
Docker: Version and Security Upgrades with Containerized Applications

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science
University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Johannes Cornelis Hollebrandse
Fall 2022

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Briana Morrison, Department of Computer Science

Docker: Version and Security Upgrades with Containerized Applications

CS4991 Capstone Report, 2022

Corneel Hollebrandse

Computer Science
The University of Virginia

School of Engineering and Applied Science
Charlottesville, Virginia USA

jh7jss@virginia.edu

Abstract
Progeny Systems utilized outmoded and
unsecure versions of its CI/CD (continuous
integration and continuous delivery tool)
and static code analysis tools, leaving them
without modern features and vulnerable to
security exploits. Containerizing these tools
simplifies the time-consuming manual
processing of updating and upgrading
security features. A team consisting of
myself and one other intern developed
Docker containers that pulled the base
images of these tools from supported
repositories, then mounted volumes and,
finally, created a Docker network. This
network utilized an Nginx reverse proxy to
secure web traffic to the front-facing
interfaces of the CI/CD and static code
analysis tools with https. The effort made
both tools more maintainable for future
upgrades and more secure, and led to new
static analysis on 50,000 lines of code within
the code base. Future work could include
further upgrades to the static analysis tool to
scan shell Progeny scripts.

1. Introduction
United States Navy submarines carry up to
70% of the nation’s nuclear arsenal [1]. The
primary defense contracts for Progeny
Systems are submarine related. I interned
with the IA (Information Assurance) team,
which focuses on securing communications
with the submarine fleet. If a malicious

agent were to access the internal Progeny
network, they could have attacked the
CI/CD and static code analysis tools in order
to steal information about the code that
keeps communication with the submarine
fleet secure.

2. Related Works
The Raddatz and Martinez (2022) paper on
submarine nuclear capability was shared on
a company email during the internship to
remind us of the importance of our work. It
clearly explains the importance of upgrading
security features for the tools the IA team
uses.

Bellairs (2020) explains the importance of
static code analysis. It provides background
on the importance of SonarQube being
extended to more languages.

Stoneman (2020) explains the conceptual
importance of Docker and provides tutorials
to teach Docker principles and how to
properly write Docker files. My manager
gave me a physical copy on the first day of
the internship and I used it extensively to
implement containers.

3. Process Design
Implementing upgrades to the CI/CD and
static code analysis tools requires a greater
depth of understanding of the security issues
affecting both systems, docker as a means to

fix them, and specifically how docker was
tuned to solve this problem.

3.1 Security Issues
The CI/CD and static code analysis tools the
IA team uses had major security issues. The
CI/CD tool the IA team uses is Jenkins, and
it was running a version released in 2015,
causing the Jenkins web interface to list a
page and a half of security issues associated
with running that outmoded version. The
static code analysis tool the IA team uses is
SonarQube, which was running a version
released in 2021 that had only been
configured to scan java code. Although
around 70% of the IA code base was written
in java, the remaining 30%, consisting of
shell scripts, python, and C code, was
unscanned by SonarQube, lowering the
quality and security of non-java code
because static analysis reveals security
hotspots, bugs, code smells and general
syntax inconsistencies [2].

3.2 Docker
Applications often rely on external packages
and libraries. An application that works on
one operating system will likely not work in
another operating system. Docker solves this
problem by packaging the application with
all the packages and libraries needed into a
container. This container will then operate
the same way on every machine. Without
docker, a large operating system would have
to be installed and configured in a precise
way to enable the application to work.
Docker provides the consistency of
application function while utilizing
substantially less computer storage. Another
advantage of Docker is that if the
application image a container is dependent
on is changed (updated security features, for
example), the container simply needs to be
restarted to automatically pull the updated
image [3].

3.3 Implementation
To containerize Jenkins, I created a docker-
compose file that functions as a script of
command line docker instructions. These
instructions mounted an external volume
that stored ssh keys for connecting to the
various software builds that Jenkins needed
to perform CI/CD on.

Additionally, they started an Nginx
container that ran on ports 80 and 443 for
http and https traffic respectively. Finally,
the docker-compose commands started the
Jenkins container on port 8085 and pulled its
base image from the official Jenkins host
service every time the container started. Port
8085 was blocked on the firewall such that
Nginx was the only service that could access
that port, and by extension Jenkins. Taken
together, this means docker will always pull
the most secure supported version of Jenkins
each time the container is restarted and
ensure that those who try to connect to the
Jenkins web interface in http will be
redirected by the Nginx reverse proxy to
connect to the interface securely with https.

To containerize SonarQube, I also created a
docker-compose file that applied many of
the same commands the docker-compose
file for Jenkins did. The only major
difference was that SonarQube by default
runs on port 9000, so instead of 8085 the
SonarQube container ran on this default
port. Otherwise, Nginx was set up the same
way to redirect unsecured traffic to https. To
add multi-language support to SonarQube, I
mounted a docker volume that would save
configured settings between restarts of the
container. After achieving persistent storage,
I configured SonarQube to support static
code analysis of shell, python, and C code
via SonarQube’s web interface.

4. Results

Containerizing the IA team’s Jenkins and
SonarQube services saves the IA team from
expending costly labor hours manually
updating them. This is evident in the
SonarQube service, which had taken a junior
developer one week to upgrade from 8.9 to
version 9.1 in early 2021. Containerization
trivializes this process by pulling the most
recent image from the internet whenever the
container is restarted. Effectively, what was
previously a week-long task now takes
seconds.

Additionally, because this updating happens
every time the container is restarted, the
containerized services are now much more
likely to run a secure version of the software
instead of running an outmoded, insecure
version for several years before being
updated.

Finally, adding multi-language support to
the SonarQube service allowed an additional
50,000 lines of code to be scanned from the
existing IA team code base. This resulted in
the discovery of 53 new bugs, over 700 new
code smells, and uncovering one new
security hotspot.

5. Conclusion
At the beginning of my internship with
Progeny Systems, their CI/CD and static
code analysis tools were outmoded and
unsecured. By using docker to upgrade these
tools, they are now secured and future
updates to them are trivialized to simply
restarting the containers the tools are hosted
on. This helps secure Progeny System’s vital
national defense work and saves future labor
hours manually upgrading these tools.
Additionally, the upgrades increased the
efficacy of finding bugs and security issues
within the codebase itself.

6. Future Work

Future work for upgrading the CI/CD and
static code analysis tools could include
writing a script that sends failed builds to the
Progeny Microsoft Teams in real-time and
upgrades the SonarQube license to scan
more lines of code in the codebase.

7. UVA Evaluation
Three UVA courses stood out as particularly
valuable for this internship: CS4501,
CS3710, and CS4414. CS4501 Spec Topics:
Intro to Software Analysis taught me about
static vs dynamic code analysis which was
extraordinarily helpful when upgrading
SonarQube. CS 3710 Intro to Cybersecurity
made me comfortable with the Linux
command line and taught me about securing
http traffic with https as well as other
general cybersecurity principles that I
applied when constructing my docker files
to make them safer. CS 4414 Operating
Systems gave me the knowledge to debug
issues with my machine as well as improve
my conceptual understanding of the
importance of docker as a replacement for
an operating system.
 The IA team was shocked to learn
that I had no experience with docker at UVA
and although UVA offers it in cloud
computing, the class fills up immediately
every semester, which meant I never had a
chance to take it. My only suggestion to
improve the UVA Computer Science
Program would be to increase the number of
seats available in cloud computing courses.

8. Acknowledgments
I would like to acknowledge my manager at
Progeny Systems, Kevin Sullivan, for his
technical support and leadership during the
internship.

References
Bellairs, R. (2020, February 10). What is

static analysis? Static Code Analysis
Overview. Perforce Software.

Retrieved September 20, 2022, from
https://www.perforce.com/blog/sca/wh
at-static-analysis

Raddatz, M., & Martinez, L. (2022, May
19). Inside the Submarine Capable of
Launching Nuclear Missiles. ABC
News. Retrieved September 20, 2022,
from
https://abcnews.go.com/Politics/inside
-submarine-capable-launching-
nuclear-
missiles/story?id=84832056#:~:text=E
ach%20missile%20is%20capable%20
of,by%20the%20New%20START%2
0Treaty.

Stoneman, E. (2020). Learn Docker in a
month of lunches. Manning
Publications Co.

