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ABSTRACT 
 

Optical motion-tracking systems are an accurate method of capturing motion of a body traveling 

through a 3-dimensional (3D) space. There are several disadvantages of these systems, including cost, the 

time consumed in performing the tracking, and especially the requirement of a constant line of sight 

between the cameras and the tracked object throughout the analyzed event. An alternative to optical based 

tracking is an approach that utilizes body local acceleration and angular velocity recorded by inertial 

measurement units (IMUs). 

The advancement in the MEMS technology allowed for small, light and inexpensive accelerometers 

and angular rate sensors to be more accessible. Data from these sensors can be utilized to obtain the position 

and orientation of the body on which they are attached. Even though sensor-based motion capture offers 

many benefits, it has been shown to be less accurate than optical motion-tracking due to multiple types of 

signal and sensor errors and uncertainty associated with the initial orientation of tracked body. In addition, 

there are multiple numerical formulas (for example the one that is utilized to obtain body’s orientation) that 

can be used as part of the trajectory calculation algorithm but there is no consensus on how these different 

methods affect the resulting sensor-based position estimation.  

Even though sensor-based tracking has its limitations, research has shown that it can be a promising 

alternative to optical capture systems under certain conditions. Before the IMU-based position estimation 

can replace more costly and time-consuming optical motion capture, the accuracy of trajectories obtained 

from processed IMU data needs to be improved and the reasons behind errors in sensor-based predictions 

better understood, so that the method can be employed in a way to facilitate its success. 

This dissertation presents the development of an algorithm that can be used to compute 3D component 

trajectories of a rigid body – based on locally-mounted inertial sensors – for applications in vehicle crash 

tests with anthropomorphic test devices. In addition to the algorithm, this dissertation identifies different 

correction techniques that could be used to minimize the error in the calculated trajectory when sensor 

readings are affected by measurement inaccuracies. These goals were accomplished through the following 

tasks. The first task focused on assembling a training set for verification and validation of the proposed 

algorithm using data from progressively more complex impact scenarios. Next, from different methods 

identified in the literature, the most accurate technique of updating body orientation based on body’s 

angular rate (Task 2) as well as the most accurate method of obtaining body’s local angular acceleration 

(Task 3) were identified. In Task 4, a comprehensive study investigating the influence of different error 

types on the IMU-based trajectories was carried out. In the final task, different techniques that could be 

used to minimize the error in the calculated trajectory were evaluated. 
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Analysis from Task 2 indicated two algorithms based on the Euler parameters as the most accurate 

methods of updating body’s orientation. In addition, the analysis showed that the accuracy of the method 

used to update body’s orientation depends strongly on the accuracy of the numerical integration scheme 

utilized in the orientation algorithm. Investigation from Task 3 identified the approach based on 

differentiation of the local angular velocity as the method that gave the smallest deviation from the reference 

(from an optical motion capture system) position data. The analysis from Task 4 described the errors in the 

debias values for linear accelerometers and angular rate sensors, the error in accelerometer sensitivity, as 

well as the error in initial orientation as error types that can have the most substantial effect on the IMU-

based trajectory estimation. The error analysis also showed that by adding two redundant angular rate 

sensors to a standard “3 ACC + 3 ARS” package, an angular rate sensor with errors in its signal can be 

identified. Similarly, by adding two redundant linear accelerometers, an accelerometer with a faulty 

response can be pinpointed. When (in Task 5) either optimization of initial orientation angles in 

combination with the debias values for linear acceleration data was performed, or known information about 

3D position of the tracked body was introduced into the trajectory calculation algorithm, a substantial 

improvement in the accuracy of the computed position of the tracked body was achieved. Even when only 

three data points with known position were used throughout the analysis, the position error (when compared 

to a test without these three points) decreased by more than 93% and the maximum absolute difference for 

all three trajectory components stayed below 5.5 mm when matched against reference data from the optical 

system. Finally, in Task 5 two techniques of interpolating an optical data gap were investigated. 

This dissertation focused on crash scenarios mainly, but its findings and conclusions can be 

extrapolated and applied in many other fields, ranging from gait and sport studies, through clinical trials 

and animal motion analysis, to tracking underwater or underground autonomous vehicles. 

  



v 
 

DEDICATION 

 

To my parents, my brother, and my one and only Michelle. Without your love and support, 

this would not have been possible. Thank you so much! 

 

  

 

  



vi 
 

CONTENTS 
 

ABSTRACT ................................................................................................................................................ iii 

CONTENTS................................................................................................................................................ vi 

ACKNOWLEDGMENTS .......................................................................................................................... x 

1. INTRODUCTION ............................................................................................................................ 11 

1.1 Motivation ......................................................................................................................................... 11 

1.2 Background ....................................................................................................................................... 12 

2. GOAL AND AIMS ............................................................................................................................ 19 

3. RESEARCH PLAN .......................................................................................................................... 20 

4. ASSEMBLE TRAINING SET ......................................................................................................... 22 

4.1 Training set description ..................................................................................................................... 22 

4.2 NHTSA crash tests – brief overview ................................................................................................ 23 

5. ALGORITHM VERIFICATION THROUGH COMPUTER SIMULATIONS ........................ 24 

5.1 Introduction ....................................................................................................................................... 24 

5.2 Methods............................................................................................................................................. 24 

5.3 Results ............................................................................................................................................... 28 

5.4 Conclusions ....................................................................................................................................... 34 

6. SIMPLIFIED HEAD TESTING ..................................................................................................... 36 

6.1 Introduction ....................................................................................................................................... 36 

6.2 Methods............................................................................................................................................. 36 

6.3 Results ............................................................................................................................................... 43 

6.4 Conclusions ....................................................................................................................................... 50 

7. THOR MOD-KIT TESTING .......................................................................................................... 52 

7.1 Introduction ....................................................................................................................................... 52 

7.2 Methods............................................................................................................................................. 53 

7.3 Results ............................................................................................................................................... 60 

7.4 Conclusions ....................................................................................................................................... 67 

8. UPDATE OF BODY ORIENTATION ........................................................................................... 69 

8.1 Introduction ....................................................................................................................................... 69 

8.2 Methods............................................................................................................................................. 69 

8.3 Results ............................................................................................................................................... 77 

8.4 Discussion ......................................................................................................................................... 82 

8.5 Conclusions ....................................................................................................................................... 85 

9. ANGULAR ACCELERATION ANALYSIS ................................................................................. 87 



vii 
 

9.1 Calculation of angular acceleration ................................................................................................... 87 

9.2 Methods............................................................................................................................................. 92 

9.3 Results ............................................................................................................................................... 95 

9.4 Discussion ....................................................................................................................................... 104 

9.5 Conclusions ..................................................................................................................................... 105 

10. ERROR EFFECTS ANALYSIS ................................................................................................ 106 

10.1: Identification of common error types and their bounds ............................................................... 106 

10.2: Investigation of the effect of sensor and measurement errors based on analytical equations 

describing motion of a rigid body ......................................................................................................... 116 

10.3: Error effects – uni- and multivariable analysis ............................................................................ 121 

11. INVESTIGATION OF THE EFFECT OF REDUNDANT SENSORS ON THE 

MAGNITUDE OF THE ERROR IN THE CALCULATED TRAJECTORY .................................. 135 

11.1 Analytical relationships between two vectors in a 3D space ........................................................ 135 

11.2 Redundant angular rate sensor ...................................................................................................... 137 

11.3 Redundant linear accelerometer .................................................................................................... 138 

11.4 Verification of sensor measurement predictions based on a computer simulation ....................... 142 

11.5 Conclusions ................................................................................................................................... 146 

12. 3D TRAJECTORY CALCULATION IN THOR TESTS UTILIZING THE SENSOR 

FUSION TECHNIQUE THROUGH THE KALMAN FILTER ........................................................ 147 

12.1 Introduction ................................................................................................................................... 147 

12.2 Instrumentation ............................................................................................................................. 148 

12.3 Sensor fusion ................................................................................................................................. 149 

12.4 Error metrics ................................................................................................................................. 150 

12.5 Results ........................................................................................................................................... 150 

12.6 Conclusions ................................................................................................................................... 151 

13. 3D TRAJECTORY CALCULATION IN THOR TESTS UTILIZING THE KNOWLEDGE 

GAINED FROM THE ERROR EFFECTS ANALYSIS .................................................................... 152 

13.1 Introduction ................................................................................................................................... 152 

13.2 ATD head kinematics data ............................................................................................................ 152 

13.3 Description of the optimization process ........................................................................................ 153 

13.4 Error metrics ................................................................................................................................. 153 

13.5 Results ........................................................................................................................................... 153 

13.6 Conclusions ................................................................................................................................... 158 

14. 3D TRAJECTORY CALCULATION IN THOR TESTS UTILIZING KNOWN POSITION 

INFORMATION FROM DATA POINTS AT A CONSTANT TIME INTERVAL ........................ 159 

14.1 Introduction ................................................................................................................................... 159 



viii 
 

14.2 ATD head kinematics data ............................................................................................................ 159 

14.3 Interpolation algorithm ................................................................................................................. 159 

14.4 Time intervals used ....................................................................................................................... 160 

14.5 Error metrics ................................................................................................................................. 161 

14.6 Results ........................................................................................................................................... 161 

14.7 Known orientation – discussion .................................................................................................... 163 

14.8 Conclusions ................................................................................................................................... 163 

15. INTERPOLATION OF MISSING OPTICAL DATA BASED ON INERTIAL 

MEASUREMENTS ................................................................................................................................ 164 

15.1 Introduction ................................................................................................................................... 164 

15.2 Sensor and optical data ................................................................................................................. 165 

15.3 Considered cases ........................................................................................................................... 166 

15.4 Error metrics ................................................................................................................................. 166 

15.5 Results ........................................................................................................................................... 166 

15.6 Conclusions ................................................................................................................................... 169 

16. ATD HEAD MOTION RELATIVE TO THE VEHICLE: THE EFFECT OF VEHICLE 

INERTIAL SENSOR MOUNTING LOCATION ............................................................................... 171 

16.1 Introduction ................................................................................................................................... 171 

16.2 Methods......................................................................................................................................... 171 

16.3 Findings......................................................................................................................................... 172 

16.4 Discussion ..................................................................................................................................... 173 

16.5 Division of work between authors ................................................................................................ 173 

17. CLOSING REMARKS ............................................................................................................... 174 

17.1 Conclusions ................................................................................................................................... 174 

17.2 Methodological steps that minimize position error estimation – summary .................................. 181 

17.3 Contributions................................................................................................................................. 185 

17.4 Impact ........................................................................................................................................... 185 

17.5 Possible applications ..................................................................................................................... 186 

18. REFERENCES ............................................................................................................................ 188 

APPENDIX A – SIMPLIFIED HEAD TESTS – TEST MATRIX ..................................................... 196 

APPENDIX B – SIMPLIFIED HEAD TESTS – INSTRUMENTATION AND DATA 

ACQUISITION SYSTEMS .................................................................................................................... 201 

APPENDIX C – SIMPLIFIED HEAD TESTING – RESERR (IN MILLIMITERS) FOR ALL 

SENSOR COMBINATIONS ................................................................................................................. 205 

APPENDIX D – THOR MOD-KIT TESTS – TEST MATRIX .......................................................... 207 



ix 
 

APPENDIX E – THOR MOD-KIT TESTS – INSTRUMENTATION AND DATA ACQUISITION 

SYSTEMS ................................................................................................................................................ 208 

APPENDIX F – THOR MOD-KIT TESTS – SENSOR BLOCKS USED DURING TESTING ..... 214 

APPENDIX G – THOR MOD-KIT TESTS – RESERR (IN MILLIMITERS) FOR ALL SENSOR 

COMBINATIONS .................................................................................................................................. 215 

APPENDIX H – FREQUENCY CONTENT OF THE SIGNAL FROM ANGULAR 

ACCELEROMETERS ........................................................................................................................... 216 

APPENDIX I – DATA UTILIZED TO FIND EQ. 8.18 ...................................................................... 218 

APPENDIX J – AAC ANALYSIS – LOCATIONS OF LINEAR ACCELEROMETER SEISMIC 

MASS CGS RELATIVE TO THE MARKER POSITIONS .............................................................. 219 

APPENDIX K – AAC ANALYSIS – OPTIMIZATION METHODS AND RESULTS ................... 221 

APPENDIX L – AAC ANALYSIS – ANGULAR ACCELERATION PLOTS ................................. 223 

APPENDIX M – AAC ANALYSIS – RESERR IN SIMPLFIED HEAD TESTS ................................ 228 

APPENDIX N – ERROR EFFECTS – ANALYTICAL ANALYSIS ................................................. 231 

APPENDIX O – ERROR EFFECTS – REGRESSION MODELS .................................................... 232 

APPENDIX P – ERROR EFFECTS – ERROR HIERARCHY BASED ON mRESERR AND 

mDIFFMAX ................................................................................................................................................ 236 

APPENDIX Q – REDUNDANT SENSORS – CONSISTENCY CHECK – STEP 2 – NON-UNIQUE 

SOLUTION ............................................................................................................................................. 237 

APPENDIX R – SENSOR FUSION IN THOR TESTS – SENSOR UNCERTAINTIES BASED ON 

CALIBRATION SHEETS ..................................................................................................................... 238 

APPENDIX S – SOFTWARE DEVELOPED TO COMPUTE 3D TRAJECTORIES OF A RIGID 

BODY ....................................................................................................................................................... 244 

 

  



x 
 

ACKNOWLEDGMENTS 
 

First, I would like to thank my advisor Dr. Jason Kerrigan for his guidance, support, constant 

encouragement, and abundance of patience during the course of completing this dissertation. 

Jason, it has been a privilege to work with you. 

I would also like to thank my dissertation committee members: Dr. Matthew Panzer, Dr. Shawn 

Russell, Dr. Daniel Quinn, and Dr. Jason Forman. Their supportive words, challenging questions, 

and the time and effort they have offered me were always much appreciated.  

I would not have been able to accomplish this task without the help and support from my two 

Westerly brothers, Varun and Brian, and my fellow graduate students. John Paul, Brandon, Dani, 

Carolyn, Hamed, Jack, and Watson, I am very glad that I could have shared this (sometimes quite 

bumpy) journey with you. 

My utmost gratitude goes to Kevin Kopp, the instrumentation guru and a good friend. Thank 

you for sharing your extensive knowledge about sensors and instrumentation with me. 

Special thanks go also to my Polish family here in Charlottesville. Kasiu, Olu i Bronku, 

dziękuję. 

Finally, I would like to thank the members of the CAB. It has been a pleasure working with so 

many exceptional and fun people.



11 
 

1. INTRODUCTION 

1.1 Motivation 

Optical based systems are an accurate method of capturing motion (position and orientation) 

of a body traveling through a 3-dimensional (3D) space (Lessley et al. 2011, Toczyski et al. 2015). 

These types of systems are used widely to track human body movement and performance in 

biomechanics and sport studies, clinical sciences, in the entertainment industry to recreate human-

like motion for rendered graphics. 3D tracking is also utilized to analyze animal behavior, drone 

precision flying, or to assess the repeatability of tasks carried out by industrial robots. 

The biggest disadvantage of these systems is the requirement of a constant line of sight between 

the cameras and the tracked object throughout the analyzed event. In situations where motion of 

that object is obscured (examples shown in Figure 1), optical motion capture cannot provide 

accurate information about orientation and position of the tracked body. 

a)  b)  

c)  d)  

Figure 1. Exemplar obscuration of tracked objects: a) & b) the object (ATD’s head) covered by deployed airbags 

(images from NHTSA 2013 and Laird Wheaton GM 2013, respectively), c) the head obscured by a flailing arm of 

an ATD (UVA rollover research), d) non-removable object between the cameras and the tracked pattern 

(Toczyski et al. 2015). 

In addition to issues with object occlusion, the post-processing phase for the data obtained 

from optical systems is often time-consuming and highly user-dependent. The analysis is 

influenced by a wide range of parameters, including camera type, pixel size, lens and focal length, 

video resolution, etc. While the systems can be used to capture various ranges of motion, tracked 

targets requiring additional hardware to be attached to the body are often needed, which may be 

impractical. Moreover, when the user wants to track motion in a 3D space, tedious calibration is 
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usually required to define a measurement volume (of a limited size) within which body movement 

can be recorded. 

All of the issues mentioned in the previous paragraph create a challenge in studying body 

kinematics, especially in a complex environment (e.g. in a car crash). That is why there is a need 

for an alternative method of capturing rigid body’s motion, a method which will not be affected 

by whether the tracked object is visible throughout the event or not. 

An alternative to optical based tracking is an approach that utilizes the acceleration and angular 

rate data recorded by inertial measurement units (IMUs), i.e. devices (indirectly) measuring the 

inertia of a sensing element (e.g. silicon cantilever beam), attached to a body segment. These types 

of measuring packages are already available, for example, in many different body parts of 

Anthropomorphic Test Devices (ATDs) used in crash testing, which makes the method convenient 

to study occupant kinematics inside a vehicle, since no additional sensors or hardware than the 

ones already installed in an ATD, are required. Moreover, the data from the sensors are ready to 

use right after the test run is complete, which substantially decreases the time needed for the post-

processing analysis when compared to optical motion tracking. 

Even though sensor-based motion capture offers many benefits, it has also been known to be 

less accurate than its optical-based counterpart. Rudd et al. 2006 reported an error up to 59 mm in 

the trajectory obtained with IMUs with respect to a video analysis of the T1 level for an ATD in a 

pedestrian-to-vehicle collision. Filippeschi et al. 2017 stated that when an IMU-based prediction 

of upper limb kinematics was matched against motion measured by the VICON system (Vicon 

MX, Vicon, Los Angeles, CA, USA), the average position estimation error was approximately 35 

mm. In Huculak and Lankarani 2013 the highest difference between the IMU-based and reference 

(from a video analysis) trajectories (for an ATD head in a sled test) was 43 mm. 

On the other hand, though, that maximum difference from Huculak’s study was recorded at 

the end of the analyzed time period, while through most of the test the deviation between both 

trajectories was less than a few millimeters. Wu et al. 2009 reported the accuracy of their results 

satisfactory with the relative error at peak of the sensor-based ATD head displacement (again in a 

sled test) below 5% when compared to the results from a film analysis. 

Huculak and Lankarani 2013 and Wu et al. 2009 have shown that body tracking with the use 

of locally-mounted inertial sensors has a potential and can be a promising alternative to optical 

capture systems under certain conditions. Before the IMU-based position estimation can replace 

more costly and time-consuming optical motion capture, the accuracy of trajectories obtained from 

processed IMU data needs to be improved and the reasons behind errors in sensor-based 

predictions better understood, so that the method can be employed in a way to facilitate its success. 

1.2 Background 

1.2.1 Advancement in inertial sensor technology (based on Benser 2015) 

Inertial sensor development started over 150 years ago. The first sensor using the inertia of a 

body – a pendulum utilized to measure Earth’s rotation – was demonstrated by Jean Bernard Léon 

Foucault in 1851. In the early 1900s, large gyroscope-based systems were introduced in ships to 

reduce their roll motion due to the interaction with waves. In 1914, the first autopilot system for 
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aircraft was shown during the Airplane Safety Conference in Paris. The system was based on 

gyroscopes connected with the aircraft’s flight controls. Prior to World War II, gyroscope-based 

systems were integrated with bombs to improve bombing precision. 

Strain gauge accelerometers started being used in the mid-1930s in various mechanical 

applications. Those sensors were big, heavy and expensive, so their application was limited. It 

changed when piezoelectric accelerometers were introduced. They were developed in the 1940s 

and 1950s, and offered improved performance at a substantially reduced size and mass. 

In the mid-1970s, small Microelectromechanical Systems (MEMS) devices became available. 

The first MEMS sensors were silicon-based and used to measure fluid flow parameters. MEMS 

accelerometers were developed in the 1980s to accommodate the automotive industry’s need for 

triggers for the airbag deployment. During the 1990s, MEMS gyroscopes were introduced. 

The growing popularity of smartphones and tablets in the 2000s led to an increased number of 

small inertial measurement units (IMUs) being developed and sold. That drove the price of the 

sensor packages down substantially, making the inertial sensors more accessible for regular users. 

The advancement in the MEMS technology allowed for small but accurate accelerometers and 

angular rate sensors to be widely used in the automotive safety field. Anthropomorphic Test 

Devices currently utilized in crash testing are often instrumented with six degree-of-freedom 

(6DOF) sensor packages, which consist of very light and precise linear accelerometers, angular 

rate sensors, and angular accelerometers. 

1.2.2 Position calculation in real-life scenarios 

Inertial sensors have been widely used in navigation systems to provide information about the 

object’s attitude (cf. Savage 1998). Over the years, the research in this field was driven mostly by 

military applications (aircraft, ballistic missile system, etc.) and it was focused on developing 

sensors that were more precise (cf. Benser 2015) and methods of updating body position and 

orientation that were more computationally efficient and sound (Bortz 1971). As time passed, 

knowledge acquired and developed technologies were adapted to commercial applications (e.g. to 

track passenger airplanes and ships) and in research related to mobile robots (Barshan et al. 1995, 

Chen et al. 2012, Qazizada et al. 2016). 

Currently, with the growing popularity of wearable devices, smartphones, tablets, etc., more 

and more tech companies are focusing on using IMUs to monitor human performance and motion: 

XSens (Xsens Technologies B.V., Enschede, The Netherlands), NANSENSE (NANSENSE Inc., 

Los Angeles, CA, USA), Shadow (Motion Workshop, Seattle, WA, USA), Invensense 

(Invensense, San Jose, CA, USA). All of those systems use data from inertial sensors to obtain 

human body kinematics. The sensors are light and relatively inexpensive which make them more 

attractive for the researchers investigating human gait (Favre et al. 2009, Mariani et al. 2010, Yang 

et al. 2012, Rebula et al. 2013, Mannini et al. 2014, Trojaniello et al. 2015, Zhuang et al. 2016). 

Filippeschi in his 2017 review paper mentioned over 50 studies published within last 10 years in 

which data from IMUs were utilized to capture upper limb motion. 
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1.2.3 Principles of 3D trajectory calculation based on sensor data 

In a crash-like scenario, to determine the trajectory of a rigid body relative to a fixed reference 

frame, data from locally mounted accelerometers and angular rate sensors can be used. As outlined 

in Huculak and Lankarani 2013, and Kerrigan et al. 2013, four steps are required in that process: 

 Step 1: Before transforming the acceleration data asensors(t) from the sensor package to a 

common body-fixed coordinate system origin, the sensor accelerations need to be corrected 

for the effect of gravity g = [0 0 -9.80665]T; 

 Step 2: Translation of measured (and corrected for gravity) acceleration asensors,corr(t) from 

the sensor locations to a common body-fixed coordinate system origin to obtain the time 

history of the acceleration vector aorigin(t) at that point; 

 Step 3: Determination of the coordinate transformation R(t) relating, in time, the 

orientation of the rigid body to the global reference frame; 

 Step 4: Transformation of the measured body-fixed accelerations (aorigin(t) from Step 2) to 

the global reference frame (using R(t) from Step 3), introduction of gravity g again, and 

double integration to determine the time histories of the body position 𝒑𝒐𝒔(𝒕) (Eq. 1.1): 

 𝒑𝒐𝒔(𝒕) = ∬ [𝑹(𝝉) ∗ 𝒂𝑜𝑟𝑖𝑔𝑖𝑛(𝝉) + 𝒈]
𝑡

0
𝒅𝝉𝒅𝝉 (1.1) 

Step 1: Before transforming the data from locally mounted linear accelerometers to a common 

local coordinate system, accounting for the influence of gravity on each accelerometer reading is 

required. The gravity correction is accomplished by initially removing the influence of gravity 

from the sensor data (Eq. 1.2): 

 𝒂𝑠𝑒𝑛𝑠𝑜𝑟𝑠,𝑐𝑜𝑟𝑟(𝒕) = 𝒂𝑠𝑒𝑛𝑠𝑜𝑟𝑠(𝒕) − 𝑹𝒊𝒏𝒊
𝑻 𝒈 (1.2) 

where Rini is initial orientation of the rigid body in the global reference frame. 

Step 2: Purely translational accelerations of a body can be determined using the equation for 

the acceleration of a point p, ap, on a rigid body (Eq. 1.3): 

 𝒂𝑝 = 𝒂𝑜𝑟𝑖𝑔𝑖𝑛 + 𝛚 × 𝛚 × 𝝆𝑜𝑝 +  𝛂 × 𝝆𝑜𝑝 (1.3) 

where 

 aorigin is a local coordinate system vector describing the translational acceleration of the 

body in the body-fixed (local) reference frame, 

 ap is the acceleration (vector) measured at p, 

 ρop is the position vector of point p in the body coordinate system, and 

 ω and α are the local coordinate system vectors describing the body’s angular velocity and 

angular acceleration. 

Eq. 1.3 shows that accelerations measured by accelerometers at various locations on a rigid 

body can be used to determine the accelerations of a local coordinate system fixed to that body by 

translating the sensor measurements to a single point (i.e., tracked point, the origin of the body-

fixed system). This is pertinent in the case of any rigid body, since, in general, three directional 

(component) accelerations are desired to characterize the body’s acceleration, and three 

accelerometers cannot be located in exactly the same location. 
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If point p is the accelerometer seismic mass, through simple algebraic manipulations on Eq. 

1.3, the local accelerations of the origin of the body-fixed frame (i.e., tracked point o) can be found 

from Eq. 1.4: 

 𝑎𝑜𝑟𝑖𝑔𝑖𝑛,𝑖(𝑡) = 𝑎𝑖−𝑡ℎ 𝑠𝑒𝑛𝑠𝑜𝑟,𝑐𝑜𝑟𝑟(𝑡) − 𝝎(𝒕) × 𝝎(𝒕) × 𝝆𝑖−𝑡ℎ 𝑠𝑒𝑛𝑠𝑜𝑟 𝑡𝑜 𝑝𝑜𝑖𝑛𝑡 𝑜 − 𝜶(𝒕) ×

𝝆𝑖−𝑡ℎ 𝑠𝑒𝑛𝑠𝑜𝑟 𝑡𝑜 𝑝𝑜𝑖𝑛𝑡 𝑜  (1.4) 

where 

 aorigin,i is the i-th component of the translational acceleration in the body-fixed (local) 

reference frame, 

 ai-th sensor,corr is the acceleration measured by an i-th linear accelerometer after gravity 

correction, 

 ρi-th sensor to point o is the position vector of the i-th accelerometer in the body coordinate 

system, 

 ω and α are the local coordinate system vectors describing the body’s angular velocity and 

angular acceleration, and 

 i = X, Y, Z. 

To determine the three perpendicular component accelerations of a body, in addition to the 

accelerations measured by three mutually perpendicular accelerometers, the following three pieces 

of information are needed: 

 the vector locations (ρ) of each of the three linear accelerometers expressed in the body-

fixed coordinate system; 

 the local coordinate system angular velocity vector (ω) of the body, and 

 the local coordinate system angular acceleration vector (α) of the body in cases when the 

accelerometer sensor block’s measurement center (Figure 2) is not coincident with the 

body-fixed coordinate system origin (i.e. tracked point). 

 

Figure 2. Schematic drawing showing the measurement center for three accelerometers of the same type. 



16 
 

In the case of the head or another ATD body region, item 1 can be determined from the 

drawings of the dummy showing the locations of the individual accelerometers, or measured with 

a coordinate measurement machine (CMM). Similarly, for an instrumented crash test vehicle, the 

locations and orientations of the sensors relative to the desired origin of the body-fixed (vehicle) 

frame can be found using a CMM. 

In most ATDs, the stock sensor block attached to a body part includes a set of angular rate 

sensors that are oriented to measure the local coordinate system components of the angular 

velocity. Then, item 2 is captured directly by the installed instrumentation. Similarly, mutually 

perpendicular angular rate sensors can be used to measure the angular velocity of a crash test 

vehicle. 

If the local body angular acceleration is needed in the calculation process, it can be either 

measured directly using three mutually perpendicular angular accelerometers or indirectly by post-

processing the angular rates or linear acceleration measured by installed IMUs. 

Step 3: Initial orientation of a rigid body in the global reference frame, Rini, and the body’s 

angular velocity ω(t) in the local coordinate system can be measured or determined using current 

measurement technologies. Using both, ω(t) and Rini the time-history of the local-to-global rotation 

matrix R(t), which, in time, relates the orientation of the body’s local coordinate system to the 

global frame, can be obtained. 

R is a square matrix composed of an orthogonal set of three unit vectors, each vector describing 

the orientation of an axis of the local frame in the global coordinate system. R relates any vector’s 

representation in the local coordinates, rl, to its representation in the global frame, rg, through  

Eq. 1.5: 

 𝒓𝒈 = 𝑹 𝒓𝑙 (1.5) 

By differentiating Eq. 1.5 and then algebraic manipulation, one can show (cf. DiMasi 1995, cf. 

Hamano 2013) that R is related to the angular velocity skew-symmetric matrix [𝝎 ×] by Eq. 1.6: 

 [𝝎 ×] ≡ [

0 −𝜔𝑧 𝜔𝑦

𝜔𝑧 0 −𝜔𝑥

−𝜔𝑦 𝜔𝑥 0
] = 𝑹−𝟏�̇� (1.6) 

 and thus: �̇� = 𝑹[𝝎 ×] (1.7) 

where �̇� is the rate of change of the matrix R, and ωx, ωy, and ωz are the local coordinate system 

components of the ω vector. 

By solving Eq. 1.7, the time history of the tracked body orientation (local-to-global 

transformation matrix R(t)) can be found. 

Step 4: In the final step, the time history of the local body-fixed accelerations (aorigin,i(t) from 

Eq. 1.4) are transformed to the global coordinate system using the time history of the 

transformation matrix R(t). Next, the gravity is introduced back into calculations. Lastly, the global 

accelerations are numerically integrated to determine the component velocities, and integrated 

again to determine the body displacements (trajectory) in the global reference frame. 

Once global displacements for each body in question (e.g. ATD and vehicle) are determined, 

they can be subtracted to determine their relative motion. 
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1.2.4 No consensus on methods used in sensor-based position and orientation estimation  

As it was shown in Section 1.2.3, multiple steps are required to obtain the trajectory of a tracked 

body from inertial measurements. In some of these steps various methods can be utilized to find 

the wanted quantity. For example, there are at least five different published methods of 

determining body’s local angular acceleration needed in Eq. 1.4 to transform sensor-based linear 

acceleration to a common point (Padgaonkar et al. 1975, Kang et al. 2011, Carvalho et al. 2013, 

Kang et al. 2017). There are at least seven different methods of updating the rotation matrix R 

based on Eq. 1.7 (Bortz 1971, DiMasi 1995, Beard and Schlick 2003, Rudd et al. 2006, Kang et 

al. 2011, Kerrigan et al. 2011, Huculak and Lankarani 2013). In addition, researchers have used 

multiple different filters on the body’s local angular rate utilized in both, Eq. 1.4 and Eq. 1.7. All 

of these leads to multiple ways of performing the same task. Unfortunately, within the research 

community, there is no consensus on how these different methods affect the resulting sensor-based 

position estimation and which of these methods and filters should be used when trajectories are 

computed based on data from IMUs. To the knowledge of the author, no comprehensive study has 

been performed to address these questions and such a comparison could provide guidance in 

identifying a particular approach for a particular application. 

1.2.5 Errors in sensor-based tracking 

3D component trajectories calculated using inertial measurements can be affected by different 

types of signal errors or uncertainties associated with initial conditions of the tracked body (cf. 

Schoenebeck et al. 2009, Wu et al. 2009, Sinz et al. 2015). 

Schoenebeck et al. 2009, based on his preliminary analysis (not included in the paper), stated 

that small errors in initial orientation as well as incorrect values for initial velocity can lead to 

substantial errors in IMU-based trajectories for an ATD head in a frontal crash. Wu et al. 2009 

showed that by changing initial orientation of a vehicle in rollover by 5 degrees, the sensor-based 

trajectory of that car can differ from the reference (i.e. without the “5-degree change”) response 

by approximately 800 mm. Sinz et al. 2015 performed a sensitivity study investigating the effect 

of errors in initial conditions (orientation and velocity of the tracked body) and debias and scaling 

errors in the IMU readings on the resulting sensor-based position estimation. Sinz concluded that 

the position prediction obtained from inertial measurements is highly sensitive to the error in initial 

angles of the tracked body, the acceleration offsets for all three local body directions, and the scale 

factors for recorded signals from linear accelerometers and angular rate sensors attached to that 

body. 

The three discussed studies focused on a limited number of error types. In addition, they did 

not investigate the interactions between these errors. To the author’s knowledge, no 

comprehensive study has been performed to quantify the effect of multiple error types, different 

from the ones mentioned in the previous paragraph, on the trajectory calculated with the use of 

IMUs. By performing such an analysis, better understanding of error effects and their interactions 

would be gained. In the result, such an investigation could guide improvements in the design of 

new inertial sensors and new measurement devices utilized, for example, to determine initial 
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conditions of a body one wants to track, and thus, could, in the end, improve the overall accuracy 

of IMU-based position and orientation estimations. 

1.2.6 Summary 

 Two main methods of capturing object motion: 

o Through optical systems 

o Through data measured by inertial sensors (IMUs) 

 Optical systems deliver high accuracy but suffer from many issues: 

o Expensive (costs related to equipment and software) 

o Data processing time-consuming 

o Requiring constant line of sight between cameras and tracked objects 

o Limited calibrated volume 

o Highly user-dependent 

 Rapid advancement in MEMS technology allowed for development of small, light, 

accurate, and inexpensive sensors 

 IMU position and orientation computation based on motion equations of a rigid body 

 IMU based tracking presents a promising alternative to optical systems and is widely used 

by researchers in the fields of mobile robots, wearable devices, human motion and 

performance (gait analysis) 

 No consensus on methods used in sensor-based motion tracking 

o Multiple ways of solving the same task 

o No general agreement on how these different methods affect the resulting sensor-based 

position estimation and which of these methods should be used when trajectories are 

computed based on data from IMUs 

 3D component trajectories obtained using IMUs affected by sensor characteristics (e.g. 

noise level), sensor errors (e.g. error in sensitivity), and test measurement inaccuracies (e.g. 

error in the measurement of initial orientation) 

 Average position error for IMU based estimation of upper limb motion was on the level of 

35 mm (Filippeschi et al. 2017). IMU based position error reported in crash testing up to 

59 mm (Rudd et al. 2006) 

 To obtain accurate IMU based tracking in a crash more research, taking into account 

propagation of sensor-related errors in time, is required  
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2. GOAL AND AIMS 

The goal of this dissertation is to develop an algorithm that can be used to compute 3D 

component trajectories of a rigid body – based on locally-mounted inertial sensors – for 

applications in vehicle crash tests with anthropomorphic test devices (ATD). These inertial sensors 

are composed of linear accelerometers (ACC), angular rate sensors (ARS), and occasionally 

angular accelerometers (AAC). In addition to the algorithm, this dissertation identifies different 

correction techniques that could be used to minimize the error in the calculated trajectory when 

sensor readings contain an error. 

These goals will be accomplished through the following specific aims: 

1. To determine the specific methodological steps for computing 3D component trajectories of a 

rigid body in a crash test with the goal of minimization of the error in the calculated trajectory. 

This objective consisted of two parts: 

1.1 identification of a robust and efficient method of updating body orientation based on body’s 

angular rate; 

1.2 identification of a sensor package that can be used to predict those trajectories minimizing 

the error in position and orientation at the same time. 

2. To evaluate the effect of sensor characteristics (e.g. noise level), sensor errors (e.g. error in 

sensitivity), and test measurement inaccuracies (e.g. error in the measurement of initial 

orientation) on the calculated trajectory to define a set of instructions allowing the user to 

account for those errors to obtain accurate body kinematics. 

3. To identify a method of obtaining body’s angular acceleration that minimizes the error in the 

calculated trajectory, and to evaluate the effect of filtering of the input data (used in obtaining 

AAC) in the non-ideal case, i.e. when the local angular acceleration of a rigid body needs to 

be included in the trajectory calculation.  
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3. RESEARCH PLAN 

The research plan was divided into five tasks (Figure 3). The first task, spanning Chapter 4 to 

Chapter 7, was focused on assembling the training set for verification and validation of the 

proposed algorithm using data from progressively more complex impact scenarios. The set was 

then used to investigate: 

 different methods identified in the literature to determine which is the most accurate 

technique of updating the body orientation based on the body’s angular rate (Task 2; 

Chapter 8); 

 different methods to determine which is the most accurate approach of obtaining local 

angular acceleration often needed in the trajectory calculation process (Task 3; Chapter 9); 

 which sensor and measurement errors have the greatest effects on the trajectory calculation 

(Task 4; Chapter 10), what are the interactions between those errors (also Chapter 10), and 

if it is possible to reduce the error in the calculated trajectory by adding redundant sensors 

to the stock sensor package (Chapter 11). 

In the fifth task (spanning from Chapter 12 to Chapter 15), the knowledge gained from Task 2 

to Task 4 was used to identify the specific methodological steps for computing 3D component 

trajectories in vehicle crash tests, steps that minimize the error in the calculated trajectory. As part 

of Task 5, the Kalman filter technique (Kalman 1960; Chapter 12), optimization of initial body 

conditions to increase the accuracy of trajectory calculations (Chapter 13), the introduction of 

known data points from an optical system as an error correction (Chapter 14), and different 

methods of providing kinematics data over a missing part of optical data (Chapter 15) were 

investigated. 

 
Figure 3. Flow chart for the research effort. 
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It is worth reminding the reader, that IMU tracking can be utilized to obtain the relative motion 

between two analyzed bodies (for example, the ATD’s head and the vehicle). If, during the impact, 

the vehicle structure deforms at the sensor mounting location, though, this local deformation will 

affect the calculated orientation and position of the car, and, subsequently, the occupant’s relative 

trajectory. To address that issue, in Chapter 16, a brief discussion about the effect of vehicle 

deformations at sensor mounting locations on the calculated position of the ATD’s head in 

reference to the vehicle local coordinate system was presented. 

Concluding remarks summarizing the research effort performed in this dissertation were 

provided in Chapter 17. 
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4. ASSEMBLE TRAINING SET 

4.1 Training set description 

A comprehensive training set of progressively more complex impact conditions was used 

throughout the dissertation research. The proposed set included complete 6 degree-of-freedom 

(DOF) kinematic time histories for different rigid bodies (with the focus on the head), which were 

obtained from computer models (to verify the proposed algorithm of trajectory calculation) as well 

as from sled and crash testing (to assess the algorithm accuracy in real case scenarios). Impacts 

were chosen from loading conditions that result in the load magnitude and duration seen in real 

crashes. 

Over the course of this dissertation 50 tests were performed. This set consists of impact 

kinematics taken from: 

 computer models of rigid bodies connected with kinematic joints, 

 a box-like structure (called Simplified Head) connected with the neck of the THOR 

Anthropomorphic Test Device (THOR ATD; NHTSA 2018) and mounted on a sled 

system, 

 the THOR ATD utilized in various test conditions. 

To investigate: a) how the calculated trajectory varies in relation to the location of the sensor 

package mounted on the vehicle, and b) the effect of different types of errors on the predicted ATD 

motion, occupant and vehicle data from two frontal oblique offset tests (Test v10119 and Test 

v10133, NHTSA 2017a & NHTSA 2017b, respectively) were collected. The two tests are briefly 

described in Section 4.2 NHTSA crash tests – brief overview. 

A detailed list of the test conditions used in this dissertation is provided below in Table 1. 

Table 1. Summary of tests that have been performed for this dissertation. 

Test category 

(sample size) 

Test condition 

(sample size) 
Test details 

Computer 

simulation 

 (2)  

 

Multi-body simulation 

(2) 

4 rigid bodies connected with kinematic joints and 

simulated in LS-Dyna software (2) 

* Trajectory from the simulation available for 

comparison 

* Two different sampling rates investigated 

Sled tests 

(48) 

Simplified Head (40) 

Simplified Head positioned at 0 degree relative to sled 

travel direction (10) 

Simplified Head positioned at 45 degree relative to sled 

travel direction (30) 

* Multiple sensor types utilized in all tests 

* VICON trajectory data available for comparison 

THOR Mod-kit (8) All tests run with UVa Gold Standard 3 (GS3) buck; 
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Without head impact (5) 

With head impact (3) 

* Multiple sensor types utilized in all but one tests 

* VICON trajectory data available for comparison 

Crash tests 

(2) 

NHTSA Oblique RMDB 

with THOR ATD 

(near side; n = 2) 

90 km/h barrier into stationary vehicle at 15 degree 

oblique offset with 35% overlap; 

Test v10119: pickup truck (1) 

Test v10133: small sedan (1) 

* No reference trajectory data available for comparison 

 

4.2 NHTSA crash tests – brief overview 

The sensor data from two frontal oblique offset tests performed for the National Highway 

Safety Administration were collected and used in this dissertation. In both tests, a moving barrier 

was driven into the front-left side of the vehicle at approx. 90 km/h. In Tests v10119 (NHTSA 

2017a) a pickup truck was utilized. In Test v10133 (NHTSA 2017b) a small sedan was used. In 

both vehicles, the THOR ATD was positioned in the driver’s seat. The impact with the barrier 

caused ATD-to-vehicle relative motion. 

The THOR ATD’s head was instrumented with three linear accelerometers (Endevco 7264C, 

Meggitt Sensing Systems, CA, USA) and three angular rate sensors (DTS ARS Pro, Diversified 

Technical Systems, Seal Beach, CA, USA). In addition, in Test v10119, four identical 6 degree‐

of‐freedom sensor packages (DTS 6DX Pro, Diversified Technical Systems, Seal Beach, CA, USA) 

were mounted inside the car to obtain the head motion relative to each of the four vehicle reference 

points. Prior to testing, the initial orientation of the THOR’s head (both tests) and the mounting 

plates for the vehicle sensor cubes (only Test v10119) – in the global frame – were determined 

with a Coordinate Measuring Machine (CMM). 

The sensor data were recorded at the sampling rate of 10 kHz (Test v10119) or 20 kHz (Test 

v10133). The local coordinate systems of the head and of the vehicle were defined as outlined in 

the SAE J211 document (SAE 1995). 
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5. ALGORITHM VERIFICATION THROUGH COMPUTER 

SIMULATIONS 

5.1 Introduction 

The goal of Chapter 5 was to verify if the algorithm described in Section 1.2.3, i.e. the 

algorithm used throughout this dissertation, was coded correctly. The verification was performed 

using kinematics data obtained from a simple computer model. It was assumed that those 

kinematics data utilized as the input to the algorithm were ideal and did not contain any errors. 

The chapter is organized as follows. Section 5.2 focuses on the methods used in the algorithm 

verification analysis. The results of the study for two different data sampling frequencies are 

presented in Section 5.3. Concluding remarks are provided in Section 5.4. 

5.2 Methods 

5.2.1 Model description 

A multi-body model (Figure 4) was simulated in a commercial Finite Element (FE) package 

(LS-Dyna 8.1.0, LSTC, Livermore, CA). The model contained four “main” bodies (termed “Body1 

– Head”, “Body2 – Torso”, “Body3 – Abdomen”, and “Body4 – Pelvis”) and three additional 

bodies (“Body5”, “Body6” and “Body7”) in-between the “main” bodies. The parts were modeled 

with 5 mm thick shell elements and were assumed rigid. 

 

Figure 4. Model overview. 

The model was given initial velocity of 10 m/sec in both, global y- and global z-direction. The 

scenario was designed in a way that at some point during the simulation the “Head” interacted 

with an undeformable and rigidly fixed barrier (Figure 4). That contact disturbed the initial 

orientation of all connected bodies, causing relative translations and rotations of the parts. 

For each of the “main” bodies a local coordinate system was defined according to the sign 

convention specified in the SAE J211 document (Society of Automotive Engineers (SAE) J211, 

Body1 - Head 

Body2 - Torso 

Body3 - Abdomen 

Body4 - Pelvis 

Barrier Body5 

Body7 

Body6 
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1995; Figure 5). The origin of the local coordinate frame was coincident with the body center of 

gravity (CG). 

   

Figure 5. SAE J211 sign convention (left), local coordinate systems defined for the simple model (right). 

5.2.2 Inertial properties 

Inertial properties were assigned to each body accordingly. The masses and the inertia tensor 

components used are presented below in Table 2. 

Table 2. Inertial properties of the model parts. 

      

Part name  Mass [kg] 
Inertia [kg·m2] 

Ixx Ixy Ixz Iyy Iyz Izz 

Body1/“Head” 5.0 0.0435 0.05 0.0579 0 0 0 

Body2/“Torso” 15.0 0.582 0.748 0.47 0 0 0 

Body3/“Abdomen” 8.0 0.182 0.169 0.129 0 0 0 

Body4/“Pelvis” 20.0 0.0621 0.0558 0.0441 0 0 0 

Body5 1.0 0.00144 0.00345 0.00345 0 0 0 

Body6 1.0 0.00144 0.00345 0.00345 0 0 0 

Body7 1.0 0.00144 0.00345 0.00345 0 0 0 

5.2.3 Kinematic joint characteristics 

All model parts were connected by spherical joints with defined rotational stiffness (Figure 6). 

The initial orientation of all of the joint local coordinate systems was the same as the initial 

orientation of the head coordinate system (Figure 5). 

Head 
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Figure 6. Rotational stiffness characteristics for local X, Y, Z axes. 

5.2.4 Contact definition 

In the simulation contact between “Head” and “Barrier” was defined. The two material 

properties needed for the FE software to calculate contact stiffness – and provided in the material 

card for the “Head” part – were as follows: Young’s modulus: 2 GPa, Poisson’s ratio: 0.29. 

No other interactions between parts than the one between “Head” and “Barrier” were modeled. 

In all of the simulations carried out friction was added to the contact definition with the static 

coefficient of friction set to 0.8. 

5.2.5 Outputs 

In the simulations, linear accelerations and angular velocities were measured in the local body-

fixed coordinate frames on two articulated masses (“Torso” and “Pelvis”) and used later as an 

input to compute 3D component trajectories of those parts (in the global frame and relative to each 

other). 

For both tracked bodies, for validation purposes, the following outputs were also defined: 

 Position and orientation of each body in the global coordinate frame, 

 Relative position of the “Pelvis” body relative to the “Torso” body. 

In addition, nine different locations for numerical accelerometers were selected to be able to 

use the Nine Accelerometer Package (NAP) approach (Padgaonkar et al. 1975) to calculate local 

angular accelerations. These numerical accelerometers were rigidly attached to the corresponding 

parts in a way that the point for which the 3D trajectory was later calculated, was coincident with 

the CG of that part (package for “Torso” shown in Figure 7). 
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Figure 7. NAP configuration. 

The coordinates of all of the NAP accelerometers, in the body-fixed local coordinate frame, 

same for both tracked parts, were gathered in Table 3. 

Table 3. Coordinates of NAP accelerometers in local body frame. 

Accelerometer X (m) Y (m) Z (m) 

X Acc 0.007 0 0 

Y Acc 0 0.007 0 

Z Acc 0 0 -0.0066 

XY Acc -0.0508 0.007 0 

XZ Acc -0.0508 0 -0.0066 

YX Acc 0.007 -0.0482 0 

YZ Acc 0 -0.0482 -0.0066 

ZX Acc 0.007 0 -0.0685 

ZY Acc 0 0.007 -0.0685 

5.2.6 Simulation setup – brief overview 

Two computer simulations were run up to 300 msec. The difference between the simulations 

was the sampling rate of the results: 10 kHz (Simulation 1) and 100 kHz (Simulation 2). Local 

linear accelerations and angular rates of two bodies (“Torso” and “Pelvis” in Figure 4) outputted 

 

ZY Acc ZX Acc 

XZ Acc 

XY Acc 

YZ Acc 

YX Acc 

Z Acc 

Y Acc X Acc 
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from the FE software were used as an input to the 3D trajectory calculation algorithm. Next, 

computed global positions (measured at the body’s CG), “Pelvis” relative position to “Torso”, as 

well as body local angular accelerations (obtained using the NAP approach; Padgaonkar et al. 

1975) were compared with the equivalent outputs from FE. In addition, for all three discussed 

quantities, the time histories of the absolute difference (error) between values calculated and as 

recorded by the FE software were determined and presented. 

In both following sections, for “Pelvis” and “Torso”, the method described in Rudd et al. 2006 

was utilized to update the body’s rotation matrix R. 

5.3 Results 

In this subsection, the results from the algorithm verification analysis are presented: first, based 

on Simulation 1 (sampling rate of 10 kHz; Section 5.3.1), and next, based on Simulation 2 

(sampling rate of 100 kHz; Section 5.3.2). In Section 5.3.3, a brief discussion explaining the 

differences in position calculation accuracy between both performed computer simulations is 

provided. 

5.3.1 Simulation 1 (results sampled at 10 kHz) 

5.3.1.1 Angular Acceleration (in body’s local coordinate system) 

In general, the calculated local angular acceleration (AAC), for “Torso” (Figure 8) as well as 

for “Pelvis” (Figure 9), was in a good agreement with AAC outputted from the FE software. The 

maximum absolute difference for both tracked bodies and for the three AAC components stayed 

below 0.1 rad/sec2 throughout the whole event. That shows that the NAP method, which was 

implemented as a subroutine in the 3D trajectory calculation algorithm, was coded correctly. 

 

Figure 8. Angular acceleration components for the “Torso” body calculated from NAP. 
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Figure 9. Angular acceleration components for the “Pelvis” body calculated from NAP. 

5.3.1.2 Global position 

For both tracked masses, the maximum absolute error seen for the Y and Z position 

components was substantially smaller than the maximum error found for the X-axis position 

(Figure 10 and Figure 11). For the two bodies, the maximum absolute difference between the LS-

Dyna results and the calculated Y and Z positions was less than 1.5 mm. The maximum trajectory 

error in the X direction reached over 22 millimeters for “Torso” (Figure 10) and approx. 25 mm 

for “Pelvis” (Figure 11). 

 

Figure 10. 3D global trajectory for the “Torso” body. 
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Figure 11. 3D global trajectory for the “Pelvis” body. 

5.3.1.3 Relative position 

As a result of the errors in the calculated global trajectories, the relative position between 

“Pelvis” and “Torso”, computed with the algorithm, did not match well the relative position 

obtained from the FE software (Figure 12). In the X (local) direction the maximum absolute error 

(deviation from the FE results) was approx. 35 mm, in the Y direction, approx. 31 mm, and in Z, 

approx. 17 mm. 

 

Figure 12. 3D trajectory of “Pelvis” in the local coordinate frame of “Torso”. 
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5.3.2 Simulation 2 (results sampled at 100 kHz) 

5.3.2.1 Angular Acceleration (in body’s local coordinate system) 

As it was done for the “10 kHz” case also this time for both tracked bodies angular 

accelerations in the body-fixed coordinate frame were calculated and then compared to the results 

obtained from the FE software. Again, the computed AAC components were in a good agreement 

with the angular acceleration recorded by the FE package (Figure 13 and Figure 14). It is worth 

mentioning here that the increase in the sampling rate did not influence the accuracy of the NAP 

calculations. The maximum absolute error seen across the three AAC components for both tracked 

masses stayed at the level of 0.1 rad/s2 (the same as in the “10 kHz” case). 

 

Figure 13. Angular acceleration components for the “Torso” body calculated from NAP. 

 

Figure 14. Angular acceleration components for the “Pelvis” body calculated from NAP. 
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5.3.2.2 Global position 

Changing the sampling rate from “10 kHz” to “100 kHz” decreased the error in the calculated 

global trajectories substantially, especially in the X direction. For “Torso” the maximum absolute 

error in X decreased by 99%, from approx. 22 mm to 0.2 mm (Figure 15), and for “Pelvis” by 

99.6%, from approx. 25 mm to less than 0.1 mm (Figure 16). For both bodies, the error in the Y 

and Z trajectory components stayed below 0.1 mm throughout the entire simulation. 

 

Figure 15. 3D global trajectory for the “Torso” body. 

 

Figure 16. 3D global trajectory for the “Pelvis” body. 
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5.3.2.3 Relative position 

Due to the decrease in the global trajectory error seen for both tracked bodies, the accuracy of 

the relative motion prediction between “Pelvis” and “Torso” (as obtained from the 3D trajectory 

calculation algorithm) improved substantially. The maximum absolute error between the 

computed and the “from FE” responses was at the level of 0.1 mm for all three trajectory 

components (Figure 17). That showed that the discussed algorithm of obtaining body’s motion 

was able to calculate the global and relative positions of two articulated masses accurately when 

given ideal sensor data as an input. 

 

Figure 17. 3D trajectory of “Pelvis” in the local coordinate frame of “Torso”. 

5.3.3 Global position – discussion 

To obtain 3D component trajectories of a rigid body in the global coordinate frame the global 

acceleration of that body needs to be integrated twice in time. The accuracy of the numerical 

integration is related to the time step used in the integration procedure. The smaller the time step, 

the better the accuracy. With the time step being too large numerical errors can accumulate, grow 

as time increases, and cause a difference between the expected and calculated values. This error 

can be amplified if the numerical integration is carried out more than once. 

When the “10 kHz” sampling rate was used, a substantial error was introduced into the 

trajectory calculations for both tracked bodies, especially in the global X direction (Figure 10 and 

Figure 11). During the integration of the global X acceleration a constant error of approx. 0.08 m/s 

for “Torso” (Figure 18a), and of approx. 0.087 m/s for “Pelvis” (Figure 18b) was introduced in the 

body global X velocity. This error was carried through the second integration and caused the global 

X position to be substantially different from the expected (LS-Dyna) value. The error in the global 
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X-velocity was approx. 100 times smaller when the results sampled at 100 kHz were used as an 

input to the trajectory calculation algorithm (Figure 19). 

a) b)  

Figure 18. Global X-velocity sampled at 10 kHz: a) “Torso”, b) “Pelvis”. 

a) b)  

Figure 19. Global X-velocity sampled at 100 kHz: a) “Torso”, b) “Pelvis”. 

5.4 Conclusions 

The aim of the current study was to evaluate the ability of the algorithm described in Section 

1.2.3 to calculate accurate trajectories based on 6DOF kinematics data obtained from computer 

models (to verify the proposed algorithm of trajectory calculation). The following can be 

concluded from the results of the study: 

 In general, there are numerical artifacts that are present in local kinematics data calculated 

using LS-Dyna that affect the magnitude of predicted kinematics calculation errors. The 

artifacts result from numerical effects of integration time steps and other non-physical 

properties of the models, including the relative stiffness of adjacent structures in the model 

and the defined contacts. These artifacts, and their effects, will not be present in test data 

captured by sensors, and, as a result, the error magnitudes calculated in the “Computer 

simulations” study are not indicative of the error magnitudes that are expected when similar 

analyses are performed with experimental test data. 

 There was a substantial difference in error calculations between kinematics data captured 

at 10 kHz (Simulation 1) vs. data captured at 100 kHz (Simulation 2). In fact, by increasing 

the sampling rate by a factor of 10, a 10 fold reduction in error was realized. This is because 

much of the error was related to an integration error, which could have a real effect on 

actual sensor data.   
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o Since there is a tradeoff between magnitude of acceleration and jerk and the sampling 

rate, it was not clear that 10 kHz or 100 kHz sampling used in the simulations was a 

real representation of what the algorithms would produce when applied to experimental 

data from sled testing. 

 Despite the numerical issues, overall, it can be concluded that all parts of the algorithm 

used to calculate 3D component trajectories based on data from locally-mounted inertial 

sensors were coded correctly. 
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6. SIMPLIFIED HEAD TESTING 

6.1 Introduction 

After the algorithm verification analysis was completed (Chapter 5), to assess the algorithm 

accuracy in real case scenarios (using inertial data from real sensors), forty sled tests were 

performed with the Simplified Head assembly (Figure 20). Upon preparation of the head for 

testing, the structure was attached to a sled base (Seattle Safety, Auburn, WA), and then a test was 

performed. After testing, damages to the Simplified Head were assessed and the test data were 

processed and analyzed. If any damage or failure to the head or instrumentation was found, it was 

fixed first and then the next sled test was performed. This procedure was repeated until the test 

series was completed. 

  

Figure 20. Simplified Head assembly used during testing. 

The chapter is organized as follows. Section 6.2 focuses on the methods used during testing 

and later in the position calculation analysis. The results of the study (calculated orientation and 

position) are presented in Section 6.3. Concluding remarks summarizing the effort are provided in 

Section 6.4. 

6.2 Methods 

6.2.1 Test matrix 

APPENDIX A shows the complete matrix of all forty Simplified Head tests carried out within 

the dissertation. The details about the items listed in APPENDIX A Table A1 and about testing in 

general are described in the following sections. 

6.2.2 Sled input 

The acceleration time history used for the sled system as the input was determined based on a 

frontal oblique offset test of a minivan (Test v09127, NHTSA 2013). In the test, a moving barrier 
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was driven into the vehicle at 90.1 km/h. The THOR ATD was positioned inside the car, in the 

driver’s seat. The dummy was instrumented with an accelerometer package on the T1 level. T1 

local X acceleration recorded during that test was filtered with the use of the Channel Frequency 

Class (CFC) 60 filter, scaled down (due to safety concerns) and used as the input for the sled at 

the University of Virginia Center for Applied Biomechanics. 

Six time-histories with the same shape but different magnitude were utilized (Figure 21). Five 

of them (with peaks ranging from 4.9g to 29.3g) were used only once, in five consecutive tests. 

The time history with its peak at 27g was used for all of the remaining tests. 

 

Figure 21. Acceleration time histories used during Simplified Head testing. 

6.2.3 Coordinate Systems 

Two coordinate systems were used to process and present the data from the tests. The local 

coordinate system for the Simplified Head, which remained fixed to the assembly during testing, 

was defined using standardized conventions (SAE J211, 1995; Figure 22). The positive X axis 

pointed from the rear to the front of the head. The positive Y axis pointed from the head left hand 

side to the head right hand side. The positive Z axis pointed from the top to the bottom of the 

assembly. 

 

Figure 22. Simplified Head (local) coordinate system was chosen to match the SAE standard (J211) coordinate 

system for the head. 



38 
 

The global or inertial reference frame (IRF) was defined using the initial orientation of the 

VICON markers attached to the base of the stand the head-neck assembly was mounted on (Figure 

23). The Y axis was aligned with the direction of the sled travel. The sled traveled in the positive 

Y direction. The Z axis was oriented normal to the sled base top surface, with positive pointing 

upward. The positive X-axis was mutually perpendicular to the Y and Z axes, with positive 

direction shown in Figure 23. The origin of the IRF was coincident with the center of the “2S” 

marker in its initial – before the start of a test – position. 

 

Figure 23. Inertial (global) coordinate frame defined with the use of VICON markers. 

6.2.4 Test conditions – head orientation 

In all performed tests, the head was facing opposite to the sled travel direction. Several 

different orientations of the head-neck assembly, with regard to the sled base, were investigated to 

cover broader response space. In thirty tests the Simplified Head was positioned at 45 with 

reference to the sled travel direction (IRF Y-axis; long axis of the sled base; Figure 24a). In seven 

of those tests a 20 wedge between the stand and the neck mounting plate was utilized (Figure 

24b) to evaluate if more complex initial orientation of the structure would affect the accuracy of 

calculated trajectories. 

a)  b)  

Figure 24. Simplified Head orientation at 45 : a) flat, without the 20 wedge; b) with the 20 wedge. 

Sled travel 

direction 
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In ten tests the Simplified Head was positioned at 0 with reference to the sled travel direction 

(Figure 25a). In four of those tests a 20 wedge between the stand and the neck mounting plate 

was used (Figure 25b). 

a)  b)  

Figure 25. Simplified Head orientation at 0 : a) flat, without the 20 wedge; b) with the 20 wedge. 

6.2.5 Test conditions – investigated parameters 

Other than the head orientation several different parameters, that potentially could influence 

the calculated trajectory accuracy, were investigated. 

For the use of this study, three different accelerometer blocks were utilized: a standard block 

being used currently in the THOR ATD head (Figure 26a), and two blocks fabricated at the 

University of Virginia (UVa) Center for Applied Biomechanics (Figure 26b & c). 

a)  b)  

c)  
Figure 26. Accelerometer blocks used during testing: a) THOR’s NAP block; b) UVa NAP block; c) UVa 4Acc 

block. 

 

Sled travel 

direction 
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The Simplified Head structure allowed to mount accelerometer blocks on two different levels: 

bottom (Figure 27a) and top (Figure 27b). Changing the level changed the magnitude of linear 

acceleration recorded by the sensors. 

a)  b)  

Figure 27. The same accelerometer block mounted on: a) bottom plate; b) top plate. 

In addition, both of the UVa blocks allowed for mounting linear accelerometers in a way that 

the distance between the center of gravity (CG) of the sensor seismic mass and the measurement 

center (Figure 2) was either minimal (Figure 28a, dictated by the sensor geometry, varying from 

6.35mm to 12.7mm) or the same (12.7mm; Figure 28b) for all used linear accelerometers. 

Moreover, the UVa NAP block accounted for an off-axis position of the 7264C accelerometer 

seismic mass (for more information see APPENDIX B). 

a)  b)  

Figure 28. UVa NAP block with: a) minimum distance between sensor seismic mass CG and measurement 

center; b) 12.7mm distance between sensor seismic mass CG and measurement center. 

6.2.6 Optoelectronic stereophotogrammetric system 

Simplified Head kinematics were captured at 500 Hz with a 16 camera optoelectronic 

stereophotogrammetric system (OSS) (VICON MX, VICON, Los Angeles, CA). The motion 

capture system tracked the trajectories of spherical retroreflective markers through a calibrated 3D 

space (dimensions: 6m x 6m x 2m) within the cameras’ collective field of view. 
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Four markers were attached to the base of the stand the head-neck assembly was mounted on 

(Figure 23) and eight markers were secured to the Simplified Head structure. Labeling convention 

for the VICON markers attached to the head is shown in Figure 29. Red bold labels represent the 

markers in the tests where the assembly was positioned at 45 with reference to the sled travel 

direction. Black labels represent the tests where the head was at 0 with reference to the sled travel 

direction. 

Naming convention for the stand base markers was kept unchanged between the tests and it 

followed the naming convention from the “0” angle tests, with “S” (sled) used instead of “B” 

(bottom) or “T” (top). 

a)  

 b)  c)   

Figure 29. Naming convention for the VICON markers attached to the head. Labels in red correspond to the tests 

where the assembly was positioned at 45 with reference to the sled travel direction. Black labels represent the 

tests where the head was at 0 with reference to the sled travel direction: a) top view; b) left view; c) right view. 
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Based on the four top (“T”) and four bottom (“B”) markers two temporary coordinate systems 

were created (Figure 30) and then averaged together to establish the coordinate system describing 

the head assembly orientation in the IRF. The data from the start of the test was assumed to be the 

initial orientation of the head (in IRF) used later in the 3D trajectory calculation process. 

 

Figure 30. Two temporary coordinate systems used to establish the head orientation. 

Head sensor/accelerometer block configuration was changed several times during testing. 

After each change, the assembly was 3D scanned to record the location and the orientation of the 

sensors relative to the head and the eight VICON markers secured to it (Figure 31). 

  

Figure 31. 3D scan of the head structure. 

Using the data from the stereophotogrammetric system, the 3D scans of the sensor blocks, and 

the Least-Squares Pose Estimator approach (Cappozzo et al. 1997) the measurement center 

trajectories were determined, in the inertia coordinate frame, for all sensor packages utilized during 
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testing. Additionally, in the post-processing phase, a 3-point moving average was applied to the 

head optical data to eliminate isolated spikes. 

6.2.7 Instrumentation 

On the tests, head’s accelerations were recorded by six different types of linear accelerometers 

(APPENDIX B). The head’s local angular rate was measured by four types of angular rate sensors. 

Twenty four sets of 6DOF kinematics data were created and then utilized to compute 3D 

component trajectories for six measurement centers (one per each accelerometer type) as described 

in Section 1.2.3. Linear acceleration filtered with CFC 1000 and local angular rate filtered to CFC 

60 were used in the process. 

To update the orientation of the head (its rotation matrix R), the body’s local angular velocity 

and the method described by Rudd et al. 2006 were utilized. 

6.2.8 Error metrics used in 3D trajectory calculations 

In all tests and for all sensors (their different combinations), the following metric was used to 

evaluate the accuracy of the head’s computed trajectory: 

 𝑅𝑒𝑠𝑒𝑟𝑟 = √∑ [(𝑥𝑂𝑆𝑆,𝑖−𝑥𝑐𝑎𝑙𝑐,𝑖)
2
+(𝑦𝑂𝑆𝑆,𝑖−𝑦𝑐𝑎𝑙𝑐,𝑖)

2
+(𝑧𝑂𝑆𝑆,𝑖−𝑧𝑐𝑎𝑙𝑐,𝑖)

2
]𝑁

𝑖=1

𝑁
 (6.1) 

where N – number of data (time) points, xOSS,i, yOSS,i, zOSS,i – X, Y, Z components of the reference 

trajectory (from VICON OSS) at the data point i, xcalc,i, ycalc,i, zcalc,i – X, Y, Z components of the 

calculated trajectory (based on sensor data) at the data point i. 

For several different sensor packages used during testing, the peak value, the mean value, and 

the standard deviation for Reserr were reported. In addition to Reserr, the time history of the absolute 

difference (error) between the calculated and reference (from the VICON system) trajectories was 

determined and presented. 

6.3 Results 

In this subsection, the tracked body’s orientation (Section 6.3.1) calculated using angular 

velocity recorded by different types of angular rate sensors and the calculated (based on inertial 

measurements) global trajectories for the Simplified Head (Section 6.3.2) are shown and described 

for exemplar tests. In addition, in Section 6.3.3, sensor packages that produced the smallest 

deviation between the computed and the reference trajectories are identified. Finally, in Section 

6.3.4, peak, mean, and standard deviation values for Reserr (Eq. 6.1) are discussed for the sensor 

combinations from Section 6.3.3. 

6.3.1 Orientation based on data from different angular rate sensors 

For two tests: S0426 (test fixture positioned at 0 with reference to the sled travel direction) 

and S0442 (test fixture at 45) the time history of the rotation matrix R, computed using four 

different types of angular rate sensors, was compared to the orientation time-history obtained from 

the VICON system (Figure 32 to Figure 37). 

In both tests, the angular velocity recorded around either one or two head local axes exceeded 

1000 deg/sec. The IES sensor full scale range was 600 deg/sec. The data above that value, treated 
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as invalid for IES, substantially influenced the calculated orientation as obtained using the IES 

ARS (green line in “R21” in Figure 32, “R22” in Figure 36, or “R33” in Figure 37). 

In general, though, the orientation computed with the data from different ARS (except when 

the local angular rate excided the full scale range of a sensor) matched VICON closely, with DTS 

ARS PRO (the model with the bandwidth up to 300Hz) diverging from the reference data slightly 

more than the other sensors in cases where there was no substantial change in the value of a 

component of the rotation matrix R (e.g. “R11” in Figure 32 or “R22” and “R32” in Figure 33). 

 

Figure 32. Test S0426 – Head’s 1st unit vector components (1st column of the R matrix) obtained with four 

angular rate sensors compared to the VICON data. 

 

Figure 33. Test S0426 – Head’s 2nd unit vector components (2nd column of the R matrix) obtained with four 

angular rate sensors compared to the VICON data. 

Rotation matrix 

components: 

𝑹 = [
𝑹𝟏𝟏 𝑅12 𝑅13
𝑹𝟐𝟏 𝑅22 𝑅23
𝑹𝟑𝟏 𝑅32 𝑅33

] 

Rotation matrix 

components: 

𝑹 = [
𝑅11 𝑹𝟏𝟐 𝑅13
𝑅21 𝑹𝟐𝟐 𝑅23
𝑅31 𝑹𝟑𝟐 𝑅33

] 



45 
 

 

Figure 34. Test S0426 – Head’s 3rd unit vector components (3rd column of the R matrix) obtained with four 

angular rate sensors compared to the VICON data. 

 

Figure 35. Test S0442 – Head’s 1st unit vector components (1st column of the R matrix) obtained with four 

angular rate sensors compared to the VICON data. 

 

Figure 36. Test S0442 – Head’s 2nd unit vector components (2nd column of the R matrix) obtained with four 

angular rate sensors compared to the VICON data. 

Rotation matrix 

components: 

𝑹 = [
𝑹𝟏𝟏 𝑅12 𝑅13
𝑹𝟐𝟏 𝑅22 𝑅23
𝑹𝟑𝟏 𝑅32 𝑅33

] 

Rotation matrix 

components: 

𝑹 = [
𝑅11 𝑅12 𝑹𝟏𝟑
𝑅21 𝑅22 𝑹𝟐𝟑
𝑅31 𝑅32 𝑹𝟑𝟑

] 

Rotation matrix 

components: 

𝑹 = [
𝑅11 𝑹𝟏𝟐 𝑅13
𝑅21 𝑹𝟐𝟐 𝑅23
𝑅31 𝑹𝟑𝟐 𝑅33

] 
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Figure 37. Test S0442 – Head’s 3rd unit vector components (3rd column of the R matrix) obtained with four 

angular rate sensors compared to the VICON data. 

6.3.2 Calculated global position 

In this section the time histories of the global position of the measurement center (MC) for one 

of the sensor packages was compared to the reference (VICON) data for that MC in four exemplar 

tests: S0426 (test fixture at 0 relative to the sled travel direction, no wedge between the fixture 

and the stand), S0431 (at 45, with the wedge), S0433 (at 0, without the wedge), and S0442 (at 

45, without the wedge) (Figure 38 to Figure 41). In those four tests, the results for the sensor 

package that gave the smallest Reserr (Eq. 6.1) were presented. In the figures, the absolute error 

between the measured and calculated trajectories was indicated with a red line. 

In all four tests, the calculated global trajectories (green lines) followed the general trend of 

the VICON curves (black). In some of the graphs, e.g., X and Z positon components in Test S0426 

(Figure 38), a non-zero error (less than a millimeter) in the trajectories before time t0=0 (before 

the sled started moving) was observed. That non-zero error was a result of the accelerometer data 

drift related to debiasing of the accelerometer readings just prior to the t0 (trigger) time. 

The absolute error values recorded in the exemplar tests varied between 4 mm (Z component 

in Test S0433; Figure 40) to approx. 35 mm (X component in Test S0433; Figure 40). It was 

expected that the absolute difference between the calculated and reference trajectories would grow 

in time due to the accumulation of errors coming from the integration process of global ACC. In 

some cases, the error steadily increased during the test and was highest at the end of the considered 

time period (e.g. in Test S0442; Figure 41). In other tests, though, the error first increased and then 

started decreasing (e.g., Y and Z components in Test S0433; Figure 40), which suggests that the 

error in the computed response was influenced by multiple factors, not only the accuracy of the 

integration process. 

Rotation matrix 

components: 

𝑹 = [
𝑅11 𝑅12 𝑹𝟏𝟑
𝑅21 𝑅22 𝑹𝟐𝟑
𝑅31 𝑅32 𝑹𝟑𝟑

] 
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Figure 38. Test S0426 – Head global trajectories comparison: VICON (black) and calculated (green). 

 
Figure 39. Test S0431 – Head global trajectories comparison: VICON (black) and calculated (green). 



48 
 

 
Figure 40. Test S0433 – Head global trajectories comparison: VICON (black) and calculated (green). 

 
Figure 41. Test S0442 – Head global trajectories comparison: VICON (black) and calculated (green). 

6.3.3 Sensor package with the smallest error 

To remind the reader, the Simplified Head kinematics were captured with six types of linear 

accelerometers and four types of angular rate sensors which gave twenty four “ACC + ARS” data 

sets that were then used to compute 3D component trajectories of the analyzed structure. 

The Reserr metric (Eq. 6.1) identified Endevco 7264C accelerometers combined either with 

DTS ARS PRO 300Hz or DTS ARS PRO 2000Hz as the package that produced the smallest 



49 
 

deviation between the computed and the reference trajectories in eighteen out of the forty 

Simplified Head tests (Table 4). MSI 64B-DTS 2000Hz and Endevco 7290E-DTS ARS PRO 

2000Hz each gave the smallest Reserr in five tests. The other six sensor combinations mentioned 

in Table 4 were most accurate in the remaining twelve tests. 

Table 4. # of times when the sensor combination produced the smallest Reserr acoss all used sensor packages. 

# Sensor combination (ACC – ARS) # of times with the smallest Reserr (out of 40 tests) 

1 END 7264C – DTS ARS PRO 300Hz 9 

2 END 7264C – DTS ARS PRO 2000Hz 9 

3 MSI 64B – DTS ARS PRO 2000Hz 5 

4 END 7290E – DTS ARS PRO 2000Hz 5 

5 END 7264C – IES 3 

6 END 7264C – DTS 6DX PRO 3 

7 END 7290E – IES 2 

8 END 7290E – DTS 6DX PRO 2 

9 MSI 64C – IES 1 

10 MSI 64C – DTS ARS PRO 300Hz 1 

Remark: Reserr for all tests and across all sensor combinations can be found in APPENDIX C. 

6.3.4 Sensor combinations – summary 

After taking into account only the “27g” pulse tests (Test S0420 to Test S0454; see 

APPENDIX A), for the two Endevco 7264C combinations as well as for the MSI 64B-DTS ARS 

PRO 2000Hz package, the peak value, the mean value, and the standard deviation (SD) of Reserr 

were calculated: 

 Endevco 7264C – DTS ARS PRO 300Hz: 

o peak: 48.7 mm 

o mean: 16.7 mm 

o SD: 9.5 mm 

 Endevco 7264C – DTS ARS PRO 2000Hz: 

o peak: 45 mm 

o mean: 15 mm 

o SD: 8.14 mm 

 MSI 64B – DTS ARS PRO 2000Hz: 

o peak: 38.4 mm 

o mean: 22.4 mm 

o SD: 7 mm 

For Endevco 7290E with DTS ARS PRO 2000Hz, the peak value, the mean value, and the 

standard deviation for Reserr were calculated using the results from Tests S0425-S0454 (see 

APPENDIX A – additional remarks for details about exclusion of Tests S0420-S0424): 

 Endevco 7290E - DTS ARS PRO 2000Hz: 

o peak: 20.7 mm 

o mean: 12.5 mm 

o SD: 3.6 mm 
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In addition, for the four discussed sensor packages a scatter plot of Reserr was created to show 

how well the three combinations, other than the one with the smallest Reserr recorded on the test, 

predicted the 3D trajectory of the Simplified Head (Figure 42). 

 

Figure 42.  Reserr for the four discussed sensor packages. 

The sensor package with the highest mean value of Reserr (22.4 mm), across the four discussed 

sensor combinations, was MSI 64B – DTS ARS PRO 2000Hz. Endevco 7264C – DTS ARS PRO 

300Hz had the greatest variability (highest SD of 9.5 mm) with six tests in which Reserr excided 

25 mm (Figure 42; red dots). In Test S0453, though, the excitation voltage was modified from 10 

V to 2 V and that change is believed to be responsible for the increased difference between VICON 

and the calculated 3D results for both, Endevco 7264C – DTS ARS PRO 300Hz and Endevco 

7264C – DTS ARS PRO 2000Hz. The most consistent Reserr (across the analyzed tests), with the 

smallest mean value (12.5 mm) and smallest SD (3.6 mm), was found for Endevco 7290E with 

DTS ARS PRO 2000Hz (Figure 42; grey triangles). In terms of the results variability, Endevco 

7264C – DTS ARS PRO 2000Hz and MSI 64B – DTS ARS PRO 2000Hz were in-between 

Endevco 7264C – DTS ARS PRO 300Hz and Endevco 7290E with DTS ARS PRO 2000Hz, with 

SD of 8.14 mm and 7 mm, respectively. 

6.4 Conclusions 

The aim of the current study was to evaluate the ability of the algorithm described in Section 

1.2.3 to calculate accurate trajectories in sled testing where a simplified structure representing an 

ATD’s head-to-neck assembly was utilized. The following can be concluded from the results of 

the study: 

 In general, the orientation computed with the data from different types of angular rate 

sensors matched the reference response (from the VICON system) closely, except for the 

Excitation 

voltage changed 

from 10 V to 2 V 
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situation when the local angular rate excided the full scale range of the sensor used (IES 

sensor, e.g., “R21” component in Figure 32). 

 The absolute error values recorded in the four exemplar tests varied between 4 mm (Z 

component in Test S0433; Figure 40) to approx. 35 mm (X component in Test S0433; 

Figure 40). 

 After excluding the IES sensor from the analysis, the highest Reserr recorded across the “27 

g” pulse tests and all possible sensor combinations was 123.2 mm (DTS6DX PRO ACC-

DTS ARS PRO 300Hz; Test S0426). The smallest Reserr of approx. 2.9 mm was identified 

for Endevco 7264C – DTS ARS PRO 2000Hz in Test S0450. 

 The Reserr metric identified Endevco 7264C accelerometers combined either with DTS 

ARS PRO 300Hz or DTS ARS PRO 2000Hz as the package that produced the smallest 

deviation between the computed and the reference trajectories in eighteen out of the forty 

Simplified Head tests, which constituted for 45% of all performed test (Table 4). 

 In Test S0453, the excitation voltage for the Endevco 7264C accelerometers was modified 

from 10 V to 2 V and that change is believed to be responsible for the substantial increase 

in the trajectory error seen for both, the Endevco 7264C – DTS ARS PRO 300Hz and the 

Endevco 7264C – DTS ARS PRO 2000Hz sensor packages. 
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7. THOR MOD-KIT TESTING 

7.1 Introduction 

To assess the proposed algorithm accuracy in a more complex and challenging scenario than 

the one described in Chapter 6 (where only a head-to-neck assembly was utilized), eight sled tests 

were performed with the THOR Mod-kit ATD (S/N: T0015), with either the THOR stock head or 

the Simplified Head (Figure 43 top right and left, respectively). The ATD arms were removed to 

reduce the chance of motion tracking camera occlusions. THOR was seated in the Gold Standard 

(GS) buck positioned at 30 deg relative to the sled travel direction (Figure 43 bottom). After 

testing, damages to the structure were assessed and the test data were processed and analyzed. Any 

damage or failure to the dummy or instrumentation was rectified before the next sled test was 

performed. This procedure was repeated until the test series was completed. 

   

 

Figure 43. THOR dummy, two sample tests: with Simplified Head (top left) and with stock ATD head (top right). 

Gold Standard 3 configuration shown in bottom. A shoulder belt with two levels of force-limiting (FL; cf. Shaw et 

al. 2014) was used for upper body restraint. 

The chapter is organized as follows. Section 7.2 focuses on the methods used during testing 

and later in the position calculation analysis. The results of the study (calculated orientation and 

position) are presented in Section 7.3. Concluding remarks summarizing the research effort 

presented here are provided in Section 7.4. 
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7.2 Methods 

7.2.1 Test matrix 

The complete matrix of all eight THOR sled tests carried out within the dissertation is 

presented in APPENDIX D. The following sections describe the testing procedure. 

7.2.2 Sled input 

The acceleration time history utilized for the sled system as the input was a 9g trapezoidal 

pulse (Figure 44) used previously for Gold Standard tests (Montesinos-Acosta et al. 2016). 

 

 

Figure 44. Acceleration time histories used during testing. 

7.2.3 Coordinate systems 

7.2.3.1 Test S0455 

Two coordinate systems were used to process and present the data from the test. The Simplified 

Head local coordinate system, which remained fixed to the head assembly during the test, was 

defined using standardized conventions (SAE J211, 1995; Figure 45). The positive X axis pointed 

from the rear to the front of the head. The positive Y axis pointed from the head left hand side to 

the head right hand side. The positive Z axis pointed from the top to the bottom of the assembly. 

 

Figure 45. Simplified Head (local) coordinate system was chosen to match the SAE standard (J211) 

coordinate system for the head. 
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The global or inertial reference frame (IRF) was defined in the following way: the Y axis was 

aligned with the direction of the sled travel. The sled traveled in the positive Y direction. The Z 

axis was oriented normal to the sled base top surface, with positive pointing upward. The positive 

X-axis was mutually perpendicular to the Y and Z axes, with positive direction shown in Figure 

46. 

 

Figure 46. Inertial (global) coordinate frame definition. 

7.2.3.2 Tests S0456 – S0462 

Two coordinate systems were used to process and present the data from the tests. The THOR 

head coordinate system, which remained fixed to the body during testing, was defined using 

standardized conventions (SAE J211, 1995; Figure 47). The positive X axis pointed from the rear 

to the front of the head. The positive Y axis pointed from the head left hand side to the head right 

hand side. The positive Z axis pointed from the top to the bottom of the head. 

 

Figure 47. Head (local) coordinate system was chosen to match the SAE standard (J211) coordinate system for 

the head. 
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The global or inertial reference frame (IRF) was defined in the following way: the Y axis was 

aligned with the direction of the sled travel. The sled traveled in the positive Y direction. The Z 

axis was oriented normal to the sled base top surface, with positive pointing upward. The positive 

X-axis was mutually perpendicular to the Y and Z axes, with positive direction shown in Figure 

48. 

 

Figure 48. Inertial (global) coordinate frame definition. 

7.2.4 Head type 

In the first test of the series (S0455) the Simplified Head (Figure 49 left) was used to gather 

data for a larger number of sensors. In the seven remaining tests, the regular THOR ATD head was 

utilized (Figure 49 right). 

  

Figure 49. Different head types used during testing: Simplified Head (left) and THOR Stock Head (right). 

7.2.5 Head tether 

In two out of the eight tests (S0458 and S0459) a head tether was used to force the head to 

rotate about its local Z axis, in the negative direction (toward the left shoulder). In Test S0458 a 
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one-layer short piece of the 2"-wide Gaffer’s tape® was utilized (Figure 50 left). In Test S0459 a 

four-layer long piece (Figure 50 right) was used to give the head more slack before causing the 

head rotation. In both cases, the tape was attached to the dummy chin and, next, to the steel frame 

of the Gold Standard buck (Figure 50 right). 

  

Figure 50. Head tether: Test S0458 (left), Test S0459 (right). 

7.2.6 Simulated impact 

Three sled tests (see Table) involved THOR ATD head impact to assess the influence of impact 

kinematics on the calculated 3D trajectories. The impact was produced by mounting a foam-

padded steel bar in the path of the moving head (Figure 51). 

 

Figure 51. Steel structure to simulate head impact. 

7.2.7 Optoelectronic stereophotogrammetric system 

The head kinematics data were captured at 1000 Hz with a 16 camera optoelectronic 

stereophotogrammetric system (OSS) (VICON MX, VICON, Los Angeles, CA). The motion 

capture system tracked the trajectories of spherical retroreflective markers through a calibrated 3D 

space within the cameras’ collective field of view. 
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7.2.7.1 Test S0455 

In Test S0455 eight markers were secured to the Simplified Head structure. Labeling 

convention for the VICON markers attached to the head is shown in Figure 52. 

a)  

b)  c)  

Figure 52. Naming convention for the VICON markers attached to the simplified head: a) top view; b) left view; 

c) right view. 

7.2.7.2 Tests S0456-S0459 

In Tests S0456-S0459 five markers were secured to the THOR head. Labeling convention for 

the VICON markers attached to the head is shown in Figure 53. 
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a)  b)  

Figure 53. Naming convention for the VICON markers attached to the head: a) front view; b) left view. 

7.2.7.3 Tests S0460-S0462 

In Tests S0460-S0462 eight markers were secured to the THOR head. Labeling convention for 

the VICON markers attached to the head is shown in Figure 54. 

a)  b)  

Figure 54. Naming convention for the VICON markers attached to the head: a) front view; b) left view. 

7.2.8 3D scans of the head 

Head sensor/accelerometer block configuration was changed several times during testing. 

After each change the sensor configuration was 3D scanned to record the location and the 

orientation of the sensors relative to the head and the VICON markers secured to it (Figure 55). 
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a)  b)  

Figure 55. 3D scan of: a) Simplified Head, b) THOR head. 

Using the data from the stereophotogrammetric system, the 3D scans of the sensor blocks, and 

the Least-Squares Pose Estimator approach (Cappozzo et al. 1997) the measurement center 

trajectories were determined, in the inertia coordinate frame, for all linear accelerometer packages 

utilized during testing. Additionally, in the post-processing phase, a 3-point moving average was 

applied to the head VICON data to eliminate isolated spikes. 

7.2.9 Instrumentation 

On the tests, head’s 6DOF kinematics were captured with linear accelerometers (ACC) and 

angular rate sensors (ARS) attached the analyzed body (see APPENDIX E). In the first test of the 

series (Test S0455), five different types of linear accelerometers and two types of angular rate 

sensors were used. In the last test (Test S0462), only one type of ACC and one type of ARS were 

utilized. In the remaining six tests, head’s kinematics data were measured by two different types 

of ACC and two types of ARS. Recorded data were then utilized to compute 3D component 

trajectories of the head as described in Section 1.2.3. Linear acceleration filtered with CFC 1000 

and local angular rate filtered to CFC 60 were used in the process. 

7.2.10 Head orientation update 

To update the orientation of the tracked body (its rotation matrix R), the head’s local angular 

velocity and the method described by Rudd et al. 2006 were used. Initial orientation of the head – 

in the global frame – was determined with a Coordinate Measuring Machine (CMM) in 

conjunction with the data from the VICON system (at the start of the test), 3D scans of the sensor 

blocks mounted inside the ATD’s skull, and the Least-Squares Pose Estimator approach 

(Cappozzo et al. 1997). 

7.2.11 Error metrics used in 3D trajectory calculations 

In all eight tests, the following metric was utilized to evaluate the accuracy of the head’s 

computed trajectory: 
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 𝑅𝑒𝑠𝑒𝑟𝑟 = √∑ [(𝑥𝑂𝑆𝑆,𝑖−𝑥𝑐𝑎𝑙𝑐,𝑖)
2
+(𝑦𝑂𝑆𝑆,𝑖−𝑦𝑐𝑎𝑙𝑐,𝑖)

2
+(𝑧𝑂𝑆𝑆,𝑖−𝑧𝑐𝑎𝑙𝑐,𝑖)

2
]𝑁

𝑖=1

𝑁
 (7.1) 

where N – number of data (time) points, xOSS,i, yOSS,i, zOSS,i – X, Y, Z components of the reference 

trajectory (from VICON OSS) at the data point i, xcalc,i, ycalc,i, zcalc,i – X, Y, Z components of the 

calculated trajectory (based on sensor data) at the data point i. 

In addition to Reserr, the time history of the absolute difference (error) between the calculated 

and VICON trajectories was determined and presented. 

7.3 Results 

In this subsection, the tracked body’s orientation (Section 7.3.1) calculated using angular 

velocity recorded by different types of angular rate sensors and the calculated (based on inertial 

measurements) global trajectories for the THOR Head (Section 7.3.2) are shown and described for 

exemplar tests. 

7.3.1 Orientation based on data from different angular rate sensors 

For three tests: S0455 (Simplified Head; 2kN FL; without impact), S0457 (Regular Head; 4kN 

FL; without impact), and S0461 (Regular Head; 4kN FL; simulated impact) the time history of the 

head rotation matrix R, obtained using two types of angular rate sensors, was compared to the 

corresponding VICON data. 

In the presented cases both, DTS ARS PRO 300Hz and DTS ARS PRO 2000Hz, were able to 

predict the general shape and the magnitude of the head’s rotation. In Test S0455 (Simplified 

Head), DTS ARS PRO 300Hz appeared to diverge more from the VICON results than DTS ARS 

PRO 2000Hz (“R11” component in Figure 56 or “R32” component in Figure 57). In Test S0457, 

where the regular THOR head was used, DTS ARS PRO 300Hz followed VICON more closely 

than DTS ARS PRO 2000Hz (“R11” in Figure 59 or “R32” in Figure 60). In some of the tests both 

angular rate sensors were either underestimating (“R12” and “R22” in Figure 60) or over-

predicting (“R21” in Figure 59) the rotation of the head. In Test S0461, in which a head-to-

structure impact was simulated, DTS ARS PRO 300Hz as well as DTS ARS PRO 2000Hz were 

able to capture the abrupt change in the head’s rotational movement (at approx. t = 116ms, when 

the head hit the barrier) with both ARS either overshooting or underestimating the VICON value 

slightly (e.g. “R21” component in Figure 62, “R12” in Figure 63, and “R33” in Figure 64). 
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Figure 56.  Test S0455 – Head’s 1st unit vector components (1st column of the R matrix) obtained with four 

angular rate sensors compared to the VICON data. 

 

Figure 57.  Test S0455 – Head’s 2nd unit vector components (2nd column of the R matrix) obtained with four 

angular rate sensors compared to the VICON data. 

Rotation matrix 

components: 

𝑹 = [
𝑹𝟏𝟏 𝑅12 𝑅13
𝑹𝟐𝟏 𝑅22 𝑅23
𝑹𝟑𝟏 𝑅32 𝑅33

] 

Rotation matrix 

components: 

𝑹 = [
𝑅11 𝑹𝟏𝟐 𝑅13
𝑅21 𝑹𝟐𝟐 𝑅23
𝑅31 𝑹𝟑𝟐 𝑅33

] 
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Figure 58.  Test S0455 – Head’s 3rd unit vector components (3rd column of the R matrix) obtained with four 

angular rate sensors compared to the VICON data. 

 

Figure 59.  Test S0457 – Head’s 1st unit vector components (1st column of the R matrix) obtained with four 

angular rate sensors compared to the VICON data. 

Rotation matrix 

components: 

𝑹 = [
𝑹𝟏𝟏 𝑅12 𝑅13
𝑹𝟐𝟏 𝑅22 𝑅23
𝑹𝟑𝟏 𝑅32 𝑅33

] 

Rotation matrix 

components: 

𝑹 = [
𝑅11 𝑅12 𝑹𝟏𝟑
𝑅21 𝑅22 𝑹𝟐𝟑
𝑅31 𝑅32 𝑹𝟑𝟑

] 
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Figure 60.  Test S0457 – Head’s 2nd unit vector components (2nd column of the R matrix) obtained with four 

angular rate sensors compared to the VICON data. 

 

Figure 61.  Test S0457 – Head’s 3rd unit vector components (3rd column of the R matrix) obtained with four 

angular rate sensors compared to the VICON data. 

Rotation matrix 

components: 

𝑹 = [
𝑅11 𝑹𝟏𝟐 𝑅13
𝑅21 𝑹𝟐𝟐 𝑅23
𝑅31 𝑹𝟑𝟐 𝑅33

] 

Rotation matrix 

components: 

𝑹 = [
𝑅11 𝑅12 𝑹𝟏𝟑
𝑅21 𝑅22 𝑹𝟐𝟑
𝑅31 𝑅32 𝑹𝟑𝟑

] 
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Figure 62.  Test S0461 – Head’s 1st unit vector components (1st column of the R matrix) obtained with four 

angular rate sensors compared to the VICON data. 

 

Figure 63.  Test S0461 – Head’s 2nd unit vector components (2nd column of the R matrix) obtained with four 

angular rate sensors compared to the VICON data. 

Rotation matrix 

components: 

𝑹 = [
𝑹𝟏𝟏 𝑅12 𝑅13
𝑹𝟐𝟏 𝑅22 𝑅23
𝑹𝟑𝟏 𝑅32 𝑅33

] 

Rotation matrix 

components: 

𝑹 = [
𝑅11 𝑹𝟏𝟐 𝑅13
𝑅21 𝑹𝟐𝟐 𝑅23
𝑅31 𝑹𝟑𝟐 𝑅33

] 
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Figure 64.  Test S0461 – Head’s 3rd unit vector components (3rd column of the R matrix) obtained with four 

angular rate sensors compared to the VICON data. 

7.3.2 Calculated global position 

In this section, the time histories of the global position of the measurement center (MC; Figure 

2) for one of the sensor packages were compared to the VICON data for that MC. For clarity only 

three tests were presented here: Test S0455 (Simplified Head; 2kN FL; without impact), Test 

S0457 (Regular Head; 4kN FL; without impact), and Test S0461 (Regular Head; 4kN FL; 

simulated impact). In these three tests, the results for the sensor package that gave the smallest 

Reserr were presented. In the figures, the absolute error between the measured and calculated 

trajectories was indicated with a red line. 

The absolute error values recorded in the exemplar tests varied between 9 mm (Y component 

in Test S0461; Figure 67) to approx. 90 mm (X component in Test S0457; Figure 66). In all three 

tests (with the exception of the Y component in Test S0457 and Test S0461), the error increased 

in time and was the highest at the end of the considered time period. The error in the Y component 

in Test S0457 (Figure 66) and Test S0461 (Figure 67) first increased, then decreased, increased 

again, and reached its maximum at the end of the test. 

In Test 461 (Figure 67), in which a head-to-structure impact was simulated, the sensor package 

used (ENDEVCO 7264C-DTS ARS PRO 2000Hz) was able to capture the abrupt change in the 

body trajectory (at approx. t = 116ms), just after the head hit the barrier. 

Rotation matrix 

components: 

𝑹 = [
𝑅11 𝑅12 𝑹𝟏𝟑
𝑅21 𝑅22 𝑹𝟐𝟑
𝑅31 𝑅32 𝑹𝟑𝟑

] 
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Figure 65.  Test S0455 – Head global trajectories comparison: VICON (black) and calculated (green). 

 

Figure 66.  Test S0457 – Head global trajectories comparison: VICON (black) and calculated (green). 
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Figure 67.  Test S0461 – Head global trajectories comparison: VICON (black) and calculated (green). 

It is worth mentioning here that in all presented cases, as well as throughout the whole test 

series, the deviation between the head’s calculated and reference trajectories (as indicated by 

Reserr; see APPENDIX G) was noticeably higher than for the tracked body in the Simplified Head 

test series. 

7.4 Conclusions 

The aim of the current study was to evaluate the ability of the algorithm described in Section 

1.2.3 to calculate accurate trajectories in a complex scenario (sled test) where a crash test dummy 

was utilized. The following can be concluded from the results of the study: 

 Similarly to the study with the Simplified Head, the angular rate sensors used on the ATD’s 

head were able to predict the general shape and the magnitude of the head’s rotation.  

 In tests, in which the head-to-structure impact was simulated, the proposed algorithm of 

updating the head’s orientation (based on the data from the angular rate sensors used on 

the tests), was able to capture the abrupt change in the head’s rotational movement caused 

by the impact (e.g. Figure 62, Figure 63, and Figure 64). 

 The absolute error values (between the computed and reference trajectories) recorded in 

the three exemplar tests varied between 9 mm (Y component in Test S0461; Figure 67) to 

approx. 90 mm (X component in Test S0457; Figure 66). 

 In Test S0456, the Head X accelerometer (Endevco 7264C) recorded only noise due to a 

broken connector. In Test S0460 and Test S0461, the Head X and Z accelerometers (both, 

Endevco 7290E) exceeded their maximum full-scale range of 30g. After excluding these 

three cases from the analysis, the highest Reserr of 86.57 mm was recorded in Test S0458 

for the Endevco 7290E – DTS ARS Pro 300Hz sensor package. The lowest Reserr (of 
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approx. 29.5 mm) was identified for Endevco 7264C – DTS ARS PRO 2000Hz in Test 

S0459. 

 Across the THOR ATD tests, on average the deviation between the head’s calculated and 

reference trajectories was noticeably higher than for the tracked body in the Simplified 

Head test series (APPENDIX G and APPENDIX C, respectively). 
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8. UPDATE OF BODY ORIENTATION 

8.1 Introduction 

Knowing body orientation in a three dimensional (3D) space is crucial in many engineering 

applications, varying from human body motion analysis (Kitagawa and Ogihara 2016) and vehicle 

crash testing (Wu et al. 2009) to strapdown inertial navigation systems in airplanes (Demoz 2004, 

Ma et al. 2012), underwater vehicles (Miller et al. 2010) and mobile robots (Cho et al. 2011). 

Over the years, various analytical methods were developed to calculate the orientation of a 

body from the body’s measured angular rate (Jordan 1969, Bortz 1971, DiMasi 1995, Beard and 

Schlick 2003, Litmanovich et al. 2000, Rudd et al. 2006, Khoder et al. 2008, Kang et al. 2011, 

Kerrigan et al. 2011, Vepa and Zhahir 2011, Wang et al. 2011, Huculak and Lankarani 2013, 

Zhenhuan et al. 2013). Much of the previous research in the study of orientation (or attitude) 

algorithms comes from the field of navigation (cf. Savage 1998). Some related work has been done 

to study Brownian dynamics with focus on the motion of molecular systems (Beard and Schlick 

2003). At the same time, in the field of crash testing the attitude algorithms have been used 

extensively, too, e.g., to obtain kinematics of pedestrian’s limbs during an impact (Rudd et al. 

2006), of a car in rollover (Wu et al. 2009, Kerrigan et al. 2011), in head angular acceleration 

calculations (Kang et al. 2011), to process crash test dummy’s head data (DiMasi 1995), or to 

predict the head trajectory in aircraft seat certification testing (Huculak and Lankarani 2013). 

There seems to be a number of various approaches that have been used within the field of crash 

testing (short events with rapid changes in the body’s angular velocity) and navigation (much 

longer tasks, in which the body’s angular rate does not shift in time as abruptly) to determine body 

orientation. All of the orientation-calculation algorithms, though, are based on the same underlying 

physics, which suggests that their approaches should be at least similar. Yet, a cursory review 

suggests there are differences in these algorithms, either analytically in the calculation of the 

rotation matrix, or numerically in time integration. To date, there have been no studies providing 

a comprehensive comparison of the various methods of obtaining the body orientation from the 

body’s local angular rate using data from experiments that included separate and highly accurate 

reference data (e.g. from video tracking or a motion capture system). Such a comparison could 

provide guidance in identifying a particular approach for a particular application. Thus, the goal 

of this study was to assess the accuracy of the various algorithms by comparing their predictions 

to reference kinematics data. For this study, the reference data comes from computer simulations 

as well as from dynamic crash-like experiments that incorporated 3D optical motion capture. 

Specifically, this study examines these algorithms to determine if they are actually different, which 

method produces results that are most similar to the reference data, and whether or not there are 

advantages or disadvantages to using one or the other for applications in crash testing analysis. 

8.2 Methods 

To achieve the goal of this study, first, the Orientation time-history section describes the 

theoretical background of obtaining the body orientation from the body’s local angular rate. Then, 

the Seven Algorithms sections present the list of identified attitude-calculation algorithms with 
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differences and similarities, both analytically and numerically, between them. Following, the 

methods to generate data from four test cases (one computational and three experimental) are 

described and error metrics used to evaluate selected orientation algorithms are defined. Next, 

because it was hypothesized that the error in the calculated orientation would be a function of the 

sampling time step, as well as the magnitude and frequency content of the angular velocity signal, 

a simplified two-dimensional (2D) analytical analysis was performed to investigate those 

sensitivities.    

8.2.1 Orientation time-history 

Initial orientation of a rigid body in the global reference frame, Rini, and the body’s angular 

velocity ω(t) in the local coordinate system can be measured or determined using current 

measurement technologies. Using both, ω(t) and Rini the time-history of the local-to-global rotation 

matrix R, which, in time, relates the orientation of the body’s local coordinate system to the global 

frame, can be obtained. 

R is a square matrix composed of an orthogonal set of three unit vectors, each vector describing 

the orientation of an axis of the local frame in the global coordinate system. R relates any vector’s 

representation in the local coordinates, rl, to its representation in the global frame, rg, through  

Eq. 8.1: 

 𝒓𝒈 = 𝑹 𝒓𝑙 (8.1) 

By differentiating Eq. 8.1 and then algebraic manipulation, one can show (cf. DiMasi 1995, cf. 

Hamano 2013) that R is related to the angular velocity skew-symmetric matrix [𝝎 ×] by Eq. 8.2: 

 [𝝎 ×] ≡ [

0 −𝜔𝑧 𝜔𝑦

𝜔𝑧 0 −𝜔𝑥

−𝜔𝑦 𝜔𝑥 0
] = 𝑹−𝟏�̇� (8.2) 

 and thus: �̇� = 𝑹[𝝎 ×] (8.3) 

where �̇� is the rate of change of the matrix R, and ωx, ωy, and ωz are the local coordinate system 

components of the ω vector. 

8.2.2 Seven algorithms – list 

In an effort to determine the time-history of the matrix R seven different methods were 

identified in the literature: 

1. Bortz method: based on the Rodrigues’ rotation formula (cf. Shabana 2010) and integration 

of: a) the local angular velocity vector ω(t), and b) inertially non-measurable non-

commutativity rate vector �̇�(𝒕) (Bortz 1971); 

2. Beard method: based on integration of the time derivatives of the local coordinate system 

unit vectors (Beard and Schlick 2003); 

3. DiMasi method: based on a simple numerical integration of Eq. 8.3 assuming small 

incremental (finite) angular rotations between each time step (Beard and Schlick 2003); 
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4. Rate of Euler Parameters (ER) method: based on relating local angular velocities ω(t) to 

the rate of change of the Euler parameters e; numerical integration of that rate of change to 

obtain e; and defining the rotation matrix R in terms of e (Huculak 2011, Vepa and Zhahir 

2011, Huculak and Lankarani 2013); 

5. 2-1-3 method: based on the 2-1-3 Euler angles utilized to build R and numerical integration 

of the rate of change of the Euler angles (Kang et al. 2011, Kitagawa and Ogihara 2016); 

6. Unit Quaternion (UQ) method: based on the use of the instantaneous axis of rotation and 

the rotation angle, both derived from the angular velocity vector ω(t), to obtain the Euler 

parameters e and, next, utilizing e to define the rotation matrix R (Rudd et al. 2006); 

7. SP method: based on the Euler exponential solution of Eq. 8.3 and an integration factor 

(Kerrigan et al. 2011). 

8.2.3 Seven algorithms – differences and similarities 

8.2.3.1 Rotation matrix 

To construct the matrix R, the Bortz method uses the Rodrigues’ rotation formula (Eq. 8.4) 

combined with the rotation angle  obtained by solving Eq. 8.5. 

 𝑹 = 𝑰 + 𝑠𝑖𝑛[𝝎 ×] + (1 − 𝑐𝑜𝑠)[𝝎 ×]  (8.4) 

 ̇(𝒕) = 𝝎(𝒕) + �̇�(𝒕) (8.5) 

where I is the identity matrix, [𝝎 ×]  is the angular velocity skew-symmetric matrix from  

Eq. 8.2, �̇� is the rate of change of the rotation angle , ω(t) is the body local angular velocity vector, 

and �̇�(𝐭) is the non-commutativity rate vector. 

Eq. 8.5 states that to determine the angle of rotation  the inertially measurable angular motion 

ω(t) needs to be integrated along with the inertially non-measurable non-commutativity rate vector 

�̇�(𝒕) (cf. Bortz 1971). That non-commutativity rate vector accounts for the non-communitive 

nature of rotations. 

Three discussed methods (Beard, ER, UQ) utilize the Euler parameters (either in their 

contracted or expanded form) to build R. The only difference between those three methods is the 

way how the Euler parameters are determined from the measured local angular velocity ω(t). Two 

of the methods (Beard and UQ) integrate ω(t) directly and the obtained finite rotations are utilized 

to calculate the Euler parameters e. The ER method solves ordinary differential equations (ODE) 

to find e. 

The 2-1-3 method builds the matrix R based on three consecutive rotations defined by the Euler 

angles in the following order: pitch, roll, and yaw. 

The DiMasi method updates R by finding a numerical solution to ODE described with Eq. 8.3, 

assuming sufficiently small incremental angular rotations between each time step. 

The SP method assumes that Eq. 8.3 can be rewritten as Eq. 8.6: 

 �̇� − 𝑷𝒙 = 𝟎 (8.6) 

Then, the discretized Euler exponential solution of Eq. 8.6 is Eq. 8.7: 

 𝒙 = 𝑒𝛥𝑡𝑷𝒙𝟎 (8.7) 
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where t is the input data time step, x corresponds to R at time t, x0 corresponds to R at time  

t – t, and P, as defined by Eq. 8.8, is the function of global angular velocity ωG = [ωx,G, ωy,G, 

ωz,G]: 

 𝑷 = [

0𝑰 −𝜔𝑧,𝐺𝑰 𝜔𝑦,𝐺𝑰

𝜔𝑧,𝐺𝑰 0𝑰 −𝜔𝑥,𝐺𝑰

−𝜔𝑦,𝐺𝑰 𝜔𝑥,𝐺𝑰 0𝑰
] (8.8) 

Before utilizing body’s local angular velocity to build the matrix P, the SP method requires to 

transform ω from step t – t to the global coordinate frame using Rt-t. 

8.2.3.2 Numerical integration 

In the seven methods, two types of numerical integration are used. One calculates the value of 

a definite integral (e.g. a finite rotation from measured angular velocity). The other finds a 

numerical solution of ODE. 

In two methods (Beard and SP) the rectangular (also called mid-point) integration scheme, the 

most basic numerical scheme for integration, is used to obtain finite rotations from ω(t). To 

accomplish the same task, the UQ method uses the trapezoidal rule. The trapezoidal rule is also 

used in the 2-1-3 method – to integrate the rate of change of the Euler angles to obtain pitch, roll, 

and yaw. 

The Bortz method, the DiMasi method, and the ER method at some step in the algorithm require 

solving ODE to either find the rotation angle (Bortz), the Euler parameters (ER), or to update the 

matrix R directly (DiMasi). DiMasi 1995 based the integration on the forward Euler method, while 

Huculak 2011 applied the fourth-order Runge-Kutta (RK4) numerical approach in the ER 

algorithm. For the purpose of this paper, RK4 was utilized in the ER algorithm, and the forward 

Euler method was used to integrate ODE in the Bortz method. 

8.2.4 Test cases 

All seven methods were compared to each other using the same input data: time-history of the 

vector ω(t) and the initial orientation of the body, Rini. Four different data sets (“cases”) were 

sourced for these comparisons. 

Case 1: A multi-body model (Figure 68) was simulated in a commercial Finite Element (FE) 

package (LS-Dyna 8.1.0, LSTC, Livermore, CA). 

a)  b)  c) d)  

Figure 68. Multi-body model used in the analysis: a) starting position (t = 0), b) model at t = 

40 msec, c) model at t = 80 msec, d) model at t = 120 msec. 

Tracked body 
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The model consisted of rigid bodies connected with kinematic joints. It was given an initial 

velocity. The scenario was designed in a way that at some point during the simulation one of the 

bodies collided with an undeformable barrier (rigidly fixed at 45 w.r.t. the model travel direction). 

That contact disturbed the initial orientation of all connected bodies, causing relative translations 

and rotations of the parts (Figure 68). For one of the bodies ("yellow" in Figure 68), its initial 

orientation and the time-history of the local angular velocity data were recorded. 

Case 2: A box-like structure (called for simplicity “Simplified Head”; SH; Figure 103) was 

connected with the neck of the Test device for Human Occupant Restraint (THOR) 

Anthropomorphic Test Device (ATD) (NHTSA 2018) and then attached to a sled system (Seattle 

Safety, Auburn, WA). In the sled test, the assembly was positioned at 45 relative to the sled travel 

direction. The acceleration pulse used as the sled input was a scaled down and filtered T1 local X-

acceleration of the driver ATD recorded during one of the frontal oblique offset crash tests 

performed for the National Highway Traffic Safety Administration (NHTSA 2013). 

 

Figure 69. Simplified Head structure (left figure: retroreflective markers marked in red). 

On the test, three angular rate sensors (ARS) (DTS ARS Pro, Diversified Technical Systems, 

Seal Beach, CA, USA) were attached to SH and the angular velocity around the three local axes 

of the body was recorded. The local coordinate system of the head was defined as outlined in the 

SAE J211 document (Society of Automotive Engineers (SAE) 1995). Prior to testing the initial 

orientation of the assembly – in the global frame – was determined with the use of a Coordinate 

Measuring Machine (CMM) (Hexagon Manufacturing Intelligence, North Kingstown, RI). 

Recorded angular velocity data were filtered with a 4-order Butterworth low pass Channel 

Frequency Class (CFC) 180 filter. 

In the following test series, two sled tests were performed with the THOR Mod-kit ATD: 

without (Case 3) and including head impact (Case 4). THOR was seated in the Gold Standard (GS) 
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buck positioned at 30 relative to the sled travel direction (cf. Montesinos-Acosta et al. 2016). The 

acceleration time history utilized for the sled system was the 9g trapezoidal pulse used previously 

in Montesinos-Acosta et al. 2016. 

Case 4 involved a head impact to assess the influence of impact kinematics on the calculated 

3D orientation time-history. The impact was produced by mounting a foam-padded steel bar in the 

path of the head travel (Figure 104). 

 

Figure 70. Seated THOR ATD (left) and the foam-padded steel structure (top right) to 

simulate head impact (bottom right). 

In the ATD tests, the dummy head was instrumented with three angular rate sensors (DTS ARS 

Pro, Diversified Technical Systems, Seal Beach, CA, USA) and the angular velocity around the 

three axes of the head local coordinate system (defined according to SAE J211, SAE 1995) was 

recorded. Prior to testing the initial orientation of the ATD head – in the global frame – was 

determined with a CMM. Upon the test completion, recorded angular velocity data were filtered 

with CFC 180 filter. 

8.2.5 Reference orientation data 

In Case 1, for four points on the tracked body ("yellow" body in Figure 68) global 

displacements were obtained and utilized to determine the time-history of the local-to-global 

rotation matrix R as calculated by the FE software. 

In the three sled tests the head kinematics were captured with an optoelectronic 

stereophotogrammetric system (OSS) (Vicon MX, Los Angeles, CA) at 500 Hz (Case 2) or at  

1 kHz (Case 3 and 4). The motion capture system tracked the trajectories of spherical 

retroreflective markers (exemplar markers marked in Figure 103 left) through a calibrated 3D 

space within the cameras’ collective field of view. Using the data from OSS and the Least-Squares 

Pose Estimator approach (Cappozzo et al. 1997) the time-history of the head orientation (head’s 
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local-to-global rotation matrix R), in the global coordinate frame, was determined. The data from 

OSS were treated as the ground truth due to the established high measurement accuracy of the 

system (Lessley et al. 2011). 

8.2.6 Input data to the algorithms 

All seven methods were compared to each other using the same input: the recorded time-

history of the vector ω(t) and the initial orientation of the body, Rini. In all four cases, ω(t) and Rini 

were used as the input to the seven methods. The obtained orientation time history was then 

compared to the R calculated based on the reference (computer simulation or from OSS) data. 

8.2.7 Sampling frequency 

To better understand how the input data sampling rate influences the accuracy of the 

calculation of the rotation matrix R, the angular velocity vector, obtained through the computer 

simulation (Case 1) or recorded during testing (Cases 2-4), was utilized in its original "20 kHz" 

form (time step t = 5e-5 s) and then down-sampled to: 10 kHz (t = 1e-4 s), 5 kHz  

(t = 2e-4 s), 2.5 kHz (t = 4e-4 s), 1.428 kHz (t = 7e-4 s) and 1 kHz (t = 0.001 s), respectively. 

In Cases 1-4, where needed, the reference orientation data available were resampled for direct 

comparison. 

8.2.8 Test data – error metrics 

To evaluate the seven methods used to update R two error metrics (RMSavg,R and RMS for INS) 

were utilized. To determine those metrics, the following analysis was performed: 

1. the Root Mean Square Error (RMSi) was calculated separately for each of the components 

of the matrix R, utilizing the reference time-history of R (obtained from the simulation or 

from OSS); 

2. the average value RMSavg,R was found based on RMSi calculated for all nine components 

of R (Eq. 8.9): 

 𝑅𝑀𝑆𝑎𝑣𝑔,𝑅 =
∑ 𝑅𝑀𝑆𝑖

9
𝑖=1

9
 (8.9) 

3. based on the rotation matrix R and the mathematical definition of the quaternion  

q = qr + qii + qjj + qkk (where i, j, k are unit vectors representing the three Cartesian axes), the 

time history of 𝜃𝐼𝑁𝑆(𝑡), the angle of rotation around the instantaneous axis of rotation, was 

determined (Eq. 8.10): 

 𝜃𝐼𝑁𝑆(𝑡) = 2 [𝑎𝑡𝑎𝑛2 (√𝑞𝑖
2 + 𝑞𝑗

2 + 𝑞𝑘
2, 𝑞𝑟)] (8.10) 

4. as the last step, the Root Mean Square Error (RMS for INS) between 𝜃𝐼𝑁𝑆(𝑡) calculated 

from the reference R and R obtained with the seven methods was calculated. 

Those two error metrics were then used to compare the accuracy of the discussed seven 

methods of updating R. The analysis was performed for the four test cases and all sampling steps 

t described in the 8.2.7 Sampling frequency section. After the metrics were calculated, the 

following error distributions were plotted: RMSavg,R vs. t and RMS for INS vs. t. Next, a simple 

linear regression model was fitted to each of them and the coefficient of determination, R2, was 
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computed. R2 was then utilized to evaluate if the plotted distributions exhibited a linear or non-

linear behavior. 

8.2.9 Error analysis – analytical approach 

To test our hypothesis and evaluate the sensitivity of the computed orientation to the time step 

t, the magnitude of the measured angular velocity ω(t), and the frequency content of the data, an 

analytical approach that investigated errors in a simplified 2D case was performed. 

Body rotation around an axis in a 2D space can be described with a 2-by-2 rotation matrix R2D 

(Eq. 8.11): 

 𝑅2𝐷 = [
𝑅2𝐷,11 𝑅2𝐷,12

𝑅2𝐷,21 𝑅2𝐷,22
] = [

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] (8.11) 

where  is the angle of rotation. 

For the purpose of this analysis, the following was assumed as body’s angular velocity 𝜔𝑎𝑛(𝑡) 

(Eq. 8.12): 

 𝜔𝑎𝑛(𝑡) = 𝐴(𝑠𝑖𝑛(2𝜋𝑓𝑡) + 𝑐𝑜𝑠(2𝜋𝑓𝑡)) (8.12)1 

where t – time (s); f – frequency (Hz), A – constant. 

If the body rotates only around one axis, the time history of the angle of rotation 𝜃𝑎𝑛(𝑡) can be 

found by integrating the body’s angular velocity (Eq. 8.13): 

 𝜃𝑎𝑛(𝑡) = ∫ 𝜔𝑎𝑛(𝜏)𝑑𝜏
𝑡

0
 (8.13) 

By substituting Eq. 8.12 into Eq. 8.13, the analytical form of the angle of rotation (for the 

assumed form of the angular velocity) can be found from Eq. 8.14: 

∫ 𝜔𝑎𝑛(𝜏)𝑑𝜏
𝑡

0
= ∫ (𝐴(𝑠𝑖𝑛(2𝜋𝑓𝜏) + 𝑐𝑜𝑠(2𝜋𝑓𝜏))) 𝑑𝜏

𝑡

0
=

𝐴

2𝜋𝑓
(1 − 𝑐𝑜𝑠(2𝜋𝑓𝑡) +

𝑠𝑖𝑛(2𝜋𝑓𝑡))  (8.14) 

The angle of rotation can also be found by numerical integration of Eq. 8.12. Assuming a 

constant integration interval – time step t – and using the trapezoidal integration rule the angle 

of rotation 𝜃𝑁𝑈𝑀 at discrete time 𝑡 = 𝜏 can be obtained from Eq. 8.15: 

 𝜃𝑁𝑈𝑀,𝜏 = 𝜃𝜏−1 +
𝜔𝜏−1+𝜔𝜏

2
∗ t (8.15) 

where the subscript 𝜏 − 1 indicates the previous step and the subscript 𝜏 indicates the current 

integration step. 

                                                           
1 For simplicity of the derivation, the assumed analytical form of the angular velocity 𝜔𝑎𝑛(𝑡) 

was modeled as the sum of two periodic functions. Eq. 8.12 can be then treated as a special case 

of the Fourier series. It is hypothesized that through this relatively simple 2D example, general 

trends caused by changes in the time step, the magnitude of the angular rate, and the frequency 

content of the data, can be identified and investigated. It is assumed that those identified trends 

hold true also for a more complex 3D motion. 
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Having both, the angle of rotation obtained analytically (𝜃𝑎𝑛) and numerically (𝜃𝑁𝑈𝑀) the 

absolute error E[R] in the rotation matrix (evaluated at the same discrete points as used for 

integration of Eq. 8.12) can be determined based on Eq. 8.16: 

 𝐸[𝑅2𝐷] = [
|𝑐𝑜𝑠(𝜃𝑎𝑛,𝜏) − 𝑐𝑜𝑠(𝜃𝑁𝑈𝑀,𝜏)| |𝑠𝑖𝑛(𝜃𝑁𝑈𝑀,𝜏) − 𝑠𝑖𝑛(𝜃𝑎𝑛,𝜏)|

|𝑠𝑖𝑛(𝜃𝑎𝑛,𝜏) − 𝑠𝑖𝑛(𝜃𝑁𝑈𝑀,𝜏)| |𝑐𝑜𝑠(𝜃𝑎𝑛,𝜏) − 𝑐𝑜𝑠(𝜃𝑁𝑈𝑀,𝜏)|
] (8.16) 

It is worth pointing out here that since the absolute values are considered in Eq. 8.16, 

𝐸[𝑅2𝐷,12] = 𝐸[𝑅2𝐷,21]. 

The absolute error in the rotation matrix components, at discrete data points, is Eq. 8.17: 

 𝐸[𝑅2𝐷,11] = 𝐸[𝑅2𝐷,22] = |𝑐𝑜𝑠(𝜃𝑎𝑛,𝜏) − 𝑐𝑜𝑠(𝜃𝑁𝑈𝑀,𝜏)| = |𝑐𝑜𝑠 (
𝐴

2𝜋𝑓
(1 − 𝑐𝑜𝑠(2𝜋𝑓𝜏) +

𝑠𝑖𝑛(2𝜋𝑓𝜏))) − 𝑐𝑜𝑠 (𝜃𝜏−1 +
𝜔𝜏−1+𝜔𝜏

2
∗ t)|  (8.17a) 

 𝐸[𝑅2𝐷,12] = 𝐸[𝑅2𝐷,21] = |𝑠𝑖𝑛(𝜃𝑁𝑈𝑀,𝜏) − 𝑠𝑖𝑛(𝜃𝑎𝑛,𝜏)| = |𝑠𝑖𝑛 (𝜃𝜏−1 +
𝜔𝜏−1+𝜔𝜏

2
∗ t) −

𝑠𝑖𝑛 (
𝐴

2𝜋𝑓
(1 − 𝑐𝑜𝑠(2𝜋𝑓𝜏) + 𝑠𝑖𝑛(2𝜋𝑓𝜏)))|  (8.17b) 

Using Eq. 8.17 a sensitivity study was performed varying: 

 the time step t, 

 the parameter A, which affected the magnitude of the angular velocity, and 

 the frequency f of the angular velocity from Eq. 8.12. 

For the analysis, it was assumed that the whole event lasted 0.25 s. The parameters were 

modified one at a time. The time step t varied from 5e-5 s to 0.002 s, the parameter A from 1 to 

30 (where 30 represented the level of maximum angular velocity seen in Cases 2-4), and the 

frequency f from 10 Hz to 500 Hz (frequencies seen in the angular velocity signals from Cases 2-

4). 

To quantify the effect of the three variables on the calculated orientation, the procedure detailed 

in Step 1 and Step 2 in the 8.2.8 Test data – error metrics section was carried out. 

In the results section for the analytical analysis, the error in the rotation matrix R was presented 

in the function of parameter A, time step t, frequency f, normalized frequency t * f, and lastly, 

in the function of adjusted normalized frequency x * t * f, with x described by: 

 𝑥 = 1.028 ∗ (
𝑓

𝑓𝑟𝑒𝑓
)
−0.43

 (8.18) 

where fref is a frequency for which the error in R is known and used as a reference to compare to. 

Remark: The methodology of finding Eq. 8.18 was described more in detail in APPENDIX I. 

8.3 Results 

8.3.1 Test cases 

RMSavg,R (Figure 71) and RMS for INS (Figure 72) indicated the UQ and ER algorithms as the 

most accurate (from the seven considered in the paper) in all four test cases. In addition, the two 
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algorithms gave almost identical results at each of the data sampling frequencies for both error 

metrics used. According to RMSavg,R (Figure 71) the method that was the least accurate was either 

the 2-1-3 method (in Case 2 and Case 3 across all considered time steps and in Case 4 for t = 5e-

5 s,  t = 1e-4 s, and t = 2e-4 s), or the DiMasi method (in Case 1 for all considered t and in 

Case 4 for t equal or higher than 4e-4 s). According to RMS for INS (Figure 72) the least accurate 

method of updating R, across all considered t, was also either the 2-1-3 method (Case 2, 3 and 4) 

or the DiMasi algorithm (Case 1). When the time step t of the ARS data (used as the input) 

increased, the difference between the calculated and reference rotation matrix grew as well 

according to RMSavg,R (Figure 71) for five out of the seven tested algorithms (Bortz, Beard, DiMasi, 

SP, and 2-1-3). Similarly, the error in the angle of rotation INS increased with higher values of t 

for the same five methods (Figure 72). The ER and UQ algorithms appeared to be noticeably less 

susceptible to the increase in t. 

a) b)  

c) d)  

Figure 71. RMSavg,R error vs. the ARS data time step t for the seven investigated methods of 

updating the rotation matrix R: a) FE model (Case 1), b) Simplified Head test (Case 2), c) 

THOR ATD sled test (Case 3), d) THOR ATD sled test with head impact (Case 4). 



79 
 

a) b)  

c) d)  

Figure 72. RMS error for 𝜽𝑰𝑵𝑺(𝒕) vs. the ARS data time step t for the seven investigated 

methods of updating the rotation matrix R: a) FE model (Case 1), b) Simplified Head test 

(Case 2), c) THOR ATD sled test (Case 3), d) THOR ATD sled test with head impact (Case 4). 

As expected, for t = 5e-5 s the discrepancy between the reference and the calculated rotation 

matrix was the smallest and for t = 0.001 s the highest across all considered values of t for all 

seven methods of updating R. 

When a simple linear regression model was fitted to the error distributions from Figure 71 and 

Figure 72, the calculated coefficient of determination, R2, indicated that the two error metrics (Eq. 

8.9 and Eq. 8.10) increased (in the function of t) almost linearly with respect to the size of t for  

four methods of updating R (Bortz, Beard, DiMasi, SP) (Table 5 and Table 6). For the 2-1-3 

method the error character exhibited linear behavior in Case 1, Case 2, and Case 4 (R2 of approx. 

0.99 for RMSavg,R and RMS for INS) with R2 deviating noticeably from 1 (when 1 means linear) in 

Case 3 (R2 of approx. 0.86 for RMSavg,R and of approx. 0.79 for RMS for INS). In the UQ and ER 

algorithms the coefficient of determination varied from 0.96 (Case 3 for ER) to 0.007 (Case 4 for 

UQ) according to RMSavg,R and from 0.89 (Case 1 for both, UQ and ER) to 0.15 (Case 3 for ER) 

according to RMS for INS. That indicated non-linear behavior of both error metrics in the two 

discussed methods of computing R. 
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Table 5.  Coefficient of determination for RMSavg,R. 

 Bortz Beard DiMasi ER SP UQ 2-1-3 

Case 1 1 1 1 0.906 1 0.913 1 

Case 2 0.998 0.998 0.989 0.606 0.998 0.773 0.999 

Case 3 0.999 0.999 0.989 0.96 0.999 0.639 0.857 

Case 4 0.992 0.990 0.973 0.033 0.990 0.007 0.985 

Table 6.  Coefficient of determination for RMS for INS. 

 Bortz Beard DiMasi ER SP UQ 2-1-3 

Case 1 1 1 1 0.893 1 0.894 1 

Case 2 0.991 0.991 0.999 0.499 0.991 0.376 0.997 

Case 3 0.999 0.999 0.999 0.153 0.999 0.817 0.792 

Case 4 0.999 0.999 0.997 0.644 0.999 0.665 0.999 

8.3.2 Error analysis – analytical approach 

When the time step t increased, the difference between the rotation matrices obtained 

analytically and numerically increased in a non-linear manner (Figure 73 and Figure 74).  The non-

linear relationships was observed regardless of the value of f (Figure 73a and Figure 74a) or the 

parameter A (Figure 73b and Figure 74b) used. It is in contrary to most of the test case results, 

where the character of that change was either linear or close to linear (Table 5). 

a) b)  

Figure 73. RMSavg,R error vs. time step t up to 0.001 s for variations in: frequency f (with 

constant A = 15), b) parameter A (with constant f = 400 Hz). 

Due to the time step t being equal to the period of the investigated function, the error in the 

computed rotation matrix grew substantially for t = 0.002 s and the input angular velocity with  

f = 500 Hz (period: 1/f = 0.002 s) (Figure 74). Part of the information contained in the input signal 

was lost as the effect of the integration error, what then resulted in a steep increase in the RMSavg,R 

metric. 
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a) b)  

Figure 74. RMSavg,R error vs. time step t up to 0.002 s for variations in: frequency f (with 

constant A = 15), b) parameter A (with constant f = 500 Hz). 

From the results of the analytical analysis it can also be seen that for the same time step t, the 

error in the numerically obtained rotation matrix grew with the increase in the frequency f (Figure 

75a) or the magnitude (parameter A; Figure 75b) of the input angular velocity. In the range of t 

up to 0.001 s the error change maintained linear character in all presented cases. It can be shown, 

though, that the character of the error distributions becomes non-linear when the value of t 

approaches the period of the integrated function 𝜔𝑎𝑛(𝑡). 

a) b)  

Figure 75. RMSavg,R error vs.: a) frequency f (with A = 15 and varied t), b) parameter A 

(related to magnitude of the assumed form of the angular velocity; 

with f = 400 Hz and varied t). 

Similarly to the error in the function of the sampling step t (Figure 73a) or in the function of 

the frequency f (Figure 75a), with the increase in the normalized frequency (t * f), the error in the 

rotation matrix R grew (Figure 76a). The character of that error increase was non-linear in its 

nature for all four investigated frequencies f. 
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a) b)  

Figure 76. RMSavg,R error (with A = 15) vs.: a) normalized frequency (t * f),  

b) adjusted normalized frequency (x * t * f, where x is described by Eq. 8.18). 

After using Eq. 8.18 with fref of 200 Hz (treated here as an example), the “50 Hz”, “100 Hz”, 

and “400 Hz” curves matched the reference “200 Hz” response closely, with the exception of the 

“400 Hz” curve above the adjusted normalized frequency of approx. 0.45 (Figure 76b). Beyond 

the adjusted normalized frequency of 0.45, the time step t in the “400 Hz” case started 

approaching the value of the investigated function’s period. As it was shown in Figure 74, the 

closer the sampling step is to the period of the analyzed function, the increase in the error in R 

more rapid and non-linear. 

Remark: It needs to be pointed out here that the range of the adjusted normalized frequency 

from Figure 76b would have been different if a different value of fref had been used in the 

normalization procedure. 

8.4 Discussion 

Bortz 1971 showed that, as a general case, integration of the angular velocity vector ω(t) does 

not result in angular displacement. To account for the non-commutative nature of finite rotations 

a correction step in an attitude algorithm is necessary (Savage 1998, cf. Savage 2010). That 

correction is commonly called coning correction and it describes the coning motion of a body, an 

effect caused by two or more orthogonal rotations. 

In five out of the seven discussed methods of updating the local-to-global rotation matrix R, 

integration of ω(t) is performed. In four of those methods (Beard, DiMasi, SP, and UQ), the 

integration process does not include the coning correction. The fifth method, and the only one 

explicitly accounting for the coning motion, is the Bortz method. To construct the rotation matrix 

the ER method numerically integrates the rate of change of the Euler parameters and the 2-1-3 

method integrates the rates of the Euler angles. 

Even though the coning effect was not accounted for in most of the methods discussed in the 

paper, the Beard, SP, ER, and UQ algorithms gave an error that was either comparable or smaller 

than that calculated for the Bortz method. This is because the integration interval was sufficiently 
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small, which rendered the error coming from the coning motion negligible in the four presented 

test cases. 

The Beard method utilizes a rectangular integration scheme to obtain finite rotations from the 

local angular velocity vector ω(t), whereas the UQ method uses trapezoidal integration to 

accomplish the same task. The integration rule used is the only difference between the two 

algorithms, which provided for an ideal situation to evaluate the effect of the integration rule on 

method accuracy. In all four test cases, the UQ method gave more accurate results than the Beard 

method, while, at the same time, error in the UQ method was remarkably less susceptible to the 

increase in t (Figure 71 and Figure 72). The accuracy of the method used to update R will then 

depend strongly on the accuracy of the numerical integration scheme utilized to obtain the finite 

rotations from ω(t). In methods that require solving ODE, the accuracy of the numerical approach 

utilized to find the solution for an ordinary differential equation, will drive the attitude algorithm 

results. 

It was shown in Error analysis – analytical approach that when the time step t increased, the 

difference between the rotation matrices obtained analytically and numerically increased as well 

(Figure 73 and Figure 75). The observed change was non-linear in its nature which was in contrary 

to the test case results for five methods of obtaining the matrix R (Bortz, Beard, DiMasi, SP, and 

2-1-3). The character of the discussed change was either linear or close to linear for those five 

methods (with the exception of the 2-1-3 method in Case 3; Table 5). Four methods out of the five 

(Bortz, Beard, DiMasi, and SP) used the first order integration schemes at some step in the 

algorithm. In the analytical analysis presented in the paper, the second order (trapezoidal) 

integration rule was utilized. When that rule was changed to rectangular (first order) and the 

analytical analysis was carried out once more for the same time step range as in the test cases (t 

from 5e-5 s to 0.001 s), the error increase due to the change in t became linear or close to linear 

(Figure 77). This further reinforces the statement that the error in computed orientation is driven 

mostly by the accuracy of the numerical integration used in the method of obtaining the rotation 

matrix R. 

a) b)  

Figure 77. RMSavg,R error vs. time step t up to 0.001 s for variations in: frequency f (with 

constant A = 15), b) parameter A (with constant f = 400 Hz). 
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When used to transform vectors (e.g. acceleration or position), an orthonormal matrix 

preserves vector lengths and the angles between them. The DiMasi method is the only method out 

of the discussed seven algorithms in which the updated matrix R does not remain orthonormal 

throughout the analysis, i.e. 𝑹𝑹𝑇 ≠ 𝑰, where I is the identity matrix. An additional orthogonality 

correction step would be required to improve the method’s accuracy, but this was not investigated 

here. 

The Beard, Bortz, and UQ algorithms are subject to a divide-by-zero error in the case that the 

angular velocity were to be zero across multiple time steps. While this will most likely not present 

a problem with real data, this does cause issues with the data from computer simulations where 

angular velocity can remain equal to zero if it is part of the input. 

It is worth mentioning here that there is a typographical error in the R(2,2) term presented in 

Beard and Schlick 2003. In R(2,2), the term Ω𝑎
2  (squared finite rotation around axis a) appears 

twice when it should only be mentioned once. The second appearance should be Ω𝑏
2 instead. 

The method of formulating the matrix R using Eq. 8.11 is equivalent to the 2-1-3 method (Kang 

et al. 2011) when a rigid body rotation (around more than one axis) is described by successive 

multiplications of the matrix from Eq. 8.11 expanded into three dimensions. Beard and Schlick 

2003 showed that the order of matrix multiplications introduces a bias into the coordinate rotation. 

Another disadvantage of using the Euler angles is that they are prone to gimbal lock and, thus, they 

may not give a unique solution. 

Similar error analysis as the one described in the 8.2.9 Error analysis – analytical approach 

section can be performed for the Unit Quaternion (UQ) method (Rudd et al. 2006), where instead 

of the direct use of the angle of rotation to build R, the Euler parameters would be utilized to 

formulate the rotation matrix. Assuming the same analytical form of the angular velocity as 

presented in Eq. 8.12, rotation only around one axis, and the trapezoidal integration scheme (Eq. 

8.15), the method described by Eq. 8.11 to Eq. 8.17 and the UQ method would be then analytically 

equivalent and thus only the former was discussed in the 8.2.9 Error analysis – analytical 

approach part. 

The analytical error analysis presented in the paper could be also performed for a body that 

rotates around more than one axis. Even though that analysis (which would be more 

mathematically complex) was not performed here, it is believed that the general trends seen in the 

"one-axis rotation" case (Figure 73 and Figure 75) would still hold true for the "2+ orthogonal 

rotations" case. 

When the computational cost is considered, the Beard method seemed to be the most time-

efficient and the SP method the least. The computation time was measured while the algorithms 

were run with MATLAB 2017a (MathWorks, Natick, MA, USA) on a desktop computer with the 

Intel i7 Dual Core unit processing the local angular rate vector with 15960 data points per each 

component. The computation time ranged from approx. 1.9 seconds (SP method) to 0.06 s (Beard 

method). The other five methods required less than half of a second to accomplish the same task. 

Those values may differ when a different code than MATLAB (software optimized for matrix 

manipulations) is used. 
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The results of this study showed that the error in the method used to obtain the rotation matrix 

R, depends not only on the time step t but also on the characteristics of the angular velocity signal 

(its magnitude and the frequency content). It is possible that for the same value of the time step t, 

the error in R would be smaller the smaller the magnitude or frequency of the input ARS data. 

That indicates that when choosing data sampling rate, one needs to take into account the type of 

the event being investigated. When the time step t is larger than the period of an integrated 

function, substantial part of the information contained in the input signal, will be lost. On the other 

hand, high sampling frequency appropriate for a crash test (short event with rapid changes in the 

angular velocity) might not be necessary, e.g., for a gait analysis (much longer event with smaller 

magnitude of ω(t) than seen in crash). 

In the 8.3.2 Error analysis – analytical approach section it was shown that for a simple 2D 

model there is a normalizing factor that can be used to match error curves for different frequencies 

of the analyzed angular velocity if fref is given. That normalizing factor can be utilized to 

extrapolate the results of the error analysis from a 2D event, in which the input data frequency f1 

and the sampling step t1 are known, to a new 2D event (for example, with a larger time scale) in 

which the frequency of the angular velocity f2 is also known. Assuming the same magnitude of the 

angular rate (as defined by the parameter A used in the analysis) between the two events, the 

sampling step t2 that would yield a comparable magnitude of the RMSavg,R metric between the 

investigated scenarios can be estimated from Eq. 8.19: 

 1.028 ∗ (
𝑓1

𝑓𝑟𝑒𝑓
)
−0.43

∗ ∆𝑡1 ∗ 𝑓1 = 1.028 ∗ (
𝑓2

𝑓𝑟𝑒𝑓
)
−0.43

∗ ∆𝑡2 ∗ 𝑓2 ⟹ ∆𝑡2 = (
𝑓1

𝑓2
)
0.57

∗ ∆𝑡1 (8.19) 

It needs to be pointed out here, though, that both, Eq. 8.18 and Eq. 8.19 were derived using the 

assumptions described in Section 8.2.9. Further research effort is required to identify similar 

mathematical connections for more complex 3D scenarios or a 2D scenario in which different 

magnitudes of the angular velocity are considered. 

To summarize, the focus of this study was put on crash testing. Nevertheless, the results from 

the chapter can be extrapolated to other applications. When the relationships for different 

parameters describing the ARS signal are similar between investigated scenarios, the same attitude 

algorithm used in those cases should yield similar error results regardless of the difference in the 

time scale or angular rate magnitude/frequency. 

8.5 Conclusions 

The paper investigated the use of seven previously published algorithms of updating the local-

to-global rotation matrix R in crash-like scenarios to identify which one of those methods was 

most applicable for test conditions like these. Additionally, an analytical analysis focusing on the 

effect of the data sampling step t and the characteristics of the measured angular velocity signal 

(its magnitude and frequency) was performed. 

The main conclusions of this study are as follows: 

 For the four test cases presented in the paper the most accurate methods of updating the 

rotation matrix R were the UQ method (Rudd et al. 2006) and the ER method (Huculak and 
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Lankarani 2013) – algorithms based on the Euler parameters derived from the angular 

velocity vector ω(t). In addition, both methods appeared to be noticeably less susceptible 

(than the other discussed algorithms) to changes in error resulting from the increase in the 

sampling step t. 

 The accuracy of the method used to update R depends strongly on the accuracy of the 

numerical integration scheme utilized to obtain finite rotations from ω(t) or on the accuracy 

of the numerical method used to solve ordinary differential equations, if that step is 

required in the algorithm. 

 Characteristics of the angular velocity signal (its magnitude, period, etc.) affect the 

magnitude of the error in the calculated rotation matrix R. It was shown that for the same 

value of the time step t, the error in R is greater for greater magnitude or higher frequency 

of the input ARS data (Figure 75). 

 In both, the analytical error analysis and when experimental data were used, the increase 

in the time step t of the ARS data (used as the input), caused, as expected, an increase in 

the difference between the calculated and reference rotation matrix (Figure 71). Similarly, 

the error in the angle of rotation INS increased with higher values of t (Figure 72). 
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9. ANGULAR ACCELERATION ANALYSIS 

When a sensor package is at a distance from the tracked point in all three dimensions, the time-

history of the position of that point can be found with the use of rigid body motion equations and 

body’s local angular acceleration (see Eq. 1.4). The goal of Chapter 9 was to investigate how 

different methods of obtaining angular acceleration (AAC) affect the process of 3D trajectory 

calculation. Five different and previously published techniques were analyzed. In addition, the 

sensitivity of calculated trajectories to the change in the filter class used on the AAC input data 

was evaluated. 

The chapter is organized as follows. Section 9.1 a) introduces the reader to different techniques 

of obtaining local angular acceleration of a rigid body, b) describes the advantages and 

disadvantages of these techniques, c) discusses how these techniques have been used in crash-

related research, d) shows what type of filters have been utilized previously in the process of 

finding AAC, e) shows two variations of one of the discussed methods of obtaining AAC, and f) 

briefly presents an alternative method of computing trajectory of a point which is at a distance 

from the sensor package used in the position calculation. Section 9.2 focuses on the methods used 

in this AAC analysis. The results of the study are presented in Section 9.3. Section 9.4 provides a 

general discussion about AAC filtering and about the accuracy of different AAC methods used in 

trajectory calculation process. Concluding remarks are provided in Section 9.5. 

9.1 Calculation of angular acceleration 

When an accelerometer block is designed in a way that its measurement center (Figure 2) is 

coincident with the tracked point, i.e. when only one component of the accelerometer seismic mass 

position vector , the one aligned with the sensor sensing axis, is non-zero, the angular acceleration 

(AAC) is not needed in the process of calculating 3D trajectory of that point. When  has two or 

three non-zero components, the angular acceleration needs to be accounted for. That correction 

needs to be performed, e.g., when a 6 degree-of-freedom sensor cube is attached to the side of a 

rigid body but the researcher wants to obtain acceleration (and then position) at the body’s CG, or 

when sensor fabrication tolerances and mounting inaccuracies are taken into consideration. 

AAC measurement techniques are usually divided into two categories: 

 indirect measurements: 

o where either angular position or angular velocity is differentiated to obtain AAC. A 

commonly used method that is based on differentiation of the body’s angular rate is 

often called 3a (cf. Kang et al. 2011), 

o angular acceleration is determined using data from nine linear accelerometers (Nine 

Accelerometer Package (NAP) method; Padgaonkar et al. 1975) , 

o angular acceleration is determined using linear accelerations in conjunction with 

body’s local angular rates (6a method; Martin et al. 1998, Kang et al. 2011, Kang et 

al. 2017); 

 direct measurements by angular accelerometers (Amarasinghe et al. 2005, Wolfaardt et al. 

2008, Li et al. 2013, Carvalho et al. 2013, Zhao et al. 2015, Nusbaum et al. 2018). 
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9.1.1 Advantages and disadvantages of different methods of obtaining AAC 

NAP is based on analytical equations and it requires data from nine linear accelerometers to 

compute AAC but also one integration to obtain angular velocity (if needed). The 6a approach, 

similarly to NAP, uses analytical equations to determine the angular acceleration components from 

six linear accelerometers and three angular rate sensors. The advantage of this method over NAP 

is that the angular velocity is measured directly. 

It has been shown that NAP is numerically stable (cf. Liu 1976) but the channel count and the 

space required to accommodate nine sensors can limit its usage. In addition, because of a large 

number of linear accelerometers utilized, the method is more prone to errors resulting from sensor 

misalignment, debias, noise, etc. (Voo et al. 2003, cf. Bussone et al. 2010). It is hypothesized that 

similar issues can affect the 6a scheme. 

In the 3a method, angular acceleration is computed by numerical differentiation of the 

angular velocity vector (t). Obtained acceleration, though, depends strongly on the characteristics 

of the noise in the differentiated signal and/or on a filter class used on the input angular rate data 

(cf. Bussone et al. 2010). This puts the method at a disadvantage to NAP and 6a, two approaches 

that are based on algebraic manipulations rather than on a numerical differentiation. 

AAC can be also measured directly by angular accelerometers. There is a number of angular 

accelerometers available on the market (e.g., 7302BM5 angular accelerometers manufactured by 

Endevco Meggit Sensing Systems) but they have not been used widely in crash or impact testing 

and therefore there are no recommendations on how to post-process the data from those sensors 

when needed in 3D trajectory calculation (e.g., what type of filters should be used, etc.). 

9.1.2 AAC measurement in impact and crash testing 

Over the years, the NAP configuration (Figure 78) has been commonly used in impact and 

crash testing (Viano et al. 1986, DiMasi 1995, Hardy et al. 2001, Voo et al. 2003, Yoganandan et 

al. 2006, Kang et al. 2015, Sanchez 2017) and by many the method is treated as the gold standard 

in obtaining AAC (Martin et al. 1998, Bussone et al. 2010, Kang et al. 2011, Kang et al. 2017, 

Nevins et al. 2018). 

 

Figure 78. NAP configuration. 
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Kang et al. 2011 and Kang et al. 2017 used 3a, 6a and NAP to obtain 6DOF kinematics of 

the head in an array of tests in which the head-neck assembly of the HIII 50 ATD was impacted 

by a pneumatic ram at various rates and in various directions. Bussone et al. 2010 compared NAP 

and 3a in multiple short- and long-duration events. Gabler et al. 2016 used differentiated angular 

velocity to assess existing metrics for predicting strain-based brain response. Rudd et al. 2006 

utilized the 3a scheme to obtain kinematics of pedestrian’s limbs during an impact. Huculak and 

Lankarani 2013 applied the method to compute the head trajectory in aircraft seat certification 

testing, and Wu et al. 2009 and Kerrigan et al. 2011 used the 3a configuration to describe motion 

of a vehicle in rollover. 

While Kang’s and Bussone’s research focused mainly on the comparison between different 

methods of computing AAC (with NAP being treated as the gold standard), Rudd, Huculak, Wu, 

and Kerrigan used AAC obtained with the 3a method to calculate the trajectory of a body in a 

3D space. In addition, Wu et al. 2009 and Huculak and Lankarani 2013 assessed the accuracy of 

their position predictions using reference data from video tracking. Wu et al. 2009 showed a good 

agreement between the computed and the reference trajectories, while the position error in Huculak 

and Lankarani 2013 varied between 1 mm to 43 mm. 

Even though 3a, 6a and NAP were compared between each other using sensor data 

recorded on the same test, none of the research effort mentioned above, utilized the three methods 

to compute 3D trajectories of a body loaded in the same environment and in the same way. To the 

author’s knowledge there is no publically available comprehensive investigation on if (and how 

much) the selection of the AAC obtaining method would affect that calculation process. Because 

of lack of that type of a study there is no current standard stating which of the discussed algorithms 

should be utilized, when needed in trajectory calculation for a body in a crash. 

9.1.3 Filtering of impact data used in obtaining AAC 

The SAE J211 document (SAE 1995) recommends the Channel Frequency Class (CFC) 1000 

filter (1,650 Hz cut-off frequency) to be utilized on the head accelerations (both, linear and 

angular) when the ATD’s head impact data are processed. The same document suggests the CFC 

180 (300 Hz cut-off) filter for vehicle structural accelerations when they are integrated for velocity 

or displacement, and CFC 60 (100 Hz cut-off) when the acceleration is used in vehicle 

comparisons. SAE J211, though, does not specify what filter class should be utilized when the 

angular velocity of a body is analyzed. 

Majority of biomechanical researchers follows SAE J211’s recommendations. The CFC 1000 

filter was used in multiple studies, e.g. on the input linear acceleration to 6a (Kang et al. 2011, 

Kang et al. 2015) or NAP (Voo et al. 2003, Yoganandan et al. 2006, Bussone et al. 2010, Kang et 

al. 2011, Kang et al. 2015). In contrary, Hardy et al. 2001 utilized CFC 180 on the head’s local 

acceleration (used – among others – for the NAP calculations) to eliminate the resonance of the 

head and the NAP fixture itself. Martin et al. 1998 first filtered the HIII ATD head’s acceleration 

with CFC 1000 and then, to reduce the noise in AAC obtained from NAP and 6a, with a 4-pole 

Butterworth filter with a 600 Hz cut-off frequency. 
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While there is a general consensus about filter class utilized on linear accelerations, researchers 

have used multiple different filters on the head or vehicle angular rate. Kang et al. 2011 utilized 

CFC 1000 on angular rate used in the 6a method and CFC 180 (high severity impacts) or CFC 

60 (low severity impacts) for the 3a scheme. Kang et al. 2017 used the same CFC 1000 filter on 

the head angular rate for 6a but CFC 600 (1,000 Hz cut-off) for 3a. Gabler et al. 2016 utilized 

CFC 60 for the head ARS in strain-based metrics (some of which required AAC as an input) to 

assess the brain response. Martin et al. 1998 used CFC 180 for the local angular velocity in head 

impacts. Kerrigan et al. 2013 utilized vehicle angular velocity filtered to CFC 180 to obtain the 

vehicle’s 3D kinematics but for calculating the local angular accelerations he filtered the vehicle’s 

ARS data with a low-pass filter with a 25 Hz cut-off. Lastly, Bussone et al. 2010 proposed a 

filtering cut-off frequency based on a residual analysis performed on the ARS channels used to 

obtain AAC (for more details about the residual analysis see Winter 2004). The results from 

Bussone’s study suggested a cut-off of 150 Hz in a non-impact event stating at the same time that 

“(…) an a priori selection of cutoffs is difficult” and “In the absence of a compelling pre-selected 

cutoff, the recommended solution is a per-channel analysis (…).” 

In summary, the selection of a proper filter for angular rate or linear acceleration data is not a 

trivial task. The cut-off frequency used will be test and application specific. When the obtained 

results (e.g. AAC computed through differentiation of ARS data in the 3a method) depend 

strongly on the characteristics of the noise in the measured signal, selection of an appropriate 

filtering technique is of great importance. 

9.1.4 Two variations of the 6a configuration 

The 6a method does not constrain the researcher to only one geometric configuration of the 

sensors used within the scheme. The flexibility in choosing the location of six linear 

accelerometers led to different designs of the 6a sensor package seen in the literature. Two of 

the designs, coplanar c6a configuration (Figure 79a) and three-arm t6a (Figure 79b) were 

evaluated in impact testing and compared with NAP and 3a (Kang et al. 2011, Kang et al. 2017). 

Because of that it was decided that both would be also investigated in this dissertation. 

a) b)  

Figure 79. Two variations of the sensor package used in the 6a method: a) coplanar 6a configuration (c6a), 

b) three-arm 6a configuration (t6a). 



91 
 

9.1.5 Methods of computing trajectories for a point positioned away from the sensor block 

When a sensor package is at a distance from the tracked point o in all three dimensions, the 

time-history of the global position of that point can be obtained using body’s local acceleration 

transformed to point o (with the use of AAC) double integrated in time (as shown in Section 1.2.3). 

The position can be also found using an alternative approach that minimizes (or completely 

ignores) the effect of the body’s local angular acceleration. This alternative method requires the 

following information: 

 known vector ρo-to-MC (in the body’s local coordinate frame) between point o and the 

measurement center (MC; Figure 2) for the sensor block, 

 the position time history of MC, rMC(t), computed as described in Section 1.2.3, but 

assuming that all sensors were perfectly aligned with the axes of the body’s local 

coordinate system, i.e. no AAC was needed in the process of trajectory calculation, 

 the time history of the local-to-global rotation matrix R(t) for the tracked rigid body. 

If those three pieces of information are known, 3D component trajectories of point o can be 

computed based on Eq. 9.1: 

 𝒓𝒐(𝒕) = 𝒓𝑴𝑪(𝒕) + 𝑹(𝒕) ∗ 𝝆𝒐−𝒕𝒐−𝑴𝑪 (9.1) 

where t – time, ro – global position vector of point o, rMC – global position vector of the 

measurement center for the sensor block attached to the tracked body, R – local to global rotation 

matrix for the tracked body, ρo-to-MC – local position vector of point o relative to the measurement 

center MC. 

Because the focus of this study was put on the effect of local angular acceleration on the 

calculated trajectory of a tracked point, only the method that amplifies that effect, i.e. the method 

that utilizes the body’s local acceleration transformed to the tracked point and then double 

integrated in time, was analyzed here. The method described by Eq. 9.1 and its accuracy in 

predicting 3D component trajectories were not investigated in the dissertation. 

9.1.6 Summary 

There are currently no recommendations on which of the methods of obtaining body’s local 

angular acceleration should be utilized, if needed for 3D trajectory calculation. That is why the 

goal of this study was to evaluate motion predictive capabilities of all five methods mentioned in 

this chapter (and listed again below) for the head in a crash-like scenario: 

 Nine Accelerometer Package approach (NAP; Padgaonkar et al. 1975), 

 c6a (Kang et al. 2017), 

 t6a (Kang et al. 2011), 

 3a (cf. Rudd et al. 2006), 

 Angular acceleration recorded by angular accelerometers (sensors used during Simplified 

Head testing: Meggitt Endevco 7302BM5). 

Additionally, different Channel Frequency Class filters were used on the input data to the five 

algorithms to assess the sensitivity of the calculated trajectory to the change in the filter cut-off 

frequency. 
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9.2 Methods 

In this subsection, the methods used in the angular acceleration analysis are described. The 

methods are organized as follows. First, five test configurations utilized in the study are presented. 

Next, sensors and filters used are discussed. Then, tracked points and their coordinates relative to 

the sensor block utilized in the calculation process are given. Following, error metrics used 

throughout the analysis are discussed. A consistency check for the sensors employed in the NAP 

method is presented next. In the last part of the methods, the process of minimization of errors in 

the initial orientation of the tracked body is discussed. 

9.2.1 Test configurations 

Four Simplified Head tests and one THOR Mod-kit test were selected for the analysis: 

 Test S0425 (test fixture positioned at 45 with reference to the sled travel direction; no 

wedge), 

 Test S0433 (test fixture positioned at 0 with reference to the sled travel direction; no 

wedge), 

 Test S0436 (test fixture positioned at 45 with reference to the sled travel direction; with 

the wedge), 

 Test S0442 (test fixture positioned at 45 with reference to the sled travel direction; no 

wedge), 

 Test S0461 (THOR Mod-kit; head impact included). 

a)  b)  

c)  d)  

Figure 80. Exemplar test configurations: a) Test S0425, b) Test S0433, c) Test S0436, d) Test S0461.   
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The Simplified Head setup allowed for comparison between all five discussed methods of 

obtaining AAC. In Test S0461, due to the used sensor configuration only 3a was utilized in the 

process of 3D trajectory calculation. 

9.2.2 Sensors used 

Data from two types of angular rate sensors were used in the study: 

 DTS ARS Pro 8k deg/s with bandwidth up to 2000Hz (Simplified Head tests), 

 DTS ARS Pro 18k deg/s with bandwidth up to 2000Hz (THOR ATD test). 

Nine Endevco 7264C accelerometers (three at the origin of the sensor local coordinate system 

and three sets of two accelerometers at three different locations away from the origin; Figure 78) 

were used to obtain local linear accelerations of the Simplified Head. In test S0461, three Endevco 

7264C accelerometers (all at the head CG) were utilized. 

On all of the Simplified Head tests, AAC was also measured directly by Endevco 7302BM5 

sensors attached to the structure. 

9.2.3 Filters used 

To investigate the influence of filtering on the obtained position of a tracked body, different 

Channel Frequency Class (CFC) filters were used on the input data (either acceleration or angular 

rate). 

In the trajectory algorithm, body’s local linear acceleration, directly from the sensors, can be 

used twice: 

 In calculations needed to obtain angular acceleration (NAP and the 6a methods); 

 In the process of transforming measured acceleration from the sensor locations to the 

tracked point (Eq. 1.4). 

The angular rate measured by ARS can be used trice: 

 In calculations needed to obtain angular acceleration (6a and 3a methods); 

 To update the local-to-global transformation matrix R; 

 To transform linear accelerations measured by the linear accelerometers to the tracked 

point (Eq. 1.4). 

Before translating linear accelerations to the tracked point, the accelerometer data were always 

filtered with CFC 1000. On the linear acceleration used in the NAP and both 6a methods the 

following filters were utilized: CFC 60, CFC 180, CFC 600, and CFC 1000. Additionally, as a 

reference, raw (not filtered) ACC data were used in the trajectory calculation process. 

On the ARS data in both 6a methods and in the 3a scheme the following filters were 

utilized: CFC 60, CFC 180, CFC 600, and CFC 1000. Additionally, raw ARS data were exercised 

in the calculations. Only angular rate filtered to CFC 180 was used to transform linear acceleration 

to the tracked point (as described by Eq. 1.4) and in the algorithm described by Rudd et al. 2006, 

utilized to update the transformation matrix R. 

On the data from the angular accelerometers the following filters were used: CFC 60, CFC 

180, CFC 600, and CFC 1000. Additionally, as a reference, raw AAC data were utilized. 
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9.2.4 Location of accelerometers in body’s local frame 

To investigate the influence of angular acceleration on the calculated trajectory, the sensor data 

recorded on the tests were used to track two of the VICON markers attached to the Simplified 

Head (Figure 81a and b) and one VICON marker attached to the THOR ATD’s head (Figure 81c). 

a)  b)  c)  

Figure 81. Placement of tracked markers: a) Simplified Head (top-front view), b) Simplified Head (back view), c) 

THOR head (side view). For the location of the sensor block used, see the test matrices for both test series. 

The locations of the linear accelerometer seismic mass CGs relative to the marker positions for 

the Simplified Head tests and for the THOR test were gathered in APPENDIX J. 

9.2.5 Error metrics 

Throughout the analysis the following metric was used to evaluate the accuracy of the head’s 

calculated trajectory: 

 𝑅𝑒𝑠𝑒𝑟𝑟 = √∑ [(𝑥𝑂𝑆𝑆,𝑖−𝑥𝑐𝑎𝑙𝑐,𝑖)
2
+(𝑦𝑂𝑆𝑆,𝑖−𝑦𝑐𝑎𝑙𝑐,𝑖)

2
+(𝑧𝑂𝑆𝑆,𝑖−𝑧𝑐𝑎𝑙𝑐,𝑖)

2
]𝑁

𝑖=1

𝑁
 (9.2) 

where N – number of data (time) points, xOSS,i, yOSS,i, zOSS,i – X, Y, Z components of the reference 

trajectory (from VICON OSS) at the data point i, xcalc,i, ycalc,i, zcalc,i – X, Y, Z components of the 

calculated trajectory (based on sensor data). 

For all five test cases, within the same method of obtaining AAC but across different filters, 

𝑅𝑒𝑠𝑒𝑟𝑟’s minimum value, mean value, standard deviation (SD), and the coefficient of variation 

(CV) were found. In the initial orientation optimization investigation (see APPENDIX K), the 

maximum absolute difference diffmax between the calculated and reference trajectories was 

computed and reported for the three trajectory components. Additionally, in the Results section 

for the Simplified Head and the THOR ATD tests, the time history of the absolute difference (error) 

between the computed and VICON trajectories was determined and presented. 

9.2.6 NAP consistency check 

In the Simplified Head tests, the NAP sensor package was attached to the analyzed structure. 

Takhounts et al. 2009 showed that by using rigid body constraints a closed-form solution for each 

arm sensor measurement, in terms of the eight other sensor readings and arm lengths, can be 

  

 

 Marker 1 

Marker 2 

Marker 1 
THOR 

marker 
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obtained. That method, called also NAP consistency check, was utilized in this dissertation on the 

linear acceleration data set recorded on the four Simplified Head sled tests. All used accelerometer 

readings were identified as consistent, i.e. none of the accelerometer measurements needed to be 

replaced by the NAP consistency check prediction. 

9.2.7 Initial orientation optimization 

As it will be shown in Chapter 10: Error Effect Analysis and Chapter 13: 3D Trajectory 

Calculation in THOR Tests Utilizing the Knowledge Gained from Error Effects Analysis, the error 

in the initial orientation (Rini) of a tracked body can substantially affect the calculated trajectory. 

To minimize that effect, an optimization of the initial Euler angles for both, the Simplified Head 

and the THOR ATD’s head (in the five tests discussed in Section 9.2) was performed before the 

AAC analysis was carried out. The methods and the results from the optimization analysis can 

be found in APPENDIX K. 

9.3 Results 

In this subsection, the results from the AAC analysis are presented: first, for the tests with the 

Simplified Head, and next, for the THOR test. 

9.3.1 Simplified Head tests 

9.3.1.1 Angular accelerometer data compared to the other four methods of obtaining AAC 

Different methods of obtaining body local AAC require different input. NAP uses only linear 

acceleration (ACC), 3a is based solely on angular rate (ARS), while the angular accelerometers 

measure AAC directly. When all of that data (ACC, ARS, and AAC) from two exemplar tests 

(Test S0436 and Test S0442) were filtered to the same software filter (CFC 60) and AAC from the 

five methods was compared, the shapes and magnitudes of the angular acceleration time-histories 

matched well (Figure 82 and Figure 83), i.e. by removing the noise related to the resonance 

frequency, the AAC traces from the Endevco sensors were comparable with those from the NAP, 

both 6a methods, and the 3a configuration. (Remark: For more details about the frequency 

content of the signal recorded by the AAC sensors, see APPENDIX H). 
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Figure 82. Test S0436: Angular acceleration data from the five discussed methods of obtaining AAC. Input 

linear acceleration data, angular velocity and the angular acceleration from the Endevco sensors filtered with 

CFC 60. 

 

Figure 83. Test S0442: Angular acceleration data from the five discussed methods of obtaining AAC. Input 

linear acceleration data, angular velocity and the angular acceleration from the Endevco sensors filtered with 

CFC 60. 
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9.3.1.2 Summary based on Reserr 

In all four analyzed Simplified Head tests and for both tracked markers, the smallest value of 

𝑅𝑒𝑠𝑒𝑟𝑟 was found when the 3a method was utilized to compute body’s local angular acceleration 

(Table 7 and Table 8). For that method of obtaining AAC, the filter class that gave the smallest 

𝑅𝑒𝑠𝑒𝑟𝑟 for Marker 1 was CFC 60 in Test S0425 and CFC 180 in the remaining three tests (Table 

7). In case of Marker 2, in all four tests, angular rate data filtered to CFC 60 gave 3D trajectory 

with the smallest error (Table 8). 

The second best results, for both markers and across the analyzed test cases, were obtained 

with the use of the angular accelerometers. For those sensors, though, there was no consistency in 

a filter class that gave the smallest 𝑅𝑒𝑠𝑒𝑟𝑟. The filters varied from CFC 60 (both markers in Test 

S0436, and Marker 1 in Test S0442), through CFC 180 (Marker 1 in Test S0425 and Marker 2 in 

Test S0433), to CFC 600 (Marker 1 in Test S0433). For Marker 2, in Test S0425 and Test S0442, 

the trajectory computed with the raw unfiltered data was the one deviating the least from VICON.  

NAP, c6a, and the t6a methods generated a noticeably high deviation of the calculated 

trajectory from the reference VICON data. For Marker 1, 𝑅𝑒𝑠𝑒𝑟𝑟 varied from 11.78 mm for NAP 

in Test S0425 to 74.07 mm for c6a in Test S0436, while for Marker 2 𝑅𝑒𝑠𝑒𝑟𝑟 varied from 12.21 

mm in Test S0442 to 89.47 mm in Test S0433, both obtained when the c6a method was utilized. 

Similarly to the Endevco sensors, in case of NAP, c6a, and t6a there was no consistency in 

filter class that minimized 𝑅𝑒𝑠𝑒𝑟𝑟. 

The highest value of 𝑅𝑒𝑠𝑒𝑟𝑟 recorded for each of the test cases, was computed when AAC was 

excluded from the trajectory calculation (last column in Table 7 and Table 8). 

Remark: Plots of angular acceleration calculated with the five methods, in the four Simplified 

Head tests, for both tracked markers, for the filter combination that minimized 𝑅𝑒𝑠𝑒𝑟𝑟, can be 

found in APPENDIX L. Values of 𝑅𝑒𝑠𝑒𝑟𝑟 for all used filter combinations in the four analyzed 

Simplified Head tests can be found in APPENDIX M. 

Table 7. Minimum Reserr for Marker 1 for the five methods of obtaining angular acceleration and when AAC was 

not included in the trajectory calculation process. 

Test 

# 

NAP c6a t6a 3a 
Endevco 

7302BM5 

No AAC 

included 

𝑹𝒆𝒔𝒆𝒓𝒓 

(mm) 

Filter 

used 

𝑹𝒆𝒔𝒆𝒓𝒓 

(mm) 

Filter used 

(ARS/ACC) 

𝑹𝒆𝒔𝒆𝒓𝒓 

(mm) 

Filter used 

(ARS/ACC) 

𝑹𝒆𝒔𝒆𝒓𝒓 

(mm) 

Filter 

used 

𝑹𝒆𝒔𝒆𝒓𝒓 

(mm) 

Filter 

used 

𝑹𝒆𝒔𝒆𝒓𝒓 

(mm) 

S0425 11.78 CFC60 17.51 Raw/CFC60 16.34 CFC60/Raw 4.19 CFC60 4.39 CFC180 45.2 

S0433 28.12 CFC60 39.41 
CFC60 
/CFC60 

27.97 
CFC60 
/CF60 

2.73 CFC180 10.32 CFC600 63.3 

S0436 41.49 CFC60 74.07 
CFC60 

/CFC60 
17.32 

CFC60 

/CFC60 
5.94 CFC180 16.98 CFC60 128.77 

S0442 15.97 Raw 18.94 CFC60/Raw 19.26 CFC60/Raw 3.42 CFC180 5.16 CFC60 190.64 
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Table 8. Minimum Reserr for Marker 2 for the five methods of obtaining angular acceleration and when AAC was 

not included in the trajectory calculation process. 

Test 

# 

NAP c6a t6a 3a 
Endevco 

7302BM5 

No AAC 

included 

𝑹𝒆𝒔𝒆𝒓𝒓 

(mm) 

Filter 

used 

𝑹𝒆𝒔𝒆𝒓𝒓 

(mm) 

Filter used 

(ARS/ACC) 

𝑹𝒆𝒔𝒆𝒓𝒓 

(mm) 

Filter used 

(ARS/ACC) 

𝑹𝒆𝒔𝒆𝒓𝒓 

(mm) 

Filter 

used 

𝑹𝒆𝒔𝒆𝒓𝒓 

(mm) 

Filter 

used 

𝑹𝒆𝒔𝒆𝒓𝒓 

(mm) 

S0425 21.42 CFC60 17.98 
CFC600 

/CFC180 
36.66 CFC60/Raw 3.19 CFC60 7.81 Raw 275.12 

S0433 71.1 CFC600 89.47 
CFC1000 

/CFC1000 
59.72 

CFC60 

/CF60 
2.6 CFC60 15.61 CFC180 255.45 

S0436 23.3 Raw 27.79 Raw/Raw 22.8 
CFC60 

/CFC1000 
5.41 CFC60 10.8 CFC60 112.75 

S0442 16.97 Raw 12.21 
CFC60 

/CFC1000 
23.66 CFC60/Raw 3.12 CFC60 4.38 Raw 162.19 

For the two tracked markers, for NAP, both 6a methods, and the angular accelerometers, the 

standard deviation of 𝑅𝑒𝑠𝑒𝑟𝑟 seen across different filters used in the four analyzed tests was less 

than 0.5 mm (Table 9 Table 10). The standard deviation for the 3a configuration, for Marker 1 

varied between 0.07 mm (Test S0433) to 2.28 mm (Test S0442; Table 9), and for Marker 2, 

between 0.4 mm (Test S0436) to 1.17 mm (Test S0425; Table 10). 

The coefficient of variation CV was the highest also when AAC was computed with 3a. It 

varied between 2.51% (Marker 1 in Test S0433) to 41.48% (Marker 1 in Test S0442; Table 9). For 

the other four methods of obtaining AAC, CV was noticeably lower and it was between 0.04% 

(Marker 1, NAP, Test S0433) to 2.43% (Marker 1, t6a, Test S0425; Table 9). 

Table 9. Marker 1: Mean value, standard deviation (SD), and coefficient of variation (CV) for Reserr across all 

used filters. 

Test 

# 

NAP c6a t6a 3a Endevco 7302BM5 

Mean 

(mm) 

STD 

(mm) 

CV 

(%) 

Mean 

(mm) 

STD 

(mm) 

CV 

(%) 

Mean 

(mm) 

STD 

(mm) 

CV 

(%) 

Mean 

(mm) 

STD 

(mm) 

CV 

(%) 

Mean 

(mm) 

STD 

(mm) 

CV 

(%) 

S0425 11.83 0.03 0.24 17.62 0.06 0.35 16.63 0.4 2.43 5.05 0.61 12.04 4.4 0.01 0.22 

S0433 28.14 0.01 0.04 39.44 0.02 0.04 28.4 0.24 0.84 2.84 0.07 2.51 10.34 0.02 0.24 

S0436 41.74 0.15 0.36 74.95 0.47 0.63 17.47 0.08 0.46 6.37 0.47 7.34 17.02 0.02 0.12 

S0442 16.09 0.2 1.25 19.04 0.14 0.74 19.38 0.13 0.69 5.5 2.28 41.48 5.19 0.02 0.45 

Table 10. Marker 2: Mean value, standard deviation (SD), and coefficient of variation (CV) for Reserr across all 

used filters. 

Test 

# 

NAP c6a t6a 3a Endevco 7302BM5 

Mean 

(mm) 

STD 

(mm) 

CV 

(%) 

Mean 

(mm) 

STD 

(mm) 

CV 

(%) 

Mean 

(mm) 

STD 

(mm) 

CV 

(%) 

Mean 

(mm) 

STD 

(mm) 

CV 

(%) 

Mean 

(mm) 

STD 

(mm) 

CV 

(%) 

S0425 21.83 0.25 1.14 18.02 0.03 0.15 36.85 0.18 0.5 4.48 1.17 26.02 7.84 0.05 0.62 

S0433 71.14 0.04 0.06 89.58 0.13 0.15 60.42 0.39 0.64 3.44 0.71 20.58 15.63 0.02 0.14 

S0436 23.4 0.16 0.69 27.84 0.05 0.19 23.01 0.33 1.44 5.96 0.4 6.66 10.87 0.04 0.39 

S0442 17.12 0.25 1.43 12.4 0.28 2.29 23.78 0.16 0.67 3.95 1.14 28.9 4.44 0.1 2.14 

Relatively small values of SD seen across the five methods of obtaining local angular 

acceleration (Table 9 and Table 10) suggest that the computed trajectories (within the same method 

of determining AAC) were not highly sensitive to the change in filtering of the method’s input 

(either acceleration or angular velocity). To second that, for four out of the five methods, the 

relative variability due to the filter selection was low (up to 2.43%). The only method with a high 

relative variability (up to approx. 40%) was the 3a method. 

9.3.1.3 Global position 

The global trajectories of the two tracked markers, calculated with the five different methods 

of obtaining AAC, followed the general shape of the XYZ position components measured by the 

VICON system (Figure 84 to Figure 91). 
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In the four Simplified Head tests, the trajectories computed with the use of the 3a scheme 

matched the reference position time-histories the best, with the other four methods deviating from 

the reference mocap data more noticeably. When local angular acceleration was not included in 

the calculation, the error in the predicted response grew noticeably. That can be seen, e.g., in all 

three trajectory components of Marker 2 in Test S0425 (Figure 85), or in Marker 1’s Y and Z 

components in Test S0436 (Figure 88). 

 
Figure 84. Test S0425 – Comparison between mocap and calculated trajectories for Marker 1, for five methods of 

obtaining AAC, for the CFC filter(s) that minimized 𝑹𝒆𝒔𝒆𝒓𝒓. Absolute error between the reference trajectory and 

the trajectory computed with the use of the 3a method (best prediction; Table 7) is plotted in red. 

 
Figure 85. Test S0425 – Comparison between mocap and calculated trajectories for Marker 2, for five methods of 

obtaining AAC, for the CFC filter(s) that minimized 𝑹𝒆𝒔𝒆𝒓𝒓. Absolute error between the reference trajectory and 

the trajectory computed with the use of the 3a method (best prediction; Table 8) is plotted in red. 
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Figure 86. Test S0433 – Comparison between mocap and calculated trajectories for Marker 1, for five methods of 

obtaining AAC, for the CFC filter(s) that minimized 𝑹𝒆𝒔𝒆𝒓𝒓. Absolute error between the reference trajectory and 

the trajectory computed with the use of the 3a method (best prediction; Table 7) is plotted in red. 

 

Figure 87. Test S0433 – Comparison between mocap and calculated trajectories for Marker 2, for five methods of 

obtaining AAC, for the CFC filter(s) that minimized 𝑹𝒆𝒔𝒆𝒓𝒓. Absolute error between the reference trajectory and 

the trajectory computed with the use of the 3a method (best prediction; Table 8) is plotted in red. 
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Figure 88. Test S0436 – Comparison between mocap and calculated trajectories for Marker 1, for five methods of 

obtaining AAC, for the CFC filter(s) that minimized 𝑹𝒆𝒔𝒆𝒓𝒓. Absolute error between the reference trajectory and 

the trajectory computed with the use of the 3a method (best prediction; Table 7) marked in red. 

 

Figure 89. Test S0436 – Comparison between mocap and calculated trajectories for Marker 2, for five methods of 

obtaining AAC, for the CFC filter(s) that minimized 𝑹𝒆𝒔𝒆𝒓𝒓. Absolute error between the reference trajectory and 

the trajectory computed with the use of the 3a method (best prediction; Table 8) marked in red. 
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Figure 90. Test S0442 – Comparison between mocap and calculated trajectories for Marker 1, for five methods of 

obtaining AAC, for the CFC filter(s) that minimized 𝑹𝒆𝒔𝒆𝒓𝒓. Absolute error between the reference trajectory and 

the trajectory computed with the use of the 3a method (best prediction; Table 7) marked in red. 

 
Figure 91. Test S0442 – Comparison between mocap and calculated trajectories for Marker 2, for five methods of 

obtaining AAC, for the CFC filter(s) that minimized 𝑹𝒆𝒔𝒆𝒓𝒓. Absolute error between the reference trajectory and 

the trajectory computed with the use of the 3a method (best prediction; Table 8) marked in red. 



103 
 

The trajectories computed with the 3a configuration not only matched the reference response 

well in shape, but also in magnitude (Table 11). The highest diffmax of 10.11 mm (less than half of 

an inch) was computed for Marker 1’s Y trajectory in Test S0425. The smallest diffmax of 0.67 mm 

was recorded for Marker 1’s X in Test S0433. diffmax for Marker 2 varied between 0.71 mm (Z 

component in Test S0425) to 7.22 mm (Y, Test S0436). 

On average, the Y component had the highest deviation from the reference data among the 

three trajectory components. X and Z had comparable errors. 

Table 11. diffmax for both tracked markers for the CFC filter that minimized 𝑹𝒆𝒔𝒆𝒓𝒓 in the trajectory computed 

with the 3a method. 

Test # 
Marker 1 – diffmax (mm) Marker 2 – diffmax (mm) 

X Y Z X Y Z 

S0425 3.25 10.11 1.86 3.82 6.59 0.71 

S0433 0.67 8.28 3.54 1.96 6.79 2.19 

S0436 2.31 8.28 3.33 2.09 7.22 3.31 

S0442 2.28 5.2 2.73 1.91 3.03 2.49 

9.3.2 THOR ATD test 

In the THOR sled test, the smallest value of 𝑅𝑒𝑠𝑒𝑟𝑟 was found when the CFC 60 filter was 

applied to the angular rate data used in the 3a method (Table 12). It is worth mentioning, though, 

that there is no substantial difference between 𝑅𝑒𝑠𝑒𝑟𝑟 calculated for the other three CFC filters 

along with the raw unfiltered data. The mean value for 𝑅𝑒𝑠𝑒𝑟𝑟 was 4.46 mm (comparing to the 

minimum of 4.19 mm from Table 12) with the standard deviation and the coefficient of variation 

equal to 0.29 mm and 6.5%, respectively. When the angular acceleration was not included in the 

trajectory calculation process, the error in the calculated trajectory grew substantially (up to approx. 

340 mm). 

Table 12. 𝑹𝒆𝒔𝒆𝒓𝒓 for the THOR marker for different CFC filters used. Minimum value of the 𝑹𝒆𝒔𝒆𝒓𝒓 metric 

indicated in green. 

CFC filter 𝑹𝒆𝒔𝒆𝒓𝒓(𝒎𝒎) 

CFC 60 4.19 

CFC 180 4.21 

CFC 600 4.72 

CFC 1000 4.82 

Raw 4.36 

No AAC included 339.33 

For the four used CFC filters along with the raw unfiltered data, the calculated trajectory 

matched closely the reference (from VICON) time-history for all three trajectory components  

(Figure 92). When the THOR marker was tracked utilizing AAC obtained from the angular rate 

filtered to CFC 60 (best prediction according to 𝑅𝑒𝑠𝑒𝑟𝑟 ; Table 12), the maximum deviation 

(absolute error) from the mocap data was less than 5 mm in X, less than 6 mm for Y, and less than 

4 mm for Z (Figure 92). When the local angular acceleration was not included in the trajectory 
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calculation process, the computed response (light blue curve in Figure 92) deviated noticeably 

from the reference. 

 
Figure 92. Test S0461 – Comparison between mocap and calculated trajectories for the THOR marker. In the 

legend: CFC filter used on the head local ARS data which was then utilized to obtain AAC and the absolute error 

between the reference trajectory and the trajectory calculated using ARS filtered at CFC 60. 

Remark: Plots of angular acceleration calculated for ARS data filtered to CFC 60 can be found 

in APPENDIX L. 

9.4 Discussion 

Every sensor has an uncertainty associated with its reading. The reading can be affected, for 

example, by the error in sensitivity, by sensor misalignment due to fabrication and mounting 

tolerances, by the debias error, etc. (Sinz et al. 2015). While in 3a one needs to control for errors 

related only to three sensors, in NAP and both 6a methods the uncertainty in nine sensors (and 

their measured positions) needs to be taken into account. It is believed that that combined 

uncertainty might have been responsible for the lower performance of NAP, c6a and t6a in 

computing 3D trajectories when compared to the AAC methods that require smaller number of 

sensors. 

The effect of optimization of the body’s initial orientation on the five methods of obtaining 

AAC was not the main focus of this study and, thus, it was not quantified here. It is hypothesized, 

though, that due to the optimization process performed prior to the AAC analysis, the errors that 

could potentially affect the direct measurement of body angular velocity were mostly accounted 

for. It is assumed that without that step, the 3D trajectories computed – with the use of the 3a 

method – in the Simplified Head and the THOR ATD tests would be affected by measurement 

errors more substantially and would not match the reference response that well. 
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The filter class applied to the data utilized to obtain body’s local angular acceleration, within 

the same AAC method did not affect the calculated trajectory in a meaningful way. The filter 

selection might have a much greater effect, though, when the magnitude of AAC is the main focus 

of the analysis. Through filtering that magnitude can be affected (cf. Kang et al. 2015) and, in 

result, influence, for example, a metric that is based on the maximum value of AAC (e.g. UBrIC 

proposed by Gabler et al. 2018). 

Based on the performed analysis, to compute accurate trajectories with the use of 3a, the 

CFC 60 or CFC 180 filter should be utilized for the head’s angular rate measured during a crash. 

However, a blank selection of those filters is not appropriate, as the frequency content of the 

measured signal is case specific and, thus, in many situations CFC 60 or CFC 180 might pass an 

inappropriate amount of noise or remove important information from the analyzed data. 

9.5 Conclusions 

The chapter investigated the use of different methods of obtaining angular acceleration utilized 

in the process of 3D trajectory calculation. Five different techniques were analyzed. In addition, 

the sensitivity of the calculated trajectory to the change in the filter class used on the AAC input 

data (either acceleration or angular rate) was evaluated. 

The main conclusions of this study are as follows: 

 In the four Simplified Head tests, after optimization of the initial orientation of a tracked 

body, the smallest deviation from the reference data was observed in cases where the 3a 

method was utilized to compute body’s local angular acceleration (Table 7 and Table 8). 

 The trajectories computed with the 3a configuration matched the mocap reference data 

well in shape and in magnitude in all five considered test cases. The highest absolute 

difference between the reference and calculated trajectories (across the five tests) was 

10.11 mm (less than half of an inch; Table 11 and Figure 92). 

 Relatively small values of standard deviation seen across the five methods of obtaining 

local angular acceleration (Table 9 and Table 10) suggest that, in the analyzed test 

configurations, the computed trajectories (within the same method of determining AAC) 

were not highly sensitive to the change in filtering of the AAC method input. 

 While the 3a method generated trajectories most closely matching the reference data, 

those trajectories were also characterized with the highest relative variability (coefficient 

of variation up to approx. 40%) among the five methods of obtaining AAC. 

 The variation in the calculated trajectory was higher due to the choice in the method used 

to obtain AAC than due to the filter class used on the input data to that method.  
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10. ERROR EFFECTS ANALYSIS 

The aim of Chapter 10 was to evaluate the effect of sensor characteristics (e.g. noise level), 

sensor errors (e.g. error in sensitivity), test measurement inaccuracies (e.g. error in the 

measurement of initial orientation), and error interactions on trajectories computed with the use of 

data from IMUs. First, different error types and bounds for these errors were identified (Section 

10.1). Next, a simplified analytical analysis was performed to better understand the propagation of 

the errors in time (Section 10.2). In Section 10.3, guided by the analytical investigation, numerical 

analyses were carried out a) to quantify the effect of individual errors on the IMU-based trajectory 

estimation, and b) to identify main interaction between these errors. In Section 10.4, an analytical 

relationship that allows for identification of a faulty sensor, based on addition of one or two 

redundant sensors, was presented. 

10.1: Identification of common error types and their bounds 

10.1.1 Error types and bounds 

3D component trajectories calculated using inertial measurements can be affected by multiple 

types of signal errors or uncertainties associated with test procedure measurements. Those errors 

are usually classified into the following four categories: misalignment and mislocation, 

miscalibration, noise, and debias (also known as zero-bias) error (cf. Bussone et al. 2010, cf. Sinz 

et al. 2015). 

For the purpose of this dissertation, seven error types were investigated (Table 13). In addition, 

eleven upper and lower, physically possible, resulting from a regular equipment use in a lab 

environment, error-bounding values were identified. The methods of determining the error 

boundaries are described in the following parts of Section 10.1. 

Table 13. Error bounds for sensor error and test measurement inaccuracies used in the error effects analysis. 

# Error type Sensor type Component Bounds 

1 
Accelerometer seismic mass CG position (in 

body local coordinate frame) 
Accelerometer 

X 

 1 mm Y 

Z 

2 
Head initial orientation (in inertia reference 

frame) 
Not applicable 

Yaw 

 1 deg Pitch 

Roll 

3 
Head CG initial position (in inertia reference 

frame) 
Not applicable 

X 

 2.5 mm Y 

Z 
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4 Sensitivity error 

Accelerometer 

X 

 4% Y 

Z 

Angular Rate 

Sensor 

X 

 1% Y 

Z 

5 Debias error 

Accelerometer 

X 

 2g Y 

Z 

Angular Rate 

Sensor 

X 

 50 

deg/sec 
Y 

Z 

6 Noise Level (SF) 

Accelerometer 

X 

0 - 2 Y 

Z 

Angular Rate 

Sensor 

X 

0 - 50 Y 

Z 

7 Sensor angle misalignment 

Accelerometer 

X 

0 – 3 deg Y 

Z 

Angular Rate 

Sensor 

X 

0 – 1 deg Y 

Z 
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10.1.2 Accelerometer seismic mass CG position in body local coordinate frame (BF) 

The sensor block used during sled testing with the Simplified Head (SH) structure was 3D 

scanned multiple times to record the location and the orientation of the linear accelerometers 

relative to the head structure. Between the scans, different accelerometers were taken off and then 

attached back to the sensor block to introduce position variability due to sensor fabrication and 

mounting tolerances. 

In the ideal situation the center of gravity (CG) of an accelerometer seismic mass would be at 

an offset from the origin of the local coordinate system associated with the sensor block only in 

the direction in which the accelerometer measures the acceleration (see Chapter 9 for more detailed 

description). As mentioned before, it is rarely a case due to fabrication and mounting tolerances. 

Additionally, the measured sensor position can contain an error resulting from the accuracy of the 

position measurement itself. 

During SH testing the maximum offset in the direction other than along the accelerometer 

sensing (main) axis was found to be 0.51 mm. That value was then rounded up to 1 mm and used 

as the seismic mass CG position error upper bound for further analysis. The error lower bound was 

set to -1 mm. The same error bounds were utilized for all three coordinates of the three 

accelerometers (𝝆 from Eq. 1.4) used in this study. 

10.1.3 Initial orientation in inertial reference frame (IRF) 

To establish the bounds for the error in the head initial orientation in the inertial reference 

frame (IRF), the local coordinate frame of the THOR ATD head was determined in two different 

ways: 

 “from CAD”, where three reference landmarks on the dummy head were digitized and used 

along with the THOR ATD CAD model (NHTSA 2016); 

 “from CMM”, where the initial orientation was determined based only on points digitized 

on three orthogonal surfaces of the head sensor block. 

The “from CMM” points were taken at the same time as the three reference head landmarks 

(“from CAD” points) for direct comparison between the two methods. 

In the “from CAD” approach, first, the Left CG, Right CG, and Nasion (NS) points (Figure 93) 

were digitized in the global coordinate frame. Based on the Left and Right CG landmarks the head 

CG was found as the midpoint between the two points. Next, a temporary vector Ylocal,temp was 

established between the head CG and the Right CG (Figure 93). 
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Figure 93. THOR Head reference landmarks with head CG and temporary Y axis marked in red. Baseline figure 

taken from NHTSA 2015a. 

It was assumed that both, the NS and head CG points, were on the midsagittal plane of the 

head. From the CAD model of the assembly the angle between the horizontal line (projection of 

the top surface of the head sensor block to the midsagittal plane) and the vector connecting the 

head CG to the NS point was determined (Figure 94). That vector was then rotated down by 7.6762 

deg to establish the Xlocal axis (Figure 95a). Next, Zlocal axis was found as the cross product of Xlocal 

and Ylocal,temp vectors. To correct for orthogonality, Ylocal was re-calculated as the cross product of 

the Zlocal and Xlocal axes. As the final step, all three vectors were normalized by their length to 

obtain three unit vectors defining the initial local-to-global rotation matrix, i.e. the head initial 

orientation in the global coordinate frame (Table 14). 

 

Figure 94. THOR Head CAD model (NHTSA 2016). 
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The local axes of the head were consistent with the SAE J211 standard (SAE 1995) with Xlocal 

pointing from the back to the front, Ylocal from the left hand side to the right hand side of the head, 

and Zlocal from top to bottom (Figure 95b). 

a)  b)  

Figure 95. THOR Head: a) Xlocal axis definition; b) local coordinate system definition. 

In the “from CMM” approach, points were digitized on three orthogonal flat surfaces of the 

head sensor block (Figure 96). 

 

Figure 96. Points digitized on three surfaces of the head sensor block. 

Four points for each plane (12 points in total) were selected. The four points were used to 

define two vectors. Assuming that those two vectors were in the same plane, they were utilized to 

calculate the plane normal. Next, the normal vector was divided by its length to find a unit vector 

aligned with one of the head local frame axes. This procedure was performed for all three 
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orthogonal surfaces of the sensor block, accounting for vector mutual orthogonality. As the final 

step, the three unit vectors were combined together to construct the initial local-to-global rotation 

matrix defining the head initial orientation in the global coordinate frame (Table 14). 

Based on the two initial rotation matrices (“from CAD” and “from CMM”), two sets of the 

head initial Euler angles were calculated (Table 14 bottom). 

Table 14. Initial local-to-global rotation matrices (top) and Euler angles (bottom) found in two different ways. 

from CAD from CMM 

X
local

 Y
local

 Z
local

 X
local

 Y
local

 Z
local

 

0.982878 0.141385 -0.11815 0.984416 0.138711 -0.10809 

-0.12711 0.984516 0.120714 -0.12691 0.985869 0.109345 

0.133391 -0.10363 0.985631 0.121733 -0.09392 0.988109 

  

Yaw (deg) Pitch (deg) Roll (deg) Yaw (deg) Pitch (deg) Roll (deg) 

8.19 6.79 6.98 8.02 6.21 6.31 

 

Next, the absolute difference between the two sets was found (Table 15). The highest 

difference of 0.67 degree was observed for the Roll angle. That value was then rounded up to 1 

degree and used as the initial orientation error upper bound for further analysis. The error lower 

bound was set to -1 degree. The same error bounds were utilized for all three Euler angles. 

Table 15. Absolute difference between the Euler angles found using the "from CAD" and "from CMM" 

approaches. 

Absolute difference 

Yaw (deg) Pitch (deg) Roll (deg) 

0.17 0.58 0.67 

10.1.4 Head CG initial position in inertia reference frame (IRF) 
Left CG and Right CG points (Figure 97) were digitized in the inertial reference frame (IRF). 

Based on those two landmarks the head CG was found as the midpoint between the two points. 

 

Figure 97. Head CG found using THOR Head landmarks. Baseline figure taken from NHTSA 2015a. 
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Next, a 3D scan of the stock THOR head sensor block (Figure 98a) was aligned with the head 

3D scan (Figure 98b) using the same geometric features available in both scans. The head scan 

contained information about the THOR head landmarks from Figure 97 utilized in the process of 

finding the head CG. 

a)  b)  

Figure 98. 3D scans of: a) THOR head stock sensor block; b) THOR Head (green) and THOR sensor block 

(grey) aligned together. 

In the 3D scan of the sensor block the measurement center (MC) for the three accelerometers 

was identified (Figure 99). 

 

Figure 99. Measurement center for the three accelerometers (marked in red). 

In the ideal case, the measurement center MC would be coincident with the head CG. To verify 

that the two points were at the same location the distance between both, MC and the CG landmarks 

(which were put in the same 3D scan) was measured and recorded (Table 16). 

 

 

MC 
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Table 16. Absolute difference between the head CG and the accelerometer measurement center. 

Head CG (from CMM) vs ACC MC (from 3D scans) 

Component (SAE J211) Difference (mm) 

X 2.2 

Y 0.7 

Z 0.6 

Resultant 2.35 

The resultant difference between the head CG and the accelerometer MC was found to be 

2.35mm. That value was then rounded up to 2.5mm and used as the head CG initial error upper 

bound for further analysis. The error lower bound was set to -2.5mm. The same error bounds were 

utilized for all three head coordinates. 

10.1.5 Sensitivity error 

Sensitivity data from calibration sheets available at the University of Virginia Center for 

Applied Biomechanics for different types of accelerometers and angular rate sensors were gathered 

and analyzed. Calibration sheets for multiple sensor models were used. The data were taken into 

account only if a sensor was calibrated more than once. Next, the percentage difference in 

sensitivity (%diff) was found based on Eq. 10.1: 

 %𝑑𝑖𝑓𝑓 =  
|𝑓𝑖𝑟𝑠𝑡𝑐𝑎𝑙𝑖𝑏−𝑙𝑎𝑠𝑡𝑐𝑎𝑙𝑖𝑏|

𝑓𝑖𝑟𝑠𝑡𝑐𝑎𝑙𝑖𝑏
∗ 100% (10.1) 

where firstcalib – sensitivity as received from manufacturer when sensor sold as new, lastcalib – 

sensitivity from the most recent calibration sheet. 

The maximum %diff identified for different sensor types were as follows: 

Accelerometers: 

 Endevco Meggitt Sensing Systems 7264B-500g: 1.05% 

 Endevco Meggitt Sensing Systems 7264C-2000g: 0.47% 

 Endevco Meggitt Sensing Systems 7290E-30g: 0.25% 

 Measurement Specialties (MSI) 64B-2000g: 0.81% 

 Diversified Technical Systems (DTS) 6DX PRO-2000g: 3.9% 

Angular Rate Sensors: 

 DTS ARS PRO / DTS 6DX PRO: 0.24% / 0.27% 

 IES 3103-600 3-Axis Gyro Sensor: 0.77% 

The maximum %diff found within the same sensor type (either accelerometer or angular rate 

sensor) was rounded up to the closest integer number and that value was then used as the sensitivity 

error bound in the error effects analysis. The error upper bound for the accelerometer was 

determined to be 4%, for the angular rate sensor: 1%. The error lower bound was -4% and -1%, 

respectively. 
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10.1.6 Debias error 

Based on the pre-trigger data from different sensors used on the Simplified Head tests (example 

shown in Figure 100), for all three axes, the maximum absolute noise level was identified: one for 

an accelerometer (1.75g) and one for an angular rate sensor (49 deg/s). Those two values were 

then rounded up to 2g and 50 deg/s, respectively, and used as the error upper bounds. The error 

lower bounds were set to -2g (ACC) and -50 deg/s (ARS). 

It is worth mentioning here that “one-point” debiasing is rarely a case and in terms of the 

magnitude of an introduced error, it should be treated as the worst-case scenario. 

 

Figure 100. Pre-trigger data used to determine debias error bounds. 

10.1.7 Noise level 

For the analysis of the noise level effect, as the first step, the pre-trigger data for accelerometers 

and angular rate sensors used on the Simplified Head tests were normalized individually by their 

maximum absolute value (see Figure 100 for details). Next, the pre-trigger data were multiplied 

by a scaling factor (SF) and then copied multiple times along the noiseless sensor response as 

described in Section 10.3.3. 

The lower bound for SF was assumed to be zero (no noise). The upper bound for the debias 

error (see Section 10.1.6) was utilized as the upper value for SF: 2 for the accelerometers, and 50 

for the angular rate sensors. 

10.1.8 Sensor angle misalignment 

Due to fabrication imperfections external surfaces of a sensor might not stay orthogonal to 

each other. When a sensor with skewed surfaces is mounted on a body, the sensor sensing axis 

might unknowingly be pointing away from the axis along (around) which the measurement should 

be taken (Figure 101). More importantly, because of the mounting angle misalignment the 

measured signal would be of a smaller magnitude than the signal obtained with a sensor mounted 

correctly. 
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Figure 101. Sensor with skewed surfaces mounted on a body (dimensions not in scale). 

To identify error bounds of angle misalignment for linear accelerometers (ACC) and angular 

rate sensors (ARS) used in this dissertation, dimensions (height, width, and length) for seven 

different sensors employed during Simplified Head or THOR testing, and their corresponding 

fabrication tolerances (as given by the manufacturers), were utilized (Table 17). 

Table 17. Sensors and their fabrication tolerances. 

Sensor 
Fabrication tolerance 

(mm) 

Height 

(mm) 

Width 

(mm) 

Length 

(mm) 

Endevco Meggitt Sensing Systems 

7264B (ACC) 
±0.254 4.70 10.16 12.19 

Endevco Meggitt Sensing Systems 

7264C (ACC) 
±0.254 5.13 10.16 10.16 

Endevco Meggitt Sensing Systems 

7265A (ACC) 
±0.254 7.75 16.00 11.94 

Endevco Meggitt Sensing Systems 

7290E (ACC) 
±0.508 3.18 21.59 25.40 

Diversified Technical Systems (DTS)  

6DX-PRO (ACC + ARS) 
±0.0508 14.48 19.05 19.05 

DTS ARS Pro (ARS) ±0.0508 7.62 10.16 14.61 

Measurement Specialties (MSI) 64B 

(ACC) 
±0.0762 4.70 10.16 12.19 

In Figure 102 two examples were shown of how inaccuracies in fabrication could potentially 

affect the sensor surface orthogonality. Both examples assumed the worst-case scenario (“+ 

fabrication tolerance” on one side/end of the sensor and “- fabrication tolerance” on the other side) 

for one of the dimensions. 
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Figure 102. Example of a skewed surface of a sensor (marked in red) due to fabrication inaccuracies for the 

sensor height (dimensions not in scale). 

Assuming that the height, width, and length of the same sensor were affected by fabrication 

inaccuracies, through a geometric analysis utilizing the maximum values of the dimension 

tolerances, it was determined that the largest possible misalignment angle for an accelerometer 

would be 2.94 deg, and for an angular rate sensor: 0.58 deg. Those two values were rounded up to 

3 deg and 1 deg, respectively, and used as the sensor misalignment error upper bounds for further 

analysis. The lower bounds were set to 0 (i.e. zero deviation from the sensor nominal dimensions 

and sensor mounted perfectly). 

10.2: Investigation of the effect of sensor and measurement errors based on analytical 

equations describing motion of a rigid body 

The goal of this subsection was to perform an analytical analysis that would focus on 

understanding how different error types in sensor readings propagate through the calculation 

process of body’s global position. Due to the non-linear nature of the rotation matrix R in a case 

(called from here on “general case”) when the tracked body translates and rotates at the same time, 

solving Eq. 1.1 (double integration of global acceleration of the tracked body) is non-trivial, and 

thus, the effect of sensor-related errors on the resulting orientation and position cannot be easily 

predicted analytically. Since the goal of this task was to assess these effects through an analytical 

investigation, a three-step analysis was performed, varying the mathematical complexity of the 

equation used to describe the global linear acceleration of the analyzed body.  

The subsection is organized as follows. Section 10.2.1 describes the expansion of Eq. 1.4 (local 

linear acceleration of a rigid body based on sensor data) from the matrix into the component form. 

Section 10.2.2 introduces a model of a sensor output with two error terms (one scaling and one 

additive) added. Section 10.2.3 presents the steps that were performed to define erroneous 

kinematics data used in the analytical investigation performed in this study. Section 10.2.4 defines 

equations of different mathematical complexity (“test cases”) for the global acceleration of the 

tracked body. In Section 10.2.4, three test cases are discussed: a) a simplified case where linear 

acceleration, as defined by the component form from Section 10.2.1, is equivalent to body’s global 

acceleration, b) a case where local acceleration vector is multiplied by a constant rotation matrix 
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of the tracked body, c) the general case. In Section 10.2.5, the analytical analysis for the simplified 

case and the case with the constant rotation matrix is presented. In Section 10.2.6, the general case 

is discussed. Concluding remarks are provided in Section 10.2.7. 

10.2.1 Component form of rigid body acceleration equation 

Eq. 10.2 describes the expansion of Eq. 1.4 (linear acceleration of the origin of a rigid body 

based on kinematics data recorded at point p belonging to that body) from the matrix to the 

component form: 

 𝑎𝑜𝑥 = 𝑎𝑝𝑥 − 𝜔𝑦(𝜌𝑦𝜔𝑥 − 𝜌𝑥𝜔𝑦) − 𝜔𝑧(𝜌𝑧𝜔𝑥 − 𝜌𝑥𝜔𝑧) − 𝜌𝑧𝛼𝑦 + 𝜌𝑦𝛼𝑧 = 𝑎𝑝𝑥 + 𝜌𝑥𝜔𝑦
2 + 𝜌𝑥𝜔𝑧

2 −

𝜌𝑦𝜔𝑥𝜔𝑦 − 𝜌𝑧𝜔𝑥𝜔𝑧 − 𝜌𝑧𝛼𝑦 + 𝜌𝑦𝛼𝑧  (10.2a) 

 𝑎𝑜𝑦 = 𝑎𝑝𝑦 + 𝜔𝑥(𝜌𝑦𝜔𝑥 − 𝜌𝑥𝜔𝑦) − 𝜔𝑧(𝜌𝑧𝜔𝑦 − 𝜌𝑦𝜔𝑧) + 𝜌𝑧𝛼𝑥 − 𝜌𝑥𝛼𝑧 = 𝑎𝑝𝑦 + 𝜌𝑦𝜔𝑥
2 + 𝜌𝑦𝜔𝑧

2 −

𝜌𝑥𝜔𝑥𝜔𝑦 − 𝜌𝑧𝜔𝑦𝜔𝑧 + 𝜌𝑧𝛼𝑥 − 𝜌𝑥𝛼𝑧  (10.2b) 

 𝑎𝑜𝑧 = 𝑎𝑝𝑧 + 𝜔𝑥(𝜌𝑧𝜔𝑥 − 𝜌𝑥𝜔𝑧) + 𝜔𝑦(𝜌𝑧𝜔𝑦 − 𝜌𝑦𝜔𝑧) − 𝜌𝑦𝛼𝑥 + 𝜌𝑥𝛼𝑦 = 𝑎𝑝𝑧 + 𝜌𝑧𝜔𝑥
2 + 𝜌𝑧𝜔𝑦

2 −

𝜌𝑥𝜔𝑥𝜔𝑧 − 𝜌𝑦𝜔𝑦𝜔𝑧 − 𝜌𝑦𝛼𝑥 + 𝜌𝑥𝛼𝑦  (10.2c) 

where aoi – linear acceleration components at the origin of the body local coordinate frame, api – 

linear acceleration components at point p, i – components of the position vector of point p in the 

body local frame, ωi and αi – local coordinate system components describing the body’s local 

angular velocity and local angular acceleration, i = X, Y, Z. 

10.2.2 Model of a sensor with measurement errors included 

As it was already mentioned in Section 10.1, accelerometer (both, linear and angular) as well 

as angular rate sensor readings can be affected by different types of errors (Table 13). Guided by 

previous research (cf. Savage 2002), those errors were separated into two groups: 

 errors that scale the sensor reading (e.g. error in sensor sensitivity). These errors will be 

represented in this dissertation as a scaling factor b, 

 errors that add an offset to the reading (e.g. error in the senor debias value). These errors 

will be represented in this study as an additive term c. 

Using b and c, the senor output, affected by the measurement errors, was modeled as Eq. 10.3: 

 𝑠𝑒𝑛𝑠𝑜𝑟𝑜𝑢𝑡𝑝𝑢𝑡(𝑡) = 𝒃 ∗ 𝑠𝑒𝑛𝑠𝑜𝑟𝑟𝑒𝑎𝑑𝑖𝑛𝑔(𝑡) + 𝒄 (10.3) 

For the purpose of this analysis, it was assumed that both, b and c were constant in time. 

10.2.3 Description of the analytical data set 

To analyze the effect of different error types on the calculated trajectory analytically, Eq. 10.3 

was used to define time histories for kinematics measurements obtained from three linear 

accelerometers and three angular rate sensors attached to the tracked body. To each of the six 

sensors, a set composed of a scaling factor b and an additive term c was assigned. To distinguish 

between sensor types and sensor axes, the error terms for the accelerometers had a subscript acc_i 

(where i = X, Y, Z). For the angular rate sensors the subscript was ars_i (where i = X, Y, Z). Next, 

the kinematics measurements (with the error terms included) were substituted into Eq. 10.2. That 

equation was then transformed to the global reference frame (using the rotation matrix R; see 
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Chapter 8) to obtain the body’s global acceleration and then double integrated in time to compute 

3D component trajectories of the tracked body. 

10.2.4 Analytical analysis – methods 

To better understand how the error terms propagate through time integration, first, Eq. 10.2 

(with the erroneous sensor outputs introduced) was double integrated in time in a simplified 

scenario where body’s local acceleration was assumed to be equivalent to body’s global 

acceleration and body’s local angular velocity was allowed to vary in time. In the following 

analysis, a more complex case was considered. Eq. 10.2 was multiplied by a constant rotation 

matrix R and then double integrated. In addition, in this case, local angular velocity was time 

dependent. After the two analyses were completed, the implications of the rotation matrix R 

varying in time were discussed more in detail. 

10.2.5 Error propagation – results 

Simplified case: In this section, it was assumed that the local acceleration of the tracked body 

was equivalent to body’s global acceleration. In that situation, the transformation of Eq. 10.2 to 

the global frame was not required and the double integration (in time) of Eq. 10.2 (with the error 

terms included; see APPENDIX N) directly produced the components of the global position of the 

tracked body (Eq. 10.4): 

𝑝𝑜𝑠𝑜𝑥(𝑡) = 𝒃𝒂𝒄𝒄_𝒙𝐴𝑝𝑥(𝑡) + 𝒄𝒂𝒄𝒄_𝒙

𝑡2

2

+ 𝜌𝑥 (𝒃𝒂𝒓𝒔_𝒚
𝟐 𝑊𝑦2(𝑡) + 𝒃𝒂𝒓𝒔_𝒛

𝟐 𝑊𝑧2(𝑡) + 2 (𝒃𝒂𝒓𝒔_𝒚𝒄𝒂𝒓𝒔_𝒚𝑊𝑦(𝑡) + 𝒃𝒂𝒓𝒔_𝒛𝒄𝒂𝒓𝒔_𝒛𝑊𝑧(𝑡))

+ (𝒄𝒂𝒓𝒔_𝒚
𝟐 + 𝒄𝒂𝒓𝒄_𝒛

𝟐 )
𝑡2

2
)

− 𝜌𝑦 (𝒃𝒂𝒓𝒔_𝒙𝒃𝒂𝒓𝒔_𝒚𝑊𝑥𝑦(𝑡) + 𝒃𝒂𝒓𝒔_𝒙𝒄𝒂𝒓𝒔_𝒚𝑊𝑥(𝑡) + 𝒃𝒂𝒓𝒔_𝒚𝒄𝒂𝒓𝒔_𝒙𝑊𝑦(𝑡) − 𝒃𝒂𝒂𝒄_𝒛𝑧(𝑡)

+ (𝒄𝒂𝒓𝒔_𝒙𝒄𝒂𝒓𝒔_𝒚 − 𝒄𝒂𝒂𝒄_𝒛)
𝑡2

2
)

− 𝜌𝑧 (𝒃𝒂𝒓𝒔_𝒙𝒃𝒂𝒓𝒔_𝒛𝑊𝑥𝑧(𝑡) + 𝒃𝒂𝒓𝒔_𝒙𝒄𝒂𝒓𝒔_𝒛𝑊𝑥(𝑡) + 𝒃𝒂𝒓𝒔_𝒛𝒄𝒂𝒓𝒔_𝒙𝑊𝑧(𝑡) + 𝒃𝒂𝒂𝒄_𝒚𝑦(𝑡)

+ (𝒄𝒂𝒓𝒔_𝒙𝒄𝒂𝒓𝒔_𝒛 + 𝒄𝒂𝒂𝒄_𝒚)
𝑡2

2
) 

(10.4a) 

𝑝𝑜𝑠
𝑜𝑦

(𝑡) = 𝒃𝒂𝒄𝒄_𝒚𝐴𝑝𝑦(𝑡) + 𝒄𝒂𝒄𝒄_𝒚

𝑡2

2

− 𝜌𝑥 (𝒃𝒂𝒓𝒔_𝒙𝒃𝒂𝒓𝒔_𝒚𝑊𝑥𝑦(𝑡) + 𝒃𝒂𝒓𝒔_𝒙𝒄𝒂𝒓𝒔_𝒚𝑊𝑥(𝑡) + 𝒃𝒂𝒓𝒔_𝒚𝒄𝒂𝒓𝒔_𝒙𝑊𝑦(𝑡) + 𝒃𝒂𝒂𝒄_𝒛𝑧(𝑡)

+ (𝒄𝒂𝒓𝒔_𝒙𝒄𝒂𝒓𝒔_𝒚 + 𝒄𝒂𝒂𝒄_𝒛)
𝑡2

2
)

+ 𝜌𝑦 (𝒃𝒂𝒓𝒔_𝒙
𝟐 𝑊𝑥2(𝑡) + 𝒃𝒂𝒓𝒔_𝒛

𝟐 𝑊𝑧2(𝑡) + 2 (𝒃𝒂𝒓𝒔_𝒙𝒄𝒂𝒓𝒔_𝒙𝑊𝑥(𝑡) + 𝒃𝒂𝒓𝒔_𝒛𝒄𝒂𝒓𝒔_𝒛𝑊𝑧(𝑡))

+ (𝒄𝒂𝒓𝒔_𝒙
𝟐 + 𝒄𝒂𝒓𝒄_𝒛

𝟐 )
𝑡2

2
)

− 𝜌𝑧 (𝒃𝒂𝒓𝒔_𝒚𝒃𝒂𝒓𝒔_𝒛𝑊𝑦𝑧(𝑡) + 𝒃𝒂𝒓𝒔_𝒚𝒄𝒂𝒓𝒔_𝒛𝑊𝑦(𝑡) + 𝒃𝒂𝒓𝒔_𝒛𝒄𝒂𝒓𝒔_𝒚𝑊𝑧(𝑡) − 𝒃𝒂𝒂𝒄_𝒙𝑥(𝑡)

+ (𝒄𝒂𝒓𝒔_𝒚𝒄𝒂𝒓𝒔_𝒛 − 𝒄𝒂𝒂𝒄_𝒙)
𝑡2

2
) 

(10.4b) 
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𝑝𝑜𝑠𝑜𝑧(𝑡) = 𝒃𝒂𝒄𝒄_𝒛𝐴𝑝𝑧(𝑡) + 𝒄𝒂𝒄𝒄_𝒛

𝑡2

2

− 𝜌𝑥 (𝒃𝒂𝒓𝒔_𝒙𝒃𝒂𝒓𝒔_𝒛𝑊𝑥𝑧(𝑡) + 𝒃𝒂𝒓𝒔_𝒙𝒄𝒂𝒓𝒔_𝒛𝑊𝑥(𝑡) + 𝒃𝒂𝒓𝒔_𝒛𝒄𝒂𝒓𝒔_𝒙𝑊𝑧(𝑡) − 𝒃𝒂𝒂𝒄_𝒚𝑦(𝑡)

+ (𝒄𝒂𝒓𝒔_𝒙𝒄𝒂𝒓𝒔_𝒛 − 𝒄𝒂𝒂𝒄_𝒚)
𝑡2

2
)

− 𝜌𝑦 (𝒃𝒂𝒓𝒔_𝒚𝒃𝒂𝒓𝒔_𝒛𝑊𝑦𝑧(𝑡) + 𝒃𝒂𝒓𝒔_𝒚𝒄𝒂𝒓𝒔_𝒛𝑊𝑦(𝑡) + 𝒃𝒂𝒓𝒔_𝒛𝒄𝒂𝒓𝒔_𝒚𝑊𝑧(𝑡) + 𝒃𝒂𝒂𝒄_𝒙𝑥(𝑡)

+ (𝒄𝒂𝒓𝒔_𝒚𝒄𝒂𝒓𝒔_𝒛 + 𝒄𝒂𝒂𝒄_𝒙)
𝑡2

2
)

+ 𝜌𝑧 (𝒃𝒂𝒓𝒔_𝒙
𝟐 𝑊𝑥2(𝑡) + 𝒃𝒂𝒓𝒔_𝒚

𝟐 𝑊𝑦2(𝑡) + 2 (𝒃𝒂𝒓𝒔_𝒙𝒄𝒂𝒓𝒔_𝒙𝑊𝑥(𝑡) + 𝒃𝒂𝒓𝒔_𝒚𝒄𝒂𝒓𝒔_𝒚𝑊𝑦(𝑡))

+ (𝒄𝒂𝒓𝒔_𝒙
𝟐 + 𝒄𝒂𝒓𝒄_𝒚

𝟐 )
𝑡2

2
) 

(10.4c) 

where t – time, brrr_u – scaling term, c rrr_u – additive term, subscript rrr – sensor type (linear 

accelerometer ACC or angular rate sensor ARS), subscript u – body local axis along which the 

error was introduced (u = X, Y, Z), Api(t) – linear acceleration of point p measured in the i direction 

and then double integrated, Wi(t) – body local angular velocity around the i axis after double 

integration, Wij(t) – double integrated product of multiplication of local angular velocity around 

the i axis and local angular velocity around the j axis, 𝑖(𝑡) – local angular acceleration around 

the i axis after double integration, i, j = X, Y, Z. 

Constant rotation matrix: When body local acceleration (Eq. 10.2) is multiplied by a constant 

rotation matrix R, the global acceleration of the tracked body is: 

 𝑎𝑔𝑙𝑜𝑏𝑎𝑙_𝑥(𝑡) = 𝑅11 ∗ 𝑎𝑜𝑥(𝑡) + 𝑅12 ∗ 𝑎𝑜𝑦(𝑡) + 𝑅13 ∗ 𝑎𝑜𝑧(𝑡) (10.5a) 

 𝑎𝑔𝑙𝑜𝑏𝑎𝑙_𝑦(𝑡) = 𝑅21 ∗ 𝑎𝑜𝑥(𝑡) + 𝑅22 ∗ 𝑎𝑜𝑦(𝑡) + 𝑅23 ∗ 𝑎𝑜𝑧(𝑡) (10.5b) 

 𝑎𝑔𝑙𝑜𝑏𝑎𝑙_𝑧(𝑡) = 𝑅31 ∗ 𝑎𝑜𝑥(𝑡) + 𝑅32 ∗ 𝑎𝑜𝑦(𝑡) + 𝑅33 ∗ 𝑎𝑜𝑧(𝑡) (10.5c) 

where t – time, 𝑎𝑔𝑙𝑜𝑏𝑎𝑙_𝑖 – global components of body’s linear acceleration, aoi – linear acceleration 

components at the origin of the body local coordinate frame, i = X, Y, Z, 𝑹 = [
𝑅11 𝑅12 𝑅13

𝑅21 𝑅22 𝑅23

𝑅31 𝑅32 𝑅33

]. 

The results of double integration of Eq. 10.5, with the error terms from Eq. 10.3 introduced, 

are then: 

 𝑝𝑜𝑠𝑔𝑙𝑜𝑏𝑎𝑙_𝑥(𝑡) = 𝑅11 ∗ 𝑝𝑜𝑠𝑜𝑥(𝑡) + 𝑅12 ∗ 𝑝𝑜𝑠𝑜𝑦(𝑡) + 𝑅13 ∗ 𝑝𝑜𝑠𝑜𝑧(𝑡) (10.6a) 

 𝑝𝑜𝑠𝑔𝑙𝑜𝑏𝑎𝑙_𝑦(𝑡) = 𝑅21 ∗ 𝑝𝑜𝑠𝑜𝑥(𝑡) + 𝑅22 ∗ 𝑝𝑜𝑠𝑜𝑦(𝑡) + 𝑅23 ∗ 𝑝𝑜𝑠𝑜𝑧(𝑡) (10.6b) 

 𝑝𝑜𝑠𝑔𝑙𝑜𝑏𝑎𝑙_𝑧(𝑡) = 𝑅31 ∗ 𝑝𝑜𝑠𝑜𝑥(𝑡) + 𝑅32 ∗ 𝑝𝑜𝑠𝑜𝑦(𝑡) + 𝑅33 ∗ 𝑝𝑜𝑠𝑜𝑧(𝑡) (10.6c) 

where t – time, 𝑝𝑜𝑠𝑔𝑙𝑜𝑏𝑎𝑙_𝑖  – global components of body’s position vector,  𝑝𝑜𝑠𝑜𝑖  – position 

components of the origin of the tracked body from Eq. 10.4, i = X, Y, Z. 

10.2.6 Error propagation – general case (translation and rotation at the same time) 

When a tracked body rotates while traveling through a 3D space the body’s rotation matrix R 

does not stay constant in time throughout the event. As it was shown in Chapter 8, the components 

of R are defined with the use of either Euler parameters e or Euler angles α--. Both, e and the 

angles α-- are functions of body’s local angular velocity vector (t), which is, frequently, 
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nonlinear in the time domain. Nonlinearity in (t) increases complexity in the mathematical 

description of e or α-- utilized to define R. By taking that nonlinear nature of the rotation matrix 

into consideration, global linear acceleration of the tracked body is: 

 𝑎𝑔𝑙𝑜𝑏𝑎𝑙_𝑥(𝑡) = 𝑓11((𝑡)) ∗ 𝑎𝑜𝑥(𝑡) + 𝑓12((𝑡)) ∗ 𝑎𝑜𝑦(𝑡) + 𝑓13((𝑡)) ∗ 𝑎𝑜𝑧(𝑡) (10.7a) 

 𝑎𝑔𝑙𝑜𝑏𝑎𝑙_𝑦(𝑡) = 𝑓21((𝑡)) ∗ 𝑎𝑜𝑥(𝑡) + 𝑓22((𝑡)) ∗ 𝑎𝑜𝑦(𝑡) + 𝑓23((𝑡)) ∗ 𝑎𝑜𝑧(𝑡) (10.7b) 

 𝑎𝑔𝑙𝑜𝑏𝑎𝑙𝑧_(𝑡) = 𝑓31((𝑡)) ∗ 𝑎𝑜𝑥(𝑡) + 𝑓32((𝑡)) ∗ 𝑎𝑜𝑦(𝑡) + 𝑓33((𝑡)) ∗ 𝑎𝑜𝑧(𝑡) (10.7c) 

where t – time, 𝑎𝑔𝑙𝑜𝑏𝑎𝑙_𝑖 – global components of body’s linear acceleration, aoi – linear acceleration 

components at the origin of the body local coordinate frame, i = X, Y, Z, 𝑹(𝒇((𝑡))) =

[

𝑓
11

((𝑡)) 𝑓
12

((𝑡)) 𝑓
13

((𝑡))

𝑓
21

((𝑡)) 𝑓
22

((𝑡)) 𝑓
23

((𝑡))

𝑓
31

((𝑡)) 𝑓
32

((𝑡)) 𝑓
33

((𝑡))

], 𝒇((𝑡)) – functions of the local angular velocity vector 

(t). 

To obtain the global position of a body that translates and rotates at the same time, Eq. 10.7 

needs to be double integrated in time. Due to the nonlinear form of R, that integration is non-trivial. 

When sensor-related errors are present in the measured angular rate (t) or the linear acceleration 

vector ao(t), the effect of these errors on the resulting orientation and position is then convoluted 

and cannot be easily predicted analytically. That is why, to investigate the effect of sensor errors 

and test inaccuracies on the calculated global position of a body that rotates while traveling through 

a 3D space, numerical investigations are often performed (Wu et al. 2009, Sinz et al. 2015). 

10.2.7 Conclusions 

The aim of this section was to analytically evaluate the effect of data signal errors on the 

calculated 3D component trajectories of a rigid body in a case where the effect of the rotation 

matrix on the transition between the local and global coordinate frames was either excluded from 

the analysis (simplified case) or constant in time. 

The following can be concluded from the results of the study: 

10.2.7.1 Error propagation – simplified case 

 When the additive term c (debias error) was introduced into the reading of one of the linear 

accelerometers, that error affected only one of the global position components of the 

tracked body (the one along the same direction as the acceleration with the error). 

 When only the debias error (additive term c) in one of the angular rate sensors was 

introduced into the analysis, it affected all three of the calculated position components. 

 When two ARS debias errors were included into the angular velocity signals, in one of the 

global position components the term (𝒄𝒂𝒓𝒔_𝒙
𝟐 + 𝒄𝒂𝒓𝒄_𝒛

𝟐 )
𝒕𝟐

𝟐
 (where t – time) was introduced. 

 When only the debias error in one of the angular acceleration components was introduced, 

it affected two position components along the two axes orthogonal to the axis around which 

the angular acceleration with the error was defined. 
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 The error in the ACC sensitivity (scaling term 𝒃𝒂𝒄𝒄) affected one position component, in 

the same direction as the measured acceleration with the error. 

10.2.7.2 Error propagation – constant rotation matrix 

 When the additive term c (debias) was introduced into the reading of one of the linear 

accelerometers, that error affected all three calculated global position components. 

 All three position components were affected also when the debias error was introduced in 

one of the angular rate sensors or in one of the angular accelerometers. 

10.2.7.3 Error propagation – simplified case and the case with constant rotation matrix; 

general comments 

 The resulting error in position due to the debias error in a linear acceleration component 

grows in time as described by the term 𝒄𝒂𝒄𝒄
𝑡2

2
. 

 The resulting error in position due to the debias error in an angular velocity component 

grows in time as described by the term 𝒄𝒂𝒓𝒔
𝟐 𝑡2

2
. 

 When two ARS debias errors were introduced into the data, part of their effect was 

multiplicative, i.e., when, e.g., 𝒄𝒂𝒓𝒔_𝒙  and 𝒄𝒂𝒓𝒔_𝒛  were non-zero, the error term 

𝒄𝒂𝒓𝒔_𝒙𝒄𝒂𝒓𝒔_𝒛
𝑡2

2
 appeared in at least two of the calculated position components. 

 The error in one ARS sensitivity affected all three position components. 

 When two ARS sensitivity errors were introduced into the analysis, part of their effect was 

also multiplicative, i.e., when, e.g., 𝒃𝒂𝒓𝒔_𝒙 and 𝒃𝒂𝒓𝒔_𝒛 were different than 1, some of the 

terms in the global position components were scaled by the product of 𝒃𝒂𝒓𝒔_𝒙𝒃𝒂𝒓𝒔_𝒛. 

 When an ARS sensitivity error and an ARS debias error were introduced into the analysis 

together, part of their effect was multiplicative as well, i.e., when, e.g., 𝒄𝒂𝒓𝒔_𝒙 was non-zero 

and 𝒃𝒂𝒓𝒔_𝒛 was different than 1, some of the terms in the three global position components 

were scaled by the product of 𝒃𝒂𝒓𝒔_𝒛𝒄𝒂𝒓𝒔_𝒙. 

10.2.7.4 Error propagation – general case (translation and rotation at the same time) 

 Due to the nonlinear nature of R, the double integration of the body’s global acceleration 

(determined from the multiplication of R and the body’s local acceleration vector a) is non-

trivial or impossible to accomplish analytically. 

 The effect of sensor-related errors (that are present in the measured angular rate (t)) on 

the calculated global position of the tracked body is convoluted. 

10.3: Error effects – uni- and multivariable analysis 

This subsection had two aims: 

a) to evaluate the effect of data signal errors (e.g. noise level) or test procedure inaccuracies 

(e.g. discrepancy between measured and true initial orientation of a body) on 3D component 

trajectories calculated for an ATD head. It was accomplished through a numerical (univariable) 
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investigation in which only one error at a time (from Table 13) was introduced into the position 

calculation algorithm; 

b) to identify main interactions between the investigated error types, based on a multivariable 

analysis in which all errors from Table 13 were introduced into trajectory calculation at the same 

time. 

The section is organized as follows. Section 10.3.1 presents a brief overview of five test cases 

used in this study. Section 10.3.2 describes instrumentation mounted on the ATD head, the body 

that was tracked in the five test cases. Section 10.3.3 shows the steps that were performed to obtain 

baseline responses (i.e., reference trajectories) for the ATD head. Section 10.3.4 summarizes the 

error types used in both numerical investigations. Section 10.3.5 discusses the error metrics 

employed through the analysis. Details about the methods for the Univariable and Multivariable 

analyses are described in Section 10.3.6 and Section 10.3.7, respectively. The results from both 

investigations are presented in Section 10.3.8. Concluding remarks are provided in Section 10.3.9. 

10.3.1 Test cases – description 

To analyze the effect of different error types on the calculated 3D trajectory in a scenario where 

the tracked body changes its orientation in time, and to identify the main interactions between 

these errors, sensor data from five data sets (“cases”) were sourced. 

Case 1 & 2 (two tests from Chapter 6): A box-like structure (“Simplified Head”; SH; Figure 

103) was connected with the neck of the Test device for Human Occupant Restraint (THOR) 

Anthropomorphic Test Device (ATD; NHTSA 2018) and then attached to a sled system (Seattle 

Safety, Auburn, WA). The SH assembly was positioned at 0 (Case 1; Test S0433) or 45 (Case 

2; Test S0442) relative to the sled travel direction. 

 

Figure 103. Simplified Head structure. 

Case 3 & 4 (two tests from Chapter 7): Two sled tests were performed with the THOR Mod-

kit ATD: without (Case 3; Test S0457) and including head impact (Case 4; Test S0461). THOR 
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was seated in the Gold Standard (GS) buck positioned at 30 relative to the sled travel direction 

(cf. Montesinos-Acosta et al. 2016). Case 4 involved a head impact to assess the influence of 

impact kinematics on the calculated 3D position time-history. 

 

Figure 104. Seated THOR ATD (left) and the foam-padded steel structure (top right) to 

simulate  

Case 5 (one of the vehicle tests described in Section 4.2): For this test case, the data from a 

frontal oblique offset test of a compact car (Test v10133, NHTSA 2017b) were utilized. In the test, 

a moving barrier was driven into the front‐left side of the vehicle at approx. 90 km/h. The THOR 

ATD was positioned in the driver’s seat. The impact induced the occupant’s head motion in the 

global reference frame. 

10.3.2 Test cases – instrumentation 

In all five test cases, the head was instrumented with three linear accelerometers (ACC) 

(Endevco, Meggitt Sensing Systems, CA, USA) and three angular rate sensors (ARS) (DTS ARS 

PRO, Diversified Technical Systems, Seal Beach, CA, USA). The sensor data were recorded at 

the sampling rate of 20 kHz. The local coordinate system of the head was defined as outlined in 

the SAE J211 document (Society of Automotive Engineers (SAE) 1995). 

10.3.3 Baseline trajectory 

This section describes the steps that were performed to obtain baseline responses (i.e., 

reference trajectories) for the ATD head in the five analyzed test cases. All five responses were 

computed in the same manner. For clarity, the procedure of determining the reference trajectory 

for the head was outlined in this section and examples are given using kinematics data from Test 

S0442 (Case 2) only. 

Accelerometer and angular rate sensor time-histories recorded during the test were first filtered 

with a 4th-order Butterworth low pass Channel Frequency Class (CFC) 180 and CFC 60 filters, 
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respectively (Figure 105 and Figure 106). The data between -50ms to 250ms, where t=0 indicated 

the start of the test, were then assumed to be noiseless. 

 

Figure 105. Noiseless acceleration signal obtained through filtering the test data. 

. 

 

Figure 106. Noiseless angular rate signal obtained through filtering the test data. 

In a real test, some noise level is expected to occur. To take that into consideration and to 

maintain the frequency content of the noise for the sensors used, the ACC/ARS corresponding pre-
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trigger data (from -50ms to -10ms) were added copied multiple times along the noiseless signal 

(Figure 107 and Figure 108). This procedure was performed individually for each of the three 

linear accelerometers and three angular rate sensors to account for the between-sensor variability. 

 
Figure 107. Acceleration signal trace with injected noise. 

 

Figure 108. Angular rate signal traces with injected noise. 
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Next, the “noise-injected” data were used to calculate the 3D trajectory of the body as outlined 

in Section 1.2.3. The 3D response of the head in Test S0442 (Case 2) obtained with this method 

(Figure 109) was then treated as the baseline response for further error effects modeling analysis. 

 

Figure 109. Baseline 3D trajectories used for further error effects analysis. 

In the process of calculating the baseline response, it was also assumed that: 

 the sensing axes of the three linear accelerometers as well as the angular rate sensors were 

perfectly aligned with the axes of the body local coordinate system; 

 the center of gravity (CG) of an accelerometer seismic mass was at an offset from the origin 

of the head local coordinate frame only in the direction in which the sensor measured 

acceleration, i.e. the accelerometer position vector  had a non-zero component in the 

direction of accelerometer measurement. 

10.3.4 List of errors (variables) used in the analysis 

Based on the errors from Table 13 the following 11 error groups and 39 independent variables 

were identified and used in the following error effects analysis (Table 18). 

Table 18. Independent variables used in the analysis. 

Error type 
Error 

group 
Sensor type Component 

Variable 

# 

Seismic mass CG position (in local 

body frame) 
1 Accelerometer X 

X 1 

Y 2 
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Z 3 

Accelerometer Y 

X 4 

Y 5 

Z 6 

Accelerometer Z 

X 7 

Y 8 

Z 9 

Head initial orientation (in global 

reference frame) 
2 Not applicable 

Yaw 10 

Pitch 11 

Roll 12 

Head CG initial position (in global 

reference frame) 
3 Not applicable 

X 13 

Y 14 

Z 15 

Sensitivity error 

4 Accelerometer 

X 16 

Y 17 

Z 18 

5 
Angular Rate 

Sensor 

X 19 

Y 20 

Z 21 

Noise Level 

6 Accelerometer 

X 22 

Y 23 

Z 24 

7 
Angular Rate 

Sensor 

X 25 

Y 26 

Z 27 
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Debias error 

8 Accelerometer 

X 28 

Y 29 

Z 30 

9 
Angular Rate 

Sensor 

X 31 

Y 32 

Z 33 

Angle misalignment 

10 Accelerometer 

X 34 

Y 35 

Z 36 

11 
Angular Rate 

Sensor 

X 37 

Y 38 

Z 39 

10.3.5 Error metrics 

Throughout the analysis the following metric was used to evaluate the deviation of the head’s 

calculated trajectory from the baseline response: 

 𝑅𝑒𝑠𝑒𝑟𝑟 = √∑ [(𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑖−𝑥𝑒𝑟𝑟𝑜𝑟,𝑖)
2
+(𝑦𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑖−𝑦𝑒𝑟𝑟𝑜𝑟,𝑖)

2
+(𝑧𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑖−𝑧𝑒𝑟𝑟𝑜𝑟,𝑖)

2
]𝑁

𝑖=1

𝑁
 (10.8) 

where N – number of data (time) points, xbaseline,i, ybaseline,i, zbaseline,i – X, Y, Z components of the 

baseline trajectory at the data point i, xerror,i, yerror,i, zerror,i – X, Y, Z components of the calculated 

trajectory (based on the data with introduced errors). 

The maximum absolute difference (diffmax) between the calculated and reference trajectories 

was computed for all independent variables from Table 18. In the results section for the 

Univariable analysis, the maximum value of Reserr and diffmax (called mReserr and mdiffmax, 

respectively) within the same error group was found. For the five linear regression models 

presented in the Multivariable analysis the coefficient of determination, R2, was computed and 

presented. 

10.3.6 Univariable analysis – methods 

To assess the effect of the individual variables (Table 18) on the calculated 3D trajectory one 

error at a time was introduced into the analysis. To cover a bigger response space, for every 

investigated variable fifteen values were equally spaced in-between the error lower and upper 

bounds, with the bounds included. In cases where the middle value was zero (all except the 
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ACC/ARS sensor angle misalignment and the noise level) the “zero” condition was assumed to 

represent the baseline response, and thus it was not re-calculated again. 

In total, 2,760 simulations were run (552 per test case). During the runs, the time history of 

body motion was calculated and, next, its deviation from the baseline response (in the form of 

𝑅𝑒𝑠𝑒𝑟𝑟 and diffmax) was recorded. After 552 runs were completed for a test case, using all variables 

within the same error group (as defined in Table 18) 𝑚𝑅𝑒𝑠𝑒𝑟𝑟 and mdiffmax were found for each 

group separately. When all 2,760 simulations were finished, the lower and upper bounds for 

𝑚𝑅𝑒𝑠𝑒𝑟𝑟 and mdiffmax, for the same error group (second column in Table 18) but across the five 

test cases, were determined. Based on the descending order of the upper bounds for both used error 

metrics two lists were created and reported. 

Remark: To update the orientation of the tracked body (its rotation matrix R), head’s local 

angular velocity and the method described by Huculak and Lankarani 2013 were utilized (see 

Chapter 8 for more detail about the method used). 

10.3.7 Multivariable analysis – methods 

As the first step, for all five test cases, Latin Hypercube Sampling (LHS; cf. McKay et al. 1979, 

cf. Eglajs et al. 1977, cf. Iman et al. 1981) was performed to create 10,000 combinations of the 

independent variables from Table 18. To design the experiment, MATLAB (MathWorks, Natick, 

MA, USA) function lhsdesign with the “correlation” option was selected. The function allowed 

for generation of near-random evenly sampled variable values from a multidimensional 

distribution (2D example shown in Figure 110). 

 

Figure 110. Variable values in Yaw-Pitch space obtained using Latin Hypercube Sampling. 

In total, 50,000 simulations were carried out with all variables from Table 18 introduced at the 

same time. After the simulations were completed, Reserr was calculated for all 50,000 runs. Next, 

using the Reserr metric as the response variable and guided by Section 10.2 and the results from 

the Univariable analysis, an initial linear regression model (the same for all five tests) was built. 

The model (see APPENDIX O) was defined with the use of all variables within the following three 

error groups: ACC debias error, ARS debias error, and initial orientation error. Next, a stepwise 

regression algorithm (through MATLAB’s stepwiselm function) was utilized to finalize the 

regression model separately for each of the five test cases. Even though the initial model was based 
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only on three error classes, the stepwise algorithm was given a pool of other error types (and the 

variables within them) to add terms from. Those additional error groups were: ACC sensitivity 

error, ARS sensitivity error, and noise level in the ACC signal. To add or remove a term (predictor) 

to/from the model, the Akaike information criterion (AIC) (commonly used for model evaluation 

and selection, Gagné et al. 2002, Hoeting et al. 2006, Lee et al. 2009, Kamel et al 2015, Mangan 

et al. 2017) was used (Akaike 1974). To minimize predictor bias and multicollinearity, all variables 

utilized as possible predictors were scaled to be within <-1, 1> range and centered at zero. 

After the linear regression models were finalized, the model terms were divided into four 

categories: 

 main effects: when a term contained a single predictor to the power of 1, e.g. cars_y; 

 higher order terms (H.O.T.): when a term contained a single predictor, but that predictor 

was to the power of 2 or higher, e.g. cars_y
3; 

 main interactions: when two or more predictors (to the power of 1) were multiplied by each 

other, e.g., cars_x * cars_z * yawerr * pitcherr; 

 interactions with H.O.T.: when a term contained multiple predictors, and one of the 

predictors was a H.O.T., e.g., cars_y
2 * yawerr * pitcherr. 

Every term had a coefficient (estimate) associated with that term (see APPENDIX O). Those 

coefficients were utilized to sort the model terms in a descending order. Next, the main interaction 

with the highest absolute value of the estimated coefficient was identified. That value was then 

scaled to be one, and all other coefficients (their absolute values) were scaled accordingly. That 

procedure was carried out for the five test cases. After it was completed, all the model terms from 

the considered tests were gathered together, and the occurrence of these terms within that set was 

counted. If the term appeared in at least three tests and its scaled estimated coefficient was higher 

or equal to 0.05, the term was included in the following step of the analysis. 

At this stage, all identified terms were axis dependent and thus specific to a loading condition. 

To remove the axis dependency and to generalize the results from the multivariable analysis, the 

terms were sorted again into main effects, main interaction, etc., keeping the division between the 

sensor groups when needed (see Table 19 for details). 

Table 19. Generalization of axis specific terms. i, j, k = X, Y, Z. 

Axis specific term (example) Generalized term 

cacc_i ACC debias error 

cars_i ARS debias error 

cacc_i
2 or cacc_i

3 
ACC debias error2 or ACC debias 

error3 

cacc_i
2 or cacc_i

3 
ARS debias error2 or ARS debias 

error3 

(cacc_i * cacc_j) or (cacc_i * cacc_j * cacc_k) Multiplication of ACC debias errors 

(cars_i * cars_j) or (cars_i * cars_j * cars_k) Multiplication of ARS debias errors 

(yawerr * pitcherr) or (pitcherr * rollerr) or (yawerr * rollerr) or 

(yawerr * pitcherr * rollerr) 

Multiplication of errors in initial 

Euler Angles 
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Remark: To update the orientation of the tracked body (its rotation matrix R), head’s local 

angular velocity and the method described by Huculak and Lankarani 2013 were utilized. 

10.3.8 Results 

In this subsection, the results from the error effects investigations are presented: first, based on 

the Univariable, and next, based on the Multivariable analyses (Section 10.3.8.1 and Section 

10.3.8.2, respectively). 

10.3.8.1 Univariable analysis 

When the upper bounds for mReserr and mdiffmax were used across different error groups from 

Table 18, the resulting error hierarchies (Table 20 and Table 21 for mReserr and mdiffmax, 

respectively) were well correlated. The only difference between the tables was the order of the last 

two rows, with ARS angle misalignment being above Head CG initial position in IRF according 

to mReserr, and Head CG initial position in IRF being above ARS angle misalignment according 

to mdiffmax. It needs to be pointed out here that mReserr and mdiffmax, in all five test cases and in all 

eleven error groups, were found when one of the two bounding values (for the error in question; 

as defined in Table 13) was used in the analysis, i.e., the following two lists were built based on 

the trajectory calculation process in which the maximum error value (worst case scenario) was 

utilized. 

Table 20. Errors based on the upper bound of 𝒎𝑹𝒆𝒔𝒆𝒓𝒓 from the five test cases. 

# Error group 

Range for 𝒎𝑹𝒆𝒔𝒆𝒓𝒓 (mm) 

Lower bound (LB) 
Upper bound (UB) 

Value % of UB 

1. ACC debias 356.84 394.62 100 

2. ARS debias 90.38 146.48 37.12 

3. ACC sensitivity 23.72 34.89 8.84 

4. Initial orientation in IRF 9.32 21.89 5.55 

5. ACC noise level 3.10 14.63 3.71 

6. ARS sensitivity 2.94 6.84 1.73 

7. ACC seismic mass CG position in BF 1.81 3.92 0.99 

8. ARS noise level 0.10 1.73 0.44 

9. ACC angle misalignment 0.78 1.14 0.29 

10. ARS angle misalignment 0.044 0.113 0.03 

11. Head CG initial position in IRF 2.022E-13 7.467E-13 1.9E-13 

Table 21. Errors based on the upper bound of mdiffmax from the five test cases. 

# Error group 

Range for mdiffmax (mm) 

Lower bound (LB) 
Upper bound (UB) 

Value % of UB 

1. ACC debias 711.88 882.21 100 

2. ARS debias 212.02 339.49 38.48 

3. ACC sensitivity 52.50 76.39 8.66 

4. Initial orientation in IRF 27.35 50.37 5.71 

5. ACC noise level 5.81 29.65 3.36 
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6. ARS sensitivity 6.40 16.14 1.83 

7. ACC seismic mass CG position in BF 4.19 7.48 0.85 

8. ARS noise level 0.25 3.99 0.45 

9. ACC angle misalignment 1.72 2.52 0.29 

10. Head CG initial position in IRF 2.50 2.50 0.28 

11. ARS angle misalignment 0.10 0.24 0.03 

The group with the highest mReserr and mdiffmax (upper bound of 394.62 mm and 882.21, 

respectively) was the debias error for a linear accelerometer. It was followed by the error in the 

debias offset for an angular rate sensor. The sensitivity error in ACC (the third on both lists) had a 

greater effect on the calculated trajectory than the sensitivity error in ARS data (sixth). Within the 

first six error groups, only one class (Initial orientation in IRF; fourth on the lists; mReserr UB of 

21.89 mm; mdiffmax UB of 50.37 mm) was related to the accuracy of a geometric measurement, 

not to the accuracy of a sensor reading. The second highest “geometric” error (seventh on both 

lists) was ACC seismic mass CG position in BF with mReserr up to 3.92 mm and mdiffmax up to 7.48 

mm. Two misalignment errors as well as the error in the initial position of the tracked body had a 

negligible effect on the calculated trajectory (mReserr and mdiffmax below 2.6 mm for the three error 

groups). 

Remark: Errors based on mReserr and mdiffmax in each of the five analyzed test cases can be 

found in APPENDIX P. 

10.3.8.2 Multivariable analysis 

In the analyzed test cases, the Reserr metric was calculated using results from analyses in which 

all 39 variables from Table 18 were used. Reserr was then modeled with regression curves that 

were built based on eleven of these variables only (see APPENDIX O). Even though, a limited 

number of the error descriptors was used, Reserr was approximated well in the five tests, with the 

coefficients of determination R2 for the final regression models varying from 0.65 in Test S0442 

to 0.7 in Test v10133 (Table 22). 

Table 22. Coefficient of determination for the final regression models in the five test cases. 

Case # R2 

1 0.69 

2 0.65 

3 0.69 

4 0.68 

5 0.70 

Based on the regression analysis performed in this study, six main interactions between errors, 

two higher order terms (H.O.T.), and three types of interactions involving H.O.T. were identified 

(Table 23). It is worth pointing out here that all terms from Table 23 were different configurations 
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of the same three errors: ACC debias, ARS debias, and the error in the initial Euler angles (i.e. the 

error in initial orientation of the ATD head). 

Table 23. Higher order terms and error interactions identified based on the five test cases. 

Higher Order Terms 

(H.O.T.) 
Interactions with H.O.T. Main interactions 

ACC debias2 ACC debias2 * Multiplication of 

errors in initial Euler Angles 
ACC debias * ARS debias 

ARS debias2 ARS debias2 * Multiplication of 

errors in initial Euler Angles 
Multiplication of ACC debias errors 

 ARS debias3 * Multiplication of 

errors in initial Euler Angles 

Multiplication of errors in initial 

Euler Angles 

  ACC debias * Multiplication of 

errors in initial Euler Angles 

  ARS debias * Multiplication of 

errors in initial Euler Angles 

  
Multiplication of ARS debias errors 

* Multiplication of errors in initial 

Euler Angles 

10.3.9 Conclusions 

The aim of this study was: a) to evaluate, through numerical investigation, the effect of data 

signal errors (e.g. noise level) or test procedure inaccuracies (e.g. discrepancy between measured 

and true initial orientation of a body) on 3D component trajectories calculated for an ATD head in 

a crash-like scenario, and b) to identify the main interactions between the investigated error types. 

The following can be concluded from the results of the study: 

10.3.9.1 Debias error 

 The debias error (either in acceleration or angular rate sensor data) had the greatest effect 

on the calculated 3D trajectories of the tracked body (Table 20 and Table 21). 

 The error in acceleration caused a bigger discrepancy between the baseline and the 

calculated trajectories than the debias offset in the angular velocity data. 

 Even though the debias error influences calculated trajectories substantially, it can be 

addressed with proper debiasing techniques. Instead of using “one point” debiasing, the 

entire available pre-trigger data (for the senor in question) should be utilized to estimate 

the debias offset for that sensor. 

10.3.9.2 Sensitivity error in acceleration 

 The sensitivity error in ACC had a greater effect on the calculated trajectory than the 

sensitivity error in ARS data. 

 The error in the accelerometer sensitivity can influence the calculated 3D trajectory in a 

substantial way. In the investigated test scenarios, when the ACC sensitivity was modified 

by 4%, the absolute position peak error reached (in one of the cases) approximately 75 mm 

(1/10 of the peak difference, seen cross the five investigated cases, for the ACC debias 

error and 1/4 of the difference seen for the ARS debias error; Table 21). 
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 It is worth mentioning here that the ACC sensitivity error can occur with correct sensitivity 

value put into the data acquisition system, but with incorrect excitation voltage the sensor 

is run at. The sensitivity for the same accelerometer calibrated at 5V and at 10V can differ 

up to several percent. 

 The error in sensitivity can be addressed by calibrating sensors frequently and by using the 

calibration voltage as the sensor excitation voltage during testing. 

10.3.9.3 Initial orientation error 

 A relatively small inaccuracy in measured initial orientation may have a substantial effect 

on the predicted 3D response. In one of the investigated test cases, the discrepancy of 1 

degree between the baseline and “with error” initial Yaw angle caused a difference between 

the reference and the calculated trajectories of approx. 50 mm (Table 21) in the X direction. 

 The error in initial Yaw angle (from the case mentioned above) influenced, through the 

rotation matrix, the definition of the global inertial frame used in the trajectory calculation 

process. That inertial frame was rotated by 1 degree (around Z) relative to the coordinate 

system used for the baseline response (Figure 111). On the test, the highest magnitude of 

motion was observed in the Y direction. As Figure 111 shows, the higher the magnitude of 

Y motion, the higher the error in X direction. 

 
Figure 111. Coordinate systems for the baseline and the calculated trajectories. Z axes for both systems were 

perfectly aligned. 

10.3.9.4 Smallest errors 

 Within the error bounds from Table 13, the two misalignment errors (for ACC and ARS) 

as well as the error in the initial position of the tracked body had a negligible effect on the 

calculated 3D global trajectory of the ATD head (mReserr and mdiffmax both below 2.6 mm 

for the three error groups; Table 20 and Table 21). 

10.3.9.5 Main interactions 

 Six main interactions between the errors used in the study were identified (Table 23). 

 All six interactions were different configurations of the same three errors: ACC debias, 

ARS debias, and the error in the initial orientation.  
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11. INVESTIGATION OF THE EFFECT OF REDUNDANT SENSORS ON 

THE MAGNITUDE OF THE ERROR IN THE CALCULATED 

TRAJECTORY 

Body motion in a three dimensional (3D) space can be described with the use of kinematics 

data from three linear accelerometers and three angular rate sensors rigidly attached to that body. 

As it was shown in Chapter 10, though, a sensor reading can have an error and that error can affect 

the obtained trajectory substantially. In addition, when one of the seniors fails during a test (for 

example, due to a broken connector), the kinematics data recorded are incomplete and cannot be 

used anymore to obtain the 3D position of the tracked body. 

The goal of this task was to investigate if by introducing redundant sensors to the stock  

“3 ACC + 3 ARS” package, an inaccurate (“inconsistent”) sensor can be identified or if a broken 

sensor can be accounted for in the trajectory calculation. In other words, the goal was to find an 

analytical relationship that relates a reading (measured quantity) from one of the sensors to 

readings from the other (including redundant) sensors. By doing so, it is expected for the error in 

the calculated trajectory to be minimized. 

The chapter is organized as follows. The next section describes the analytical process utilized 

to determine a mathematical relationship between two vectors, where the magnitude and direction 

of one of the vectors, and the three components of the other vector are known. The following 

sections show how that relationship can be applied to account for a faulty angular rate sensor, first, 

and then a linear accelerometer. In the fourth section, the analytical relationship is evaluated using 

data from a computer simulation of a simple rigid body system. Concluding remarks are provided 

in the Conclusions section. 

11.1 Analytical relationships between two vectors in a 3D space 

Let’s define two vectors, V and P in a 3D space, with angle  being the angle between those 

two vectors (Figure 112). 

 

Figure 112. Two vectors, V and P, in a 3D space. 
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Assuming that vector P represents a portion of vector V, the cosine of the angle  can be found 

from Eq. 11.1: 

 cos 𝜃 =
‖𝑷‖

‖𝑽‖
 (11.1) 

where ‖𝑷‖ and ‖𝑽‖ are the magnitudes (lengths) of P and V, respectively. 

The cosine of the angle between two vectors in a 3D space can also be found from the 

geometric definition of a dot product of those two vectors (Eq. 11.2): 

 𝑽 ∙ 𝑷 = ‖𝑽‖‖𝑷‖cos 𝜃 ⇒ cos 𝜃 =
𝑽∙𝑷

‖𝑽‖‖𝑷‖
  (11.2) 

Now, let’s assume that the following from Figure 113 is known: 

 the magnitude ‖𝑷‖ of vector P, 

 three angles, α, , , defining the direction of vector P relative to the axes of the known 

coordinate system, 

 three components of vector V = (Vx, Vy, Vz). 

 

Figure 113. Known quantities needed in the analysis. 

The magnitude (length) of vector V can be found from its three known components (Eq. 11.3): 

 ‖𝑽‖ = √𝑉𝑥
2 + 𝑉𝑦

2 + 𝑉𝑧
2 (11.3) 

By substituting Eq. 11.3 into Eq. 11.1, the cosine of the angle  can be defined as Eq. 11.4: 

 cos 𝜃 =
‖𝑷‖

√𝑉𝑥
2+𝑉𝑦

2+𝑉𝑧
2
 (11.4) 

By knowing α, , and , the three components of vector P (its projections on the X, Y, Z axes) 

can be determined (Eq. 11.5): 

 𝑷 = (𝑃𝑥, 𝑃𝑦 , 𝑃𝑧) = (‖𝑷‖cos 𝛼 , ‖𝑷‖ cos 𝛽 , ‖𝑷‖ cos 𝛾) (11.5) 

From the algebraic definition of the dot product of vectors V and P it can be found that (Eq. 

11.6): 

 𝑽 ∙ 𝑷 = 𝑉𝑥𝑃𝑥 + 𝑉𝑦𝑃𝑦 + 𝑉𝑧𝑃𝑧 = 𝑉𝑥‖𝑷‖cos 𝛼 + 𝑉𝑦‖𝑷‖cos 𝛽 + 𝑉𝑧‖𝑷‖cos 𝛾 (11.6) 
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By substituting Eq. 11.3, Eq. 11.5 and Eq. 11.6 into Eq. 11.2, the cosine of the angle  can also 

be defined as Eq. 11.7: 

 cos 𝜃 =
𝑽∙𝑷

‖𝑽‖‖𝑷‖
=

𝑉𝑥‖𝑷‖cos𝛼+𝑉𝑦‖𝑷‖cos𝛽+𝑉𝑧‖𝑷‖cos𝛾

‖𝑷‖√𝑉𝑥
2+𝑉𝑦

2+𝑉𝑧
2

=
𝑉𝑥 cos𝛼+𝑉𝑦 cos𝛽+𝑉𝑧 cos𝛾

√𝑉𝑥
2+𝑉𝑦

2+𝑉𝑧
2

 (11.7) 

Then, by equating Eq. 11.4 with Eq. 11.7, an analytical relationship between all seven known 

quantities from Figure 113 can be determined (Eq. 11.8): 

 
‖𝑷‖

√𝑉𝑥
2+𝑉𝑦

2+𝑉𝑧
2
=

𝑉𝑥 cos𝛼+𝑉𝑦 cos𝛽+𝑉𝑧 cos𝛾

√𝑉𝑥
2+𝑉𝑦

2+𝑉𝑧
2

⇒ ‖𝑷‖ = 𝑉𝑥 cos 𝛼 + 𝑉𝑦 cos 𝛽 + 𝑉𝑧 cos 𝛾 (11.8) 

Eq. 11.8 relates the components of vector V to the magnitude of vector P. 

11.2 Redundant angular rate sensor 

In most cases, a regular sensor package utilized to obtain body 3D kinematics contains three 

angular rate sensors (ARS). The three ARS have their sensing axes mutually orthogonal and they 

are usually aligned with the axes of the body local coordinate system. Unfortunately, if one of the 

ARS readings has an error, the obtained body kinematics based on that data are inaccurate. To 

correct for that “bad” (“inconsistent”) sensor, more than three ARS are required. 

It can be shown that by adding redundant angular rate sensors – at a fixed and known locations 

– to the “3 ARS” sensor package the sensor with the error in its signal can be identified and the 

reading can be corrected. 

Let’s define vector 𝝎 = (𝜔𝑥, 𝜔𝑦, 𝜔𝑧) that describes the angular velocity of a rigid body. ωx, 

ωy, and ωz are the local coordinate system components of the ω vector. The three components are 

equivalent to the Vx, Vy, and Vz components from Eq. 11.8. The orientation of the sensing axis of 

the added (fourth) angular rate sensor 𝜔𝑝, relative to the three local coordinate axes, is known and 

defined by three angles: α, ,   (Figure 113). If, at the same time, the angular velocity 𝜔𝑝 (recorded 

by the fourth ARS) corresponds to the ‖𝑷‖  term in Eq. 11.8, the mathematical relationship 

between the redundant ARS and the three angular rate sensors aligned with the axes of the body 

local coordinate frame can be defined as: 

 𝜔𝑝 = 𝜔𝑥 cos 𝛼 + 𝜔𝑦 cos 𝛽 + 𝜔𝑧 cos 𝛾 (11.9) 

And thus: 

 𝜔𝑥 =
𝜔𝑝−𝜔𝑦 cos𝛽−𝜔𝑧 cos𝛾

cos𝛼
 (11.10a) 

 𝜔𝑦 =
𝜔𝑝−𝜔𝑥 cos𝛼−𝜔𝑧 cos𝛾

cos𝛽
 (11.10b) 

 𝜔𝑧 =
𝜔𝑝−𝜔𝑥 cos𝛼−𝜔𝑦 cos𝛽

cos𝛾
 (11.10c) 

Using Eq. 11.9 and Eq. 11.10 any of the four ARS can be predicted based on the other three. 

These equations can be directly applied in a situation when one ARS fails during the test. The 

missing reading can be then found from the other three readings, assuming that these three 

measurements do not contain errors. It is needed to be mentioned here that for the method to work 
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all four ARS need to be perfectly aligned and angles α, ,  be different than multiplications of 

90. 

One redundant ARS is also enough to asses if the recorded kinematics data are consistent, i.e., 

the predictions from Eq. 11.9 and Eq. 11.10 match the sensor measurements obtained during the 

test. If the predictions do not follow the measurements, it means that at least one of the four sensor 

readings contains an error. If only four ARS are utilized, through Eq. 11.9 and Eq. 11.10 it is not 

possible to identify which of the ARS is erroneous, as Eq. 11.9 and Eq. 11.10 are affected by the 

same error. To pinpoint the faulty sensor (assuming only one is “inconsistent”), a fifth ARS is 

needed in the senor package. With five ARS present, the following methodology can be applied to 

identify the erroneous reading: 

Step 1: Pick an ARS for which the consistency check will be performed, 

Step 2: Express the four remaining ARS readings in the function of three out of these four ARS 

measurements, 

Step 3: For the four ARS (from Step 2), compute the error between the measurements obtained 

during the test and their predictions as calculated in Step 2, 

Step 4: Compute the cumulative error for the four ARS from Step 3, 

Step 5: Repeat Step 1 to Step 4 for the other four angular rate sensors, 

Step 6: The sensor from Step 1 for which the cumulative error is the smallest, is the faulty 

sensor and its measurement should be replaced by the sensor prediction. 

It is worth pointing out here, that if the sensing axes of both added ARS are aligned (i.e., both 

ARS are at the same angle), the two redundant sensors should give the same reading. In that case, 

when Eq. 11.9 and one of the added ARS match, but the second added sensor does not, it means 

that that second sensor is affected by an error. When Eq. 11.9 does not match with any of the two 

redundant sensors, but the two added sensor measurements follow each other, it implies that at 

least one of the X, Y, or Z ARS is “inconsistent”. It can be shown, though, that with both redundant 

ARS at the same angle, Step 2 from the methodology described above does not have a unique 

solution (APPENDIX Q). For Step 2 to have a solution, the sensing axes of both added ARS cannot 

be aligned. 

11.3 Redundant linear accelerometer 

Similarly, based on Eq. 11.8 and by adding redundant linear accelerometers (ACC) to the 

sensor package, an inaccurate ACC can be identified and replaced by a “consistent” reading. To 

compare body’s acceleration, though, the sensor readings need to be transformed to the same point 

first. To transform acceleration from a linear accelerometer to a different point (in this study, to 

the origin of the sensor block’s local coordinate system) the following is needed: 

 distance of the center of gravity (CG) for an accelerometer’s seismic mass relative to the origin 

of the local frame of the sensor block, and 

 angular velocity in the plane the sensing axis of the redundant ACC is normal to. 

It is assumed that angular velocity 𝝎 = (𝜔𝑥, 𝜔𝑦, 𝜔𝑧)  around the three axis of the local 

coordinate system was measured and it is known. Then, the transformation of the acceleration 
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readings for the three ACC perfectly aligned with the axes of the body local frame to the origin of 

the local coordinate system takes a form of Eq. 11.11: 

 𝑎𝑥,𝑂 = 𝑎𝑥 + 𝜌𝑂𝑥 ∗ (𝜔𝑦
2 + 𝜔𝑧

2) (11.11a) 

 𝑎𝑦,𝑂 = 𝑎𝑦 + 𝜌𝑂𝑦 ∗ (𝜔𝑥
2 + 𝜔𝑧

2) (11.11b) 

 𝑎𝑧,𝑂 = 𝑎𝑧 + 𝜌𝑂𝑧 ∗ (𝜔𝑥
2 + 𝜔𝑦

2) (11.11c) 

where 𝑎𝑖  – sensor reading for ith accelerometer, 𝑎𝑖,𝑂  – sensor reading for ith accelerometer 

transformed to the origin of the local coordinate frame, 𝜌𝑂𝑖  – distance between the ith 

accelerometer seismic mass and the origin of the body local frame, ωi – body local angular rates; 

i = X, Y, Z. 

To transform acceleration from the redundant accelerometer 𝑎𝑝 to the origin of the sensor 

block coordinate system, the angular velocity 𝜔⊥ needs to be found.  𝜔⊥ describes angular rate 

around an axis in the plane the sensing axis of 𝑎𝑝 is normal to (Figure 114). 

 

Figure 114. Schematic drawing depicting axes of rotations for the analyzed body and redundant accelerometer 

attached to that body. All three axis shown are always in the same plane. 

To find 𝜔⊥, first, the angular velocity 𝜔𝑝 around the sensing axis of 𝑎𝑝 is determined using 

Eq. 11.9, three components of the local angular velocity 𝝎 and known angles: α, ,  (Figure 113) 

that define the orientation of 𝑎𝑝 in the 3D space. Next, body angular velocity 𝜔𝑖𝑛𝑠 around the 

instantaneous axis of rotation is found from Eq. 11.12: 

 𝜔𝑖𝑛𝑠 = √𝜔𝑥
2 + 𝜔𝑦

2 + 𝜔𝑧
2 (11.12) 

When both, 𝜔𝑝 and 𝜔𝑟𝑒𝑠 are known the angle  (Figure 114) between the body instantaneous 

axis of rotation and the 𝑎𝑝 sensing axis can be determined (Eq. 11.13): 
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 cos𝜑 =
𝜔𝑝

𝜔𝑖𝑛𝑠
=

𝜔𝑝

√𝜔𝑥
2+𝜔𝑦

2+𝜔𝑧
2
⇒ 𝜑 = cos−1 (

𝜔𝑝

√𝜔𝑥
2+𝜔𝑦

2+𝜔𝑧
2
) (11.13) 

Finally, using Eq. 11.13, trigonometric relationships and simple algebraic manipulations, 𝜔⊥ 

can be identified as (Eq. 11.14): 

 cos(90° − 𝜑) =
𝜔⊥

𝜔𝑖𝑛𝑠
⇒ sin𝜑 =

𝜔⊥

√𝜔𝑥
2+𝜔𝑦

2+𝜔𝑧
2
⇒ 𝜔⊥ = sin𝜑 √𝜔𝑥

2 + 𝜔𝑦
2 + 𝜔𝑧

2 (11.14) 

It is known that: 

 sin(cos−1 𝑥) = √1 − 𝑥2 (11.15) 

By using relationship described by Eq. 11.15, Eq. 11.14 can be rewritten as: 

𝜔⊥ = √1 −
𝜔𝑝

2

𝜔𝑥
2 + 𝜔𝑦

2 + 𝜔𝑧
2
∗ √𝜔𝑥

2 + 𝜔𝑦
2 + 𝜔𝑧

2 = √
𝜔𝑥

2 + 𝜔𝑦
2 + 𝜔𝑧

2 − 𝜔𝑝
2

𝜔𝑥
2 + 𝜔𝑦

2 + 𝜔𝑧
2

∗ (𝜔𝑥
2 + 𝜔𝑦

2 + 𝜔𝑧
2) ⇒ 

 𝜔⊥ = √𝜔𝑥
2 + 𝜔𝑦

2 + 𝜔𝑧
2 − 𝜔𝑝

2 (11.16) 

Utilizing Eq. 11.16 and assuming that vector 𝝆𝒑 = (𝜌𝑝𝑥, 𝜌𝑝𝑦, 𝜌𝑝𝑧) , describing the local 

position of the redundant ACC (its seismic mass CG), is known, the accelerometer reading of the 

added sensor can be transformed to the origin of the local coordinate system with the use of Eq. 

11.17: 

 𝑎𝑝,𝑂 = 𝑎𝑝 + ‖𝝆𝑝‖ ∗ 𝜔⊥
2 = 𝑎𝑝 + √𝜌𝑝𝑥

2 + 𝜌𝑝𝑦
2 + 𝜌𝑝𝑧

2 ∗ (𝜔𝑥
2 + 𝜔𝑦

2 + 𝜔𝑧
2 − 𝜔𝑝

2) (11.17) 

where 𝑎𝑝 – reading of the redundant accelerometer, 𝑎𝑝,𝑂 – reading of the redundant accelerometer 

transformed to the origin of the body local frame, ‖𝝆𝑝‖ – magnitude of the position vector for the 

added ACC, i.e. the distance between the seismic mass of the redundant ACC and the origin of the 

local coordinate system, ωx, ωy, and ωz – local coordinate system components of the body angular 

velocity ω, 𝜌𝑝𝑥, 𝜌𝑝𝑦, 𝜌𝑝𝑧 – local position components of the seismic mass CG of the redundant 

sensor. 

Remark: 𝜔⊥ is a projection of 𝜔𝑖𝑛𝑠 on the plane the sensing axis of the accelerometer 𝑎𝑝 is 

normal to. Using an arbitrary angle  between 0 and 90, 𝜔⊥ could be split into two orthogonal 

components, 𝜔⊥,1 = 𝜔⊥ cos  and 𝜔⊥,2 = 𝜔⊥ sin , contained within that same plane. Then, using 

trigonometric identities, it can be shown that:  

 𝜔⊥
2 = 𝜔⊥

2(cos2  + sin2 ) = (𝜔⊥ cos )2 + (𝜔⊥ sin )2 = (𝜔⊥,1
2 + 𝜔⊥,2

2 ) (11.18) 

When all four sensor readings are transformed to the same point, the analytical relationship 

between the reading from one of the sensors and the readings from the other three is described by 

Eq. 11.19: 

 𝑎𝑝,𝑂 = 𝑎𝑥,𝑂 cos 𝛼 + 𝑎𝑦,𝑂 cos 𝛽 + 𝑎𝑧,𝑂 cos 𝛾 (11.19) 

Through the expanded form of Eq. 11.19, the four sensor readings can be related directly by: 
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𝑎𝑝 = [𝑎𝑥 + 𝜌𝑂𝑥 ∗ (𝜔𝑦
2 + 𝜔𝑧

2)] cos 𝛼 + [𝑎𝑦 + 𝜌𝑂𝑦 ∗ (𝜔𝑥
2 + 𝜔𝑧

2)] cos 𝛽 + [𝑎𝑧 + 𝜌𝑂𝑧 ∗ (𝜔𝑥
2 +

𝜔𝑦
2)] cos 𝛾 − [√𝜌𝑝𝑥

2 + 𝜌𝑝𝑦
2 + 𝜌𝑝𝑧

2 ∗ (𝜔𝑥
2 + 𝜔𝑦

2 + 𝜔𝑧
2 − (𝜔𝑥 cos 𝛼 + 𝜔𝑦 cos 𝛽 +

𝜔𝑧 cos 𝛾)
2
)]  (11.20) 

𝑎𝑥 = ([𝑎𝑝 + √𝜌𝑝𝑥
2 + 𝜌𝑝𝑦

2 + 𝜌𝑝𝑧
2 ∗ (𝜔𝑥

2 + 𝜔𝑦
2 + 𝜔𝑧

2 − (𝜔𝑥 cos 𝛼 + 𝜔𝑦 cos 𝛽 + 𝜔𝑧 cos 𝛾)
2
)] −

[𝑎𝑦 + 𝜌𝑂𝑦 ∗ (𝜔𝑥
2 + 𝜔𝑧

2)] cos 𝛽 − [𝑎𝑧 + 𝜌𝑂𝑧 ∗ (𝜔𝑥
2 + 𝜔𝑦

2)] cos 𝛾) / cos 𝛼 − 𝜌𝑂𝑥 ∗

(𝜔𝑦
2 + 𝜔𝑧

2)  (11.21) 

𝑎𝑦 = ([𝑎𝑝 + √𝜌𝑝𝑥
2 + 𝜌𝑝𝑦

2 + 𝜌𝑝𝑧
2 ∗ (𝜔𝑥

2 + 𝜔𝑦
2 + 𝜔𝑧

2 − (𝜔𝑥 cos 𝛼 + 𝜔𝑦 cos 𝛽 + 𝜔𝑧 cos 𝛾)
2
)] −

[𝑎𝑥 + 𝜌𝑂𝑥 ∗ (𝜔𝑦
2 + 𝜔𝑧

2)] cos 𝛼 − [𝑎𝑧 + 𝜌𝑂𝑧 ∗ (𝜔𝑥
2 + 𝜔𝑦

2)] cos 𝛾) / cos 𝛽 − 𝜌𝑂𝑦 ∗

(𝜔𝑥
2 + 𝜔𝑧

2)  (11.22) 

𝑎𝑧 = ([𝑎𝑝 + √𝜌𝑝𝑥
2 + 𝜌𝑝𝑦

2 + 𝜌𝑝𝑧
2 ∗ (𝜔𝑥

2 + 𝜔𝑦
2 + 𝜔𝑧

2 − (𝜔𝑥 cos 𝛼 + 𝜔𝑦 cos 𝛽 + 𝜔𝑧 cos 𝛾)
2
)] −

[𝑎𝑥 + 𝜌𝑂𝑥 ∗ (𝜔𝑦
2 + 𝜔𝑧

2)] cos 𝛼 − [𝑎𝑦 + 𝜌𝑂𝑦 ∗ (𝜔𝑥
2 + 𝜔𝑧

2)] cos 𝛽) / cos 𝛾 − 𝜌𝑂𝑧 ∗

(𝜔𝑥
2 + 𝜔𝑦

2)  (11.23) 

Using Eq. 11.20 to Eq. 11.23 any of the four ACC can be predicted based on the other three. 

These equations can be directly applied in a situation when one ACC fails during the test. The 

missing reading can be then found from the other three readings, assuming that these three 

measurements do not contain errors. It is needed to be mentioned here, that for the method to work 

all four ACC need to be perfectly aligned, local angular rate measured, known and without errors, 

and angles α, ,  to be different than multiplications of 90. 

One redundant ACC is also enough to asses if the recorded kinematics data are consistent, i.e., 

the predictions from Eq. 11.20 and Eq. 11.23 match the sensor measurements obtained during the 

test. If the predictions do not follow the measurements, it means that at least one of the four ACC 

readings contains an error. If only four ACC are utilized, through Eq. 11.20 and Eq. 11.23 it is not 

possible to identify which of the ACC is erroneous, as Eq. 11.20 and Eq. 11.23 are affected by the 

same error. To pinpoint the faulty sensor (assuming only one is “inconsistent”), a fifth ACC and 

the consistency check analysis (as described in Section 11.2) are needed. Similarly to ARS, to have 

enough new information for the ACC consistency check, the sensing axis of the fifth linear 

accelerometer should be at a different angle than the axis for the already added (4th) ACC. 

Remark: Eq. 11.20 to Eq. 11.23 assume that the angular velocity 𝜔𝑝 is not measured directly 

by an angular rate sensor. If that measurement is available, Eq. 11.20 to Eq. 11.23 can be 

simplified: 

𝑎𝑝 = [𝑎𝑥 + 𝜌𝑂𝑥 ∗ (𝜔𝑦
2 + 𝜔𝑧

2)] cos 𝛼 + [𝑎𝑦 + 𝜌𝑂𝑦 ∗ (𝜔𝑥
2 + 𝜔𝑧

2)] cos 𝛽 + [𝑎𝑧 + 𝜌𝑂𝑧 ∗ (𝜔𝑥
2 +

𝜔𝑦
2)] cos 𝛾 − [√𝜌𝑝𝑥

2 + 𝜌𝑝𝑦
2 + 𝜌𝑝𝑧

2 ∗ (𝜔𝑥
2 + 𝜔𝑦

2 + 𝜔𝑧
2 −

𝜔𝑝
2)]  (11.24) 
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𝑎𝑥 = ([𝑎𝑝 + √𝜌𝑝𝑥
2 + 𝜌𝑝𝑦

2 + 𝜌𝑝𝑧
2 ∗ (𝜔𝑥

2 + 𝜔𝑦
2 + 𝜔𝑧

2 − 𝜔𝑝
2)] − [𝑎𝑦 + 𝜌𝑂𝑦 ∗ (𝜔𝑥

2 + 𝜔𝑧
2)] cos 𝛽 −

[𝑎𝑧 + 𝜌𝑂𝑧 ∗ (𝜔𝑥
2 + 𝜔𝑦

2)] cos 𝛾)/ cos 𝛼 − 𝜌𝑂𝑥 ∗ (𝜔𝑦
2 +

𝜔𝑧
2)  (11.25) 

𝑎𝑦 = ([𝑎𝑝 + √𝜌𝑝𝑥
2 + 𝜌𝑝𝑦

2 + 𝜌𝑝𝑧
2 ∗ (𝜔𝑥

2 + 𝜔𝑦
2 + 𝜔𝑧

2 − 𝜔𝑝
2)] − [𝑎𝑥 + 𝜌𝑂𝑥 ∗ (𝜔𝑦

2 + 𝜔𝑧
2)] cos 𝛼 −

[𝑎𝑧 + 𝜌𝑂𝑧 ∗ (𝜔𝑥
2 + 𝜔𝑦

2)] cos 𝛾)/ cos 𝛽 − 𝜌𝑂𝑦 ∗ (𝜔𝑥
2 +

𝜔𝑧
2)  (11.26) 

𝑎𝑧 = ([𝑎𝑝 + √𝜌𝑝𝑥
2 + 𝜌𝑝𝑦

2 + 𝜌𝑝𝑧
2 ∗ (𝜔𝑥

2 + 𝜔𝑦
2 + 𝜔𝑧

2 − 𝜔𝑝
2)] − [𝑎𝑥 + 𝜌𝑂𝑥 ∗ (𝜔𝑦

2 + 𝜔𝑧
2)] cos 𝛼 −

[𝑎𝑦 + 𝜌𝑂𝑦 ∗ (𝜔𝑥
2 + 𝜔𝑧

2)] cos 𝛽)/ cos 𝛾 − 𝜌𝑂𝑧 ∗ (𝜔𝑥
2 +

𝜔𝑦
2)  (11.27) 

11.4 Verification of sensor measurement predictions based on a computer simulation 

11.4.1 Methods 

As the final step, sensor measurement prediction capabilities (as defined by Eq. 11.9, Eq. 

11.10, and Eq. 11.20 to Eq. 11.23) were verified using kinematics data obtained from a multi-body 

model (Figure 115) simulated in a commercial Finite Element (FE) package (LS-Dyna 9.2.0, 

LSTC, Livermore, CA). 

 

a)  b)  c) d)  

Figure 115. Multi-body model used in the analysis: a) front view, b) oblique view, c) model position later in the 

simulation. 

The model consisted of rigid bodies connected with kinematic joints. It was given an initial 

velocity. The scenario was designed in a way that at some point during the simulation one of the 

bodies interacted with an undeformable barrier (rigidly fixed at 45 relative to the model travel 

direction). That contact disturbed the initial orientation of all connected bodies, causing relative 

translations and rotations of the parts (Figure 115c). 

In the simulation, linear accelerations and angular velocities were measured in the local 

coordinate system of one of the articulated masses ("yellow" in Figure 115). Four different 

locations for numerical sensors were selected (Figure 116). Three ACC and three ARS were 

aligned with the axes of the body local coordinate system. One redundant ACC (𝑎𝑝) and one 

redundant ARS (𝜔𝑝) were added at a distance from the origin of the local frame. 

Tracked body 
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Figure 116. Sensor block configuration. 

The coordinates of all of the numerical sensors, in the body-fixed local coordinate frame, were 

gathered in Table 24. 

Table 24. Coordinates of the numerical sensors in local body frame: i = O for the X, Y, Z sensors and i = p for the 

redundant sensors. 

Sensor 𝝆𝒊𝒙 (mm) 𝝆𝒊𝒚 (mm) 𝝆𝒊𝒛 (m)m 

𝑎𝑥 & 𝜔𝑥  70 0 0 

𝑎𝑦 & 𝜔𝑦 0 70 0 

𝑎𝑧 & 𝜔𝑧 0 0 70 

𝑎𝑝 & 𝜔𝑝 40.5 40.5 40.5 

Sensing axes of the two redundant sensors were collinear. Their orientation relative to the axes 

of the local coordinate system was defined with the use of three known angles: α, , . All three 

angles were 54.7 to ensure equal components of the redundant readings after projection to each 

of the three axes of the body coordinate frame (Figure 117). 

 

𝑎𝑥 & 𝜔𝑥  

𝑎𝑦 & 𝜔𝑦 

𝑎𝑝 & 𝜔𝑝 

𝑎𝑧 & 𝜔𝑧  
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Figure 117. Orientation of the sensing axes of the redundant sensors. 

The computer simulation was run up to 1 sec. The recorded kinematics data were utilized as 

an input to Eq. 11.9, Eq. 11.10, and Eqs. 11.20-11.23 to verify the consistency check methodology. 

It was done first for angular rate sensors, and next, using four linear accelerometers while assuming 

that only local X, Y, and Z angular rates were known. As a metric assessing the agreement between 

the FE sensor output and its prediction, the time history of an absolute difference between both 

was used. 

11.4.2 Results 

The results from both, the ARS analysis (Figure 118) and the ACC analysis (Figure 119) 

showed a good agreement between the predicted output and the output as calculated by the FE 

software. The entire time-history of the maximum absolute difference for all analyzed numerical 

sensors: 

 for the ARS signals stayed below 0.35% of the maximum absolute value of recorded local 

body angular rate; 

 for the ACC signals stayed below 0.2% of the maximum absolute value of recorded local 

acceleration.  

The maximum absolute value (either for ARS or for ACC) was found based on the data from 

all four sensors of the same type. 



145 
 

 

Figure 118. Recorded and predicted local angular velocity for the tracked body. 

 

Figure 119. Recorded and predicted local linear acceleration for the tracked body. 
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11.5 Conclusions 

In this section, a new method was proposed to account for a sensor that failed during a test or 

to identify an inaccurate (“inconsistent”) sensor that was used to measure rigid body 3D 

kinematics. 

To recover a measurement lost, for example, due to a broken connector or a cable, one added 

sensor (of the same type as the broken sensor) is needed. By adding two redundant angular rate 

sensors to a standard “3 ACC + 3 ARS” package, an ARS with errors in its signal can be identified. 

Similarly, by adding two redundant linear accelerometers, an accelerometer with a faulty response 

can be pinpointed. 

The method is based on an analytical relationship that relates an output (measured quantity) 

from one of the sensors to the readings from the other sensors of the same type. That mathematical 

relationship was verified using data from a computer simulation of a simple rigid body system 

where both, the ARS and the ACC analyses showed a good agreement between the predicted 

sensor output (as calculated from Eq. 11.9 and 11.10 for ARS, and Eqs. 11.20 to 11.23 for ACC) 

and the output obtained directly from the FE software. 

The presented method is a promising tool that can be utilized to minimize an error in measured 

body motion resulting from a faulty sensor. Further validation – using real test data – is required, 

though, to confirm the findings discussed in this study. 
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12. 3D TRAJECTORY CALCULATION IN THOR TESTS UTILIZING THE 

SENSOR FUSION TECHNIQUE THROUGH THE KALMAN FILTER 

The goal of this chapter was to analyze if by performing sensor fusion of two sets of linear 

accelerometers and angular rate sensors, the deviation between the computed and reference 

trajectories of the THOR ATD’s head could be decreased. 

The chapter is organized as follows. Section 12.1 introduces the reader to the concept of the 

Kalman filter and the senor fusion technique. The following sections describe the ATD 

instrumentation used in the analysis (Section 12.2), the mathematical equations employed in sensor 

fusion (Section 12.3), and the error metrics utilized through the study (Section 12.4). Next, the 

results from two test cases are presented in Section 12.5. Concluding remarks are provided in 

Section 12.6. 

12.1 Introduction 

A vehicle is traveling through a 3D space. That vehicle has two sensors attached to it: odometer 

and GPS. Both of the sensors can be used to determine the vehicle’s position relative to the 

common reference frame. Both measurements give a slightly different response (i.e. position) and 

both have uncertainty (noise) associated with them. What can be done to discard that noise and 

obtain the true position of the vehicle? The simplest would be to take an average of the two signals. 

Due to different levels of uncertainty for different sensors, though, the approach might not always 

work for real-life problems. An alternative method that accounts for the measurement uncertainty 

is needed. 

The Kalman filter (Kalman 1960) takes the information from both sensors and combines the 

measurements to find a better estimate �̅� (Figure 120). The technique has been used widely in 

robotics, navigation, and gait studies in the position and orientation estimation (Freeston 2002, 

Bennett et al. 2013, Rebula et al. 2013, Ferrari et al. 2016, Santhanakrishnan et al. 2017, Zhang et 

al. 2018). 

 

Figure 120. PDF of odometer (green) and GPS (blue) measurements combined to obtain a better estimate 

(red). 

The Kalman filter is an iterative process that uses a set of equations and consecutive data inputs 

(with known initial variation) to estimate a measured variable (position/velocity/etc.), minimizing 

the variation in the combined probability density function (PDF) for that variable. The method 

involves two stages: 
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 Prediction, in which the measured variable is computed based on the best estimate from 

the previous step utilized as an input to the mathematical model of the investigated system. 

If the mathematical model is not available it can be replaced by an identity matrix (the 

current prediction is equal to the best estimate from the previous step); 

 Measurement update, in which the variable from the current prediction step is updated with 

the data coming from an observation (sensor). In this step, sensor fusion can be performed. 

The fusion allows for data from more than one sensor to be used to update the prediction. 

Sensor fusion combines the data from different sensors taking into account the variance 

associated with each measurement and finds the optimum averaging factor (so-called Kalman 

gain) for each consequent state. The Kalman gain assigns different weights to all sources of the 

input to minimize the influence of either inaccurate mathematical model (if used), or imprecise 

measurements. In other words, the Kalman filter calculates a weighted average of input signals 

with the signal weights assigned in a probabilistic way. 

In the sled tests performed for this dissertation (with the Simplified Head or with the THOR 

Mod-kit ATD; APPENDIX A and APPENDIX D, respectively), different sensors were used to 

measure 3D kinematics of the same tracked object. These different measurements can be combined 

together with the use of the sensor fusion technique and then utilized in the trajectory calculation 

process to potentially decrease the high position error observed in the Simplified Head or THOR 

sled tests. 

The goal of this study was to assess if by assuming an identity matrix for the prediction step 

and performing (in the measurement update step) the sensor fusion of two sets of linear 

accelerometers and angular rate sensors (with known measurement uncertainties), the deviation 

between the computed and reference trajectories of the ATD’s head would be decreased in Test 

S0457 and Test S0458 (THOR ATD; no impact; treated here as exemplar cases; for more detail 

about the tests see Chapter 7). 

12.2 Instrumentation 

The head 6DOF kinematics were captured with two different types of linear accelerometers 

(ACC) and two types of angular rate sensors (ARS) (Table 25). The accelerometers were aligned 

in a way that both types shared the same measurement center. During the test, head’s local 

acceleration and angular velocity were captured at 20 kHz. 

Table 25. List of sensors used in both analyzed tests. 

Location Sensor type Sensor model Quantity 

ATD’s head 

Linear accelerometer 
Endevco 7264C 3 

Endevco 7290E 3 

Angular rate sensor 
DTA ARS PRO with bandwidth up to 300 Hz 3 

DTA ARS PRO with bandwidth up to 2000 Hz 3 
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12.3 Sensor fusion 

In this subsection, the sensor fusion algorithm (Section 12.3.1), and the method of obtaining 

the sensor measurement variance matrix needed for that algorithm (Section 12.3.2), were described. 

Prior to the sensor fusion step, head’s local linear acceleration was filtered with CFC 1000 and 

local angular rate with CFC 60. 

The kinematics data obtained with the sensor fusion technique were utilized to compute 3D 

component trajectories of the head as described in Section 1.2.3. To update the orientation of the 

tracked body (its rotation matrix R), the head’s local angular velocity and the method described by 

Rudd et al. 2006 were used. 

12.3.1 Algorithm 

The general form of the algorithm utilized to combine kinematics data from two sensors of the 

same type is given in Eqs. 12.1-12.4: 

 𝒛𝑘 = 𝑪𝑘𝒙𝑘 + 𝒒𝑘 (12.1) 

 𝑲𝑘 = �̂�𝑘𝑪𝑘
𝑇 (𝑪𝑘�̂�𝑘𝑪𝑘

𝑇 + 𝑸𝑘)
−1

 (12.2) 

 𝒙𝑘 = �̂�𝑘 + 𝑲𝑘(𝒛𝑘 − 𝑪𝑘�̂�𝑘) (12.3) 

 �̅�𝑘 = (𝑰 − 𝑲𝑘𝑪𝑘)�̂�𝑘(𝑰 − 𝑲𝑘𝑪𝑘)
−1 + 𝑲𝑘𝑸𝑘𝑲𝒌

−1 (12.4) 

where xk – state vector describing the analyzed system (here: 3 x 1 matrix containing components 

of either ACC or ARS), zk – observation (here: 6 x 1 matrix containing the data from two sensors 

of the same type at time k), Ck – state transition matrix transforming the state vector xk to the 

measurement domain (here: 𝑪 = [
𝑰
𝑰
], where I – 3 x 3 identity matrix), qk – Gaussian measurement 

noise (~𝑁(0,𝑸𝑘)), Qk – measurement covariance matrix (here: 6 x 6 matrix containing sensor 

uncertainties along the diagonal terms and zeros for Qk(i,j) when i  j), Kk – Kalman gain (3 x 6 

matrix containing weights associated with sensor observations), �̂�𝑘  – a priori state covariance 

(covariance prior to the measurement update step), �̅�𝑘 – a posteriori state covariance (covariance 

after the measurement update), �̂�𝑘 – a priori state vector (prior to the measurement update step), 

�̅�𝑘 – a posteriori state estimate (ACC or ARS after the sensor fusion). 

12.3.2 Measurement variance matrix 

Sensor uncertainties u utilized to build the initial measurement covariance matrix Q were 

obtained by using the combined uncertainty formula (Eq. 12.5): 

 𝑢𝑠𝑒𝑛_𝑗,𝑐𝑜𝑚𝑏
2 = 𝑢𝑐𝑎𝑙𝑖𝑏_𝑠ℎ𝑒𝑒𝑡_𝑏𝑎𝑠𝑒𝑑

2 + 𝑢𝑛𝑜𝑖𝑠𝑒_𝑏𝑎𝑠𝑒𝑑
2  (12.5) 

where 𝑢𝑠𝑒𝑛_𝑗,𝑐𝑜𝑚𝑏  – combined uncertainty for a sensor j, 𝑢𝑐𝑎𝑙𝑖𝑏_𝑠ℎ𝑒𝑒𝑡_𝑏𝑎𝑠𝑒𝑑  – measurement 

uncertainty as obtained based on a sensor calibration sheet and measurements from a standardized 

calibration check test (see APPENDIX R), 𝑢𝑛𝑜𝑖𝑠𝑒_𝑏𝑎𝑠𝑒𝑑 – standard deviation for the sensor signal 

(noise) before time t = 0. 
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After determining 𝑢𝑠𝑒𝑛_𝑗,𝑐𝑜𝑚𝑏 for all six sensors of the same type, the matrix Q was defined 

as: 

 𝑸 =

[
 
 
 
 
 
 
 
𝑢𝑠𝑒𝑛_1,𝑐𝑜𝑚𝑏

2 0 0

0 𝑢𝑠𝑒𝑛_2,𝑐𝑜𝑚𝑏
2 0

0 0 𝑢𝑠𝑒𝑛_3,𝑐𝑜𝑚𝑏
2

𝟎

𝟎

𝑢𝑠𝑒𝑛_4,𝑐𝑜𝑚𝑏
2 0 0

0 𝑢𝑠𝑒𝑛_5,𝑐𝑜𝑚𝑏
2 0

0 0 𝑢𝑠𝑒𝑛_6,𝑐𝑜𝑚𝑏
2

]
 
 
 
 
 
 
 

 (12.6) 

12.4 Error metrics 

Throughout the analysis, the following metric was used to evaluate the accuracy of the head’s 

calculated trajectory: 

 𝑅𝑒𝑠𝑒𝑟𝑟 = √∑ [(𝑥𝑂𝑆𝑆,𝑖−𝑥𝑐𝑎𝑙𝑐,𝑖)
2
+(𝑦𝑂𝑆𝑆,𝑖−𝑦𝑐𝑎𝑙𝑐,𝑖)

2
+(𝑧𝑂𝑆𝑆,𝑖−𝑧𝑐𝑎𝑙𝑐,𝑖)

2
]𝑁

𝑖=1

𝑁
 (12.7) 

where N – number of data (time) points, xOSS,i, yOSS,i, zOSS,i – X, Y, Z components of the reference 

trajectory (from VICON OSS) at the data point i, xcalc,i, ycalc,i, zcalc,i – X, Y, Z components of the 

calculated trajectory (based on sensor data). 

In addition to Reserr, the maximum absolute difference diffmax between the calculated and 

reference trajectories was computed and reported for the three trajectory components. 

12.5 Results 

After the kinematics data from the sensor fusion were utilized to calculate 3D component 

trajectories of the ATD’s head, the error in the tracked object position was in-between the “best” 

and “worst” responses produced (with no application of the Kalman filter) by the four sensor 

packages used on the THOR sled runs (Table 26). In Test S0457 as well as in Test S0458, the 

Reserr metric was higher by 36.4% and 23.7%, respectively, relative to the “Endevco 7264C – DTS 

ARS PRO 2000Hz” sensor combination, a sensor package that gave the smallest Reserr in both 

tests. 

Table 26. Reserr in both analyzed tests for kinematics data obtained: from sensor combination that gave the 

smallest Reserr (from the four combinations possible; Kalman filter not used), from sensor combination that gave 

the highest Reserr (from the four combinations possible; Kalman filter not used), after sensor fusion. 

Sensor combination 

Test S0457 Test S0458 

Reserr 

(mm) 

% increase in Reserr 

w.r.t best case 

Reserr 

(mm) 

% increase in Reserr 

w.r.t best case 

END7264C-DTS2000Hz 

(best case) 
42.91 0 58.54 0 

END7290E-DTS300Hz 

(worst case) 
78.45 82.8 86.57 47.9 

Sensor fusion for ACC 

& ARS 
58.51 36.4 72.43 23.7 
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The diffmax metric indicated a substantial increase in the position error for head’s X and Y 

trajectory components, calculated using the sensor fused kinematics data, when compared to the 

results from the “Endevco 7264C – DTS ARS PRO 2000Hz” case (Table 27). When the Kalman 

filter was utilized, diffmax for the Z component was lower in Test S0457 and in Test S0458, by 5.9 

mm and 1.86 mm respectively, when the trajectory from “Endevco 7264C – DTS ARS PRO 

2000Hz” was used as a reference. 

Table 27. diffmax in both analyzed tests for kinematics data obtained: from sensor combination that gave the 

smallest Reserr (from the four combinations possible; Kalman filter not used), after sensor fusion. 

Test # 
END7264C-DTS2000Hz (best case) Sensor fusion for ACC & ARS 

X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm) 

S0457 88.7 13.46 38.14 127.11 32.05 32.24 

S0458 122.45 7.36 46.33 155.84 33.53 44.47 

12.6 Conclusions 

In summary, no improvements in the accuracy of the trajectory calculation algorithm were 

achieved by employing the sensor fusion technique in the two discussed tests. Because the Kalman 

filter computes a weighted average of the input signals, it is believed that due to the overall high 

position error seen across different sensor packages in most of the tests performed within this 

dissertation, the utilization of the sensor fusion technique in those tests also would not bring the 

trajectory error down. A different method of improving the accuracy of IMU-based position 

predictions is needed. 
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13. 3D TRAJECTORY CALCULATION IN THOR TESTS UTILIZING THE 

KNOWLEDGE GAINED FROM THE ERROR EFFECTS ANALYSIS 

The goal of this chapter was to analyze if by performing an optimization on either initial 

orientation or debias values for local acceleration and angular rate data, the deviation between the 

computed and reference trajectories of the THOR ATD’s head could be decreased. 

The chapter is organized as follows. Section 13.3.1 gives an overview of the stated problem. 

The following sections describe the ATD kinematics data used in the analysis (Section 13.3.2), 

and the optimization process itself, including the definition of objective function and optimization 

variables utilized in the analysis (Section 13.3.3). Next, the error metrics employed through the 

study are discussed (Section 13.3.4). The results from the analysis are presented in Section 13.3.5. 

Concluding remarks are provided in Section 13.3.6. 

13.1 Introduction 

As it was shown in the Error effects analysis (Chapter 10), the error in debias values for linear 

accelerometers and angular rate sensors, the error in accelerometer sensitivity, as well as the error 

in the initial orientation of an object can substantially affect the trajectory of the tracked body when 

its position is computed from the data obtained with locally-mounted inertial sensors. 

The debias value depends on: a) the amount of pre-trigger data (before time t = 0) utilized to 

compute the offset for a sensor signal, and b) the noise level in that signal. The error in the initial 

orientation of the tracked body (i.e., its rotation matrix R at time t = 0) is related to the accuracy 

of the measurement method and/or equipment utilized to determine R at t = 0. The error in sensor 

sensitivity can be amplified by a continuous usage of a sensor that is not calibrated frequently or 

by running that sensor at a different excitation voltage that the sensor was calibrated at. All of 

these errors and many more could potentially be responsible for the high discrepancy between the 

head’s computed and reference (VICON) trajectories observed in the THOR tests. 

It is believed that because the sensors used in this dissertation were calibrated prior to testing 

and run at their calibration voltage during testing the error in the sensitivity for linear 

accelerometers (ACC) and angular rate sensors (ARS) utilized on the sled runs had a negligible 

effect on the computed head’s trajectory. It is hypothesized that the other three error types 

discussed (ARS and ACC debias as well as the uncertainty in the initial orientation) were the main 

contributors to the high position error observed in the THOR sled tests. To verify that hypothesis 

and to minimize the effect of the debias (for both, ACC and ARS) and initial orientation errors, i.e. 

to improve the accuracy of the trajectory calculation algorithm, an optimization was performed on 

the data from Test S0455 and Tests S0457 to S0461, with the signal offset values and/or the initial 

Euler angles treated as optimization variables. 

13.2 ATD head kinematics data 

In all seven THOR tests, the ATD head local kinematics were captured by three linear 

accelerometers (Endevco 7264C, Meggitt Sensing Systems, CA, USA) and three angular rate 

sensors (DTS ARS PRO with bandwidth up to 2000 Hz, Diversified Technical Systems, Seal 

Beach, CA, USA) sampled at 20 kHz. On the test, in addition to the six sensors, an optical system 
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(VICON MX, VICON, Los Angeles, CA) was utilized to measure the head’s position in the 

reference (global) coordinate frame. The results from the VICON system (treated in the analysis 

as the reference) were recorded at 1 kHz. 

Before the sensor data were utilized to compute 3D component trajectories of the ATD head 

(as described in Section 1.2.3), linear acceleration was filtered with CFC 1000 and the local angular 

rate was filtered to CFC 60. To update the orientation of the tracked body (its rotation matrix R), 

the head’s local angular velocity and the method described by Rudd et al. 2006 were used. 

13.3 Description of the optimization process 

In the optimization process, the trajectory for the measurement center (Figure 2) for the three 

Endevco 7264C accelerometers, mounted at the origin of the head local coordinate system, was 

calculated. Next, 𝑅𝑒𝑠𝑒𝑟𝑟 (Eq. 12.7) between the computed and the reference (VICON) trajectories 

was found. The objective of the optimization was to identify: 

 a set of three head’s initial Euler angles (Case 1), 

 a set of three ACC debias values (Case 2), 

 a set of three ARS debias values (Case 3), 

 a set consisting of three ACC debias values and three head’s initial Euler angles (Case 4), 

that minimizes that 𝑅𝑒𝑠𝑒𝑟𝑟 . The MATLAB’s gradient-based fmincon Interior Point solver (cf. 

Byrd et al. 2000, cf. Waltz et al. 2006) was used as the optimization algorithm. Varied parameters 

were: ACC and ARS debias (in X, Y, and Z directions for both types of sensors), as well as initial 

yaw, initial pitch and initial roll angles (used to build the head’s rotation matrix Rini according to 

the 3-2-1 convention as shown in Wu et al. 2009). The starting values for the sensor debias errors 

(used in the optimization process) were set to zero. The starting points for the angles were 

determined from the pre-trigger VICON data for the head, separately in each of the seven 

investigated THOR tests. The debias values were allowed to vary within 2 g for ACC and within 

25 deg/sec for the ARS data. The initial Euler angles could vary within 3 degrees from their 

starting points. To identify the global minimum, i.e. to minimize the possibility of finding a local 

minimum of the objective function 𝑚𝑖𝑛(𝑅𝑒𝑠𝑒𝑟𝑟), the MATLAB’s GlobalSearch algorithm (cf. 

Ugray et al. 2007) was utilized. 

13.4 Error metrics 

Throughout the analysis the Reserr metric (Eq. 12.7) was used to evaluate the accuracy of the 

head’s calculated trajectory. In addition to Reserr, the maximum absolute difference diffmax between 

the calculated and reference trajectories was computed and reported for the three trajectory 

components. 

13.5 Results 

In this subsection, first, the effect of optimization of initial orientation (i.e. initial Euler angles 

of the ATD’s head) on the error in IMU-based position estimations is discussed (Section 13.5.1). 

Next, the results from optimization of debias values for linear acceleration (Section 13.5.2) or 

body’s local angular rate (Section 13.5.3) are described. In the final part (Section 13.5.4), the 

consequences of optimization (at the same time) of both, initial orientation and debias values for 

body’s local linear acceleration are presented. 
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13.5.1 Optimization of initial orientation (Case 1) 

Due to the optimization performed on the three initial Euler angles, Reserr was decreased in all 

seven investigated THOR tests (Table 28). In five tests (S0455 to S0459, and in Test S0462), the 

Reserr after the optimization was below 9.5 mm. In the other two tests, the resulting Reserr was 

above 17.5 mm (Test S0462) or above 23.8 mm (Test S0460). The decrease in the Reserr metric 

was associated with a relatively small change between the starting and the optimized Euler angles. 

The highest change across the three angles (2.86 deg for yaw) was observed in Test S0458, the 

smallest (0.07 deg for pitch) in Test S0460. 

Table 28. Reserr before and after optimization and absolute difference in initial Euler angles due to optimization. 

Test 

# 

𝑹𝒆𝒔𝒆𝒓𝒓 (mm) 
Difference in initial Euler angles due 

to optimization 

Before 

optimization 

After 

optimization 

% 

difference* 
Yaw (deg) Pitch (deg) Roll (deg) 

S0455 19.82 9.41 52.5 0.28 0.89 0.12 

S0457 42.91 7.36 82.8 2 0.86 0.18 

S0458 58.54 7.67 86.9 2.86 0.89 0.27 

S0459 29.53 2.99 89.9 1.34 0.61 0.68 

S0460 36.09 23.81 34.0 1.34 0.07 0.34 

S0461 29.84 2.65 91.1 1.46 0.13 0.33 

S0462 35.69 17.64 50.6 1.53 1.36 2.13 

* %𝑑𝑖𝑓𝑓 = 100 −
100 ∗ 𝑣𝑎𝑙𝑢𝑒_𝑎𝑓𝑡𝑒𝑟_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑣𝑎𝑙𝑢𝑒_𝑏𝑒𝑓𝑜𝑟𝑒_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛
 

Due to optimization, the diffmax metric decreased for the X and Z trajectory components (with 

the exception of the Z component in Test S0460) in all seven analyzed test (Table 29). The error 

in the Y component decreased only in two tests (Test S0461 and Test S0462). In the other five 

tests, the error in Y increased by 4.6% in Test S0460 to 91.7% in Test S0458. 

 After the minimum of the objective function 𝑚𝑖𝑛(𝑅𝑒𝑠𝑒𝑟𝑟) was found: 

 diffmax for X was less than 11 mm in Test S0462 and below 7 mm in the remaining six 

THOR tests, 

 diffmax for Y varied between 5.4 mm (Test S0461) to 47.51 mm (Test S0460), 

 diffmax for Z stayed below 12 mm in Test S0460 and below 3.3 mm in the other THOR tests. 

Table 29. diffmax metric before and after optimization. 

Test # 
Before optimization After optimization % difference* 

X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm) X Y Z 

S0455 16.70 17.96 42.33 6.80 22.41 3.27 59.3 -24.7 92.3 

S0457 88.7 13.46 38.14 4.15 17.99 2.34 95.3 -33.6 93.9 

S0458 122.45 7.36 46.33 4.16 14.11 2.78 96.6 -91.7 94 

S0459 48.76 6.21 38.38 4.05 7.39 1.22 91.7 -19 96.8 

S0460 62.94 45.40 2.69 4.45 47.51 11.81 92.9 -4.6 -339.6 

S0461 59.39 9.26 15.17 6.13 5.4 1.97 89.7 41.7 87 

S0462 69.47 46.76 8.99 10.16 42.82 3.27 85.4 8.4 63.7 

* %𝑑𝑖𝑓𝑓 = 100 −
100 ∗ 𝑣𝑎𝑙𝑢𝑒_𝑎𝑓𝑡𝑒𝑟_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑣𝑎𝑙𝑢𝑒_𝑏𝑒𝑓𝑜𝑟𝑒_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛
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13.5.2 Optimization of ACC debias (Case 2) 

Due to the optimization performed on the three ACC debias values, Reserr was decreased – on 

average by 80% – in all seven investigated THOR tests (Table 30). In five tests (S0455 and in Test 

S0459 to Test S0462), the Reserr after the optimization was below 7 mm. In the other two tests, the 

resulting Reserr was 9.3 mm (Test S0457) or 10.71 mm (Test S0458). The decrease in the Reserr 

metric was associated with a relatively small change in the ACC debias values. The highest 

absolute change (0.163 g for ACC Y) was observed in Test S0458, the smallest (0.003 g for ACC 

Z) in Test S0462. 

Table 30. Reserr before and after optimization and debias values due to optimization. 

Test # 
𝑹𝒆𝒔𝒆𝒓𝒓 (mm) Debias value 

Before optimization After optimization % difference* X (g) Y (g) Z (g) 

S0455 19.82 3.93 80.2 -0.058 -0.011 -0.041 

S0457 42.91 9.3 78.3 0.034 -0.124 -0.070 

S0458 58.54 10.71 81.7 0.065 -0.163 -0.071 

S0459 29.53 6.02 79.6 0.023 -0.083 -0.047 

S0460 36.09 6.82 81.1 0.107 -0.055 -0.015 

S0461 29.84 5.61 81.2 0.040 -0.086 0.025 

S0462 35.69 5.63 84.2 0.022 0.122 -0.003 

* %𝑑𝑖𝑓𝑓 = 100 −
100 ∗ 𝑣𝑎𝑙𝑢𝑒_𝑎𝑓𝑡𝑒𝑟_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑣𝑎𝑙𝑢𝑒_𝑏𝑒𝑓𝑜𝑟𝑒_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛
 

Due to optimization, the diffmax metric decreased for the three trajectory components in all 

seven analyzed test (Table 31). After the minimum of the objective function 𝑚𝑖𝑛(𝑅𝑒𝑠𝑒𝑟𝑟) was 

found: 

 diffmax for X varied between 4.02 mm (Test S0455) to above 20 mm (Test S0458), 

 diffmax for Y stayed below 8.4 mm in all seven tests, 

 diffmax for Z stayed below 9 mm in all seven THOR tests. 

Table 31. diffmax metric before and after optimization. 

Test # 
Before optimization After optimization % difference* 

X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm) X Y Z 

S0455 16.70 17.96 42.33 4.02 3.79 5.27 75.9 78.9 87.6 

S0457 88.7 13.46 38.14 17.83 6.09 8.8 79.9 54.8 76.9 

S0458 122.45 7.36 46.33 20.6 3.8 6.19 83.2 48.4 86.6 

S0459 48.76 6.21 38.38 11.4 6.14 5.38 76.6 1.1 86.0 

S0460 62.94 45.40 2.69 14.13 2.53 2.49 77.6 94.4 7.4 

S0461 59.39 9.26 15.17 10.98 3.27 4.96 81.5 64.7 67.3 

S0462 69.47 46.76 8.99 6.71 8.34 3.83 90.3 82.2 57.4 

* %𝑑𝑖𝑓𝑓 = 100 −
100 ∗ 𝑣𝑎𝑙𝑢𝑒_𝑎𝑓𝑡𝑒𝑟_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑣𝑎𝑙𝑢𝑒_𝑏𝑒𝑓𝑜𝑟𝑒_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛
 

13.5.3 Optimization of ARS debias (Case 3) 

Due to the optimization performed on the three ARS debias values, Reserr was decreased in all 

seven investigated THOR tests (Table 32). In four tests (Test S0457 to Test S0459 and in Test 

S0461), the Reserr after the optimization was below 4.6 mm. In the other three tests, the resulting 

Reserr varied from 13.36 mm (Test S0455) to 20.88 mm (Test S0460). In multiple tests, the 

decrease in the Reserr metric was associated with a relatively large (absolute) change in the ARS 
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debias values (10 deg/sec or more), with the highest change of 24.99 deg/sec recorded in Test 

S0460. 

Table 32. Reserr before and after optimization and debias values due to optimization. 

Test 

# 

𝑹𝒆𝒔𝒆𝒓𝒓 (mm) Debias value 

Before 

optimization 

After 

optimization 

% 

difference* 

X 

(deg/sec) 

Y 

(deg/sec) 

Z 

(deg/sec) 

S0455 19.82 13.36 32.6 -9.97 -8.66 -1.06 

S0457 42.91 2.47 94.2 2.45 -5.69 11.08 

S0458 58.54 4.03 93.1 5.22 -4.63 15.72 

S0459 29.53 4.56 84.6 1.31 -5.92 7.51 

S0460 36.09 20.88 42.1 24.99 10.61 9.48 

S0461 29.84 2.45 91.8 -3.02 -0.10 8.65 

S0462 35.69 18.9 47 24.96 13.21 -7.28 

* %𝑑𝑖𝑓𝑓 = 100 −
100 ∗ 𝑣𝑎𝑙𝑢𝑒_𝑎𝑓𝑡𝑒𝑟_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑣𝑎𝑙𝑢𝑒_𝑏𝑒𝑓𝑜𝑟𝑒_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛
 

Due to optimization, the diffmax metric decreased for the three trajectory components (except 

for the Y trajectory component in Test S0455 and the Z component in Test S0460 and Test S0462) 

in all seven analyzed test (Table 33). After the minimum of the objective function 𝑚𝑖𝑛(𝑅𝑒𝑠𝑒𝑟𝑟) 

was found: 

 diffmax for X varied between 3.86 mm (Test S0457) to above 11 mm (Test S0462), 

 diffmax for Y varied between 4.08 mm (Test S0457) to almost 40 mm (Test S0462), 

 diffmax for Z varied between 1.44 mm (Test S0461) to 16.88 mm (Test S0462). 

Table 33. diffmax metric before and after optimization. 

Test # 
Before optimization After optimization % difference* 

X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm) X Y Z 

S0455 16.70 17.96 42.33 10.35 25.9 15.13 38.0 -44.2 64.3 

S0457 88.7 13.46 38.14 3.86 4.08 1.82 95.6 69.7 95.2 

S0458 122.45 7.36 46.33 4.66 6.85 8.31 96.2 6.9 82.1 

S0459 48.76 6.21 38.38 8.86 6.1 6.12 81.8 1.8 84.1 

S0460 62.94 45.40 2.69 8.92 35.9 14.74 85.8 20.9 -448.0 

S0461 59.39 9.26 15.17 4.49 4.88 1.44 92.4 47.3 90.5 

S0462 69.47 46.76 8.99 11.47 39.42 16.88 83.5 15.7 -87.8 

* %𝑑𝑖𝑓𝑓 = 100 −
100 ∗ 𝑣𝑎𝑙𝑢𝑒_𝑎𝑓𝑡𝑒𝑟_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑣𝑎𝑙𝑢𝑒_𝑏𝑒𝑓𝑜𝑟𝑒_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛
 

13.5.4 Optimization of ACC debias and initial Euler angles (Case 4) 

Guided by the results from Cases 1 to 3 (magnitude of Reserr after optimization and the relative 

change in the optimization parameters due to minimization of the objective function 𝑚𝑖𝑛(𝑅𝑒𝑠𝑒𝑟𝑟)), 

it was decided that the combination of three ACC debias values and three initial Euler angles would 

be used as the optimization variables with the goal of fitting the head’s trajectory calculated based 

on inertial measurements, as close as possible to the trajectory from the optical based system. It 

was believed that by using that combination of parameters the resulting relative change in the 

optimization variables would stay within physically possible bounds for the ACC debias errors 

and the initial orientation measurement inaccuracies. 
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Due to the optimization performed simultaneously on the three ACC debias values and the 

three initial Euler angles, Reserr was decreased – on average by 90% – in the seven investigated 

THOR tests (Table 34). In all tests other than Test S0462, the Reserr after the optimization was 

below 2.8 mm. In Test S0462, the resulting Reserr was 4.15 mm. 

Table 34. Reserr before and after optimization. 

Test # 
𝑹𝒆𝒔𝒆𝒓𝒓 (mm) 

Before optimization After optimization % difference* 

S0455 19.82 2.77 86.0 

S0457 42.91 2.21 94.8 

S0458 58.54 2.44 95.8 

S0459 29.53 1.80 93.9 

S0460 36.09 2.71 92.5 

S0461 29.84 2.54 91.5 

S0462 35.69 4.15 88.4 

* %𝑑𝑖𝑓𝑓 = 100 −
100 ∗ 𝑣𝑎𝑙𝑢𝑒_𝑎𝑓𝑡𝑒𝑟_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑣𝑎𝑙𝑢𝑒_𝑏𝑒𝑓𝑜𝑟𝑒_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛
 

The decrease in the Reserr metric was again associated with a relatively small change in both, 

the ACC debias values and the initial Euler angles (Table 35). The highest absolute change for the 

offset in the acceleration signal (0.081 g for ACC Y) was observed in Test S0462, the smallest 

(0.001 g for ACC Z) in Test S0459. The highest change across the three initial angles (3.01 deg 

for yaw) was observed in Test S0458 (same test as in Case 1 but slightly larger value of the angle 

change), the smallest (0.07 deg for pitch) in Test S0460 (same test as in Case 1 and the same value 

of the angle change). 

Table 35. ACC debias values and absolute difference in initial Euler angles due to optimization. 

Test # 
Debias value Difference in initial Euler angles due to optimization 

X (g) Y (g) Z (g) Yaw (deg) Pitch (deg) Roll (deg) 

S0455 -0.04 -0.02 -0.011 0.38 0.3 0.48 

S0457 0.02 0.032 -0.004 2.39 1.02 0.1 

S0458 0.023 0.019 -0.005 3.01 0.97 0.27 

S0459 -0.004 0.033 0.001 1.8 0.55 1.11 

S0460 0.07 0.057 0.005 1.71 0.11 0.51 

S0461 0.007 -0.017 0.002 1.2 0.07 0.73 

S0462 0.035 0.081 -0.004 0.66 0.7 1.29 

Due to optimization, the diffmax metric decreased for the three trajectory components in all 

seven analyzed test (Table 36). After the minimum of the objective function 𝑚𝑖𝑛(𝑅𝑒𝑠𝑒𝑟𝑟) was 

found: 

 diffmax for X varied between 2.69 mm (Test S0455) to 5.98 (Test S0461), 

 diffmax for Y varied between 1.81 mm (Test S0459) to 7.63 (Test S0462), 

 diffmax for Z varied between 1.35 mm (Test S0459) to 4.28 mm (Test S0458). 
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Table 36. diffmax metric before and after optimization. 

Test # 
Before optimization After optimization % difference* 

X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm) X Y Z 

S0455 16.70 17.96 42.33 2.69 4.42 1.69 83.9 75.4 96.0 

S0457 88.7 13.46 38.14 2.87 4.88 1.82 96.8 63.7 95.2 

S0458 122.45 7.36 46.33 4 2.02 4.28 96.7 72.6 90.8 

S0459 48.76 6.21 38.38 4.15 1.81 1.35 91.5 70.9 96.5 

S0460 62.94 45.40 2.69 3.72 4.62 2.65 94.1 89.8 1.5 

S0461 59.39 9.26 15.17 5.98 4.69 1.37 89.9 49.4 91.0 

S0462 69.47 46.76 8.99 3.66 7.63 1.44 94.7 83.7 84.0 

* %𝑑𝑖𝑓𝑓 = 100 −
100 ∗ 𝑣𝑎𝑙𝑢𝑒_𝑎𝑓𝑡𝑒𝑟_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑣𝑎𝑙𝑢𝑒_𝑏𝑒𝑓𝑜𝑟𝑒_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛
 

13.6 Conclusions 

In summary, when optimization of initial test and sensor parameters was performed using the 

kinematics data from the THOR sled runs, a substantial decrease in the head’s position error was 

achieved in the discussed ATD tests. From the four investigated sets of optimization parameters 

(Cases 1 to 4), the combination of three ACC debias values and three initial orientation angles 

(Case 4) produced 3D component trajectories most closely matching the reference VICON data 

across the seven sled runs. Due to the optimization performed in Case 4, Reserr in all tests other 

than Test S0462, was below 2.8 mm. In Test S0462, the resulting Reserr was 4.15 mm. diffmax in 

Case 4 varied from 1.81 mm (the Y trajectory component in Test S0459) to 7.63 mm (Y component 

in Test S0462). In addition, the “Case 4” optimization generated a relatively small (and within 

physically possible bounds) change in the ACC debias offsets as well as the initial Euler angles 

relative to their starting (before optimization) values (Table 35). 
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14. 3D TRAJECTORY CALCULATION IN THOR TESTS UTILIZING 

KNOWN POSITION INFORMATION FROM DATA POINTS AT A 

CONSTANT TIME INTERVAL 

14.1 Introduction 

This chapter investigated another approach (different from the one presented in Chapter 13) of 

improving the accuracy of trajectory prediction computed from inertial measurements. The goal 

of this study was to asses if by introducing known position information (obtained, e.g., from video 

tracking or a motion capture system) recorded at a much lower sampling rate than the sensor data, 

the position error in Test S0462 (treated here as an exemplar case study) would be decreased. 

The chapter is organized as follows. Section 14.2 describes the ATD kinematics data used in 

the analysis. Section 14.3 presents a mathematical method that can be utilized to introduce known 

position information into the 3D calculation algorithm. Section 14.4 presents an overview of the 

test cases analyzed in the study. Section 14.5 discusses the error metrics employed through the 

analysis. The results are presented in Section 14.6. A short discussion about using known body 

orientation as part of position correction process is presented in Section 14.7. Concluding remarks 

are provided in Section 14.8. 

14.2 ATD head kinematics data 

In Test S0462, the ATD head local kinematics were captured by three linear accelerometers 

(Endevco 7264C, Meggitt Sensing Systems, CA, USA) and three angular rate sensors (DTS ARS 

PRO with bandwidth up to 2000 Hz, Diversified Technical Systems, Seal Beach, CA, USA) 

sampled at 20 kHz. On the test, in addition to the six sensors, an optical system (VICON MX, 

VICON, Los Angeles, CA) was utilized to measure the head’s position in the reference (global) 

coordinate frame. The results from the VICON system (treated in the analysis as the reference) 

were recorded at 1 kHz. No occlusion of the head occurred during the test, making the VICON 

data a complete set that was used in the direct comparison with the trajectory obtained based on 

the locally-mounted inertial sensors. 

Before the sensor data were utilized to compute 3D component trajectories of the ATD head 

(as described in Section 1.2.3), linear acceleration was filtered with CFC 1000 and the local angular 

rate was filtered to CFC 60. To update the orientation of the tracked body (its rotation matrix R), 

the head’s local angular velocity and the method described by Rudd et al. 2006 were used. 

14.3 Interpolation algorithm 

It is known from the previous chapters that when the trajectory of the THOR’s head (in Test 

S0462) was computed using inertial measurements and no optimization was run to account for the 

sensor and initial orientation errors, the maximum absolute deviation between the calculated and 

the reference trajectories was approx. 70 mm in the X direction, approx. 47 mm in Y, and approx. 

9 mm in Z (Table 36). To decrease the error in the calculated response, information with known 

3D position of the ATD’s head (obtained from the motion capture system) was introduced into the 
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trajectory calculation algorithm at a constant time interval . The correction (called from now on 

X) created a discontinuity in the response obtained from the sensors (Figure 121). 

 

Figure 121. Head trajectory calculated using inertial sensor with (green) and without (blue) introduction of 

known position information X (red points). 

To account for the discontinuity, an interpolation algorithm was employed for the trajectory 

between two consecutive corrections, Xi-1 and Xi. The algorithm was adapted after Shaw et al. 2009 

and it was as follows (Eq. 14.1): 

 𝑓𝑖𝑛𝑡𝑒𝑟𝑝(𝑡) = 𝑓(𝑡) −
𝑡−𝑡𝑖−1

𝛥
∗ (𝑓(𝑡𝑖) − 𝑋𝑖) (14.1) 

where t – time, 𝑡𝑖−1 – time when Xi-1 correction was introduced, 𝑡𝑖 – time when Xi correction was 

introduced, 𝑓𝑖𝑛𝑡𝑒𝑟𝑝(𝑡)  – interpolated time-history of the position of the tracked body, 𝑓(𝑡)  – 

trajectory at time t as calculated from inertial measurements after corrections were introduced 

(green line in Figure 121), 𝑓(𝑡𝑖) – trajectory as calculated based on the inertial measurement at 

time when the Xi correction was introduced,  – the time interval between two consecutive 

corrections. 

For the cases when  was bigger than the time interval between the last introduced correction 

and the last available sensor data point, i.e., when 𝑋𝑖−1 was known but 𝑋𝑖 was not, Eq. 14.1 was 

modified to use the difference between the calculated and reference trajectories from the beginning 

of the interpolated time period: 

 𝑓𝑖𝑛𝑡𝑒𝑟𝑝(𝑡) = 𝑓(𝑡) −
𝑡−𝑡𝑖−1

𝛥
∗ (𝑓(𝑡𝑖−1) − 𝑋(𝑡𝑖−1)) (14.2) 

14.4 Time intervals used 

Nine different cases (nine values of ) where investigated in the study (Table 37). 
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Table 37. Nine cases investigated in the study. 

Case # 
Time interval  between 

consecutive corrections 

(sec) 

Sampling rate of 

correction X (Hz) 

# of sensor data 

points between 

corrections X 

# of introduced 

corrections X 

1 0.001 1000 20 370 

2 0.002 500 40 185 

3 0.004 250 80 92 

4 0.008 125 160 46 

5 0.01665 60 333 22 

6 0.03325 30 665 11 

7 0.0666 15 1332 5 

8 0.1 10 2000 3 

9 0.2 5 4000 1 

14.5 Error metrics 

In the Results section, Reserr (Eq. 12.7) of 35.69 mm, calculated for the trajectory of the 

THOR’s head when no optimization was run to account for the sensor and initial orientation 

uncertainties, was treated as the reference error value. In all nine cases from Table 37, Reserr was 

recalculated and its percentage decrease (relative to Reserr of 35.69 mm) was reported. In addition 

to Reserr, the maximum absolute difference diffmax between the computed and reference trajectories 

was found and presented for the three trajectory components. Finally, the time history of the 

absolute difference (error) between the computed and reference (from VICON) trajectories was 

presented for Case 8. 

14.6 Results 

In all cases other than Case 9, due to the introduction of position corrections X, Reserr from the 

“not corrected” test was decreased by more than 93% (Table 38). In the first five cases, where 

more than 20 corrections were used, the decrease in Reserr was above 99%. The smallest 

improvement in the computed trajectory was observed for Case 9. Even though only one point 

with known head position was utilized in that case, the resulting error in the calculated position 

was still reduced substantially, by approx. 45%. 

Table 38. Reserr decrease in the nine investigated cases. 

Case # # of introduced corrections X % decrease in error* 

1 370 99.26 

2 185 99.24 

3 92 99.23 

4 46 99.21 

5 22 99.1 

6 11 98.9 

7 5 96.8 

8 3 93.5 

9 1 45.1 

* %𝑑𝑖𝑓𝑓 = 100 −
100 ∗ 𝑅𝑒𝑠𝑒𝑟𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑗𝑒𝑐𝑜𝑡𝑟𝑦

𝑅𝑒𝑠𝑒𝑟𝑟 𝑜𝑓 𝑛𝑜𝑛−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑗𝑒𝑐𝑜𝑡𝑟𝑦
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In the “not corrected” test, the maximum absolute deviation between the calculated and the 

reference trajectories was approx. 70 mm in the X direction, approx. 47 mm in Y, and approx. 9 

mm in Z (Table 36). Due to the introduction of known position points, the absolute error in the 

trajectory components was decreased in all nine cases (Table 39). In the cases where more than 10 

corrections were utilized, diffmax was less than 1.2 mm across all three trajectory components. In 

Cases 7 and 8 (respectively, 5 and 3 corrections introduced), the diffmax metric was approx. 5 mm 

or less. The only case were the deviation between the computed and “from VICON” trajectories 

was still at a high level was Case 9 (one correction used), with the error in X up to 42 mm, error 

in Y up to 30 mm, and error in Z up to 3.8 mm (last row in Table 39). 

Table 39. diffmax in the nine investigated cases. 

Case # # of introduced corrections X X (mm) Y (mm) Z (mm) 

1 370 0.1 0.64 0.29 

2 185 0.1 0.66 0.31 

3 92 0.23 0.67 0.3 

4 46 0.37 0.67 0.59 

5 22 0.35 1.16 0.49 

6 11 0.59 1.13 0.43 

7 5 2.82 2.11 1.42 

8 3 5.11 3.97 2.32 

9 1 42.34 30.33 3.85 

When only three known position points (Case 8) were introduced into the trajectory calculation 

algorithm, the interpolated response matched the reference response closely (Figure 122). As it 

was expected, between two consequent corrections X, the absolute error in the interpolated 

trajectory, first, grew for the first half of the time interval , reached its maximum, and then 

decreased as it was approaching the time point at which the next correction was utilized. Due to  

being bigger than the time interval between the third X and the last available point in the sensor 

data, Eq. 14.2 was utilized to interpolate the last part of the trajectory. The use of the difference 

between the calculated and reference trajectories from the beginning of the interpolated time period 

led to the highest position error observed throughout the entire analysis recorded at the end of the 

test. 

 
Figure 122. Head global trajectories for Case 8 (Sampling rate of correction: 10 Hz; three corrections 

introduced). Absolute error (in red) calculated between VICON and the interpolated response. 
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14.7 Known orientation – discussion 

In Test S0462, multiple targets were attached to the ATD’s head and tracked throughout the 

event. Based on those targets the whole time history of the head was obtained. When that complete 

orientation time history was utilized in the trajectory calculation algorithm, a decrease in the head’s 

position error, when compared to the “not corrected” test, was observed (Figure 123). It is needed 

to mention here that interpolation was not employed in this analysis. 

 
Figure 123. Head global trajectories assuming that the entire time-history of the body’s orientation is known. 

Absolute error (in red) calculated between VICON and the response obtained using known time-history of the 

head’s orientation. 

The maximum absolute value of the difference between the computed and reference 

trajectories was approx. 11 mm in the X direction, above 45 mm in Y, and approx. 2 mm in Z. 

Even though the entire known orientation time history was utilized in this analysis, the resulting 

position error was still higher (for all three trajectory components) than in Case 8, when only three 

data points from VICON were used. 

14.8 Conclusions 

In summary, in Test S0462, when known information about 3D position of the tracked body 

was introduced into the trajectory calculation algorithm, a substantial improvement in the accuracy 

of the computed position was achieved in eight out of nine investigated test cases. In these eight 

cases, three or more corrections were utilized. Even when only three corrections X were used (Case 

8), Reserr (when compared to a test without these three points) decreased by more than 93% and 

the maximum absolute difference for all three trajectory components stayed below 5.5 mm. When 

the entire known orientation time history was utilized in the analysis (no interpolation used), the 

absolute difference between the computed and reference trajectories was still higher (for all three 

trajectory components) than in Case 8. 
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15. INTERPOLATION OF MISSING OPTICAL DATA BASED ON 

INERTIAL MEASUREMENTS 

The goal of this chapter was to evaluate two different techniques of providing kinematics data 

over a missing part of optical data caused by intermittent object obscuration. 

The chapter is organized as follows. Section 15.1 gives an overview of the stated problem. The 

following sections describe the kinematics and optical data used in the analysis (Section 15.2), and 

all investigated test cases (Section 15.3). In Section 15.4, the error metrics employed through the 

study are discussed. The results from the analysis are presented in Section 15.5. Concluding 

remarks are provided in Section 15.6. 

15.1 Introduction 

Optical based systems are an accurate method of capturing motion of a body traveling through 

a 3D space (Lessley et al. 2011, Toczyski et al. 2015). The biggest disadvantage of these systems, 

though, is the requirement of a constant line of sight between the cameras and the tracked object 

throughout the event. When the object obscuration occurs, i.e., when the targets or predefined 

patterns on the tracked body are not detected by the cameras anymore, neither video tracking nor 

optical systems can provide accurate information about the body’s orientation and position during 

the time when the body is not visible in the cameras’ field of view. Often, however, information 

about the position of that body is available pre and/or post the obscuration phase (Figure 124). 

 
Figure 124. Example of trajectories with missing optical data (copied from Shaw et al. 2009; page 33, Figure 

D1). 

The time intervals during which the optical data is missing will be referred to as “gaps” from 

here on. 

Several researchers have investigated different methods of providing displacement data for 

gaps in 3D trajectory traces. Shaw et al. 2009 proposed an interpolation scheme that determines 

kinematic data over a gap using displacement information from tests of the same type as the one 

in which the gap occurred. Schoenebeck et al. 2009 utilized a method that uses inertial 

measurements recorded along with the optical data, to interpolate the missing part of the trajectory. 

Schoenebeck’s method was based on optimization of initial conditions (position, velocity, and 

orientation) of the tracked body. In the technique, two trajectories (one with a gap and one 
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calculated with the use of inertial sensors) were tied together during the phases when the position 

data from video capture was available for the tracked ATD’s head. Sinz et al. 2015 used similar 

approach as Schoenebeck but added sensor specific parameters (ACC/ARS debias values, and 

ACC/ARS sensitivity errors) as optimization variables with the goal of fitting the trajectory 

calculated based on inertial measurements, as close as possible to the trajectory from an optical 

based system. Klein et al. 2016 expanded on Sinz’s research by investigating different optimization 

algorithms. 

The goal of this study was to evaluate two techniques of interpolating an optical data gap using 

kinematics data from Test S0461 (treated here as an exemplar case study). The two techniques 

were: 

 employment of inertial measurements in conjunction with optimization performed on 

initial orientation of the tracked body, varying amount of “visible” data used to tie partial 

VICON trajectories with the trajectories obtained from the sensors attached to the ATD’s 

head, 

 interpolation scheme from Eq. 14.1 utilizing the beginning and the end point of the gap. 

15.2 Sensor and optical data 

Sensor and optical data recorded during Test S0461 (THOR ATD sled test, with head-to-

structure impact simulated) were used in the analysis. For the purpose of the study, it was assumed 

that the motion of the head was obscured through part of the test (Figure 125). The motion capture 

system was able to record the head’s position between time t = -50 msec and t = 75 msec (where 

time t = 0 indicated the start of the sled motion) and then after t = 250 msec till the end of the test 

(tend = 323 msec). 

 

Figure 125. Test S0461 – Head global trajectory used in the analysis. 

The ATD’s head was instrumented with a 6DOF sensor package containing three linear 

accelerometers (Endevco 7264C, Meggitt Sensing Systems, CA, USA) and three angular rate 
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sensors (DTS ARS PRO with bandwidth up to 2000 Hz, Diversified Technical Systems, Seal 

Beach, CA, USA). On the test, the kinematics data were captured at 20 kHz. 

Before the sensor data were utilized to compute 3D component trajectories of the ATD head 

(as described in Section 1.2.3), linear acceleration was filtered with CFC 1000 and the local angular 

rate was filtered to CFC 60. To update the orientation of the tracked body (its rotation matrix R), 

the head’s local angular velocity and the method described by Rudd et al. 2006 were used. 

15.3 Considered cases 

Seven cases were investigated in this study (Table 40). In six of the cases optimization of the 

head’s initial Euler angles was performed varying the amount of partial information available from 

the optical system. The optimization technique used was the same as the approach described in 

Chapter 13, with the exception of different number of data points used to minimize the objective 

function. In the seventh case, the missing part of the trajectory was found using the senor data 

recorded on the test, two points from the motion capture system (green and red in Figure 125), and 

the interpolation method described in Chapter 14. 

Table 40. Seven cases in which different amount of data from Figure 125 was used in the optimization process. 

# Case 

1 Optimization based on blue point only 

2 Optimization based on red point only 

3 Optimization based on red + green points 

4 Optimization based on pre-impact data 

5 Optimization based on post-impact data 

6 Optimization based on pre- and post-impact data 

7 Interpolation based on red + green points 

15.4 Error metrics 

Throughout the analysis the Reserr metric (Eq. 12.7) between the computed response and the 

reference position time history from the VICON system (complete, without the gap), was used to 

evaluate the accuracy of the head’s calculated trajectory. In addition, the maximum absolute 

difference diffmax between the computed and reference trajectories was found and reported for the 

three trajectory components. Finally, in selected cases, the time history of the absolute difference 

(error) between the calculated and reference (VICON) trajectories was determined and presented. 

15.5 Results 

From the seven cases run within this study, in six of them Reserr was below 5 mm and the 

maximum deviation from the reference VICON data (diffmax for all three trajectory components) 

was less than 12.1 mm (Table 41). In one case (Case 4, when only the pre-impact data, marked in 

blue in Figure 125, were utilized) the calculated trajectory deviated from optical data substantially, 

with Reserr reaching approx. 44 mm and diffmax varying between 5.47 mm in Y to almost 97 mm 

in Z. Reserr in Case 4 was higher by approx. 91% than in Case 5 (only post-impact data used), 

approx. 90% higher relative to Case 1 (position from the blue point, i.e. the last available data 
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point, utilized; Figure 125), and approx. 89% higher than in Case 2 (end point of the gap, i.e., red 

point in Figure 125, used). 

Table 41. Reserr and diffmax for the seven investigated cases. 

# Case 𝑹𝒆𝒔𝒆𝒓𝒓 (mm) 
diffmax (mm) 

X Y Z 

1 Optimization based on blue point only 4.45 5.96 3.85 4.21 

2 Optimization based on red point only 4.92 12.04 7.26 9.95 

3 Optimization based on red + green points 4.3 11.36 6.81 8.38 

4 Optimization based on pre-impact data 44.11 26.75 5.47 96.89 

5 Optimization based on post-impact data 3.86 5.15 3.79 4.1 

6 Optimization based on pre- and post-impact data 3.76 4.25 5.35 5.39 

7 Interpolation based on red + green points 3.71 8.62 2.89 2.83 

Within the six cases, in which the optimization was performed, the smallest Reserr (of 3.76 

mm) was recorded in Case 6 where both, known pre and post-impact data were utilized. Slightly 

higher Reserr (3.86 mm) was found for Case 5 in which only the post-impact data were used. In 

both scenarios in which optimization was based on one post-impact point (Case 1 and Case 2), 

Reserr stayed below 5 mm. The smallest Reserr (of 3.71 mm) as well as the smallest diffmax for the 

Y and Z trajectory components (2.89 mm and 2.83 mm, respectively) were recorded in Case 7, the 

only case in which the interpolation algorithm from Chapter 14 was utilized instead of the 

optimization scheme. 

15.5.1 Global position plots 

In this section, the time histories of the calculated global position for the ATD head (and thus 

the missing gap in the optical data from Figure 125) were compared to the complete reference 

VICON data. For clarity only four cases were presented: Case 1 (Optimization based on blue point 

only), Case 4 (Optimization based on pre-impact data), Case 6 (Optimization based on pre- and 

post-impact data), and Case 7 (Interpolation based on red + green points from Figure 125). In the 

figures, the absolute error between the reference and calculated trajectories was indicated with a 

red line. 

In Case 1 (Figure 126), Case 6 (Figure 128), and Case 7 (Figure 129), the computed trajectory 

matched the reference VICON response closely throughout the entire event. It is worth pointing 

out here that no substantial difference in the position error magnitude between Case 1 (the last 

available data point utilized in the optimization process) and Case 6 (both, pre- and post-impact 

VICON data used) was observed. In Case 4 (Figure 127), where only the pre-impact data were 

used in the initial orientation optimization, the trajectory determined from inertial measurements 

followed the VICON trajectory well till the impact between the head and the steel barrier occurred 

(at approx. t = 116 msec). After the impact, the head’s calculated trajectory deviated substantially 

from the optical data in the X and Z direction, with the error in the Y component staying below 6 

mm throughout the test (Figure 127). 
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Figure 126. Case 1: Head global trajectories comparison: VICON (black) and response optimized based on the 

blue point only (green). 

 

Figure 127. Case 4: Head global trajectories comparison: VICON (black) and response optimized based on pre-

impact data only (green). 
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Figure 128. Case 6: Head global trajectories comparison: VICON (black) and response optimized based on pre- 

and post-impact data (green). 

 
Figure 129. Case 7: Head global trajectories comparison: VICON (black) and response interpolated using the 

green and red points (green). 

15.6 Conclusions 

In summary, in Test S0461, both techniques utilized to provide the kinematics data over an 

optical data gap gave satisfactory results, with exception of the case where only pre-impact data 

were used in the analysis. Within the six cases, in which the optimization of the head’s initial 

orientation was performed, the smallest position error (as defined by Reserr) was recorded when 
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both, known pre and post-impact data were utilized in the trajectory calculation algorithm (Case 

6). It is worth pointing out, though, that there was no big difference in the position error magnitude 

between Case 1 and Case 2 (one post-impact point used during optimization) when compared to 

Case 6. 

In this study, the smallest Reserr as well as the smallest diffmax for the Y and Z trajectory 

components were found in Case 7, the only case in which the interpolation algorithm from Chapter 

11 was utilized instead of the optimization scheme. Additionally, the wall clock time needed to 

perform the “Case 7” analysis was noticeably shorter (< 0.1 sec) than the wall clock time in the 

six optimization cases (> 5 min). 
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16. ATD HEAD MOTION RELATIVE TO THE VEHICLE: THE EFFECT 

OF VEHICLE INERTIAL SENSOR MOUNTING LOCATION 

This chapter was published as a short communication in the proceedings of the IRCOBI 2018 

conference. The conference took place in September 2018, in Athens, Greece. The authors were: 

Jacek Toczyski (main), Bronisław Gepner, and Jason R. Kerrigan. The full publication (modified 

by adding one more reference) can be found below. 

16.1 Introduction 

In vehicle crash testing, tracking occupant body segments kinematics is critical to the 

assessment of restraint functionality and injury risk. The occupant motion inside a vehicle has been 

investigated widely using either video tracking or 3D optical motion capture systems such as Vicon 

(Vicon MX, Vicon, Los Angeles, CA, USA) (Ólafsdóttir et al. 2013, van Rooij et al. 2013, Lessley 

et al. 2014, Zhang et al. 2014). Both of these methods, though, can be costly, time-consuming, and 

they require constant line of sight between the cameras and tracked markers throughout the whole 

event. In tests where motion of the occupant is obscured by the vehicle’s interior components or 

safety systems, e.g., deployed airbags, neither video tracking nor optical systems can provide 

accurate information about the body segments orientation and position. 

Anthropomorphic Test Devices (ATDs) used in crash testing nowadays are instrumented with 

sensor packages consisting of linear accelerometers and angular rate sensors. These sensor 

packages are usually mounted in several different body regions, including the head or the spine. 

Using the data from the sensors, time histories of 3D kinematics of each instrumented body part 

can be reconstructed. The same type of sensor package can be installed inside a vehicle to capture 

its motion (Wu et al. 2009). The data from the two sets of sensors permit description of the body 

segments motion relative to the vehicle. However, if, during the impact, the vehicle structure 

deforms at the sensor mounting location, this local deformation will affect the calculated 

orientation and position of the car, and, subsequently, the occupant’s relative trajectory (Aparicio 

et al. 2009). 

The goal of this study was to examine how vehicle deformations at sensor mounting locations 

affect predicted head (treated here as an exemplar body region being tracked) relative to vehicle 

kinematics in a full-scale oblique offset frontal crash test. 

16.2 Methods 

Occupant head motion relative to vehicle was calculated based on the data from a frontal 

oblique offset test of a pickup truck (NHTSA 2017a). In the test, a moving barrier was driven into 

the front-left side of the vehicle at approx. 90 km/h. The THOR ATD was positioned in the driver’s 

seat, and its head was instrumented with the stock sensor package of three linear accelerometers 

and three angular rate sensors. Four identical 6 degree-of-freedom (DOF) sensor packages were 

mounted inside the truck to obtain the head motion relative to each of the four vehicle reference 

points. The mounting sites included the vehicle’s center of gravity (CG), the bottom of the left and 

right B-pillars, and the truck bed. Prior to testing, the initial orientation of the THOR’s head and 
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the mounting plates for the vehicle sensor cubes – in the global frame – were determined with a 

Coordinate Measuring Machine (CMM). During the test, the sensor data were recorded at 10 kHz. 

Upon testing, a numerical algorithm with an input in the form of filtered local linear 

accelerations and angular rates was utilized to obtain the global acceleration vectors for the head 

and the four vehicle points. Next, the global acceleration vectors were double integrated to 

determine the position time-history of the head CG and the vehicle reference locations. Finally, 

using the vehicle reference frame (VRF) defined according to the SAE J211 document, the 

excursion of the ATD’s head relative to each of the four truck points was obtained. 

16.3 Findings 

All four calculated head trajectories followed a similar loop-like pattern. After the impact, 

THOR’s head moved forward (in positive X), outward (in negative Y) and downward (in positive 

Z) towards the driver’s side A-pillar (Figure 130). After the contact with the frontal airbag, the 

head reached its maximum excursion and then rebounded. In the vehicle’s XY plane, the four 

responses varied slightly in terms of the overall curve shape, with the Veh CG (red curve) having 

the smallest, and the Left B-pillar (blue) biggest loop. In the XZ plane, all four curves were close 

to each other until the peak Z value, with the Left B-pillar trajectory deviating noticeably from the 

other three after reaching the peak. 

  
Figure 130. THOR’s head excursion in vehicle’s XY plane (left) and XZ plane (right) relative to four different 

locations inside the car. 

The highest absolute value of the maximum excursion was 409 mm in X-axis (Veh CG), 317 

mm in Y-axis (Right B-Pillar), and 209 mm in Z-axis (Right B-pillar) (Table 42). The average 

values of the maximum excursion were (value/standard deviation): 387 mm/±16.1 mm (X), -299 

mm/±13 mm (Y), and 193 mm/±13.6 mm (Z). The largest maximum relative difference between 

the components of the four different trajectories was found to be 38 mm in the X-axis, while the 

lowest was 29 mm in the Y-axis. 

Table 42. Maximum excursion of THOR’s head relative to the four vehicle locations. 

 Veh CG Truck Bed Right B-pillar Left B-pillar Max relative difference 

X (mm) 409 371 388 381 38 

Y (mm) -299 -288 -317 -291 29 

Z (mm) 198 177 209 189 32 
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16.4 Discussion 

Assuming that a vehicle is a rigid body connecting the instrumented car sites, one would expect 

that the 3D trajectories calculated for the occupant would be the same independently from the 

vehicle location used as the reference. However, all four head’s trajectories calculated in this study 

differed slightly from each other. One of the contributing factors is the local deformation, both 

dynamic and permanent, of the area around the sensor mounting plate’s attachment points. The 

sensor package at the vehicle’s CG was installed on top of the vehicle’s centerline tunnel, a region 

composed of relatively thin sheet metal (high local deformation possible). On the other hand, the 

sensors at the bottom of the B-pillars were attached to a stiff, multilayer structure of hot stamped 

metal sections (smaller deformation expected). The trajectory calculation process also might have 

been influenced by the sensors characteristics, e.g., noise-to-signal ratio, or test measurement 

inaccuracies, e.g., the initial orientation error resulting from the accuracy of the CMM 

measurement. Overall, though, the maximum relative difference between the four trajectories was 

39 mm, which is in the order of magnitude of permanent local deformation seen for the A-pillar 

and rocker panel in post-frontal-oblique-crash vehicles (Saunders et al. 2013). 

The presented method is a promising alternative to optical capture systems for calculating 

vehicle and body segments position and orientation but further validation – using optical 3D 

motion tracking – is required to determine how these sensor predictions vary from actual 

trajectories. 

16.5 Division of work between authors 

Toczyski designed the study under the supervision of Kerrigan. Collection and processing of 

head and vehicle kinematics were performed by Toczyski. Gepner and Kerrigan provided scientific 

guidance. The short communication was written by Toczyski and edited by Gepner and Kerrigan.  
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17. CLOSING REMARKS 

17.1 Conclusions 

The main goal of this dissertation was to develop an algorithm that could be used to compute 

3D component trajectories of a rigid body based on locally-mounted inertial sensors. The 

knowledge gained from different tasks was used to identify a method for computing 3D component 

trajectories that minimizes the error in the sensor-based position estimation. 

The goal was accomplished through: 

 identification of a method of updating body orientation based on body’s angular rate, a 

method that minimizes the error in the calculated trajectory (Chapter 8), 

 identification of a method of obtaining body’s local angular acceleration that minimizes 

the error in the calculated trajectory (Chapter 9), 

 analytical and numerical evaluation of the effect of sensor characteristics (e.g. noise level), 

sensor errors (e.g. error in sensitivity), test measurement inaccuracies (e.g. error in the 

measurement of initial orientation), and error interactions on trajectories computed with 

the use of data from IMUs (Chapter 10), 

 investigation of the effect of redundant sensors added to a stock “3 ACC + 3 ARS” sensor 

package on the resulting position error (Chapter 11), 

 investigation of different correction techniques that could be used to minimize the error in 

the calculated trajectory (Chapter 12 to Chapter 15). 

The following conclusions were separated into groups based on the order of the chapters in the 

PhD dissertation. 

17.1.1 Algorithm verification through computer simulations (Chapter 5) 

The goal of Chapter 5 was to verify if the algorithm described in Section 1.2.3, i.e. the 

algorithm used throughout this dissertation to compute trajectories from inertial measurements, 

was coded correctly. The verification was performed using kinematics data obtained from a simple 

computer model (Figure 4). 

The main conclusion of this study is as follows: 

 There was a substantial difference in error calculations between kinematics data captured 

at 10 kHz (Simulation 1) vs. data captured at 100 kHz (Simulation 2). In fact, by increasing 

the sampling rate by a factor of 10, a 10 fold reduction in error was realized. This is because 

much of the error was related to an integration error, which could have a real effect on 

actual sensor data. 

17.1.2 Simplified Head testing (Chapter 6) 

The goal of Chapter 6 was to evaluate the ability of the algorithm described in Section 1.2.3 to 

calculate accurate trajectories in sled testing where a simplified structure representing an ATD’s 

head-to-neck assembly was utilized. Forty sled tests were run for the purpose of the study. 

The main conclusions of this study are as follows: 
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 This study found that variation in the ARS had a relatively small effect on the calculated 

orientation, except when the local angular rate exceeded the full range of a sensor (for 

example, IES sensor in Figure 32). 

 In the Simplified head tests, the position errors calculated with the standard method (the 

one coded in the software described in APPENDIX S) varied between 2.9 mm (Endevco 

7264C – DTS ARS PRO 2000Hz in Test S0450) to 123.2 mm (DTS6DX PRO ACC-DTS 

ARS PRO 300Hz; Test S0426) (APPENDIX C). 

17.1.3 THOR Mod-kit testing (Chapter 7) 

The aim of Chapter 7 was to evaluate the ability of the algorithm described in Section 1.2.3 to 

calculate accurate trajectories in a complex scenario where a crash test dummy was utilized. The 

following can be concluded from the results of the study: 

 In THOR tests, in which the head-to-structure impact was simulated, the proposed 

algorithm of updating the head’s orientation (based on the data from the angular rate 

sensors used on the tests), was able to capture the abrupt change in the head’s rotational 

movement caused by the impact (e.g. Figure 62, Figure 63, and Figure 64).  

 After excluding three cases with faulty sensor data from the analysis of the THOR tests, 

the highest position error (Reserr of 86.57 mm) was recorded in Test S0458 for the Endevco 

7290E – DTS ARS Pro 300Hz sensor package. The lowest Reserr (of approx. 29.5 mm) 

was identified for Endevco 7264C – DTS ARS PRO 2000Hz in Test S0459 (see 

APPENDIX G). 

 Across the THOR ATD tests, on average the deviation between the head’s calculated and 

reference trajectories was noticeably higher than for the tracked body in the Simplified 

Head test series (APPENDIX G and APPENDIX C, respectively). 

17.1.4 Update of body orientation (Chapter 8) 

Chapter 8 investigated the use of seven previously published algorithms of updating the local-

to-global rotation matrix R in crash-like scenarios to identify which one of those methods was 

most applicable for test conditions like these. Additionally, an analytical analysis focusing on the 

effect of the data sampling step t and the characteristics of the measured angular velocity signal 

(its magnitude and frequency) was performed. 

The main conclusions of this study are as follows: 

 For the analyzed test cases the most accurate methods of updating the rotation matrix R 

were two algorithms based on the Euler parameters derived from the angular velocity 

vector ω(t). In addition, both methods appeared to be noticeably less susceptible (than the 

other discussed algorithms) to changes in error resulting from the increase in the sampling 

step t. 

 The accuracy of the method used to update R depends strongly on the accuracy of the 

numerical integration scheme utilized to obtain finite rotations from ω(t) or on the accuracy 

of the numerical method used to solve ordinary differential equations, if that step is 

required in the algorithm. 
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 Characteristics of the angular velocity signal (its magnitude, period, etc.) affect the 

magnitude of the error in the calculated rotation matrix R. It was shown that for the same 

value of the time step t, the error in R is greater for greater magnitude or higher frequency 

of the input ARS data. 

 In both, the analytical error analysis and when experimental data were used, the increase 

in the time step t of the ARS data (used as the input), caused an increase in the difference 

between the calculated and reference rotation matrix. Similarly, the error in the angle of 

rotation INS increased with higher values of t. 

17.1.5 Angular acceleration analysis (Chapter 9) 

Chapter 9 investigated the use of different methods of obtaining angular acceleration utilized 

in the process of 3D trajectory calculation. Five different techniques were analyzed. In addition, 

the sensitivity of the calculated trajectory to the change in the filter class used on the AAC input 

data (either acceleration or angular rate) was evaluated. 

The main conclusions of this study are as follows: 

 In the four Simplified Head tests, after optimization of the initial orientation of the tracked 

body, the smallest deviation from the reference data was observed in cases where the 3a 

method (method based on differentiation of local angular velocity) was utilized to compute 

body’s local angular acceleration (Table 7 and Table 8). 

 The trajectories computed with the 3a configuration matched the mocap reference data 

well in shape and in magnitude in all five considered test cases. The highest absolute 

difference between the reference and calculated trajectories (across the five tests) was 

10.11 mm (less than half of an inch; Table 11 and Figure 92). 

 Relatively small values of standard deviation seen across the five methods of obtaining 

local angular acceleration (Table 9 and Table 10) suggest that, in the analyzed test 

configurations, the computed trajectories (within the same method of determining AAC) 

were not highly sensitive to the change in filtering of the AAC method input. 

 While the 3a method generated trajectories most closely matching the reference data, 

those trajectories were also characterized with the highest relative variability (coefficient 

of variation up to approx. 40%) among the five methods of obtaining AAC, 

 The variation in the calculated trajectory was higher due to the choice in the method used 

to obtain AAC than due to the filter class used on the input data to that method. 

17.1.6 Error effects analysis (Chapter 10) 

The aim of Chapter 10 was to evaluate the effect of sensor characteristics (e.g. noise level), 

sensor errors (e.g. error in sensitivity), test measurement inaccuracies (e.g. error in the 

measurement of initial orientation), and error interactions on trajectories computed with the use of 

data from IMUs. First, different error types and bounds for these errors were identified (Section 

10.1). Next, a simplified analytical analysis was performed to better understand the propagation of 

the errors in time (Section 10.2). In Section 10.3, guided by the analytical investigation, 

experimental analyses were carried out a) to quantify the effect of individual errors on the IMU-

based trajectory estimation, and b) to identify main interaction between these errors. 
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The following can be concluded from the results of the analytical study: 

 When it was assumed that the local acceleration vector of the tracked body was the same 

as the global acceleration vector: 

o When the additive term c (debias error) was introduced into the reading of one of 

the linear accelerometers, that error affected only one of the global position 

components of the tracked body (the one along the same direction as the 

acceleration with the error). 

o When only the debias error (additive term c) in one of the angular rate sensors was 

introduced into the analysis, it affected all three of the calculated position 

components. 

o When two ARS debias errors were included into the angular velocity signals, in 

one of the global position components the term (𝒄𝒂𝒓𝒔_𝒙
𝟐 + 𝒄𝒂𝒓𝒄_𝒛

𝟐 )
𝒕𝟐

𝟐
 (where t – time) 

was introduced. 

o When only the debias error in one of the angular acceleration components was 

introduced, it affected two position components along the two axes orthogonal to 

the axis around which the angular acceleration with the error was defined. 

o The error in the ACC sensitivity (scaling term 𝒃𝒂𝒄𝒄 ) affected one position 

component, in the same direction as the measured acceleration with the error. 

 When the global acceleration of the tracked body was assumed to be the product of body’s 

local acceleration vector and rotation matrix that was constant in time: 

o When the additive term c (debias) was introduced into the reading of one of the 

linear accelerometers, that error affected all three calculated global position 

components. 

o All three position components were affected also when the debias error was 

introduced in one of the angular rate sensors or in one of the angular accelerometers. 

 In both, the simplified case and the case where the rotation matrix was assumed to be 

constant: 

o The resulting error in position due to the debias error 𝒄𝒂𝒄𝒄 in a linear acceleration 

component grows in time and that effect can be described by the term 𝒄𝒂𝒄𝒄
𝑡2

2
. 

o The resulting error in position due to the debias error in an angular velocity 

component grows in time as described by the term 𝒄𝒂𝒓𝒔
𝟐 𝑡2

2
. 

o When two ARS debias errors were introduced into the data, part of their effect was 

multiplicative, i.e., when, e.g., 𝒄𝒂𝒓𝒔_𝒙  and 𝒄𝒂𝒓𝒔_𝒛  were non-zero, the error term 

𝒄𝒂𝒓𝒔_𝒙𝒄𝒂𝒓𝒔_𝒛
𝑡2

2
 appeared in at least two of the calculated position components. 

o The error in one ARS sensitivity affected all three position components. 

o When two ARS sensitivity errors were introduced into the analysis, part of their 

effect was also multiplicative, i.e., when, e.g., 𝒃𝒂𝒓𝒔_𝒙 and 𝒃𝒂𝒓𝒔_𝒛 were different than 
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1, some of the terms in the global position components were scaled by the product 

of 𝒃𝒂𝒓𝒔_𝒙𝒃𝒂𝒓𝒔_𝒛. 

o When an ARS sensitivity error and an ARS debias error were introduced into the 

analysis together, part of their effect was multiplicative as well, i.e., when, e.g., 

𝒄𝒂𝒓𝒔_𝒙 was non-zero and 𝒃𝒂𝒓𝒔_𝒛 was different than 1, some of the terms in the three 

global position components were scaled by the product of 𝒃𝒂𝒓𝒔_𝒛𝒄𝒂𝒓𝒔_𝒙. 

 In the general case, i.e., when body rotates and translates at the same time, due to the 

nonlinear nature of R, the double integration of the body’s global acceleration (determined 

from the multiplication of R and the body’s local acceleration vector a) is non-trivial or 

impossible to accomplish analytically. 

o The effect of sensor-related errors (that are present either in the measured angular 

rate (t) or the linear acceleration vector ao(t)) on the calculated global position of 

the tracked body is convoluted and cannot be easily predicted analytically. 

------------------------------------------------------------------------------------------------------------------------------------------ 

The following can be concluded from the results of the experimental study: 

 This study showed that the debias error (either in acceleration or angular rate sensor data) 

had a substantial effect on the calculated 3D trajectories of the tracked body (Table 20 and 

Table 21). 

 The error in acceleration debias caused a bigger discrepancy between the baseline and the 

calculated trajectories than the debias offset in the angular velocity data. 

 The sensitivity error in ACC had a greater effect on the calculated trajectory than the 

sensitivity error in ARS data. 

 The error in the accelerometer sensitivity can influence the calculated 3D trajectory in a 

substantial way. In the investigated test scenarios, when the ACC sensitivity was modified 

by 4%, the absolute position peak error reached (in one of the investigated cases) 

approximately 75 mm (1/10 of the peak difference, seen cross the five investigated cases, 

for the ACC debias error and 1/4 of the difference seen for the ARS debias error; Table 

21). 

 This study showed that a relatively small inaccuracy in measured initial orientation could 

have a substantial effect on the predicted 3D response, for example, in one of the 

investigated test cases, the error of 1 degree in initial Yaw angle caused a difference 

between the reference and the calculated trajectories of approx. 50 mm (Table 21). 

 Within the error bounds from Table 13, the two misalignment errors (for ACC and ARS) 

as well as the error in the initial position of the tracked body had a negligible effect on the 

calculated 3D global trajectory of the ATD head (mReserr and mdiffmax both below 2.6 mm 

for the three error groups; Table 20 and Table 21). 

 The six main interactions between the investigated errors identified in this study were 

different configurations of the same three error groups: ACC debias, ARS debias, and the 

error in the initial orientation (Table 23). 
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17.1.7 Investigation of the effect of redundant sensors on the magnitude of the error in the 

calculated trajectory (Chapter 11) 

The goal of this task was to investigate if by introducing redundant sensors to the stock  

“3 ACC + 3 ARS” package, an inaccurate (“inconsistent”) sensor can be identified or if a broken 

sensor can be accounted for in the trajectory calculation. The method was based on an analytical 

relationship that relates an output (measured quantity) from one of the sensors to the readings from 

the other sensors of the same type. The following can be concluded from the results of the study: 

 This study showed that by adding two redundant angular rate sensors to a standard “3 ACC 

+ 3 ARS” package, an angular rate sensor with errors in its signal can be identified (Eq. 

11.9 and Eq. 11.10). 

 Similarly, by adding two redundant linear accelerometers, an accelerometer with a faulty 

response can be pinpointed (Eq. 11.20 to Eq. 11.23). 

 To recover a measurement lost, for example, due to a broken connector or a cable, one 

added sensor (of the same type as the broken sensor) is needed. 

 The analytical relationship was verified using data from a computer simulation of a simple 

rigid body system where both, the ARS and the ACC analyses showed a good agreement 

between the predicted sensor output and the output obtained directly from the FE software 

(Figure 118 and Figure 119). 

17.1.8 3D trajectory calculation in THOR tests utilizing the sensor fusion technique through the 

Kalman filter (Chapter 12) 

The aim of Chapter 12 was to assess if by performing the sensor fusion of two sets of linear 

accelerometers and angular rate sensors, the deviation between the computed and reference 

trajectories of the ATD’s head would be decreased in exemplar THOR tests. The following can be 

concluded from the results of the study: 

 No improvements in the accuracy of the trajectory calculation algorithm were achieved by 

employing the sensor fusion technique. 

o When sensor fusion was utilized, in both analyzed test cases, the position error was 

higher by 36.4% and 23.7% (Table 26), respectively, relative to the “Endevco 7264C 

– DTS ARS PRO 2000Hz” sensor combination, a sensor package that gave the smallest 

position estimation error in both tests. 

17.1.9 3D trajectory calculation in THOR tests utilizing the knowledge gained from the error 

effects analysis (Chapter 13) 

The aim of Chapter 13 was to investigate if by optimization performed on the debias values 

(for both, ACC and ARS) and initial orientation angles of the tracked body, the accuracy of the 

trajectory calculation algorithm would be improved. The following can be concluded from the 

results of the study: 

 Due to optimization performed on three ACC debias values and three initial orientation 

angles, the resulting error in IMU based position estimation in the THOR tests decreased 

by approximately 90% (Table 34). The absolute difference between the reference and 

calculated trajectories across the three position components varied from 1.81 mm to 7.63 

mm (Table 36). 
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 Due to optimization, the highest resulting change for the debias values in the acceleration 

signal was 0.081 g and the highest resulting change across the three initial angles was 3.01 

degrees (Table 35). 

 The above further supports the conclusion from this study describing how critical accurate 

initial orientation and the debias values for the recorded data are in order to obtain accurate 

IMU-based position estimation 

17.1.10 3D trajectory calculation in THOR tests utilizing known position information from data 

points at a constant time interval (Chapter 14) 

The goal of Chapter 14 was to asses if by introducing known position information (obtained, 

e.g., from video tracking or a motion capture system) recorded at a much lower sampling rate than 

the sensor data, the error in position estimation would be decreased. In the study, one THOR test 

was used as an exemplar case. 

The main conclusions are as follows: 

 When known information about 3D position of the tracked body was introduced into the 

trajectory calculation algorithm, a substantial improvement in the accuracy of the 

computed position was achieved (Table 38). 

o Even when only three position corrections were used, the position error (when 

compared to a test without these three points) decreased by more than 93% and the 

maximum absolute difference for all three trajectory components stayed below 5.5 mm 

(Table 38 and Table 39). 

 When the entire known orientation time history was utilized in the analysis (Figure 123), 

the resulting position error was still higher (for all three trajectory components) than for 

the case in which three known position corrections were used in the trajectory calculation 

process instead. 

17.1.11 Interpolation of missing optical data based on inertial measurements (Chapter 15) 

The goal of this chapter was to evaluate two different techniques of providing kinematics data 

over a missing part of optical data caused by intermittent object obscuration. 

The main conclusions of this study are as follows: 

 In test cases in which the optimization of the head’s initial orientation was performed, the 

smallest position error was recorded when both, known pre and post-impact data (from 

Figure 125) were utilized in the trajectory calculation algorithm (Table 41). 

 This study found that by using optimization and only one known positon point further in 

time, the error in computed trajectory could be decreased in a substantial way. The resulting 

error from that case was comparable to the error from the case in which the entire known 

pre and post-impact data (from Figure 125) were utilized (Table 41). 

 The highest error in position was recorded in a test in which only the pre-trigger data was 

used in the optimization algorithm (Table 41 and Figure 127). 

 The smallest error in position estimation was found when the interpolation algorithm from 

Chapter 14 was utilized instead of the optimization scheme (Table 41). 
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17.1.12 ATD head motion relative to the vehicle: the effect of vehicle inertial sensor mounting 

location (Chapter 16) 

The goal of this study was to examine how vehicle deformations at sensor mounting locations 

affect predicted head (treated here as an exemplar body region being tracked) relative to vehicle 

kinematics in a full-scale oblique offset frontal crash test. The following can be concluded from 

the results of the study: 

 Predicted head to vehicle kinematics in a full-scale vehicle crash test was sensitive to the 

location where the vehicle sensor package was mounted. 

 Overall, though, the maximum relative difference, between the head trajectories obtained 

using data from sensors mounted at four vehicle locations, was 39 mm, which is in the 

order of magnitude of permanent local deformation seen for the A-pillar and rocker panel 

in post-frontal-oblique-crash vehicles (Saunders et al. 2013). 

17.2 Methodological steps that minimize position error estimation – summary 

This section summarizes general steps that should be followed to minimize the error in position 

estimation obtained through IMU tracking. 

The dissertation identified multiple error types that could potentially affect position computed 

based on the data from inertial sensors attached to the analyzed body. Within these errors, four of 

them appeared to have a very pronounced effect on the accuracy of the trajectory calculation. Three 

out of the four errors were sensor related (the debias error in acceleration, the debias error in the 

angular rate data, and the error in sensor sensitivity). The fourth error type that had a substantial 

influence on the computed position was the error in the initial orientation of the tracked object. 

To minimize the effect of the debias errors, it is advised to calculate the debias values – for all 

sensors utilized during testing – by averaging as much of the available pre-trigger (prior to the start 

of the test) data as possible. It is not recommended to use 1-point debiasing or no debiasing. 

Another method of bounding the debias values would be to use the optimization methodology 

described in Chapter 13, if position data from an alternative source (for example, from video 

tracking) are available along with the inertial measurements. 

To minimize the error in the sensor sensitivity, sensors should be calibrated frequently and the 

ones that do not regulate their excitation voltage internally should be run at the same excitation 

voltage as the calibration voltage. 

As it was shown multiple times throughout the dissertation (Chapter 9, 10 and 13), the IMU-

based position estimation is highly sensitive to the error in the initial orientation. Even a relatively 

small inaccuracy in the initial orientation of a tracked body can cause a substantial error in the 

computed trajectory for that body. If a coordinate measurement machine (CMM) is used to obtain 

the initial position information, the number of times when the machine is moved and realigned 

back with the position data, should be as small as possible. If the needed sensor position 

information cannot be measured in one take, it is advised to utilize the following procedure to 

minimize the initial orientation error: 

Step 1: prior to testing the sensor block (and the sensors mounted on it) should be measured in 

relation to 3 (or more) previously defined landmarks on the mounting plate/fixture, 
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Step 2: the measured senor mount should be attached to the tracked body, 

Step 3: the landmarks from Step 1 should be re-measured, but this time in the global reference 

frame, 

Step 4: initial orientation of the tracked body can now be determined utilizing, for example, 

the Least-Squares Pose Estimator approach (Cappozzo et al. 1997) in conjunction with 

the local (Step 1) and global (Step 3) position information for the predefined landmarks 

on the mounting plate. 

The research effort presented in this dissertation identified the undamped Endevco 7264C 

accelerometers (with the full-scale range of 2000 g) along with the DTS ARS PRO angular rate 

sensors (with the full-scale range of 8000 deg/sec and bandwidth of 2000 Hz) as the sensor 

combination that produced the most accurate trajectories when compared to the reference position 

data recorded by a motion capture system. With the measurements sampled at 20 kHz, the resulting 

error in the trajectory estimation was – on average – at the level of 15 mm in the Simplified Head 

tests (Chapter 6) and at the level of 36 mm in the THOR tests (Chapter 7). It is believed that the 

error in the THOR tests was higher due to the increased complexity in obtaining the initial 

orientation of the ATD’s head sensor block utilized in the position analysis. 

To update the tracked body’s orientation (the rotation matrix R from Eq. 1.1), either the UQ 

method (Rudd et al. 2006) or the ER method (Huculak and Lankarani 2013) should be utilized. 

Both update methods are based on the Euler parameters and both use a higher order integration 

scheme as a subroutine at some step in the attitude algorithm. In Chapter 8, it was shown that the 

accuracy of the integration rule is one of the driving factors in the overall accuracy of the technique 

used to update R. 

When a researcher wants to utilize inertial measurements to track a point that is at a distance 

from the IMU or when the sensors used are not perfectly aligned within the sensor block (for 

example due to mounting inaccuracies), the body local angular acceleration (AAC) needs to be 

taken into account in the 3D trajectory calculation process regardless of the scenario being 

investigated. In Chapter 9, it was shown that if the initial orientation error is minimized a priori 

(for example, through optimization of the initial orientation of the analyzed body) the method of 

obtaining angular acceleration that minimized the error in position estimation was the 3a method. 

To obtain AAC, 3a differentiates the body’s local angular rate. 3a gave the most accurate 

results in all five analyzed tests (four Simplified Head tests and one THOR test) for the two 

(Simplified Head) or one (THOR test) tracked point. It needs to be mentioned here that even 

though the 3a method produced the most accurate trajectories it was also the most sensitive to 

the filter class used on the angular velocity data prior to differentiation. 

In crash testing, achieving the position error below 10 mm using only the locally-mounted 

sensors is possible (Figure 41) but challenging. To improve the trajectory estimation accuracy, 

IMU tracking should be utilized along with position information obtained from another source (for 

example, video tracking). Even if the tracked body position from the alternative source is known 

only at one point in time but that point was measured later in the test, using this extra information 

(for example, in the optimization process of the sensor debias values and/or the error in initial 
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orientation as described in Chapter 13 and Chapter 15) can decrease the error in position estimation 

substantially. 

To further improve the accuracy of 3D position obtained through IMU tracking, when possible 

at least one redundant linear accelerometer and one redundant angular rate sensor should be added 

to the sensor package utilized to measure body’s kinematics (as shown in Chapter 11). By having 

one additional sensor of each type, it is possible to recover a lost measurement if one of the sensors 

fails during the test (for example, due to a broken connector). One additional sensor of each type 

is also enough to check consistency of the recorded data. If the data is inconsistent, to pinpoint the 

faulty sensor, more than one redundant linear accelerometer and more than one redundant angular 

rate sensor is needed. 

The algorithm presented in this dissertation can be also used to obtain relative motion between 

two tracked bodies. In Chapter 16, it was shown, though, that this relative motion might be affected 

by the local deformation at the IMU mounting location. The local deformation effect needs to be 

taken into consideration when, for example, one wants to track motion of a crash test dummy 

relative to a vehicle during a crash. To minimize the error in the computed trajectory for an ATD 

in a car crash, the location of the sensor block mounted inside the vehicle should be chosen based 

on the test conditions and away from the impact point. 

Lastly, the results of this study showed that the error in 3D position estimation depends not 

only on the data sampling step t but also on the characteristics of the input signal (its magnitude 

and the frequency content) used in the analysis. That indicates that when choosing data sampling 

rate, one needs to take into account the type of the event being investigated. When the time step 

t is larger than the period of the input data (either, global acceleration from Eq. 1.1 or local 

angular velocity used to update the rotation matrix R), substantial part of the information contained 

in the input signal, will be lost. On the other hand, high sampling frequency appropriate for a crash 

test (short event with rapid changes in the angular velocity) might not be necessary, e.g., for a gait 

analysis (much longer event with smaller magnitude of angular rate than seen in crash). 

17.2.1 Beyond crash-like applications 

This section presents how the findings from the dissertation could be extrapolated beyond crash 

testing and applied in other fields. 

The error in the debias values in the data from inertial sensors will always have a negative 

effect on the computed trajectory, regardless of the scenario being investigated. In Chapter 10 it 

was shown that the error in position due to the debias error in linear acceleration (𝑐𝑎𝑐𝑐) grows in 

time and that effect can be estimated with the term 𝑐𝑎𝑐𝑐
𝑡2

2
, where t – time. The deviation in position 

due to inaccuracies in measurement debias for the angular velocity data (𝑐𝑎𝑟𝑠) grows in time as 

described by the term 𝑐𝑎𝑟𝑠
2 𝑡2

2
. From the former it can be seen that the magnitude of the position 

error coming from the error in data debias depends strongly on the investigated event’s time scale. 

In other words, the deviation in the computed position caused by debias errors will be more 

prevalent in scenarios, where the time scale is relatively large (gait analysis, mobile robot motion, 
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etc.) comparing, e.g., to blast, where the considered time period is often less than a few 

milliseconds. 

As it was shown in Figure 111, the resulting error in position due to inaccuracies in the 

measured initial orientation depends strongly on the magnitude of the analyzed motion. In all crash 

and crash-like tests discussed in this dissertation, the maximum distance traveled for the tracked 

object was less than 5 m. In fields other than crash testing (e.g., fields related to mobile robots or 

underwater autonomous vehicles), the body’s traveled distance might be substantially larger than 

a few meters and thus, the IMU-based position error, due to the initial orientation error, might be 

noticeably higher in those cases than for crash. 

To address the error types mentioned in the two previous paragraphs and to account for the 

error in sensor sensitivity the same techniques as presented in the first section of Chapter 17.2 

should be utilized. In addition, the correction techniques described in Chapter 13 and 15 

(optimization of sensor parameters and initial orientation) or the interpolation method presented 

in Chapter 14 can be used as alternative ways of improving the IMU tracking accuracy in any 

situation in which position information from an additional source (for example, from a motion 

capture system) is available along with inertial measurements. 

In events different than crash it is still advised to use either the UQ method (Rudd et al. 2006) 

or the ER method (Huculak and Lankarani 2013) to update the orientation of the tracked body (i.e., 

its rotation matrix R). Both of the methods are based on the Euler parameters and both use higher 

order integration schemes as part of the orientation algorithm. The biggest advantage of the Euler 

parameters over the Euler angles (which are used, for example, in the 2-1-3 method from Chapter 

8) is that the Euler parameters avoid a phenomenon called gimbal lock, i.e., they do have a unique 

solution regardless of the rotation angle. In Chapter 8, it was also shown that the method utilized 

for integration affects the accuracy of the computed attitude in a substantial way (Figure 71). 

Taking into account a) that the computation cost associated with the orientation algorithms that 

use the higher order integration is relatively small (less than half of a second to process almost 

16,000 data points), and b) that these integration methods are known to be more accurate than the 

first order approaches, it is strongly advised to use higher order integration in the update of the 

tracked body’s orientation. 

The other finding (a method) that can be extrapolated from this dissertation to different fields 

is the consistency check (CC) described in Chapter 11. CC can be used to assess recorded 

kinematics data regardless of the nature of the application being investigated. The consistency 

check itself is governed by the laws of physics and it is independent of the time scale or the 

magnitude/frequency of the signal utilized as the input to CC. 

Most of the sensor data used in this dissertation was sampled at 20 kHz. This sampling rate, 

commonly used in crash testing, might not be necessary, e.g., for a gait study (much longer event 

with smaller magnitude of acceleration and angular rate than seen in crash). The dissertation 

showed how sampling rate, sensor data magnitude and frequency could affect prediction results. 

In Chapter 8, it was presented that when it comes to orientation update there is a normalizing factor 

that can be utilized to match error results between scenarios characterized by different frequency 
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content. Even though that normalizing factor was found for a simple 2D model, it is expected that 

a mathematical relationship like this exists also for complex 3D scenarios. 

To summarize, the focus of this dissertation was put on crash testing. Nevertheless, the results 

from the study can be extrapolated to other applications. When the relationships for different 

parameters describing measured signals (either linear acceleration or angular rate) are similar 

between investigated cases, the position algorithm proposed in this document should yield similar 

error results in those cases, regardless of the difference in the time scale or input signal’s 

magnitude/frequency. 

17.3 Contributions 

In summary, the contributions from this dissertation are: 

 Development of a stand-alone software package allowing for computing 3D component 

trajectories (based on the data from locally mounted inertial sensors) of any rigid body in 

a car crash (see APPENDIX S), 

 A method that results in a minimization of the error in the calculated trajectory by 

introduction of known data points from an optical system, 

 A method for filling the gaps in the trajectory obtained from video tracking or OSS, based 

on the kinematics data from IMUs, 

 A method for determining boundaries for sensor and measurement error values based on 

partial data obtained from different tracking source than IMUs, 

 Identification of the minimum number of sensors required to account for an “inaccurate” 

sensor, 

 A method that utilizes redundant sensors and allows for a sensor consistency check (for 

both, linear accelerometers and angular rate sensors), 

 Identification of a robust method to update body’s orientation based on body’s local 

angular velocity, 

 Identification of a robust method of obtaining angular acceleration when needed in 3D 

trajectory calculation, 

 Identification of trajectory errors resulting from sensor and test measurement errors and a 

set of instructions to guide test engineers in accounting for those errors to obtain an accurate 

occupant’s trajectory in a crash-like scenario, 

 Identification – through analytical and computational analyses – of error effects and their 

interactions, and how these errors and their combinations propagate in time. 

17.4 Impact 

The algorithms developed over the course of this dissertation were implemented in a stand-

alone software package (APPENDIX S). The final version of that software, now being shared with 

the automotive safety community, offers additional insight on the ATD response in a car crash. 

Moreover, the National Highway Traffic Safety Administration (NHTSA) is promoting the 

software package as a research tool for all crash tests with the THOR ATD carried out by or for 
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NHTSA. The agency is also considering of potentially utilizing the package in regulated (New Car 

Assessment Program, NCAP, NHTSA 2015b) tests. Government adoption of the software will 

encourage vehicle original equipment manufacturers (OEMs), suppliers, and other testing groups 

to adopt the algorithm and start using the software in their own internal research. 

It is believed that the proposed algorithm, treated as a reliable research tool, will ultimately 

help in implementation of more advanced safety systems to protect the human body during a crash. 

17.5 Possible applications 

17.5.1 Example application – head motion tracking in NHTSA frontal oblique offset crash test 

In September 2009, the National Highway Traffic Safety Administration published a report 

investigating why occupant fatalities still occur in frontal crashes despite the presence of advanced 

safety systems (Bean et al. 2009). Soon after, and due to the conclusions of the publication, 

NHTSA started the Oblique Research Moving Deformable Barrier (RMDB) crash test program 

“(…) capable of replicating the injury potentials from real-world frontal offset oblique crashes” 

(Saunders et al. 2013). In 2015, the oblique RMDB test configuration was proposed in the update 

to the New Car Assessment Program (NHTSA 2015b). 

In the test, a moving deformable barrier is driven into a stationary vehicle at a speed of 90 

km/h, a 15-degree angle, and a 35 percent overlap. During the RMDB test, the head of an ATD 

seated on the impacted side tends to move towards the vehicle’s A-pillar. With both the frontal 

and curtain airbags deployed (all new cars from the US fleet have curtain and frontal airbags), 

there is an increased chance of the head obscuration (Figure 131). 

   

Figure 131. Video sequence (from left to right) showing head obscuration due to deployed airbags during frontal 

oblique crash test (images from NHTSA 2014). 

When none of the targets on the dummy head are visible, the head motion cannot be tracked 

by either video tracking or 3D optical systems. That creates a challenge in studying the occupant 

kinematics in the frontal oblique crash. 

All currently used ATDs are instrumented with 6DOF IMUs. The sensor packages are usually 

mounted in several different ATD body regions, including the head and spine. Using the data from 

the sensors, the 3D kinematics of each instrumented body part can be reconstructed by solving 

rigid body motion equations. The same type of sensor package can be installed inside a vehicle to 
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capture its motion. The data from the two sets of sensors permit the description of the relative 

motion between the car and the occupant. A better understanding of occupant motion relative to 

the vehicle in an oblique crash test will improve our knowledge of possible injury outcomes, 

which, ultimately, will then lead to the design and implementation of more advanced safety 

systems to protect the human body during a crash. 

17.5.2 Other applications 

It is worth pointing out here that the methods developed in this dissertation can be applied to 

tracking of any rigid body. That includes: 

 Occupant motion in scenarios where there is no line of sight between the tracked objects 

and the cameras throughout the event (e.g. inside a vehicle in a rollover test, where there 

is no possibility to mount an on-board camera system), 

 Human bony structure, surrounded by flesh and skin, to which there is no access or the 

access is very limited during testing (e.g. pelvis or lumbar spine when the occupant is 

positioned in a regular car seat), 

 Vehicle structure parts which would allow for tracking of their relative motion during a 

crash, 

 etc. 

This dissertation focused on crash scenarios mainly, but: 

 findings about the body’s orientation update (Chapter 8), 

 findings about local angular acceleration and its effect on the calculated trajectory (Chapter 

9), 

 gained knowledge about propagation in time of different error types (Section 10.2), 

 gained knowledge about the effect of sensor-related errors and their interactions on the 

calculated trajectory (Section 10.3 and Section 10.4), 

 the method of identifying and eliminating an inconsistent (with an error) sensor by using 

additional linear accelerometers and redundant angular rate sensors (Chapter 11), 

 the methods of improving the accuracy of 3D component trajectories (Chapter 13 and 

Chapter 14), and 

 the method allowing for filling of a gap in the optical data (Chapter 15) 

can be extrapolated and applied in other fields, ranging from gait and sport studies, through clinical 

trials and animal motion analysis, to tracking underwater or underground autonomous vehicles. 

This dissertation showed how sampling rate, sensor data magnitude and frequency could affect 

prediction results. The theories and approaches presented in this document can be applied to these 

different fields, because they are only really “different” due to the sampling rates, sensor signal 

magnitude and its frequency.  
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Gagné Phill, and Dayton C. M., 2002, "Best Regression Model Using Information Criteria," Journal of 

Modern Applied Statistical Methods, 1(2), Article 57, DOI: 10.22237/jmasm/1036110180. 



190 
 

Hamano F., 2013, “Derivative of rotation matrix – direct matrix derivation of well-known formula,” 

Proceedings of Green Energy and Systems Conference 2013. Available at: 

https://arxiv.org/ftp/arxiv/papers/1311/1311.6010.pdf. Accessed January 7, 2019. 

Hardy W. N., Foster C., Mason M., Yang K., King A., and Tashman S., 2001, “Investigation of Head Injury 

Mechanism Using Neutral Density Technology and High-Speed Biplanar X-ray,” Stapp Car Crash Journal, 

Vol. 45, pp. 337–368. 

Hoeting J. A., Davis R. A., Merton A. A., and Thomspon S. E., 2002, “Model Selection for Geostatistical 

Models,” Ecological Applications, 16(1), pp. 87–98. 

Huculak R. D., 2011, “Evaluating Spatial Orientation and Position of an ATD Head Using Accelerometers 

and Angular Rate Sensors in Dynamic Impact Testing,” Master’s Thesis, Wichita State University, Wichita, 

KS. 

Huculak R. D., and Lankarani H. M., 2013, “Use of Euler parameters for the evaluation of ATD head 

trajectory from angular rate sensor and accelerometer data in aircraft seat certification testing,” International 

Journal of Crashworthiness. Vol. 18(2), pp. 174-182. 

Iman R. L., Helton J. C., and Campbell J. E., 1981, “An approach to sensitivity analysis of computer models, 

Part 1. Introduction, input variable selection and preliminary variable assessment,” Journal of Quality 

Technology, 13 (3): 174–183. 

Jordan J. W., 1969, “An Accurate Strapdown Direction Cosine Algorithm,” NASA Technical Note TN D-

5384. 

Kalman R. E., 1960, “A new approach to linear filtering and prediction problems,” Journal of Basic 

Engineering, Vol. 82 (1): 35–45, DOI:10.1115/1.3662552. 

Kamel A. H., Shaqlaih A. S., and Ibrahim E.A., 2015, “Model inference using the Akaike information 

criterion for turbulent flow of non-Newtonian crude oils in pipelines,” Petroleum Science, 12:492, DOI: 

10.1007/s12182-015-0032-y. 

Kang Y-S., Moorhouse K., and Bolte J. H., 2011, “Measurement of Six Degrees of Freedom Head 

Kinematics in Impact Conditions Employing Six Accelerometers and Three Angular Rate Sensors (6a 

Configuration),” Journal of Biomechanical Engineering. Vol. 133(11):111007, DOI: 10.1115/1.4005427. 

Kang Y-S., Moorhouse K., and Bolte J. H., 2015, “Instrumentation Technique for Measuring Six Degrees 

of Freedom Head Kinematics in Impact Conditions using Six-Accelerometers and Three-Angular Rate 

Sensors (6aω Configuration) on a Lightweight Tetrahedron Fixture,” Proceedings of 24th ESV Conference, 

Paper Number: 15-0288, Gothenburg, Sweden. 

Kang Y-S., Goldman S., Moorhouse K., and Bolte J., 2017, “Evaluation of a coplanar 6a3ω configuration 

in the Hybrid III 50th percentile male head,” Traffic Injury Prevention, 18:sup1, S129-S135, DOI: 

10.1080/15389588.2017.1318210. 

Kerrigan J. R., Dennis N. J., Parent D. P., Purtsezov S., Ash J. H., Crandall J. R., and Stein D., 2011, “Test 

system, vehicle and occupant response repeatability evaluation in rollover crash tests:  the deceleration 

rollover sled test,” International Journal of Crashworthiness, 16(6), pp. 583-605, DOI: 

10.1080/13588265.2011.606996. 



191 
 

Kerrigan J. R., Seppi J., Lockerby J., Foltz P., Overby B., Bolton J., Kim T., Dennis N. J., and Crandall J., 

2013, “Test Methodology and Initial Results from a Dynamic Rollover Test System,” SAE Technical Paper: 

2013-01-0468, DOI:10.4271/2013-01-0468. 

Khoder W., Fassinut-Mombot B., and Benjelloun M., 2008, “Inertial Navigation Attitude Velocity and 

Position Algorithms using Quaternion Scaled Unscented Kalman Filtering,” Proceedings of 34th Annual 

Conference of IEEE Industrial Electronics, Orlando, FL, November 10-13, 2008, pp. 1754-1759,  DOI: 

10.1109/IECON.2008.4758219. 

Kitagawa N., and Ogihara, N., 2016, “Estimation of foot trajectory during human walking by a wearable 

inertial measurement unit mounted to the foot,” Gait & Posture, Vol. 45, pp. 110–114. 

Klein E. Ch., Sinz W., Moser J., and Greimel R., 2016, “Comparison of optimisation strategies for the 

determination of precise dummy head trajectories based on the fusion of electrical and optical measured 

data in frontal crash scenarios,” International Journal of Vehicle Systems Modelling and Testing, 11(1), pp. 

23-46. 

Laird Wheaton GM, 2013, “GM Introduces Industry's First Front Center Air Bag - Safety at Laird Wheaton 

GM,” YouTube, Published on October 18, 2013, https://www.youtube.com/watch?v=D-OKpFyTtvg, 

Accessed March 16, 2019. 

Lee H., and Ghosh S. K., 2009, “Performance of Information Criteria for Spatial Models,” Journal of 

Statistical Computation and Simulation, 79(1), pp. 93–106, DOI: 10.1080/00949650701611143. 

Lessley D., Shaw G., Forman J., and Crandall J., 2011, “Assessment and Validation of a Methodology for 

Measuring Anatomical Kinematics of Restrained Occupants During Motor Vehicle Collisions,” Journal of 

Biosensors and Bioelectronics, S1:002, DOI: 10.4172/2155-6210.S1-002. 

Lessley D., Riley P., Zhang Q., Foltz P., Overby B., Heltzel S., Sochor M., Crandall J., and Kerrigan J. R., 

2014, “Occupant Kinematics in Laboratory Rollover Tests: PMHS Response,” Stapp Car Crash Journal, 

Vol. 58, pp. 251-316. 

Li, J. L., Fang, J. C., Du, M., and Dong, H. F., 2013, “Analysis and fabrication of a novel MEMS pendulum 

angular accelerometer with electrostatic actuator feedback,” Microsystem Technologies, 19:9, DOI: 

10.1007/s00542-012-1630-x. 

Liu Y. K., 1976, Discussion of “Measurement of angular acceleration of a rigid body using linear 

accelerometers”, Journal of Applied Mechanics, Vol. 43(2), pp. 377–378. 

Litmanovich Y. A., Lesyuchevsky V. M., and Gusinsky V. Z., 2000, “Two New Classes of Strapdown 

Navigation Algorithms,” Journal of Guidance, Control, and Dynamics, 23(1), pp. 34-44. 

Ma D-M., Shiau J-K., Chiang Wang I., and Lin Y-H., 2012, “Attitude Determination Using a MEMS-Based 

Flight Information Measurement Unit,” Sensors, 12, pp. 1-23, DOI:10.3390/s120100001. 

Mangan N. M., Kutz J. N., Brunton S. L., Proctor J. L., 2017, “Model selection for dynamical systems via 

sparse regression and information criteria,” Proceedings. Mathematical, physical, and engineering sciences, 

A 473: 20170009, DOI: 10.1098/rspa.2017.0009. 

Mannini A., and Sabatini A. M., 2014, “Walking speed estimation using foot-mounted inertial sensors: 

Comparing machine learning and strap-down integration methods,” Medical Engineering & Physics 36, pp. 

1312–1321, DOI: http://dx.doi.org/10.1016/j.medengphy.2014.07.022. 



192 
 

Mariani B., Hoskovec H., Rochat S., Bula Ch., Penders J., and Aminian K., 2010, “3D gait assessment in 

young and elderly subjects using foot-worn inertial sensors,” Journal of Biomechanics 43, pp. 2999–3006, 

DOI: 10.1016/j.jbiomech.2010.07.003. 

Martin P. G., Hall G. W., Crandall J. R., and Pilkey W. D., 1998, “Measuring the acceleration of a rigid 

body,” Shock and Vibration, Vol. 5, pp. 211–224. 

MEGGITT Endevco, 2017, Piezoresistive accelerometer, Datasheet Model 7302BM5, Available at: 

https://buy.endevco.com/amfile/file/download/file_id/2628/product_id/2594/, Accessed January 18, 2019. 

McKay M. D., Beckman R. J., and Conover W. J., 1979, “A Comparison of Three Methods for Selecting 

Values of Input Variables in the Analysis of Output from a Computer Code,” Technometrics (JSTOR 

Abstract), American Statistical Association, 21 (2): 239–245, ISSN 0040-1706, JSTOR 1268522, OSTI 

5236110, DOI: 10.2307/1268522. 

Miller P. A., Farrell J. A., Zhao Y., Djapic V., 2010, “Autonomous Underwater Vehicle Navigation,” IEEE 

Journal of Oceanic Engineering, 35(3), pp. 663-678. 

Montesinos-Acosta S., Ash J. H., Lessley D. J., Shaw C. G., Heltzel S. B., and Crandall J. R., 2016, 

“Comparison of Whole Body Response in Oblique and Full Frontal Sled Tests,” Proceedings of IRCOBI 

2016 conference, IRC-16-94, pp. 740-752, Malaga, Spain. 

National Highway Safety Administration, 2013, NHTSA Vehicle Database, Available at: https://www-

nrd.nhtsa.dot.gov/database/VSR/veh/TestSeries.aspx?level=4&test=9120, Accessed February 5, 2018. 

National Highway Safety Administration, 2014, NHTSA Vehicle Database, Available at: https://www-

nrd.nhtsa.dot.gov/database/VSR/veh/TestSeries.aspx?level=4&test=8780, Accessed March 18, 2019. 

National Highway Traffic Safety Administration, 2015a, “Laboratory Test Procedure for Oblique Offset 

Moving Deformable Barrier Impact Test,” Draft from July 22, 2015, Available at: 

https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/15072220obliquetestproceduredraft_pdf.pdf, 

Accessed December 18, 2018. 

National Highway Safety Administration, 2015b, “Update to New Car Assessment Program,” Federal 

Register, Vol. 80, No. 241, Docket No. NHTSA–2015–0119. 

National Highway Traffic Safety Administration, 2016, “3D Parametric Model, August 2016 Draft 

(Generic STEP),” Available at: https://www.nhtsa.gov/document/thor-50m-august-2016-stp-fileszip, 

Accessed December 6, 2018. 

National Highway Safety Administration, 2017a, NHTSA Vehicle Database, Available at: https://www-

nrd.nhtsa.dot.gov/database/VSR/veh/TestSeries.aspx?level=4&test=10110, Accessed February 5, 2018. 

National Highway Safety Administration, 2017b, NHTSA Vehicle Database, Available at: https://www-

nrd.nhtsa.dot.gov/database/VSR/veh/TestSeries.aspx?level=4&test=10130, Accessed February 5, 2018. 

National Highway Safety Administration, 2018, THOR – Test Device for Human Occupant Restraint, 

Available at: https://www.nhtsa.gov/biomechanics-trauma/thor, Accessed August 15, 2018. 

Nevins D., Petersen P., and Smith L., 2018, “Evaluation of a Differentiation Scheme for Estimating Angular 

Acceleration from Angular Velocity,” Proceedings 2018, 2, 271, DOI:10.3390/proceedings2060271. 



193 
 

Nusbaum U., Klein I., and Rusnak I., 2018, “Angular Acceleration Sensors for Inertial Navigation,” 

Proceedings of the 58th Israel Annual Conference on Aerospace Sciences, Tel-Aviv & Haifa, Israel, March 

14-15, 2018. 

Ólafsdóttir J., Östh J., Davidsson J., and Brolin K., 2013, “Passenger Kinematics and Muscle Responses in 

Autonomous Braking Events with Standard and Reversible Pre-tensioned Restraints,” Proceedings of 

IRCOBI 2013 conference, IRC-13-70, pp. 602-617, Gothenburg, Sweden. 

Padgaonkar A. J., Krieger K. W., and King A. I., 1975, “Measurement of Angular Acceleration of a Rigid 

Body Using Linear Accelerometers,” Journal of Applied Mechanics, 42(3), 552-556. 

DOI:10.1115/1.3423640. 

Qazizadaa M. E., and Pivarčiováa E., 2016, “Mobile robot controlling possibilities of inertial navigation 

system,” Procedia Engineering 149, pp. 404 – 413. 

Rebula J. R., Ojeda L. V., Adamczyk P. G., and Kuo A. D., 2013, “Measurement of foot placement and its 

variability with inertial sensors,” Gait & Posture 38, pp. 974–980, DOI: 

http://dx.doi.org/10.1016/j.gaitpost.2013.05.012. 

Rudd R., Kerrigan J. R., Crandall J. R., and Arregui C., 2006, “Kinematic Analysis of Head/Neck Motion 

in Pedestrian-Vehicle Collisions Using 6-Degree-of-Freedom Instrumentation Cubes,” SAE Technical 

Paper: 2006-01-0681, DOI:10.4271/2006-01-0681. 

Sanchez E. J., 2017, “Evaluation of the Efficacy of Head and Brain Injury Risk Functions,” Master’s Thesis, 

University of Virginia, Charlottesville, VA, USA. 

Santhanakrishnan M. N., Balaguru Rayappan J. B., Kannan R., 2017, “Implementation of extended Kalman 

filter-based simultaneous localization and mapping: a point feature approach,” Sadhana, Vol. 42, No. 9, 

September 2017, pp. 1495–1504, DOI: 10.1007/s12046-017-0692-y. 

Saunders J., and Parent D., 2013, “Assessment of an Oblique Moving Deformable Barrier Test Procedure,” 

Proceedings of 23rd ESV Conference, Paper Number: 13-0402, Seoul, South Korea. 

Savage P. G., 1998, “Strapdown Inertial Navigation Integration Algorithm Design Part 1: Attitude 

Algorithms,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 1, pp. 19-28. DOI: 10.2514/2.4228. 

Savage P. G., 2002, “Analytical Modeling of Sensor Quantization in Strapdown Inertial Navigation Error 

Equations,” Journal of Guidance, Control, and Dynamics, Vol. 25, No. 5, pp. 833-842. DOI: 

10.2514/2.4963. 

Savage P. G., 2010, “Coning Algorithm Design by Explicit Frequency Shaping,” Journal of Guidance, 

Control, And Dynamics, 33(4), DOI: 10.2514/1.47337. 

Schoenebeck K., Melbert J., and Weiser F., 2009, “Motion Tracking in Crash Test Applications with 

Inertial Measurement Units,” SAE Technical Paper: 2009-01-0056, DOI: 10.4271/2009-01-0056. 

Shabana A. A., 2010, Dynamics of Multibody Systems. 3rd Edition, Cambridge University Press, 

Cambridge, England, ISBN-13: 978-0521154222. 

Shaw G., Parent D., Purtsezov S., Lessley D., Crandall J., Kent R., Guillemot H., Ridella S. A., Takhounts 

E., and Martin P., 2009, “Impact Response of Restrained PMHS in Frontal Sled Tests: Skeletal Deformation 

Patterns Under Seat Belt Loading,” Stapp Car Crash Journal, Vol. 53, pp. 1-48. 



194 
 

Shaw G., Lessley D., Ash J., and Crandall J., 2014, “Development of an Alternative Frontal Impact 

Condition to Assess Thoracic Response Using the THOR Mod Kit Dummy,” International Journal of 

Automotive Engineering, Vol. 5, Issue 1, pp. 39-46, DOI: https://doi.org/10.20485/jsaeijae.5.1_39. 

Sinz W., Moser J., Klein C., Greimel R. et al., 2015, “Precise Dummy Head Trajectories in Crash Tests 

based on Fusion of Optical and Electrical Data: Influence of Sensor Errors and Initial Values,” SAE 

Technical Paper: 2015-01-1442, DOI:10.4271/2015-01-1442. 

Society of Automotive Engineers, 1995, “SAE J211: Instrumentation for Impact Test,” SAE International, 

Warrendale, PA, USA. 

Takhounts E. G., Hasija V., and Eppinger R. H., 2009, “Analysis of 3D Rigid Body Motion Using the Nine 

Accelerometer Array and the Randomly Distributed In-Plane Accelerometer Systems,” Proceedings of the 

21st (ESV) International Technical Conference on the Enhanced Safety of Vehicles, Paper Number: 09-

0402, Stuttgart, Germany. 

Toczyski J., Lessley D., Zhang Q., and Kerrigan J., 2015, “Occupant Motion Tracking in Rollover using 

3D Optical Systems,” Proceedings of IRCOBI 2015 conference, IRC-15-56, pp. 452-453, Lyon, France. 

Trojaniello D., Ravaschio A., Hausdorff J. M., and Cereatti A., 2015, “Comparative assessment of different 

methods for the estimation of gait temporal parameters using a single inertial sensor: application to elderly, 

post-stroke, Parkinson’s disease and Huntington’s disease subjects,” Gait & Posture 42, pp. 310–316, DOI: 

http://dx.doi.org/10.1016/j.gaitpost.2015.06.008. 

Ugray Z., Lasdon L., Plummer J. C., Glover F., Kelly J., and Martí R., 2007, “Scatter Search and Local 

NLP Solvers: A Multistart Framework for Global Optimization,” INFORMS Journal on Computing, Vol. 

19, No. 3, pp. 328–340. 

van Rooij L., Elrofai H., Philippens  M. M. G. M., and Daanen H. A. M., 2013, “Volunteer Kinematics and 

Reaction in Lateral Emergency Maneuver Tests,” Stapp Car Crash Journal, Vol. 57, pp. 313-342. 

Vepa R., and Zhahir A., 2011, “High-Precision Kinematic Satellite and Doppler Aided Inertial Navigation 

System,” The Journal of Navigation, Vol. 64, pp. 91–108, DOI: 10.1017/S0373463310000329. 

Viano D. C., Melvin J. W., McCleary J. D., Madeira R. G., Shee T. R., and Horsch J. D., 1986, 

“Measurement of head dynamics and facial contact forces in the Hybrid III dummy,” SAE Technical Paper: 

861891. 

Voo L., Merkle A., Chang S.-S., and Kleinberger M., 2003, “Comparison of Three Rotation Measurement 

Techniques in Rear Impact Application,” SAE Technical Paper: 2003-01-0174. 

Waltz R. A., Morales J. L., Nocedal J., and Orban D., “An interior algorithm for nonlinear optimization 

that combines line search and trust region steps,” Mathematical Programming, Vol 107, No. 3, pp. 391–

408. 

Wang L-d., Jin W-r., Zhan X-q., and Zhang Y-h, 2011, “Performance improvement and study of the space-

oriented strapdown inertial navigation system,” Measurement Science and Technology, 22, DOI: 

10.1088/0957-0233/22/11/115201. 

Winter D. A., 2004, “Biomechanics and motor control of human movement,” Third Edition, John Wiley & 

Sons, Inc. 



195 
 

Wolfaardt, H.J., and Heyns, P.S., 2008, “Dynamic modeling of a novel micro-fluidic channel angular 

accelerometer,” Journal of Vibration and Control, Vol. 14, pp. 451–467. 

Wu J., Shi Y., Kang J., and Nusholtz G. S., 2009, “Using Triaxial Angular Rate Sensor and Accelerometer 

to Determine Spatial Orientation and Position in Impact Tests,” SAE Technical Paper: 2009-01-0055, DOI: 

10.4271/2009-01-0055. 

Yang S., Zhang J., Novak A. C., Brouwer B., and Li Q, 2012, “Estimation of spatio-temporal parameters 

for post-stroke hemiparetic gait using inertial sensors,” Gait & Posture 37, pp. 354–358, DOI: 

http://dx.doi.org/10.1016/j.gaitpost.2012.07.032. 

Yoganandan N., Zhang J., Pintar F. A., and Liu Y. K., 2006, “Lightweight low-profile nine accelerometer 

package to obtain head angular accelerations in short duration impacts,” Journal of Biomechanics, Vol. 39, 

pp. 1347–1354. 

Zhao, H., and Feng H., 2015, “A Novel Permanent Magnetic Angular Acceleration Sensor,” Sensors 2015, 

Vol. 15, pp. 16136-16152; DOI:10.3390/s150716136. 

Zhang Q., Lessley D., Riley P., Toczyski J., Lockerby J., Foltz P., Overby B., Seppi J., Crandall J. R., and 

Kerrigan J. R., 2014, “Occupant kinematics in laboratory rollover tests: ATD response and biofidelity,” 

Stapp Car Crash Journal, Vol. 58, pp. 317-360. 

Zhang Y., Yu F., Gao W., and Wang Y., 2018, “An Improved Strapdown Inertial Navigation System Initial 

Alignment Algorithm for Unmanned Vehicles,” Sensors 2018, 18, 3297, DOI: 10.3390/s18103297. 

Zhenhuan W., Xijun Ch., and Qingshuang Z., 2013, “Comparison of strapdown inertial navigation 

algorithm based on rotation vector and dual quaternion,” Chinese Journal of Aeronautics, 26(2), pp. 442–

448, DOI: 10.1016/j.cja.2013.02.022. 

Zhuang Y., Gong J., Kerrigan D. C., Bennett B. C., Lach J., and Russell S., 2016, “Gait tracker shoe for 

accurate step-by-step determination of gait parameters,” Proceedings of 2016 IEEE 13th International 

Conference on Wearable and Implantable Body Sensor Networks (BSN), San Francisco, CA, USA, DOI: 

10.1109/BSN.2016.7516225. 

  



196 
 

APPENDIX A – SIMPLIFIED HEAD TESTS – TEST MATRIX 

Table A1. Simplified Head Test Matrix. 

Test 

ID 

Orientation w.r.t. 

sled travel direction 

Flat / 

wedge 

Pulse (indicated by 

the peak value; 

Figure 21) 

Minimum / 

12.7mm offset 
Top / bottom 

S0415 45 flat 4.9g 

UVa 4acc 

block: 

minimum 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: top 

THOR’s NAP 

block: bottom 

S0416 45 flat 9.8g 

UVa 4acc 

block: 

minimum 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: top 

THOR’s NAP 

block: bottom 

S0417 45 flat 14.7g 

UVa 4acc 

block: 

minimum 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: top 

THOR’s NAP 

block: bottom 

S0418 45 flat 19.5g 

UVa 4acc 

block: 

minimum 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: top 

THOR’s NAP 

block: bottom 

S0419 45 flat 29.3g 

UVa 4acc 

block: 

minimum 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: top 

THOR’s NAP 

block: bottom 

S0420 45 flat 27g 

UVa 4acc 

block: 

minimum 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: top 

THOR’s NAP 

block: bottom 

S0421 0 flat 27g 

UVa 4acc 

block: 

minimum 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: top 

THOR’s NAP 

block: bottom 

S0422 0 flat 27g 

UVa 4acc 

block: 

minimum 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: top 

THOR’s NAP 

block: bottom 

S0423 0 flat 27g 

UVa 4acc 

block: 12.7mm 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: top 

THOR’s NAP 

block: bottom 
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S0424 45 flat 27g 

UVa 4acc 

block: 12.7mm 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: top 

THOR’s NAP 

block: bottom 

S0425 45 flat 27g 

UVa 4acc 

block: 12.7mm 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: bottom 

THOR’s NAP 

block: top 

S0426 0 flat 27g 

UVa 4acc 

block: 12.7mm 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: bottom 

THOR’s NAP 

block: top 

S0427 0 flat 27g 

UVa 4acc 

block: 12.7mm 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: bottom 

THOR’s NAP 

block: top 

S0428 0 wedge 27g 

UVa 4acc 

block: 12.7mm 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: bottom 

THOR’s NAP 

block: top 

S0429 45 wedge 27g 

UVa 4acc 

block: 12.7mm 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: bottom 

THOR’s NAP 

block: top 

S0430 45 wedge 27g 

UVa 4acc 

block: 

minimum 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: bottom 

THOR’s NAP 

block: top 

S0431 45 wedge 27g 

UVa 4acc 

block: 

minimum 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: bottom 

THOR’s NAP 

block: top 

S0432 0 wedge 27g 

UVa 4acc 

block: 

minimum 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: bottom 

THOR’s NAP 

block: top 

S0433 0 flat 27g 

UVa 4acc 

block: 

minimum 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: bottom 

THOR’s NAP 

block: top 

S0434 45 flat 27g 

UVa 4acc 

block: 

minimum 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: bottom 

THOR’s NAP 

block: top 
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S0435 0 wedge 27g 

UVa 4acc 

block: 

minimum 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: top 

THOR’s NAP 

block: bottom 

S0436 45 wedge 27g 

UVa 4acc 

block: 

minimum 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: top 

THOR’s NAP 

block: bottom 

S0437 45 wedge 27g 

UVa 4acc 

block: 12.7mm 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: top 

THOR’s NAP 

block: bottom 

S0438 0 wedge 27g 

UVa 4acc 

block: 12.7mm 

THOR’s NAP 

block: n/a 

UVa 4acc 

block: top 

THOR’s NAP 

block: bottom 

S0439 45 flat 27g 

UVa 4acc 

block: 

minimum 

UVa NAP 

block: 12.7mm 

UVa 4acc 

block: top 

UVa NAP 

block: bottom 

S0440 45 wedge 27g 

UVa 4acc 

block: 

minimum 

UVa NAP 

block: 12.7mm 

UVa 4acc 

block: top 

UVa NAP 

block: bottom 

S0441 45 wedge 27g 

UVa 4acc 

block: 

minimum 

UVa NAP 

block: 

minimum 

UVa 4acc 

block: top 

UVa NAP 

block: bottom 

S0442 45 flat 27g 

UVa 4acc 

block: 

minimum 

UVa NAP 

block: 

minimum 

UVa 4acc 

block: top 

UVa NAP 

block: bottom 

S0443 45 flat 27g 

UVa 4acc 

block: 

minimum 

UVa NAP 

block: 

minimum 

UVa 4acc 

block: top 

UVa NAP 

block: bottom 

S0444 45 flat 27g 

UVa 4acc 

block: 

minimum 

UVa 4acc 

block: top 

UVa NAP 

block: bottom 



199 
 

UVa NAP 

block: 

minimum 

S0445 45 flat 27g 

UVa 4acc 

block: 

minimum 

UVa NAP 

block: 

minimum 

UVa 4acc 

block: top 

UVa NAP 

block: bottom 

S0446 45 flat 27g 

UVa 4acc 

block: 

minimum 

UVa NAP 

block: 

minimum 

UVa 4acc 

block: top 

UVa NAP 

block: bottom 

S0447 45 flat 27g 

UVa 4acc 

block: 

minimum 

UVa NAP 

block: 

minimum 

UVa 4acc 

block: top 

UVa NAP 

block: bottom 

S0448 45 flat 27g 

UVa 4acc 

block: 

minimum 

UVa NAP 

block: 

minimum 

UVa 4acc 

block: top 

UVa NAP 

block: bottom 

S0449 45 flat 27g 

UVa 4acc 

block: 

minimum 

UVa NAP 

block: 

minimum 

UVa 4acc 

block: top 

UVa NAP 

block: bottom 

S0450 45 flat 27g 

UVa 4acc 

block: 

minimum 

UVa NAP 

block: 

minimum 

UVa 4acc 

block: top 

UVa NAP 

block: bottom 

S0451 45 flat 27g 

UVa 4acc 

block: 

minimum 

UVa NAP 

block: 

minimum 

UVa 4acc 

block: top 

UVa NAP 

block: bottom 

S0452 45 flat 27g 

UVa 4acc 

block: 

minimum 

UVa 4acc 

block: top 

UVa NAP 

block: bottom 
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UVa NAP 

block: 

minimum 

S0453 45 flat 27g 

UVa 4acc 

block: 

minimum 

UVa NAP 

block: 

minimum 

UVa 4acc 

block: top 

UVa NAP 

block: bottom 

S0454 45 flat 27g 

UVa 4acc 

block: 

minimum 

UVa NAP 

block: 

minimum 

UVa 4acc 

block: top 

UVa NAP 

block: bottom 

Additional remarks: 

 Due to the hardware incompatibility, the signal recorded for Endevco 7290Es in Tests 

S0415÷ S0425 was not valid for the trajectory calculation (non-physical cut off at approx. 

10g in one of the directions). 

 Tests S0442 to S0449 (except for S0448) were run in the same configuration, one after 

another, and can be treated as repeated tests. 

 In Test S0448, a sensor cable was tangled behind one of the VICON markers. During the 

test, the cable restrained the head changing its kinematics. 

 In the last five tests (S0450 to S0454) a change in data acquisition system (DAS) and/or 

sensor parameters was made: 

o S0450: Where possible full scale range for accelerometers (ACC) was set to 64g 

(25% higher than the maximum absolute value seen among the repeated tests); 

o S0451: Where possible full scale range for angular rate sensors (ARS) was set to 

1410 deg/s (25% higher than the maximum absolute value seen among the 

repeated tests); 

o S0452: Where possible full scale ranges for ACC and ARS were set to 64g and 

1410 deg/s, respectively; 

o S0453: Excitation voltage for all piezoresistive accelerometers, attached to the 

simplified head, running previously at 10V, was changed to 2V; 

o S0454: All ARS and DTS 6DX PRO sensors were moved from DTS TDAS G5 to 

DTS TDAS PRO. DTS 6DX PRO ACC were excited at 2V. All other sensors 

connected to TDAS PRO were excited at 10V. 
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APPENDIX B – SIMPLIFIED HEAD TESTS – 

INSTRUMENTATION AND DATA ACQUISITION SYSTEMS 
Six different linear accelerometer types (Table B1), four different angular rate sensor types 

(Table B2), one type of a piezoresistive angular accelerometer (Table B3) and three different DAS 

types (Table B4) were used during testing. The sensors were calibrated prior to the tests. In all 

forty sled tests the data were recorded at 20 kHz. 

Table B1. Linear accelerometer summary 

Manufacturer Model Quantity Photo General parameters 

Endevco Meggitt 

Sensing Systems 

7264C 9 
 

 

 Piezoresistive 

 Full range: 2000g 

 Sensitivity: ~0.2 mV/g 

 Frequency response: 

from 0 up to 5000Hz 

 Damping ratio: 0.005 

 Calibrated at 10V 

excitation 

 Run at 10V excitation 

(except for Test S0453, 

where run at 2V) 

 Seismic mass CG 

(marked in the picture 

on the left with a photo 

target) not on the main 

axis of the sensor 

7265A-

HS 
3 

 

 Piezoresistive 

 Full range: 20g 

 Sensitivity: ~25 mV/g 

 Frequency response: 

from 0 up to 500Hz 

 Damping ratio: 0.707 

 Calibrated at 10V 

excitation 

 Run at 10V excitation 

(except for Test S0453, 

where run at 2V) 

7290E 3 

 

 Variable capacitance 

 Full range: 30g 

 Sensitivity: ~66 mV/g 

 Frequency response: 

from 0 up to 1000Hz 

 Damping ratio: 0.7 

 Calibrated at 11V 

excitation 

 Not proportional to 

excitation 
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Measurement 

Specialties (MSI) 

64B 3 

 

 Piezoresistive 

 Full range: 2000g 

 Sensitivity: ~0.15 mV/g 

 Frequency response: 

from 0 up to 3000Hz 

 Damping ratio: 0.05 

 Calibrated at 10V 

excitation 

 Run at 10V excitation 

(except for Test S0453, 

where run at 2V) 

64C 3 

 

 Piezoresistive 

 Full range: 100g 

 Sensitivity: ~0.9 mV/g 

 Frequency response: 

from 0 up to 500Hz 

 Damping ratio: 0.5 

 Calibrated at 10V 

excitation 

 Run at 10V excitation 

(except for Test S0453, 

where run at 2V) 

Diversified 

Technical 

Systems (DTS) 

6DX 

PRO 

1 cube (3 

accelerometers 

inside) 

 

 Piezoresistive 

 Full range: 2000g 

 Sensitivity: ~0.2 mV/g 

 Frequency response: 

from 0 up to 10000Hz 

 Damping ratio: n/a 

 Calibrated at 5V 

excitation 

 Run at 5V excitation 

(except for Test S0454, 

where run at 2V) 

Table B2. Angular rate sensors summary 

Manufacturer Model Quantity Photo 
General 

parameters 

Diversified 

Technical Systems 

(DTS) 

ARS PRO-

8K 300Hz 
3 

 Full range: 8000 

deg/s 

 Not proportional to 

excitation 

 Frequency 

response: from 0 

up to 300Hz 

 Internally 

regulated 

excitation 
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ARS PRO-

8K 

2000Hz 

3 

 

 Full range: 8000 

deg/s 

 Not proportional to 

excitation 

 Frequency 

response: from 0 

up to 2000Hz 

 Internally 

regulated 

excitation 

6DX PRO 

1 cube (3 

angular rate 

sensors inside) 

 

 Full range: 18000 

deg/s 

 Not proportional to 

excitation 

 Frequency 

response: from 0 

up to 2000Hz 

 Internally 

regulated 

excitation 

 Tri-axial 

IES 3103-600 1 

 

 Full range: 600 

deg/s 

 Not proportional to 

excitation 

 Frequency 

response: from 0 

up to 100Hz 

 Internally 

regulated 

excitation 

 Tri-axial 

Table B3. Angular acceleration sensors summary 

Manufacturer Model Quantity Photo General parameters 

Endevco Meggitt 

Sensing Systems 
7302BM5 3 

 

 Piezoresistive 

 Full range: 50000 rad/s2 

 Sensitivity: ~2.5 

mV/Krad/s2 (5V excitation) 

or 5 mV/Krad/s2 (10V 

excitation) 

 Frequency response: from 3 

up to 1000Hz 

 Frequency content of the 

signal discussed in 

APPENDIX H 
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Table B4. DAS summary 

Manufacturer Model Quantity Photo General parameters 

Diversified 

Technical Systems 

(DTS) 

TDAS 

PRO 
2 

 

 Voltage Insertion Type: 16-

bit DAC 

 Resolution: 16-bit 

 Max sampling rate: 304k 

samples/sec/module 

 Excitation voltage levels: 2 

& 10V 

 # of channels: 30 

 Anti-alias filter: low pass, 8-

pole Butterworth, 2.9 kHz 

 Overhead room added to the 

sensor full scale range: 20% 

TDAS 

G5 
1 

 Voltage Insertion Type: 16-

bit DAC 

 Resolution: 16-bit 

 Max sampling rate: 100k 

samples/sec/module 

 Excitation voltage levels: 

5V 

 # of channels: 32 

 Anti-alias filter: low pass, 4-

pole Butterworth, 2.9 kHz 

 Overhead room added to the 

sensor full scale range: 20% 

SLICE 

Micro 
1 

 

 Resolution: 16-bit 

 Excitation voltage level: 5V 

 Bandwidth: DC to 40 kHz 

 # of channels: 15 

 Anti-alias filter: low pass, 4-

pole Butterworth, 40 kHz 

 Overhead room added to the 

sensor full scale range: 20% 

 Used since Test S0426 and 

only for Endevco 7290Es 
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APPENDIX C – SIMPLIFIED HEAD TESTING – RESERR (IN MILLIMITERS) FOR ALL SENSOR 

COMBINATIONS 
Table C1. Reserr (in millimeters) for all sensor combinations for Tests S0415 to S0434. 

 

Sensor combination S0415 S0416 S0417 S0418 S0419 S0420 S0421 S0422 S0423 S0424 S0425 S0426 S0427 S0428 S0429 S0430 S0431 S0432 S0433 S0434 

DTS6DX_Acc-DTS6DX_Ars 202.65 616.91 269.84 108.47 55.63 75.54 60.68 92.19 89.63 72.08 92.72 103.64 81.50 84.06 78.38 65.97 88.25 105.49 62.58 58.88 

DTS6DX_Acc-DTS300Hz 203.00 635.78 276.93 113.79 55.04 79.67 67.99 101.39 101.50 65.76 94.65 123.24 106.94 112.53 74.86 69.94 84.33 113.14 75.51 65.10 

DTS6DX_Acc-DTS2000Hz 213.19 625.07 271.26 109.35 52.19 75.73 64.05 94.14 96.00 67.95 86.23 106.73 82.27 89.94 81.92 61.13 85.96 106.60 60.11 57.76 

DTS6DX_Acc-IES 207.44 627.40 273.76 111.28 109.92 103.03 128.32 247.82 201.81 120.82 164.84 271.40 275.09 153.86 93.63 75.40 98.80 151.15 239.40 115.96 

END7264C-DTS6DX_Ars 128.00 120.64 27.09 39.24 24.01 9.25 15.12 25.23 19.92 26.56 15.16 16.30 9.03 21.32 7.27 25.01 17.96 27.59 15.00 14.19 

END7264C-DTS300Hz 123.11 86.29 35.35 29.50 19.18 23.00 19.95 25.18 14.19 30.75 14.85 28.22 39.84 21.09 21.08 17.85 25.49 13.43 17.60 18.74 

END7264C-DTS2000Hz 114.72 103.40 22.61 37.51 22.99 10.70 15.03 21.62 12.86 25.80 18.72 12.55 9.47 13.42 3.35 27.52 20.47 22.12 14.50 19.69 

END7264C-IES 118.58 103.54 21.95 34.94 56.93 32.57 68.53 170.36 127.12 44.24 102.40 203.66 234.50 79.75 12.55 26.07 7.83 55.15 194.94 61.51 

END7265A-DTS6DX_Ars 29.88 54.52 60.77 49.65 57.50 32.36 15.10 27.06 24.81 51.46 44.23 29.46 31.27 36.02 37.00 34.52 37.98 36.67 25.47 30.51 

END7265A-DTS300Hz 17.40 43.65 61.55 52.01 73.91 48.62 19.88 38.50 25.18 62.91 51.05 36.19 39.98 34.30 39.48 40.05 40.26 37.06 29.14 34.22 

END7265A-DTS2000Hz 18.68 45.50 56.96 49.46 64.08 35.15 13.79 26.05 17.61 53.37 44.56 28.54 29.72 33.76 34.13 37.21 37.95 36.26 26.54 28.77 

END7265A-IES 14.16 41.48 53.26 46.99 47.81 46.35 116.82 271.91 200.80 72.11 66.73 145.22 168.15 68.46 36.07 33.95 35.36 54.06 138.02 46.71 

END7290E-DTS6DX_Ars n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 16.53 17.80 19.37 7.94 8.95 8.76 13.34 15.39 8.96 

END7290E-DTS300Hz n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 29.77 33.81 24.44 15.32 18.58 16.95 17.68 24.98 21.14 

END7290E-DTS2000Hz n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 16.01 18.21 15.81 11.29 8.60 8.78 10.78 16.52 8.73 

END7290E-IES n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 139.17 161.29 56.03 14.71 12.13 9.56 39.07 131.51 45.47 

MSI64B-DTS6DX_Ars 99.47 240.70 218.22 63.86 30.26 29.13 13.87 20.91 13.51 38.20 107.78 12.18 24.44 20.31 13.18 31.33 16.71 39.71 28.80 29.41 

MSI64B-DTS300Hz 116.45 230.40 243.98 77.82 32.72 54.42 13.90 28.57 28.36 29.49 120.19 20.82 17.77 16.95 15.90 45.95 24.50 26.80 30.88 31.03 

MSI64B-DTS2000Hz 100.08 235.47 234.96 66.36 31.42 34.54 8.72 15.19 6.87 34.06 110.64 10.93 22.77 13.74 11.98 32.29 17.20 35.54 26.25 29.17 

MSI64B-IES 108.16 231.54 222.78 59.35 82.97 33.39 117.61 288.41 196.63 89.42 51.23 154.52 160.56 62.87 19.07 27.34 10.53 71.35 158.35 35.48 

MSI64C-DTS6DX_Ars 26.12 41.26 39.56 31.14 25.14 26.17 21.65 43.98 37.63 40.03 27.69 25.91 26.33 35.69 20.41 15.86 20.27 33.25 25.82 18.88 

MSI64C-DTS300Hz 10.18 29.71 34.26 30.09 29.11 30.17 9.84 25.17 18.94 38.79 32.87 9.93 11.68 23.47 18.85 18.07 19.85 17.44 15.71 20.28 

MSI64C-DTS2000Hz 18.51 29.44 32.60 29.65 26.33 23.84 14.64 36.75 34.17 37.62 28.52 22.53 25.53 28.72 19.47 18.35 20.21 28.52 24.23 19.82 

MSI64C-IES 9.98 26.18 29.58 27.28 92.78 61.13 129.85 296.07 223.93 91.96 63.76 161.24 185.03 83.41 23.88 19.76 22.01 64.12 150.03 45.14 
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Table C2. Reserr (in millimeters) for all sensor combinations for Tests S0435 to S0454. 

Sensor combination S0435 S0436 S0437 S0438 S0439 S0440 S0441 S0442 S0443 S0444 S0445 S0446 S0447 S0448 S0449 S0450 S0451 S0452 S0453 S0454 

DTS6DX_Acc-DTS6DX_Ars 72.99 60.05 62.73 69.37 39.84 82.56 85.95 61.21 55.23 71.01 44.75 54.46 69.78 38.80 58.91 35.48 44.53 30.63 40.12 44.38 

DTS6DX_Acc-DTS300Hz 76.92 64.41 69.18 79.54 30.24 75.73 93.55 61.27 66.01 66.55 48.91 51.94 68.85 33.96 52.95 34.72 43.98 30.87 35.15 55.09 

DTS6DX_Acc-DTS2000Hz 72.01 57.93 64.43 73.45 34.08 77.16 86.83 56.32 55.38 77.63 42.62 52.59 67.32 36.30 54.39 34.13 42.75 29.47 34.46 44.83 

DTS6DX_Acc-IES 106.06 63.46 71.22 117.23 74.32 86.42 101.04 94.58 91.61 123.60 79.82 82.63 109.56 62.40 94.33 67.59 74.08 55.88 66.28 72.33 

END7264C-DTS6DX_Ars 24.90 10.93 14.69 22.89 16.02 6.35 18.93 11.69 17.10 13.19 7.07 14.66 16.55 5.52 16.07 4.60 9.80 5.11 42.59 18.37 

END7264C-DTS300Hz 14.11 15.79 11.68 7.92 12.39 6.38 11.09 7.54 14.19 6.82 5.13 13.58 4.92 12.36 14.38 14.26 13.01 10.00 48.70 7.91 

END7264C-DTS2000Hz 20.27 9.38 13.11 17.47 16.40 7.34 18.12 10.17 14.02 18.27 4.87 16.68 10.93 3.48 16.35 2.86 10.28 4.51 45.04 17.47 

END7264C-IES 56.08 15.76 8.51 54.68 47.13 13.22 14.59 43.16 60.18 70.29 45.54 27.94 63.42 32.60 48.68 41.55 40.71 35.09 39.90 47.02 

END7265A-DTS6DX_Ars 27.18 26.54 32.03 31.72 23.99 28.77 39.87 25.74 28.44 43.58 27.01 22.58 39.16 20.10 25.70 27.74 27.67 22.95 21.83 28.48 

END7265A-DTS300Hz 23.02 36.62 34.31 27.13 40.34 38.37 41.77 35.63 45.75 58.14 31.09 26.61 50.51 32.04 40.07 35.67 37.38 29.01 34.91 32.37 

END7265A-DTS2000Hz 27.45 33.75 33.66 26.09 30.13 33.01 39.01 32.32 34.50 36.41 30.97 25.69 41.80 23.77 30.37 28.16 30.24 25.14 30.96 28.22 

END7265A-IES 58.91 27.77 27.18 75.52 55.45 27.36 31.58 54.60 67.55 72.49 51.34 36.32 67.10 33.50 59.15 51.10 44.20 41.23 29.30 53.57 

END7290E-DTS6DX_Ars 19.84 15.89 14.87 24.10 16.89 13.66 16.39 15.54 15.36 14.62 10.41 8.67 16.59 9.19 15.86 10.28 7.16 6.99 12.54 11.08 

END7290E-DTS300Hz 18.68 19.90 19.73 22.67 27.31 18.52 23.46 20.74 24.91 34.69 17.28 14.83 28.36 17.08 25.18 20.17 16.26 12.26 16.74 20.82 

END7290E-DTS2000Hz 17.85 11.87 13.59 20.69 15.84 11.67 16.00 12.56 10.07 17.01 9.65 10.16 14.13 8.97 12.20 12.96 7.76 5.43 8.86 11.97 

END7290E-IES 64.23 16.16 18.94 83.89 69.06 19.48 22.73 70.24 86.00 93.36 67.68 51.64 84.53 47.73 75.45 62.69 62.49 51.38 54.06 62.59 

MSI64B-DTS6DX_Ars 19.89 29.99 14.41 26.62 18.73 26.34 48.84 18.72 36.57 37.40 12.36 10.01 20.22 21.69 12.37 11.74 9.62 12.46 13.76 16.42 

MSI64B-DTS300Hz 16.30 48.03 15.47 40.33 37.61 41.04 54.00 34.71 45.96 52.53 23.34 9.49 36.25 36.12 32.59 15.42 15.80 8.56 10.47 32.61 

MSI64B-DTS2000Hz 14.17 38.85 11.73 25.88 23.03 29.75 47.39 26.94 39.92 30.58 12.79 9.99 19.88 25.68 11.95 13.36 9.70 9.45 6.60 17.15 

MSI64B-IES 77.53 28.71 21.98 61.17 54.30 16.56 25.56 46.92 52.39 63.77 74.17 55.16 93.36 22.93 70.16 69.24 63.52 57.39 58.69 49.48 

MSI64C-DTS6DX_Ars 39.32 18.46 16.46 42.55 19.16 17.06 22.36 19.75 23.09 25.71 15.36 11.35 25.74 10.29 23.01 19.02 16.94 18.79 15.02 22.73 

MSI64C-DTS300Hz 24.13 16.84 12.12 22.66 23.01 18.77 21.38 17.78 26.28 34.65 13.59 10.70 27.22 16.05 21.76 19.08 18.39 16.74 10.54 21.40 

MSI64C-DTS2000Hz 32.40 17.58 15.18 38.40 19.70 17.75 21.92 18.94 21.73 22.60 16.10 12.77 24.56 11.38 21.33 20.69 17.26 17.90 12.52 21.37 

MSI64C-IES 90.00 23.65 22.35 108.94 70.39 24.49 28.38 70.37 86.30 93.89 66.77 49.80 87.16 46.91 78.54 64.52 62.65 53.27 53.50 67.25 
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APPENDIX D – THOR MOD-KIT TESTS – TEST MATRIX 

Table D1. THOR Test Matrix. 

Test 

ID 

Head 

type 

Sensor 

Block 
Head tether 

Simulated 

impact 

Seat belt force 

limit (FL) 

S0455 Simplified UVa NOT used NO 2 kN 

S0456 Regular UVa NOT used NO 4 kN 

S0457 Regular UVa NOT used NO 4 kN 

S0458 Regular UVa 
USED: 1 layer of Gaffer’s 

tape; short 
NO 4 kN 

S0459 Regular UVa 
USED: 4 layers of 

Gaffer’s tape; long 
NO 4 kN 

S0460 Regular UVa NOT used Yes 4 kN 

S0461 Regular UVa NOT used Yes 4 kN 

S0462 Regular 
THOR 

stock 
NOT used Yes 4 kN 

 

Additional remarks: 

 Test S0456 – Head ACC X (Endevco 7264C) recorded only noise due to a broken 

connector. 

 Tests S0460 and Test S0461 – ACC X and ACC Z (Endevco 7290E) exceeded their 

maximum full-scale range of 30g. 
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APPENDIX E – THOR MOD-KIT TESTS – INSTRUMENTATION 

AND DATA ACQUISITION SYSTEMS 
Test S0455: 

Five different linear accelerometer types (Table E1), two different angular rate sensor types 

(Table E2), and three different DAS types (Table E3) were used during the test. Data were recorded 

at 20 kHz. 

Table E1. Linear accelerometer summary. 

Manufacturer Model Quantity Photo General parameters 

Endevco Meggitt 

Sensing Systems 

7264C 9 
 

 

 Piezoresistive 

 Full range: 2000g 

 Sensitivity: ~0.2 mV/g 

 Frequency response: from 0 up 

to 5000Hz 

 Damping ratio: 0.005 

 Calibrated at 10V excitation 

 Run at 10V excitation 

 Seismic mass CG (marked in 

the picture on the left with a 

photo target) not on the main 

axis of the sensor 

7264B 3 

 

 Piezoresistive 

 Full range: 500g 

 Sensitivity: ~0.8 mV/g 

 Frequency response: from 0 up 

to 3000Hz 

 Damping ratio: 0.005 

 Calibrated at 10V excitation 

 Run at 10V excitation 

7290E 3 

 

 Variable capacitance 

 Full range: 30g 

 Sensitivity: ~66 mV/g 

 Frequency response: from 0 up 

to 1000Hz 

 Damping ratio: 0.7 

 Calibrated at 11V excitation 

 Not proportional to excitation 

Measurement 

Specialties (MSI) 
64B 3 

 

 Piezoresistive 

 Full range: 2000g 

 Sensitivity: ~0.15 mV/g 

 Frequency response: from 0 up 

to 3000Hz 

 Damping ratio: 0.05 

 Calibrated at 10V excitation 

 Run at 10V excitation 
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64C 3 

 

 Piezoresistive 

 Full range: 100g 

 Sensitivity: ~0.9 mV/g 

 Frequency response: from 0 up 

to 500Hz 

 Damping ratio: 0.5 

 Calibrated at 10V excitation 

 Run at 10V excitation 

Table E2. Angular rate sensors summary 

Manufacturer Model Quantity Photo General parameters 

Diversified Technical 

Systems (DTS) 

ARS PRO-

8K 300Hz 
3 

 

 Full range: 8000 deg/s 

 Not proportional to 

excitation 

 Frequency response: 

from 0 up to 300Hz 

 Internally regulated 

excitation 

ARS PRO-

8K 2000Hz 
3 

 Full range: 8000 deg/s 

 Not proportional to 

excitation 

 Frequency response: 

from 0 up to 2000Hz 

 Internally regulated 

excitation 

Table E3. DAS summary 

Manufacturer Model Quantity Photo General parameters 

Diversified 

Technical Systems 

(DTS) 

TDAS 

PRO 
1 

 

 Voltage Insertion Type: 16-

bit DAC 

 Resolution: 16-bit 

 Max sampling rate: 304k 

samples/sec/module 

 Excitation voltage levels: 2 

& 10V 

 # of channels: 30 

 Anti-alias filter: low pass, 8-

pole Butterworth, 2.9 kHz 

 Overhead room added to the 

sensor full scale range: 20% 

TDAS 

G5 
1 

 Voltage Insertion Type: 16-

bit DAC 

 Resolution: 16-bit 

 Max sampling rate: 100k 

samples/sec/module 
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 Excitation voltage levels: 

5V 

 # of channels: 32 

 Anti-alias filter: low pass, 4-

pole Butterworth, 2.9 kHz 

 Overhead room added to the 

sensor full scale range: 20% 

SLICE 

Micro 
1 

 

 Resolution: 16-bit 

 Excitation voltage level: 5V 

 Bandwidth: DC to 40 kHz 

 # of channels: 15 

 Anti-alias filter: low pass, 4-

pole Butterworth, 40 kHz 

 Overhead room added to the 

sensor full scale range: 20% 

 Used only for Endevco 

7290Es 

Tests S0456 – S0462: 

Two different linear accelerometer types (Table E4), two different angular rate sensor types 

(Table E5), and three different DAS types (Table E6) were used during testing. Data were recorded 

at 20 kHz. 

Table E4. Linear accelerometer summary 

Manufacturer Model Quantity Photo General parameters 

Endevco Meggitt 

Sensing Systems 

7264C 3 
 

 

 Piezoresistive 

 Full range: 2000g 

 Sensitivity: ~0.2 mV/g 

 Frequency response: from 0 up 

to 5000Hz 

 Damping ratio: 0.005 

 Calibrated at 10V excitation 

 Run at 10V excitation 

 Seismic mass CG (marked in 

the picture on the left with a 

photo target) not on the main 

axis of the sensor 

7290E 3 

 

 Variable capacitance 

 Full range: 30g 

 Sensitivity: ~66 mV/g 

 Frequency response: from 0 up 

to 1000Hz 

 Damping ratio: 0.7 

 Calibrated at 11V excitation 

 Not proportional to excitation 
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Table E5. Angular rate sensors summary 

Manufacturer Model Quantity Photo General parameters 

Diversified Technical 

Systems (DTS) 

ARS PRO-

8K 300Hz 
3 

 

 Full range: 8000 deg/s 

 Not proportional to 

excitation 

 Frequency response: 

from 0 up to 300Hz 

 Internally regulated 

excitation 

ARS PRO-

8K 2000Hz 
3 

 Full range: 8000 deg/s 

 Not proportional to 

excitation 

 Frequency response: 

from 0 up to 2000Hz 

 Internally regulated 

excitation 

Table E6. DAS summary 

Manufacturer Model Quantity Photo General parameters 

Diversified 

Technical Systems 

(DTS) 

TDAS 

PRO 
1 

 

 Voltage Insertion Type: 16-

bit DAC 

 Resolution: 16-bit 

 Max sampling rate: 304k 

samples/sec/module 

 Excitation voltage levels: 2 

& 10V 

 # of channels: 30 

 Anti-alias filter: low pass, 8-

pole Butterworth, 2.9 kHz 

 Overhead room added to the 

sensor full scale range: 20% 

TDAS 

G5 
1 

 Voltage Insertion Type: 16-

bit DAC 

 Resolution: 16-bit 

 Max sampling rate: 100k 

samples/sec/module 

 Excitation voltage levels: 

5V 

 # of channels: 32 

 Anti-alias filter: low pass, 4-

pole Butterworth, 2.9 kHz 

 Overhead room added to the 

sensor full scale range: 20% 
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SLICE 

Micro 
1 

 

 Resolution: 16-bit 

 Excitation voltage level: 5V 

 Bandwidth: DC to 40 kHz 

 # of channels: 15 

 Anti-alias filter: low pass, 4-

pole Butterworth, 40 kHz 

 Overhead room added to the 

sensor full scale range: 20% 

 Used only for Endevco 

7290Es 

Test S0462: 

One linear accelerometer type (Table E7), one angular rate sensor type (Table E8), and two 

different DAS types (Table E9) were used during the test. Data were recorded at 20 kHz. 

Table E7. Linear accelerometer summary 

Manufacturer Model Quantity Photo General parameters 

Endevco Meggitt 

Sensing Systems 
7264C 3 

 

 

 Piezoresistive 

 Full range: 2000g 

 Sensitivity: ~0.2 mV/g 

 Frequency response: from 0 up 

to 5000Hz 

 Damping ratio: 0.005 

 Calibrated at 10V excitation 

 Run at 10V excitation (except 

for Test S0453, where run at 

2V) 

 Seismic mass CG (marked in 

the picture on the left with a 

photo target) not on the main 

axis of the sensor 

Table E8. Angular rate sensors summary 

Manufacturer Model Quantity Photo General parameters 

Diversified Technical 

Systems (DTS) 

ARS PRO-

18K 2000Hz 
3 

 

 Full range: 18000 

deg/s 

 Not proportional to 

excitation 

 Frequency response: 

from 0 up to 2000Hz 

 Internally regulated 

excitation 
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Table E9. DAS summary 

Manufacturer Model Quantity Photo General parameters 

Diversified 

Technical Systems 

(DTS) 

TDAS 

PRO 
1 

 

 Voltage Insertion Type: 16-

bit DAC 

 Resolution: 16-bit 

 Max sampling rate: 304k 

samples/sec/module 

 Excitation voltage levels: 2 

& 10V 

 # of channels: 30 

 Anti-alias filter: low pass, 8-

pole Butterworth, 2.9 kHz 

 Overhead room added to the 

sensor full scale range: 20% 

TDAS 

G5 
1 

 Voltage Insertion Type: 16-

bit DAC 

 Resolution: 16-bit 

 Max sampling rate: 100k 

samples/sec/module 

 Excitation voltage levels: 5V 

 # of channels: 32 

 Anti-alias filter: low pass, 4-

pole Butterworth, 2.9 kHz 

 Overhead room added to the 

sensor full scale range: 20% 
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APPENDIX F – THOR MOD-KIT TESTS – SENSOR BLOCKS 

USED DURING TESTING 
Several different sensor blocks were used during testing. In Test S0461, THOR ATD stock 

head accelerometer block was investigated. Sensor blocks fabricated at UVa were used in the other 

seven tests (Table F1). 

Table F1. Sensor blocks used during testing. 

Sensor block Sensor list Figure 

UVa NAP 

(used only in Test 

S0455) 

9 Endevco 7264C 

 

UVa 4-ACC 

(used only in Test 

S0455) 

3 x Endevco 7264B 

3 x Endevco 7290E 

3 x MSI 64B 

3 x MSI 64C 

 

UVa THOR Head 

(used in Tests S0455-

S0461) 

3 x Endevco 7264C 

3 x Endevco 7290E 

3 x DTS ARS Pro 8k (bandwidth up 

to 300Hz) 

3 x DTS ARS Pro 8k (bandwidth up 

to 2000Hz) 

 

NHTSA THOR Head 

(stock; used only in Test 

S0462) 

3 x Endevco 7264C 

3 x DTS ARS Pro 18k (bandwidth 

up to 2000Hz) 
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APPENDIX G – THOR MOD-KIT TESTS – RESERR (IN 

MILLIMITERS) FOR ALL SENSOR COMBINATIONS 
Table G1. Reserr (in millimeters) for all sensor combinations for Test S0455. 

Sensor combination S0455 
END7264B-DTS300Hz 50.6 

END7264B-DTS2000Hz 24.14 

END7264C-DTS300Hz 37.7 

END7264C-DTS2000Hz 19.82 

END7290E-DTS300Hz 50.04 

END7290E-DTS2000Hz 33.76 

MSI64B-DTS300Hz 46.83 

MSI64B-DTS2000Hz 28.17 

MSI64C-DTS300Hz 33.07 

MSI64C-DTS2000Hz 51.33 

Table G2. Reserr (in millimeters) for all sensor combinations for Test S0456 to S0461. 

Sensor combination S0456 S0457 S0458 S0459 S0460 S0461 

END7264C-DTS300Hz n/a 55.19 66.05 62.07 37.56 44.93 

END7264C-DTS2000Hz n/a 42.91 58.54 29.53 36.09 29.84 

END7290E-DTS300Hz 51.63 78.45 86.57 85.69 436.31* 460.04* 

END7290E-DTS2000Hz 45.95 64.82 77.19 51.76 452.41* 473.45* 

* full scale range of the sensor excided 

Table G3. Reserr (in millimeters) for all sensor combinations for Test S0462. 

Sensor combination S0462 

END7264C-DTS2000Hz (full scale range: 18k deg/sec) 35.69 
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APPENDIX H – FREQUENCY CONTENT OF THE SIGNAL 

FROM ANGULAR ACCELEROMETERS 
The raw unfiltered data from the Endevco 7302BM5 angular accelerometers recorded on the 

four Simplified Head tests discussed in Section 6 contained noise of noticeably high magnitude 

(Figure H1). If not filtered, that level of noise can make the analysis of the recorded angular 

acceleration problematic and the results difficult to interpret. 

 
Figure H1. Exemplar raw (not filtered) AAC data recorded by the angular accelerometers. 

When the Fast Fourier transform (FFT) was performed on the Endevco AAC data, it became 

clear that in all four analyzed Simplified Head tests the angular accelerometers exhibited high 

magnitude of the signal noise in the frequency range between 2000 Hz to 3500 Hz (Figure H2). 

That frequency range matched the mounted resonance frequency for the 7302BM5 sensors as 

given by the manufacturer (between 2500 Hz to 3500 Hz; MEGGITT Endevco 2017). 

 
Figure H2. Frequency content of the signal recorded by the Endevco angular accelerometers in the four 

analyzed Simplified Head tests. 
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The frequency content of the sled input acceleration time-history (Figure 21) was within the 

DC response (0 Hz) to approximately 150 Hz. Due to the complexity of the Simplified-Head-to-

sled system, interactions between different parts during the test, and due to the electrical and 

ambient noise always present in a laboratory environment, the entire analyzed structure was 

subjected to vibrations of a spectrum than was broader than the one bounded by the sled input. 

That introduced noise into the measured signal, including vibrations close or at the sensor natural 

frequency. With the data sampling rate set to 20 kHz, the Endevco sensors were able to capture 

the natural resonance of the mechanical structure of the accelerometers themselves, which then 

resulted in a high magnitude noise seen in the recorded angular acceleration data. 

 

  



218 
 

APPENDIX I – DATA UTILIZED TO FIND EQ. 8.18 

As the first step, the error in the rotation matrix R was found in the function of the normalized 

frequency (Figure 76a) varying f (frequency of the angular velocity data from Eq. 8.12) and using 

the magnitude parameter A of 15. One of the curves from Figure 76a was then designated to be a 

reference response and the frequency associated with it was assumed to be fref. To match an error 

curve (for the investigated f) to the reference error curve (fref case) a scaling factor (SF) was applied 

to the normalized frequency (t * f). SF was found manually for different ratios of f/fref  (Table I1). 

Table I1. Data used to define Eq. 8.18. 

f/fref 
Scaling factor determined 

manually (SF) 

SF computed based on Eq. 8.18 (power fit to SF 

determined manually) 
0.25 1.9 1.87 

0.5 1.4 1.38 

1 1 1.03 

2 0.75 0.76 

4 0.55 0.57 

8 0.44 0.42 

Next, a power function was fitted to the SF data (second column of Table I1) to determine the 

mathematical relationship between the scaling factors determined manually and the f/fref ratio. The 

resulting power fit was then utilized as Eq. 8.18. 

 
Figure I1. Power function fit (dotted in red) to the scaling factors determined manually (blue markers).  
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APPENDIX J – AAC ANALYSIS – LOCATIONS OF LINEAR 

ACCELEROMETER SEISMIC MASS CGS RELATIVE TO THE 

MARKER POSITIONS 

Table J1. Test S0425: Linear accelerometer location relative to Marker 1. (0,0,0) is the marker center. 

CG of: 
Local coordinate frame (origin: center of VICON marker) 

X coordinate (mm) Y coordinate (mm) Z coordinate (mm) 

X Accelerometer -22.8 -51.3 -19.2 

Y Accelerometer -31.4 -43.3 -19.2 

Z Accelerometer -31.0 -50.9 -25.3 

Table J2. Test S0425: Linear accelerometer location relative to Marker 2. (0,0,0) is the marker center. 

CG of: 
Local coordinate frame (origin: center of VICON marker) 

X coordinate (mm) Y coordinate (mm) Z coordinate (mm) 

X Accelerometer 73.3 -52.8 -125.3 

Y Accelerometer 64.6 -44.8 -125.3 

Z Accelerometer 65.1 -52.5 -131.5 

Table J3. Test S0433: Linear accelerometer location relative to Marker 1. (0,0,0) is the marker center. 

CG of: 
Local coordinate frame (origin: center of VICON marker) 

X coordinate (mm) Y coordinate (mm) Z coordinate (mm) 

X Accelerometer -21.9 -51.1 -20.1 

Y Accelerometer -30.6 -43.1 -20.1 

Z Accelerometer -30.1 -50.8 -26.2 

Table J4. Test S0433: Linear accelerometer location relative to Marker 2. (0,0,0) is the marker center. 

CG of: 
Local coordinate frame (origin: center of VICON marker) 

X coordinate (mm) Y coordinate (mm) Z coordinate (mm) 

X Accelerometer 74.7 -51.4 -125.4 

Y Accelerometer 66.0 -43.4 -125.4 

Z Accelerometer 66.5 -51.0 -131.6 

Table J5. Test S0436: Linear accelerometer location relative to Marker 1. (0,0,0) is the marker center. 

CG of: 
Local coordinate frame (origin: center of VICON marker) 

X coordinate (mm) Y coordinate (mm) Z coordinate (mm) 

X Accelerometer -22.3 -50.9 93.1 

Y Accelerometer -30.9 -42.9 93.1 

Z Accelerometer -30.4 -50.6 86.9 

Table J6. Test S0436: Linear accelerometer location relative to Marker 2. (0,0,0) is the marker center. 

CG of: 
Local coordinate frame (origin: center of VICON marker) 

X coordinate (mm) Y coordinate (mm) Z coordinate (mm) 

X Accelerometer 73.3 -52.1 -12.7 

Y Accelerometer 64.6 -44.0 -12.7 

Z Accelerometer 65.1 -51.7 -18.8 
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Table J7. Test S0442: Linear accelerometer location relative to Marker 1. (0,0,0) is the marker center. 

CG of: 
Local coordinate frame (origin: center of VICON marker) 

X coordinate (mm) Y coordinate (mm) Z coordinate (mm) 

X Accelerometer -23.0 -50.7 94.9 

Y Accelerometer -30.5 -43.0 94.9 

Z Accelerometer -30.4 -50.5 87.3 

Table J8. Test S0442: Linear accelerometer location relative to Marker 2. (0,0,0) is the marker center. 

CG of: 
Local coordinate frame (origin: center of VICON marker) 

X coordinate (mm) Y coordinate (mm) Z coordinate (mm) 

X Accelerometer 73.4 -52.3 -10.8 

Y Accelerometer 65.9 -44.6 -10.8 

Z Accelerometer 66.0 -52.1 -18.4 

Table J9. Test S0461: Linear accelerometer location relative to THOR marker. (0,0,0) is the marker center. 

CG of: 
Local coordinate frame (origin: center of VICON marker) 

X coordinate (mm) Y coordinate (mm) Z coordinate (mm) 

X Accelerometer -51.9 64.1 -86.3 

Y Accelerometer -59.6 71.4 -86.3 

Z Accelerometer -59.4 64.4 -93.9 
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APPENDIX K – AAC ANALYSIS – OPTIMIZATION METHODS 

AND RESULTS 

Methods: 

As it was shown in Error Effect Analysis (Chapter 10) and 3D Trajectory Calculation in the 

THOR Tests Utilizing the Knowledge Gained from Error Effects Analysis (Chapter 13), the error 

in the initial orientation (Rini) of a tracked body can substantially affect the calculated trajectory. 

To minimize that effect, an optimization of the initial Euler angles for both, the Simplified Head 

and the THOR ATD’s head (in the five tests discussed in Chapter 9) was performed before the 

AAC analysis was carried out. 

In the optimization process, the trajectory for the measurement center (Figure 2) for the three 

Endevco 7264C accelerometers, mounted at the origin of the local coordinate system, was 

calculated. Next, 𝑅𝑒𝑠𝑒𝑟𝑟 between the calculated and the reference (i.e. from VICON) trajectories 

was computed. The objective of the optimization was to identify a set of three initial Euler angles 

that minimizes that 𝑅𝑒𝑠𝑒𝑟𝑟 . The MATLAB’s gradient-based fmincon Interior Point solver (cf. 

Byrd et al. 2000, cf. Waltz et al. 2006) was used as the optimization algorithm. Varied parameters 

were: initial yaw, initial pitch and initial roll angles (used to build the rotation matrix Rini according 

to the 3-2-1 convention as shown in Wu et al. 2009). The starting points (angle values) for the 

optimization algorithm were determined from the pre-trigger VICON data for the head. Those 

three values were then allowed to vary within 3 degrees from the starting point. To identify the 

global minimum, i.e. to minimize the possibility of finding a local minimum of the objective 

function 𝑚𝑖𝑛(𝑅𝑒𝑠𝑒𝑟𝑟) , the MATLAB’s GlobalSearch algorithm (cf. Ugray et al. 2007) was 

utilized. 

Results: 

By optimizing the three initial Euler angles, in all five test configurations the error 𝑅𝑒𝑠𝑒𝑟𝑟 in 

the measurement center’s trajectory for the three linear accelerometers used in the analysis was 

decreased substantially: by 63.5% in Test S0442 to 93% in Test S0433 (Table K1). The highest 

absolute difference between the angles before and after optimization was: 2.84 degrees for yaw 

(Test S0425), 1.57 degrees for pitch (Test S0433), and 1.7 degrees for roll (Test S0425) (Table 

K1). 

Table K1. Reserr before and after optimization and absolute difference in initial Euler angles due to optimization. 

Test 

# 

𝑹𝒆𝒔𝒆𝒓𝒓 (mm) 
Difference in initial Euler angles due 

to optimization 

Before 

optimization 

After 

optimization 

% 

difference* 
Yaw (deg) Pitch (deg) Roll (deg) 

S0425 28.35 2.6 90.8 2.84 0.99 1.7 

S0433 24.58 1.72 93 2.33 1.57 1.38 

S0436 26.69 4.36 83.7 2.01 1.13 1.31 

S0442 5.64 2.06 63.5 0.29 0.54 0.23 

S0461 29.84 2.65 91.1 1.46 0.13 0.33 

* %𝑑𝑖𝑓𝑓 = 100 −
100 ∗ 𝑣𝑎𝑙𝑢𝑒_𝑎𝑓𝑡𝑒𝑟_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑣𝑎𝑙𝑢𝑒_𝑏𝑒𝑓𝑜𝑟𝑒_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛
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Through minimization of 𝑅𝑒𝑠𝑒𝑟𝑟 , the maximum absolute difference, diffmax, for the three 

trajectory components decreased as well (Table K2), with the exception of the Y component in 

Test S0425 where diffmax increased by approx. 50%: from 6.53 mm to 9.89 mm. On average, diffmax 

decreased by approx. 90% in X, by approx. 27% in Y (after excluding Test S0425), and by approx. 

90% in Z (Table K2). 

Table K2. diffmax metric before and after optimization. 

Test # 
Before optimization After optimization % difference* 

X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm) X Y Z 

S0425 88.91 6.53 64.6 4 9.89 1.23 95.5 -51.5 98.1 

S0433 73.67 11.92 49.43 0.53 9.21 2.85 99.3 22.7 94.2 

S0436 72.21 10.73 54.42 1.54 7.05 3.4 97.9 34.3 93.8 

S0442 10.4 4.92 17.88 1.65 4.45 1.53 84.1 9.6 91.4 

S0461 59.39 9.26 15.17 6.13 5.4 1.97 89.7 41.7 87.0 

* %𝑑𝑖𝑓𝑓 = 100 −
100 ∗ 𝑣𝑎𝑙𝑢𝑒_𝑎𝑓𝑡𝑒𝑟_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑣𝑎𝑙𝑢𝑒_𝑏𝑒𝑓𝑜𝑟𝑒_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛
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APPENDIX L – AAC ANALYSIS – ANGULAR ACCELERATION 

PLOTS 

 

Figure L1. Test S0425 – Marker 1: Angular acceleration data from the five discussed methods of obtaining AAC 

for the filter combination that minimized 𝑹𝒆𝒔𝒆𝒓𝒓. 

 

Figure L2. Test S0425 – Marker 2: Angular acceleration data from the five discussed methods of obtaining AAC 

for the filter combination that minimized 𝑹𝒆𝒔𝒆𝒓𝒓. 
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Figure L3. Test S0433 – Marker 1: Angular acceleration data from the five discussed methods of obtaining AAC 

for the filter combination that minimized 𝑹𝒆𝒔𝒆𝒓𝒓. 

 

Figure L4. Test S0433 – Marker 2: Angular acceleration data from the five discussed methods of obtaining AAC 

for the filter combination that minimized 𝑹𝒆𝒔𝒆𝒓𝒓. 
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Figure L5. Test S0436 – Marker 1: Angular acceleration data from the five discussed methods of obtaining AAC 

for the filter combination that minimized 𝑹𝒆𝒔𝒆𝒓𝒓. 

 

Figure L6. Test S0436 – Marker 2: Angular acceleration data from the five discussed methods of obtaining AAC 

for the filter combination that minimized 𝑹𝒆𝒔𝒆𝒓𝒓. 
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Figure L7. Test S0442 – Marker 1: Angular acceleration data from the five discussed methods of obtaining AAC 

for the filter combination that minimized 𝑹𝒆𝒔𝒆𝒓𝒓. 

 

Figure L8. Test S0442 – Marker 2: Angular acceleration data from the five discussed methods of obtaining AAC 

for the filter combination that minimized 𝑹𝒆𝒔𝒆𝒓𝒓. 
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Figure L9. Test S0461: Angular acceleration after filtering ARS data to CFC 60. 
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APPENDIX M – AAC ANALYSIS – RESERR IN SIMPLFIED HEAD 

TESTS 

Table M1. NAP method: Reserr for both tracked markers. Minimum value of the metric for each of the analyzed 

tests indicated in green. CFC filters utilized on the input ACC data. 

Test # 

𝑹𝒆𝒔𝒆𝒓𝒓 (in millimeters) 

Marker 1 Marker 2 

CFC 60 CFC 180 CFC 600 CFC 1000 Raw CFC 60 CFC 180 CFC 600 CFC 1000 Raw 

S0425 11.78 11.81 11.85 11.85 11.84 21.42 21.77 21.98 21.99 21.99 

S0433 28.12 28.14 28.15 28.14 28.15 71.20 71.11 71.10 71.11 71.16 

S0436 41.49 41.71 41.82 41.84 41.84 23.68 23.39 23.31 23.30 23.30 

S0442 16.44 16.09 15.98 15.98 15.97 17.55 17.12 16.99 16.98 16.97 

Table M2. c6a method: Reserr for both tracked markers. Minimum value of the metric for each of the analyzed 

tests indicated in green. CFC filters utilized on the input ARS and ACC data. 

 
Test S0425 – 𝑹𝒆𝒔𝒆𝒓𝒓 (in millimeters) 

Marker 1 Marker 2 

 

CFC 

60 

CFC 

180 

CFC 

600 

CFC 

1000 
Raw 

CFC 

60 

CFC 

180 

CFC 

600 

CFC 

1000 
Raw 

CFC 60 17.52 17.52 17.52 17.51 17.51 18.01 18.01 18.00 18.00 18.00 

CFC 180 17.61 17.61 17.61 17.61 17.61 17.99 17.98 17.98 17.98 17.98 

CFC 600 17.65 17.65 17.65 17.65 17.65 18.04 18.03 18.03 18.03 18.03 

CFC 

1000 
17.66 17.66 17.66 17.66 17.66 18.05 18.04 18.04 18.04 18.04 

Raw 17.69 17.69 17.69 17.69 17.69 18.06 18.05 18.05 18.05 18.05 

 
Test S0433 – 𝑹𝒆𝒔𝒆𝒓𝒓 (in millimeters) 

Marker 1 Marker 2 

 

CFC 

60 

CFC 

180 

CFC 

600 

CFC 

1000 
Raw 

CFC 

60 

CFC 

180 

CFC 

600 

CFC 

1000 
Raw 

CFC 60 39.41 39.41 39.41 39.41 39.41 89.83 89.82 89.82 89.82 89.82 

CFC 180 39.45 39.45 39.45 39.45 39.45 89.62 89.62 89.61 89.61 89.61 

CFC 600 39.44 39.44 39.44 39.44 39.44 89.49 89.49 89.48 89.48 89.48 

CFC 

1000 
39.43 39.44 39.44 39.44 39.44 89.48 89.47 89.47 89.47 89.47 

Raw 39.45 39.45 39.45 39.45 39.45 89.52 89.51 89.51 89.51 89.51 

 
Test S0436 – 𝑹𝒆𝒔𝒆𝒓𝒓 (in millimeters) 

Marker 1 Marker 2 

 

CFC 

60 

CFC 

180 

CFC 

600 

CFC 

1000 
Raw 

CFC 

60 

CFC 

180 

CFC 

600 

CFC 

1000 
Raw 

CFC 60 74.07 74.08 74.08 74.08 74.08 27.94 27.93 27.93 27.93 27.93 

CFC 180 74.88 74.89 74.89 74.89 74.89 27.86 27.85 27.85 27.85 27.85 

CFC 600 75.21 75.22 75.22 75.22 75.22 27.82 27.81 27.81 27.81 27.81 

CFC 

1000 
75.27 75.28 75.28 75.28 75.28 27.82 27.81 27.81 27.81 27.80 

Raw 75.31 75.31 75.31 75.31 75.31 27.81 27.80 27.80 27.80 27.79 

 
Test S0442 – 𝑹𝒆𝒔𝒆𝒓𝒓 (in millimeters) 

Marker 1 Marker 2 

 

CFC 

60 

CFC 

180 

CFC 

600 

CFC 

1000 
Raw 

CFC 

60 

CFC 

180 

CFC 

600 

CFC 

1000 
Raw 

CFC 60 19.31 19.31 19.31 19.31 19.32 12.93 12.93 12.93 12.93 12.93 

CFC 180 19.03 19.04 19.04 19.04 19.04 12.42 12.42 12.42 12.42 12.42 

CFC 600 18.95 18.96 18.96 18.96 18.96 12.22 12.23 12.22 12.22 12.22 
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CFC 

1000 
18.95 18.96 18.96 18.96 18.96 12.21 12.21 12.21 12.21 12.21 

Raw 18.94 18.95 18.95 18.95 18.95 12.21 12.22 12.21 12.21 12.22 

Table M3. t6a method: Reserr for both tracked markers. Minimum value of the metric for each of the analyzed 

tests indicated in green. CFC filters utilized on the input ARS and ACC data. 

 
Test S0425 – 𝑹𝒆𝒔𝒆𝒓𝒓 (in millimeters) 

Marker 1 Marker 2 

 

CFC 

60 

CFC 

180 

CFC 

600 

CFC 

1000 
Raw 

CFC 

60 

CFC 

180 

CFC 

600 

CFC 

1000 
Raw 

CFC 60 17.40 17.40 17.40 17.40 17.40 37.18 37.20 37.20 37.20 37.20 

CFC 180 16.62 16.62 16.62 16.62 16.62 36.83 36.85 36.85 36.85 36.85 

CFC 600 16.40 16.40 16.41 16.40 16.40 36.77 36.78 36.79 36.79 36.78 

CFC 

1000 
16.39 16.39 16.39 16.39 16.39 36.74 36.76 36.76 36.76 36.76 

Raw 16.34 16.34 16.35 16.35 16.35 36.66 36.68 36.68 36.68 36.68 

 
Test S0433 – 𝑹𝒆𝒔𝒆𝒓𝒓 (in millimeters) 

Marker 1 Marker 2 

 

CFC 

60 

CFC 

180 

CFC 

600 

CFC 

1000 
Raw 

CFC 

60 

CFC 

180 

CFC 

600 

CFC 

1000 
Raw 

CFC 60 27.97 27.97 27.97 27.97 27.97 59.72 59.73 59.73 59.73 59.73 

CFC 180 28.34 28.34 28.34 28.34 28.34 60.30 60.31 60.31 60.31 60.31 

CFC 600 28.52 28.53 28.53 28.53 28.53 60.61 60.62 60.62 60.62 60.62 

CFC 

1000 
28.56 28.56 28.57 28.56 28.56 60.69 60.69 60.69 60.70 60.70 

Raw 28.60 28.60 28.60 28.60 28.60 60.76 60.77 60.77 60.77 60.77 

 
Test S0436 – 𝑹𝒆𝒔𝒆𝒓𝒓 (in millimeters) 

Marker 1 Marker 2 

 

CFC 

60 

CFC 

180 

CFC 

600 

CFC 

1000 
Raw 

CFC 

60 

CFC 

180 

CFC 

600 

CFC 

1000 
Raw 

CFC 60 17.32 17.33 17.33 17.33 17.33 23.64 23.65 23.65 23.65 23.65 

CFC 180 17.43 17.44 17.44 17.44 17.44 22.98 22.98 22.98 22.98 22.98 

CFC 600 17.51 17.52 17.53 17.53 17.53 22.80 22.81 22.81 22.81 22.81 

CFC 

1000 
17.51 17.53 17.53 17.53 17.53 22.80 22.81 22.81 22.81 22.81 

Raw 17.52 17.53 17.53 17.53 17.53 22.81 22.82 22.81 22.81 22.81 

 
Test S0442 – 𝑹𝒆𝒔𝒆𝒓𝒓 (in millimeters) 

Marker 1 Marker 2 

 

CFC 

60 

CFC 

180 

CFC 

600 

CFC 

1000 
Raw 

CFC 

60 

CFC 

180 

CFC 

600 

CFC 

1000 
Raw 

CFC 60 19.63 19.63 19.63 19.63 19.63 24.09 24.09 24.09 24.09 24.09 

CFC 180 19.39 19.39 19.39 19.39 19.39 23.76 23.76 23.76 23.76 23.76 

CFC 600 19.32 19.32 19.32 19.32 19.32 23.70 23.71 23.71 23.71 23.71 

CFC 

1000 
19.30 19.30 19.30 19.30 19.30 23.70 23.70 23.70 23.70 23.70 

Raw 19.26 19.26 19.26 19.26 19.26 23.66 23.66 23.66 23.66 23.66 

Table M4. 3a method: Reserr for both tracked markers. Minimum value of the metric for each of the analyzed 

tests indicated in green. CFC filters utilized on the input ARS data. 

Test # 

𝑹𝒆𝒔𝒆𝒓𝒓 (in millimeters) 

Marker 1 Marker 2 

CFC 60 CFC 180 CFC 600 CFC 1000 Raw CFC 60 CFC 180 CFC 600 CFC 1000 Raw 

S0425 4.19 4.95 4.99 5.24 5.89 3.19 3.56 4.61 4.91 6.13 
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S0433 2.83 2.73 2.86 2.92 2.85 2.60 2.85 3.53 3.99 4.24 

S0436 5.95 5.94 6.65 7.03 6.31 5.41 5.71 6.08 6.27 6.35 

S0442 3.54 3.42 5.06 6.64 8.85 3.12 3.19 3.41 4.20 5.85 

Table M5. Endevco 7302BM5: Reserr for both tracked markers. Minimum value of the metric for each of the 

analyzed tests indicated in green. CFC filters utilized on the input AAC data. 

Test # 

𝑹𝒆𝒔𝒆𝒓𝒓 (in millimeters) 

Marker 1 Marker 2 

CFC 60 CFC 180 CFC 600 CFC 1000 Raw CFC 60 CFC 180 CFC 600 CFC 1000 Raw 

S0425 4.41 4.39 4.39 4.39 4.40 7.92 7.84 7.81 7.81 7.81 

S0433 10.38 10.34 10.32 10.33 10.33 15.66 15.61 15.61 15.63 15.64 

S0436 16.98 17.03 17.02 17.03 17.03 10.80 10.87 10.90 10.90 10.90 

S0442 5.16 5.22 5.21 5.20 5.18 4.60 4.45 4.39 4.38 4.38 
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APPENDIX N – ERROR EFFECTS – ANALYTICAL ANALYSIS 

∬(𝑏𝑎𝑐𝑐_𝑥𝑎𝑝𝑥(𝑡) + 𝑐𝑎𝑐𝑐_𝑥)𝑑𝑡𝑑𝑡

𝑡

0

= 𝑏𝑎𝑐𝑐_𝑥 ∬𝑎𝑝𝑥𝑑𝑡𝑑𝑡

𝑡

0

+ 𝑐𝑎𝑐𝑐_𝑥 ∬𝑑𝑡𝑑𝑡

𝑡

0

= 𝑏𝑎𝑐𝑐_𝑥𝐴𝑝𝑥(𝑡) + 𝑐𝑎𝑐𝑐_𝑥

𝑡2

2
 

(N1) 

∬𝜌𝑥

𝑡

0

(𝑏𝑎𝑟𝑠_𝑦𝜔𝑦(𝑡) + 𝑐𝑎𝑟𝑠_𝑦)
2
𝑑𝑡𝑑𝑡

= 𝜌𝑥 ∬(𝑏𝑎𝑟𝑠_𝑦
2 𝜔𝑦

2 + 2𝑏𝑎𝑟𝑠_𝑦𝑐𝑎𝑟𝑠_𝑦𝜔𝑦 + 𝑐𝑎𝑟𝑠_𝑦
2 )𝑑𝑡𝑑𝑡

𝑡

0

= 𝜌𝑥 (𝑏𝑎𝑟𝑠_𝑦
2 ∬𝜔𝑦

2𝑑𝑡𝑑𝑡

𝑡

0

+ 2𝑏𝑎𝑟𝑠_𝑦𝑐𝑎𝑟𝑠_𝑦 ∬𝜔𝑦𝑑𝑡𝑑𝑡

𝑡

0

+ 𝑐𝑎𝑟𝑠_𝑦
2 ∬𝑑𝑡𝑑𝑡

𝑡

0

)

= 𝜌𝑥 (𝑏𝑎𝑟𝑠_𝑦
2 𝑊𝑦2(𝑡) + 2𝑏𝑎𝑟𝑠_𝑦𝑐𝑎𝑟𝑠_𝑦𝑊𝑦(𝑡) + 𝑐𝑎𝑟𝑠_𝑦

2
𝑡2

2
) 

(N2) 

∬𝜌𝑦

𝑡

0

(𝑏𝑎𝑟𝑠_𝑥𝜔𝑥(𝑡) + 𝑐𝑎𝑟𝑠_𝑥)(𝑏𝑎𝑟𝑠_𝑦𝜔𝑦(𝑡) + 𝑐𝑎𝑟𝑠_𝑦)𝑑𝑡𝑑𝑡

= 𝜌𝑦 ∬(𝑏𝑎𝑟𝑠_𝑥𝑏𝑎𝑟𝑠_𝑦𝜔𝑥𝜔𝑦 + 𝑏𝑎𝑟𝑠_𝑥𝑐𝑎𝑟𝑠_𝑦𝜔𝑥 + 𝑏𝑎𝑟𝑠_𝑦𝑐𝑎𝑟𝑠_𝑥𝜔𝑦

𝑡

0

+ 𝑐𝑎𝑟𝑠_𝑥𝑐𝑎𝑟𝑠_𝑦)𝑑𝑡𝑑𝑡

= 𝜌𝑦 (𝑏𝑎𝑟𝑠_𝑥𝑏𝑎𝑟𝑠_𝑦 ∬𝜔𝑥𝜔𝑦𝑑𝑡𝑑𝑡

𝑡

0

+ 𝑏𝑎𝑟𝑠_𝑥𝑐𝑎𝑟𝑠_𝑦 ∬𝜔𝑥𝑑𝑡𝑑𝑡

𝑡

0

+ 𝑏𝑎𝑟𝑠_𝑦𝑐𝑎𝑟𝑠_𝑥 ∬𝜔𝑦𝑑𝑡𝑑𝑡

𝑡

0

+ 𝑐𝑎𝑟𝑠_𝑥𝑐𝑎𝑟𝑠_𝑦 ∬𝑑𝑡𝑑𝑡

𝑡

0

)

= 𝜌𝑦 (𝑏𝑎𝑟𝑠_𝑥𝑏𝑎𝑟𝑠_𝑦𝑊𝑥𝑦(𝑡) + 𝑏𝑎𝑟𝑠_𝑥𝑐𝑎𝑟𝑠_𝑦𝑊𝑥(𝑡) + 𝑏𝑎𝑟𝑠_𝑦𝑐𝑎𝑟𝑠_𝑥𝑊𝑦(𝑡)

+ 𝑐𝑎𝑟𝑠_𝑥𝑐𝑎𝑟𝑠_𝑦

𝑡2

2
) 

(N3) 

∬𝜌𝑧(𝑏𝑎𝑎𝑐_𝑦𝛼𝑦(𝑡) + 𝑐𝑎𝑎𝑐_𝑦)𝑑𝑡𝑑𝑡

𝑡

0

= 𝜌𝑧 (𝑏𝑎𝑎𝑐_𝑦 ∬𝛼𝑦𝑑𝑡𝑑𝑡

𝑡

0

+ 𝑐𝑎𝑎𝑐_𝑦 ∬𝑑𝑡𝑑𝑡

𝑡

0

)

= 𝜌𝑧 (𝑏𝑎𝑎𝑐_𝑦𝑦(𝑡) + 𝑐𝑎𝑎𝑐_𝑦

𝑡2

2
) 

(N4) 
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APPENDIX O – ERROR EFFECTS – REGRESSION MODELS 
Initial regression model: 

Reserr = -1 + (yawerr * pitcherr + yawerr * rollerr + rollerr * pitcherr) * (cacc_x + cacc_y + cacc_z + cacc_x
2 + cacc_y

2 + 

cacc_z
2 + cars_x * cars_y + cars_x * cars_z + cars_y * cars_z + cars_x

3+ cars_y
3+ cars_z

3) 

where “-1” means “no intercept” 

Table O1. Linear regression model for Case 1 and Case 2. 

No. 
Case 1 (Test S0433) Case 2 (Test S0442) 

Coefficient Term Coefficient Term 

1 0.0008 cacc_x -0.0028 bacc_z 

2 0.0012 cacc_y 0.0030 bars_x 

3 0.0029 cacc_z 0.0013 cacc_x 

4 0.0021 cars_x -0.0018 cacc_y 

5 0.0000 cars_y 0.0014 cacc_z 

6 0.0002 cars_z 0.0011 cars_x 

7 -0.0022 rollerr 0.0001 cars_y 

8 0.0054 cacc_x * cacc_y -0.0010 cars_z 

9 -0.0573 cacc_x * cars_y 0.0034 bacc_z * cacc_x 

10 0.0585 cacc_y * cars_x 0.0043 bacc_z * cacc_z 

11 -0.0032 cacc_z * cars_y 0.0044 bars_x * cacc_y 

12 -0.0010 cars_x * cars_y 0.0035 bars_x * cacc_z 

13 0.0014 cars_x * cars_z -0.0033 cacc_x * cars_x 

14 0.0019 cars_y * cars_z -0.0380 cacc_x * cars_y 

15 -0.0039 yawerr * pitcherr -0.0037 cacc_x * cars_z 

16 -0.0058 yawerr * rollerr 0.0335 cacc_y * cacc_z 

17 0.0062 pitcherr * rollerr 0.0392 cacc_y * cars_x 

18 0.2303 cacc_x
2 0.0033 cars_x * cars_y 

19 0.2178 cacc_y
2 0.0016 cars_x * cars_z 

20 0.0768 cacc_z
2 0.0041 cars_y * cars_z 

21 0.0816 cars_x
2 -0.0066 yawerr * rollerr 

22 0.0849 cars_y
2 -0.0002 pitcherr * rollerr 

23 0.0800 cars_z
2 0.2224 cacc_x

2 

24 0.0011 cacc_x *  pitcherr * rollerr 0.2146 cacc_y
2 

25 0.0062 cacc_y * yawerr * pitcherr 0.0818 cacc_z
2 

26 0.0031 cars_x * yawerr * pitcherr 0.0824 cars_x
2 

27 0.0072 cars_x * yawerr * rollerr 0.0815 cars_y
2 

28 -0.0099 cars_x * pitcherr * rollerr 0.0799 cars_z
2 

29 -0.0126 cars_y * yawerr * pitcherr 0.0022 cacc_y * yawerr * rollerr 

30 -0.0099 cars_y * yawerr * rollerr -0.0024 cacc_z * pitcherr * rollerr 

31 0.0229 cars_y * pitcherr * rollerr 0.0026 cars_x * pitcherr * rollerr 

32 0.0032 cars_z * yawerr *  pitcherr -0.0083 cars_z * yawerr * rollerr 

33 0.0037 cars_z * pitcherr * rollerr -0.0022 cars_z * pitcherr * rollerr 
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34 -0.0013 cars_y
3 -0.0143 cars_x * cars_z * pitcherr * rollerr 

35 -0.0098 cars_x * cars_y * yawerr * pitcherr 0.0136 cacc_y
2 * yawerr * rollerr 

36 -0.0106 cars_x * cars_z * yawerr * pitcherr 0.0140 cacc_z
2 * pitcherr * rollerr 

37 -0.0105 cars_x * cars_z * pitcherr * rollerr -0.0142 cars_z
2 * pitcherr * rollerr 

38 -0.0145 cars_y * cars_z * yawerr * pitcherr   

39 -0.0121 cacc_x
2 * pitcherr * rollerr   

40 0.0120 cars_x
2 * yawerr * rollerr   

41 0.0091 cars_y
2 * yawerr * pitcherr   

42 -0.0018 cars_y
2 * pitcherr * rollerr   

43 0.0282 cars_y
3 * yawerr * pitcherr   

44 -0.0355 cars_y
3 * pitcherr * rollerr   

Table O2. Linear regression model for Case 3 and Case 4. 

No. 
Case 3 (Test S0457) Case 4 (Test S0461) 

Coefficient Term Coefficient Term 

1 0.0022 cacc_x 0.0001 cacc_x 

2 -0.0014 cacc_y 0.0006 cacc_y 

3 0.0019 cacc_z 0.0017 cacc_z 

4 0.0020 cars_x 0.0016 cars_x 

5 -0.0004 cars_y 0.0005 cars_y 

6 0.0000 cars_z 0.0041 cars_z 

7 -0.0029 rollerr 0.0040 cacc_x * cars_x 

8 -0.0046 cacc_x * cacc_y -0.0493 cacc_x * cars_y 

9 -0.0135 cacc_x * cacc_z -0.0204 cacc_y * cacc_z 

10 -0.0484 cacc_x * cars_y 0.0516 cacc_y * cars_x 

11 -0.0173 cacc_x * rollerr -0.0043 cacc_z * cars_x 

12 -0.0142 cacc_y * cacc_z -0.0033 cacc_z * cars_y 

13 0.0446 cacc_y * cars_x 0.0014 cars_x * cars_z 

14 0.0015 cars_x * cars_z 0.0023 cars_y * cars_z 

15 0.0133 cars_x * rollerr -0.0037 yawerr * pitcherr 

16 0.0022 cars_y * cars_z -0.0054 yawerr * rollerr 

17 0.0157 cars_y * rollerr 0.0061 pitcherr * rollerr 

18 -0.0036 yawerr * pitcherr 0.2254 cacc_x
2 

19 -0.0069 yawerr * rollerr 0.2191 cacc_y
2 

20 0.0061 pitcherr * rollerr 0.0783 cacc_z
2 

21 0.2249 cacc_x
2 0.0807 cars_x

2 

22 0.2062 cacc_y
2 0.0850 cars_y

2 

23 0.0741 cacc_z
2 0.0809 cars_z

2 

24 0.0767 cars_x
2 0.0008 cacc_x * pitcherr * rollerr 

25 0.0809 cars_y
2 0.0062 cacc_y * yawerr * pitcherr 

26 0.0767 cars_z
2 0.0033 cars_x * yawerr * pitcherr 

27 0.0012 cacc_x * pitcherr * rollerr 0.0080 cars_x * yawerr * rollerr 

28 0.0056 cacc_y * yawerr * pitcherr -0.0095 cars_x * pitcherr * rollerr 
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29 0.0025 cars_x * yawerr * pitcherr -0.0129 cars_y * yawerr * pitcherr 

30 0.0069 cars_x * yawerr * rollerr -0.0099 cars_y * yawerr * rollerr 

31 -0.0089 cars_x * pitcherr * rollerr 0.0224 cars_y * pitcherr * rollerr 

32 -0.0125 cars_y * yawerr * pitcherr 0.0039 cars_z * yawerr * pitcherr 

33 -0.0097 cars_y * yawerr * rollerr 0.0178 cars_z * pitcherr * rollerr 

34 0.0223 cars_y * pitcherr * rollerr -0.0020 cars_y
3 

35 0.0035 cars_z * yawerr * pitcherr -0.0066 cars_z
3 

36 0.0037 cars_z * pitcherr * rollerr -0.0101 cars_x * cars_z * yawerr * pitcherr 

37 -0.0016 cars_y
3 -0.0106 cars_x * cars_z * pitcherr * rollerr 

38 -0.0100 cars_x * cars_z * yawerr * pitcherr -0.0149 cars_y * cars_z * yawerr * pitcherr 

39 -0.0098 cars_x * cars_z * pitcherr * rollerr -0.0120 cacc_x
2 * pitcherr * rollerr 

40 -0.0145 cars_y * cars_z * yawerr * pitcherr 0.0130 cars_x
2 * yawerr * rollerr 

41 -0.0122 cacc_x
2 * pitcherr * rollerr 0.0105 cars_y

2 * yawerr * pitcherr 

42 0.0111 cars_x
2 * yawerr * rollerr -0.0034 cars_y

2 * pitcherr * rollerr 

43 0.0091 cars_y
2 * yawerr * pitcherr -0.0003 cars_z

2 * pitcherr * rollerr 

44 -0.0026 cars_y
2 * pitcherr * rollerr 0.0268 cars_y

3 * yawerr * pitcherr 

45 0.0263 cars_y
3 * yawerr * pitcherr -0.0347 cars_y

3 * pitcherr * rollerr 

46 -0.0353 cars_y
3 * pitcherr * rollerr -0.0239 cars_z

3 * pitcherr * rollerr 

Table O3. Linear regression model for Case 5. 

No. 
Case 5 (Test v10133) 

No. 
Case 5 (Test v10133) 

Coefficient Term Coefficient Term 

1 -0.0024 bacc_z 31 0.2064 cacc_x
2 

2 0.0031 bars_x 32 0.2093 cacc_y
2 

3 0.0029 cacc_x 33 0.0797 cacc_z
2 

4 0.0030 cacc_y 34 0.0878 cars_x
2 

5 0.0014 cacc_z 35 0.0892 cars_y
2 

6 0.0020 cars_x 36 0.0773 cars_z
2 

7 -0.0013 cars_y 37 0.0082 cacc_x * yawerr * rollerr 

8 -0.0005 cars_z 38 -0.0001 cacc_y * yawerr * rollerr 

9 -0.0028 rollerr 39 0.0008 cacc_y * pitcherr * rollerr 

10 0.0034 bacc_z * cacc_x 40 -0.0037 cacc_z * pitcherr * rollerr 

11 0.0046 bacc_z * cacc_z 41 0.0031 cars_x * pitcherr * rollerr 

12 0.0054 bars_x * cacc_y 42 0.0139 cars_y * yawerr * pitcherr 

13 -0.0217 cacc_x * cacc_y 43 0.0157 cars_y * pitcherr * rollerr 

14 -0.0196 cacc_x * cacc_z 44 0.0060 cars_z * yawerr * pitcherr 

15 -0.0155 cacc_x * cars_x 45 -0.0059 cars_z * yawerr * rollerr 

16 -0.0731 cacc_x * cars_y 46 -0.0039 cars_z * pitcherr * rollerr 

17 -0.0037 cacc_x * cars_z 47 -0.0005 cars_y
3 

18 0.0192 cacc_x * rollerr 48 -0.0116 cars_x * cars_z * pitcherr * rollerr 

19 0.0304 cacc_y * cacc_z 49 0.0105 cacc_y
2 * yawerr * rollerr 

20 0.0747 cacc_y * cars_x 50 -0.0118 cacc_y
2 * pitcherr * rollerr 

21 -0.0279 cacc_y * rollerr 51 0.0125 cacc_z
2 * pitcherr * rollerr 
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22 0.0086 cacc_z * cars_x 52 0.0041 cars_y
2 * yawerr * pitcherr 

23 -0.0067 cacc_z * rollerr 53 0.0061 cars_y
2 * pitcherr * rollerr 

24 0.0008 cars_x * cars_z 54 -0.0288 cars_y
3 * yawerr * pitcherr 

25 0.0204 cars_x * rollerr 

26 0.0037 cars_y * cars_z 

27 -0.0471 cars_y * rollerr 

28 -0.0022 yawerr * pitcherr 

29 -0.0015 yawerr * rollerr 

30 -0.0031 pitcherr * rollerr 
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APPENDIX P – ERROR EFFECTS – ERROR HIERARCHY 

BASED ON mRESERR AND mDIFFMAX 
Table P1. Error hierarchy based on m𝑹𝒆𝒔𝒆𝒓𝒓 for each of the five test cases. 

# Case 1 Case 2 Case 3 Case 4 Case 5 

1 ACC debias ACC debias ACC debias ACC debias ACC debias 

2 ARS debias ARS debias ARS debias ARS debias ARS debias 

3 ACC sensitivity ACC sensitivity ACC sensitivity ACC sensitivity ACC sensitivity 

4 
Initial 

orientation in 

IRF 

Initial orientation 

in IRF 
ACC noise 

Initial orientation 

in IRF 

Initial orientation 

in IRF 

5 ACC noise ACC noise 
Initial orientation 

in IRF 
ARS sensitivity ACC noise 

6 ARS sensitivity ARS sensitivity ARS sensitivity 
ACC seismic mass 

CG position in BF 
ARS sensitivity 

7 
ACC seismic 

mass CG 

position in BF 

ACC seismic mass 

CG position in BF 

ACC seismic mass 

CG position in BF 
ACC Noise 

ACC seismic mass 

CG position in BF 

8 
ACC angle 

misalignment 

ACC angle 

misalignment 

ACC angle 

misalignment 

ACC angle 

misalignment 
ARS noise 

9 ARS noise ARS noise ARS noise ARS noise 
ACC angle 

misalignment 

10 
ARS angle 

misalignment 

ARS angle 

misalignment 

ARS angle 

misalignment 

ARS angle 

misalignment 

ARS angle 

misalignment 

11 
Head CG initial 

position in IRF 

Head CG initial 

position in IRF 

Head CG initial 

position in IRF 

Head CG initial 

position in IRF 

Head CG initial 

position in IRF 

Table P2. Error hierarchy based on mdiffmax for each of the five test cases. 

# Case 1 Case 2 Case 3 Case 4 Case 5 

1 ACC debias ACC debias ACC debias ACC debias ACC debias 

2 ARS debias ARS debias ARS debias ARS debias ARS debias 

3 ACC sensitivity ACC sensitivity ACC sensitivity ACC sensitivity ACC sensitivity 

4 
Initial 

orientation in 

IRF 

Initial orientation 

in IRF 

Initial orientation 

in IRF 

Initial orientation 

in IRF 

Initial orientation 

in IRF 

5 ACC noise ARS sensitivity ACC noise ARS sensitivity ACC noise 

6 ARS sensitivity ACC Noise ARS sensitivity ACC noise ARS sensitivity 

7 
ACC seismic 

mass CG 

position in BF 

ACC seismic mass 

CG position in BF 

ACC seismic mass 

CG position in BF 

ACC seismic mass 

CG position in BF 

ACC seismic mass 

CG position in BF 

8 
ACC Angle 

misalignment 

Head CG initial 

position in IRF 

Head CG initial 

position in IRF 

Head CG initial 

position in IRF 
ARS Noise 

9 
Head CG initial 

position in IRF 

ACC Angle 

misalignment 

ACC Angle 

misalignment 

ACC Angle 

misalignment 

Head CG initial 

position in IRF 

10 ARS noise ARS noise ARS noise ARS noise 
ACC angle 

misalignment 

11 
ARS angle 

misalignment 

ARS angle 

misalignment 

ARS angle 

misalignment 

ARS angle 

misalignment 

ARS angle 

misalignment 
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APPENDIX Q – REDUNDANT SENSORS – CONSISTENCY 

CHECK – STEP 2 – NON-UNIQUE SOLUTION 

Let us assume that two angular rate sensors, 𝜔𝑝1 and 𝜔𝑝2, were added to a sensor block. The 

sensing axes of the two redundant ARS were aligned together and the angles defining their 

orientation (as defined in Figure 113) were known. Based on Eq. 11.9, the relationship between 

both redundant ARS and the three ARS measuring body’s angular velocity around the axes of the 

body’s local coordinate system can be then defined as: 

 𝜔𝑝1 = 𝜔𝑝2 = 𝜔𝑥 cos 𝛼 + 𝜔𝑦 cos 𝛽 + 𝜔𝑧 cos 𝛾 (Q.1) 

Utilizing the angular velocity measured by one of the added sensors, for example 𝜔𝑝2, the 

time-history of angular rate around the local Y-axis (treated here as potentially affected by an 

error) can be predicted as: 

 𝜔𝑦 =
𝜔𝑝2−𝜔𝑥 cos𝛼−𝜔𝑧 cos𝛾

cos𝛽
 (Q.2) 

To eliminate the effect of a potentially faulty 𝜔𝑦 reading on the prediction, for example, of 𝜔𝑥, 

Eq. Q.2 was substituted into Eq. Q.1. After simple algebraic manipulations, the reading for 𝜔𝑥 was 

expressed in the function of the two redundant ARS and 𝜔𝑧: 

 𝜔𝑥 =
𝜔𝑝1−[

𝜔𝑝2−𝜔𝑥 cos𝛼−𝜔𝑧 cos𝛾

cos𝛽
] cos𝛽−𝜔𝑧 cos𝛾

cos𝛼
 (Q.3) 

Using Eq. Q.3 it can be shown that when the sensing axes of the two redundant ARS are at the 

same angle, 𝜔𝑥 cannot be predicted, i.e., Eq. Q.3 does not have a unique solution: 

 𝜔𝑥 cos 𝛼 = 𝜔𝑝1 − 𝜔𝑝2 + 𝜔𝑥 cos 𝛼 + 𝜔𝑧 cos 𝛾 − 𝜔𝑧 cos 𝛾 (Q.4) 

 𝜔𝑥 cos 𝛼 = 𝜔𝑥 cos 𝛼 ⇒ 1 = 1 (Q.5) 
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APPENDIX R – SENSOR FUSION IN THOR TESTS – SENSOR 

UNCERTAINTIES BASED ON CALIBRATION SHEETS 
STD – reference value (i.e., value sensor should measure) 

UUT – unit under test (i.e., value as recorded by sensor) 

FS – full scale range 

Table R1. Measurement deviation for ARS X based on standardized calibration check test. As recorded on senor 

calibration sheet. 

Angular rate sensor aligned with local X axis 

DTS ARS PRO 300 Hz DTS ARS PRO 2000 Hz 

STD UUT Deviation of UUT from STD STD UUT Deviation of UUT from STD 

deg/s deg/s % FS deg/s deg/s deg/s % FS deg/s 

-8399.4 -8397.9 0.01875 1.5 -8399.5 -8403.4 -0.04875 -3.9 

-8009.4 -8009.2 0.0025 0.2 -8009.4 -8012.9 -0.04375 -3.5 

-5999.6 -6004.1 -0.05625 -4.5 -5999.5 -6001.4 -0.02375 -1.9 

-4499.6 -4505.2 -0.07 -5.6 -4499.6 -4500.3 -0.00875 -0.7 

-2999.8 -3004.6 -0.06 -4.8 -2999.8 -2999.9 -0.00125 -0.1 

-1499.8 -1503 -0.04 -3.2 -1499.9 -1499.8 0.00125 0.1 

1500 1501.9 0.02375 1.9 1500 1499.6 -0.005 -0.4 

2999.9 3002.9 0.0375 3 2999.9 2999 -0.01125 -0.9 

4499.8 4503.1 0.04125 3.3 4499.8 4498.1 -0.02125 -1.7 

5999.7 6001.3 0.02 1.6 5999.7 5997.3 -0.03 -2.4 

8009.6 8003.9 -0.07125 -5.7 8009.5 8005.9 -0.045 -3.6 

8399.5 8391.9 -0.095 -7.6 8399.6 8395.6 -0.05 -4 

      

RMSE (treated as 𝑢𝑐𝑎𝑙𝑖𝑏_𝑠ℎ𝑒𝑒𝑡_𝑏𝑎𝑠𝑒𝑑) 4.12 RMSE (treated as 𝑢𝑐𝑎𝑙𝑖𝑏_𝑠ℎ𝑒𝑒𝑡_𝑏𝑎𝑠𝑒𝑑) 2.42 

Table R2. Measurement deviation for ARS Y based on standardized calibration check test. As recorded on senor 

calibration sheet. 

Angular rate sensor aligned with local Y axis 

DTS ARS PRO 300 Hz DTS ARS PRO 2000 Hz 

STD UUT Deviation of UUT from STD STD UUT Deviation of UUT from STD 

deg/s deg/s % FS deg/s deg/s deg/s % FS deg/s 

-8399.4 -8398.1 0.01625 1.3 -8399.4 -8404.1 -0.05875 -4.7 

-8009.4 -8010.3 -0.01125 -0.9 -8009.4 -8013.7 -0.05375 -4.3 

-5999.6 -6005.2 -0.07 -5.6 -5999.6 -6001.5 -0.02375 -1.9 

-4499.6 -4505.5 -0.07375 -5.9 -4499.6 -4500.4 -0.01 -0.8 

-2999.8 -3004.9 -0.06375 -5.1 -2999.8 -3000.2 -0.005 -0.4 

-1499.8 -1503 -0.04 -3.2 -1499.8 -1499.8 0 0.0 

1499.9 1502.5 0.0325 2.6 1500 1499.7 -0.00375 -0.3 

2999.9 3004.3 0.055 4.4 2999.9 2999 -0.01125 -0.9 

4499.7 4504.4 0.05875 4.7 4499.7 4498.2 -0.01875 -1.5 

5999.7 6002.3 0.0325 2.6 5999.7 5997.2 -0.03125 -2.5 

8009.6 8003.7 -0.07375 -5.9 8009.6 8005.4 -0.0525 -4.2 
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8399.5 8391.2 -0.10375 -8.3 8399.5 8395.2 -0.05375 -4.3 

      

RMSE (treated as 𝑢𝑐𝑎𝑙𝑖𝑏_𝑠ℎ𝑒𝑒𝑡_𝑏𝑎𝑠𝑒𝑑) 4.69 RMSE (treated as 𝑢𝑐𝑎𝑙𝑖𝑏_𝑠ℎ𝑒𝑒𝑡_𝑏𝑎𝑠𝑒𝑑) 2.75 

Table R3. Measurement deviation for ARS Z based on standardized calibration check test. As recorded on senor 

calibration sheet. 

Angular rate sensor aligned with local Z axis 

DTS ARS PRO 300 Hz DTS ARS PRO 2000 Hz 

STD UUT Deviation of UUT from STD STD UUT Deviation of UUT from STD 

deg/s deg/s % FS deg/s deg/s deg/s % FS deg/s 

-8399.4 -8399.4 0 0 -8399.4 -8403 -0.045 -3.6 

-8009.4 -8010 -0.0075 -0.6 -8009.4 -8012.7 -0.04125 -3.3 

-5999.6 -6003.2 -0.045 -3.6 -5999.5 -6001 -0.01875 -1.5 

-4499.6 -4503.9 -0.05375 -4.3 -4499.6 -4500.3 -0.00875 -0.7 

-2999.8 -3003 -0.04 -3.2 -2999.8 -3000 -0.0025 -0.2 

-1499.9 -1502.1 -0.0275 -2.2 -1499.8 -1499.7 0.00125 0.1 

1499.9 1500.9 0.0125 1 1499.9 1499.5 -0.005 -0.4 

2999.9 3002.5 0.0325 2.6 2999.9 2999.2 -0.00875 -0.7 

4499.7 4502.2 0.03125 2.5 4499.7 4498.2 -0.01875 -1.5 

5999.7 6000.4 0.00875 0.7 5999.7 5997.8 -0.02375 -1.9 

8009.6 8005.3 -0.05375 -4.3 8009.5 8006.3 -0.04 -3.2 

8399.6 8393.1 -0.08125 -6.5 8399.6 8396.2 -0.0425 -3.4 

      

RMSE (treated as 𝑢𝑐𝑎𝑙𝑖𝑏_𝑠ℎ𝑒𝑒𝑡_𝑏𝑎𝑠𝑒𝑑) 3.19 RMSE (treated as 𝑢𝑐𝑎𝑙𝑖𝑏_𝑠ℎ𝑒𝑒𝑡_𝑏𝑎𝑠𝑒𝑑) 2.14 

Table R4. Measurement deviation for ACC X based on standardized calibration check test. As recorded on senor 

calibration sheet. 

Linear accelerometer aligned with local X axis 

Endevco 7264C Endevco 7290E 

Frequency (Hz) 

% deviation of UUT 

from STD 

at 30 g (g) 

Frequency 

(Hz) 

% deviation of UUT 

from STD 

at 30 g (g) 

20 0.126844 10 -0.217566 

22 0.126844 12.5 -0.223655 

25 0.023379 16 -0.135610 

27 0.023379 20 -0.108390 

30 -0.054692 25 -0.093289 

33 0.023379 31.5 -0.090271 

36 0.023379 40 -0.090271 

40 0.023379 50 -0.090271 

44 0.023379 63 -0.093289 

48 0.023379 80 -0.003000 

54 0.023379 100 0.000000 

59 0.023379 125 -0.042059 
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66 0.023379 160 -0.114435 

72 0.023379 200 -0.015008 

78 0.023379 250 -0.024019 

87 0.023379 315 -0.015008 

96 0.023379 400 -0.057109 

104 0.023379 500 -0.030030 

117 0.023379 630 -0.021015 

129 0.023379 800 0.000000 

142 0.023379 1000 -0.015008 

155 0.023379   

172 0.023379 

RMSE 

(treated as 

𝑢𝑐𝑎𝑙𝑖𝑏_𝑠ℎ𝑒𝑒𝑡_𝑏𝑎𝑠𝑒𝑑

) 

0.0951 

189 0.023379 

209 0.023379 

229 0.023379 

254 0.023379 

279 0.023379 

309 0.023379 

339 -0.054692 

371 -0.054692 

413 -0.054692 

453 -0.054692 

500 -0.054692 

550 -0.054692 

613 -0.054692 

666 -0.028623 

733 -0.054692 

813 -0.054692 

890 -0.028623 

987 -0.028623 

  

RMSE (treated as 

𝑢𝑐𝑎𝑙𝑖𝑏_𝑠ℎ𝑒𝑒𝑡_𝑏𝑎𝑠𝑒𝑑) 
0.0438 

Table R5. Measurement deviation for ACC Y based on standardized calibration check test. As recorded on senor 

calibration sheet. 

Linear accelerometer aligned with local Y axis 

Endevco 7264C Endevco 7290E 

Frequency (Hz) 

% deviation of UUT 

from STD 

at 30 g (g) 

Frequency 

(Hz) 

% deviation of UUT 

from STD 

at 30 g (g) 

20 0.074813 10 -0.232793 

22 0.074813 12.5 -0.223655 
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25 0.000000 16 -0.153784 

27 0.000000 20 -0.117458 

30 0.000000 25 -0.099328 

33 0.000000 31.5 -0.096308 

36 0.024979 40 -0.099328 

40 0.000000 50 -0.102348 

44 0.000000 63 -0.108390 

49 0.000000 80 0.008997 

54 0.074813 100 0.000000 

59 0.000000 125 -0.045068 

66 0.000000 160 -0.114435 

72 0.000000 200 -0.015008 

79 0.000000 250 -0.015008 

87 0.000000 315 -0.018011 

96 0.000000 400 -0.036043 

103 0.000000 500 0.000000 

107 0.000000 630 0.038949 

117 0.000000 800 0.101654 

130 0.000000 1000 0.152224 

142 0.000000   

155 0.000000 

RMSE 

(treated as 

𝑢𝑐𝑎𝑙𝑖𝑏_𝑠ℎ𝑒𝑒𝑡_𝑏𝑎𝑠𝑒𝑑

) 

0.1081 

172 0.000000 

189 0.000000 

210 0.000000 

230 0.000000 

254 0.000000 

279 0.000000 

309 0.000000 

339 -0.100334 

373 -0.075188 

412 -0.075188 

454 -0.075188 

501 -0.100334 

550 -0.075188 

612 -0.075188 

671 -0.100334 

735 -0.100334 

819 -0.075188 

887 -0.100334 

984 -0.075188 
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RMSE (treated as 

𝑢𝑐𝑎𝑙𝑖𝑏_𝑠ℎ𝑒𝑒𝑡_𝑏𝑎𝑠𝑒𝑑) 
0.0505 

Table R6. Measurement deviation for ACC Z based on standardized calibration check test. As recorded on senor 

calibration sheet. 

Linear accelerometer aligned with local Z axis 

Endevco 7264C Endevco 7290E 

Frequency (Hz) 

% deviation of UUT 

from STD 

at 30 g (g) 

Frequency 

(Hz) 

% deviation of UUT 

from STD 

at 30 g (g) 

20 0.083275 10 -0.226700 

22 0.084436 12.5 -0.208438 

25 0.007716 16 -0.135610 

27 0.008928 20 -0.108390 

30 0.009960 25 -0.096308 

33 0.011126 31.5 -0.087253 

36 0.012158 40 -0.090271 

40 0.013190 50 -0.093289 

44 0.014356 63 -0.099328 

48 0.015298 80 0.003000 

54 0.016554 100 0.000000 

59 0.017585 125 -0.045068 

65 0.018751 160 -0.111412 

72 0.019783 200 -0.015008 

79 0.020814 250 -0.018011 

87 0.021935 315 -0.012005 

95 0.023011 400 -0.042059 

105 0.024087 500 -0.006001 

116 0.025252 630 0.020985 

129 0.026417 800 0.071828 

142 0.027448 1000 0.104634 

155 0.002510   

172 0.003677 

RMSE 

(treated as 

𝑢𝑐𝑎𝑙𝑖𝑏_𝑠ℎ𝑒𝑒𝑡_𝑏𝑎𝑠𝑒𝑑

) 

0.0981 

188 0.004709 

209 0.031840 

229 0.032870 

254 0.008075 

278 0.009107 

307 0.010229 

338 -0.040738 

371 -0.039702 

411 -0.038532 
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452 -0.037452 

501 -0.010245 

552 -0.035201 

612 -0.034031 

670 -0.032996 

734 -0.031961 

815 -0.030792 

893 -0.029757 

990 -0.028587 

  

RMSE (treated as 

𝑢𝑐𝑎𝑙𝑖𝑏_𝑠ℎ𝑒𝑒𝑡_𝑏𝑎𝑠𝑒𝑑) 
0.0298 
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APPENDIX S – SOFTWARE DEVELOPED TO COMPUTE 3D 

TRAJECTORIES OF A RIGID BODY 

S.1. Description 

The tracking software (called DHT software from here on) developed within this dissertation 

can be used to compute 3D component trajectories of a body from locally-mounted inertial sensors. 

These inertial sensors include linear accelerometers, angular rate sensors, and angular 

accelerometers. 

Even though the software was developed mainly for use with the THOR ATD’s head as Body 

1 (default selection on Screen 1; Figure S1), the DHT package allows for an arbitrary rigid body 

to be defined as Body 1. As an option, the software enables calculation of 3D component 

trajectories of an arbitrary Body 2 (e.g. vehicle, ATD’s pelvis, etc.) in the global (inertial) 

coordinate system. When Body 2 is selected, the software computes also the motion of Body 1 in 

the Body 2’s local frame. 

 

Figure S1. DHT software – Screen 1: Select # of bodies for analysis. 

Funding for this work was provided by the National Highway Safety Administration (NHTSA) 

under contract #DTNH2215D00004/0001. 

The graphical user interface (GUI) was developed in MATLAB 2017a (MathWorks, Natick, 

MA, USA). 

S.2. Input data files 

The *.xlsx or *.xls files with the input linear or angular accelerations as well as angular rates 

should be always formatted in the way depicted in Figure S2. The data should be given in the first 

sheet of the input file. 
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Figure S2. Input data format for accelerometers and angular rate sensors. 

Depending on the software step (screen), the number of columns in the input file may vary. To 

fully capture the local acceleration of the origin of a rigid body one time column and three 

acceleration components are required (4 columns in total). If the user plans to use the Nine 

Accelerometer Package (NAP) approach to calculate the body’s angular acceleration, data from 

nine accelerometers are needed. The acceleration input file for NAP will then have 10 columns 

(time + 9 acceleration traces). If the 6a method is used, the acceleration input file will have 7 

columns (time + 6 acceleration signals). Both, angular rate and angular acceleration input files 

need to have 4 columns. The number of rows is limited only by the computer memory. 

The order of the data columns for different data input files is as follows: 

 Linear Acceleration: 

Time X acceleration Y acceleration Z acceleration 

 * Acceleration components are given in the body’s local coordinate system. 

 Angular Rate: 

Time X angular rate Y angular rate Z angular rate 

 * Angular rate components are given in the body’s local coordinate system. 

 Angular acceleration: 

Time X acceleration Y acceleration Z acceleration 

 * Acceleration components are given in the body’s local coordinate system. 

 Linear Acceleration for NAP: 

Time OX OY OZ XY XZ YX YZ ZX ZY 

* Acceleration components are given in the NAP’s local coordinate system. The first letter 

defines the origin (O) or the arm direction. The second letter defines the direction in which 

the acceleration was measured. 
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 Linear Acceleration for 6a: 

Time OX OY OZ XY XZ YZ 

* Acceleration components are given in the 6a fixture’s local coordinate system. The first 

letter defines the origin (O) or the arm direction. The second letter defines the direction in 

which the acceleration was measured. 

 Linear Acceleration for t6a: 

Time OX OY OZ XZ YX ZY 

* Acceleration components are given in the tetrahedron’s local coordinate system. The first 

letter defines the origin (O) or the arm direction. The second letter defines the direction in 

which the acceleration was measured. 

All input files (all data columns) for a single body should always have the same length. The 

length, time, and the time-step are determined based on the input linear acceleration file from 

Screen 1 for Body 1 and Body 2 separately. The data for Body 2 can have different length than for 

Body 1, but that length cannot be shorter than for Body 1. The time-step needs to be consistent 

between both analyzed bodies. All the input data, other than the file headers, need to be numeric 

and given in the units specified on the software screen. 

The software does not apply any filter to the data. If filtering of the input data is required, it 

needs to be performed outside the DHT package. 

S.3. Sensor/landmark locations 

On several DHT screens the user will be asked to provide point coordinates either to specify 

the location of linear accelerometers in the local coordinate system of the tracked body (Figure S3) 

or to establish body’s initial position and orientation (Figure S4 and Figure S5). 

 

Figure S3. Screen 2 (Body 1) – Linear accelerometer coordinates in the local frame of Body 1. The user has three 

options to choose from: THOR Legacy (THOR stock sensor block with Endevco 7264Cs; as of August 2016), 

THOR UVa Modified (modification proposed by UVa), User specified (based on the input from the user). 
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In most cases, the user can type the coordinates in manually or import them from an *.xlsx or 

*.xls file. The format of the *xls(x) file should be always consistent with the table on the DHT 

screen (examples shown in Figure S4 and Figure S5). All the input data, other than the file headers, 

need to be numeric and given in the units specified on the software screen. If “Import from file” is 

used, the data should be given in the first sheet of the input file. 

 

 

Figure S4. Screen 3 (Body 1) – exemplar input data (point coordinates) to establish the THOR’s head initial 

position and orientation (left) and corresponding *.xls(x) file used with the “Import from file” button (right). 

To identify the body initial orientation and position the user will be asked to provide point 

coordinates for four points on the body/fixture measured in the body/fixture local coordinate 

system (with the origin and local axes defined according to the following section: Tracked Point, 

see next page). Next, for the same four points, the user will be required to input the coordinates 

measured in the global (inertial) frame (example shown in Figure S5). 

 

 

Figure S5. Screen 3 (Body 2) – exemplar input data (point coordinates) to establish Body 2’s initial position and 

orientation (left) and corresponding *.xls(x) file used with the “Import from file” button (right). 
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S.4. Tracked point 

If THOR landmarks is selected for Body 1 (Screen 3; Figure S4), it is assumed that the midpoint 

between the Left and Right CG points is the point being tracked. For User specified and for Body 

2, the DHT software tracks the origin of the body local coordinate system as determined based on 

the user input (point coordinates given on Screen 3). In all the cases mentioned above it is assumed 

that the origin of the body local coordinate system (LCS) is coincident with the accelerometer 

measurement center (Figure S6) and the LCS axes are aligned with the sensor sensing axes. 

 

Figure S6. Schematic drawing showing the measurement center for three accelerometers mounted on the tracked 

body. 

S.5. Angular acceleration 

DHT software allows for calculation of body’s local angular acceleration (AAC). The user can 

select between four different methods of obtaining AAC (Figure S7). These methods are: 

 Differentiation of the angular velocity vector (default option; the first order divided 

difference, based on the current and previous time step, is used here), 

 Nine Accelerometer Package approach (NAP; Padgaonkar et al. 1975), 

 6a (Kang et al. 2017) or its variation t6a (Kang et al. 2015), and 

 Angular acceleration can be read from an input file. 

 

Figure S7. DHT software – Screen 4: Angular acceleration – method selection. 
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S.6. Initial velocity 

If required, the user can specify initial velocity components (in global frame) for Body 1 

(always) and Body 2 (if selected). The default value for both bodies, for all three velocity 

components, is zero (Figure S8). 

 

Figure S8. DHT software – Screen 5: Initial velocity. 

S.7. Debias and labeling 

On the last screen (Figure S9), number of points for data debiasing is specified. The value of  

“# of points prior to t=0” is determined based on the input linear acceleration file from Screen 1 

for Body 1. The initial value of “# of data points used for debiasing” is populated from “# of points 

prior to t=0”, but can be changed by the user, if required. No debiasing (value of “0”) or one-pint 

debiasing (value of “1”) are possible, but not recommended. The same number of data points will 

be used for debiasing of all data input files (for Body 1 and Body 2, if selected). 

Screen 6 allows also to change the labels for Body 1 and Body 2. The labels are populated in 

the output files and output graphs. The labels cannot be longer that 13 characters. 

 

Figure S9. Final DHT screen (Screen 6) with labeling and debias information. 
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S.8. Output 

The output files will be always written to “Output directory\DHT_Results\” folder. In 

“DHT_Results” the user will find the following: 

 Pos_of_CG.xlsx: 

o calculated time histories of the position of the ATD head and Body 2 (if selected) in 

the global (inertial) coordinate system, 

o time-history of the position of the ATD head in Body 2’s local coordinate system (if 

Body 2 selected), 

 MinMaxValues.xlsx: min and max values and time of their occurrence for both analyzed 

bodies for acceleration (both, linear and angular), velocity, and position, 

 Additional/Aac_of_CG.xlsx: calculated time histories of the local angular acceleration for 

the ATD head and Body 2 (if selected), 

 Additional/Acc_of_CG.xlsx: calculated time histories of the local and global linear 

acceleration for the ATD head and Body 2 (if selected), 

 Additional/Body_label_Input_check.xlsx: Input data gathered in one file, including 

debias information. A separate file is created for each of the two bodies (if Body 2 is 

selected), 

 Additional/Orientation.xlsx: calculated time histories of the local-to-global 

transformation matrix for the ATD head and Body 2 (if selected), 

 Additional/Vel_of_CG.xlsx: calculated time histories of the velocity of the ATD head and 

Body 2 (if selected) in the global (inertial) coordinate system. 

In addition, up to three graphs will be created and saved in the folder. The graphs depict the 

time-history of the global trajectory components for Body 1 and Body 2, and Body 1 relative to 

Body 2, if Body 2 is selected on Screen 1. 

S.9. Good practices/tips 

1. To minimize the error in sensor sensitivity, all not internally regulated sensors used during 

testing should be run at the same excitation voltage as they were run during sensor 

calibration. 

2. If a coordinate measurement machine (CMM) is used to obtain the input position 

information, the number of times when the machine is moved and realigned back with the 

position data, should be as small as possible. Every leapfrogging step introduces an error 

into the position data, which can then lead to an error in the body initial orientation. Initial 

orientation error can have a substantial effect on the calculated trajectory. 

3. If it is not possible to obtain all needed sensor position information in one take, first, 

measure the sensor block (and the sensors mounted on it) in relation to selected landmarks 

on the mounting plate/fixture, and then mount the plate/fixture on the body you want to 

track and measure the same landmarks again, but this time in the global reference frame. 

4. It is not recommended to use 1-point data debiasing or no debiasing. 

5. Be sure that the local coordinate system of your sensor block (as specified in the software) 

is aligned with the local coordinate system of the tracked body. 
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