝐼𝑗 based on the knowledge of the selected protocol subset 𝑃𝑖.

In the following sections we present the methodologies to perform these three sub-tasks.
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Chapter 4

Approach

4.1 BT Framework

We propose a BT framework for implementing the natural language processing and cognitive

inference by the cognitive assistant as illustrated in Fig. 4-1a. Details about the components in this

pipeline are discussed in the Section 4.1.1.

4.1.1 Behavior Trees

Behavior Trees are a mathematical model of plan execution used in robotics and intelligent

agents, which first emerged from video game industry. Recent work has shown the potential of BTs

as a flexible and interpretable data structure for representing medical processes and clinical practice

guidelines in AI systems [18]. BTs can model the behavior of an intelligent agent as a directed

rooted tree, presenting each sub-task as a leaf, and combine them into behaviors through nodes in a

specific order [9]. A BT root generates a signal, called tick, periodically following a frequency F.

Every node receiving the tick from its parent, starts execution and returns its status on achieving its

goal as success or failure. There are two types of execution nodes: Action nodes that return success

upon completion of certain action and Condition nodes that return success if a specific condition

is met [8]. The control of the execution nodes in BT is achieved by using the composite nodes,

whose return status depends on its children. Three typical composite nodes are used in our work:

Sequence, Selector and Parallel. The notation of these three kinds of nodes is shown in Fig. 4-2

We choose BTs as an executable behavioral modeling framework for design of our cognitive

13



(a)

(b)

(c)

Figure 4-1: (a) Overall BT framework, (b) Opioid Overdose Protocol Action Subtree, (c) Flowchart
of Opioid Overdose Protocol
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(a) Sequence Node (b) Selector Node (c) Parallel Node

Figure 4-2: Three Typical Nodes in BTs

system due to its modularity, high responsiveness, and the ability to learn and adapt using reinforce-

ment learning. As shown in Fig. 4-1a, in every tick, the sequential node "Root" ticks the execution

of the different nodes of the cognitive assistance pipeline, to perform conversion of text from speech,

gathering important concepts from the text, transforming the concepts into vector space, protocol

selection, and protocol execution/intervention suggestion. The results from each component are

stored and passed to the other components to be processed via blackboard, a typical component

in behavior tree models to store and transport data between the sub-trees and nodes. As a fairly

standard structure in most behavior tree implementations, it has the following features:

∙ No sharing between behavior tree instances;

∙ No locking for reading/writing;

∙ Global scope, i.e. any behavior/node in the behavior tree can access any variable stored in

the blackboard;

∙ No external communications (e.g. to a database)

The protocol execution and intervention suggestion is implemented as a parallel node with mul-

tiple children, concurrently executing multiple applicable protocols. Every protocol node is a se-

quential node, which sequentially ticks the condition and action nodes, respectively, implementing

the conditions to satisfy for executing the protocol and the sub-tree of the protocol logic as defined

by the EMS protocols. Fig. 4-1b shows an example of Overdose Opioid protocol action sub-tree

in the BT. The details about the mechanism of these sub-trees are presented in the Section 4.1.6.

Here we show an example of the action node of the Overdose Opioid protocol. The logic for this

protocols is shown as a flowchart in Fig. 4-1c. We transfer this logic into a behavior tree model

as shown in Fig. 4-1b. Note that the condition "Opiate Toxidrome? " in this case is a composite

condition containing several sub-conditions to be checked. We will further discuss how we model

the composite conditions into the BT model in Section 4.1.6.
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The details of the BT nodes in Fig. 4-1a implementing different components of the cognitive

assistant pipeline are provided next.

4.1.2 Speech to Text Conversion

The purpose of this component is transferring the input speech data 𝑆𝑡 from the first responders

to text 𝑇 . In our previous works [29], We applied data collected from real emergency scenarios

to quantitatively compare the performance of the four off-the-shelf, state-of-the-art speech-to-text

conversion tools under noise in terms of word error rate and computation time. These tools included

the Google Cloud API, the Microsoft Voice API, the PocketSphinx and the IBM BlueMix API. The

results have shown that the Google Speech API provides the best results among other state-of-the-

art speech recognition (shown in Table 4.1). Thus, we apply the Google Speech API to perform

speech to text conversion on the audio streams collected from the accident scene.

Scenario Metrics PocketSphinx Google Microsoft IBM

Noise-free
WER 0.80 0.19 0.24 0.45
Runtime 2.48 2.72 3.42 5.34

Noisy
WER 1.05 0.39 0.62 0.89
Runtime 3.41 3.00 3.38 9.84

Table 4.1: Comparing different speech-to-text conversion APIs in terms of word error rate (WER)
and runtime [29]

As shown in Fig. 4-1a, at every tick of the behavior tree, first the sub-task Speech to Text Con-

version is executed to get the generated text from the incoming audio stream. Then the collected

text is passed to the following components via blackboard, a typical component in BTs to store and

transport data between the sub-trees and nodes. Upon completion of these steps, the Speech to Text

Conversion sub-task will return success to its parent node.

4.1.3 Information Extraction

After retrieving text from the speech recognition component, the collected text is fed into the

Information Extraction component. In this component, input text 𝑇 is represented by a concept

set 𝐸, which is a subset of the whole concept set 𝐶, and consequently essential information for

emergency medical services can be extracted, including patient’s physical condition and medical

history, situations of the accident scene, and treatments performed by the first responders. The

information extraction process consists of the following steps (Shown in Fig. 4-3).
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UMLS Concept Extraction

At this step, we apply MetaMap, a widely available tool for mapping biomedical text into

the concepts in the Unified Medical Language System (UMLS) Metathesaurus [2], to extract the

biomedical concepts from the text along with their negation condition, semantic type, and position

information. Every single concept is assigned with a unique identifier in the UMLS, called Clinical

Unique Identifier (CUI).

Concept Filtering

Metamap is a highly configurable tool to map biomedical text to the concepts in the UMLS

Metathesaurus, and it returns a list of UMLS concepts when a piece of the input text is given.

However, not all of the output concepts yielded by MetaMap are required by the EMS protocols.

Hence, we compiled a set of EMS protocol specific concepts that are required by the EMS protocols

or are frequently used by the medical responders. The way we applied to filter concept is using

concept-unique-identifiers (CUI) of the target concepts. Each concept was then extended to an

additional set of terms that share the same or similar meaning with the original concept and these

terms were mapped into unique UMLS CUIs. The list of CUIs was generated by sending the original

text as queries to UMLS online API and selecting the 25 most related CUIs (i.e., top 25 ranked in

order of relevance). At the concept filtering stage, this extended list of CUIs (𝐶) is used to filter the

results from MetaMap and keep the concepts most relevant to the EMS protocols.

Value Retrieval

We find additional information related to the concepts identified in the text, e.g., for the extracted

concept pulse rate, we are interested to also extract the value of the pulse rate. For retrieving the

corresponding numeric values of specific concepts such as vitals (e.g., pulse rate, blood pressure,

spo2) we find the closest number to the concept as their value via regular expression matching. We

directly use the preferred names as the value of the abstract concepts (e.g. history of symptoms,

quality of pain, past illness).

Confidence Assignment

We assign a confidence score to the extracted concepts from text to indicate the notion of un-

certainty in our detected evidence from the scene due to non-perfect quality of speech recognition
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Figure 4-3: Information Extraction Pipeline

and concept annotation components. In our confidence calculation and assignment, we consider the

confidence score for the recognized words by the Google Speech API [7] and the similarity score

provided by the MetaMap API indicating the level of confidence in mapping between the input text

and UMLS concepts [3]. By combining these two different confidence scores, we can have a score

representing the overall confidence in the information collected from the conversations of emer-

gency responders at the scene. Incorporating other factors contributing to uncertainty and lack of

confidence (e.g., missing information, noisy speech) is the subject of future work.

The collected concept set 𝐸 is modeled as a dictionary with each element defined using the

following unified format:

(𝐶𝑖 : 𝑃𝑖,𝑡, 𝑉𝑖,𝑡, 𝑇𝑖,𝑡, 𝐶𝑜𝑛𝑓(𝐶𝑖, 𝑡), 𝑡)

where 𝐶𝑖 refers to the 𝑖th concept in the dictionary, which also serves as a key in the dictionary; 𝑃𝑖,𝑡

is a boolean variable representing the presence or absence of 𝐶𝑖 in the text at tick 𝑡; 𝑉𝑖,𝑡 is a number

representing the value of 𝐶𝑖 at tick 𝑡; 𝑇𝑖,𝑡 is the normalized original trigger text of 𝐶𝑖 at tick 𝑡, and

𝐶𝑜𝑛𝑓(𝐶𝑖, 𝑡) indicates the confidence of the concept 𝐶𝑖 at tick t. Assuming the text from which

the concept 𝐶𝑖 was detected has a speech-to-text confidence score 𝐶𝑜𝑛𝑓𝐺(𝐶𝑖) provided by Google

Speech API and its CUI detected by MetaMap has a similarity score 𝑚𝑚𝑆𝑐𝑜𝑟𝑒(𝐶𝑖), we calculate

the confidence score 𝐶𝑜𝑛𝑓(𝐶𝑖) for every 𝐶𝑖 in 𝐶 as follows:

𝐶𝑜𝑛𝑓(𝐶𝑖) = 𝐶𝑜𝑛𝑓𝐺(𝐶𝑖) ·𝑚𝑚𝑆𝑐𝑜𝑟𝑒(𝐶𝑖) (4.1)

An example piece of text along with the corresponding dictionary elements extracted by the Infor-

mation Extraction phase are shown in Fig 4-6a. These outputs are formatted in a unified structure

and then fed to the next stage for protocol selection and execution and intervention suggestion.
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4.1.4 Vectorizer

Once we get the concept set 𝐸 representing the input text by EMS related concepts, similar to

text vectorization, we can transfer the concept set 𝐸 as a vector 𝑉𝑇 , whose size equals the length

of the concept set 𝐶 and values are the confidence scores 𝐶𝑜𝑛𝑓(𝐶𝑖, 𝑡) for each extracted concept

𝐶𝑖 in 𝐸. Each item in the input text vector indicates if the concept has appeared in the input text

and how much confidence we have for its mapping (mapping textual contents to concepts). Thus, if

any concept 𝐶𝑖 is detected at tick 𝑡, the corresponding item in the text vector will be encoded with

a value of 𝐶𝑜𝑛𝑓(𝐶𝑖, 𝑡).

We also use a set of vectors 𝑉𝑃 to represent the concepts related to signs and symptoms that are

required for the execution of a specific EMS protocol. Each protocol in protocol set 𝑃 is represented

as a vector 𝑉𝑃𝑖 , whose size also equals the length of the concept set 𝐶 but values are assigned with

different weights based on the importance of these concepts in selecting the protocol. These weights

are assigned and ranked by real first responders participating in our project. Formally, these two

vectors can be represented as follows:

𝑉𝑇 = {𝐶𝑜𝑛𝑓(𝐶𝑖)|∀𝐶𝑖 ∈ 𝐶} (4.2)

𝑉𝑃𝑖 ={𝑊𝑒𝑖𝑔ℎ𝑡(𝐶𝑗)|∀𝐶𝑗 ∈ 𝐶

∧𝑊𝑒𝑖𝑔ℎ𝑡(𝐶𝑗) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑃𝑟𝑖𝑖𝑗 )

∧ 𝑃𝑟𝑖𝑖𝑗 ∈ {0, 1, 2, 3}}

(4.3)

where 𝑃𝑟𝑖𝑗 is a priority score assigned based on the relevance between the protocol 𝑃𝑖 and

concept 𝐶𝑗 (with 3 representing most relevance and 0 representing no relevance). We apply softmax

function to normalize these scores into weights and make them add up to 1.

4.1.5 Protocol Selection

Given the input text vector 𝑉𝑇 , representing the information gathered from the scene at tick 𝑡 and

the protocol vector set 𝑉𝑃 , representing the required concepts (conditions, signs and symptoms) for

executing a specific EMS protocol, we take a weakly supervised approach to determine the relevance

between the current situation at the scene and each EMS protocol in 𝑃 by calculating the similarity

between their vectors. Cosine similarity, as a commonly used metric in information retrieval and
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question answering systems is used. We calculate the similarity and relevance between the text (𝑉𝑇 )

and protocol (𝑉𝑃𝑖) vectors, as follows:

𝑆𝑖 =
𝑉𝑇 · 𝑉𝑃𝑖

‖𝑉𝑇 ‖ · ‖𝑉𝑃𝑖‖
(4.4)

After calculating the cosine similarity between a given text vector and all the protocol vectors

in our library of EMS protocols, we rank the protocols based on their similarity to the input text

and select the ones with highest scores as the appropriate protocol to be executed by the cognitive

assistant system. The whole protocol ranking procedure is shown in Fig. 4-4. If multiple protocols

have a high relevance score, an ordered list of candidate protocols will be selected and used for

the feedback generation. We assign the cosine similarity index calculated for each protocol as

a confidence score for its selection and normalize the confidence scores such that the sum of all

scores in the final list is equal to 1. For a subset of protocols from 𝑃 , called 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, containing

top 𝑁 protocols based on their cosine similarity scores, the normalized confidence score of each

candidate protocol, 𝐶𝑜𝑛𝑓(𝑃𝑖), is calculated as follows:

𝐶𝑜𝑛𝑓(𝑃𝑖) =

⎧⎪⎨⎪⎩
𝑆𝑖∑︀
𝑆𝑗
, ∀𝑃𝑗 ∈ 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

0, otherwise
(4.5)

This normalization of the confidence scores provides a frame of reference to the responders

for comparing the scores and potentially considering the protocols with the higher scores. It also

enables confidence propagation and assignment to the interventions suggested by the BT framework.

4.1.6 Protocol Execution - Intervention Suggestion

Typically, each EMS protocol describes some specific rules to perform interventions in an emer-

gency scene, and the conditions in these rules are signs, symptoms or medical history of the patient,

which we extracted and represented as concepts in the previous components (see example in Fig. 4-

1b). Therefore, we model the execution logic for each EMS protocol as a separate sub-tree in the

BT whose children implement the conditions to be checked and actions or interventions to be taken

as part of the protocol. All of the protocol nodes are connected to a parallel parent node, which

makes it possible for all the selected candidate protocols to be executed concurrently at the same

time and suggest most relevant interventions with highest confidence score to the responder. Due

20



Figure 4-4: Pipeline to Generate Text and Protocol Vectors

to the modularity of the BTs structure, we can easily replace or extend the set of EMS protocols by

merely replacing or adding to the sub-trees under the parent node.

Each EMS protocol connected to the parallel node is modeled as a sequential composite, whose

children including a protocol condition node and a protocol action node (shown in Fig. 4-1a). That

makes the protocol condition node executes prior to the protocol action node to check if the protocol

selector selects the protocol. If it is selected, the protocol condition node will return success and

allow the parent node to tick the protocol action node. The protocol action leaf is a sub-tree that

keeps track of the execution of the actions in the EMS protocols. An example among these action

sub-tasks is shown in Fig. 4-1b. Note that the children nodes in green (e.g., the leaf "Hypoxemia?")

are condition nodes. If the condition is satisfied, it will return success to its parent node. Otherwise,

it returns failure. At each tick of the BTs, the protocol execution component tracks the action of the

medical responders based on the input text and suggests the next step.

Although stochastic BT is mentioned in the Section 2.3, it is built based on the execution times

and pre-defined success probabilities of each action in the behavior tree, which we cannot define

or measure in our system. Thus, we developed a mechanism to calculate and assign confidence

scores to the interventions based on the confidence score we assigned to each extracted concepts in

Section 4.1.3 and the confidence scores for the selected EMS protocols calculated by Equation 4.5.

The mechanism which is used to calculate the confidence scores for the interventions in the EMS

protocols is developed based on two assumptions:
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∙ The confidences of the concepts extracted by the information extraction component are inde-

pendent of each other;

∙ The confidences of the selected protocols and the confidences of the concepts extracted by

the information extraction components are independent.

Based on these two assumptions, the confidence of the interventions can be calculated as fol-

lows:

𝐶𝑜𝑛𝑓(𝐼𝑖) =
∑︁

𝐶𝑜𝑛𝑓(𝐶1, 𝐶2, ..., 𝐶𝑘) · 𝐶𝑜𝑛𝑓(𝑃𝑖), ∀𝑃𝑖 ∋ 𝐼𝑖 (4.6)

Where 𝐶𝑜𝑛𝑓(𝐶1, 𝐶2, ..., 𝐶𝑘) refers to the combined confidence score from the confidence

scores of all of the conditions 𝐶1, 𝐶2, ..., 𝐶𝑘 of the intervention 𝐼𝑖 described in EMS protocol

𝑃𝑖. The combination of the confidence scores from different conditions are calculated based on

their logic relationship. For an example, if the condition for intervention 𝐼 is 𝐶1 ∧ 𝐶2, then the

combined confidence score 𝐶𝑜𝑛𝑓(𝐶1, 𝐶2) will be calculated as 𝐶𝑜𝑛𝑓(𝐶1) · 𝐶𝑜𝑛𝑓(𝐶2); If the

condition is 𝐶1 ∨ 𝐶2, then the combined confidence score 𝐶𝑜𝑛𝑓(𝐶1, 𝐶2) will be calculated as

1 − (1 − 𝐶𝑜𝑛𝑓(𝐶1)) · (1 − 𝐶𝑜𝑛𝑓(𝐶2)). These basic logic combinations of the conditions can be

implemented as composite condition nodes in BT framework (shown in Fig. 4-5b and Fig. 4-5c).

(a) Confidence Propagation (b) And Logic in BT

(c) Or Logic in BT

Figure 4-5: Confidence Calculation and Propagation in a Protocol Action Sub-tree and Composite
Condition Nodes

There is an obvious risk to execute protocols connected to the parallel node concurrently in
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this system. In most cases, extra protocols will be executed, and consequently, inappropriate or

even safety-critical feedback might be suggested to the responder. To avoid such risks, we have

extended the BT framework with a new capability for assigning confidence values to the nodes and

propagating them through the execution path on the BT. This enables us to provide a confidence

for each final feedback generated by the selected protocols and let the responder consider different

interventions with different confidence levels. When calculating the propagation of the confidence

scores on the paths of the BT, we assume that the appearance of the concepts in the protocols are

independent events from each other and they are also independent from the event that a protocol is

selected. Thus, we assign a confidence score to every final feedback node (leaf action or intervention

node in the protocol subtree) by multiplication of confidence scores assigned to previous nodes in

the path to that node, including the concepts and conditions observed in the input text and the

the protocols selected. Fig. 4-5a shows an example of the propagation of confidence scores from

a selected protocol and an observed concept in text into an action node on the BT. Finally, The

interventions with a confidence score of less than 0.1 are filtered out from the final list of suggestions

presented to the responder.

As a result of applying the above-mentioned mechanism, the safety-critical and inappropriate

interventions tend to have a lower confidence scores. Because:

∙ The initial confidence assigned to each protocol is based on the similarity between the text

vector and their protocol vectors, which means the interventions within the less relevant

protocols will be assigned with lower confidence scores.

∙ Even if an irrelevant protocol is selected by the model, some of the interventions suggested

by these protocols are less likely to be suggested because the relevant observations are not

extracted from the scene and required conditions for those interventions are almost impos-

sible to be satisfied. For example, if chest pain protocol is triggered in a abdominal pain

case, "STEMI" is less likely to appear in this case and corresponding interventions will not

be suggested.

∙ In EMS protocols, the safety-critical medications/interventions typically have more condi-

tions/prerequisites to be satisfied and some of them can only be performed when other less

safety-critical interventions were not effective (e.g., Fentanyl will only be administered when

pain persists after giving Nitroglycerin in Chest Pain protocol). Thus, these interventions tend

to have lower confidence scores and more likely to be filtered by the confidence threshold.
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(a) Example output from information extraction stage

(b) Example output from protocol execution & intervention prediction

Figure 4-6: An example of the results from the proposed BT Cognitive Assistant System
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4.2 Supervised Machine Learning Classifiers

Other than the proposed BT framework, we also tried to resolve the intervention suggestion

based on an end-to-end method: directly predict the intervention based on the input text. Given this

idea, we modeled each historical EMS cases and queries using vector space models and treated the

recorded interventions as the ground-truth of the corresponding EMS case. Thus, we can define this

end-to-end method formally as follows:

Given an EMS narrative/document 𝐷𝑗 represented as a vector:

𝐷𝑗 = (𝑤1𝑗 , 𝑤2𝑗 , ..., 𝑤𝑡𝑗)

Each dimension 𝑤𝑖𝑗 corresponds to a separate term. These terms could be single words, phrases

or keywords depending on the way we build the vector space model. If the term occurs in the

document, its value in the vector is non-zero.

Meanwhile, the recorded/predicted interventions 𝐼𝑗 can be encoded as a vector as well:

𝐼𝑗 = (𝑖1𝑗 , 𝑖2𝑗 , ..., 𝑖𝑛𝑗)

Each dimension 𝑖𝑖𝑗 corresponds to a specific intervention in the intervention set 𝐼 . If the in-

tervention is recorded/ predicted in the EMS report, its value in the vector is 1. Otherwise, it is

0.

Therefore, we can train a multi-class and multi-output classifier by a set of historical EMS

reports along with recorded interventions to perform this end-to-end intervention prediction task.

4.2.1 Vector Space Model

Before building the vector space model representing the text documents, we need to pre-process

the input text. Here we applied the basic text processing techniques to perform the preprocessing,

including tokenization, normalization, stemming, and stopwords removal, which extracted essential

features from texts and reduced the dimension of the text vector. The overall pipeline is shown in

Fig. 4-7

We first tried two kinds of n-gram settings in the feature extraction step: unigrams and tech-

nical n-grams. Uni-grams are typically single terms extracted from text after pre-processing. The

technical n-grams here refer to a controlled vocabulary containing a set of contiguous sequence of

n words that follow a specific Parts-of-Speech (POS) pattern. For example, we extracted n-grams
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Figure 4-7: Text Processing Pipeline in Vector Space Model

(1 to 4 grams) representing phrases that are constructed only of nouns and adjectives. The weights

𝑤𝑖𝑗 assigned to the vectors are calculated based on the TF-IDF [35] of each unigram/ technical n-

gram in the training dataset. The TF-IDF weighting for each term in the vector can be calculated as

follows:

𝑡𝑓 − 𝑖𝑑𝑓(𝑡, 𝑑) = 𝑡𝑓(𝑡, 𝑑)× 𝑖𝑑𝑓(𝑡) (4.7)

𝑖𝑑𝑓(𝑡) = log
1 + 𝑛

1 + 𝑑𝑓(𝑡)
+ 1 (4.8)

where 𝑡𝑓 means term-frequency (𝑡𝑓(𝑡, 𝑑) means the frequency of term 𝑡 in document 𝑑) while

𝑡𝑓−𝑖𝑑𝑓 means term-frequency times inverse document-frequency. In the idf calcuation, 𝑛 is the total

number of documents in the document set, and 𝑑𝑓(𝑡) is the number of documents in the document

set that contain term 𝑡.

In addition to these two typical methods for the vector space representation of the documents,

we also applied the concept vector mentioned in Section 4.1.4 that uses EMS protocol specific

concepts and corresponding confidence scores to encode the given texts.
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4.2.2 Multi-label Classification

Once we have the input texts represented as text vectors, classifiers can be trained with these text

vectors and their corresponding interventions. Because there are multiple interventions recorded in

most EMS reports, we treat this intervention prediction problem as a multi-label classification task.

We picked several different machine learning algorithms and strategies to perform this multi-label

classification task.

Binary Relevance Method

One straight forward strategy to resolve a multi-label classification problem is to transform this

problem into multiple binary classification problems (shown in Fig. 4-8), which is also referred to

as the binary relevance method [31]. This approach amounts to independently training one binary

classifier for each label. Given a test sample, the combined model then predicts all labels for this

sample for which the respective classifiers predict a positive result.

One-vs-the-rest (OvR) strategy is a typical binary relevance method [21]. This strategy consists

of training one classifier per class. For each classifier, the class is fitted against all the other classes.

One advantage of this approach is its interpretability since each class is represented by one and only

one classifier. Thus, it is possible to gain knowledge about the class by inspecting its corresponding

classifier.

Figure 4-8: Binary Relevance Transformation

Once we transfer the multi-label classification problem into multiple separate binary classifica-

tion problems (one for each label), we can train the model with any off-the-shelf binary classifier.

We chose the support vector machine as the binary classifier in our implementations.
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Adapted Classification Algorithms

There are also classification algorithms/models that have been adapted to the multi-label task,

without requiring problem transformations. There are several advantages to use a single model:

The single model can consider the dependencies, and it is more scalable than the model combining

multiple binary classifiers. However, the performance of the single classifier largely depends on the

problem domain. We used decision trees and random forests to perform the multi-label classification

task.
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Chapter 5

Evaluation

Three sets of experiments were performed to evaluate the proposed BT framework and trained

supervised machine learning models. First, we assessed the accuracy of selected protocols by the

automated protocol selection procedure. Second, we executed the top three selected candidate pro-

tocols in parallel on the BT framework and compared the suggested interventions by the system with

the actual interventions performed by the first responders as logged in the data. We also compared

the performance of BT framework with supervised ML methods trained on historical EMS data.

Last, we evaluate the performance of the models under the simulated streaming data by splitting the

input text into chunks.

5.1 Experimental Setup

For these three experiments, we considered 8 commonly used EMS protocols from a regional set

of protocol guidelines and a dataset of 8302 pre-hospital call sheets from a regional ambulance au-

thority (RAA). The information inside these reports are originally organized into several categories

including the type of the call, priority of the dispatch, chief complaint from the patient, first and

second impressions from the first responders, vital signs recorded in the emergency scenes, inter-

ventions taken by the first responders, outcome after the interventions and the narratives describing

the emergency situations. Narratives and vital signs were fed to our model as inputs because the

narratives from the first responders and the vital signs are the only information that we can directly

obtain from verbal conversations in the emergency scenes. Note that in these experiments, we di-

rectly used the narratives and vitals transcribed by the responders and did not perform the speech
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to text conversion, so the 𝐶𝑜𝑛𝑓𝐺(𝐶𝑖) score in Equation 4.1 was always set as 1. The results of

evaluating the speech to text conversion step for both noise-free and noisy realistic audio data from

incident scenes were presented in [28].

For a subset of 3657 records, the actual protocol used by the responder was labeled by one of

the advanced life support trained responders in our project and was used as grand truth for assessing

the accuracy of automated protocol selection component. This was done by developing a set of rules

unique to each of the pre-selected protocols in order to filter out cases that were either ambiguous or

fell into another treatment protocol. For example, in order for a case to be labeled as an opioid over-

dose, the medication Naloxone must have been administered and the documented field impression

must indicate that the original responder believed the patient’s presentation was due to an overdose.

Thus, we marked the cases that the medication Naloxone was given and the impressions included

opioid overdoses as overdose opioid protocol. First responders’ interventions recorded in these re-

ports served as the ground truth to evaluate the suggestions generated by our model and the quality

of the feedback to responders.

We developed multiple machine learning (ML) models with several variations of hyper-parameters

that were trained on the RAA data to perform intervention prediction. These models were used

to evaluate the performance of the intervention suggestion by our proposed knowledge-driven BT

method. Specifically, we applied the following three supervised data driven ML models to perform

the intervention prediction: Support Vector Machines (SVM), Random Forest (RF), and Decision

Trees (DT). We applied the intervention column in the RAA reports as the ground truth and the

narrative column as inputs to train the these models. Each narrative was represented in three vector

spaces using technical n-grams ,uni-grams and protocol concepts of the narratives. Our test dataset

for intervention prediction included 1000 RAA EMS reports for both BT and ML models. The

remaining 7302 EMS reports were used to train the ML models. We applied 5-fold cross-validation

by splitting the training data consisting of 7302 reports into 5841 training cases and 1461 valida-

tion cases and trained multi-class classifiers (for 94 intervention classes) using the three supervised

ML algorithms. To achieve a fair comparison between the confidence-aware, knowledge driven

unsupervised method based on BTs and the data driven, supervised ML models, we also added

the following two settings to the ML models: (i) Training the ML models using a class weighting

approach in which intervention classes with higher risk scores were assigned lower weights to di-

rect the supervised ML models towards selecting less safety-critical interventions with lower risk

factors; (ii) Applying the similar confidence score filter implemented in the BT model to filter the
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interventions with low confidence.

Furthermore, to simulate the speech data streaming in emergency scenes, we conducted another

set of experiments in which we gradually fed the the input text into the proposed BT model and

the supervised ML models which had the best performance in our previous evaluations, to evaluate

their performance for the streaming data. We did this by splitting the input narratives into chunks of

text. The performance of the models at each chunk was evaluated by comparing their output with

the ground truth and their final outputs (the outputs from the models when provided with the whole

narrative). Note that we need to provide the BT model with text chunks since the model itself stores

the extracted EMS concepts, but the ML models need to be fed with accumulated text chunks to

perform the intervention prediction. Here we split each EMS reports into 11 chunks in the 1000 test

reports and compares the performances in terms of micro-averaging precision, recall, F1 score, and

convergence rate. Note that here we chose the number of text chunks as 11 based on the average

length of the EMS reports in our dataset and an empirical minimum length of the finalized text

generated by the Google Cloud Speech API.

The convergence rate here is defined as the rate at which a model converges to its final result.

To be more specific, if we define the temporary intervention prediction result for the 𝑘𝑡ℎ text chunk

as 𝑃𝑟𝑒𝑑(𝑘) the convergence rate can be calculated as:

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑅𝑎𝑡𝑒(𝑘) = 1−
∑︀𝐼

𝑖=1 |𝑃𝑟𝑒𝑑(𝑘)𝑖 − 𝑃𝑟𝑒𝑑(𝑛)𝑖|
𝐼

(5.1)

where 𝑛 is the total number of the text chunks and 𝐼 is the length of the intervention vector. Note

that the element in this vector would be 1 if the corresponding intervention is predicted in the

results and otherwise it would be 0. We introduce this evaluation metric because of our concern

about the performance of intervention prediction, when the model is given only partial information

or evidence from the emergency scene, and to evaluate the reliability of intermediate interventions

suggestions provided to the first responders.

5.2 Experimental Results

5.2.1 Protocol Selection

To evaluate the automated protocol selection procedure, we compared the ranked list of selected

protocols by the cognitive assistant with the grand-truth protocols labeled by the participating first
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responders in our project. Since the protocol selection component generates a ranked list of top 3

protocols with their confidence scores, we applied a top-3 accuracy metric to evaluate if the target

label by the responder is one of the top 3 predictions by the cognitive assistant. Our experiments

with the 3657 test cases from RAA dataset showed an average top-3 accuracy of 89.0%. By re-

viewing the cases for which the cognitive assistant predictions did not match the labels provided

by the responders, we identified the following reasons for sub-optimal performance of our protocol

selection method:

∙ Errors occurred in mapping between input text and standard concepts in our Information Ex-

traction component, which led to generation of inaccurate text vectors and consequent gener-

ation of wrong ranking for the selected protocols. These errors were due to: 1) MetaMap not

recognizing the required concepts as CUIs; 2) Some identified CUIs by MetaMap not appear-

ing in the mapping between CUIs and standard concepts in our model; 3) CUIs and concepts

not precisely matching (e.g., We get the CUI "Respiratory Sound" from UMLS mapping to

the required concept "Wheezing." However, they are not the same since wheezing is one

kind of respiratory sound. Thus, some other respiratory sounds will be mapped to wheezing,

which leads to a mapping errors.); 4) MetaMap not producing the correct negation detection

results, leading to missing the presence of some concepts from input text.

∙ Protocol vectors were manually developed based on the descriptions of signs and symptoms

in the set of protocols and the value of each concept in the protocol vector was assigned with

different weights based on their importance, as reviewed and ranked by one of the participat-

ing responders in our project. Some of the manually assigned weights in the protocol vectors

caused errors.

∙ Missing critical information (e.g., incomplete vital signs) in some of the EMS cases also

affected the correctness of the text vector.

5.2.2 Intervention Suggestion

To evaluate the performance of the intervention suggestion, we used the list of interventions

performed by the responders in the dataset as ground truth and compared it with the list of inter-

ventions suggested by the cognitive assistant system. We define the predictions which appear in the

ground truth as true positives (TP), while the ones which are not included in the ground truth as false
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positives (FP). We also define the interventions in the ground truth that failed to be predicted by our

system as false negatives (FN). By calculating the TPs, FNs and FPs for each RAA case, we applied

both weighted and micro average precision, recall and F1-score to evaluate the performance of the

intervention predictions. Compared to the macro-averaging method which computes the metrics

independently for each class and then takes the average (treating all classes equally), the micro-

averaging method aggregates the contributions of all classes to compute the average metric [34].

The weighted averaging method calculates precision, recall, and F1-score for each class, and find

their weighted average based on the number of instances for each class to take the imbalance among

classes into account.

𝑃𝑚𝑖𝑐𝑟𝑜 =

∑︀
𝑇𝑃 𝑖∑︀

𝑇𝑃 𝑖 +
∑︀

𝐹𝑃 𝑖
(5.2)

𝑅𝑚𝑖𝑐𝑟𝑜 =

∑︀
𝑇𝑃 𝑖∑︀

𝑇𝑃 𝑖 +
∑︀

𝐹𝑁 𝑖
(5.3)

𝐹𝑚𝑖𝑐𝑟𝑜 =
2 · 𝑃𝑚𝑖𝑐𝑟𝑜 ·𝑅𝑚𝑖𝑐𝑟𝑜

𝑃𝑚𝑖𝑐𝑟𝑜 +𝑅𝑚𝑖𝑐𝑟𝑜
(5.4)

𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =

∑︀
𝑃𝐶𝑖 · 𝐶𝑖∑︀

𝐶𝑖
(5.5)

𝑅𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =

∑︀
𝑅𝐶𝑖 · 𝐶𝑖∑︀

𝐶𝑖
(5.6)

𝐹𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =
2 · 𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 ·𝑅𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑

𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 +𝑅𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑
(5.7)

where 𝐶𝑖 indicates the number of instances in intervention class 𝑖; 𝑃𝐶𝑖 and 𝑅𝐶𝑖 indicates the

precision and recall of class 𝑖.

In addition to traditional methods for evaluation of multi-output prediction results, we also

consulted with first responders about the FN and FP intervention predictions because some of the

suggested interventions although reasonable, might not be performed by the first responders and

some of the suggestions are too risky to be performed at the scene. EMS protocols are written in

terms of escalating clinical care, therefore even if an intervention is indicated under a certain pro-

tocol the responder may not perform it due to time or resource limitations. Further, EMS protocols

prioritize life and limb saving interventions over comfort measures, and simple interventions are

preferred over the complex ones whenever possible. Under this consideration, we used another

metric to evaluate our intervention suggestion method in terms of the risk incurred by the inter-

ventions. All the suggested interventions were classified into four distinct classes of red, orange,
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Model Weighted
Precision

Micro
Precision

Weighted
Recall

Micro
Recall

Weighted
F1 Score

Micro
F1 Score

Cross-Validation
Micro F1 Score

Avg.
Risk

Behavior Tree 0.65 0.76 0.66 0.66 0.64 0.71 NA 0.34

Linear
SVM

ngram 0.83 0.89 0.77 0.77 0.78 0.83 0.81 0.32
ngram, filtering 0.83 0.89 0.77 0.77 0.78 0.83 0.81 0.31
unigram 0.88 0.92 0.86 0.88 0.87 0.90 0.88 0.24
unigram, filtering 0.88 0.92 0.86 0.88 0.87 0.90 0.88 0.23
feature vector 0.62 0.81 0.63 0.64 0.61 0.72 0.73 0.44

Random
Forest (RF)

ngram 0.77 0.88 0.67 0.66 0.68 0.76 0.75 0.46
ngram, weighted 0.77 0.87 0.61 0.62 0.63 0.72 0.72 0.46
ngram, filtering 0.80 0.89 0.66 0.67 0.68 0.76 0.75 0.43
unigram 0.84 0.91 0.72 0.71 0.74 0.80 0.78 0.42
unigram, weighted 0.76 0.88 0.63 0.65 0.65 0.74 0.74 0.49
unigram, filtering 0.84 0.91 0.71 0.71 0.74 0.80 0.78 0.39
feature vector 0.65 0.76 0.60 0.60 0.66 0.67 0.72 0.60

Decision
Trees (DT)

ngram 0.73 0.77 0.73 0.75 0.72 0.76 0.74 0.45
ngram, weighted 0.71 0.75 0.70 0.73 0.70 0.74 0.73 0.54
ngram, filtering 0.73 0.78 0.72 0.75 0.72 0.76 0.74 0.46
unigram 0.82 0.84 0.80 0.82 0.81 0.82 0.83 0.28
unigram, weighted 0.77 0.80 0.79 0.79 0.77 0.80 0.79 0.39
unigram, filtering 0.80 0.84 0.80 0.81 0.80 0.83 0.81 0.28
feature vector 0.62 0.64 0.60 0.61 0.60 0.63 0.67 0.82

Table 5.1: Intervention suggestion provided by the unsupervised BT model vs. the supervised lin-
ear support vector machine (SVM), random-forest (RF), and decision tree (DT) models. Weighted
supervised models represent the models trained with inverse intervention risk scores while filtered
models represent models with confidence score filtering that remove interventions with low confi-
dence from the list of suggestions.

yellow and green. This is according to the severity of the condition that the intervention addresses

as well as possible side effects they might have for patients when incorrectly suggested (FPs) or not

suggested (FNs). These severity levels were then encoded as different risk scores 𝑅𝑖𝑠𝑘(𝐼𝑖) from 1

to 4 assigned to each intervention class. Larger scores indicate a higher risk if an incorrect interven-

tion is suggested to the responder. Then for each case with a set of 𝐼 interventions, we calculated

the average risk factor of the suggested interventions by summing the products of the risk scores

𝑅𝑖𝑠𝑘(𝐼𝑖) and confidence scores 𝐶𝑜𝑛𝑓(𝐼𝑖) of the incorrect interventions (FP or FN) provided by the

model and normalized it by dividing by the number of grand truth interventions for each case. The

average normalized risk to evaluate the performance of model over 𝑛 test cases was calculated as

follows:

𝐴𝑣𝑔. 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑖𝑠𝑘 =
1

𝑛

∑︀
𝐶𝑜𝑛𝑓(𝐼𝑖) ·𝑅𝑖𝑠𝑘(𝐼𝑖)

|𝐼|
(5.8)

Note that since the BT model cannot calculate the confidence score for the interventions in the

protocols that are not selected, we set the 𝐶𝑜𝑛𝑓(𝐼𝑖) of the FN interventions predicted by the BT

model as 1.

The evaluation results using the metrics mentioned above are shown in Table 5.1. Our re-

sults show that the knowledge-driven unsupervised BT method performs worse than supervised ML

methods when evaluated using the traditional evaluation metrics (precision, recall, and F1) used

for a multi-class classification task. However, there is a limitation in the dataset that we use in our

evaluation; some of the interventions appeared in the narratives and were encoded into uni-gram

and technical n-gram vectors, which might lead to bias in the ML models. This limitation can be
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partly reflected by the fact that the top 30 important features among all the features in the decision

tree models were found to be interventions or part of interventions. This flaw of the training dataset

is also further revealed and discussed in Section 5.2.3. Thus, we mainly compare the performances

between the BT model and the ML models trained with concept vectors, which are described in

Section 4.1.4.

By comparing the models using the same feature vectors, we can see that BT model has compa-

rable performance in terms of F1 score and much better performance in terms of average risk factor

(shown in Fig. 5-1). This means that we can effectively avoid safety-critical suggestions using the

confidence propagation and filtering mechanisms of the BT model.

Figure 5-1: Performance of Models Based On Concept Vector

The supervised ML methods trained with class weighting perform worse in terms of precision,

recall, and F1 than the models with no knowledge of risk scores, and they also yield higher average

risk factors as well. Based on the formula of the risk factor in our evaluation, the reason for these

results might be the extra FN and FP predictions brought by weight assignments for the ML models.

On the other hand, the ML models with filters, which get rid of predictions with confidence scores

lower than a threshold, slightly reduced the risk factor compared to the original models.

5.2.3 Performance with Streaming Data

In this section, we picked linear SVM trained by uni-gram vectors and linear SVM trained by

feature vectors, which are the models with the best performances trained by text vectors and concept

vectors, to make the comparison with BT model in terms of their performance with streaming input

text data.
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(a) Recall (b) Precision

(c) F1 Score (d) Convergence Rate

Figure 5-2: Model Performance with Streaming Input Text

The evaluation results are shown in Fig.5-2. By comparing the models based on the feature vec-

tors (BT model and linear SVM) and the model based on the uni-gram vectors, we can conclude that

the models developed by feature vectors converge to its final result faster than the model developed

by the uni-gram vector. That means, the models trained with feature vectors need less information

in the latter part of the reports and have better performance with streaming data than the models

trained with text vectors. Especially, as mentioned in Section 5.2.2, the limitation brought by the

dataset can be further revealed: by checking the EMS reports, we found that most of the signs and

symptoms of the patient were described in the former part of each report while most of the inter-

ventions taken by the first responders were recorded in the latter part, which is consistent with the

fact that the ML models tend to quickly converge after the fifth chunk of input data and the models

based on feature vectors almost converged at the first several text chunks.

On the other hand, by comparing the performance of the BT model and the linear SVM model

trained by feature vectors, we can find that the performance of the linear SVM model is better than

BT model. That means ML models perform better than the BT model in the streaming text data

situation.

Another consideration we have here is the incorrect intermediate intervention suggestion gener-
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ated by the models when they receive the streaming data. Even the model with the best convergence

performance only has a 53.4% and 66.8% convergence ratio after the first two chunks of texts, which

means the model cannot give correct intervention suggestions with small amount of information.
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Chapter 6

Discussion

6.1 Discussion

From the evaluations conducted in the previous section, the following major challenges were

identified:

∙ The concept list used in the information gathering phase is currently manually created and is

limited to the knowledge of protocols and, thus, it might be a possible reason for missing im-

portant concepts from the input text. Also, as the number of the target EMS protocols grows,

the cost and amount of effort needed for modeling the protocols and manually extending the

concept list significantly increases. Thus, we plan to find an automatic way of obtaining a

more complete and accurate concept list in the future. We are now investigating the vec-

tor space models and unsupervised machine learning techniques to automatically expand the

limited set of manually identified concepts to a larger database of EMS relevant terms to be

extracted from the text.

∙ The inaccuracies in detection of presence or absence of the concepts in text largely affect

the results of the protocol selection and execution phases. Currently, we rely on the negation

detection features of MetaMap to extract the absence of concepts. Future work will focus on

developing techniques for more precise detection of concept presence and absence.

∙ The unified dictionary format for representing and collecting the extracted information, the

protocol conditions, and the modularity of behavior tree models enable scalability of the BT

framework. We plan to study the possibility of automatically extending the behavior trees
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based on EMS data or protocols, by adding learning capability to the nodes.

∙ Interventions performed by a first responder are necessarily limited by the underlying context

such as transport time, the severity of patient illness and resources available. Systematically

accounting for these contexts would improve and better account for both the safety and rate

of the intervention suggestion false positives.

∙ The machine learning models trained by the uni-gram and n-gram text vectors were found

to suffer from generalization problem since some of the target interventions were mentioned

in the input narrative. The method we applied in this thesis to avoid this problem is using

the vectorizer mechanism in the BT model to extract the signs and symptom features in

the narrative. This method made the comparison between the BT model and ML models

fair since they are using the same input vectors. However, the concept vectors lost some

information that may not be required by EMS protocols from the narratives. Thus, we need

to find a way to filter the target interventions mentioned in the narratives to develop the vector

space models without bias.

∙ We simulated the streaming speech input in the evaluation section by merely splitting the

EMS reports into chunks. This evaluation would be much more accurate if we can have a

data set of actual streaming speech data from the scene along with the corresponding time

marks.

Furthermore, the proposed BT method has the following advantages compared to supervised

ML models:

∙ The evaluation results shown in Sections 5.2.2 and 5.2.3 indicate that the proposed BT model

can achieve a comparable intervention prediction performance in terms of precision, recall,

and F1 score compared to the performance of the supervised ML models, and meanwhile, it

can significantly reduce the risk factor of the intervention suggestions.

∙ The BT model has high modularity, which means when we need to edit/add/remove any

EMS protocols in the model, what we need to do is only substituting/inserting/deleting the

corresponding protocol sub-trees. However, when it comes to supervised data-driven ML

methods, re-collection and labeling of data and re-training the whole model is required.

∙ The proposed BT framework is weakly supervised and knowledge-driven, which means that

it does not rely on the availability of training data and correctness of labels. Whereas the
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performance of supervised ML methods greatly relies on the quantity and quality of the

training data and labels.

∙ In contrary to ML methods which are black box end-to-end solutions from input text to

interventions, the BT framework is transparent and can provide an explanation (i.e., indicate

which EMS protocols are selected) for the decisions made and suggestions provided to the

responders.

6.2 Conclusion

This thesis presented a Behavior Tree cognitive assistant system for emergency response which

can be implemented as a portable assistant interacting with the responders at the incident scenes to

provide them with suggestions on the most appropriate protocols and interventions to execute. Our

experimental results show that supervised ML methods trained on historical EMS data might slightly

outperform the knowledge-driven BT method when compared using traditional accuracy metrics

with the streaming input speech data. However, the proposed BT modeling framework provides

better guarantees on the safety of interventions suggested to the responder as well as transparency

and evidence. The proposed cognitive assistant system has also the potential to be used during

simulation training experiments for preparing responders with the knowledge of protocol guidelines

and scoring their performance in executing the protocols.

6.3 Future Work

Given the results and the conclusions presented in the previous parts of this thesis, our pre-

liminary works have already shown some achievements and limitations in developing the cognitive

assistant system for emergency medical services. This work could be improved and further explored

in the future from the following aspects:

∙ Accurate and domain-specific information retrieval from EMS data: In this thesis, MetaMap

and corresponding filtering mechanism are applied to extract EMS related concept/information

from the EMS reports, which is still not mature. On the other hand, the accuracy of the results

from the following component largely depends on the information retrieval results. Thus, the

improvement of accuracy and reliability could largely enhance the performance of the whole
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cognitive assistant system.

∙ Learning and adaptive ability of the BT model/ ML model: In this thesis, the proposed BT

model need manual effort to pick the feature concepts and encode the protocol rules, and the

ML models need to be pre-trained with EMS records. The learning and adaptive ability could

reduce the effort to develop the BT model and train the ML model manually.

∙ Better dataset/pre-processing on the dataset: The dataset applied in this thesis brought some

limitation to the model training and evaluation, such as the inaccurate label from the first

responders, the interventions appearing in the narratives, and the ambiguity from some of

the abbreviations, etc. Modified dataset or pre-processing methods could avoid part of these

limitations and yield more accurate models and evaluations.

∙ Further analysis with noisy/missing data: At the start of this thesis, we claimed the issue that

the speech data might be noisy or missing critical information needed for inference in the

incident scene and we resolve this issue by taking the confidence score from speech to text

conversion into account. However, we didn’t further evaluate this solution in the evaluation

part because of lack of access to large enough data sets of noisy and corrupted speech. It is

essential to assess the performance of the proposed cognitive assistant system pipeline with

noisy and corrupted speech data in the future.

∙ Incorrect intermediate intervention suggestions in the streaming data: In our evaluations,

we found that our ML and BT models have limited performance with the small amount

of input speech data because the models are purely relying on information collected from

verbalized observations to infer context. To avoid the influence of the limited speech data,

our model needs to have the ability to merge more information sources (e.g., vision from the

environment, vital measurements from the patients, etc.) to provide better suggestions.

∙ More potential application scenarios: This thesis only focused on the application of interven-

tion suggestion to first responders in the emergency scene. In the future, the proposed BT

framework can be easily extended to other applications due to its modularity. For an exam-

ple, we can make use of the retrieved concepts from the Information Extraction component

to develop a new component that can automatically fill in the EMS report forms or make use

of the intervention predictions as references to train the emergency medical technicians and

score their performance.
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