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ABSTRACT 
Many web-based educational simulations face 
performance bottlenecks, particularly on low-
end machines, due to high central processing 
unit (CPU) usage. I propose integrating 
efficient algorithms and low-level 
optimization techniques into these simulations 
using Web Assembly (WASM) to reduce CPU 
load. The solution will employ techniques 
such as efficient memory management, single 
instruction multiple data (SIMD) instructions, 
and efficient matrix multiplication to increase 
the performance of CPU-intensive 
calculations. In addition to WASM, other 
environments will be tested for comparison, 
including asm.js, vanilla JS, and React. 
Metrics that will be tested include CPU usage, 
scripting time, and code timing. This project is 
expected to show that WASM is the fastest and 
least CPU-intensive environment. Future work 
can optimize graphical rendering in education 
simulations, a potential CPU-heavy operation 
that can be sped up with frameworks like 
WebGL. 
 
1. INTRODUCTION 
Many visual-based educational simulations 
are available online that help visualize 
concepts across various fields. When these 
simulations become more intensive, these 
visualizations become inaccessible to many 
people without the high-end hardware to 
efficiently run these simulations. 

 
To illustrate the computational challenges 
present in some of these simulations, the 
performance of an electromagnet simulation 
was analyzed [1]. The Google Chrome 
browser allows CPU throttling to simulate a 
lower-end machine with different throttling 
amounts, which can roughly be compared to 
different CPUs. For example, with an M2 
Apple Silicon chip, a 6x throttle amount 
roughly is comparable to a 2015 Intel Core i5 
dual-core chip. The performance of the 
simulation under 20x CPU throttling resulted 
in a drastic performance degradation 
(measured as code scripting time and frame 
rate). 
 
One aspect universal to nearly all web-based 
apps is the JS engines on which the simulation 
code runs. To address JS engine limitations, a 
binary instruction format known as 
WebAssembly (WASM) was introduced. 
According to the WebAssembly website 
(2024), this format seeks to execute code at 
native speed by leveraging more hardware-
level capabilities [2]. I propose integrating 
WASM into intensive educational simulations 
and comparing their performances to 
simulations that do not use WASM. 
 
2. RELATED WORKS 
Haas, et al. (2017) evaluated the performance 
of WASM compared to asm.js, a subset of JS. 
Results indicated that, on average, WASM 



	

was 33.7% faster than asm.js [3]. A limitation 
of this design is the nature of the tests 
performed, which only made comparisons 
between asm.js and WASM and between 
WASM and native code. My project will 
address this by performing tests on vanilla JS, 
React, asm.js, WASM, and native code. 
 
Yan et al. (2021) evaluated the performance of 
WASM under various environments, 
including compiler-generated WASM and 
WASM used in real-world applications [4]. 
When 41 C programs were compiled to 
WASM and JS, WASM consistently 
performed better. Similar results were seen 
when comparing real-world applications 
(Long.js, Hyphenopoly.js, and FFmpeg). The 
performance evaluation approach proposed in 
this paper evaluated many small programs 
representing various use cases of WASM; 
however, most web applications are not simple 
programs or contain one single algorithm. My 
project will address this drawback by 
analyzing the performance of using WASM 
throughout large-scale web-based simulations. 
 
3. PROPOSED DESIGN 
A web-based educational simulation will be 
implemented in different environments. 
Starting from the C++ language environment, 
a physics-based simulation will be written and 
translated to other environments, including 
WASM. The different environments will be 
tested under various conditions to highlight 
performance differences.  
 
3.1 Environments Tested 
This project tests five different environments: 
WASM, JS, React, asm.js, and native code 
(which is compiled C++ code). In my project, 
environments are a combination of a 
programming language and how the code is 
executed in the browser (aside from native 
code). These environments differ in aspects 
such as automatic optimizations, computer 
hardware utilizations, and language features. 

 
The JS environment is vanilla JS, meaning no 
use of a framework. A framework, alongside 
JS, will be tested since frameworks often 
enhance performance through built-in 
optimizations. React will be tested because its 
use of simple components to build complex 
systems is well-suited for building physics-
based simulations. 
 
Although WASM is not a language, it enables 
code to run at near-native speeds in the web 
browser by compiling C++ code into a binary 
format. asm.js compiles C++ code to JS while 
attempting to retain as many C++ features and 
optimizations as possible. Native code will 
directly compile C++ code and run the code 
outside of a web browser for comparison. 
 
3.2 Implementation of Simulation 
A physics simulation will be implemented in 
C++ that will simulate electric fields, simple 
motors, or some other physics system. To 
implement the chosen physics system in C++, 
essential components, such as forces, vectors, 
and fields, will be implemented as C++ 
classes. These classes will be translated into 
the equivalent version in JS and React. Then, 
C++ functions will be written that simulate the 
interactions of those components. C++ 
language optimization features/functions will 
be used as much as possible, such as SIMD 
instructions (which can run multiple math 
operations simultaneously instead of just one). 
After the initial simulation code is written in 
C++, the code will be manually translated, 
automatically translated, or compiled to the 
five different environments. 
 
3.2.1 JS and React 
A manual translation of the C++ code to 
vanilla JS and React will be done. This will 
require meticulously translating the C++ 
classes implementing the various physics 
elements into the JS equivalent (JS classes) 
and the React equivalent (TypeScript (TS) 



	

classes or React components). The C++ 
functions modeling the physics interactions 
will be translated into JS/TS. This will involve 
a loss of some C++ language features. 
 
3.2.2 WASM, asm.js, and Native Code 
asm.js automatically compiles C++ code into 
JS code. WASM compiles C++ code into a 
binary format, which can be run in the 
browser. Finally, C++ can be compiled into 
machine code using a compiler such as Clang. 
The machine code can then be run natively on 
a machine, independent of a browser. 
 
3.3 Performance Metrics 
Various simulation metrics in each 
environment will be measured, including CPU 
usage, scripting time, and code timing in 
milliseconds. CPU usage measures the amount 
of the system’s CPU used as a percentage. 
Scripting time, a web browser feature, 
measures how long individual JS functions 
take to run. Finally, code timing measures 
execution time and allows for more accurate 
measurements and control over what is timed 
by defining timing points within the code. 
 
3.4 Data Collection Methods 
Google Chrome’s Task Manager, which 
displays the CPU usage percentage of each 
tab, will be used to measure CPU usage across 
the JS, React, asm.js, and WASM 
environments. I will use my computer’s task 
manager, Activity Monitor, to measure the 
CPU usage for the native code. Throughout 
multiple points in the simulation, the CPU 
usage will be measured at a 5-second time 
interval and later averaged. Google Chrome’s 
performance measurement tool will measure 
the entire simulation over different time 
intervals (10 seconds, 30 seconds, and 1 
minute) to measure the scripting time. This is 
not available for the native code. Finally, for 
all environments, after the simulation is 
initialized, the time will be measured at the 
point the simulation starts, the simulation will 

run for a set number of iterations (between 
10,000 and 100,000 iterations), and then the 
time will be measured at the end of those 
iterations. 
 
Each environment’s measurements will be 
collected multiple times and averaged to attain 
more accurate measurements. Using the 
results from this data collection process, the 
performance of all five environments will be 
compared to determine the best-performing 
environment. 
 
4. ANTICIPATED RESULTS 
Based on previous research, I anticipate that 
WASM will perform the best in CPU usage, 
scripting time, and code timing compared to 
the other web-based environments because 
WASM is designed to run code at near-native 
speeds. In addition, compiled C++ code can 
take advantage of low-level C++ 
optimizations such as SIMD instructions and 
manual memory management. This 
anticipated result aligns with the findings of 
Haas et al. (2017) and Yan et al. (2021), where 
WASM consistently performed better in 
smaller-scaled web applications. 
 
I anticipate that Vanilla JS, React, and asm.js 
will not perform as well as WASM because of 
the lack of C++ low-level features. I anticipate 
potential overhead when calling C++ 
functions in the WASM environment, either 
from the compilation of C++ code or from 
invoking C++ functions within JS. However, 
over thousands of iterations, the C++ 
optimizations will likely reduce execution 
time for each function call, offsetting the 
overhead cost. I anticipate that the native code 
will perform the best overall since it can 
leverage the entire hardware of the system, but 
this is at the cost of not being portable to a 
web-based environment without first being 
compiled into a format that can be run in a web 
browser. Finally, I anticipate that asm.js will 



	

perform better than vanilla JS, while React 
will perform better than asm.js. 
 
5. CONCLUSION 
Through the anticipated outcomes of this 
project, WASM is expected to be the most 
optimal environment for large-scale web 
projects. Hence, current and future educational 
simulations will likely benefit from speed and 
CPU usage improvements using WASM. 
While many speed improvements come from 
using C++ language features, developers of 
these simulations should consider C++’s steep 
learning curve. Additionally, developers 
should consider the greater chance of 
introducing software bugs by using C++’s 
more complex features, such as manual 
memory management. 
 
Despite the difficulty associated with coding 
in C++, I believe implementing educational 
simulations should be written in C++ to take 
advantage of WASM’s benefits. By reducing 
CPU usage, computers with less processing 
power can run these simulations. Thus, these 
simulations can be accessible to more students, 
especially considering many students can only 
afford low-end computers. Students from 
diverse backgrounds often learn complicated 
concepts more easily through visual 
demonstrations. By incorporating WASM into 
these simulations, more students can engage 
their visual learning processes to understand 
challenging topics better, likely enhancing 
educational outcomes. 
 
6. FUTURE WORK 
Most simulation programs contain an update 
and render loop. In the update step, the next 
state of the simulation is calculated. In the 
render step, that state is drawn to the web 
browser for the user to see. This project 
focused on the update step, but future work 
may focus on finding the most optimal 
rendering environment for these simulations. 
This is important because the rendering step 

often takes a lot of CPU usage, especially with 
more complicated systems with many moving 
objects to render. Many rendering 
environments can be tested, including basic 
HTML and CSS elements, HTML Canvas, 
Three.js, React, and WebGL.  
 
Similarly to WASM, WebGL uses more of a 
computer’s hardware, specifically the graphics 
processing unit (GPU). In addition to WebGL, 
frameworks like Three.js provide a library of 
functions that simplify WebGL usage, albeit at 
the cost of function call overhead. Combining 
WASM with WebGL or Three.js could 
significantly improve CPU efficiency and 
speed in educational simulations. 
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