
 Building a Graph-Based Database and API for Real Time Analysis

of User Behavior

CS4991 Capstone Report, 2023

Srinija Chelimilla

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

slc8kf@virginia.edu

ABSTRACT

As a software engineering intern under an

unidentified company, my team and I built a

custom graph-based database and analytics

API to examine user behavior. Implementing

this capability was a multi-step process that

began with the provisioning of Amazon Web

Services (AWS) resources for cloud

deployment (“Cloud Computing Services”,

n.d.) and Docker to containerize our

application. Half the team worked on the data

ingestion side, while the other half worked on

developing the graph-based database and

building the API. While the company is

already utilizing existing tools to address this

topic, this project is especially valuable

because it processes and retrieves data in real

time, enhancing the efficiency of the current

solution. The next steps for our project would

be to push our application into production and

address any production related issues or bugs

that may arise. Future developments would

likely include adding more analytical

capabilities in the API and a user interface to

display the API responses.

1. INTRODUCTION

Security has the power to either make or

break any company’s foundation, as a

business is built upon the trust between the

company and its customers or clients. The

company I interned for has gone to great

lengths to ensure customer security and

privacy. Every technology or framework used

in a project must comply with the company’s

security policies.

My team and I were tasked with building a

custom graph-based database and analytics

API to examine user behavior in real time.

While graph databases exist, we were told

that none of the existing graph databases met

the security standards of the company, and

thus we had to make our own custom

implementation. The existing ingestion

process the team was using had a higher

latency. Our team had to build a similar

ingestion process, but data needed to be

accessible in real time.

2. RELATED WORKS

The project outline we were given compares

and contrasts two structures of storing data—

relational databases and graphical databases.

It outlines the advantages and disadvantages

of each approach. The team identified that

current graphical databases are not in

accordance with company standards due to

their lack of security. This information,

presented by my manager, fueled the team’s

project of creating a custom graphical

database to store user data.

3. PROJECT DESIGN

The goal of our project was to build an API

that returns key information about user

behavior.

3.1 Review of System Architecture

The project had two key components: the

ingestion process to consume relevant data

and API development to query and retrieve

appropriate responses.

3.2 Requirements

This project was more research and

development heavy, so there weren’t any

strict project requirements. As long as the

project met the company’s standards and the

API returned the desired results, our project

would be considered as meeting the

requirements.

3.2.1 Client Needs

The client for our project is the Machine

Learning team. The Machine Learning team

wanted a tool that efficiently queried and

analyzed certain user data, took input for

specific parameters, and returned data about

relevant patterns. The need for this tool is

critical to analyzing user behavior in real

time.

3.2.2 System Limitations

The limitation of the existing system is that it

had a higher latency in the ingestion process.

The system our team was working on would

provide results in real time.

3.3 Key Components

There are two key components for this

project: the ingestion process and API

development. I will be further describing the

specification of each of these components.

3.3.1 Specifications

The ingestion process involved consuming

data from a data source and writing the data

into an AWS relational database. The API

development part of the project entailed

creating a graphical database using NetworkX

(NetworkX documentation, n.d.) to grab data

from the AWS relational database, and

developing the API using Python. The API

had several endpoints, each querying and

returning different metrics.

3.3.2 Challenges

My team and I ran into multiple challenges

throughout our internship. This project had

very loose specifications as our manager

wanted us to experiment with different

technologies and approaches. Our manager

suggested the specifications above for our

initial approach to the project.

The first challenge our team faced was the

approval of AWS gen 3 accounts. AWS Glue

is a relatively new tool adopted by the

company and so our team had to request

permission to access this resource on the gen

3 account. Another challenge we faced was

learning how to use Bogiefiles, an internal

tool used to provision AWS resources. A

large part of our internship was focused on

deploying resources through this tool, so it

was imperative that we understood how to

use it effectively and efficiently.

3.3.3 SOLUTIONS

The solution to the gen3 problem was to

switch to gen 2 accounts and use a queueing

service to consume data as opposed to using a

Glue job. The solution to the Bogiefiles

problem was to just keep attempting

deployment and figure out how to fix error

messages until the pipeline succeeded. The

approach to fixing specific error messages

was to read documentation and ask for help in

the appropriate Slack channels.

4 RESULTS

As per company standards, an individual or

team needs to follow a process to implement

a new project or feature. Therefore, while my

team and I finished the deliverables and

presented a working project, there is still a lot

to be done before our project can be adopted

and used internally. Our project reduced the

latency of consuming and analyzing user data

to real time. Because this was such a novel

project, its efficiency and accuracy and its

effect on the Machine Learning team that

intends to use it can only be determined once

it has been fully deployed.

5 CONCLUSION

This project is valuable because it assists the

machine learning team to analyze user

behavior in real time. A key feature of our

project is the system’s low latency. Data is

transferred in real time. Security is an

important aspect customers want from any

company. Because the API we have

developed helps the company engage in

secure practices, I believe this will indirectly

be valued by consumers as well.

6 FUTURE WORK

There are several next steps that can be taken

to complete the project and expand on it in

the future. The first step would be to fully

deploy all components to production. Given

the limited time we had in our internship, we

were only able to push our data ingestion

component to production—our API is only

deployed to development. I believe this is the

main to-do that needs to be completed in

addition to other minor administrative tasks.

In terms of future expansion, a few objectives

we could focus on are creating a user

interface for the API, deploying our API

across multiple availability zones in AWS,

and consuming from multiple data sources.

REFERENCES

Cloud Computing Services—Amazon Web

Services (AWS). (n.d.).

https://aws.amazon.com/

NetworkX documentation. NetworkX. (n.d.).

https://networkx.org/

https://aws.amazon.com/

