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Introduction 
 

In practice today, current radiation oncologists treat early-stage thoracic cancers using a 

technique known as Stereotactic Body Radiation Therapy (SBRT). SBRT works by delivering a 

massive dose of radiation, often in excess of 50Gy, to the Planning Target Volume (PTV) in5 or 

fewer fractions and thus eradicating the tumor.  This treatment is equivalent to surgery and has 

proven to have very high cure rates, but it has only been used by oncologists for the past 20 

years.  While definitive treatments with SBRT are curing many patients from their lung cancers, 

there are associated cardiovascular side effects of radiation that can impact patient’s overall 

survival, quality of life, and healthcare costs.  Indeed, lung cancer patients are already at risk for 

cardiovascular disease due to the high rates of smoking and environmental exposures in this 

patient population.  Unfortunately, it is not possible to truly target only the tumors, and thus 

adjacent normal tissues inevitably receive some radiation.  The dose and volume of radiation to 

these normal structures strongly impact the side-effects and depend largely on the location of 

the primary tumor.  Development of a strategy to limit cardiac toxicity in SBRT is a complex 

issue.  This is especially due to incomplete toxicity information with hypo-fractionated 

radiation, uncertainty in tolerance of radiation to different anatomical cardiac areas and 

adjacent major vessels, inter and intra-fraction cardiac motion, and patient specific radiation 

toxicity susceptibility factors.  Currently, there are no models available to evaluate the overall 

cardiac toxicity due to a lung SBRT plan.  As exemplified in the Xue et al.  paper, there is a 

statistically significant correlation between these doses to cardiovascular structures under SBRT 

and further health complications (2016).  This must be considered when planning a safe and 

effective treatment. 
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The images pictured above illustrate major vessel toxicity as it relates to increasing dose 

constraints D0.5cc, D1cc, D4cc, V25Gy and Dmax.  D0.5cc, D1cc, and D4cc represent the dose 

value in Gy to 0.5cc, 1cc, and 4cc of the major blood vessels in the body respectively.  Dmax is 

the maximum point dose received by a voxel (3D pixel) of the great vessels during the 
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treatment plan.  The red line indicates the assumed exponential logistic model correlating 

Vessel Toxicity with dose. In the case of cardiovascular toxicity with SBRT treatments, 

researchers have looked at 5 dosimetric parameters alone, which are:  V25Gy, D0.5cc, D1cc, 

D4cc, and Dmax for the organ of interest (Xue et al., 2016).  A log logistic curve can be readily 

described by a two-parameter function as shown in the equation below, with one parameter 

describing the dose at which 50% of patients exhibit complications, D50, and the second 

parameter, g, the normalized dose-response gradient (Bentzen et al., 1997).  These curves of 

normal tissue complication probability can be generated as functions of any of the five dose 

parameters described above (i.e. Dv). 

 

 
 

The depicted data points show specific cardiovascular events in patients after treatment 

with corresponding dose constraints and cardiovascular toxicity value in the great vessels.  Even 

though tumors may be killed, if unnecessarily high doses are delivered to vital structures, long-

term health complications can ensue. The model above considers only dose constraints as a 

factor in cardiovascular toxicity.  Therefore, this model of cardiovascular toxicity has limited 

predictability in terms of complications due to treatment. This is due to the fact that several 

other patient risk factors can contribute to cardiovascular toxicity and overall risk and thus 

potential events.  In this paper, we explore the possibility of using machine learning techniques 

to glean lower-level relationships between many different patient and treatment related 

parameters in addition to just organ-related NTCP. 
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In Equation 1, each organ related NTCP is expressed as a log-logistic function of the 

specified treatment dose parameter.  This NTCP value is calculated for each organ with respect 

to each of the 5 identified dosimetry statistics: D0.5cc, D1cc, D4cc, Dmax, and V25Gy.   

As mentioned above, the model proposed in this paper will consider more patient 

related parameters in the prediction.  These additional parameters are:  Patient Age, Patient 

Race, Patient Smoking history, General Tumor Location, Tumor position (X, Y, Z), Number of 

prior treatment courses, and Time-lag.  We define patient age to be considered at the date of 

the start of treatment.  Smoking history in our model is defined in 4 categories:  Never Smokers, 

Former Smokers, Former smokers who quit after over 30 years of smoking, and Current 

smokers.  General tumor location is defined in our model from the initial medical reports 

detailing abstract location, while tumor position is determined using the NTCS system after the 

treatment.  Time-lag is defined in our model as the time between the start date of the 

treatment and the date of an event if one occurred.  In the case that an event did not occur, the 

time-lag of the patient is the time between the treatment start and either the patient’s day of 

death, or the current date. 

In our cohort, we had data from 46 different patient’s treatments.  These patients 

suffered from several different types of thoracic cancers and had an assortment of 

complications post-treatment.  Out of all 46 patients, 19 patients experienced some form of 

complication aftertreatment, while the remaining 27 experienced none.  The following images 

display the breakdown of the patient data set with respect to each individual feature. 
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As seen in these images, the data is relatively diverse with respect to each feature.  The 

data set includes about a 50-50 split in male-female patients.  Each category of smoking history 

is well represented, although the category of former smokers for over 30 years includes the 

most patients.  Patient ages range from about 45 to 90 years old with many distributed heavily 

in between.  The range of patient time-lags extends from as little as 100 days to as long as 

almost 10 years.  

 

 
 

This table shows the statistical correlation between whether or not a patient had an 

event and each of the other features in this data set.  As seen in this table, time-lag is most 

strongly correlated with having an event.  Furthermore, other strongly correlated features 

include the Y and Z coordinates of the tumor, V25 to the heart, number of prior courses, and 

Age. 
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Methodology 
 

The aim of this project is to apply machine learning to specific SBRT plans and model the 

overall risk posed to patient.  We plan to generate a multi-dimensional model of patient risk 

from organ-specific cardiovascular toxicity from the SBRT based on: 1) dosimetric 

characteristics of the treatment plan, 2) elapsed time between RT treatment and event of 

interest and 3) patient specific risk factors.   A machine learning model will therefore be trained 

to determine risk using the following inputs:  Organ-specific V25Gy, D0.5cc, D1cc, D4cc, and 

Dmax from the SBRT plan; 3D coordinates of the maximum dose point in the organ (determined 

using the NTCS system); the presence or absence of cardiovascular risk factors such as smoking 

history, prior cardiac events, etc.; and patient specific criteria such as age, gender, race, and 

genetic mutations/variations.   

We will utilize two independent machine learning approaches to help develop this 

model:1) a Random Forest Classification model (RF) 2) a Support Vector Classification model 

(SVC), both of which have been proven to successfully classify multidimensional data.  Each 

model will be trained to output a prediction of the class probability whether or not the given 

SBRT plan will result in a cardiovascular event in the patient.  Effectively, the positive class 

probability will represent the risk to the patient associated with the treatment plan. Thus, we 

define patient risk, 𝑅𝐼𝑆𝐾_𝑃 as the probability of the positive class in the binary classification 

problem.  This can be interpreted as a function of the following characteristics associated with 

the patient 𝑃, and the specific treatment plan 𝑇. 
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In this interpretation of 𝑅𝐼𝑆𝐾_𝑃 ,	𝑃_𝑇𝑖𝑚𝑒𝑙𝑎𝑔 the time-lag associated with patient P, 

𝑃_𝑇𝑢𝑚𝑜𝑟𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 includes the coordinates of the tumor in patient 𝑃 and the general category 

of tumor location, and 𝑃_𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠 includes the remaining patient characteristics such 

as age, sex, smoking history, and prior treatments. Furthermore, j ranging from 1 to 4 indicates 

which of the 4 specific organs (heart, aorta, vena cava, pulmonary artery) and i ranging from 1  

to 5 indicates which of the dosimetry statistics specific to that organ is considered (D0.5cc, 

D1cc, D4cc, Dmax, V25Gy).  Therefore 𝑇^𝑗_𝑁𝑇𝐶𝑃_𝑖 represents the Normal Tissue Complication 

Probability estimated by statistic I on organ j in the given treatment plan T and the 

corresponding 𝐴_𝑖𝑗is a scaling coefficient. 

The machine learning problem posed here boils down to the supervised learning 

problem of binary classification and more specifically the prediction of binary class 

probabilities.  For any given patient, treatment pair (P, T), we are trying to predict the 

probability of whether that patient will experience a cardiac event as a result of the treatment.  

We denoted the binary class 1 to be the class of patient experiencing an event and 0 for no 

event.  Thus, we can model risk of an event as the probability of the given (P, T) falling in class 

1.  

Due to the relatively small sample size in our cohort, training and testing will be 

performed using five-fold cross validation.  In the training of each independent model, the 

patients will be divided into training and validation groups (which will be used to perform 

model fitting and evaluation, respectively) over five distinct iterations in which different 

groupings are used each time. Repeating this process with each patient subset taking a turn in 

the validation set allows for robust evaluation of the model accuracy while avoiding over-fitting 
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as much as possible. For each patient, the toxicity data points calculated by the NTCP equation 

were input to the model along with other relevant patient information including patient age at 

treatment, time lag between treatment and cardiovascular event, and patient specific risk 

factors. 

In future efforts, we can improve the accuracy of our model by a larger sample of more 

detailed data.  The risk of a given treatment is an extremely complex problem and there are 

certainly influencing factors other than the ones listed here.  On a data set including many more 

patients, we could improve our prediction by collecting genome-wide genotype data on DNA 

specimens to be collected from the participants. 

 
 

Classification 
 

Initially, given the features described above, we started with a model configuration to 

be trained on all of the input features, except patient time-lag.  We performed a grid search 

cross validation to compute the best set of hyper-parameters for the RF model.  Using 5-fold 

cross validation, we iterated over 50 different combinations of possible hyper-parameters to 

use in the model.  These parameters included the number of estimators used by the RF, the 

max depth of each individual decision tree, and the max number of features used in each 

decision tree training. We found that, in the case of this set of patients, the best model 

hyperparameters were 100 individual estimators in the ensemble, a max decision tree depth of 

2, and at most 2 of the features used in each decision tree.   

To evaluate this initial model configuration, we again used the 5-fold cross validation. 

The set of 46 patients was split randomly into 4 groups of 9 and 1 group of 10.  During each of 
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the 5 folds, a new RF model, with the optimal parameters found in the grid search, was trained 

exclusively on 4 out of the 5 groups of patients.  Then, we used the model to predict the unseen 

group.  At each fold, we saved these validation predictions for model evaluation.  Effectively, 

after all 5 folds, each patient had been predicted by a model that had not seen that specific 

patient during training.  Thus, this provided a more robust way of evaluating the model.  At the 

end, we trained a final model on all of the patients and evaluated the accuracy on those same 

training patients.  We found that, during validation, the model achieved an accuracy of 52.2% 

on all of the validation predictions and an overall accuracy of 73.9% when trained and 

evaluated on all patients. 

Given that the model did not perform well on the set of patients, we decided to 

compare the model’s performance if time-lag was included as a feature.  Again, we performed 

the grid search with 5-fold cross validation but found the new best parameters.  With time-lag, 

the optimal parameters for the RF model were 50 estimators in the ensemble, a max decision 

tree depth of 2, and all features used in each decision tree.  Using these new optimal model 

hyperparameters, we performed the same 5-fold cross validation process to evaluate the 

performance of this model.  This time, we observed a much better prediction accuracy.  The 

model achieved an accuracy of 80.4% on the validation predictions and an accuracy of 91.3% 

when trained and evaluated on all the patients. 
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As shown in the image above, it is clear that there is a strong relationship between the 

absence of a patient cardiac event and a large time-lag.  Furthermore, because of this strong 

correlation, the RF model is relying on a patient’s time-lag to make its classification prediction.  

All of the model’s mispredictions at this point occur in the intermediate range of time-lags.  As 

shown in the image, all of the patients with long time-lags and short time-lags are predicted 

correctly.  Recall that we define time-lag in this model as the time between the start of a 

patient’s treatment and the date of an event.  However, in the case of the absence of an event, 

either the current date or the patient’s date of death was used. 
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As an attempt to correct some of these mispredictions, we tried reducing the time-lag in 

each patient who did not experience an event. This effort was made to reduce the disparity in 

time-lag between patients in each category and thus reduce bias in the model so that 

relationships between other features could be identified. The same cross validation process 

was applied, and the results for each validation patient were recorded. This time the same 

model achieved an accuracy of 56.7% on the validation predictions and an overall accuracy of 

89.1% when trained and evaluated on all the patients. 
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These same three variations of data were also used for prediction with the SVC model 

instead of the RF model.  With the SVC, we found that using all of the features yielded an 

overall accuracy of 89.1% on the same patients used for training but an accuracy of only 60.7% 

on all of the validation predictions.  When time-lag was decreased in patients with no event, 

the accuracy again went down to 80.4% on the training patients and 43.5% on the validation 

predictions.  When time-lag was removed the model predicted the training patients with an 

accuracy of 84.7% and its validation predictions had an accuracy of 45.6%. 

Based on these results, the SVC clearly performed worse than the RF model. This is most 

likely due to the inherent differences between the RF and SVC models. Essentially, the SVC 

works to maximize the high dimensional margin between each class while the RF works to split 

the data set by individual features many times. Since the RF is an ensemble of many underlying 

decision trees, it is able to better classify these patients. On the other hand, the SVC tries to 

maximize the margin between classes but in the case of these patients, the “margins” overlap 

too closely for it to yield a good prediction. 

Clearly, the model relies on time lag to make its predictions given this relatively small set 

of data. However, in order to make useful predictions, the model would need to operate 

without having access to time-lag in advance. Thus, we decided to switch perspectives and 

explore the possibility of modeling time-lag itself. That is, given all the same patient info and 

whether or not the patient experienced an event, how long would the patient have until 

experiencing an event. Using a Random Forest regression model, we performed a regression to 

predict time-lag. Using the same 5-fold cross validation process described above, we 

formulated time-lag predictions for each patient in the validation set during each fold of cross 
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validation. In the end, we evaluated the model using the root mean squared error (RMSE) 

between the prediction of time-lag, and the time-lag itself. This was done in two separate ways. 

First, separate from the cross validation, the RF regression model was trained on all of the 

patients and the RMSE was calculated for the predictions on those same training patients. This 

yielded an RMSE of about 0.7 years. Then, the RMSE was calculated for each time-lag in the 

validation set. This yielded an RMSE of about 2.1 years. 

 
Discussion 

 
After analyzing the results of the risk predictions using both the Random Forest model 

and the Support Vector model, there are some clear takeaways. First, in the case of both 

models, there is significant over fitting with respect to the training data. In all cases, the 

accuracy of the predictions on the training data is much higher than that on the validation data. 

For the most part, this is to be expected on a data set of this size. When trained on around 35 

patients, this complex model is only partially able to determine the underlying relationships 

between each feature. 

Furthermore, it appears that the models are biased due to the features that we are 

giving it to make predictions. The occurrence of an event is strongly correlated with the 

patient’s time-lag. Given how we compute time-lag, this makes perfect sense. Patients with no 

event, will have a long time-lag, while patients with an event will have a comparably short time- 

lag. Because of this correlation, we believe that the model is weighting time-lag much too 

heavily and thus introducing bias into the prediction. When we tried to combat this by both 

separately altering and removing time-lag as a feature, the predictability of the model 

decreased significantly 
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The plots above demonstrate the ROC curve for the classification in 4 cases for both the 

RF model and the SVC model. The orange colors show the predictions after including all 

features including time-lag. The light orange represents the predictions on the same patients 

used for training while the dark orange shows the validation predictions. Finally, the dark red 

and green show the predictions on the validation data when trying to combat the bias 

associated with time-lag. Green represents the predictions after reducing the time-lag in all 

patients with no event and red represents the predictions after removing time-lag completely. 

Furthermore, we considered the results of the regression on time-lag. Given that time-

lag is by far the most important feature in terms of the predictability of the model, and that 

time-lag is not a feature we can ascertain before treatment, the regression may be helpful. The 

results of the regression showed that we can predict time-lag with an RMSE of about 2.1 years 

on the unseen validation data. This is not incredibly accurate given that the average patient 

time-lag is 3 years. However, we may be able to use the output of this regression as the 

predicted time-lag and thus as an input to the risk prediction model. This could yield some 

interesting results moving forward. However, it still poses a problem given that this time-lag 

prediction is determined using whether a patient had an event as a binary feature. 

Aside from the time-lag concerns, this machine learning approach yielded some 

interesting results in terms of the predictability of patient risk. As discussed in the introduction, 

we had previously considered the possibility of modeling using exclusively NTCP. In some cases, 

NTCP could accurately identify risky patients, but in most patients this approach was 

inconclusive. 
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These images detail a comparison between the predictions of the RF machine learning 

model and the NTCP associated with each organ and the max dose to that organ during 

treatment.	Each	X	represents	a	prediction	from	the	RF	model	while	the	triangles	show	the	

corresponding	NTCP	of	the	patient.	Green	indicates	no	event	while	red	indicates	an	event.		

As	shown	in	these	images,	in	relatively	low	doses,	the	machine	learning	approach	is	able	to	

do	well	in	the	classification.	However,	in	other	cases	the	NTCP	model	better	represents	the	

risk. 
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As	a	comparison,	these	images	show	the	RF	model	predictions	after	being	trained	on	

the	data	without	patient	time-lag.	It’s	clear	from	these	images	that	the	model	is	mis-

predicting	almost	all	of	the	patients	who	experienced	an	event.		
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The table above demonstrates the exact patients on which the model produced an 

incorrect prediction. The prediction column shows the validation predictions of the patient’s 

Risk Overall from the RF model trained without time-lag. Upon examination of the key 

dosimetry statistics associated with the treatment of these patients, it appears that the patients 

who experienced an event had a significantly high dose to at least one of the given organs. 

 

 
Future Improvements 

 
Data suggests that there could be a location dependence to toxicity for a given organ. 

For example, high doses to the aortic arch do not lead to cardiovascular events even with 

53.0Gy (HM1) as shown here in the rightmost image. 
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Patients:  DE (Event), DJ (Event), and HM1 (No Event) 

 
On the other hand, high doses to the descending or abdominal aorta can lead to 

cardiovascular events even with 51.5Gy (DJ, DE) as shown in the left and middle images 

respectively. These patients pictured above all received doses in excess of 50Gy to the aorta. 

However, only two of them experienced a cardiac event as a result. Moving forward, we must 

take into consideration more specific dose locations using a normalized coordinate system.  

Additionally, given more time and data, this model could be extended into problem of 

multi-class classification. The binary classification model discussed in this paper over- simplifies 

the true nature of medical complications. Instead of a generic Event/No Event prediction, we 

could model specific types of events. This multi-class modeling process would be much more 

complex, and therefore require much more data in order to make accurate predictions. 
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Furthermore, as discussed above we observed relatively high correlation between a 

patient having an event, and both the Y and Z coordinates of the tumor. From the image above, 

the Y axis corresponds to the sagittal axis, and the Z axis corresponds to the axis along the 

spine. At this point, we are using non-normalized values of these coordinates. However, as 

discussed in the Wang et al. paper, due to deviations in patient thoracic size, build, and general 

organ location, these coordinates could represent very different areas in different patients 

(2008). Using a normalized coordinate system similar to the NTCS (Normalized Thoracic 

Coordinate System) proposed in the Wang et al. paper, these coordinates could prove to be 

much more useful in the predictive model (2008). 

These attempts have shown very interesting results and the machine learning approach 

shows lots of promise. Moving forward, the best way to improve results and reduce the bias 

introduced by time-lag is to get much more data. This is an extremely complex problem, and 

one that a machine learning algorithm is best suited to solve. However, it is very hard to create 

a model of this complexity with fewer than 50 patients to work with. 
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