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Abstract 

 

The ability to accurately predict rotating machine resonant frequencies and to assess 

their stability and response to external forces is crucial from a reliability and preventive 

maintenance perspective.  Resonant frequencies and forced response become more difficult 

to predict when additional complicated components such as gearboxes are present in the 

rotor system.  Gearbox dynamics contain many complexities.  No computationally straight 

forward methods are currently available in the literature that relate gear forces and moments 

acting in 3-D space to the deflections of a wide variety of shaft systems in gear trains.  

Several models for analyzing gear forces and deflections have been proposed, but they focus 

primarily on the dynamics of the gearbox itself and neglect vibration transmission through 

the remainder of the drive-train.  More recent models have used the finite element method 

to couple the lateral and torsional degrees-of-freedom of shaft systems to the forces and 

moments of the gears through stiffness matrices.  However, these models were limited to 

spur geared systems and could not account for the forces and moments produced by helical 

gears, which act not only in the lateral and torsional directions but also in the axial direction.  

A finite element formulation of gearboxes, which couples the axial, lateral, and torsional 

degrees-of-freedom of the connected shafts, is developed in this thesis.  The thesis contains 

applications to two industrial gear trains.  It has the capability to apply to a wide variety of 

both spur and helical geared systems set at arbitrary orientation angles.    
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Nomenclature 

 

b – Gear tooth face width 

C – Damping matrix 

d – Horizontal distance between shaft centers 

E—Elastic Modulus 

f – External force vector 

G – Gyroscopic matrix 

h – Vertical distance between shaft centers 

K – Stiffness matrix 

M – Inertia matrix 

u – Displacement vector 

α– Gear tooth normal pressure angle 

β– Gear tooth helical angle 

δ– Log decrement 

ζ– Damping ratio 

φ– Gear direction cosine 

φ – Gear orientation angle 

ωn – Natural frequency, rad/s, rpm, Hz 

Ω – Rotational speed or excitation frequency, rad/s 

 

Subscripts 

i – Node number 

j – Node number 
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x – Horizontal displacement 

y – Vertical displacement 

z – Axial displacement 
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Chapter 1 Introduction 

 

1.1 Problem Statement 

 

The ability to accurately predict rotating machine resonant frequencies and to assess 

their stability is crucial from a reliability and preventive maintenance perspective.  Resonant 

frequencies and forced response become more difficult to predict when additional 

complicated components such as gearboxes are present in the rotor system.  Gearing has 

existed since the beginnings of rotating machinery and yet many aspects of its dynamics 

remain to be understood.  Gearbox dynamics are important to understand because they are 

prevalent in a wide variety of rotating machines and can substantially transmit and excite 

vibrations throughout the whole rotor system.  Applications of gears to rotary systems 

include automobile transmissions, geared-turbofan jet engines, wind turbines, and all other 

power transmission applications that require torque- speed conversions.    Examples of an 

automotive gearbox and a geared-turbofan jet engine are shown in Figures 1.1.1 and 1.1.2. 

 

 

Figure 1.1.1.  Automotive gearbox. http://www.carsparefinder.co.uk/Car-gearbox.htm.   

Figure 1.1.2. PW-1000G Geared-turbofan jet engine http://www.purepowerengine.com/photos.html#19 

 

http://www.carsparefinder.co.uk/Car-gearbox.htm
http://www.purepowerengine.com/photos.html#19
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No computationally straight forward methods are available in the literature to relate 

gear forces and moments acting in 3-D space to the deflections of a wide variety of shaft 

systems.  Several models for analyzing gear forces and deflections have been proposed, but 

they focus primarily on the dynamics of the gearbox itself and neglect the interactions with 

the shaft system [37].  More recent models have suggested that the finite element method is 

the most convenient way to couple the lateral and torsional degrees-of-freedom of the shaft 

system to the forces and moments of the gears through stiffness matrices [39].  However, 

these studies were limited to spur gear dynamics and could not account for the forces and 

moments produced by helical gears, which act in 3-D space.  

A finite element formulation of gearboxes, which allows for the coupling of axial, 

lateral, and torsional degrees-of-freedom of the connected shafts, is proposed in this thesis.  

The coupling of the degrees-of-freedom at the gear mesh is modeled as a 12x12 stiffness 

matrix and was originally proposed by Stringer [52].   In this thesis, the gear mesh stiffness 

matrix is modified and integrated into a rotor dynamic finite element software that solves 

free and forced vibration models.  The applications extend to a wide variety of both spur 

and helical geared systems. 

Gearbox dynamics contain many complexities that include but are not limited to 

transmission errors resulting from tooth profile errors, elasto-hydrodynamic lubrication 

(EHL) effects, and time-varying, non-linear forces resulting from gear body or tooth 

displacements and velocities.  Despite the increased accuracy that would result from 

including these effects in the modeling of gearbox dynamics, they are secondary in 

importance to incorporating the coupling of the degrees-of-freedom [39]. 

 

1.2 Summary 
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This thesis provides advances in the transition from elementary gear dynamic 

analyses in the 1920s to modern advanced methods used in geared rotor dynamics.  Chapter 

2 provides an overview of the history of the methods used in gear dynamic analyses, which 

form the basis to describe the differences between previous methods and those presented in 

Chapter 3.   

Chapter 3 describes the use of Stringer’s 12x12 stiffness matrix to couple the degrees 

of freedom of a pair of geared parallel shafts and is robust enough to account for arbitrary 

angles of orientation between them [52].  The theory is extended through its incorporation 

into a finite element program that has been shown to accurately model the mass, stiffness, 

gyroscopic, and damping properties of shafts, bearings, disks, and seals.  Axial, torsional, and 

lateral degrees-of-freedom are included for the first time.  The advantage of such an 

implementation is that the modeling of geared systems is generalized so that they will remain 

accurate for a wide variety of geared drive-trains.   

Chapter 4 demonstrates the utility of the gear mesh finite element in accurately 

modeling the source of sub-synchronous instability in a steam-turbine-generator geared 

system.  The gearbox modeling was useful for determining whether the recommended 

solution would stabilize the geared drive-train.  Subsequent reports indicated that the 

recommended solution successfully eliminated the unstable sub-synchronous mode and 

retained the stability of all other modes within the operating speed.  Those reports validated 

the accuracy of incorporating the gear mesh finite element into the analyses.  

Chapter 5 models a synchronous motor-compressor geared system and uses the gear 

mesh finite element to determine its damped natural frequencies and mode shapes for 

preventive maintenance purposes.  The lateral, torsional, and axial coupling inherent in the 
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gearbox modeling is more accurate than solving the individual non-coupled equations of 

motion since it predicts modes that the non-coupled equations would miss. 
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Chapter 2 Literature Review 

2.1 Dynamic Factor 

 

This section will explore the foundation of gear dynamics research and its evolution 

into modern geared rotor dynamic analyses.  Gear dynamics have been systematically studied 

since the 1920s and early 1930s.  The objectives in gear dynamic analyses are vast and 

include models of the following phenomena: bending and contact stresses; scoring and 

pitting; transmission efficiency; noise radiation; loads on other machine components; system 

natural frequencies; stability regions; rotor whirl; reliability; and life [37].  The first models 

focused solely on determining dynamic loads acting on gear teeth through analytical and 

experimental methods.  The purpose of these early studies was to determine the dynamic 

stresses at the gear roots and to therefore obtain gear life estimates.  These studies 

determined that dynamic loads were not just influenced by pitch line velocities but also by 

tooth errors and the inertias of the gear and pinion.  The inclusion of vibratory models in the 

dynamic analysis of gears allowed for the investigation of additional dynamic properties.   

 

2.2 Tooth Compliance Models 

 

Computationally straight forward mass-spring dynamic models of gears which 

included the compliance of gear teeth emerged in the 1950s and early 1960s and served as 

the first transition between analyzing tooth dynamic loads and accounting for the 

compliance of several gear components [37].  The models that fit within this category 

assume that compliance is limited to the gear tooth and that all other components are rigid.  

Various analyses assumed the gear mesh stiffness to be constant in time or to have time-
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varying properties of sinusoidal or rectangular waves.  Manufacturing errors, variation in 

tooth stiffness, and non-linearity in tooth stiffness from loss of contact were attributed to be 

the three main internal sources of vibration and were incorporated into many of these 

models in the form of periodic input displacements at the gear mesh location [2].  Despite 

the simplistic nature of these single DOF models, they could predict dynamic instabilities 

due to parametric excitations of the gear mesh and from varying the mesh stiffness [6].  An 

example is shown below in figure 2.2.1 and is one of the first models to investigate the 

effects of gear error on the dynamic loading of gear teeth.  Gear error disturbances were 

introduced into the model by vertically displacing the wedge.  Another classical example of a 

tooth compliance model is shown below in figure 2.2.2.  Torsional vibration is considered 

and the stiffness and damping of the teeth are represented by a spring and dashpot pair.  

Gear error is introduced into the model in the form of a displacement input at the mesh.   

 

 

Figure 2.2.1.  Spring-mass model created by Tuplin to investigate the effects of gear error on dynamic loading 
of teeth.  The gear error is introduced into the model through vertical displacements of the wedge.  
Ke=equivalent constant tooth mesh stiffness; me=equivalent mass; w=transmitted load.  [37] 

 

 



17 
 

 

Figure 2.2.2.  Torsional model of gears in mesh with constant stiffness, damping, and a displacement input 
representing gear error.  Km=tooth mesh stiffness; Cm=tooth mesh damping; e(t)=displacement input for 
gear error.  [37] 

 

Additional models of tooth compliance emerged in the 1970s and were the first to 

include the finite element method.  This was a significant departure from treating the gears 

as lumped inertias and the gear teeth as massless springs since the problem could be 

formulated much closer to a continuum.  Lin, Huston, and Coy investigated the differences 

in the results obtained using Timoshenko beam and finite element models and discovered 

that they were substantial for stubby tooth forms [25].  One study used the finite element 

method to study the effects of dynamic loading on the stress, deformation, and fracture in 

gear teeth [11].  Wang and Cheng used the finite element method solely to determine the 

variable tooth stiffness of involute spur gears to then be included in a single DOF lumped 

model [20].  Their finite element analysis was used to generate a set of curves relating 

dimensionless tooth stiffness to the number of gear teeth and the loading position 

throughout the mesh cycle as shown in Figure 2.2.3.    The dimensionless tooth stiffness was 

a function of Young’s modulus, load per unit face width, and the root radius of the gears.  

Figure 2.2.3 also shows the finite element mesh used to generate the family of dimensionless 

stiffness curves. 
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Figure 2.2.3.  Finite element modeling and mesh of a single spur tooth.  Results indicate the variation of 
dimensionless deflection with the number of teeth under different contact loading positions indicative of a 
mesh cycle [20]. 

 

Second order effects such as damping and friction appeared in several of these 

models.  Umezawa, Sato, and Kohno modeled the compliance of spur gear teeth as three 

trapezoidal beams where they determined the bending deflection, shear deflection, and 

stamp effect at the base of the tooth using Ishikawa’s equation (Ishikawa, 1951).  They also 

determined the Hertzian or contact deflection using Weber and Banaschek’s equation [26].  

Alternative forms of error such as those in the pressure angle, normal pitch, and tooth 

profile were included in their model and the simulation results for natural frequencies 

showed good agreement with experimental values.  Despite the increases in the complexity 

of tooth compliance models using finite element analysis, the results showed little 

differences from those of the pioneering simple mass-spring category with the exception of 

high-speed cases [37].  Researchers determined, however, that more general models that 

incorporate the flexibility of other machine components were necessary for several practical 

applications.  Vibration coupling between the gears and their respective shafts and bearings 

could no longer be neglected when they have comparable stiffnesses. 

 

2.3 Gears and Rotor Dynamics 
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The effects of gearing on the lateral behavior of shafts were considered in gear 

dynamics problems in the late 1960s and early 1970s [37].  It was determined that 

experimental agreement existed for the earlier models because the experiments were 

designed to satisfy the assumptions of the models regarding the flexibility of the gear teeth 

relative to the shafts and bearings.  These assumptions were often valid for cases where the 

geared shafts were short and thick but would fail for longer and more slender shaft 

components.  These discoveries prompted the rise for more general gear models and 

represent the beginnings of gear dynamics where the lateral and torsional degrees of freedom 

of the shafts are coupled with those of the gears.  Several models, however, are simply 

torsional and account only for the torsional stiffness of the geared shafts [4, 10, 13, 18].  

Others include both torsional and lateral motions and consider the torsional and lateral 

stiffnesses of the geared shafts [12, 15, 14].  Other studies ignore the flexibility of the gear 

teeth and construct torsional models of rigid gears while the shafts were considered flexible 

[9, 30].  Their emphasis was placed less on the gear dynamics and more so on the dynamics 

of the connected shafts and their interactions with the bearings.  An example of a laterally 

and torsionally coupled model is shown in figure 2.3.1.  The shafts have torsional stiffness, 

and the gears have tooth mesh stiffness and lateral stiffness contributions from the shafts 

and bearings.  Mass moments of inertia of the prime mover, load, and the gears are also 

included in this model. 
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Figure 2.3.1.  Laterally-torsionally coupled model of a shaft-gear system.  I1, and I4=mass moment of inertia of 
prime mover and load; I2, and I3=mass moment of inertia of gears; K1i=torsional stiffness of shaft I; 
Km=tooth mesh stiffness; K2, and K3=lateral stiffness representing shaft and bearing flexibility [37]. 

 

Several innovations in gear dynamics emerged in the 1970s and 1980s.  Models for 3-

D stiffness of gear teeth, and non-linear behavior of system elements such as bearings and 

gear backlash emerged.  In addition, friction models of gear teeth included damping and 

excitation forces.  In the late 1980s, developments in axial, lateral, torsional, and plate mode 

vibrations of geared systems emerged.  Both steady state and transient system responses 

resulting from many variations of gear errors and time-varying mesh stiffness were 

considered.  Johnson’s model replaced a varying mesh stiffness by a constant one equal to its 

mean value and was one of the first attempts at using the gear mesh stiffness to couple the 

vibration of gear shafts [3].  Kiyono et al focused on constructing helical gear models to 

compare the results with those of spur gears [16].  They included torsional, lateral, and axial 

degrees of freedom and treated the gear mesh stiffness as constant.  Troeder developed a 

helical gear pair-shaft-bearing system which involved a torsional, lateral, and axial vibration 

model where the tooth mesh stiffness was approximated by a Fourier expansion in the form 

of a square-wave [22].  Kucukay incorporated axial, lateral, and torsional vibration for single-

stage helical and spur gear pairs with periodic tooth mesh stiffness, tooth errors, external 

torques, load dependent contact ratio, and non-linearities from the separation of gear teeth 
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[27].  Kucukay’s results indicated that linear model approximate solutions for the steady-state 

tooth displacements and loads varied negligibly from the non-linear ones.  Ozguven 

produced a six degree of freedom non-linear model of a spur geared system with time-

varying mesh stiffness [38]. The spur geared system consisted of a prime mover, pinion, 

gear, and load and the degrees of freedom corresponded to four angular rotations of all 

components and two translations of the gear and pinion just along the line of action.  Several 

factors were explored such as damping, tooth separation, backlash, single and double-sided 

impacts, and various gear errors (pitch, profile, and run-out).  A forced response analysis to 

internal excitations was conducted and demonstrated the effects of the shaft and bearing 

dynamics on the gear dynamics. 

Mathematical models for geared rotor dynamics emerged in the 1960s as researchers 

sought to consider the whirling behavior of gear-carrying shafts which required lateral 

analyses in two mutually perpendicular directions.  Although the models in the previous 

group for geared dynamics considered lateral vibration, the motion was usually restricted to 

one direction along the line-of-action (LOA).  Daws and Mitchell constructed a three-

dimensional model of gear coupled rotors in which they used a time-varying stiffness tensor 

to model the variable mesh stiffness [23].  The interaction between the time varying stiffness 

and gear deflections was used to predict the forced response of the coupled gear rotors to 

excitations from mesh errors and unbalanced rotors.  Another set of studies examined the 

free and forced vibration of geared shafts using constant and periodically varying tooth mesh 

stiffness [28].  The forced response was originally due to mass unbalance but was later 

extended to include tooth profile errors.  These studies used the transfer matrix method for 

computational efficiency especially when the models included non-linear dynamics.  
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2.4 Recent Advances 

 

Additional geared rotor dynamic models emerged that incorporate the finite element 

method to couple the degrees of freedom of connected geared shafts.  Neriya, Bhat, and 

Sankar modeled each gear as a set of two masses, two springs, and two dampers where one 

set represented the gear and the other a tooth [32].  The shafts were modeled as finite 

elements and the torsional-lateral coupling could be conveniently introduced at the gear pair 

locations in the form of stiffness and damping matrices.  They assumed constant mesh 

stiffness and conducted a free vibration analysis to determine the undamped natural 

frequencies of the linear system.  These undamped modes would then be used to calculate 

the forced response vibration due to mass unbalance and gear eccentricity.  They concluded 

that predictions of geared rotor dynamic behavior, such as critical speeds, mode shapes, and 

stability onset, are more accurately modeled in finite element analyses when lateral and 

torsional motions are coupled instead of uncoupled.  These results, however, were limited to 

simple spur-geared systems.   

Luo produced a general finite element based model of multi-stage and multi-mesh 

geared rotor systems that incorporates axial, lateral, and torsional coupling which is 

applicable to both spur and helical geared systems [42].   A modal synthesis technique was 

employed so that the model may have a large number of degrees of freedom without the 

need for a large amount of computer memory.  The researchers used a gear transmission in 

an aircraft engine as an example and showed the axial, lateral, and torsional coupling of 

modes which is in general agreement with field observations.    

Lin and Parker developed a systematic method to analyze the effects of mesh 

stiffness variations on the instabilities of two-stage spur geared systems [46].  The variations 
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in mesh stiffness would come from altering the following:  mesh frequencies, time-varying 

mesh stiffness amplitude, contact ratio, and mesh phasing.  The two gear mesh stiffnesses 

were modeled as having mean and time-varying components, where the time-varying parts 

are periodic at their respective mesh frequencies and are expressed in Fourier series.  

Analytical solutions were obtained for rectangular waveform tooth mesh stiffnesses and 

support the notion that perturbations in contact ratio and mesh phasing substantially 

eliminate or decrease the size of instability regions.  Other findings suggest that the 

excitations originating from one gear mesh may interact substantially with those of the other 

especially when their frequencies are integer multiples of the other.  

Cai develops a vibration model for involute helical gear pairs that incorporates 

contact ratio, tooth surface errors in the form of shaft deviation and pressure angle errors, 

and non-linear tooth separation phenomena [41].  A modified stiffness function was 

produced for a free vibration analysis of the gear pair that includes the effects of addendum 

modification coefficients, and number of teeth.  The dynamic equations of motion are 

solved using the finite difference method on a 16-bit computer and yield results similar to 

the experiments and simulations of previous researchers such as Umezawa [26]. 

Brauer derived a mathematical set of equations describing the shape of conical 

involute gears and three other types to be used in finite element models [48].  His work was 

a significant improvement over previous geometric gear models in CAD programs which 

required large amounts of computational time to generate highly accurate tooth surfaces.  

The use of equations to define the tooth surfaces not only presented a quicker method to 

generate the gear model and its elements but is also more robust.  Li, Chiou, et al. developed 

a module that integrates finite element analysis of gear bodies with gear design optimization 

[45].  This module offered an automatic design optimization routine using interfacial 
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programs that connected programs that accomplish pre-processing, finite element analysis, 

and optimization. Consequently, this significantly shortened the procedure of rebuilding gear 

models through CAD programs to search for an optimal design that satisfies stress/strain 

requirements obtained from FEA. 

Chowdhury produced a model of a helical gear pair mounted on two flexible shafts 

with rigid bearings using Hamilton’s principle [53].  The shafts were modeled as continua 

with torsional and lateral flexibility while the gears were treated as rigid disks connected by 

laterally-torsionally coupled mesh springs with time-averaged stiffness.   Free vibration 

analyses of the partially discrete, partially continuous geared system were performed using 

Galerkin discretization to evaluate eigenvalue sensitivities to rotational speed, and gear mesh 

stiffness.  Forced response analyses due to the effects of static transmission error were 

conducted using modal analysis. 

Kahraman et al developed a finite element model of a spur-geared rotor system with 

flexible shafts and bearings with degrees of freedom in the lateral and torsional directions 

[39].   The tooth mesh stiffness is modeled as a spring and damper, with constant stiffness 

and damping, along the pressure line and is used to produce gear mesh stiffness and 

damping matrices.  Variable mesh stiffness effects were modeled by using a displacement 

excitation originating at the mesh.  These mesh matrices would be added to the uncoupled 

rotor matrices to complete the global matrices.  Critical speeds, mode shapes, and the system 

forced response to gear mass unbalance, runout, and static transmission error were 

evaluated.  Kahraman et al concluded that the relative compliance of the shaft and the 

bearings greatly influence not only the mode shapes and natural frequencies but also the 

dynamic tooth load. 
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Sun derived a new analytical formula to calculate the bending deformation of 

involute helical gear teeth using more realistic assumptions of the tooth profile, mass, and 

load distributions [54].  He divides the tooth section into multiple copies along the spiral 

angle direction and considers the variable cross-section moment of inertia due to the 

changing tooth profile, and the variable contact distribution caused by the changing length 

of the contact line.  This method was applied to a helical gear pair example and the results 

were compared with those of finite element analysis and Ishikawa’s method [1].  The results 

indicated that Sun’s analytical formula more closely represented those of FEA than previous 

formulas such as Ishikawa’s.   

Stringer developed the methodology for generating a 12x12 gear mesh stiffness 

matrix that couples the axial, lateral, and torsional degrees of freedom of geared-rotor 

systems and is therefore applicable to both spur and helical gears [52].  The stiffness matrix 

is derived from force balances taken along the line of action (LOA) using the Influence 

Coefficient method, and it incorporates the effects of the normal pressure angle, helical 

angle, and the arbitrary orientation of the meshing gears.  This arbitrary orientation angle of 

the meshing gears offers a significant advantage over other gear mesh finite element 

methodologies since it is applicable to complicated gear models where a convenient choice 

of axes may not be available.   A model of a spur-geared-rotor system and bearings is used as 

an example, and it includes gyroscopic forces and the effects of bearing stiffness and 

damping properties.  The results indicate that the inclusion of the stiffness matrix produces 

many of the same natural frequencies and modes of the non-geared system but also 

produces additional ones that represent laterally and torsionally coupled modes.  The 

methods used in Stringer’s work are very general and are useful in the creation of broader 

rotor dynamic models where the gear mesh is one of many substructures. 
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This thesis expands upon Stringer’s work by incorporating his gear mesh stiffness 

matrix into a rotor dynamic steady-state finite element analysis that accounts for the effects 

from gyroscopic forces, bearings, disks, squeeze film dampers, and seals in free vibration 

analyses with axial, lateral, and torsional degrees of freedom.  In addition, a simple analog 

formula used to find tooth-to-tooth contact stiffness, originally developed by Spotts, is used 

and modified to compute the average gear mesh stiffness, an important parameter in 

Stringer’s 12x12 matrix [31].  The advantages of using this analog formula are that it is 

computationally efficient while remaining reasonably accurate, and that the user does not 

require experimental data which may be unavailable or time-consuming to acquire.  Most 

importantly, the ability to accurately model the compliances and degrees of freedom of 

several other components and sub-structures offers the advantage of solving a wide variety 

of geared rotor dynamics problems in which the validity of certain simplifying assumptions 

may be questionable.  Incorporating Stringer’s research into this finite element analysis will 

create many opportunities for adding secondary effects due to elasto-hydrodynamic 

lubrication (EHL), tooth profile error, transmission error, time-varying stiffness, and non-

linear forces.  Chapter 3 will show the derivation of the 12x12 gear mesh stiffness matrix and 

will illustrate how it is incorporated into a simple geared-rotor model. 
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Chapter 3 Gear Mesh Analysis 

 

3.1 Gear Mesh Finite Element Model 

 

This chapter explores the finite element formulation of the inclusion of gearbox 

dynamics into rotor dynamics.  It is based upon a finite element code that uses 2-D 

Timoshenko beam models for shafts and can easily incorporate bearings, disks, and seals 

into the equations of motion [51].  Beam elements are widely used to model rotors as they 

have been shown to produce accurate results when compared to experimental data.  The 

method performs steady-state rotor dynamic analyses and has lateral, torsional, and axial 

degrees of freedom.   Incorporating Stringer’s derivation of a 3-D gear mesh stiffness matrix 

and Spott’s model of finite contact stiffness of meshing gear teeth into this finite element 

code will promote the ability to solve geared rotor dynamics problems with coupled degrees 

of freedom.  Solving the rotor dynamic equations of motion with coupled degrees of 

freedom are necessary for geared rotor dynamics and will produce more accurate results than 

solving the individual non-coupled ones. 

The approach models the effects of gears, and gear mesh stiffness on the vibration 

characteristics of rotating machines using the finite element method.  The gears will be 

treated as a pair of rigid lumped masses and inertias that influence the mass, gyroscopic, and 

stiffness properties of the corresponding shaft nodes in the finite element matrices.  The 

forced response rotor dynamic equations of motion for the entire system model can be 

represented by the following matrix equation.   
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fKuuGCuM   )(        (3.1.1) 

  

As defined in the Nomenclature, M represents the inertia matrix, C represents the 

damping matrix, G represents the gyroscopic matrix, Ω represents the shaft speed matrix, 

and K represents the stiffness matrix.  In the free vibration models, the external force vector, 

f, is set to 0.  The effects of the gears and the gear mesh will significantly contribute to the 

global mass, speed, gyroscopic, and stiffness matrices.  The gear mesh lubricant stiffness and 

damping effects are neglected as well as the excitation forces resulting from profile and static 

transmission error.  These effects must be accounted for in future models. 

The mass and gyroscopic contributions to the global matrices are treated the same as 

those of lumped disks at the nodes of the gear and pinion in rotor dynamics models and 

therefore will not be emphasized.  The elements of the speed matrix, Ω, will differ for the 

nodes of shafts that rotate at different speeds because of non-unity gear ratios.  The gear 

mesh effective lateral, torsional, and axial stiffness is modeled as a 12x12 matrix that relates 

the gear mesh forces and moments, or generalized forces, with each of their respective 

degrees of freedom.  This gear mesh finite element was previously documented in Stringer 

[52].  It consists of two nodes, i and j, respectively as shown in Figure 3.1.1, where the nodes 

designate the location of the gear or pinion on the parallel connecting shafts.  Each node has 

six degrees of freedom, which consists of three translations and three angular displacements.  

The incorporation of this axially, laterally, and torsionally coupled mesh stiffness finite 

element will provide more accurate displacement solutions for a geared system in a free 

vibration or forced response rotor dynamic analysis.  
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Figure 3.1.1.  Gear mesh finite element representation [52] 

 

The generalized displacements are shown in the displacement vector, labeled as u, 

and contain those corresponding to the shaft center of one gear at node i and the other gear 

at node j, as indicated by the subscripts.   

 

   Tzjyjxjjjjziyixiiii

T
zyxzyx  ji uuu

 (3.1.2) 

 

Correspondingly, the generalized forces acting on both nodes may be represented by 

the external force vector, labeled as f.    

 

   Tzjyjxjzjyjxjziyixiziyixi

T
MMMFFFMMMFFF ji fff

 (3.1.3) 

 

These generalized forces are incorporated into the rotor dynamic model through a 

shift to the left-hand side of the equations of motion since the generalized forces are treated 

as linear with respect to the generalized displacements. This equivalent stiffness matrix, 
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Kmesh, relates the generalized forces with the generalized displacements through the 

following matrix equation.   

 

  

















j

i

mesh

j

i

u

u
K

f

f

        (3.1.4) 

 

3.2 Derivation of Mesh Stiffness Matrix 

 

The element stiffness matrix Kmesh is defined below, where Kg is the average gear 

mesh stiffness, and Kii, Kij, Kji, and Kjj are 6x6 sub-matrices that account for the coordinate 

transformations from the pitch point of the gear mesh to the global coordinate system of the 

shaft centers.   These sub-matrices will be discussed later in this section. 

 

     (3.2.1) 

 

A crucial parameter to the element stiffness matrix is the average gear mesh stiffness, 

Kg, which accounts for the tooth compliance.  It is assumed that the stiffness of the rest of 

the gear body will be much more rigid than that of the teeth, which suggests that the tooth 

stiffness will dominate the gear dynamics. The meshing stiffness between a single pair of 

teeth is found either from experimental data or from previously reported analytical formulas.  

The analytical formula used to compute single tooth-tooth contact stiffness is provided 

below [31]: 

 



Kmesh  Kg
Kii Kij

Kji Kjj
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        (3.2.2) 

 

where b is the tooth face width, and E1 and E2 are the gear and pinion elastic moduli.  

 

The mesh stiffness formula, however, only represents the stiffness of a single pair of 

teeth in contact.  As the gears rotate, a time varying mesh stiffness develops because the 

number of pairs of teeth in contact, also known as the contact ratio, alternate between one 

and two throughout the mesh cycle.  Based on non-linear and time-varying analyses 

performed by D.B. Stringer [52], an average contact ratio of 1.3 was found to be a 

reasonable average value.  The advantage of implementing an assumed constant contact ratio 

into the finite element model is that the solving time is greatly reduced and yet the accuracy 

remains reasonable.  Spotts’s formula for the average gear mesh stiffness may then be 

modified to 

 

 21

21

9

3.1

EE

EEb
K g


         (3.2.3) 

 

The stiffness matrix was also generalized to account for the macro geometry of both 

spur and helical geared systems.  These geometric parameters, which include normal 

pressure angle, helical angle, pitch radii, and orientation angle, are accounted for when 

relating the displacement of gear teeth along the line of action (LOA) to its components in 

the coordinate system of the shaft center [52].  The LOA is the path of force transmission 

between a pair of mating gears and is represented as a line that intersects with the pitch point 
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but is not, in general, tangent to the pitch circle. The displacements at the pitch point are 

resolved into the components of the shaft coordinate system through two coordinate 

transformations.  The first transformation makes use of the normal pressure angle and 

helical angle to resolve components along the LOA into normal and tangential components 

along the pitch circle.  An illustration of this transformation is provided in Figure 3.2.1 

where the X’ Y’ Z’ coordinate system references components acting along or normal to the 

pitch circle at the pitch point.  The second transformation makes use of the shaft orientation 

angle to relate the components along the pitch circle to those of the shaft center.  Figure 

3.2.2 illustrates the use of the shaft orientation angle, φ, in this transformation. 

Spur geared systems require only three degrees of freedom per node because the 

forces and moments act solely in the plane of rotation, or in the X-Y plane in the diagram 

below.  The displacements of interest for each gear node would be x, y, and z, and therefore 

u would consist of only six unknown displacements.  That is, three displacements for the 

pinion and three displacements for the gear. 

Helical geared systems, however, as shown in figure 3.2.1, require six degrees of 

freedom per node because the forces and moments now act in 3-D space and must also be 

functions of the helical angle, β.  Therefore, u must include all 12 generalized displacements 

if we are to include those of the gear and pinion.   
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Figure 3.2.1.  Gear Forces and Parameters [52] 

 

Figure 3.2.2.  Gear Pair Orientation Angle [52] 

 

The derivation of this 12x12 stiffness matrix relies on relatively few geometric inputs 

but is robust enough to account for parameters corresponding to those of helical and spur 

gear meshes.  The geometric inputs for the gear and pinion include the following: pitch radii, 

normal pressure angle, helical angle, and an orientation angle of the shafts holding the gears.  

Figures 3.2.1 and 3.2.2 depict the relevant geometric parameters, and the symbols are 

defined in the Nomenclature. 

The equations of motion that relate the generalized forces to the generalized 

displacements were obtained by applying a force balance along the LOA.  The transmitted 

force is proportional to the net displacement of the tooth along the LOA through a 
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component of the mesh stiffness matrix.  The transmitted force and displacement along the 

LOA can be resolved into components of the shaft center coordinate system through the 

two coordinate transformations involving the parameters mentioned above.   Each element 

of the gear mesh stiffness matrix may then be evaluated using the Influence Coefficient 

method where one varies individual generalized displacements and determines the resulting 

generalized forces required to produce that deflection.   

The direction cosines are used to resolve the transmitted force into components 

along the pitch circle and are convenient for notational purposes.  They are functions of the 

helical angle and normal pressure angle as shown by the following relations: 

 

 

 

        (3.2.4) 

  

In summary, the resulting mesh stiffness matrix may be written as: 

 

     (3.2.5) 

  

Kii, Kij, Kji, and Kjj are 6x6 sub-matrices that represent the geometric contributions of 

the helical angle, normal pressure angle, pitch radii, and the orientation angle of the gears to 

the element stiffness matrix.  Those sub-matrices are expressed in Eq (3.2.6).   
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           (3.2.6) 

The notation was written succinctly using the symbols 

 

 sins ;  cosc ;  22 sins ;  22 cosc  

 

 The same rule applies to the direction cosines too.  After applying the coordinate 

transformations and multiplying through by the average gear mesh stiffness, we have 

obtained an element stiffness matrix that represents the relationship between the generalized 

forces exchanged between the gears, and the generalized displacements at the corresponding 

shaft locations.   This method may be applied to both spur and helical gears and illustrates 

the contribution gear dynamics provide to the deformation and vibration of axial, lateral, and 

torsionally coupled rotor dynamic systems.  This finite element will be beneficial in free 

vibration and forced response rotor dynamic analyses involving gearboxes. 

 

3.3 Incorporation into the Gear Finite Element Model 
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The previous section illustrated how to produce the 12x12 gear mesh stiffness matrix 

from several key parameters that included material, and geometric properties of the gears.  

This section will explore how one incorporates the element stiffness matrix into the global 

stiffness matrix of a rotor dynamic system.  The example shown below for a simple geared 

system will indicate the proper approach and may be applied to many more complex 

transmission systems with multiple gear stages.  

Figure 3.3.1 shows a finite element representation of two parallel shafts joined by a 

gear mesh and is represented as geared system 1.   As indicated in the figure, the shaft system 

contains 3 elements and 5 node points, where nodes 2 and 4 represent the locations of the 

gears.   In general, the number of degrees of freedom for each node may vary depending on 

whether the user conducts a lateral, torsional, axial, or any coupled finite element analysis.  

 

 

Figure 3.3.1.  Finite element representation of geared system 1 [52] 

 

To simplify the analysis and to illustrate its generality, we will express the generalized 

displacements of geared system 1 as the following: 
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 T54321 uuuuuu 
       (3.3.1) 

 

where each ui represents all of the degrees of freedom associated with the ith node 

point.  The global stiffness matrix may be expressed in the following way in Eq (3.3.2) 

without the inclusion of the mesh stiffness matrix.  It is evident that there are no terms that 

would account for the dynamics between nodes 2 and 4. 
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 (3.3.2)  

 

The mesh stiffness matrix will provide the stiffness terms relating shared generalized 

forces acting on and between nodes 2 and 4, and it may be expressed in the following way.  
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     (3.3.3) 

 

Thus, one may reduce the 12x12 mesh stiffness matrix so that the components 

remaining are the ones that correspond only to the desired degrees of freedom.  This 

provides the user with the flexibility of choosing to use the stiffness matrix to solve a lateral, 

axial, torsional, or a coupled rotor dynamics problem.   
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The final step in producing the global rotor/gear stiffness matrix is to add all of the 

sub-matrices of the mesh stiffness matrix corresponding to specific nodal locations to the 

proper locations in the global matrix.  The matrix equation below illustrates this concept for 

geared system 1 and shows where the components of the mesh stiffness matrix were added. 
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(3.3.4) 

 

The steps necessary to conduct a rotor dynamic analysis of helical and spur geared 

transmission systems are complete.  The methods used to produce the gear mesh stiffness 

matrix have been illustrated in section 3.2, and the techniques for incorporating this matrix 

into a global finite element model have been shown in this section, 3.3.  Chapters 4 and 5 

will demonstrate the applicability of the gear mesh stiffness matrix within the finite element 

code to two different industrial geared rotor systems. 
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Chapter 4  Industrial Gearbox Application 1 

 

4.1 Introduction 

 

Chapter 3 discussed the methodology of adding gearbox dynamics to a rotor 

dynamic analysis and this chapter will illustrate its applicability to an industrial steam-turbine-

generator set.  Excess levels of rotor lateral vibration were reported in this drive-train which 

has a rated electrical power output of 12 MW.  The train also contained a speed-reducing 

gearbox, and a flexible coupling in between the turbine and generator.  An overall schematic 

of the rotating machine is shown below in Fig. 4.1.1.  The steam turbine is designed to run at 

a nominal operating speed of 10,770 rpm.  The gearbox reduces the rotational speed from 

10,770 rpm to 1,500 rpm at the generator.  The electrical generator is coupled to the low-

speed output of the gearbox.  This arrangement is suitable for the generation of electrical 

power at 50 Hz while allowing the turbine to operate at peak efficiency. 

 

 

Figure 4.1.1.  Overall steam-turbine generator sytem model. 

 

Measurements indicated sub-synchronous vibration along the high-speed turbine 

/high-speed pinion shaft at 9,869 rpm during spin testing of the turbine and gearbox.  This 

vibration increased in amplitude as the running speed was increased to 10,409 rpm.  The 
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reported vibration had a 63 μm peak and occurred at about 0.85-0.89X, where X is the 

operating speed of the high-speed shaft.  Since the generator was uncoupled from the 

turbine and gearbox during the spin testing, the gearbox bearings were lightly loaded. 

A frequency spectrum plot of vibration along the high-speed shaft at a running speed 

of 10,201 rpm is shown below in figure 4.1.2.  The synchronous vibration due to unbalance 

forces is approximately 35 μm, while the sub-synchronous component, at 0.85X, is 58 µm.  

Several spectrum plots of different running speeds were provided and illustrate the trend of 

increasing sub-synchronous amplitude as the running speed was increased.  

 

Figure 4.1.2.  Spectrum plot of HS shaft at 10,201 rpm (units in μm) 

 

Free oil was discovered in the high-speed coupling between the turbine and the 

generator during subsequent investigations.  The turbine and gearbox were able to reach the 

nominal operating speed of 10,770 rpm after the excess oil had been removed.  After 

increasing the speed of the turbine to ensure that over-speed requirements could be met, the 

high vibration levels were observed again.  Since then, the turbine and gearbox could not 

exceed 7,000 rpm without tripping.  Leakage from the turbine coupling side bearing was 

identified as the source of the excess oil in the coupling.  No oil seal leakage from the 

gearbox was reported.   
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Reports in the literature suggest that trapped liquid in rotors produces sub-

synchronous whirl very similar to the above observations.  For a nominal deflection of the 

rotor, the trapped fluid experiences centrifugal forces in the radial direction.  The spinning 

surface of the cavity combined with the finite viscosity of the fluid, however, produce 

tangential forces that can induce forward whirl and thus form the basis of sub-synchronous 

instability [43].  In 1967, Ehrich produced a simple analytical model which predicts whirl 

frequency and whirl amplitude as a function of supercritical rotor speed, liquid mass ratio, 

and a parameter related to the fluid Reynold’s number and damping ratio [7].  His findings 

suggest that the ratio of whirl frequency to onset speed can vary from 0.5-1X depending on 

the mass ratio and stability characteristics.   

In 1968, Wolf developed a more advanced analytical model that predicts a rotor 

speed region of unstable self-excited whirl as a function of liquid mass ratio, fill ratio, and 

rotor critical speed [8].  His analysis suggests that unstable whirl will not develop for rotor 

speeds less than the reduced critical or rotor speeds above o707.1 , where o is the 

emptied rotor critical speed.  This places the unstable whirl frequency approximately 

between 0.6-1X. 

Ota et al. conducted several experiments that tested how changes in the properties of 

liquids affect the width of the unstable rotor speed region [35].  They concluded that 

increases in viscosity do not change the width of the unstable region, but they decrease the 

growth rate of instability through damping.  Increases in specific gravity, however, 

contribute to wider and more violent unstable regions.  These experiments validated the 

models proposed by Ehrich and Wolf. 
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Additional authors have observed and measured vibration resulting from trapped 

fluid in hollow rotors.  Ehrich observed an asynchronous whirling motion induced by small 

amounts of free oil or condensed water in a hollow rotor of an aircraft gas turbine [7].  Kirk 

reported that entrained oil in the couplings of compressors has repeatedly produced sub-

synchronous vibration ranging from 0.83-0.94X [24].   

Subsequent rotor dynamic modeling and simulations are conducted here to verify 

that the entrained oil in the high-speed coupling would produce the observed sub-

synchronous vibration for this steam-turbine generator. 

 

4. 2 Gearbox Rotor Dynamic Analysis 

 

The complete steam-turbine generator rotor dynamic system can be decomposed 

into subsystems, which allows various models of components to be integrated into the full 

system.  Accurate results are obtained from performing free vibration and unbalance 

response analyses on this subsystem because the gearbox connections to the low-speed and 

high-speed shafts are flexible enough to expect vibration isolation.  An analysis of the full 

rotor dynamic system was conducted and confirmed this assumption.  This section will focus 

on developing a rotor dynamic model of the gearbox using Timoshenko beam elements.  

The beam elements are widely used to model rotors as they have been shown to produce 

accurate results when compared to experimental data [51].  The code performs steady-state 

rotor dynamic analyses and has lateral, torsional, and axial degrees of freedom.   The finite 

element model of the gearbox is shown below in Figure 4.2.3. 
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Figure 4.2.3.  Gearbox finite element beam model 

 

Stability and unbalance response analyses were completed using ten different 

generator load cases, which are provided in table 4.2.1, and two different sets of gearbox 

bearings.  Each load case was run at the prescribed operating speed of 10,778 rpm.  Loads 1, 

5, and 10 were taken to represent a light, medium, and heavy loaded case and were examined 

in greater detail.  The bearing load cases show the Cartesian force components in both SI 

and English units.   

 

Load Case 
fx fy 
lbf N lbf N 

1 0.4 2 -185.7 -826 
2 22.4 100 -132.1 -588 
3 223.7 995 360.9 1605 
4 447.5 1991 908.8 4043 
5 1119 4978 2552 11352 
6 2014 8959 4743 21098 
7 2909 12940 6935 30848 
8 3804 16921 9126 40594 
9 4699 20902 11317 50341 
10 5594 24883 13508 60087 

Table 4.2.1.  Generator load cases 
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The analyses were conducted using two different sets of gearbox bearings.  The 

original gearbox fluid film bearings were two-pad offset halves bearings and were the first to 

be included in the stability and unbalance response analyses.  It was crucial to analyze the 

original bearing set to validate the accuracy of the rotor dynamic model before 

recommending a solution to the instability.  Also, it would provide greater insight into why 

the gearbox high-speed shaft would experience instability under certain load cases.  The 

redesigned bearing set consisted of three-lobe pressure dam bearings.  

 

4.3 Stability Analysis 

 

Rotor dynamic instability is fundamentally a free-vibration phenomenon where 

external fluid cross-coupled stiffness and electromagnetic negative stiffness act on the rotor.  

These stiffness values act on the rotor and can excite natural frequencies of vibration.  In 

rotor dynamic models, these stiffnesses are represented as cross-coupled or negative 

stiffnesses.  Typical sources of destabilizing stiffnesses include fluid-structure interaction in 

fixed pad fluid film bearings and seals, rotor internal friction, unbalanced electromagnetic 

pull, and other components.  When a cross-coupled stiffness of 2.84x107 N/m was applied 

to the coupling hub, it produced instability in the rotor dynamic model that was consistent 

with the observed measurements.  This seems to indicate that the entrained oil in the 

coupling is a potential source of the destabilizing stiffness.  The oil came from leakage from 

the turbine inboard bearing. 

The stability is determined from the natural frequencies and mode shapes of the 

damped free-vibration problem: 
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0KuuGCuM   )(        (4.3.1) 

 

where M, C, G and K are the mass, damping, gyroscopic and stiffness matrices 

respectively.  The finite element analysis will solve for the natural frequencies, mode shapes, 

and will determine the stability of the mode, which will be expressed in terms of log 

decrement.  A log decrement value greater than zero implies that the system is stable, and a 

value less than zero implies that is unstable.  The American Petroleum Institute requires a 

minimum log decrement of 0.1 to allow for unmodeled effects and to provide a factor of 

safety [47].   

Using the gear element model from Stringer [52], the specific stiffness matrix for the 

gearbox was developed.  Table 4.3.1 shows the relevant parameters used to model the mesh 

stiffness of the herringbone gearbox. 

 

Parameter Value Units 

Egear 206x109 Pa 
Epinion 206x109 Pa 
Rgear 653.2 mm 
Rpinion 90.9 mm 
αn 0.349 rad 
β 0.471 rad 
b 100.5 mm 
φ 0 rad 

Table 4.3.1  Gear box properties 

Substituting the values given in Table 4.3.1 into Eq. (3.2.3) gives us the following 

average mesh stiffness.  Note:  the herringbone arrangement requires that we multiply Eq. 

(3.2.3) by a factor of 2. 

11108357.2 gK  N/m 
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Substituting the values for the helix angle and normal pressure angle into Eq. (3.2.4) 

gives the following direction cosines. 

1553.0cos

3420.0cos

8373.0cos







z

y

x







 

The final 12x12 gear element stiffness matrix, in SI units, is then:   

 

 

Where the nodal coordinates are in the following order: 

 

 

The nodal coordinates zi, θxi, zj, and θxj are all equal to zero because the herringbone 

arrangement eliminates thrust loads and the horizontal alignment of the shafts prevents 

bending moments about the x-axis. 

 

 













































































































zj

yj

xj

j

j

j

zi

yi

xi

i

i

i

mesh

z

y

x

z

y

x

QK













610

3.1721.3001918.771241.23001918.77

21.3596.0003.354.141.2328.4003.354.14

000000000000

000000000000

1913.350021008561370254002100856

8.774.140085635055910400856350

1241.23001370559894166001370559

1.2328.4002541041668.3000254104

000000000000

000000000000

1913.350021008561370254002100856

8.774.140085635055910400856350



 Tzjyjxjjjjziyixiiii zyxzyx 



47 
 

The stability analysis was performed for all generator load cases and for both bearing 

designs.  The critical speeds, mode shapes, and log decrement values for the lowest and 

highest load cases are shown.   

 

No Load    Max Load 

Log dec Frequency (RPM)    Log dec Frequency (RPM) 

5.26 1318    19.80 647 

4.15 1799    15.09 743 

-0.12 6973    9.41 5667 

0.00 12103    8.42 6794 

10.33 12605    0.31 16104 

0.10 17110    0.18 17202 

0.19 17515    5.85 22623 

3.82 26281    1.11 22629 

0.87 29127    -0.27 27618 

0.46 36108    0.96 28146 
Table 4.3.2.  Eigenvalues for original 2-lobe offset halves bearing 

 

No Load    Max Load 

Log dec Frequency (RPM)    Log dec Frequency (RPM) 

5.26 1318    19.79 647 

4.25 1821    15.09 743 

7.04 7129    10.98 7077 

4.28 11542    9.56 9264 

10.42 12425    0.31 16104 

0.10 17104    0.18 17202 

0.19 17509    5.85 22623 

3.83 26343    1.11 22630 

0.41 27558    -0.23 27416 

1.39 28734    1.10 28150 
Table 4.3.3. Eigenvalues for final 3-lobe pressure dam bearing 

 

It is evident that the third mode from the original bearing is unstable when there is 

no load from the generator.  However, at higher load cases, the high-speed shaft is well-

damped and stable up to the operating speed.  The unstable third mode from load case 1 is 
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illustrated in figure 4.3.1 and represents whirl.  In contrast to the original bearing, the final 

one is expected to be well-damped for both minimum and maximum load cases up to 

operating speed.   

 

 

Figure 4.3.1.  Eigenvalue comparison of mode 3 with original and final bearings respectively 

 

4.4 Bearing Redesign Analysis 

 

A three-lobed pressure dam bearing was designed as a proposed replacement for the 

original 2-lobe offset halves bearing.  The three-lobe design with two pressure dams is based 

bearing designs previously reported by Nicholas [36].   Given the load direction, a three 

lobed bearing with pad parameters reported in Table 4.4.1 was deemed appropriate for the 

analysis: 



49 
 

 

Pad 
Pivot Angle, 

deg 
Arc Length, 

deg 
Axial Length 

Preload Offset 
in mm 

1 52.5 97 5.12 130 0.33 0.5 
2 172.5 97 5.12 130 0.33 0.5 
3 292.5 97 5.12 130 0.33 0.5 

Table 4.4.1.  Three Lobe Pressure Dam Pad Geometry 

 

Pressure dams were added to the second and third pads with the following 

parameters: 

 

Pad Arc Length, deg 
Axial Length 

Depth 
in mm 

1 0 0 0 0 
2 60 3.54 90 0.0086 
3 60 3.54 90 0.0086 

Table 4.4.2.  Three Lobe Pressure Dam Geometry 

 

A shaft diameter of 5.501 in (140 mm) and radial clearance of 0.006in (152.4 μm) 

were used in this model.  Fig. 4.4.1 gives the stiffness and damping values obtained from this 

new design. 

 

 

Figure 4.4.1. Stiffness and Damping Coefficients vs. Load, 3-Lobed Bearing 
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Using these pad and dam geometries, the pads containing the pressure dams are 

predicted to force the journal into a stable position for the low load cases.  For the higher 

load cases, the pressure dams should become increasing less influential and the load itself 

should force the journal to a stable position.  Figure 4.4.2 illustrates the eccentricity plot for 

the new bearing design.  The eccentricity ratios for this bearing design look very satisfying 

for all load cases.  They range in value from 0.3305 to 0.8862; values that are generally 

indicative of a very stable bearing.  They are not located anywhere near the center of the 

bearing nor do they cross the center.  These results support the stability analysis that was 

conducted in Section 4.3. 

 

 

Figure 4.4.2. Eccentricity Plot- 3-Lobed Bearing 

 

Pressure profiles over the pads of the new bearing design verify that the bearing is 

operating as predicted.  Figure 4.4.3 illustrates pressure profiles for the first load case.  As 

anticipated, the pads containing the pressure dams dominate the third pad in this case and 

force the eccentricity ratio to a safe distance from the center.  The pressure dams are acting 

as desired for the low load cases.   

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Zollern Original

ROMAC 3Lobe

Load Cases

Rotation



51 
 

 

 

Figure 4.4.3. Pressure Profile- 3 Lobe Bearing Design, Load Case 1 fx = 0.4 lbf (2 N), fy= -185.7 lbf (-826 N) 

 

Figures 4.4.4 and 4.4.5 display pressure profiles for load cases 5 and 10, respectively.  

As the strength of the load increases, it dictates the position of the journal.  The load places 

increasing pressure on Pad 1 and the pressure dams become less influential.  The eccentricity 

ratios for these cases remain in stable positions and a safe distance from the bearing wall.  

The three-lobed pressure dam bearing is performing as expected and appears to be a very 

good design for the given load conditions. 
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Figure 4.4.4. Pressure Profile- 3 Lobe Bearing Design, Load Case 5 fx = 1119 lbf (4978 N), fy = 2552 lbf 

(11,352 N) 

 

 

Figure 4.4.5. Pressure Profile- 3Lobe Bearing Design, Load Case 10 

fx = 5594 lbf (24,883 N), fy= 13,508 lbf (60,087 N) 
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In order to assure that manufacturing tolerances would not adversely affect the 

performance of the bearing, a sensitivity analysis was conducted.  The previous 3-lobed 

bearing design was taken to be the maximum clearance design.  A minimum clearance design 

was also tested with the following changes in geometry, documented in Table 4.4.3: 

 

Geometry Changes 

 
Shaft Diameter Radial Clearance 

Pad Preload Pocket Depth 
 

in mm in m 

Minimum Clearance 5.502 139.75 0.00472 119.9 0.39 0.0071 

Maximum Clearance 5.501 139.73 0.006 152.4 0.33 0.0086 
Table 4.4.3.  Three Lobe Pressure Dam Sensitivity Analysis 

 

The bearing design proved to be robust as it performed very similarly in both cases.  

Figure 4.4.6 shows eccentricity ratios for these cases.  Given the results of this analysis, the 

3-lobe bearing design is a very good bearing for the steam-turbine-generator drive-train and 

should replace the existing 2-lobe offset halves bearings. 

 

Figure 4.4.6. Eccentricity Plot- 3-Lobed Bearing, Min. and Max. Clearances 
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coefficients is nearly the same.  A slight shift in magnitude can be seen; however, all values 

remain within the same order of magnitude and the small shift is trivial.  These coefficients 

further illustrate the robustness of the new design.  An unbalance response analysis is 

conducted in Section 4.5 using the final 3-lobe pressure dam bearings. 

 

  

Figure 4.4.7. Stiffness and Damping Coefficients vs. Load- 3-Lobed Bearing, Min. and Max. Clearances 

 

4.5 Unbalance Response 
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forced response analysis of the rotor model [47].  The equation for the rotor model takes the 

matrix form: 
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fKuuGCuM   )(        (4.5.1) 

 

The locations of the unbalance weights are determined based on the mode shapes 

for critical speeds that occur in the operating range of the rotor.  The high-speed unbalance 

was placed at the coupling end of the HS pinion shaft.  For the evaluation of the unbalance 

response, the maximum acceptable unbalance level is based on the following formula, as 

required by API [47]: 

 

N

W
meu

6350


        (4.5.2) 

where W is the weight in kg and N is the operating speed in rpm.  During the design 

phase, the amount of unbalance applied to the rotor in the analysis is required to be four 

times the amount specified in Eq. (4.5.2) to provide a factor of safety.  The probes are 

placed at the bearing locations of the HS pinion shaft.  The analysis was performed on 3 

load cases (no-load, load case 5, max load) to give a range of the response across the load 

range for the final 3-lobe pressure dam bearings.  The response plots and phase plots were 

produced for each load case using minimum and maximum bearing clearances. 

The unbalance response shows that the peak response around the operating range 

even at the worst condition is less than 4 microns and under all conditions the amplification 

factor is below 2.5.  The only mode that was excited was the high frequency coupling 

bending mode around 28,000 rpm.  This mode is well above the operating range and thus 

can be ignored. 
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Figure 4.5.1: Response at HS pinion bearings 1, 2 – no load case – minimum clearance 

 

Figure 4.5.2: Phase at HS pinion bearing 1, 2 - no load – minimum clearance 

 

Figure 4.5.3: Response at HS pinion bearings 1, 2 – load case 5 – minimum clearance 
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Figure 4.5.4: Phase at HS pinion bearing 1, 2 – load case 5 – minimum clearance 

 

Figure 4.5.5: Response at HS pinion bearings 1, 2 – max load case 10 – minimum clearance 

 

Figure 4.5.6: Phase at HS pinion bearing 1, 2 – max load case 10 – minimum clearance 
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Figure 4.5.7: Response at HS pinion bearings 1, 2 – no load case 1 – maximum clearance 

 

Figure 4.5.8: Phase at HS pinion bearing 1, 2, no load case 1 – maximum clearance 

 

Figure 4.5.9: Response at HS pinion bearing 1, 2, load case 5 – maximum clearance 
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Figure 4.5.10: Phase at HS pinion bearing 1, 2, load case 5 – maximum clearance 

 

Figure 4.5.11: Response at HS pinion bearing 1, 2, max load case 10 – maximum clearance 

Figure 4.5.12: Phase at HS pinion bearing 1, 2, max load case 10 – maximum clearance 
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4.6 Conclusion 

 

The gearbox of the steam-turbine-generator set exhibited high lateral vibration in the 

high-speed pinion consistent with a sub-synchronous instability at 0.86-0.89X, where X is 

the running speed of the high-speed pinion.  The instability was shown by analysis to be a 

rigid-body conical whirl mode.  The instability occurred when the gearbox bearings were 

lightly loaded as the generator was decoupled for spin testing of the turbine.    

It was discovered that an oil leakage occurred from the turbine inboard bearing 

housing, and the oil became entrained in the high-speed coupling.  Assuming that the 

entrained oil would produce destabilizing forces, the effects were modeled as a cross-

coupled stiffness and were applied to the coupling.  The instability was successfully 

reproduced in the model when the original bearings were lightly loaded and produced a log 

decrement of -0.96 and a whirl frequency ratio of 0.89X.   

The conical whirl instability predicted at 0.89X is at an unusually high sub-

synchronous frequency.  Most whirl instability phenomena occur at frequencies of 0.3X to 

0.6X.  However, the analysis was able to reproduce the observed sub-synchronous frequency 

with low levels of cross-coupled stiffness applied to the flexible coupling.  A 3-lobe bearing 

with two pressure dams on two of the pads was predicted to stabilize the gearbox high-speed 

pinion over the full range of generator load cases.  Since replacing the existing bearings with 

the 3-lobe ones, the instability has vanished.  These results validate the accuracy of the 

methods used to model not only the rotors and bearings but the gearbox dynamics too. 
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Chapter 5 Industrial Gearbox Application 2 

 

5.1 Introduction 

 

The second industrial gearbox application is for predicting the axial vibration of a 

motor-compressor drive-train, labeled as drive-train 2, before its construction.  Drive-train 2 

consists of a synchronous motor, low-speed flexible coupling, gearbox, high-speed flexible 

coupling, and a compressor as shown in figure 5.1.1.  The operating speed of the motor 

shaft is 1,800 RPM, while the compressor shaft rotates at 4,329 RPM from the output of the 

speed-increasing gearbox.  The gearbox arrangement is double-helical (herringbone) which 

offers the advantage of canceling thrust loads although they are difficult and expensive to 

manufacture. 

 

 

Figure 5.1.1.  Drive-train 2 schematic 
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An undamped torsional vibration analysis has been provided by the owner of the 

gearbox for drive-train 2, and it illustrates twist mode shapes and their natural frequencies.   

These results, however, do not account for the coupling of lateral, torsional, and axial 

degrees of freedom produced by the dynamics inherent in helical gearboxes as are included 

in this thesis. 

 

 

Figure 5.1.2.  Calculated torsional mode shapes 

No axial vibration analysis was conducted on drive-train 2 to assess whether its 

natural frequencies and axial modes will be excited and whether they are stable.   For a 

similar drive-train installed in 2007, axial vibration was observed on the motor shaft with an 

amplitude and frequency of 2 mm and 2.8 Hz respectively.  In addition, company reports 

Mode # Nat. Freq (Hz) 

1 0 

2 14.22 

3 44.76 

4 71.27 
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indicated that the gearbox was running noisy.  An axial analysis that can predict these 

resonances will be mandatory for reliability considerations. 

 

5.2 Full Shaft Finite Element Model of Drive-train 2 

 

The rotor dynamic model for drive-train 2, which consists of a low-speed and high-

speed shaft, as shown in figure 5.2.1, is split into 4 rotors in the model because the flexible 

couplings and the gearbox act as connectors.  The first rotor consists of the synchronous 

motor shaft up to the low-speed coupling, and the second is the bull gear shaft.  The low-

speed coupling will be treated as a connector, with stiffness and damping properties, 

between the synchronous motor shaft and the shaft holding the bull gear.  The discretization 

of the shafts in this model is very similar to the one provided in an undamped torsional 

analysis.  Therefore, figures 5.2.1 through 5.2.3 apply to both the undamped torsional model 

and this damped coupled model.   

 

Figure 5.2.1.   Discretization of  the undamped torsional model of drive train 2.  Similar 

discretizations were made in this damped coupled model. 
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Figure 5.2.2.  Drive-train 2 low-speed shaft, which corresponds to rotors 1 and 2 in the model, 

rotating at 1,800 RPM.   

 

The third and fourth rotors of this drive-train 2 rotor model consist of the pinion 

shaft and the compressor shaft respectively.  The high-speed coupling will be treated as a 

connector between these two shafts and will have stiffness and damping properties.  Again, 

the finite element discretization of these shafts will be similar to what was provided for the 

undamped torsional analysis.  Figure 5.2.3 shows the pinion shaft and compressor shaft and 

they represent the high-speed part of drive-train 2 rotating at 4,329 RPM. 
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Figure 5.2.3.  Drive-train 2 high-speed shaft, which corresponds to rotors 3 and 4 in the model, 

rotating at 4,329 RPM.   

 

Tables 5.2.1 through 5.2.4 summarize the shaft properties and those of the external 

rigid masses for all 4 shafts of the drive-train 2 model.  The bearings, gears, and couplings 

are color-coded as green, orange, and blue in tables 5.2.1 through 5.2.4 respectively, and their 

node numbers on each shaft are shown.  The material properties used in modeling the shafts 

are those of structural steel. 

 

Node # 
Length 

(in) 
OD Mass 

(in) 
OD Stiff 

(in) 
Mass 
(lbm) 

Lumped Pol Iner 
(lbm-in^2) 

Lumped Trans 
Iner (lbm-in^2) 

1 4.02 5.80 5.80 950.18 60482.9252 39313.90138 

2 0.79 8.31 8.31 0.00 0 0 

3 3.15 5.31 5.31 0.00 0 0 

4 0.71 6.85 6.85 0.00 0 0 

5 0.67 8.40 8.40 0.00 0 0 

6 0.98 8.40 8.40 0.00 0 0 

7 9.21 9.60 9.60 0.00 0 0 
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8 9.21 9.60 9.60 1102.29 119599.0046 77739.35301 

9 1.42 10.40 10.40 0.00 0 0 

10 10.28 11.02 11.02 0.00 0 0 

11 0.47 12.80 12.80 0.00 0 0 

12 4.41 11.02 11.02 0.00 0 0 

13 (brg) 4.33 11.02 11.02 0.00 0 0 

14 0.47 12.80 12.80 0.00 0 0 

15 4.72 11.81 11.81 0.00 0 0 

16 3.94 13.58 13.58 0.00 0 0 

17 2.36 14.37 14.37 0.00 0 0 

18 25.94 18.43 18.43 0.00 0 0 

19 13.58 37.80 18.69 0.00 0 0 

20 22.01 37.80 18.69 2594.80 1287227.001 836697.5508 

21 22.01 37.80 18.69 0.00 0 0 

22 13.58 37.80 18.69 2594.80 1287227.001 836697.5508 

23 23.58 18.43 18.43 0.00 0 0 

24 3.94 13.58 13.58 0.00 0 0 

25 4.72 11.81 11.81 0.00 0 0 

26 0.47 12.80 12.80 0.00 0 0 

27 4.33 11.02 11.02 0.00 0 0 

28 (brg) 4.41 11.02 11.02 0.00 0 0 

29 0.47 12.80 12.80 0.00 0 0 

30 7.40 11.02 11.02 0.00 0 0 

31 5.12 11.42 11.42 0.00 0 0 

32 2.20 21.61 18.03 0.00 0 0 
33 

(cplg) 0.00 21.61 18.03 1136.47 109518.7975 71187.22 
Table 5.2.1  Shaft and Mass properties of Rotor 1 

 

Node # 
Length 

(in) 
OD Mass 

(in) 
OD Stiff 

(in) 
Mass 
(lbm) 

Lumped Pol Iner 
(lbm-in^2) 

Lumped Trans 
Iner (lbm-in^2) 

1 (cplg) 2.20 27.36 23.78 1136.47 109518.7975 71187.22 
2 4.61 10.83 10.83 0.00 0 0 
3 5.35 11.02 11.02 0.00 0 0 
4 5.24 16.34 16.34 0.00 0 0 
5 3.82 11.02 11.02 0.00 0 0 

6 (brg) 3.86 11.02 11.02 0.00 0 0 
7 6.02 16.34 16.34 0.00 0 0 
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8 1.89 17.13 17.13 0.00 0 0 
9(gear) 16.61 17.13 17.13 9277 1776904 1000000 

10 11.77 11.02 11.02 0.00 0 0 
11(brg) 8.98 11.02 11.02 0.00 0 0 

12 0.00 11.02 11.02 0.00 0 0 
Tabe 5.2.2.  Shaft and Mass properties of Rotor 2 

 

Node # 
Length 

(in) 
OD Mass 

(in) 
OD Stiff 

(in) 

Lumped 
Mass 
(lbm) 

Lumped Pol 
Iner (lbm-

in^2) 
Lumped Trans Iner 

(lbm-in^2) 
1 7.87 8.86 8.86 0.00 0 0 

2 (brg) 5.87 8.86 8.86 0.00 0 0 
3 5.91 16.93 16.93 0.00 0 0 

4 (gear) 16.61 16.93 16.93 2747 88330 50000 
5 5.91 16.93 16.93 0.00 0 0 
6 5.87 8.86 8.86 0.00 0 0 

7 (brg) 9.09 8.86 8.86 0.00 0 0 
8 0.31 12.40 8.86 0.00 0 0 
9 4.92 8.86 8.86 0.00 0 0 

10 3.03 8.66 8.66 0.00 0 0 
11 1.97 17.01 14.06 0.00 0 0 

12(cplg) 0.00 17.01 14.06 518.08 22382 15000 
Table 5.2.3.  Shaft and Mass properties of Rotor 3 

 

Node # 
Length 

(in) 
OD Mass 

(in) 
OD Stiff 

(in) 
Lumped 

Mass (lbm) 
Lumped Pol 

Iner (lbm-in^2) 
Lumped Trans 

Iner (lbm-in^2) 

1 (cplg) 2.52 8.86 8.86 518.08 22382 15000 

2 0.59 9.84 9.84 0.00 0 0 

3 2.95 9.84 9.84 0.00 0 0 

4 2.95 9.84 9.84 0.00 0 0 

5 (brg) 3.07 9.84 9.84 0.00 0 0 

6 3.07 9.84 9.84 0.00 0 0 

7 1.30 12.40 11.06 0.00 0 0 

8 2.05 12.40 12.40 0.00 0 0 

9 1.97 14.17 14.17 0.00 0 0 

10 5.39 14.96 14.96 0.00 0 0 

11 5.39 14.96 14.96 0.00 0 0 

12 4.57 14.96 14.96 2181.77 347452.194 226793.8839 

13 4.57 14.96 14.96 0.00 0 0 

14 4.21 14.92 14.92 0.00 0 0 

15 4.21 14.92 14.92 0.00 0 0 
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16 1.26 15.43 15.43 0.00 0 0 

17 1.22 15.91 15.91 0.00 0 0 

18 3.11 16.42 16.42 0.00 0 0 

19 5.83 16.14 16.14 0.00 0 0 

20 5.83 16.14 16.14 0.00 0 0 

21 5.87 16.14 16.14 0.00 0 0 

22 4.57 16.54 16.54 0.00 0 0 

23 4.61 16.54 16.54 0.00 0 0 

24 3.78 16.54 16.54 2003.31 428916.2017 249175.9834 

25 3.74 16.54 16.54 0.00 0 0 

26 3.90 16.50 16.50 0.00 0 0 

27 3.86 16.50 16.50 0.00 0 0 

28 1.42 17.13 17.13 0.00 0 0 

29 1.42 17.76 17.76 0.00 0 0 

30 3.23 18.39 18.39 0.00 0 0 

31 4.84 18.11 18.11 0.00 0 0 

32 4.80 18.11 18.11 0.00 0 0 

33 5.00 20.87 20.87 0.00 0 0 

34 5.00 20.87 20.87 0.00 0 0 

35 5.31 20.87 20.87 2709.77 803773.6534 468452.2156 

36 2.24 19.45 19.45 0.00 0 0 

37 2.28 18.03 18.03 0.00 0 0 

38 4.65 16.61 16.61 0.00 0 0 

39 1.61 17.32 17.32 0.00 0 0 

40 1.61 17.99 17.99 0.00 0 0 

41 5.55 18.70 18.70 0.00 0 0 

42 5.55 18.70 18.70 0.00 0 0 

43 1.42 18.70 16.54 0.00 0 0 

44 1.46 18.70 14.65 0.00 0 0 

45 1.85 17.32 12.95 0.00 0 0 

46 1.65 17.32 11.18 0.00 0 0 

47 2.36 9.69 9.69 0.00 0 0 

48 2.64 9.84 9.84 0.00 0 0 

49 2.68 9.84 9.84 0.00 0 0 

50(brg) 2.64 9.84 9.84 0.00 0 0 

51 2.68 9.84 9.84 0.00 0 0 

52 2.36 9.69 9.69 0.00 0 0 

53 1.10 17.32 11.18 0.00 0 0 

54 0.20 17.32 11.18 0.00 0 0 

55 0.47 17.32 12.95 0.00 0 0 

56 1.02 18.70 12.95 0.00 0 0 
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57 1.42 18.70 14.65 0.00 0 0 

58 1.46 18.70 16.54 0.00 0 0 

59 6.77 18.70 18.70 0.00 0 0 

60 6.81 18.70 18.70 0.00 0 0 

61 5.39 18.70 18.70 5809.08 1571394.236 1086437.358 

62 5.39 18.70 18.70 0.00 0 0 

63 5.39 18.70 18.70 0.00 0 0 

64 9.29 15.28 15.28 0.00 0 0 

65 0.00 15.28 15.28 0.00 0 0 
Table 5.2.4.  Shaft and Mass properties of Rotor 4 

The shafts and added-on masses are now included in the drive-train 2 model.  The 

next sections, 5.3 through 5.5, will focus on the modeling of the bearings, couplings, and 

gears. 

 

5.3 Bearings 

 

Drive-train 2 has 7 radial bearings, and one combination radial/thrust bearing on the 

non-drive-end of the compressor (Rotor 4 node 50).  Reasonable values of lateral stiffness 

and damping coefficients for all 8 bearings were assumed to be the following: 

 

Kxx=Kyy= 1e6 lbf/in 

Cxx=Cyy=100 lbf-s/in 

 

The combination radial/thrust bearing would require axial stiffness and damping 

coefficients.  Using a separate finite element analysis for thrust bearings, values of axial 

stiffness and damping for this bearing were calculated to be 

 

Kzz=3e8 lbf/in  Czz=1e6 lbf-s/in 
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5.4 Flexible Couplings 

 

Drive-train 2 consists of 2 flexible couplings, low-speed and high-speed, linking the 

motor and compressor shafts to the gear and pinion shafts respectively.  Axial, lateral, and 

torsional stiffness and damping coefficients for each coupling are required to perform this 

analysis.  The axial and torsional stiffness coefficients for both couplings were provided 

from the undamped torsional analysis and are shown below: 

 

Kθzθz LS=5.20e8 lbf-in/rad Kzz LS=9.71e3 lbf/in 

Kθzθz HS=6.30e7 lbf-in/rad Kzz HS=1.37e4 lbf/in 

 

The lateral stiffness coefficients for the flexible couplings were assumed to be very 

small compared to those of the bearings and thus they will have negligible influence in 

transmitting lateral vibrations between shafts. 

Coupling damping coefficients in the lateral and torsional directions were assumed to 

be very small compared to those in the axial direction.  The axial damping coefficients used 

for the flexible couplings are shown below: 

 

Czz LS=Czz HS=1e4 lbf-s/in 

 

5.5 Gearbox 
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The parameters required to model the gearbox stiffness coefficients include the 

normal pressure angle, helical angle, shaft orientation angle, pitch radii, face width, and teeth 

elastic moduli.  The following are provided from the undamped torsional analysis: 

 

Normal Pressure angle=αn= 22.13 degrees 

Helical angle=β=26.5 degrees 

Orientation angle=φ=0 degrees 

Bull Gear Pitch Radius=rg= 22.22 inches 

Pinion Pitch Radius=rp= 9.24 inches 

Face width=b=12.83 inches 

Elastic Moduli=E=30e6 psi 

 

Note:  Since the gearbox has a double helical (or herringbone) arrangement, the 

average gear mesh stiffness was multiplied by a factor of 2. 

Using the mass, stiffness, damping, and gyroscopic properties for the shafts, added-

on masses, bearings, flexible couplings, and gearbox, the geared finite element analysis can 

assemble the global mass, stiffness, damping, and gyroscopic matrices with 6 degrees-of-

freedom at each node.  The analysis will then solve for the damped natural frequencies and 

mode shapes using the free-vibration equation at the motor shaft rotational speed of 1,800 

RPM. 

 

0KuuGCuM   )(        (3.4.1) 

 

5.6 Natural Frequencies and Mode Shape Summary 
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Table 5.6.1 lists the natural frequencies of the axially dominated and torsionally 

dominated modes of drive-train 2.  The rigid-body modes are ignored in this analysis.  Many 

of the axial modes share the same natural frequency as the torsional ones because they are 

the same mode.  That is, the axial and torsional motions of the shafts are coupled.  Lateral 

motions are also coupled and are included in the eigenvectors, but the axial and torsional 

motions were plotted at the request of the industrial owner. 

 

Mode # Axial Natural Frequency 
(Hz) 

Torsional Natural Frequency 
(Hz) 

1  0.36 
2 2.13 2.13 
3 2.28 2.28 
4 2.61 2.61 
5 3.73 3.73 
6 4.61 4.61 
7 11.13 11.13 
9 16.82 16.82 

17 41.12 41.12 
23  74.12 
43 257.67  
56 427.94  

Table 5.6.1.  Natural Frequencies corresponding to axially dominant and torsionally dominant modes 

from the model  

 

The algorithm for categorizing modes as axially, laterally, or torsionally dominant 

makes use of the normalization of the eigenvectors.  Each eigenvector contains all 6 

generalized displacements for each node, n, in the finite element model that are arranged in 

the following order: zn, xn , yn, θzn, θxn, θyn.   Each eigenvector is multiplied by a scaling factor 

to set the magnitude of the maximum element to 1 and the other elements to have 

magnitudes between 0 and 1.  Since the order of the degrees-of-freedom for each node in 
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the eigenvector is known, the program can determine which elements correspond to which 

degree-of-freedom.   The analysis then scans each eigenvector and determines if the mode 

contains axial, lateral, or torsional components by checking if any of the values 

corresponding to these individual motions have magnitude greater than 0.01 (or within 1% 

of the maximum value).   

The following plots show the 12 primary mode shapes for drive-train 2 

corresponding to these natural frequencies.  The axial components of the modes are shown 

on the left while the twist components are on the right.  It is more convenient to illustrate 

the mode shapes in the form of 3-D plots because the magnitude and phase information for 

all nodes can be shown in one image.  The axial locations of all shaft nodes, expressed in 

inches, are plotted along the axis labeled “Shaft Axis” to better illustrate the mode shapes 

and the distribution of node points.  The magnitude of vibration at each node is indicated by 

the radius of its blue circle.   The phase of each node relative to all the others may be 

obtained by the direction of the red lines originating from the node and ending at a point 

along its blue circle.  In addition, green circles indicate transitions from the last node of one 

rotor to the beginning node of the next rotor.  They are simply markers and do not indicate 

shaft vibration amplitude or phase.  Because the drive-train 2 system model has 4 rotors, 3 

green circles are shown because there are 3 shaft transitions.  The following paragraphs 

describe the mode shapes as observed from their figures. 

Mode 1, with a natural frequency of 0.36 Hz, has a dominant twist component 

relative to the axial one because none of the scaled axial components of any shaft node 

exceed 0.01.  Figure 5.6.1 indicates rigid twist motion of the motor and bull gear shafts.  

Rigid twist motion also occurs for the pinion gear and compressor shafts, but with larger 

amplitude and in the opposite direction to that of the motor and bull gear shafts. 
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Figure 5.6.1.  Mode 1. Freq= 0.36 Hz.  Log Dec=0.0016 

  

Modes 2 through 6 contains axial and twist components of motion that are roughly 

equal in magnitude as indicated by the scales of the axes in figures 5.6.2 through 5.6.6.  The 

axial vibrations of the motor and bull gear shafts have the same amplitude but are slightly 

out of phase with respect to each other.  The compressor shaft exhibits no axial motion and 

the pinion gear vibrates axially with much higher amplitude and nearly 180 degrees out of 

phase with respect to the motor and bull gear shafts.  The twist motions of these modes are 

nearly identical to those of mode 1 except that the compressor shaft twists with slightly 

greater magnitude than the pinion gear shaft. 

 

Figure 5.6.2.  Mode 2.  Freq=2.13 Hz.  Log Dec=0.0063 
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Figure 5.6.3.  Mode 3.  Freq=2.28 Hz.  Log Dec=0.0046 

 

Figure 5.6.4.  Mode 4.  Freq=2.61 Hz.  Log Dec=0.0093 

 

Figure 5.6.5.  Mode 5.  Freq=3.73 Hz.  Log Dec=0.0087 
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Figure 5.6.6.  Mode 6.  Freq=4.61 Hz.  Log Dec=0.0126 

 

Mode 7, in figure 5.6.7, has similar axial characteristics to those of the previous 

modes except that the non-free end of the compressor shaft is beginning to contribute more 

to the motion and the bull gear shaft moves with slightly greater amplitude than the motor 

shaft.  The twist component of this mode however has greatly changed such that the 

compressor shaft exhibits almost all of the motion.  The pinion gear twists with much 

smaller magnitude, and the bull gear and motor shafts vibrate negligibly. 

 

Figure 5.6.7.  Mode 7.  Freq=11.13 Hz.  Log Dec=0.0002 

 

Mode 9, in figure 5.6.8, illustrates the same axial vibration trend as expressed in the 

previous paragraph for mode 7.  As with mode 7, the twist component is largely dominant as 

indicated by the scale of its plot.  The motor shaft undergoes almost all of the twist motion 
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and the vibration is transferred to the bull gear shaft through the flexible coupling where the 

amplitude rapidly decays.   

 

Figure 5.6.8.  Mode 9.  Freq=16.82 Hz.  Log Dec=6.21E-6 

 

Mode 17, shown below in figure 5.6.9, is a continuation of the same axial vibration 

trend as expressed in the previous two paragraphs.  The motor shaft and the bull gear shaft 

both undergo rigid axial displacements but are approximately 90 degrees out of phase.  In 

addition, the bull gear shaft moves axially with greater amplitude than that of the motor 

shaft.  The pinion gear shaft vibrates rigidly with the largest amplitude, but is in the opposite 

direction to that of the bull gear shaft.  The axial vibration of the pinion gear shaft is 

transmitted to the compressor shaft whereby it gradually decays along its length.   

The twist component of mode 17 is nearly the same magnitude as that of its axial 

component.  There is little motion throughout the motor shaft, but nearly uniform twisting 

develops along the bull gear shaft.  The pinion gear shaft twists with much greater amplitude 

in the opposite direction to that of the bull gear shaft.  Its amplitude quickly attenuates after 

the flexible coupling.  The amplitude continues to decay along the compressor shaft until the 

location of the node point.   The twisting amplitude gradually increases along the rest of the 

compressor shaft but 180 degrees out of phase with respect to the previous direction. 
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Figure 5.6.9.  Mode 17.  Freq=41.12 Hz.  Log Dec=0.0009 

 

Mode 23 is dominated by twist motions of the compressor shaft only as illustrated in 

figure 5.6.10.  Some twist motion develops near the end of the pinion gear shaft and greatly 

increases in amplitude after the flexible coupling.  The twist amplitude decays to a node 

point along the compressor shaft and subsequently increases with a 180 degree phase shift.  

 

Figure 5.6.10.  Mode 23.  Freq=74.12 Hz.  Log Dec=5.75E-6 

 

Mode 43 is dominated by axial motions of the compressor shaft as shown in figure 

5.6.11.  Some axial motion develops along the pinion gear shaft and rapidly increases at the 

flexible coupling where a 90 degree phase shift occurs.  The vibration decreases along the 

length of the compressor shaft and undergoes a gradual phase shift until the location of the 



79 
 

thrust bearing.   At the thrust bearing, another 90 degree phase shift occurs and the 

amplitude and phase of the remainder of the compressor shaft remain uniform. 

 

Figure 5.6.11.  Mode 43.  Freq=257.67 Hz.  Log Dec=1.1576 

 

Mode 56 is dominated by axial motion along the motor shaft as indicated in figure 

5.6.12.   The first node of the motor shaft experiences the greatest amplitude and the 

amplitude decreases along the subsequent nodes until the location of the node point of the 

mode.  The amplitude gradually increases along the remainder of the motor shaft but has 

been shifted 180 degrees from the node point.  After the flexible coupling, the amplitude 

decreases along the bull gear shaft and the rest of the shaft does not participate in the mode. 

 

Figure 5.6.12.  Mode 56.  Freq=427.94 Hz.  Log Dec=0.0413 
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5.7 Conclusion 

 

The natural frequencies and mode shapes of drive-train 2 were evaluated at the 

motor shaft rotational speed of 1,800 RPM by solving the free-vibration equation with 

coupled degrees of freedom.  The results of this analysis show reasonable similarities to the 

undamped torsional mode shapes and natural frequencies provided from the undamped 

torsional analysis.  Table 5.7.1 summarizes the comparison of the natural frequencies 

between the torsional mode shapes of the coupled analysis and those of the strictly torsional 

analysis.  Figures 5.7.1 through 5.7.3 show a comparison between the mode shapes of these 

two separate analyses and illustrate that they reasonably support each other. 

 

Undamped Mode # Natural Freq (Hz) Current Mode # Natural Freq (Hz) 
2 14.22 9 16.82 
3 44.76 17 41.12 
4 71.27 23 74.12 

Table 5.7.1.  Comparison of torsional natural frequencies between the Undamped and Current models 

 

 

 

Figure 5.7.1.  Twist comparison of Undamped mode 2 and current model mode 9 
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Figure 5.7.2. Twist comparison of Undamped mode 3 and current model mode 17 

 

 

Figure 5.7.3.  Twist comparison of Undamped mode 4 and current model mode 23 

 

The advantage of running a coupled degree-of-freedom analysis over a strictly 

torsional, axial, or lateral one includes the ability to capture additional modes that show more 

complicated modal responses and therefore model the vibration of the geared rotating 

system more accurately.  The first 6 modes conducted in this analysis were not captured 

from the strictly torsional analysis and may show potential low frequency instabilities.  A 

summary of these modes and the potential instability are provided in the following 

paragraph. 
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The first 6 natural frequencies and mode shapes constitute low-frequency modes 

(less than 5 Hz) and have very similar axial and torsional components.  The plots of these 

low-frequency modes suggest that the bull gear and pinion vibrate 180 degrees out of phase 

in both the torsional and axial directions.  In addition, the low log decrement values suggest 

potential instability and thus a greater likelihood of the gearbox running noisy.  It seems 

reasonable that most of the modes have low log decrement values because the relative axial 

motion of the shaft at the location of the thrust bearing is almost always very low.  Mode 43 

is the only exception to this trend and is therefore well damped.   Therefore, the effective 

damping of the thrust bearing in most of the modes is minimal despite the large axial 

damping coefficient used in this analysis.   

Additional sources of damping in this model stem from the radial bearings which 

may be ineffective if the lateral motion of the shaft is negligible at the bearing locations. 

Lateral mode shape plots would be necessary to verify this.  This finite element analysis may 

be applied to multiple shaft systems with multiple gear stages and many additional features 

can be expected in future analyses such as: mode shape plots of lateral vibration and forced-

response analyses due to tooth errors and time-varying mesh stiffness. 
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Chapter 6 Conclusions 

 

6.1 Accomplishments 

 

This thesis introduces modern methods of incorporating gear dynamics into geared 

systems using the finite element method.  A gear mesh finite element model was produced 

and successfully incorporated into a general rotor dynamic finite element analysis that solves 

both free and forced vibration analyses.   

The 12x12 stiffness matrix, originally developed by Stringer, provides the terms, in 

the rotor dynamic equations of motion, that couple the axial, lateral, and torsional degrees of 

freedom of the geared shafts.  This 12x12 stiffness matrix is a function of the following:  

normal pressure angle, helical angle, face width, pitch radii, orientation angle, and gear elastic 

modulii.  The average gear mesh stiffness, a parameter used in the stiffness matrix, is 

calculated from using the face width and the gear elastic modulii.  The formula for tooth to 

tooth contact was originally provided by Spotts, but it was modified to account for the 

average number of tooth pairs in contact through one mesh cycle.   

This formulation offers unique advantages that do not appear in the literature.  One 

advantage is the applicability to both spur and helical geared systems.  Another is the 

robustness to account for arbitrary angles of orientation within the plane of rotation of the 

connected shafts.  The calculation for the average gear mesh stiffness requires minimal 

computation and remains reasonably accurate.  Previous methods to determine the average 

gear mesh stiffness required more complex formulas or experimental data, which is time-

consuming to acquire. 
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A finite element model of the herringbone gearbox of a steam-turbine generator 

drive-train application was developed in Chapter 4, and it illustrates some of the capabilities 

of these finite element analyses.  Models for the low and high-speed shafts of the gearbox 

were constructed from Timoshenko beam elements, and the stiffness and damping 

coefficients for the original gearbox bearings were determined from a separate finite element 

analysis.  The gear mesh stiffness matrix was produced using both material and geometric 

parameters of the gears and was modeled as the source of connectivity between the low and 

high-speed shafts.  The suspected source of instability was modeled as cross-coupled 

stiffness acting at the node of the flexible coupling, and the results from the stability analysis 

showed that it was successfully reproduced.  Subsequent finite element analyses of a new 3-

lobe pressure dam bearing design indicated that it would eliminate the unstable mode and 

would retain the stability of all modes within the operating speed range across the range of 

generator load cases.  Stability and unbalance response analyses of the gearbox with the new 

bearing design confirmed the recommendation to switch from the original gearbox bearings 

to the 3-lobe pressure dam ones, and the physical drive-train has been operating normally 

since. 

The second application consisted of modeling a synchronous-motor-gearbox-

compressor drive-train in Chapter 5.  The objective was to determine its natural frequencies 

and mode shapes, and to assess their stability.  An undamped torsional rotor dynamic 

analysis had been provided to compare its results to those of the current model.  Models for 

the shafts, bearings, and couplings were easily integrated into the finite element global 

matrices in the form of mass, stiffness, gyroscopic, and damping matrices.  The modeling 

was complete after adding the gear mesh stiffness matrix to the global stiffness matrix at the 

nodal locations corresponding to the gears on the low and high-speed shafts.  Post-
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processing of the results revealed the existence of several low-frequency modes that had 

questionable stability.  The results of this stability analysis indicated that the current model 

can determine modes that individual non-coupled analyses would overlook.   

 

6.2 Implications 

 

The work accomplished in this thesis raises important implications for future models 

of gearbox dynamics.  Gearbox modeling has increased in complexity as both computing 

power and memory availability continue to rise.  This is reflected from the fact that the finite 

element method replaced both lumped parameter methods and the transfer matrix method 

in rotor dynamic analyses, which require substantially less computing power but are less 

accurate [32].  Modern uses of the finite element method, when applied to gears, focus on 

the stresses and displacements of gear bodies and are therefore useful for determining time-

varying mesh stiffness properties.  Most previous finite element analyses of geared systems, 

however, have either ignored the shaft and bearing contributions to the vibration behavior 

or have used simple approximations to model them [37].  Finite element models of shaft 

systems are becoming increasingly popular in solving rotor dynamics problems, and 

therefore, finding more ways to integrate the finite element analysis of gear teeth and gear 

bodies into rotor dynamic codes would yield not only greater accuracy in free vibration and 

forced response analyses but would produce better diagnostic tools for determining gear 

tooth errors. 

 

6.3 Future work 
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Many improvements to the analysis of geared rotor systems can be expected.  The 

current analysis calculates only the average tooth mesh stiffness over the mesh cycle.  

Incorporating the time-varying properties of the tooth mesh stiffness will be essential to 

producing more accurate models of geared rotor dynamics.  This is especially true for 

forced-response analyses where the relative amplitude, phase, and frequency of the mesh 

forces, when compared to other forces, such as unbalance, may substantially alter the 

vibration results.  

Additional sources of vibration include errors in tooth geometry that result in 

transmission errors.  These transmission errors perturb the constant tangential velocity 

assumption at the pitch point for involute gear pairs.  This often produces substantial 

vibration at the gear mesh that should not be ignored. 

The current analysis ignores the effects of the thin film of lubricant separating the 

teeth of a gear pair at the pitch point.  As the gear teeth move into and out of engagement, 

the film thickness varies with time during squeezing.  The resulting time-varying pressure 

profile between adjacent teeth generates forces that act on the gears and are consequently 

transmitted to the geared shafts.  An additional step in the analysis that couples the tooth 

elastic deformation to changes in the properties of the lubricant through temperature 

variation is desirable.   

While accounting for each of these effects contributes to more accurate geared rotor 

dynamic analyses, they are secondary in importance when compared to the coupling of 

degrees of freedom.  We can expect more accurate models of geared systems to emerge, and 

thus better methods to predict their dynamic behavior and to diagnose sources of instability 

in industrial drive-trains. 
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