
Optimizing Web-Based Educational Simulations: Integrating Web Assembly to Improve
Performance

A Technical Report Submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Kevin Sandoval

Fall 2024

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Briana Morrison, Department of Computer Science

Optimizing Web-Based Educational Simulations: Integrating Web Assembly
to Improve Performance

CS4991 Capstone Report, 2024

Kevin Sandoval

Computer Science
The University of Virginia

School of Engineering and Applied Science
Charlottesville, Virginia USA

ucy5mh@virginia.edu

ABSTRACT
Many web-based educational simulations face
performance bottlenecks, particularly on low-
end machines, due to high central processing
unit (CPU) usage. I propose integrating
efficient algorithms and low-level
optimization techniques into these simulations
using Web Assembly (WASM) to reduce CPU
load. The solution will employ techniques
such as efficient memory management, single
instruction multiple data (SIMD) instructions,
and efficient matrix multiplication to increase
the performance of CPU-intensive
calculations. In addition to WASM, other
environments will be tested for comparison,
including asm.js, vanilla JS, and React.
Metrics that will be tested include CPU usage,
scripting time, and code timing. This project is
expected to show that WASM is the fastest and
least CPU-intensive environment. Future work
can optimize graphical rendering in education
simulations, a potential CPU-heavy operation
that can be sped up with frameworks like
WebGL.

1. INTRODUCTION
Many visual-based educational simulations
are available online that help visualize
concepts across various fields. When these
simulations become more intensive, these
visualizations become inaccessible to many
people without the high-end hardware to
efficiently run these simulations.

To illustrate the computational challenges
present in some of these simulations, the
performance of an electromagnet simulation
was analyzed [1]. The Google Chrome
browser allows CPU throttling to simulate a
lower-end machine with different throttling
amounts, which can roughly be compared to
different CPUs. For example, with an M2
Apple Silicon chip, a 6x throttle amount
roughly is comparable to a 2015 Intel Core i5
dual-core chip. The performance of the
simulation under 20x CPU throttling resulted
in a drastic performance degradation
(measured as code scripting time and frame
rate).

One aspect universal to nearly all web-based
apps is the JS engines on which the simulation
code runs. To address JS engine limitations, a
binary instruction format known as
WebAssembly (WASM) was introduced.
According to the WebAssembly website
(2024), this format seeks to execute code at
native speed by leveraging more hardware-
level capabilities [2]. I propose integrating
WASM into intensive educational simulations
and comparing their performances to
simulations that do not use WASM.

2. RELATED WORKS
Haas, et al. (2017) evaluated the performance
of WASM compared to asm.js, a subset of JS.
Results indicated that, on average, WASM

	

was 33.7% faster than asm.js [3]. A limitation
of this design is the nature of the tests
performed, which only made comparisons
between asm.js and WASM and between
WASM and native code. My project will
address this by performing tests on vanilla JS,
React, asm.js, WASM, and native code.

Yan et al. (2021) evaluated the performance of
WASM under various environments,
including compiler-generated WASM and
WASM used in real-world applications [4].
When 41 C programs were compiled to
WASM and JS, WASM consistently
performed better. Similar results were seen
when comparing real-world applications
(Long.js, Hyphenopoly.js, and FFmpeg). The
performance evaluation approach proposed in
this paper evaluated many small programs
representing various use cases of WASM;
however, most web applications are not simple
programs or contain one single algorithm. My
project will address this drawback by
analyzing the performance of using WASM
throughout large-scale web-based simulations.

3. PROPOSED DESIGN
A web-based educational simulation will be
implemented in different environments.
Starting from the C++ language environment,
a physics-based simulation will be written and
translated to other environments, including
WASM. The different environments will be
tested under various conditions to highlight
performance differences.

3.1 Environments Tested
This project tests five different environments:
WASM, JS, React, asm.js, and native code
(which is compiled C++ code). In my project,
environments are a combination of a
programming language and how the code is
executed in the browser (aside from native
code). These environments differ in aspects
such as automatic optimizations, computer
hardware utilizations, and language features.

The JS environment is vanilla JS, meaning no
use of a framework. A framework, alongside
JS, will be tested since frameworks often
enhance performance through built-in
optimizations. React will be tested because its
use of simple components to build complex
systems is well-suited for building physics-
based simulations.

Although WASM is not a language, it enables
code to run at near-native speeds in the web
browser by compiling C++ code into a binary
format. asm.js compiles C++ code to JS while
attempting to retain as many C++ features and
optimizations as possible. Native code will
directly compile C++ code and run the code
outside of a web browser for comparison.

3.2 Implementation of Simulation
A physics simulation will be implemented in
C++ that will simulate electric fields, simple
motors, or some other physics system. To
implement the chosen physics system in C++,
essential components, such as forces, vectors,
and fields, will be implemented as C++
classes. These classes will be translated into
the equivalent version in JS and React. Then,
C++ functions will be written that simulate the
interactions of those components. C++
language optimization features/functions will
be used as much as possible, such as SIMD
instructions (which can run multiple math
operations simultaneously instead of just one).
After the initial simulation code is written in
C++, the code will be manually translated,
automatically translated, or compiled to the
five different environments.

3.2.1 JS and React
A manual translation of the C++ code to
vanilla JS and React will be done. This will
require meticulously translating the C++
classes implementing the various physics
elements into the JS equivalent (JS classes)
and the React equivalent (TypeScript (TS)

	

classes or React components). The C++
functions modeling the physics interactions
will be translated into JS/TS. This will involve
a loss of some C++ language features.

3.2.2 WASM, asm.js, and Native Code
asm.js automatically compiles C++ code into
JS code. WASM compiles C++ code into a
binary format, which can be run in the
browser. Finally, C++ can be compiled into
machine code using a compiler such as Clang.
The machine code can then be run natively on
a machine, independent of a browser.

3.3 Performance Metrics
Various simulation metrics in each
environment will be measured, including CPU
usage, scripting time, and code timing in
milliseconds. CPU usage measures the amount
of the system’s CPU used as a percentage.
Scripting time, a web browser feature,
measures how long individual JS functions
take to run. Finally, code timing measures
execution time and allows for more accurate
measurements and control over what is timed
by defining timing points within the code.

3.4 Data Collection Methods
Google Chrome’s Task Manager, which
displays the CPU usage percentage of each
tab, will be used to measure CPU usage across
the JS, React, asm.js, and WASM
environments. I will use my computer’s task
manager, Activity Monitor, to measure the
CPU usage for the native code. Throughout
multiple points in the simulation, the CPU
usage will be measured at a 5-second time
interval and later averaged. Google Chrome’s
performance measurement tool will measure
the entire simulation over different time
intervals (10 seconds, 30 seconds, and 1
minute) to measure the scripting time. This is
not available for the native code. Finally, for
all environments, after the simulation is
initialized, the time will be measured at the
point the simulation starts, the simulation will

run for a set number of iterations (between
10,000 and 100,000 iterations), and then the
time will be measured at the end of those
iterations.

Each environment’s measurements will be
collected multiple times and averaged to attain
more accurate measurements. Using the
results from this data collection process, the
performance of all five environments will be
compared to determine the best-performing
environment.

4. ANTICIPATED RESULTS
Based on previous research, I anticipate that
WASM will perform the best in CPU usage,
scripting time, and code timing compared to
the other web-based environments because
WASM is designed to run code at near-native
speeds. In addition, compiled C++ code can
take advantage of low-level C++
optimizations such as SIMD instructions and
manual memory management. This
anticipated result aligns with the findings of
Haas et al. (2017) and Yan et al. (2021), where
WASM consistently performed better in
smaller-scaled web applications.

I anticipate that Vanilla JS, React, and asm.js
will not perform as well as WASM because of
the lack of C++ low-level features. I anticipate
potential overhead when calling C++
functions in the WASM environment, either
from the compilation of C++ code or from
invoking C++ functions within JS. However,
over thousands of iterations, the C++
optimizations will likely reduce execution
time for each function call, offsetting the
overhead cost. I anticipate that the native code
will perform the best overall since it can
leverage the entire hardware of the system, but
this is at the cost of not being portable to a
web-based environment without first being
compiled into a format that can be run in a web
browser. Finally, I anticipate that asm.js will

	

perform better than vanilla JS, while React
will perform better than asm.js.

5. CONCLUSION
Through the anticipated outcomes of this
project, WASM is expected to be the most
optimal environment for large-scale web
projects. Hence, current and future educational
simulations will likely benefit from speed and
CPU usage improvements using WASM.
While many speed improvements come from
using C++ language features, developers of
these simulations should consider C++’s steep
learning curve. Additionally, developers
should consider the greater chance of
introducing software bugs by using C++’s
more complex features, such as manual
memory management.

Despite the difficulty associated with coding
in C++, I believe implementing educational
simulations should be written in C++ to take
advantage of WASM’s benefits. By reducing
CPU usage, computers with less processing
power can run these simulations. Thus, these
simulations can be accessible to more students,
especially considering many students can only
afford low-end computers. Students from
diverse backgrounds often learn complicated
concepts more easily through visual
demonstrations. By incorporating WASM into
these simulations, more students can engage
their visual learning processes to understand
challenging topics better, likely enhancing
educational outcomes.

6. FUTURE WORK
Most simulation programs contain an update
and render loop. In the update step, the next
state of the simulation is calculated. In the
render step, that state is drawn to the web
browser for the user to see. This project
focused on the update step, but future work
may focus on finding the most optimal
rendering environment for these simulations.
This is important because the rendering step

often takes a lot of CPU usage, especially with
more complicated systems with many moving
objects to render. Many rendering
environments can be tested, including basic
HTML and CSS elements, HTML Canvas,
Three.js, React, and WebGL.

Similarly to WASM, WebGL uses more of a
computer’s hardware, specifically the graphics
processing unit (GPU). In addition to WebGL,
frameworks like Three.js provide a library of
functions that simplify WebGL usage, albeit at
the cost of function call overhead. Combining
WASM with WebGL or Three.js could
significantly improve CPU efficiency and
speed in educational simulations.

REFERENCES
[1] Magnets and Electromagnets. Retrieved

November 15, 2024 from
https://phet.colorado.edu/sims/html/magn
ets-and-electromagnets/latest/magnets-
and-electromagnets_en.html

[2] Webassembly. Retrieved September 27,
2024 from https://webassembly.org/

[3] Andreas Haas, Andreas Rossberg, Derek
L. Schuff, Ben L. Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai,
and Jf Bastien. 2017. Bringing the web up
to speed with WebAssembly.
In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language
Design and Implementation, June 14,
2017. ACM, Barcelona Spain, 185–200.

[4] Yutian Yan, Tengfei Tu, Lijian Zhao,
Yuchen Zhou, and Weihang Wang. 2021.
Understanding the performance of
webassembly applications. In Proceedings
of the 21st ACM Internet Measurement
Conference (IMC ’21), November 02,
2021. Association for Computing
Machinery, New York, NY, USA, 533–
549.

