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Abstract

Latent Dirichlet allocation – association rule mining (LDaRM) is a methodology for

uncovering latent semantic information from a set of documents. Latent Dirichlet

allocation (LDA) is a form of topic modeling, a statistical learning technique that

clusters and organizes key words in a set of documents into a set of topics, which

represent the underlying themes in a corpus. While powerful, LDA often produces

topics that are difficult for a human to understand, and larger topic models become

cumbersome for an individual to analyze.

Association rule mining (ARM) is a data mining technique for uncovering interesting

patterns in data that enable a user to explore new knowledge domains or adjust

behavior in response to new information. However, if one were to use ARM on a

text corpus, the run-time to find interesting patterns would be cost prohibitive.

LDaRM combines these two techniques to address the weaknesses in each. LDA

reduces the dimensionality of the underlying data for ARM, while ARM improves

user comprehension of topic models developed using LDA. LDaRM is able to

uncover interesting rules that an analyst could use as a springboard to more

in-depth analysis of a corpus. In particular, LDaRM is useful for contextualizing

named entities - proper nouns that may have ambiguous definitions or are highly

context dependent. Finally, LDaRM is an effective tool for identifying terms that

confound topics and make it difficult for individuals to interpret topic model results.

Keywords – latent Dirichlet allocation, association rule mining, LDaRM,

exploratory text analytics, text mining, data mining
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1 Introduction

The amount of text data available for analysis has rapidly proliferated since the

advent of the internet. Newspapers publish articles online, academic journals

electronically publish articles, and novels in the public domain are available for

download. As such, there is an increased desire for methods that enable an

individual to quickly learn about large text corpora without reading each individual

text. For example, text summarization is a popular machine learning process

through which individual documents are distilled into major themes (Nenkova and

McKeown, 2011). Other techniques such as word2vec and t-SNE reveal hidden

relationships among words in a corpus (Rong, 2014; Maaten and Hinton, 2008).

Regardless of the chosen technique, these methods all seek to provide previously

unknown information to a user.

1.1 Exploratory Text Analytics

Exploratory text analytics (ETA) is a machine learning approach for uncovering

latent cognitive, cultural, and social content from texts (Hu and Liu, 2012). Latent

content may include the underlying themes, concepts, events, or sentiments that

exist within a corpus of text documents. A corpus may include books, newspaper

articles, academic papers, blogs, or social media posts. The methods used for ETA

are typically unsupervised; they are tools to support human interpretation of large

bodies of text. One may use hierarchical clustering to associate several documents

(Sahoo et al., 2006); classify patents using principal component analysis (Kaur and

Sapra, 2013); or apply sentiment analysis to trace narrative arcs in fiction (Gao
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et al., 2016). An ETA technique of particular interest is topic modeling.

1.1.1 Topic Modeling

Topic modeling is an unsupervised text analytics method used to discover underlying

themes in a set of documents (Blei et al., 2003; Griffiths and Steyvers, 2004;

Hannigan et al., 2019). More specifically, topic modeling clusters words and

documents in terms of their relative frequency of occurrence. However, the output

of topic models is often difficult to interpret and provides few actionable insights

(Kumar et al., 2019). Much research has been conducted to enhance topic models

through improved computational performance, enhanced readability, and the

inclusion of human input and external information (Li et al., 2017). While several

methods exist for developing topic models, one of the most common is latent

Dirichlet allocation (LDA).

Topic modeling for ETA is frequently a two-fold task. First, a user may seek to find

the high-frequency words to understand which important terms appear throughout

the corpus. Second, a user may look for exclusive terms – words that are rare

but may hold key information for understanding the corpus (Bischof and Airoldi,

2012). However, the LDA process determines which terms constitute a topic by

minimizing perplexity, a metric that will be discussed in greater detail in subsequent

sections. Unfortunately, lower perplexity does not equate to improved readability

or comprehension for a user. This research seeks to improve user comprehension

and knowledge discovery with regard to topic models through the use of association

rule mining.

However, topic models are subject to several limitations. For example, users
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often face difficulty with readability and interpretation of large topic models for

knowledge discovery tasks (Sievert and Shirley, 2014). Subject matter experts find

a topic model with a large number of topics difficult to navigate and comprehend,

reducing the effectiveness of the model (Mimno et al., 2011). Even within individual

topics, individuals may find it difficult to identify a single unifying theme (Röder

et al., 2015). This effect is amplified when using a topic model to explore a new

corpus or subject area.

1.1.2 Association Rule Mining

Association rule mining (ARM) is a machine-learning technique used to identify

interesting relationships between itemsets (Agrawal et al., 1993). ARM is typically

framed as a market-basket problem, in which one analyzes items contained

within transactions. Consider the archetypal example of a supermarket, in which

receipts represent transactions and products represent items. The manager of the

supermarket may perform ARM to identify interesting patterns and boost sales.

While there is no consensus definition of interestingness, several criteria can be used

to determine if a pattern is interesting, including: conciseness, coverage, reliability,

peculiarity, diversity, novelty, surprisingness, utility, and actionability (Geng and

Hamilton, 2006).

Returning to the example, the supermarket manager desires to organize products

in her store to maximize profits. Through her analysis she identifies {Diapers} !

{Beer} as a rule, suggesting that a customer who buys diapers is more likely than

expected to also purchase beer (Leskovec et al., 2014). This rule is interesting as

it is concise (two items), surprising (beer and diapers are not usually associated),



1.2 LDaRM 4

and actionable (the manager can alter behavior based on the information).

As with topic modeling, ARM faces several constraints. ARM is a computationally

expensive task and is not well suited for direct analysis of large corpora. Such

an attempt would require tens of thousands of individual items (the dictionary),

broken into thousands of baskets (each individual text in a corpus), with each basket

containing several thousand words. This problem rapidly becomes intractable -

using known complexity metrics as well as exploratory analysis on a personal

computer, it is clear that the algorithms used in ARM are not powerful enough to

provide information to a user in a reasonable amount of time. Furthermore, ARM

suffers a risk of producing false-positive rules, especially as the size of the dataset

increases. (Liu et al., 2011)

1.2 LDaRM

This thesis proposes Latent Dirichlet Allocation-Association Rule Mining (LDaRM)

as a methodology for understanding the results of a topic model by performing ARM

on a topic model’s output. LDaRM will leverage the strengths of its component

models to assist a user in knowledge discovery while sidestepping many of the

weaknesses of either individual approach. The analysis will demonstrate LDaRM

on a corpus of articles related to COVID-19, providing a step-by-step walk-through

of the methodology as well as a discussion of the results.

The results of this discussion regarding LDaRM will show improved knowledge

discovery from topic models by:

• Highlighting interesting association rules and relationships between topics.
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Many interestingness measures are already commonly used in ARM and

will be discussed in greater detail. LDaRM also leverages visualizations and

selection criteria to bring interesting rules to the user’s attention

• Contextualizing and describing named entities, as well as providing assistance

with term disambiguation. While LDaRM does not seek to be used for named

entity recognition, in the service of knowledge discovery, LDaRM provides

important context to words with multiple definitions or currently unknown

named entities.

• Identifying stop words (that is, non-information bearing words) that confound

topic models. Confounding, in this case, refers to an term that an observer

would say “does not belong” in a topic. Many of the most interesting rules, in

fact, contain stop words. This thesis will discuss the qualitative advantages of

stop word identification, as well as quantitative improvements to established

metrics (topic coherence) using LDaRM.

1.3 Thesis Outline

Chapter 2 of this thesis provides the background necessary to understand LDaRM,

its underlying components, data requirements, and an overview of performance

metrics. This includes an overview of relevant work and descriptions of state-

of-the-art procedures for ETA. Further, Chapter 2 provides an in-depth history

and descriptions of ETA, topic modeling and LDA, ARM, and the performance

metrics associated with each. Chapter 3 outlines the LDaRM process from start

to finish. Chapter 4 will set the stage for a case study, describing the data set
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used for analysis - a selection of academic research articles regarding COVID-19

and SARS-CoV-2. This will be followed in Chapter 5 with an analysis of the data

set using LDaRM. The analysis will highlight improvements to topic coherence by

using LDaRM as well as a description of how an individual would use LDaRM for

knowledge discovery. Chapter 6 will further the discussion of LDaRM, including

the limitations of the approach and future research opportunities. Finally, Chapter

7 will present a summary of the work.
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2 Background

This chapter will discuss the background information required to understand the

LDaRM methodology. The discussion begins with an overview of text analytics

and knowledge discovery as a whole. Following the overview, this chapter will

describe topic modeling in greater detail including the mechanisms of LDA and

associated metrics such as topic coherence. This will lead into an overview of ARM,

the algorithms used to collect rules, and measures of interestingness. Finally, this

section will present some of the research that highlights the usefulness of LDaRM

for knowledge discovery.

2.1 Text Analytics and Knowledge Discovery

Text analytics, broadly, refers to the use of statistical learning to automatically

collect information about a corpus of text. Classically, there are two pillars of

text analytics: knowledge discovery and information retrieval (Hotho et al., 2005).

Information retrieval for text may include techniques such as document classification

(Yang et al., 2016), named entity recognition (Lample et al., 2016), or web search

(Azad and Deepak, 2019). Information retrieval tasks for text mining typically

employ supervised machine learning techniques with the objective of uncovering

specific facts.

Knowledge discovery, in contrast, is the process of identifying understandable

and potentially useful patterns within a corpus (Fayyad et al., 1996). Knowledge

discovery tasks may or may not have a specific end goal and typically employ
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unsupervised learning techniques, otherwise known as exploratory text analytics

(ETA) (Murphy, 2012). Applications of ETA include document summarization

(Nenkova and McKeown, 2012), concept mining (Kolekar et al., 2009), and topic

modeling (Blei et al., 2003).

Regardless of the analytical method used, the high-level objective of text analytics

is the same: to derive human-understandable meaning from a set of texts. Writing

(and recorded speech) fixes social, cultural, and factual information about the

author and her subject through a process called entextualization (Park and Bucholtz,

2009). Text is a sort of fossil – it is an artifact that reflects the ideas, beliefs, and

culture of the writer entextualized at the time of publication (Pieniążek, 2015). It

is the job of ETA to help individuals investigate these fossils and derive meaning

from what they find. Inferring meaning from a set of texts is an iterative process

dubbed the Hermeneutic circle, pictured in Figure 2.1 (Alvarado, 2020a). The

Hermeneutic circle is a classical framework for understanding texts.



2.1 Text Analytics and Knowledge Discovery 9

Figure 2.1: The Hermeneutic Circle, adapted from (Boell and Cecez-Kecmanovic,
2010) and (Alvarado, 2020a)

The Hermeneutic circle is based on the premise that a corpus cannot be completely

understood as a whole or as individual parts, one needs both to derive meaning

from the texts. Meaning in this context refers to the relationship between the

reader, the texts, and societal context that allow the reader to understand latent

cultural and historical information (Klausen, 2017). For example, the American

television series M*A*S*H is both a situation comedy and a commentary on

America’s involvement in the Vietnam War. In parts, each episode is intended to

make the viewer laugh. When taken as a whole, the series is a commentary on

America’s role in global affairs. Neither of these points can exist on their own,

hence the circle.
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Uncovering the meaning of a set of documents is iterative; it requires constant

re-visitation. An individual begins at the whole, with limited understanding of the

meaning of the corpus. One then performs an analysis, or some form of mapping

of prior expectations to the individual parts. An individual then observes the

parts, which may confirm or contradict the prior beliefs. One then synthesizes

their findings from observing individual parts, forming a new understanding of the

corpus as a whole. This is repeated until the individual has satisfactorily derived

meaning from the text.

This process can be mapped to ETA and knowledge discovery. One begins with a

cursory knowledge of the corpus – in a statistical modeling sense, this represents

one’s prior beliefs. One then applies their priors to the data. The data is then

synthesized and used for training, yielding a statistical model of the text. The new

model is used to update prior beliefs, and the cycle continues. In theory one could

navigate the circle indefinitely, but the objective is to uncover “valid, novel, useful,

and understandable patterns” which allow one to derive meaning from a corpus

(Fayyad et al., 1996). With this in mind, it is critical to understand the text and

language models used in ETA and learn the form useful patterns may take.

2.1.1 Text Models and Language Models

2.1.1.1 Text Models

As previously stated, text is the entextualization of latent social, cultural, historical,

and factual information. ETA is a tool used to assist with decoding text to uncover

such information. ETA accomplishes this by mining one or more of the three main

elements of text: structure, sequence, and symbol (Alvarado, 2020a).
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Broadly, text can be described as a structured sequence of symbols (Pierce, 2019;

Alvarado, 2020a). Structure refers to the framework or shape of a text, usually

represented by a hierarchy. For example, in a novel the structure could be book

! chapter ! paragraph ! sentence ! word. One could mine the structure of

a corpus to establish authorship, as some have done to determine which parts

of Shakespeare’s plays were penned by Shakespeare himself or by other writers

(Aljumily, 2015).

Symbol refers to the smallest information-bearing elements of text. Symbols include

words and punctuation. One could mine symbols to uncover trends in a language

or to estimate public sentiment regarding a topic or event (Roth, 2016). The

Google Ngram Viewer, used to identify word use over time, relies heavily on symbol

(Google, 2012).

Sequence is the order of symbols in a text and provides much of the grammatical

structure of a document. Sequence helps make language predictable and

understandable. Sequence is a major factor in differentiating genres of writing - it

is what makes poetry stand out from prose (Rudy, 2010). In ETA, one may mine

sequence for part-of-speech identification (Wang et al., 2015).

Each of these three elements of text need not be analyzed alone – there are many

ETA techniques that mine two or all three elements at once to derive meaning from

a corpus. Named entity recognition – the automated process by which proper nouns

are identified in a text – leverages both sequence and symbol through use of neural

networks (Lample et al., 2016). By mining structure and symbol, researchers have

developed robust document classifiers (Clement and Sharp, 2003). Using all three
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elements of text, individuals can automatically generate syntactic annotations (Lin

et al., 2012) or summaries of entire documents (Nenkova and McKeown, 2012).

Many of these techniques rely on a special class of text models called language

models

2.1.1.2 Language Models

Language models are statistical distributions of sequences of symbols (Ponte and

Croft, 1998). Language models are derived from C. E. Shannon’s Theory of

Communication in that words in a message are not chosen at random, but rather

intentionally selected in a way that is measurable and predictable (Shannon, 2001).

If an author is writing about a particular subject, there is an increased likelihood

that they will choose certain words related to the subject. The likelihood of a

specific sequence of n words can be seen in Equation 2.1 (de Kok and Harm, 2010).

P (w1, w2, w3, ..., wn) =
Y

i

P (wi|w1, w2, w3, ..., wi�1) (2.1)

That is, the likelihood of word wi appearing in a sequence is dependent on which

words precede it. Many modern applications such as text editors, search engines,

and messaging services rely on language models. Language models are the basis of

text prediction (Wandmacher and Antoine, 2008), auto-complete (Fowler et al.,

2015), text-to-speech (Chelba et al., 2008), and machine translation (Tang et al.,

2018).

Building useful language models is critical for effective ETA, especially as one

moves from the statistical model to deriving meaning. Language models allow a
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user to identify unique patterns in data – perhaps a particular word or phrase

appears with more regularity in a particular document compared to the corpus

as a whole. The objective of ETA, then, is to tune language models to identify

significant words, as shown in Figure 2.2 (Luhn, 1958).

Figure 2.2: Luhn’s Model of Significant Words (Luhn, 1958)

Effective ETA seeks to use language models to identify significant words. Common

words such as articles (the, a), prepositions (to, in, at), and pronouns (he, she, it)

have grammatical importance but do little to deliver a message – that is, they do

not shed much light on the meaning of text. Luhn declared such terms stop words,

which will be discussed in greater detail in subsequent sections (Luhn, 1960). Rare

words also contribute little to the to meaning of a corpus. Words that appear once

or twice out of hundreds of thousands of terms in a corpus are unlikely to be part

of any latent themes.

Significant words provide resolving power – a loan term from optics that describes
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the degree of discrimination of a model. According to Luhn, deriving accurate

lower and upper bounds for significant terms is a matter of experience and trial-

and-error, much in the vein of the Hermeneutical circle. Domain knowledge of a

corpus would allow an individual to determine if an ambiguous term belongs in

the language model – for example, the word cell in a corpus of newspapers is likely

more significant than a corpus of biology textbooks. Developing the model may

surface other terms that are too frequent or infrequent and can be disregarded in

future iterations of the model.

2.2 Topic Modeling

Topic models are a category of ETA techniques used to mine structure and symbol

to assign labels to words in a corpus (Wallach, 2006). At a higher level, topic

modeling can be considered a type of clustering. The intuition behind topic models

is fairly straightforward – if a document focuses on a particular topic, one would

expect certain terms to appear in the document. For example, a legal brief will

contain the words court and defendant, while a math textbook will contain the

words calculus and algebra. Topic models mine the entire corpus to identify latent

themes within the texts.

The first topic modeling techniques were developed to address the synonymy and

polysemy problems in information retrieval Papadimitriou et al. (2000). Synonymy

is the exclusion of synonyms from search results (missing results that include poodle

when searching dog). Polysemy is the inclusion of synonyms in search results

when they should not be included (including results for iPhone when searching

for content on apples). Rather than searching for specific terms, topic modeling
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allowed individuals to search by topic. As more advanced topic modeling techniques

were developed, many researchers began to use topic models to uncover latent

information from large text corpora, such as identifying trends in news cycles (Hu

et al., 2014). Topic modeling has been used for targeted ETA, such as identifying

experts on a specific subject (Momtazi and Naumann, 2013), or in very open-ended

contexts such as investigating social media posts (Hong and Davison, 2010).

Topic models represent a relationship between documents, words, and topics.

Consider a hypothetical example: an individual collects articles from several

magazines and uses them as the corpus to train a topic model. One may see the

topic breakdown as outlined in Figure 2.3.

Figure 2.3: Sample Topic Model
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Each topic is a mixture of words, with each word possessing a likelihood of belonging

to that topic. The higher the number, the stronger the relationship between the

word and the topic. While each topic highlights certain terms, words can belong to

more than one topic at a time. Note that goal appears in each topic – while it is

strongly associated with the sports topic, it is still weakly associated with politics

and health.

Further, each magazine is a mixture of topics. Some magazines such as ESPN

Magazine or The Economist are highly focused in only one topic, while others like

Men’s Health are more diverse. Notice that MotorTrend is roughly equal across all

three topics - this is due to automobiles not fitting neatly into any of the three

topics.

As a probability distribution over a set of words, each topic is technically a language

model. This is what makes topic models a powerful tool for ETA - topics are able

to bring significant words to a user’s attention directly. Further, a topic highlights

terms that are closely related to one another, opening new avenues for knowledge

discovery.

Although topic models are powerful exploratory tools, they are not without their

constraints. Topics are often dominated by uninteresting noise terms or stop

words (Wallach et al., 2009), require significant tuning (Choo et al., 2013), or are

otherwise difficult to distinguish from a random assortment of words (Chang et al.,

2009). Generally, while individuals prefer topic models with a large number of

topics, domain experts find it difficult to identify actionable patterns in the data

as the number of topics grows (Mimno et al., 2011). Furthermore, LDA, a specific
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type of topic model, generates topics to minimize perplexity – a measure of the

surprise in the model (both LDA and perplexity will be discussed in greater detail

in the following section). However, perplexity is a poor proxy for human judgement

and does not correlate to the quality of a topic Chang et al. (2009). For this

reason, researchers have developed a metric called topic coherence to determine

how interpretable a topic is (Newman et al., 2010). Many techniques, including

LDaRM, are used to improve the quality of topic models.

2.2.1 Data Preprocessing for Topic Models

The process of developing topic models (and many other models used for ETA)

follows a pipeline, as pictured in Figure 2.4 (Hahn et al., 2007).

Figure 2.4: High Level Text Analytics Pipeline

Acquiring a corpus requires collecting digital editions of texts. Inspection is a

manual process through which an analyst observes features of a text. This may

include noting the document hierarchies (book ! chapter ! paragraph, etc.) and

developing early opinions about the corpus.

Tokenization is the process of dividing text into individual symbols for analysis.

Typically this is done at the level of a single word (unigrams), but tokens can consist

of two or more contiguous words as well (bigrams and n-grams respectively). Tokens
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are usually separated by white space and punctuation, but there are circumstances

in which this heuristic will fail (it is likely that Mr. Smith should be considered a

single token rather than both Mr and Smith). As such, much research has focused

on developing effective tokenizers to accommodate such exceptions (Manning et al.,

2009).

Once a corpus is tokenized, it is annotated. Annotations are token-level features

that add context to a word. Part-of-speech tagging, grammatical features, and

sentiment values are some common annotations. However, not all annotations are

necessary for all types of ETA, and in many circumstances it is worth excluding

some of the labels (Manning et al., 2009). The annotations critical for LDaRM

include lemmatization, stemming, and labeling stop words.

2.2.1.1 Lemmas

Lemmatization is the process by which words with multiple inflected forms are

grouped together. Lemmatized words such as differently, differentiated, differing

and other forms would be converted to the base form different. The base form of a

word is called its lemma. Lemmatizers are a suite of tools trained on massive text

data sets and maintain an awareness of token sequence to attempt to automatically

group words with their appropriate lemma (Lezius et al., 1998).

2.2.1.2 Stemming

Stemming is similar to lemmatization in that it seeks to reduce the number of

forms of a word, but rather than grouping terms into a single lemma a stemmer

will reduce a token to the root-form of the word. For the different example above,
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the stem would be differ. Stemmers are less selective than lemmatizers as they

disregard context - a stemmer may reduce cars, carton, and carousel into the

form car. This is due to the fact that stemming algorithms rely on heuristics.

However, stemming is extremely effective for dimensionality reduction without

being a substantial hindrance to model performance (Porter, 2001).

2.2.1.3 Stop Words

Stop words are terms that are not information bearing with regard to text

comprehension. Function words such as the, of, it, be, as, and, how, and in

are usually considered stop words. Stop words tend to confound models, especially

in ETA. Recall Luhn’s model of significant words in Figure 2.2 - stop words fall in

the common words portion of the graph. As the objective of ETA is to identify

significant words, most models exclude stop words all together (Wilbur and Sirotkin,

1992).

However, there is not a single fixed set of stop words. While many terms (such

as those mentioned above) are almost always stop words, some stop words are

corpus-specific. In a corpus of legal briefs, the term prosecutor may become a stop

word - a term that appears so often that it does not effectively convey any special

meaning (Schofield et al., 2017).

Selecting stop words is highly subjective and time consuming process. However,

stop word removal is an important aspect of the LDaRM process. Research has

shown that effectively removing stop words improves the quality of topics as

measured by topic coherence (O’callaghan et al., 2015). Further, it is suggested

that improved topic coherence enables individuals to more easily interpret topic
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models (Mimno et al., 2011).

2.2.1.4 Vectorization

Most topic models, including LDA, are bag-of-words models (Alghamdi and

Alfalqi, 2015). A bag-of-words disregards word sequence and treats each document

simply as a collection of its component terms. A bag-of-words model is also

computationally convenient as it is a vector space representation of a text in the

form of a document-term matrix (DTM), with rows representing each document,

and columns representing the frequency of each word in the document (Daniilidis

et al., 2010). Consider two sentences “I am eating lunch” and “I am eating dinner”.

These sentences can be represented in a DTM as in Table 2.1:

Table 2.1: Example of a DTM

I am eating lunch dinner
1 1 1 1 0
1 1 1 0 1

Bag-of-words models are extremely effective for developing co-occurrence networks,

and co-occurrence is a foundational property that enables one to move from

frequency to meaning (Turney and Pantel, 2010). However, as noted, frequency

alone is inadequate for determining a word’s significance and meaning. Stop words

appear frequently, but as they are not information bearing and are rarely useful for

analysis. As such, it is common to weight terms by comparing their frequency in a

document to their frequency in the corpus as a whole. These weights are called

term frequency - inverse document frequency, or TF-IDF (Jones, 1972).

There are dozens of formulas for calculating the adjusted weights of a term using
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TF-IDF, but all take the same form: the weight is a product of local term frequency

and global frequency as seen in Equation 2.2.

weightword = document_frequencyword ⇤ corpus_frequencyword (2.2)

LDaRM will utilize the raw frequency of a term in a document, and the global

frequency log-normalized for document length, as seen in Equation 2.3. To calculate

the weight of word i in document j given a corpus of D documents, the TF-IDF

equation is:

weighti,j = frequencyi,j ⇤ log2
D

docs_with_i
(2.3)

TF-IDF is a critical tool for identifying significant words - words that appear

frequently across all documents are penalized by the global term, while words that

appear infrequently in a small number of documents are penalized by the local

term. While one could use a DTM as the input for a topic model, most users will

use a TF-IDF. This is true for latent Dirichlet allocation as well (Blei et al., 2003).

2.2.2 Latent Dirichlet Allocation

There are a variety of implementations of topic modeling, including latent semantic

analysis (LSA) (Kintsch et al., 2000), probabilistic LSA (Xue et al., 2008), correlated

topic models (CTM) (Blei and Lafferty, 2006), and latent Dirichlet allocation

(LDA) (Alghamdi and Alfalqi, 2015). Each implementation uses a different set of

assumptions - for example, LSA uses singular value decomposition to reduce the
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dimensionality of the DTM and derive the pairwise similarity of documents in a

corpus. PLSA, conversely, uses the latent class model to reduce the dimensionality

of the DTM. LDA assumes that the topics follow Dirichlet prior distributions, and

estimates the associated parameters.

There are several versions of LDA: some versions may utilize faster algorithms, new

sampling techniques, different priors, or include information external to the corpus

of study (Jelodar et al., 2019). Correlated topic models, for example, include a

covariance matrix with the DTM and samples from both spaces. This research

will focus on LDA as described by Blei et al. (Blei et al., 2003) who introduced

a generative process for topic models, and as expanded by Griffiths and Steyvers

(Griffiths and Steyvers, 2004) who included collapsed Gibbs sampling to infer

parameters.

The intuition of LDA is fairly straightforward: first, it is assumed that there are

a set of topics available to write about in any given language. These topics are

language models that represent latent structure of a text. Second, a corpus contains

only a subset of all available topics, and this subset is recognizable based on the

words chosen by the author. Third, it is assumed that there is a dictionary of

terms, and these terms exist as a universal language model containing the expected

frequency of terms as they appear globally. A topic, then stands out as the relative

frequency of terms differs for this topic when compared to the global language

model. Finally, it is assumed that there exists a generative process in which one

can randomly select a topic, randomly choose a word from the chosen topic, and

repeat this process for the entirety of a corpus. This process will ultimately reveal

which terms are most strongly associated with a given topic (Alvarado, 2020b).
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This process is traditionally expressed in plate notation, as picture in Figure 2.5:

Figure 2.5: Plate Notation of the Latent Dirichlet Allocation Process

Where K is the set of topics, D is the set of documents, and Nd is the set of words

in document d 2 D. ↵ is a vector of prior topic weights (usually defaulting to

equal likelihoods for each topic) and � is the vector of prior weights for a word

in a topic (which also defaults to equal weights for each word). Further, w is a

particular word token in document d, while z is the assigned topic of this word.

It is assumed that these assignments are selected from a Dirichlet distribution,

which gives LDA its name. The parameters of interest, however, are ✓ and � -

the distribution of topics within documents, and the distribution of words within

topics respectively. The generative process can be expressed as follows:

1. For k = 1...K:

(a) �(k) ⇠ Dirichlet(�)

2. For each document d 2 D:

(a) ✓d ⇠ Dirichlet(↵)

(b) For each word wi 2 d:



2.2 Topic Modeling 24

i. zi ⇠ Discrete(✓d)

ii. wi ⇠ Discrete(�(zi))

The above generative process yields the following probability model:

P (w, z, ✓,�, |↵, �) = P (�|�)P (✓|↵)P (z|✓)P (w|�z) (2.4)

By Bayesian inference, we can adjust the above probability model to isolate our

parameters of interest:

P (✓,�, z|w,↵, �) = P (✓,�, z, w|↵, �)
P (w|↵, �) (2.5)

Equation 2.5 represents the posterior distribution that we would like to solve to

create our topic mixtures (Blei et al., 2003).

With a sufficiently small corpus, Equation 2.5 is solvable. However, as corpora

grow, the denominator of the right hand size of the equation – called the Bayesian

normalizing constant – quickly becomes computationally prohibitive to solve. LDA

in its original form utilized variational interference to estimate the normalizing

constant. However, a more intuitive and effective method utilizing Gibbs sampling

was later introduced, and is the method employed for LDaRM (Griffiths and

Steyvers, 2004).

2.2.3 Gibbs Sampling

Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method for obtaining

data from a specific distribution. In the case of LDA with Gibbs sampling, the



2.2 Topic Modeling 25

desire is to estimate P (z|w), the probability of assigning a particular topic given a

word. The expansion of this probability can be found in Equation 2.6

P (z|w) = P (w, z)P
Z
P (w, z)

(2.6)

One may note that the denominator is intractable - it involves KN terms, where K

is the number of topics and N is the total number of words in the corpus (Porteous

et al., 2008).

The intuition of Gibbs sampling can be seen in Equation 2.7, as outlined by

Griffiths and Steyvers (Griffiths and Steyvers, 2004). The objective is to calculate

the product P (zi = j|z�i, wi, di), the estimate for the best topic given a word in a

document and all other topic assignments.

P (zi = j|z�i, wi, di) /
CWT

wij
+ �

P
W

w=1 C
WT

w,j
+W�

⇥
CDT

dij
+ ↵

P
T

t=1 C
WT

di,t
+ T↵

(2.7)

For clarity, C is a matrix that represents a count of words or documents that does

not include the current assignment of zi. The left hand factor represents how much

a topic likes a word, while the right hand factor represents how much a document

likes a topic. One may recall that these are the desired outputs of LDA, � and

✓ respectively. The objective of Gibbs sampling, at a high level, is to randomly

assign each word in each document to one of the topics. The process is (Griffiths

and Steyvers, 2004):

1. For each document d

(a) For each word w in d
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i. Exclude the current topic assignment from � and ✓

ii. Calculate P (t|d), the proportion of words in d that are assigned to

topic t

iii. Calculate P (w|t), the proportion of assignments to t that are derived

from w

iv. Develop the distribution P (T ) = P (t|d)⇥ P (w|t), the multinomial

distribution of all topics

v. Sample from T , weighted by P (T ), and increment C matrix

This algorithm needs to be performed many times in order for the � and ✓ tables

to converge on appropriate distributions. Research suggests between 20 and 200

iterations of the algorithm are adequate, depending on the corpus and number of

topics (George and Doss, 2017).

2.2.4 Topic Coherence

It should be noted that outside of hyper-parameter selection (the number of topics

in a model and the number of iterations of the Gibbs sampler), there is no human

intervention in the development of topics. Generally, the quality of a topic model

is measured by perplexity.

Perplexity, in a statistical sense, is a measure of how well a model predicts a sample.

Specifically for language modeling, perplexity is a measure of how well the model

predicts the following terms in a sentence. The formula for calculating perplexity

can be seen in Equation 2.8 below:
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2H(p) = 2�
P

x P (x) log2 P (x) (2.8)

H(p), in this case, represents entropy, the number of binary elements of information

required to deliver a message. P (x) is the probability of a word occurring, and

log2 P (x) is the factor by which uncertainty is decreased given the knowledge of

P (x). Perplexity is often described as a measure of surprise in a model.

Perplexity is expressed as a number, but to an observer there is little intuition

in claiming that one’s topic model has a perplexity of 500. However, one could

interpret perplexity through an example: if a model has a perplexity of 500 and

an observer were to guess the next word in a sequence, they are as surprised on

average as they would be if they had 500 equally likely words to choose from. If

all words in a language model occurred with equal probability, the model would

be high-perplexity - it would be nearly impossible to guess the next word of a

sentence. If there were only a single word in a language, the language would be

low perplexity, it would be simple to guess the next word in a sentence. (Manning

et al., 2009).

Perplexity as a measure of topic quality is effective for checking model performance,

but it has been found to be a poor predictor of expert opinions on topic quality

(Röder et al., 2015). In an experiment in which experts were asked to rate the

quality of topics, they found that the topics rated as “poor” had one of four problems

(Mimno et al., 2011):

• Words were chained through pairwise connections, linking semantically

unrelated terms. For example, computer, apple, and fuji would appear



2.2 Topic Modeling 28

together. Computer and fuji are unrelated, but connected through Apple.

• An otherwise good topic had an “intruder” word or words

• The topic appeared random, with very few clear connections between words

• Several of the top words in a topic are connected, but the topic quickly

becomes nonsensical

To combat these issues, topic coherence measures were developed. Topic coherence

identifies the degree of similarity between words in a topic to rate topic quality.

Topic quality, in this case, indicates that the topic is not marred by the problems

listed above. UMass and UCI are two of the most common coherence measures

and are highly related. That is, if one takes an action to improve one coherence

score (such as increasing the number of Gibbs samples), the other coherence score

is likely to improve as well (Röder et al., 2015). Of particular interest is the

UMass topic coherence measure as it has been found to correlate highly with expert

classification of topic quality and leverages word order within a topic, which is a

critical component of ARM.

Each topic receives a UMass score, but the average UMass of all topics is often

used to judge model quality. The formula for calculating UMass can be see in

Equation 2.9 (Mimno et al., 2011).

UMassT =
MX

m=2

m�1X

l=1

log
P (wm, wl) +

1
D

P (wl)
(2.9)

Where T is the ordered set of the top M words in a topic. P (wm, wl) is the

frequency of at which wm and wl are found together out of all documents D, while
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P (wl) is the frequency of occurrence of a term in document l (Rosner et al., 2014).

While topic coherence measures represent an improvement to topic model

interpretability, users still face certain challenges. For example, it is known

that topic coherence increases as the number of topics in a model increases - this

increase in topics, however, decreases the usability of the model. It becomes

difficult for users to understand the corpus as a whole, comparing and contrasting

dozens or hundreds of topics at once (Ramage et al., 2009). As such, the LDaRM

methodology introduces another machine learning technique to assist users when

navigating large numbers of topics.

2.3 Association Rule Mining

Association rule mining (ARM) is used to discover relationships in a large data set

that might be non-intuitive or otherwise difficult to discern. As previously stated,

ARM is often called a “market-basket problem” in that the input data resembles

the sales ledger of a supermarket, consisting of transactions, each containing items.

This framing continues through to the output, as ARM could highlight interesting

buying patterns in a supermarket such as the canonical example {Diapers} !

{Beer}, indicating that customers who buy diapers are more likely than average

to buy beer. For LDaRM, the transactions will be the topics generated by LDA,

while the items are the top words identified by the model. Such a process can help

one find useful and actionable patterns in text data.

To perform ARM, the data is divided into N transactions containing items q 2 Q,

the set of all items. I is any itemset constructed from Q. We define support S(I) –
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the rate at which I appears in transactions – as:

S(I) =
count of transactions with I

N
(2.10)

An itemset is frequent if it has support greater than or equal to the threshold

of support s, a parameter set by a user (Agrawal et al., 1993). Now consider an

association rule I ! J where I and J are non-intersecting sets of items. Itemset I

is called the antecedent, while J is called the consequent of the association rule.

This says that if a transaction contains I, there is a relationship to the presence of

J (Geng and Hamilton, 2006). It follows that the support of an association rule is:

S(I ! J) =
count of transactions with I and J

N
(2.11)

Using these definitions, we derive the confidence of a rule as:

C(I ! J) =
S(I ! J)

S(I)
(2.12)

Confidence is a measure of the probability of J being in a transaction given that it

already contains I. A rule is high-confidence if it is greater than or equal to the

confidence threshold c, also set by the user.

Support and confidence are simple concepts to understand, but in a database

with dozens of transactions and hundreds of items, it is often difficult to calculate

quickly. However, once calculated, having these values allow one to calculate more

complex and useful interestingness measures.
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2.3.1 FP-Growth

Given a large database of transactions, it is critical to develop algorithms for mining

association rules efficiently. There are two common techniques for identifying rules

that exceed support and confidence thresholds: the Apriori algorithm and Frequent

Pattern Growth (FP-Growth). The Apriori algorithm works in two phases, first

identifying candidate itemsets with at least the minimum support, then finding

rules with at least the minimum confidence. Apriori is able to reduce the field of

candidate itemsets due to the property that any subset of a frequent itemset is

itself frequent (Agrawal et al., 1993). However, even with this fact, it is understood

that Apriori is not effective on large data sets (Pei et al., 2004).

A faster algorithm for mining frequent itemsets is FP-Growth. FP-Growth also

relies on two-phases: the construction of a search tree data structure, and the

mining of the structure (Han et al., 2000). The first phase, building the tree, is

performed with the following algorithm:

1. Scan all transactions once and count single items, ranking the items in

descending order by support (this sorted list is named L)

2. Create an FP-Tree. This begins by creating a null node, then:

(a) For each transaction in the data set:

i. Sort the items in the transaction according to the order of L

ii. Note the first item in the new sorted list – this item is called the

prefix

(b) Identify transactions that share the same prefix – if transactions share
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the same prefix, they are assigned to to the same stem node, branching

from the null node

(c) Note the count of items remaining in each transaction and repeat the

above proces for each child node

Once the tree is constructed, it is mined for rules. This process occurs as follows:

1. Identify nodes in the tree with the lowest support (these are called suffixes) –

if the node has support lower than the minimum threshold, it is cut and the

algorithm moves to the next lowest support items

2. Once candidate low-support items are found, follow the suffix node up the

tree to the prefix node: this is considered a new sub-tree

3. Remove any suffix nodes or branches from the sub tree that do not meet the

minimum confidence threshold

4. Each remaining path is a qualifying frequent itemset

5. Repeat for each prefix branch

FP-Growth is an improvement over Apriori in a few important respects. First, FP-

Growth only scans the data set twice: once to identify qualifying singleton items,

and again to organize the items in each transaction. This saves on processing time

as processing time increases linearly with the number of transactions in FP-Growth,

but exponentially in Apriori. Second, FP-Growth uses less memory, as candidate

itemsets are stored in the FP-tree structure as contrasted with Aprioiri where each

candidate set is stored in memory (Han et al., 2000).

Once all qualifying itemsets have been found, it is time to turn to interesting
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measures to identify useful trends in the data.

2.3.2 Interestingness Measures

Thus far, this section has discussed in detail how to collect support and confidence

of association rules, but deciding which rules are important is a different matter.

Given any rule generated from a data set, how would one decide if that rule was

more or less useful than others? Unfortunately, there is no single, agreed upon

definition for what makes a rule interesting. However, there are several dimensions

of interestingness that can alert an analyst to the quality of a rule. Among these

are conciseness, coverage, reliability, peculiarity, diversity, novelty, surprisingness,

utility, and actionability.

A concise rule is one that contains relatively few items. {Beer} ! {Diapers} is

an example of a concise rule. Such rules are easier to understand and remember,

and are more simply added to a user’s knowledge of the data (Padmanabhan and

Tuzhilin, 2000).

Coverage refers to the universality of a rule. It is based in the notion that if a

rule appears frequently (that is, with exceptionally high support), there is likely a

hidden driving factor that is causing such a trend. Rules that contain stop words

that are found using LDaRM are interesting due to their coverage – the rules

appear frequently because stop words appear frequently topic models (Agrawal

et al., 1993).

Reliable rules are rules in which the relationship is found with high frequency.

Rules with high confidence would be reliable rules. A rule that is interesting due
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to its reliability could be {Peanut Butter} ! {Jelly} (Tan et al., 2004).

Peculiar rules are patterns that are generated from outlier data points. If an item

rarely appears overall but when it does it frequently co-occurs within a particular

itemset, it may be of interest to a user (Zhang et al., 2004). Finding peculiar rules

is a driving factor for setting a lower support threshold – though this may increase

computation time, it allows peculiar rules to rise to the surface. A canonical

example of a peculiar rule is {caviar} ! {vodka}.

A rule is diverse if the consequent and antecedent differ greatly in context. If, for

some reason, {motorcycle} ! {moon} were found to occur frequently in a data

set, a user may be interested in why such disparate terms were highly associated

(Hilderman and Hamilton, 2013).

Novelty is an interestingness measure of particular importance to ETA. A rule

is considered novel if it presents a user with information of which they were

previously unaware. Specifically with LDaRM, novelty is a critical measure for the

contextualization of named entities, a process which will be discussed in greater

detail in later chapters. It is impossible for a model to prove the absence of

knowledge in its user – however, case studies have shown that novelty in rule

mining can assist one in knowledge discovery tasks (Sahar, 1999).

Surprising rules contradict the existing knowledge of a user. A surprising pattern

is interesting as it highlights gaps in one’s understanding of the underlying data.

Surprising patterns provide opportunities for a user to investigate this gap more

completely (Liu et al., 1999).

The utility of a rule is a measure of how well it helps a user reach a certain goal.
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If one were to perform ARM on real estate data to identify common features of

expensive homes with the objective of finding under-priced units, they would be

mining rules for utility (Yao and Hamilton, 2006).

Finally, a rule is actionable if it affects the user’s decision making in a related

domain. If a store owner placed beer and diapers next to each other in their

store due to finding the {Beer} ! {Diapers} rule, the rule would be considered

actionable. In the context of LDaRM, rules can be actionable if they affect how a

user performs a deeper analysis – for example, a user may be alerted to a novel

name or location, which serves as the basis for the next steps of research.

The above concepts are broad categories of what may make a rule interesting. The

next section will select several specific measures used to bring interesting rules to

the surface.

2.3.3 Association Rules

Below are a set of calculations for how to derive values for various interestingness

measures. The selected measures were chosen for LDaRM due to their ability to

surface novel, surprising, reliable, concise, and ultimately actionable rules.

Lift is based on statistical independence, and is defined as:

L(I ! J) =
C(I ! J)

S(J)
(2.13)

A lift of greater than 1 indicates that I and J have a positive association. Conversely,

a lift less than 1 indicates that I and J inhibit each other (Leskovec et al., 2014).
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This lift measure is distinct from Lift as a topic quality metric (Taddy, 2012). Lift

is a powerful indicator of interesting rules as highly related itemsets will achieve

large values. Terms that are statistically independent have a value of 1, which may

be interesting as well. Negatively related terms are bounded as (0,1). Further, lift

is a symmetric measure. That is, L(I ! J) = L(J ! I)

Conviction is an enhancement of the lift measure that considers the absence of

J , defined as:

Con(I ! J) =
1� S(J)

1� C(I ! J)
(2.14)

Conviction, unlike lift, is directional, highlighting the uniqueness of individual

itemsets (such as I indicating a positive association with J, but not the opposite)

(Brin et al., 1997). Conviction has a tendency to present misleading or false-positive

results as it does not account for the support of both the antecedent and consequent.

However this is not always a negative, as such a measure has a tendency to highlight

novel rules.

Leverage describes the difference in I and J appearing together compared to

what would be expected if I and J were independent, defined as:

Lev(I ! J) = S(I ! J)� S(I)S(J) (2.15)

Leverage is similar to lift in that it expresses the confidence that itemsets are

independent. However, where lift emphasizes low-support itemsets, leverage will

identify items with high support (Piatetsky-Shapiro, 1991). That is, high support
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itemsets may have low confidence and do not achieve high lift scores (representing

items that are appear frequently overall but rarely with other items), but would

be highlighted using leverage.

Correlation is analogous to Pearson’s correlation coefficient, defined as:

�(I ! J) =
Lev(I ! J)q

S(I)S(J)S(I)S(J)
(2.16)

Correlation is on a scale from [-1,1]. A correlation near 1 indicates that the

appearance of I implies the appearance of J . A correlation near -1 indicates

the presence of I implies the absence of J (Tan et al., 2004). Correlation is an

excellent interestingness measure – it is a normalized form of leverage so it identifies

high-support, low-confidence rules, but is scaled for support. Further, correlation

is widely understood outside of ARM and is easy to explain to practitioners from

outside disciplines.

Rule Power Factor can be interpreted as the weighted confidence of a rule, and

is defined as:

rpf(I ! J) = S(I ! J)
S(I ! J)

S(I)
(2.17)

RPF is used to identify rules with similar confidence but varied support (Ochin

et al., 2016). It is designed as an improvement to lift, scaling for the number of

transactions.
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2.4 Related Works

LDaRM is far from the first attempt at improving the interpretability of topic

models for ETA tasks (Sievert and Shirley, 2014). Typically, users prefer topic

models with large numbers of topics. However, there exists a strong relationship

between the number of topics and the likelihood that a topic will be deemed

nonsensical by experts (Mimno et al., 2011). Many methods have been proposed

to avoid such situations, including improved sampling methods (Li et al., 2017),

outside information encoding (Krasnashchok and Jouili, 2018), and use of topic

coherence measures (Lau et al., 2014). The approach with LDaRM leverages

term prevalence and topic relationships to help a user navigate topics and in turn

understand the underlying corpus.

Of particular interest is a topic modeling visualization platform, LDAvis (Sievert

and Shirley, 2014). Topics are presented to users as lists of words – a topic model

with hundreds of topics is difficult to navigate as raw text. LDAvis takes a topic

model as an input and graphs the topics based on principal components (derived

from the original TF-IDF matrix). A user is then able to interact with the model,

clicking on each topic to see the top words. LDAvis is a major improvement for

interacting with topic models over simply reading lists of words. However, LDAvis

suffers from a few issues: first, principal components are abstract concepts and

difficult to understand at a glance. Further, as represented through a software tool,

one can only view two principal components at once. For a diverse corpus it is

highly likely that there are more than three significant principal components.

Previous work has combined ARM and topic modeling through the Frequent
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Pattern – Latent Dirichlet Allocation (FP-LDA) method (Dave et al., 2014). In the

FP-LDA technique, the closest technique to LDaRM, a user performs ARM and

applies topic modeling on the output, resulting in a set of topics. FP-LDA satisfied

the authors’ objective of identifying relevant code files for completing maintenance

tasks. The approach in LDaRM does the reverse, first applying topic modeling to

a corpus followed by ARM, resulting in a set of association rules. FP-LDA delivers

a fixed set of documents from a corpus for a user to review, circumventing the

need to interpret topics directly. LDaRM provides a set of related terms that one

can use to identify critical similarities and differences between topics, serving as a

springboard to deeper qualitative analysis.
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3 Methodology

Chapter 3 will outline the LDaRM process. This will include an overview of data

preprocessing, the steps required for performing LDA, the ARM techniques and

interestingness measures chosen, and visualization techniques and rule selection

metrics. All steps of LDaRM are presented at a high-level and will describe the

parameters and hyper-parameters available for tuning models. This methodology

will be employed for a case study in subsequent chapters.

3.1 LDaRM Pipeline

LDaRM (latent Dirichlet allocation – association rule mining) is a combination

of two machine learning techniques with a human-in-the-loop component. While

each of the two methods is a powerful tool, it is crucial to add an element of

human judgement. Learning never happens in a single step – it is always iterative,

a process of constantly revisiting what one believes and adjusting views when

presented with new evidence. LDaRM encourages such learning through .

The first part of the method employs LDA to develop a set of topics. Following this,

using the topics as transactions and the words as items, LDaRM uses association

rule mining to uncover interesting rules. One can then explore these rules for

knowledge discovery and as the basis for improving topic coherence through stop

word identification. A high level overview of LDaRM can be seen below in Figure

3.1.
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Figure 3.1: High Level Text Analytics Pipeline

Like most ETA tasks, LDaRM begins with a text preprocessing phase in which

text features are extracted from a corpus and dimensionality is reduced. Following

this, LDaRM develops a topic model using LDA, weighted by a TF-IDF. The

resulting topics are analyzed using association rule mining, employing the FP-

Growth algorithm to generate rules. Finally, the rules are presented both as lists

and as interactive visualizations, from which one can engage in knowledge discovery.

It is important to note that topic modeling and association rule mining are both

complex machine learning techniques with a variety of implementations. The version

of LDaRM presented here uses LDA with Gibbs sampling, but any implementation

of topic modeling is viable. Additionally, there are dozens of interestingness

measures used in ARM – LDaRM employs a small subset of the total number of

measures. Further, this methodology assumes that a user of LDaRM is performing

the analysis using a high-level programming language such as Python, C#, or Java.

The implementation of LDaRM for this analysis leverages Python and several

associated libraries.
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3.2 Data Preprocessing

3.2.1 Text Corpus

Data preprocessing begins with collecting digital editions of a text corpus. These

can be in any digital format (.docx, .html, .xml, .pdf. .txt, etc.), so long as an

analyst is able to convert documents into bags of words. While many applications

and programming tools exist and can receive a variety of inputs, it is most common

to convert the texts in a corpus into a sequence of unicode texts (Honnibal and

Montani, 2017).

3.2.2 Text Preprocessing

Once the corpus is collected and converted to unicode texts, it should be tokenized

and annotated. As LDA mines only sequence and structure, the annotations

required for analysis are fairly limited. The process for annotating a corpus for

LDA can be seen in Figure 3.2.

Figure 3.2: Text Preprocessing for LDA

The first step is tokenization – the process of slicing documents into individual

n-grams. For topic models it is most common to select unigrams – n-grams

that contain a single words. One can tokenize manually through use of regular

expressions or with the assistance of more advanced libraries. For English, it is

common to tokenize by white space characters such as spaces and new lines, as
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well as by punctuation such as periods and underscores. More advanced tools

implement heuristics for tokenization – for example, they would keep Mr. Smith

as a single token rather than separating it into mr and smith. Tokens are then

regularized – a process that converts all words to lowercase so tokens are not

under-counted due to casing. This implementation of LDaRM uses the spaCy API

to tokenize documents (Honnibal and Montani, 2017)

Once all documents have been tokenized, the tokens are stemmed, lemmatized, or

both. Recall that stemming is typically done heuristically, while lemmatization

is based on trained models. An individual analyst could implement their own

stemmer or lemmatizer, but existing tools are more than adequate for LDaRM.

When tokens are stemmed and lemmatized, the total number of unique tokens

are reduced, reducing the computational time for running topic models. This

implementation of LDaRM does not use a stemmer, but uses the Natural Language

Toolkit’s (NLTK) WordNet lemmatizer (Loper and Bird, 2002).

The remaining tokens are then labeled as stop words, if needed. There are a

few common methods for removing stop words, such as removing words that are

2-characters or shorter or removing words that are on a preset stop word list.

It is also common to remove words that appear in only one or two documents

throughout the corpus. Recall that stop word selection is dependent on the corpus,

and it is the responsibility of a user to identify corpus-specific stop words (LDaRM

assists with stop word selection, a usage that will be discussed in greater detail in

Chapter 5). As a baseline, this implementation of LDaRM removes all 2-character

tokens and the standard NLTK stop word list (Loper and Bird, 2002). Following

data preprocessing, the corpus is ready for LDA.
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3.3 LDA

While one could program their own implementation of LDA, many APIs exist to

automatically create topics. This implementation of LDaRM uses the Gensim

API (Řehřek and Sojka, 2011). The overview of the steps required for LDA using

Gensim can be seen in Figure 3.3.

Figure 3.3: Steps of the LDA Process Using the Gensim API

The first step of any programmatic implementation of LDA is the creation of

a dictionary. The dictionary forms the rows of the document-term matrix and

consists of at least the tokens in the corpus. Some dictionaries can include terms

that are not in the corpus of interest, but that may appear in future texts of

interest. However, for this analysis, the dictionary consists only of the preprocessed

tokens.

Once the dictionary is established, the corpus needs to be vectorized. Topic

modeling as a whole relies on the bag-of-words model and the document-term

matrix. As previously discussed, it may be beneficial to use TF-IDF to weight terms

based on their relative appearance in a document compared to their appearance in

the corpus as a whole. One can convert a document-term matrix into a TF-IDF

with manual computation, but Gensim can perform this operation automatically.

The vectorized model can then be used to develop topics. This requires the user to

select the desired number of topics and the number of iterations of Gibbs sampling.
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The number of iterations should be sufficiently high for topics to converge – current

research recommends a value greater than 20 passes but fewer than 200. This

number is corpus dependant and one can tune the value to minimize the perplexity

of the model (George and Doss, 2017). This implementation of LDaRM uses 50

iterations of the Gibbs sampler. Next, users should select the desired number of

topics. This parameter is a matter of preference. Too few topics (two to 20 or so)

and a user may not find enough interesting patterns. Too many (over 200), and

the topics become too similar and difficult to navigate. A common number for a

typical analysis ranges from 50 to 150 topics (Stevens et al., 2012). The subsequent

analysis will use 75 topics

Once the topic model is complete and the topics have been generated, one should

search for patterns. Each conclusion should serve as an avenue for further analysis.

However, as previously stated, it can be difficult to find conclusions using a topic

model with a large number of topics. Using ARM allows a user to more quickly

identify interesting patterns.

3.4 ARM

As with LDA, ARM can be performed manually by programming the algorithms

explicitly, but many libraries and applications exist that will perform the operations

automatically. The steps needed to perform ARM in the LDaRM process are

outlined in Figure 3.4.
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Figure 3.4: Steps for Association Rule Mining in LDaRM

ARM begins with the creation of a transaction list. In LDaRM, the topics generated

by LDA act as the transactions, while the individual words act as items. As they

are language models, a topic technically contains every word in the corpus, with

some words having a negligible probability of appearing in the topic. As such, one

must first determine a cut-off point for which words will be included in a topic.

A good heuristic for ETA is choosing the 15 to 25 highest probability terms in

a topic for analysis (Mabey, 2018). This implementation of LDaRM will use the

first 20 terms from each topic. Therefore, the transaction list will consist of 75

transactions (each of the 75 topics), each with 20 items.

Following this, one must find high-support itemsets. There are many available

algorithms, but LDaRM uses the FP-Growth algorithm – specifically the mlxtend

implementation of the algorithm (Raschka et al., 2016). Recall that support is a

measure of the frequency at which an itemset appears in all transactions – it can

attain any value [0,1], with 0 meaning an itemset never appears, and 1 indicating

every transaction contains the itemset. Therefore, one must select a minimum

support value of interest. Choosing a lower value may be over-inclusive (every

itemset will be included) but choosing too high of a value may exclude interesting

rules. Given the relatively small number of transactions, this implementation of

LDaRM will set a minimum support threshold of 0.02 – that is, every itemset that

appears in at least two transactions will be included.
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Once support is calculated, one will calculate confidence – an indication of how often

itemsets co-occur. Confidence is a measure of conditional probability, measuring

the probability of finding one a particular itemset given the presence of another.

Again, one will set a minimum threshold – for this implementation, LDaRM sets

this value at 0.1. With both the support and confidence of every rule, LDaRM is

able to derive other interestingness measures, including lift, leverage, conviction,

rule power factor, and Pearson correlation.

When all interestingness measures are calculated, one may be left with thousands of

rules to sort through. To aid a user in the analysis of such rules, LDaRM presents

several interactive visualizations to assist one with ETA tasks.

3.5 Assessment

With the association rules established, one must use the rules to identify interesting

patterns. This process is made substantially easier through interactive visualization.

While there is no fixed methodology for ETA, the high-level steps used in LDaRM

are outlined in Figure 3.5 below:

Figure 3.5: Steps for Association Rule Mining in LDaRM

A useful first step when using LDaRM is to observe the highest and lowest scoring

rules for each interestingness measure. This will highlight major themes of the

topic model – for example, a high lift rule would indicate that certain itemsets

were dependent on each other. That is, a high lift rule indicates that certain words
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occur together more than expected. This opens up new avenues of inquiry for

why the itemsets occur together more than expected. A common conclusion from

this analysis is the contextualization of named entities. LDaRM allows one to

identify the words most strongly associated with certain entities. Furthermore,

if there is ambiguity in the definition of certain terms, one can disambiguate by

observing the rules. Analyses such as these will be expanded on in Chapter 5.

While observing the top rules can be useful, it quickly becomes cumbersome. Using

data visualization, in this case scatterplots, one can observe multiple rules at

once, helping a user find interesting relationships with ease. By graphing two

measures at once, one can more quickly observe rules. For example, a high-leverage,

low-conviction rule would indicate a set of terms that do not appear together at

an above-expected rate.

One of the strengths of LDaRM is its ability to identify stop words. Stop words,

by definition, are likely to occur in a document over expectation, and many

interestingness measures seek out such terms. One will notice stop words dominating

many rules, and they will often stand out in visualizations. It is important to

note suspected stop words, as it is useful to perform LDaRM multiple times using

different sets of stop words. This process will improve topic coherence and allow

one to perform more effective ETA. Examples of this process will be outlined in

Chapter 5.

3.6 Repeat

LDaRM, as an ETA methodology, is inherently iterative. Only through a cycle

of constantly updating prior assumptions, tuning the model accordingly, and
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performing another round of analysis can one find interesting and useful patterns

in the data. Performing LDaRM multiple times and removing stop words that

confound the model for each iteration not only provides a slightly different result

set, but also improves topic coherence.

Stop words, by nature, are high-interestingness. That is, they will appear in topics

at a rate higher than expected (per Luhn’s model of significant words). As such,

stop words are likely to appear in rules with high lift or leverage. By looking

through high-lift rules, one may note a term or several terms that appear frequently,

but do not appear to provide much context. Examples of this selection process

and its effect of LDaRM performance will be discussed further in Chapter 5.

It is important to note that the set of stop words is not fixed. If one were to remove

one or more words in an early iteration but has evidence to suspect that a word is

information bearing, it is reasonable to add the word or words back to the model

in subsequent iterations. One can simply remove the terms from the stop word

list, or roll back to the iteration before the terms were removed.
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4 Data

Chapter 4 will discuss the data used for the subsequent case study. The data

is a collection of research articles regarding COVID-19 and SARS-CoV-2. This

chapter presents a brief description of COVID-19 and the related pandemic, as

well as a description of the data used in the analysis. COVID-19 is a subject

area of particular interest from a societal and research standpoint. COVID-19

has had a global impact as individuals have drastically altered their day-to-day

behavior to prevent the spread of the disease. Research into treatments, prevention,

and transmission is critical for helping society return to pre-COVID-19 routines.

From a technical perspective, the COVID-19 data set is very useful for testing

the effectiveness of LDaRM. The corpus is sufficiently large in that an individual

could not possibly read all documents, and each document in the corpus is long

enough to avoid short-text bias in LDA. Further, the corpus is focused enough in

subject-matter to limit the range of possible conclusions (all conclusions will relate

to COVID-19 or SARS-CoV-2), but diverse enough that one can identify unique

insights (identifying risk-factors, vaccine research, the mechanisms of transmission,

etc.).

4.1 COVID-19

The coronavirus disease 2019 (COVID-19) is an illness caused by the by a strain

of coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2).

COVID-19 causes several symptoms, including fever, cough, fatigue, and loss of

smell and taste (Organization et al., 2020). The disease carries a mortality rate
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of roughly 3.7%, though this figure is still a subject of research (Mehta et al.,

2020). The leading cause of death for individuals infected with COVID-19 is

acute respiratory distress syndrome – a failure of the respiratory system due to

inflammation.

On March 11, 2020, the World Health Organization declared COVID-19 a pandemic.

On March 13, 2020, the United States declared a national emergency due to the

outbreak (for Disease Control and Prevention, 2020). In response to this, the

White House and several research groups assembled the COVID-19 Open Research

Data Set (CORD-19).

4.2 COVID-19 Open Research Data Set

CORD-19 is a collection of over 167,000 scholarly articles related to COVID-19

and SARS-CoV-2. These articles were all converted to the .json format for analysis.

The articles are sourced from multiple journals from many countries, written in

several languages.

The purpose of CORD-19 is to crowd source insights into the large corpus. A few

of the explicit tasks include identification of COVID-19 risk factors, knowledge

of transmission and incubation periods, and tracking progress on a vaccine. A

primary focus of the group is information distillation – creating useful summaries

of the of data. (AI, 2020)

For the case study in chapter 5, only 5000 articles were used. The articles were

randomly selected and are assumed to be a representation of the corpus as a whole.
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5 Analysis

Chapter 5 presents a case study using LDaRM on the CORD-19 data set. This

case study seeks to illustrate the strengths of the LDaRM methodology, including

its value as a tool for ETA. The analysis will take the form of a walk through of

the results of using LDaRM on the COVID-19 data outlined in Chapter 4. In

particular this case study will emphasize LDaRM’s ability to contextualize proper

nouns and named entities. Further, this chapter will show how to use LDaRM

for identifying stop words and demonstrate the subsequent improvements to topic

coherence.

5.1 Overview of COVID-19 Analysis using

LDaRM

Recall that for this analysis, each topic model contains 75 topics derived over 50

sampling iteration. For the association analysis, each of the 75 topics were treated

as transactions, and the top 20 terms in each topic were considered the items

of the transaction. Each topic model was then analyzed, emphasizing potential

ETA conclusions. A key aspect of this analysis is the identification of stop words.

The process of stop words identification is highly subjective, but this analysis will

provide evidence for effective removal to improve coherence. The act of modeling,

exploring the data, removing stop words, and modeling again reflects the ETA

process through the Hermeneutic circle.
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5.2 Exploratory Text Analytics

5.2.1 Iteration 0

In the zeroth iteration, the topic model was developed without removing any stop

words. This leaves non-word tokens in the corpus (chiefly punctuation). It is rare

that one would begin a topic model-based analysis without removing basic stop

words as it is generally agreed that stop words confound model interpretability

and inhibit model performance. In this situation, the analysis was performed to

emphasize the stop word removal capabilities of LDaRM.

For the purpose of demonstration, however, iteration 0 will be briefly explored. As

a brief overview, it is useful to look at the highest and lowest scores across many

interestingness measures. Observe Table 5.1 below. Organizing by the Lift measure,

one can see that that the rule {cell, patient, infection} ! {data, et, protein, case,

al, virus} indicates that the presence of the antecedent is highly predictive of

the presence of the consequent terms. This point is further emphasized by the

correlation coefficient of 1. Such a rule provides high interestingness values, but

is likely not useful – one with a passing knowledge of SARS-CoV-2 would know

that it is a virus that infects patients, and all terms are likely to appear in related

research.
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Table 5.1: High Lift Rules from LDaRM Iteration 0

With over 300,000 rules in this iteration, it is helpful to turn to visualization to

identify interesting rules. Consider Figure 5.1 below, which explores the relationship

between correlation and leverage as well as correlation with Rule Power Factor.

The highlighted rule in the top image, {]} ! {[} stands apart from the larger

cluster of rules. This indicates that the presence of a closing bracket is highly

indicative of the presence of an open bracket. Again, this rule is not very useful as

it is probably obvious to any analyst.

Finally, there are many rules that are negatively correlated. In the bottom image

of Figure 5.1, there is a rule {et, al} ! {[, ]}. This rule is slightly more interesting

– it notes a difference in in-text citation style. That is, some of the papers used a

named citation style (e.g., Smith et al.), while others use numbered citation (e.g.,

[1]). Such a rule may cause an analyst to question why there are multiple citation

styles. This line of questioning could lead the analyst to conclude that the corpus

is a set of articles from diverse journals, which may quell an assertion that the

articles are in some way biased due to single-sourcing from one set of documents.

While such an assertion is not proven by the presence of this rule, it does provide

an analyst with a useful starting point.
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Figure 5.1: Selected Visualizations for Iteration 0

One may note in Figure 5.1, and in subsequent graphs, that the observations

appear stratified – that is, the observations appear as lines, curves, or in fixed

intervals. These patterns arise for two reasons. First, all interestinginess measures

are functions of support and confidence – each axis has a definable relationship to

the other. Second, there are fewer support and confidence (and therefore, other

interestingness measures) than one may expect. Using the 75 topics from these

examples, the highest support item is roughly 25%, appearing in 19 topics. Given

this, the maximum number of discrete confidence values cannot exceed 210, and is

actually far fewer. These factor combined lead to the patterns in graphs.
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5.2.2 Iteration 1

Iteration one is the first analysis to include a base set of stop words. This version

uses the heuristic of removing all terms with two or fewer characters, as well as

removing the stop words from the NLTK English stop word set. This means, upon

running the model, one will notice that punctuation is no longer present and all

tokens are words.

Beginning the analysis, again, it is useful to look at the highest and lowest scoring

rules first. Observe Table 5.2 and note the inhibiting effect of the rules {model}

! {patient} as well as {virus} ! {case}. These rules have negative correlation

values, highlighting that the presence of the antecedents (“model” and “virus”)

indicates the absence of the consequent terms (“patient” and “case”). An analyst

may find these rules interesting and actionable – one now has reason to believe

there are two frameworks of study regarding COVID-19: a model based approach

and a case-study approach that examines infected patients. This, as with all ETA,

requires more evidence to prove, but may provide an interesting feature to include

in subsequent analysis.

Table 5.2: Negative Correlation Rules from LDaRM Iteration 1

The analysis then turns to stop word identification. As previously described, stop



5.2 Exploratory Text Analytics 57

words are likely to appear in multiple topics, confounding interpretability. From

an association mining perspective, stop words are likely to have high lift and

correlation values. Observing such rules, we see the results as in Table 5.3.

Table 5.3: Likely Stop Words as Identified in LDaRM Iteration 1

As in iteration zero, one can see words like “virus”, “viral”, “protein”, “group”, and

“patient” occur together frequently. Observe the relatively large sets of words in

both the antecedent and consequent itemsets. One may note these longer itemsets

and assume that there are two or more fairly homogeneous topics – that is, topics

with a high-number of the same terms. Furthermore, while these words are typically

information bearing, in a corpus as focused as the COVID-19 data set the terms

are actually confounding factors. The entire set of stop words selected are available

in Appendix A1.1.

5.2.3 Iteration 2

Iteration two is the first of the topic models that has targeted, domain-specific

stop word removal. Removing stop words allows the topic model to converge on

significant terms, and therefore provide more latent semantic content.

For example, in Figure 5.2, in the top graph comparing RPF to correlation, we
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see a high-correlation, high-RPF rule {cytokine, increased} ! {inflammatory,

expression}. These rules appear to be interesting, useful, and actionable and

open a vast area for ETA. Based on this rule, one may ask the questions “what

is cytokine, what does it mean for cytokine to increase, and what is cytokine’s

relationship to inflammation?”

Through only a fraction of the corpus discusses cytokine, this rule directs an analyst

and guides their in-depth analysis. The papers that discuss cytokine reveal the

mechanism by which COVID-19 causes distress, via events called “cytokine storms”,

or more formally “Cytokine release syndrome”. Cytokine storms cause rapid

inflammation and are the main life-threatening events spurred on by COVID-19

(Coperchini et al., 2020).
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Figure 5.2: Selected Visualizations for Iteration 1

In the lower graph in Figure 5.2, one sees the rule {mouse, antigen} ! {epithelial}.

This rule contextualizes a segment of the COVID-19 research, which uses the cells

of mice to identify antigens. Upon further analysis, one would find that such

research is investigating the effectiveness of COVID-19 antibody tests (Long et al.,

2020).

While these rules are interesting and provide an excellent starting point for analysis,

one may note several stop words still confound the model. The set removed for

iteration three can be found in Appendix A1.1.
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5.2.4 Iterations 3 - 7

Iterations three through seven are much of the same as iteration two: perform

LDA using the new set of target stop words, generate interestingness measure,

observe measures searching for actionable content, and note any terms that are

not information bearing for potential removal as stop words. Further interesting

examples of possible insights include the Figure 5.3, which reveal the research

into animal-to-human transmission of the COVID-19, and that vaccine testing has

begun animal trials.

Figure 5.3: Selected Visualizations for Iteration 3
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In Figure 5.4, we see a high-coverage rule – a rule that one would expect to occur

given prior knowledge, or one that otherwise confirms a known pattern. A user

may already know or expect this rule, but it illustrates an interesting point. {sars,

coronavirus} ! {respiratory} is an example of a rule that provides descriptors

for a named entity. LDaRM’s ability to contextualize named entities at a glance

is a particular strength of the method. LDA alone isolates named entities by

default, as language models have a bias for proper nouns. ARM is excellent for

finding interesting relationships between items in a set. However, topic modeling

alone often provides muddy or difficult to interpret topics regarding named entities

(as measured by topic coherence). ARM alone is very computationally intensive,

especially when calculating support and confidence for thousands of transactions

(documents), each with thousands of items (words). LDaRM leverages the strengths

of each technique to bring critical contextual information about named entities to

the surface.

Figure 5.4: Selected Visualizations for Iteration 5
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5.2.5 Contextualization of Named Entities

Named entity recognition is a text modeling technique used to identify named

entities – words in a corpus that refer to a specific proper noun. Named entities

are a difficult problem in text analytics – named entities may not be general

knowledge or may be named after a regular noun (Apple Inc., usually referred

to by the moniker Apple, is one such example). This makes collecting training

data a resource intensive task. State-of-the-art machine learning algorithms mine

symbol and sequence through use of recurrent neural networks and long-short term

memory networks. Such algorithms consider the context in which a word appears

(for example, in English, capitalized words in the middle of a sentence are more

likely to be proper nouns) (Lample et al., 2016). LDaRM does not seek to identify

named entities – rather, it provides additional context for named entities. This

feature is explored in greater detail in the following Discussion section.

5.2.6 Discussion

Consider the rule in Table 5.4. Here, one sees an association between the words

ace2, receptor, expression, and activity. Imagine an analyst who has a passing

knowledge of the COVID-19 data set, but is not an expert. ACE2 is certainly not

a commonly known word, at least to the extent that a general-readership magazine

published an article breaking down the concept for a broad audience (Molteni,

2020). This presents an opportunity to use LDaRM to contextualize a named

entity.
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Table 5.4: Important Features of ACE2

Using the information from LDaRM alone, it is known that ACE2, receptor,

expression, and activity are highly related terms based on the relatively large

lift score (indicating that the terms have a positive association). Without any

external information, one can make a fairly educated guess about ACE2 based

on the context provided – it is likely related to proteins (receptor and expression,

which appeared with cytokine in Figure 5.2), that is behaving differently under

COVID-19 (given the data set and the term “activity”). One can then dig into

the corpus for additional information. One way to accomplish the deeper dive

is by searching the corpus using keyword search (using terms of interest as the

keywords). However, unless the corpus is indexed, this search can be a lengthy

process. It may be helpful to search only document titles, abstracts, or other levels

of the document hierarchy for the keyword to identify relevant texts. Another way

to find documents related to terms of interest is by keyword searching the topics in

the model, then using the document-topic matrix to find which texts are comprised

primarily of the identified topics.

Upon further investigation, ACE2 is a surface protein on many cells in the human

body (“ACE2” rather than “protein” is what qualifies the enzyme as a named entity).

In fact, ACE2 is the surface protein to which SARS-CoV-2 binds. Individuals who

suffer severe symptoms due to COVID-19 tend to have increased ACE2 activity,

allowing a greater viral load to bond to cells in the respiratory tract (South et al.,
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2020).

Another example of named entity contextualization can be seen in Figure 5.5.

This analysis again turn to cytokine in the rule {cytokine} ! {inflammatory,

il-6, blood}. Recall that cytokines are a class of proteins that cause distress and

inflammation. It is a safe assumption that il-6 has a similar relationship – that is,

it is a protein or enzyme related to immune response. Upon reviewing the corpus,

one will find that IL-6 is a specific type of cytokine (and therefore a named entity).

IL-6 is of particular interest to researchers who are investigating treatments for

COVID-19, as current technology exists to block IL-6 receptors, and may serve to

reduce symptom expression.

Figure 5.5: Association Rule to Contextualize IL-6

5.2.7 Stop Word Selection and Topic Coherence

Improvement

As previously mentioned, LDaRM is an excellent tool for removing stop words.

One can see, qualitatively, that stop word removal over several iterations led

to interesting knowledge discovery. However, this notion can also be shown



5.2 Exploratory Text Analytics 65

quantitatively. This assessment returns to topic coherence, in particular the

coherence measure UMass – an intrinsic measure of how “good” a domain expert

would deem a topic (Mimno et al., 2011). UMass was chosen over other coherence

measures such as UCI due to its reliance on word-order within each topic. Because

LDaRM selects only the top words from a topic, the stop words found by using

this method rely on term-order. It is appropriate, then, to use a measure which

considers term-rank when measuring coherence (Röder et al., 2015).

While topic coherence is not a perfect measure, it is generally agreed that coherence

correlates with human understanding of topics. For the implementation of UMass

used in this analysis, results are presented as negative numbers, with larger

magnitudes representing better topics (the more negative, the better). To reduce

confusion, all UMass values have been adjusted using absolute value. Further,

the values presented are the average coherence of the entire model (Stevens et al.,

2012).

While there is no unified model for what constitutes “good” and “bad” topics,

there are heuristic thresholds (Stevens et al., 2012). An average UMass of 1.0-1.2

represents a very poor model, perhaps incomprehensible. A topic model would

likely only average around this score if there were too few topics in the model or if

the number of sampling cycles were too low. A UMass of around 1.2-1.5 would

represent a low-quality topic model. A UMass of 1.5-1.8 represents a moderate-

quality model, while models from 1.8 and above are high-quality models. It is

uncommon for the average UMass of a topic model using LDA to exceed 2.1,

though scores as high as 2.5 are achievable.
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Using LDaRM, this case study showed that it is possible to take a topic model with

low to moderate-quality topics, remove confounding terms, and convert the model

into one with high-quality topics. Figure 5.6 shows the progress of topic coherence

for each iteration. Over the eight iterations in the case study, the average UMass

coherence score was recorded. In the zeroth iteration, with no stop words removed,

the model would be rated as a low-quality topic model. Removing the base set of

over 100 stop words, one can see a solid increase in topic quality, though the model

is still fairly poor. Once stop words are selected using LDaRM, one can see rapid

improvement. By removing around a dozen terms identified using LDaRM, there

is a jump from a low-quality model to a high-quality model in just six iterations.

The maximum UMass achieved, 2.059, would be rated as a high-quality model.

While there is no set rule for when to end an analysis, a few heuristics can assist a

user. First, one should continue iterating with LDaRM, removing new stop words

with each pass, until the model achieves a “good” topic coherence score. From

this point, if one does not see major improvements to topic coherence (more than

a few hundredths of a point) for three consecutive iterations, it is safe to stop.

Additionally, if there is a decrease in topic coherence after an iteration, one should

stop the analysis or re-run the model with a different set of stop words.
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Figure 5.6: Improvements to Average Coherence Through the Removal of Stop
Words
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6 Limitations and Future Work

6.1 Limitations

LDaRM is an excellent tool for identifying interesting rules that provide insight

into a corpus, especially concise, novel, surprising, reliable, and actionable insights.

However, LDaRM is still subject to some of the constraints of its component

processes. For example, LDA is fairly computationally expensive, especially as the

number of documents in a corpus and the number of topics grows. A common

training data set for testing topic models is the PUBMED set, which contains 8.2

million documents. The memory required to generate 10,000 topics and store all

LDA parameters exceeds 36 TB. On a personal computer with a single processor,

the time required to complete this process would be on the scale of weeks (Wang

et al., 2014). While it would be extremely difficult to assess such a model for ETA

(navigating 10,000 topics is no easy task), LDaRM does not avoid the time and

memory constraint of LDA.

It is also difficult to reproduce results when using Gibbs sampling, as it is a

generative process. To get the same results in two runs of LDA, one must set the

random seed (this is, in fact, a parameter that is included in most LDA software

packages). Due to this, it is said that topic modeling results are unreliable, making

it difficult to assign value to findings with a high degree of certainty (Rieger et al.,

2020). It is possible that some iterations of LDA will not converge on major latent

themes in a corpus, and a user of the model would have no way of knowing for

sure if this were the case. LDaRM, as a tool for gathering insights from a topic
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model, has the same issue.

Association rule mining suffers several shortcomings as well. One major issue

of note is the lack of testing to confirm if a rule is a true-positive. That is, if

association rule mining identifies 10,000 rules, the odds are high that some number

of these rules occurred by chance and do not represent an interesting relationship.

Currently there is no effective method for assessing the statistical significance of a

rule.

Additionally, ARM algorithms do not incorporate weighted inputs. All transactions

and items are treated with equal importance. For example, ARM does not

accommodate transactions that contain multiple copies of an object (say, a customer

buys 5 oranges – oranges are treated as a single item). For weighted transactions,

perhaps an organization deems customers from their target demographic as more

important than non-target customers (Tao et al., 2003). If one were to perform

LDaRM on customer reviews, topics that include certain products by name would

almost certainly be of greater importance than topics that that do not include

product names or are simply complaints.

Further, ARM can generate a high number of rules, perhaps in the tens of thousands.

Even with interestingness measures it can quickly become difficult to navigate

all results and isolate useful and actionable results. One can raise the support

and confidence thresholds, but it has been shown that rules can be interesting

because of their low support or confidence values. LDaRM does seek to improve

user experience through use of visualizations and several diverse interestingness

measures. However, identifying techniques to cull large rule sets even further would
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improve the usability of LDaRM

6.2 Future Work

A potential improvement to LDaRM would include a “memory” mechanism that

allows a user to return to a past iteration using different sets of stop words. If one

identifies a stop word in an early iteration but notes several iterations later that

the term should have been included, the individual can add the term back to the

bag-of-words. A future version of LDaRM could use topic coherence to alert users

to potential terms that should be added back to the model. By comparing topic

coherence in the base topic model to topic coherence if the stop word were added

to the set (by simply adding the term to topics), LDaRM could identify terms that

may be worth returning to the bag-of-words in subsequent iterations.

A promising area of future research related to LDaRM is the use of association

rule mining for stop word selection. This research has shown that using LDaRM

to identify stop words can improve topic coherence. This aspect of LDaRM could

be greatly expanded. The objective of this research would be to identify a stronger

heuristic for selecting stop words and showing that the method improves topic

coherence more than removing random terms. This method would have to be

compared to other stop word selection techniques using a standard corpus such as

the PUBMED database (Amarasinghe et al., 2015). This research would also need

to ensure the selection process is robust against the number of topics in a model

and the number of iterations of the sampler. It would also be important to explore

how LDaRM affects other topic coherence measures beyond UMass.
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Additionally, LDaRM presents an interesting opportunity to explore weighted

itemsets for association rule mining. As language models, the words in each topic

have an associated probability of occurrence - these could act as natural weights

for the items. The weights are already normalized for the length of documents and

total number of occurrences. Using weighted items would require a new mining

method, as Apriori and FP-Growth are based on raw counts. However, if this

issue could be resolved, weighted items would provide an additional dimension for

identifying interesting rules.
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7 Conclusion

7.1 Summary

Exploratory text analytics is a sub-field of text mining that focuses on uncovering

latent semantic content from a set of documents using statistical modeling. Much

text mining typically employs supervised learning to identify specific conclusions

such as classification or prediction. ETA is less rigid, typically employing

unsupervised techniques and alerting a user to interesting patterns that can spur a

deeper analysis.

This research introduces LDaRM – an exploratory text analytic technique which

combines two data mining techniques, topic modeling via latent Dirichlet allocation

and association rule mining. Each technique taken alone is a powerful tool for

data mining, in particular text mining. Topic modeling is a powerful tool for

uncovering latent content, but it is often difficult for users to navigate models with

a large number of topics. Association rule mining provides concise rules, ranked

by a variety of interestingness measures. However, the algorithms used to derive

these rules are not powerful enough to mine thousands of documents with tens

of thousands of words. LDaRM leverages the strengths each technique to surface

interesting, useful, and actionable insights. Broadly, LDaRM develops a topic

model using the corpus of interest and performs association rule mining on the

results of the topic model. The technique uncovers interesting relationships between

and within topics – specifically, it can contextualize proper nouns by presenting the

term of interest alongside many highly associated terms. Additionally, LDaRM is a
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powerful tool for identifying stop words which confound topic models and provide

little insight into the meaning of a corpus.

This research used a case study of a set of medical journal articles related to COVID-

19 to highlight the impacts of LDaRM. Across several iterations of LDaRM, the

study uncovered interesting patterns in the data and identified many of the major

mechanisms through which COVID-19 causes illness. Further, the study identified

named entities in the form of specific proteins. Along with these proteins, LDaRM

identified key features of these proteins to quickly provide context to an analyst.

Finally, LDaRM is particularly useful for identifying stop words that can confound

topic models – that is, stop words decrease the quality of topics. While there is no

unified set of stop words, it is known that removing stop words can improve topic

coherence measures. Outside of a set of about 100 terms, stop word selection is

very ad hoc and up to the discretion of the modeler. However, as previously stated,

as the number of topics grows it becomes more difficult for one to navigate each

topic to identify confound terms. LDaRM, through its interestingness measures,

highlights likely stop words for a user at a glance. The case study showed an

improvement to topic coherence over several iterations, ultimately taking the model

from “low-quality” to “high-quality” topics.
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Appendix

A1 Stop Word Sets

Table A1.1: Stop Word Sets

Stop Word Set Words
Set 1 virus, viral, cell, protein, patient, treatment,

immune, response, infection, infected, group,
control, test, clinical

Set 2 level, analysis, sequence, specific, function,
associated, based, solution,
model, significant, significantly

Set 3 case, hospital, care, risk, day, state, event,
admission, rate, effect, type, year, found, reported,
number, anti

Set 4 well, process, technique, could, system, finding,
technique, performed, sample, gene, genome,
animal, human

Set 5 week, different, hospital, public, health, compared,
shown, need, i.e., infectious, left

Set 6 figure, child, mouse, antibody, cause, experiment,
figure, assay, table, site, high


