
 

COMPUTATIONAL THINKING IN ELEMENTARY SCHOOLS: A CASE STUDY 

 

____________________________________ 

A Capstone Project  

Presented to 

The Faculty at the Curry School of Education and Human Development 

University of Virginia 

 

____________________________________ 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Education 

____________________________________ 

by 

Albert Henry Jacoby, III, B.A., M.A.Ed. 

August 2019 

  



 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Albert Henry Jacoby III 

All Rights Reserved 
August 2019 



 
 

  

Department of Curriculum, Instruction, and Special Education 
Curry School of Education and Human Development 

University of Virginia 
Charlottesville, Virginia 

 
 
APPROVAL OF THE CAPSTONE PROJECT 
 
This capstone project, “Computational Thinking in Elementary Schools: A Case Study,” 
has been approved by the Graduate Faculty of the Curry School of Education in partial 
fulfillment of the requirements for the degree of Doctor of Education. 
 
 
 
________________________________________________________________________ 
Co-Chair – Susan L. Mintz, Ph.D. 
 
 
 
________________________________________________________________________ 
Co-Chair – Jennifer Chiu, Ph.D. 
 
 
 
________________________________________________________________________ 
Committee Member – Joe Garofalo, Ph.D.

 
 
 
 
 

May 21, 2019 



 
 

 

Executive Summary 

Introduction 

 Computational thinking (CT) is the process of thinking through complex 

problems logically and is comprised of five core elements: abstraction, generalization, 

decomposition, algorithms, and debugging (Angeli et al., 2016). Learning to process and 

break down problems logically, similar to the way that a computer does, encourages 

students to use technology to become producers of information and content. Students can 

harness creativity and imagination to solve complex problems through abstraction, 

pattern generalization, decomposition, iterative thinking, and debugging (Grover & Pea, 

2013). Calls to include computational thinking instruction in K-12 schooling promotes 

equity and access of learning experiences to student groups that otherwise would not be 

exposed to skills that would widen their economic opportunities later in life. Promoting 

computational thinking skills better prepares students to be functional members of society 

capable of solving problems they encounter daily. 

Purpose 

 In order to address the push from global organizations and former President 

Barack Obama (2016), Virginia legislature mandated that computational thinking be 

included in the Standards of Learning (SOLs). As a result, the Virginia Department of 

Education (VDOE) published new SOLs on computer science, which include specific 

computational thinking skills like abstraction, generalization, decomposition, algorithms 

and debugging. Classroom teachers in Virginia public schools are expected to teach these 

new SOLs beginning in the fall of 2019. 



 
 

 

The purpose of this capstone study is to understand how elementary school 

teachers in Rockview County School District (RCSD) make sense of, plan for, and 

integrate CT into their lessons. Therefore, the problem of practice that I seek to answer in 

this capstone study is as follows: How can we help teachers implement new standards for 

computational thinking and infuse the instruction into their lessons? 

Methodology 

The structure of this capstone study was an embedded, single-case study of four 

third grade teachers at three elementary schools in one school district who attempted to 

integrate a new topic into their curriculum. The data collection for this study occurred 

over an eleven-week period from November 2018 through February 2019. The 

procedures for data collection included observations of two lessons by each teacher, 

follow-up interviews after each lesson, and the review of documents associated with 

lesson planning. The data analysis procedures of data condensation, data display, and 

verification follows the process outlined by Miles and Huberman (1994). The design of 

this capstone study sought trustworthiness by addressing credibility, transferability, 

dependability, and confirmability. The study addressed the confidentiality of participants 

and the research sites by using pseudonyms. 

Findings 

 The findings of this capstone study reflect the practices of these four third grade 

teachers only, limiting the generalizations to other teachers. The five findings of this 

single-case study are as follows: 

1. Only three of the eight lessons taught by teachers in RCSD as a part of this 

capstone study contained elements of CT. Each of the three touched upon one or 



 
 

 

more element of CT identified by Angeli et al. (2016) to varying degrees and 

collectively touched upon all five elements. 

2. Teachers whose lessons contained elements of CT used direct, didactic instruction 

in order to integrate CT into their instruction. Teachers focused on helping 

students understand CT terms and vocabulary by relating the concepts to students’ 

everyday lives. 

3. Teachers in RCSD did not have a common, shared understanding of the meaning 

of CT as defined by the elements identified by Angeli et al. (2016) or otherwise. 

Teachers suffered from definitional confusion related to CT and struggled to 

make sense of their own interpretations of CT, even when provided with concrete 

definitions and relevant examples. 

4. The lessons that touched upon elements of CT were taught by two teachers who 

used CT resources. Resources include lesson plans, articles, graphics, and 

instructional videos. Two teachers who did not touch upon elements of CT did not 

use CT resources. 

5. One teacher who taught lessons that touched upon elements of CT used district 

support personnel. Those personnel accessed and modified CT resources and co-

planned the lessons with the teacher. 

 Implications and Recommendations 

 Based on the implications of the findings, the recommendations to the VDOE and 

RCSD include ways for those organizations to promote successful integration of 

computational thinking and the Computer Science Standards of Learning into classroom 

instruction. The recommendations are as follows: 



 
 

 

• Recommendation One: VDOE should adopt a clear, operational definition of CT 

for teachers, include a “Computational Thinking and Coding” section on grade-

level standards documents, and include related CS standards on content area 

standards documents and curriculum blueprints. 

• Recommendation Two: RCSD should make use of available professional 

development opportunities sponsored by the VDOE. 

• Recommendation Three: RCSD should create a Computer Science SOL 

Leadership group to support integration of CT and CS standards into instruction 

across the district. This group would provide professional development 

opportunities and RCSD-specific instructional resources. 
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Chapter One 
 

Computational thinking (CT) is the process of thinking through complex 

problems logically and is comprised of five core elements: abstraction, generalization, 

decomposition, algorithms, and debugging (Angeli et al., 2016). CT involves identifying 

patterns and commonalities from examples (generalizations) and creating solutions 

designed for broad reuse (abstraction). CT involves breaking down elements of a problem 

into component parts (decomposition), developing a sequence of instructions to solve a 

problem (algorithms). CT also involves identifying errors made in attempts to problem 

solve when a solution is not reached and correcting those errors (debugging). Definitions 

and examples of these five elements are summarized in Table 1. 

While this capstone project only focuses on CT, it is necessary to consider its 

relationship to the field of computer science (CS). CT has an important role in CS, but CS 

is not limited to CT. CS is the study of computer hardware and software, including 

fundamental principles, ways of use, and the impact computing has on society and the 

world. CS includes programming, coding, hardware and software development, the 

internet, and networking. CT is a subset of core concepts and practices within CS that 

does not include specific hardware or software programs, understanding how the internet 

works, or networking. CT practices involve creating generalizable solutions to particular 

problems that computers can instantiate, which has applications to many other domains 

outside of CS. For example, Example 5 in Table 1 describes a scenario in which someone 

is using CT to debug a message on an LCD screen connected to an Arduino 
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microcontroller. Completing the tasks involves manipulation of hardware and software 

(CS) as well as developing a simple program to achieve the desired solution (CT). 

Programming and coding are elements of CS that require CT, while successfully 

assembling the parts of the Arduino and operating the software are not necessarily CT. 

As this example illustrates, CT plays an important role in aspects of CS.  

Table 1 

Elements of computational thinking with examples 

Element Definition Example 
1. Abstraction The skill to decide what 

information about an entity/object 
to keep and what to ignore (Wing, 
2011). 
 

Identifying the characteristics of 
five different rectangles that 
make them all rectangles but 
ignoring the ways that the 
rectangles are different. 
 

2. Generalization The skill to formulate a solution 
in generic terms so that it can be 
applied to different problems 
(Selby, 2014). 
 

Recognizing patterns of “Red-
Blue-Red-Red” and “Circle-
Square-Circle-Circle” both as 
ABAA patterns. 
 

3. Decomposition The skill to break a complex 
problem into smaller parts that are 
easier to understand and solve 
(National Research Council, 
2010; Wing, 2011). 
 

Using FOIL (first, outer, inner, 
last) to solve the following 
algebraic expression: (3+4)(8-2). 
 

4. Algorithms The skill to devise a step-by-step 
set of operations/actions of how to 
go about solving a problem 
(Selby, 2014). 
 

Writing instructions for an alien 
to make a peanut butter and jelly 
sandwich correctly. 
 

5. Debugging The skill to identify, remove, and 
fill errors (Selby, 2014). 

Programming an Arduino to 
display “Happy Birthday” on an 
LCD screen 

Note. Adapted from “A K-6 Computational Thinking Curriculum Framework: 
Implications for Teacher Knowledge,” by C. Angeli, J. Voogt, A. Fluck, M. Webb, M. 
Cox, J. Malyn-Smith, and J. Zagami, 2016, Educational Technology & Society, 19 (3), 
pg. 50. Copyright 2016 by Journal of Educational Technology & Society. 
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Learning to process and break down problems logically, similar to the way that a 

computer does, encourages students to use technology to become producers of 

information and content. Students can harness creativity and imagination to solve 

complex problems through abstraction, pattern generalization, decomposition, iterative 

thinking, and debugging (Grover & Pea, 2013). For example, a student could identify the 

problem of feeding animals in their science class over the weekend. Students can use 

decomposition to break down the larger problem into parts, such as knowing when to 

provide food and the action of providing food. The student can think about patterns 

throughout the week and abstract and generalize a solution. The student can engage in 

algorithmic thinking by coming up with a program that knows when to feed the animal 

based on those generalizations. The student can debug their solution by iteratively testing 

it over weekends. CT enables students to produce solutions to their problems creative and 

logical ways.  

CT skills can be used in many content domains across K-12 education. 

Throughout the country, CT is explicitly referenced in state educational standards for 

science (K12cs.org, 2016). The National Science Teachers Association (NSTA) 

references computational thinking as a fundamental tool for representing physical 

variables and their relationships within science and engineering practices (NSTA, 2013). 

The Next Generation Science Standards (NGSS) outline using computational thinking as 

one of six science and engineering practices (NGSS Lead States, 2013). The International 

Society for Technology in Education includes CT in its student standards, as shown in 

Figure 1 (ISTE, 2016). The Virginia Department of Education (VDOE) included CT in 

its K-12 Standards of Learning (SOLs) for Computer Science, including ways that those 
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standards relate to other standards in math, science, English, and social studies (Saunders, 

2017). Figure 2 shows how the computer science standards for third graders in the data 

analysis strand indicate that they are related to math, history and social sciences, and 

science. These organizations all share the idea that CT is important for all students to 

learn as other disciplines rely on CT practices. Figure 3 illustrates the relationship 

between CT and CS, as well as CT to other disciplines.  

 

Figure 1: Computational thinking in the 2016 ISTE Standards for Students (ISTE, 2016, 

p. 5). 

 

Figure 2: 2017 Computer Science Standards of Learning, Grade Three (VDOE, 2017). 

 

5. Computational Thinker 
 
Students develop and employ strategies for understanding and solving 
problems in ways that leverage the power of technological methods to 
develop and test solutions. Students: 

a. formulate problem definitions suited for technology-assisted 
methods such as data analysis, abstract models and algorithmic 
thinking in exploring and finding solutions. 

b. collect data or identify relevant data sets, use digital tools to 
analyze them, and represent data in various ways to facilitate 
problem-solving and decision-making. 

c. break problems into component parts, extract key information, 
and develop descriptive models to understand complex systems 
or facilitate problem-solving. 

d. understand how automation works and use algorithmic thinking 
to develop a sequence of steps to create and test automated 
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Figure 3: Relationship between CT and CS, as well as CT and other disciplines. 

Learning to solve complex problems logically and sequentially can help students 

learn world languages, sciences, mathematics, history, and social studies. For science and 

engineering, CT can be thought of as a third pillar alongside theory and experiment to 

develop ways to understand the natural environment and create novel solutions and 

technologies. In social studies, CT can help students use rich datasets to find patterns and 

conduct inquiry in historical contexts. CT can also be used to help students understand 

the language arts by creating alternative representations through digital storytelling, serve 

as a basis for writing, or help students conduct textual analysis. CT increases one’s 

“confidence in dealing with complexity, persistence in working with difficult problems, 

tolerance for ambiguity, the ability to deal with open ended problems, and the ability to 

communicate and work with others to achieve a common goal or solution” (ISTE, 2011). 

Teaching students to think computationally across all content areas in K-12 education 

will make them more logical thinkers and provide them with workforce skills needed for 

the future as well (Obama, 2016). Real world problem solving requires individuals to 

generate new representations and patterns to approach the unknown (Lester, 2013). When 
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students understand how to approach problems with unknown solutions, they may be 

more confident when facing such uncertainty (M. E. Martinez, 2006; Voskoglou Michael 

Gr.; Buckley, Voskoglou, & Buckley, 2012). 

Problems and Problem Solving 

When considering CT as a way of approaching problems to arrive at a solution, it 

is important to identify what constitutes a problem. Research on problem solving has 

agreement across all traditions that a problem is a goal which an individual does not 

know how to reach immediately, and that problem solving is the activity one engages in 

to achieve that goal (Lester, 2013).  

There may be some confusion created by phrases like “word problems” or “story 

problems”, exercises that simply require mindless computation to solve (NCTM, 2010). 

This capstone study disregards these problems solved only by routines and calculations, 

which I consider to be exercises. An example of a non-problem, or exercise, would be 

asking students to complete a set of mathematical expressions they must solve using the 

FOIL technique. Students have been taught the FOIL technique in class and will practice 

using the steps they have learned to solve each exercise. They know what to do in order 

to get the answer, and in doing so repeatedly, they will develop an increased familiarity 

to the process. But solving these exercises does not engage students in problem solving. 

Problem solving across all domains can benefit from the use of CT. Mathematical 

problem solving uses CT when students design algorithms to define variables, or 

scientific problem solving in which geneticists identify similarities between DNA 

patterns to make gene predictions. Problem solving in social sciences uses CT when 

urban planners predict demographic shifts based off of patterns in housing development 
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construction. Therefore, I am open to the exploration of all types of problem solving in 

this capstone, so long as the complexity of the problems, or tasks, require cognitive 

engagement and the use of some knowledge and skills, some of which are not routine 

(Lester, 2013). 

Mathematicians like George Pólya and Alan Schoenfeld use problem solving in a 

way that is similar to CT. Pólya’s (1957) four basic principles to problems solving are to 

understand the problem, devise a plan, carry out the plan, and to look back. Similarly, 

Schoenfeld (1985) identified problem-solving strategies, or heuristics, as an essential 

element in determining the quality and success of problem-solving attempts. Schoenfeld 

named specific strategies in mathematical problem-solving, such as drawing figures, 

exploiting related problems, reformulating problems, and testing and verification of 

results. When comparing the elements of CT identified by Angeli et al. (2016) to Pólya’s 

understanding of the problem and Schoenfeld’s drawing figures, exploiting related 

problems and reformulating problems might align with abstraction, generalization, and 

decomposition. Creating algorithms in CT may be similar to devising and carrying out a 

plan. Debugging resembles looking back and verifying results. Like CT, the strategies 

from Pólya and Schoenfeld can also be applied to all domains to improve general 

problem-solving abilities. 

Computational Thinking in K-12 Settings 

Emphasizing CT in K-12 settings is not new. Seymour Papert (1980) worked to 

expand children’s CT skills through manipulation of digital objects called “turtles” with 

the LOGO programming language. LOGO promoted computational thinking, requiring 

the users to break down goals for their turtles into small tasks that could be debugged 
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when the turtles failed to perform as intended. Using LOGO and the turtles, the children 

were able to accomplish challenging tasks, such as how to create different complex 

geometric shapes efficiently through the use of decomposition, pattern generalization, 

and algorithms.  

More recently, Jeannette Wing (2006) revisited the need for practice in CT in 

modern education as schools prepare students for their educational and occupational 

success. Wing’s remarks served as a catalyst for researchers in CS to pursue CT learning 

for all students, not just those studying CS, and her opinion is often cited as a justification 

for CT for all learners.  

CT and other skills related to CS, such as programming and coding, may prove to 

be useful as students prepare to enter the workforce after they leave school. Projections 

from the Bureau of Labor Statistics (2019) show the computer and information 

technology field to be one of the fastest growing job markets at a projected rate of 13 

percent from 2016 to 2026. Computer programmers, information security analysts, and 

software developers are examples of jobs projected to see rapid growth. Engagement in 

CT in K-12 schools may better prepare students for 21st century careers (Grover & Pea, 

2013; Wing, 2006) if projections from the Bureau of Labor Statistics turn out to be true. 

Additionally, public school education is intended to prepare students to be 

functional, contributing members of society. Teachers and administrators model behavior 

of working together to solve problems they encounter daily. CT can prepare students to 

make informed decisions and solve problems facing society, such as lack of clean water, 

diminishing natural resources, or global warming, by giving them the tools they need to 

simplify problems into more easily managed parts and identify solutions logically. Being 
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adept at CT skills can help prepare students to benefit society by creating technologies 

and solutions to pressing global issues. 

Conceptual Framework 

The elements of CT identified by Angeli et al. (2016) – abstraction, 

generalization, decomposition, algorithms, and debugging – serve as the conceptual 

framework for this capstone study (see Table 1, p. 2). It is through these five elements 

that teacher integration of CT into content-area instruction is analyzed. In the same way 

that students need CT skills to become functional problem solvers and further contribute 

to the world around them, teachers need assistance with integrating CT into their 

curriculum to adequately prepare students for their futures. Very few teachers, if any, are 

trained on how to integrate CT into their classroom instruction through teacher-education 

programs (Yadav, Stephenson, & Hong, 2017). Because the international push to 

incorporate CT into K-12 classrooms is relatively new, I found little evidence of in-

service professional development (PD) on CT integration done on large scales for 

practicing teachers. It will be difficult for teachers to integrate CT into their curriculum if 

they do not know what it is and have not learned how to teach it. This capstone study 

seeks to understand how to support teachers integrating CT into their practice. This 

support can come in the form of instructional resources, support personnel, or PD, and 

may already be in place in their school or district. 

Classroom teachers are expected to be experts in content area curriculum, but 

there have been no expectations in the past that teachers, particularly teachers who do not 

teach computer science, be familiar with CT or the elements of CT. That is changing with 

national and state standards that include CT. But asking teachers to continue to teach 



10 
 

 
 

science, social studies, math and language arts, and to also include new instruction of 

abstraction, generalization, decomposition, algorithms, and debugging creates challenges 

for teachers. For example, teachers must understand abstraction and how to teach 

abstraction if they are to engage students in abstraction during lessons on social sciences 

or mathematics. Additionally, teachers must be able to recognize instances of abstraction 

that may already be within the curriculum in order understand how the process already 

plays a role in their current instructional practices. Supporting teachers as they integrate 

CT serves as the problem of practice for this capstone study. How can we help teachers 

implement new standards for CT and infuse the instruction into their curriculum, or how 

can we improve their practices already in place? 

With the recent international push to integrate CT into content area curriculum, a 

number of organizations have created PD and instructional resources for teachers to 

improve their content knowledge of CT and provide curriculum and lesson plans for 

teacher use with students. In the research that follows, a PD resource is defined as one 

that seeks to increase teachers’ understanding of the content and the best ways to teach it 

while an instructional resource is defined as one that is meant to be used with the 

students, such as a lesson plan or learning activity. Google, The International Society for 

Technology in Education (ISTE) and the Computer Science Teachers Association 

(CSTA) provide resources for teaching abstraction, generalization, decomposition, and 

algorithms (ISTE & CSTA, 2011b). Researchers at Harvard University provide lesson 

plans that teach algorithms and debugging (Brennan, Balch, & Chung, 2011). Australian 

researchers developed activities that teach decomposition, algorithms and debugging, and 

the non-profit Code.org created activities that teach algorithms, debugging, and 
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generalization (Bell, Witten, Fellows, Adams, & McKenzie, 2015). Resources such as 

these and others are both PD and instructional, as they can help teachers by increasing 

their understanding of CT and exposure to different ways to teach CT. In order to address 

the problem of practice that asks how CT can be integrated into content area curriculum, 

this capstone study reviewed these resources, focusing on how they target ways to teach 

the five elements of CT and the scope and quality of curriculum materials provided. The 

capstone study also investigated if and how these CT instructional resources are used by 

teachers who are planning to integrate CT into a unit of instruction. 

Other forms of PD resource support are district and school-level support 

personnel. District-level support can come in the form of a number of different specialists 

who work across a district and at individual schools. For example, a teacher can bring in 

a district-level Instructional Technology Resource Teacher (ITRT) to assist them with 

planning or teaching a lesson. School support can also be administration or other teachers 

within the building. An example of a school-level instructional support could be teachers 

co-planning lesson plans or discussing past approaches that have been successful during 

planning meetings. These support personnel may be useful to teachers as they integrate 

CT into their curriculum, but their own understanding of CT, or lack thereof, could prove 

to be detrimental to teachers.  

The conceptual framework for this capstone study looked at the relationships 

between teacher thinking of CT, lesson implementation, district and school support 

personnel, and instructional resources. The framework focused on the ways in which they 

interact with the five elements of CT: abstraction, generalization, decomposition, 

algorithms, and debugging.  
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The problem of practice that I sought to address through this capstone study was: 

How can we help teachers implement new standards for computational thinking and 

infuse the instruction into their lessons? 

Contextual Background 

At a small ceremony at a public military school in Richmond, Virginia on May 

16, 2016, a robot delivered House Bill 831 to Virginia Governor Terry McAuliffe to sign 

(Catrow, 2016; Heiten, 2016). In his ratification of House Bill 831, McAuliffe made 

Virginia one of the first states mandating all K-12 students learn computer science and 

computational thinking by including educational requirements for each in the Virginia 

SOLs. House Bill 831 modified the Code of Virginia § 22.1-253.13:1, Standard 1., 

instructional programs supporting the Standards of Learning and other educational 

objectives. The revised Code of Virginia, which became law on July 1, 2016, reads as 

follows: 

The Board [of Education] shall seek to ensure that the Standards of Learning are 

consistent with high-quality foundational educational program. The Standards of 

Learning shall include, but not be limited to, the basic skills of communication, 

(listening, speaking, reading, and writing); computation and critical reasoning, 

including problem solving and decision making; proficiency in the use of 

computers and related technology; computer science and computational thinking, 

including computer coding; and the skills to manage personal finances and to 

make sound financial decisions. (Virginia General Assembly, 2016)  

The key change in the language of the Code of Virginia is the addition of “computer 

science and computational thinking, including computer coding.” The Code of Virginia 
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goes on to say that local school boards are responsible for the development and 

implementation of instructional programs that align to all of the SOLs 

(http://law.lis.virginia.gov).  

The result of the change in the Code of Virginia was the creation of new CS 

Standards of Learning (SOL) by the VDOE (Saunders, 2017). The standards, adopted by 

the VDOE in November 2017, are designed to be integrated within instruction in multiple 

subject areas from kindergarten through eighth grade, including English, science, history, 

mathematics, fine arts, and career and technology courses. Standards at the secondary 

level are separated into independent courses and modules that connect to other content 

areas where appropriate. Although there is no applicable SOL test associated with CS 

instruction, it is expected that teachers provide instruction based on these new standards. 

This requires a change in practice for classroom teachers who are now required to teach 

additional subject areas, with no additional time and no content removed from their 

course load by the change in the Code of Virginia.  

With the new Virginia CS SOLs calling for the inclusion of CT, general education 

elementary and middle school teachers will be challenged with integrating CT into their 

practice. Many teachers may need support to develop needed CT content knowledge and 

pedagogical expertise for how to teach CT. Moreover, teachers may need help to find 

ways to connect and integrate CT into other disciplines, as no standards have been 

removed and instructional time has not changed. As a first step, this capstone study 

sought to understand how elementary teachers integrate CT into their classrooms. 
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Rockview County School District  

 Rockview County School District (RCSD) serves approximately 14,000 students 

from a large county in Virginia. The district’s schools spread across 726 square miles of 

urban, suburban, and rural areas. Participants in this capstone study worked at three of the 

fifteen elementary schools in RCSD: Rusty Falls Elementary School, Hilltop Elementary 

School, and Ridge Elementary School. 

The RCSD Department of Instructional Technology (DInT) and Department of 

Instruction (DI) are exploring various pilot programs that integrate CT at elementary and 

middle schools across the district due to the new educational requirements from the 

VDOE. Four third grade teachers were observed while teaching lessons that integrate the 

new standards with a focus on CT as a part of this capstone study. 

RCSD administrators have concerns about the new state requirements, and expect 

that teachers need support to integrate CT into their practice (personal communication, 

June 1, 2016). In a survey of preservice elementary school teachers enrolled at a 

university near RCSD, none of the 29 students surveyed were majoring mathematics, CS, 

or engineering, fields related to the new standards (Kjellstrom, 2017). These numbers are 

representative of the greater school district. Anne Butters, Teacher Licensure Specialist 

for RCSD, confirmed that there are no elementary teachers employed in the district who 

hold endorsements in a field related to the new standards in their employment records 

(personal communication, August 9, 2017). As teachers in RCSD prepare to teach the 

new standards, their instructional strategies are of paramount importance to their 

supervisors. School- and district-level administrators hope to use information from pilot 
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programs to develop plans for support of all teachers across the district who will teach the 

new standards. 

Research Questions 

In order to address the problems of practice for this capstone project, I sought to 

answer the following research questions, derived from Grossman’s (1989) construct of 

PCK and research on CT:  

1) How do elementary teachers in Rockview County School District integrate 

computational thinking into their instructional lessons? 

a) What elements of computational thinking are present in the lessons? 

b) To what extent is computational thinking effectively integrated into the 

instructional lessons? 

c) What activities or tasks are students engaged in that purportedly teach the 

elements of computational thinking? 

d) What types of instructional strategies are teachers using to integrate 

computational thinking into their instructional lessons? 

2) How do elementary teachers in Rockview County School District define 

computational thinking? 

3) How do elementary teachers in Rockview County School District prepare to 

integrate computational thinking into their instructional lessons? 

a) To what extent do teachers use available computational thinking resources 

when integrating computational thinking into their instructional lessons? 
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b) To what extent do teachers use district and school support personnel to plan 

for instruction that integrates computational thinking into their instructional 

lessons? 

Overview of Methods 

This capstone study was a case study with an embedded, single-case design (Yin, 

2014) that analyzed four third grade classroom teachers, in three school contexts, in 

RCSD. Yin (2014) argues that case study research methods are preferred when a “how” 

question is being asked about a contemporary set of events over which the researcher has 

little control. The units of analysis within the school contexts were the classroom 

teachers, as teachers are primarily responsible for providing instruction to students in the 

classroom setting. Data collection included audio recordings and observations, through 

the use of an observation protocol, of four teachers during instruction of lessons in two 

different content areas chosen by the teachers that integrated CT, audio recorded 

interviews with teacher participants, and teacher-provided documents related to CT 

integration, such as e-mail exchanges with school and district support, lesson plans, 

classroom activities, formative and summative assessment, and projects. This data 

provided insight into the problem of practice which focuses on how to support 

elementary school teachers to integrate CT into instruction. 

Case study participants included four third grade teachers in RCSD. Data 

collection occurred during the second and third nine-week grading periods of the 2018-

2019 school year; audio recordings and teacher observations occurred during instruction 

of a total of two lessons by each teacher that purportedly integrated CT into two different 

content areas. The lessons and content areas were selected by the participants. Data 
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triangulation from the observations, interviews, and collected documents created and 

maintained validity and credibility throughout data collection and analysis. Table 2 

outlines the relationship between the research questions and how the information helped 

to address the problems of practice.  

Table 2 

What I need to know and why I need to know it 

What do I need to know Why do I need to know this 
 
What CT knowledge do teachers 
demonstrate in their teaching and planning? 

 
To identify their knowledge about CT and 
determine ways to support development of 
that knowledge 
 

What CT instructional practices do teachers 
use to teach? 

To identify their knowledge about teaching 
CT and identify ways to support CT 
instructional practices 
 

To what extent and how do teachers use 
instructional resources as they teach CT? 

To examine the instructional resources used 
by teachers as they integrate new content 
and identify characteristics of successful 
resources to improve instruction of CT 
 

To what extent do teachers use district and 
school support personnel as they teach CT? 

To examine the support district and school 
support personnel used by teachers as they 
integrate new content and look for ways to 
improve support to improve teaching  of CT 
 

 

Data collection and analysis occurred concurrently and followed the methods 

outlined by Miles and Huberman (1994) through three concurrent processes: data 

condensation, data display, and conclusion drawing/display. Chapter Three contains a 

complete explanation of research methods for this capstone study, including expanded 

information about the research site, participants and researcher’s role. In chapter four of 

this capstone study, I address the problems of practice through presentation of analysis of 
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the teachers’ content knowledge, pedagogical content knowledge, and integration of CT 

into instructional lessons. I looked for patterns in use of supports to develop conjectures 

about what kinds of instructional resources and supports helped teachers integrate CT 

into their lesson.   

Definition of Terms 

The following is a list of definitions of key terms the way in which they apply to this 

capstone study: 

• Computational thinking (CT) is the process of thinking through problems 

logically, breaking them down into smaller parts, and organizing those parts to 

solve the problem correctly and efficiently, in such a way that that solving the 

problem can be executed by a computer. 

• A problem is a goal where the means to achieve the goal are not immediately 

known. 

• Computer Science (CS) is the study of computer hardware and software including 

fundamental principles, ways of use, and the impact computing has on society and 

the world that encompasses computational thinking. 

• Coding is the act or ability of using a computer programming language.  

• Programming is the process of writing in a language that can be processed and 

enacted by a computer. 

• Algorithms are expressions used to explain solutions to mathematical or 

computational problems.  

• Generalization is recognizing patterns or common features among specific 

examples or instances of a problem. 
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• Abstraction is using generalizations to create reusable programs or solutions that 

reduce complexity of a problem. 

• Decomposition involves breaking down larger problems into smaller constituent 

parts. 

• Iterative thinking is a process involving design of a solution, implementation of 

the solution, and review of the results. 

• Debugging is identifying and fixing errors in programs or algorithms. 

Summary 

This introductory chapter provided background on CT, contextual information 

related to the identified problem of practice and provided an overview of the capstone 

project. It also described the conceptual framework that looks at the ways that teachers 

plan for and teach CT and the elements of CT. Chapter two examines the literature on 

CT, the importance of CT, research on teaching CT, and resources available to teach CT 

in elementary school classrooms. Chapter three outlines the methodology for this 

capstone project, including data collection procedures and data analysis methods. 

Chapters four and five details the findings of the study, implications, and the 

recommendations. Chapter six is an action communication about the findings, 

implications, and recommendations written to RCSD and the VDOE. 
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Chapter Two 

Increased attention to careers in computing and pressure from national 

organizations has led to state-mandated standards in computational thinking (CT) in 

Virginia. CT is the process of thinking through problems logically, breaking down 

elements of the problem into component parts, and organizing and approaching those 

parts in ways that make it easier to solve the problem. The purpose of this capstone study 

is to address problems of practice focusing on the integration of CT into content area 

instruction. This problem of practice is specifically focused on ways that we can help 

teachers to integrate CT and the supports that are available for teachers to do so. This 

chapter focuses around four questions that were derived from this problem of practice 

and the research questions of this capstone study, focusing on teacher PCK: 

• What is computational thinking? 

• Why should computational thinking be taught? 

• What do teachers need to know in order to teach computational thinking? 

• What resources are available to help teach computational thinking? 

CT is relevant in many domains of study, but it is particularly necessary to the 

domain of computer science (CS). Although this capstone study is interested in 

integration of CT not necessarily related to CS, this literature review begins with 

background information on CS and its relationship with CT. CT has an important role in 

CS, but CT is not limited to CS. While this capstone study attempts to solve a problem of 
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practice of teachers’ integration of CT into content-area lessons, the literature review will 

reference some resources created specifically for teaching CT through the lens of CS as 

well as those other content-area domains. It is appropriate to view CT within the context 

of these CS resources because of the relationship between CT and CS, as well as the 

inclusion of CT in many organizations’ frameworks or standards for CS. Limiting the 

scope of this literature review to CT found outside of the domain of CS would be 

excluding valuable resources from review. 

Early research in CS education 

Efforts in CS education have progressed in the last two centuries. In the early 19th 

century, Lady Ava Lovelace, the “mother of computer science,” annotated a presentation 

on Charles Babbage’s “Analytical Engine” (Coe & Ferworn, 2016). Lady Lovelace’s 

notes paved the way for Alan Turing (1950), the “father of computer science,” to 

speculate about future advances in engineering and programming that would allow 

computers to complete limitless tasks—perhaps even to imitate the logical thinking and 

reasoning abilities of humans. However, it was Turing’s contemporary, John von 

Neumann, who first used the term “computer science” in his writings on the 

computational abilities of early computers (Denning, 2017; Szász, 2011). 

Since von Newmann and Turing’s time, CS has made gains in its legitimacy as a 

domain of study (Denning, 2009; Denning et al., 1989; Knuth, 1972). The Computer 

Science Teachers Association (CSTA) defines CS as “the study of computers and 

algorithmic process, including their principles, their hardware and software designs, their 

applications, and their impact on society” (Seehorn et al., 2011, p. 1). CT, a way of 

thinking about complex problems in such a way as that they can be solved by a computer, 
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is a necessary skill to the principles of CS, particularly to the algorithmic process. In fact, 

the difference between CT and algorithmic thinking in the literature is unclear (Buitrago 

Flórez et al., 2017), and Denning (2009) states that the two are synonymous. 

Attempts by computer scientists to enhance children’s CT skills were popularized 

in Seymour Paper’s 1980 book Mindstorms: Children, computers and powerful ideas, 

through the use of CS exercises. Denning (2017) credits Papert with the first use of the 

term computational thinking. Papert developed a computer programming language called 

LOGO, where the user manipulated a digital “turtle” by writing procedural codes. 

Through his research at MIT with LOGO, Papert taught children how to break down 

problems into smaller components and “debug,” or problem-solve, when the turtles didn’t 

behave as expected. In the nearly four decades since Mindstorms’ publication, 

enhancements in computer processing and graphic ability have allowed for a resurgence 

in talk amongst CS educators focusing on children’s CT, hoping to build on Papert’s 

work (Voogt, Fisser, Good, Mishra, & Yadav, 2015).  

Twenty-six years after Papert introduced the world to the term “computational 

thinking,” Wing (2006) penned a seminal viewpoint calling for CT to be taught to 

everyone (ISTE & CSTA, 2011a; Israel, Pearson, Tapia, Wherfel, & Reese, 2015; 

Seehorn et al., 2011) based on her own high valuation of CT. Wing’s piece for the 

Communications of the ACM has served as a stepping stone for others advocating for CT 

education, as it has been cited over 3,000 times since publication twelve years ago 

(scholar.google.com). Wing compared CT to ubiquitous computing, the latter being 

“yesterday’s dream that became today’s reality; computational thinking is tomorrow’s 
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reality” (p. 34). Wing provides over two dozen examples of what CT can be, such as 

recursive thinking, abstraction, decomposition, and heuristic reasoning. 

What is Computational Thinking? 

Wing failed to provide an explicit definition of CT in 2006, and since then many 

groups have worked to develop a working definition of CT, including the National 

Academy of Sciences (National Research Council, 2010), Furber (2012) for the Royal 

Society, the Computer Science Teachers Association (CSTA), and the International 

Society of Technology in Education (ISTE) (Angeli et al., 2016). As a result, CT suffers 

from definitional confusion, with each group championing their own slightly different 

version of the same concept. This confusion makes identifying instances of CT 

challenging. 

This capstone study adopts the definition developed by Aho. Aho (2011) defined 

CT as “the thought process involved in formulating problems so their solutions can be 

represented as computational steps and algorithms” (p. 2). Since then, Aho’s definition 

has been referenced or slightly modified by Angeli et al. (2016), Denning (2017), 

K12CS.org (2016), and the Virginia Department of Education (VDOE) (Saunders, 2017). 

This capstone study project adopts Aho’s definition due to the fact that it is referenced by 

the VDOE in their CS Standards of Learning (SOL). It is important to have a consistent 

definition in this capstone study and also when implementing new content standards so as 

to decrease confusion and ambiguity amongst the case study participant teachers about 

the intended topic of instruction. 

CT is a way of thinking about a complex problem so that its solution can be 

identified logically and sequentially. It can also be defined by five elemental components 
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identified by Angeli et al. (2016) and defined in Table 1: abstraction, generalization, 

decomposition, algorithms, and debugging. Understanding of these elements can further 

explain the purpose and value of computational thinking. To abstract is to identify and 

ignore extraneous information about a problem and focus on what it is important to 

reduce complexity and create reusable solutions. To generalize is to identify patterns and 

characteristics out of specific examples or instances. Decomposition is breaking down a 

complex problem into smaller parts that are easier to understand and solve. Algorithms 

refers to the ability to organize a solution into a set of operations that can be followed 

sequentially. Lastly, debugging is the evaluative component of computational thinking, 

where one assesses whether the proposed solution works and if not, identifies and 

corrects persisting errors. Breaking down computational thinking into its elements can 

simplify its definition as well as promote applicability to all domains of study. These five 

elements of CT serve as the basis for the conceptual framework of this capstone study. 

It is important to further clarify the relationship between CT and CS, computer 

programming, and coding. CS researchers emphasize CT because development of CT 

skills are essential to the teaching and learning of CS (Buitrago Flórez et al., 2017). CS 

encompasses hardware, software, and how things like the internet and robotics function. 

CT involves practices and concepts that bring together critical elements of CS, namely 

problem solving and algorithmic thinking, which can be applied to other disciplines. 

Computer programming is the process of writing in a language that can be processed and 

enacted by a computer. Programming represents a physical manifestation of the elements 

of CT. Coding is the act or ability of using a computer programming language. Thus, CS 

represents the entire domain made up of things like hardware, software, and networking, 
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CT involves critical practices and concepts within the domain, and programming involves 

using specific tools to code solutions in CS. 

Computational Thinking and Problem Solving 

 By defining CT as a certain way to go about solving a problem, is it important to 

clarify what is meant by a problem. Research on problem solving across all traditions 

agrees that a problem is “a task for which an individual does not know (immediately) 

[emphasis added] what to do to get an answer” (Lester, 2013, p. 247). I emphasize 

immediately because that creates the distinction between a problem and what I will refer 

to as an exercise. An exercise is a task for which an individual immediately knows what 

to do to get an answer. For example, the multiplication problem 12 x 3 is an exercise 

solved regularly by elementary students who have learned multiplication facts or ways of 

completing two-digit by one-digit multiplication. It may take them time to complete the 

exercise and arrive at the correct solution, but they know how to solve it immediately. 

 In contrast, the example provided in Table 1 of someone programming an 

Arduino to display a message meets the qualifications of a problem. The user must learn 

to program the Arduino and write the correct codes, in order to display “Happy 

Birthday.” If an error occurs and the message fails to display, the user will debug the 

code in an order to identify and correct the error. After learning to program the Arduino 

to display a message and developing the ability to apply this knowledge to similar 

situations, the solution to a similar task (such as displaying “Hello”) will become 

immediately known to the programmer. When faced with a similar task, it will merely be 

an exercise, rather than a problem. Solving the initial problem required the programmer 

to engage in a variety of cognitive actions, namely decomposing the problem, creating 
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algorithms, debugging any issues, and generalizing the actions to be applied elsewhere. 

These actions required some knowledge or skill, some of which may not have been 

routine. Engagement in these non-routine cognitive actions allowed the programmer to 

solve the problem. CT skills can help people to complete tasks with solutions that are not 

immediately known. 

Why Should Computational Thinking be Taught? 

Wing (2006) was the first to claim the value and universal importance of CT for 

all. She argued that the ability to think computationally is as fundamental a skill as 

reading, writing, and arithmetic, and that it is necessary for success in a variety of content 

areas (Buitrago Flórez et al., 2017; Wing, 2006; Yadav, Good, Voogt, & Fisser, 2017). 

CT can have a direct connection to a number of fields, such as biology with metabolic 

pathway reconstruction, digital synthesization in music, and medical surgery automation 

in medical practices. Table 3 shows more fields in which CT can be directly applied with 

examples of applications. Angeli et al. (2016) propose that teaching CT as a basic skill 

across the school curriculum will enhance K-12 students’ abilities to use abstraction, 

algorithmic and logical thinking, and skills at problem solving. Lye & Koh (2014) argue 

that aptitude for 21st century skills like creativity, critical thinking and problem solving, 

can all traced back to understanding CT. 

In addition to developing 21st century, higher-level thinking abilities, being able 

to think computationally can better prepare students for the workforce they will enter 

when they conclude their formal education (Fluck et al., 2016). According to a 2017 

report from the Bureau of Labor Statistics (https://www.bls.gov/ooh/computer-and-

information-technology/home.htm), careers in computing related fields are projected to 
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be one of the fastest growing and highest paying job markets in the United States, with an 

expected 13 percent increase in new jobs from 2016 to 2026. Interested students need to 

be prepared to enter this expanding job market, and early exposure to CT may promote an 

interest in computing (Armoni & Gal-ezer, 2014; Furber, 2012; Israel et al., 2015; 

Nelson, Sahami, & Wilson, 2016; Ouahbi, Kaddari, Darhmaoui, Elachqar, & Lahmine, 

2015; Partovi, n.d.; Yadav, Good, et al., 2017; Yadav, Mayfield, Zhou, Hambrusch, & 

Korb, 2014). 

Promoting an interest in computing through CT in K-12 education supports equity 

and access (K12cs.org, 2016). Exposure to computing has traditionally been limited to 

white males (Margolis, Estrella, Goode, Holme, & Nao, 2008). According to the National 

Center for Education Statistics, only 17.6% of undergraduate degrees in computer science 

were awarded to women in 2010-2011 (U. S. Department of Education, 2012). Since that 

time, the CS advocacy group Code.org has found that since the organization’s founding 

in 2013, participation by females, underrepresented minorities, and students from low 

socioeconomic status in Advanced Placement CS courses has increased 

(https://code.org/diversity). The goal of organizations like Code.org is to provide all 

students with basic skills that will enable them to be productive members of society and 

make informed decisions throughout their lives (Saunders, 2017). When CT instruction is 

accessible to all students diverse in terms of race, gender, socioeconomic status, 

disability, and English language proficiency, more students will have exposure to 

knowledge and skills that can help them to be successful in their careers and better 

equipped to use critical thinking and problem solving in the world around them 

(K12cs.org, 2016).  
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Table 3 

Fields in which computational thinking can be directly applied 

Area Sample activities related to computational thinking 
Biology Genome sequencing, genome assembly, and gene prediction 

Protein interaction modeling 
Metabolic pathway reconstruction 
Population and systems biology 
 

Chemistry Discovery and design of drugs 
Molecular dynamics simulations 
Chemical pathways modeling 
Study of fundamental properties of atoms and molecules 
 

Physics  Physical behavior of materials Optical performance 
simulations Astrophysics modeling 
Physical interaction in biomolecules 
 

Medicine  High-throughput biomedical assays 
Neuronal pathways modeling 
Physiology performance simulations 
Medical surgery automation 
Analysis of drugs and environmental toxins 
Medical illustration 
 

Engineering  Mobile and internet computing 
Gaming Robotics 
Computer and network security 
Artificial intelligence 
Data base systems 
 

Arts  Image design 
Movie animation 
 

Music  Acoustics simulations 
Recording techniques 
Sound synthesis and manipulation 
Computer music 
 

Social Sciences Demographic simulations 
Pandemic reaction modeling 
Computational finance 

Note. Adapted from “Changing a generation’s way of thinking: Teaching computational 
thinking through programming,” by F. Buitrago Flórez, R. Casallas, M. Hernández, A. 
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Reyes, S. Restrepo, and G. Danies, 2017, Review of Educational Research, 87 (4), pg. 
839. Copyright 2017 by American Educational Research Association. 
 

At this time, CT integration is in an emergent state, and there is a dearth of 

empirical studies supporting the value of CT outside of the field of CS or other 

computational fields like Bioinformatics, or Computational Statistics. Calls for its 

universal inclusion are largely ignored or unheard by educators outside of those fields. 

Supporters of ubiquitous CT education rely on the word of scholars in the field of CS, 

industry leaders, and even former United States President Barack Obama to support calls 

for universal instruction of CT in K-12 education. Claims that CT is a valuable tool and 

will increase problem-solving skills across all domains are unsubstantiated in the 

research, although they do appeal to common sense. Martinez & Stager (2013) 

summarized this issue well by pointing out that “government and business leaders value 

and want schools to teach… [CT and that it has been] deemed necessary for United States 

economic progress and global competitiveness” (pg. 44). The argument that an 

introduction to CT at a young age will better prepare students for future jobs in the field 

seems logical but is largely hypothetical in nature. CT research needs to be more deeply 

informed in terms of implementation within the K-12 curriculum. 

Despite the lack of empirical evidence of the benefit of an education that 

implements CT through abstraction, generalization, decomposition, algorithms, and 

debugging, many organizations continue to work towards the goal of all students learning 

CT. This may be because they see the value of CT education anecdotally, even if it 

cannot yet be demonstrated empirically at this time. Their continued support for CT 

education in K-12 schools has led to the development of a number of resources for 

teaching and learning CT. 
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What Do Teachers Need to Know in Order to Teach Computational Thinking? 

Given the national and state efforts to increase CT instruction in K-12 settings, it 

is increasingly important to understand how to support teachers to develop the 

pedagogical expertise needed to integrate CT in their practice. The following section 

begins with organizational efforts to improve teacher instruction of CT, and then outlines 

relevant work on improving teacher instruction. 

Developing Teacher Understanding of Computational Thinking 

In an effort to provide teachers with clarity and understanding about CT and its 

value in the K-12 curriculum, some organizations have created resources with advocacy 

information and content knowledge for teachers. K12cs.org offers a free K-12 Computer 

Science Framework with a section focusing on CT (2016). K12cs.org references CT as a 

crucial component in four of the seven course principals listed in the K-12 Computer 

Science Framework, showing CT to be at the heart of CS practices (K12cs.org, 2016). 

Those practices are recognizing and defining computational problems, developing and 

using abstractions, creating computational artifacts, and testing and refining 

computational artifacts. The K-12 Computer Science Framework acknowledges the fact 

that as K-12 CS education is still in a nascent state, most research has been done by 

practitioners in the field, if any research was performed at all (K12cs.org, 2016) 

Additionally, Computing at School published “Computational thinking: A guide 

for teachers” (https://community.computingatschool.org.uk/resources/2324). This guide 

provides teachers with definitions of its concepts of CT, including logical reasoning, 

abstraction, evaluation, algorithmic thinking, decomposition, and generalization. 

Computing at School describes five different ways of “computational doing,” where 
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students can be observed reflecting, coding, designing, analyzing, and applying. The 

guide also provides a long list of distinct learner behaviors that can be observed to show 

different elements of CT have been demonstrated. Examples of these behaviors are found 

in Table 4. Resources such as the K-12 Computer Science Framework and Computing at 

School let teachers know what about CT should be taught to students and provide 

teachers with background about CT to support their own understanding. Once teachers 

develop their own understanding of CT, they must learn to teach CT to others. Studies 

such as these address different aspects of teaching CT in K-12, but there are no 

comprehensive studies that reflect empirical research on K-12 CT integration (Ilic, 

Haseski, & Tugtekin, 2018). 

  



32 
 

 
 

Table 4 

Sample observable learner behaviors associated with computational thinking 

Element Behaviors 
Abstraction • Reducing complexity by removing unnecessary detail. 

• Hiding the full complexity of an artifact (hiding functional 
complexity). 
 

Generalization  • Identifying patterns and commonalities in artifacts 
• Adapting solutions, or parts of solutions, so they apply to a 

whole class of similar problems. 
 

Decomposition • Breaking down artifacts into constituent parts to make them 
easier to work with. 

• Breaking down a problem into simpler version of the same 
problem that can be solved in the same way (recursive and 
divide and conquer strategies). 
 

Algorithmic thinking • Formulating instructions to be followed in a given order 
(sequence). 

• Grouping and naming a collection of instructions that do a 
well-defined task to make a new instruction (subroutines, 
procedures, functions, methods). 

 
Debugging • Assessing whether an artifact does the right thing (functional 

correctness. 
• Making trade-offs between conflicting demands. 

Note. Adapted from “Computational thinking: A guide for teachers,” by A. Csizmadia, P. 
Curzon, M. Dorling, S. Humphreys, T. Ng, C. Selby, and J. Woolard, 2015, pgs. 14-15. 
Copyright 2015 by Computing at School. 
 
Improving Teacher Instruction 

Instructional best practices can be developed through teacher PD, or activities that 

are intended to improve performance in their current or future roles of working with 

students and teachers (Little, 1987). PD can take place through discrete activities such as 

college courses, conferences, and workshops, or through situated learning experiences 

such as discourse and community practices as a part of formal or informal learning 

communities, co-teaching, mentoring and reflection, book clubs, or even curriculum 
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materials review (Desimone, 2009). Buchholz et al. (2013) recognized key factors in 

these PD opportunities that are necessary for improving teacher understanding of ways to 

teach: duration, peer debriefing, and opportunities for reflection. They first argue that 

teacher understanding of ways to teach develops over time as teachers gain more 

experience. Additionally, teachers must have opportunities to experiment with different 

methodologies in their own classrooms. Peer debriefing with fellow teachers allows for 

the exchange of ideas, strategies, and solutions, which can also increase teacher 

understanding of ways to teach. Lastly, the willingness and opportunity to reflect on 

one’s own teaching practices. When teachers critically reflect in order to make sense of 

experiences in the classroom, they can gain valuable insight into the difficult practice of 

teaching. van Driel & Berry (2012) conclude that efforts to develop teacher 

understanding of ways to teach should mirror their professional practice, providing them 

with opportunities to innovate instructionally and to reflect on their experiences, 

individually and collectively, throughout their careers. 

van Driel et al. (1998) insist that teachers must be able to exchange ideas, 

strategies, and solutions with other practitioners to build understanding of ways to teach.  

As CS teachers often have limited exposure to other teachers in their discipline, Go & 

Dorn (2016) chose to analyze an exchange of ideas through online communities. Two 

electronic mailing lists, the CS Teacher’s Association (CSTA-MEMBERS) and the CS 

Teaching Tips (CSTT) provided contrasting styles of electronic discourse that teachers 

could engage in to develop their understanding of ways to teach CS. CSTA-MEMBERS 

allows participants to ask questions about anything related to CS, which was both an 

advantage and a disadvantage of the list-serv. Text analysis revealed that discussion of 
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ways to teach CS was certainly present within the CSTA-MEMBERS messages, but so 

were a wide range of other CS education topics, making it difficult for participants to 

filter different types of information. CSTT, in contrast, is devoted entirely to ways to 

teach CS. Browsing the CSTT site gives teachers the option to search for the information 

that they need but does limit them from being able to ask anything about CS teaching 

practices. The researchers conclude that these resources could be valuable to practicing 

teachers as they work to expand their understanding of ways to teach CT. 

Understanding of Ways to Teach Computational Thinking 

The following are examples of work done specifically to identify or improve ways 

of teaching CT, described in order of least relevant to most relevant to this capstone study 

project. CT is embedded into the Dutch national curriculum for secondary teachers 

(Grgurina, Barendsen, Zwaneveld, van Veen, & Stoker, 2014). Tolboom, Krüger, & 

Grgurina (2014) conducted an online survey of Dutch secondary CT teachers in order to 

learn about their perceptions, beliefs and hindrances around CT. They found that many 

teachers “hold alternative beliefs or views which are not in line with the prevailing 

definitions and nature of Computational Thinking” (Grgurina et al., 2014, p. 173). This is 

likely due to prevailing definitional confusion caused by multiple organizations each 

creating their own operating definitions, as described above. This survey may indicate 

that students will have difficultly learning CT due to disagreement from their teachers 

about what CT is, even in a country where CT instruction is embedded within their 

curriculum. 

While the secondary teachers in the Netherlands revealed confusion about the 

definition of CT and ways to teach it, elementary teachers are not required to teach CT, 
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and thus may be presumed to know even less about teaching CT. To counter this, Angeli 

et al. (2016) designed a course on how to teach CT to K-6 students. The participants in 

the course were fifteen elementary school teachers pursuing a master’s degree in 

instructional technology. The course instructor engaged teachers in authentic problem 

solving, identifying ways to improve people’s lives in the cities and towns that the 

teachers resided, and taught the teachers how to create abstract models without using 

computer programs. The teachers, who had no prior experience with computer 

programming, then used Scratch to develop programs based off of their models to solve 

the real-life problems. CT concepts such as sequencing, loops, and parallel processing 

were taught explicitly and demonstrated with many sample codes and illustrations. 

Researchers found that these veteran teacher education students had no problem learning 

the CT concepts, although variables and conditional logic were most challenging for the 

group. This study shows that teachers may be able to learn how to teach CT through the 

use of computer programming and Scratch. By completing programming activities that 

caused them to engage in computational thinking, teachers saw first-hand ways to 

introduce their students to CT while simultaneously expanding their own understanding 

of CT. 

What Resources Are Available to Help Teach Computational Thinking? 

This capstone study sought to answer a problem of practice in which teachers 

must integrate CT into content area curriculum. Analyzing the instructional and PD 

resources used by these teachers was an essential part in making recommendations for 

improving instructional practices. The analysis of specific resources used by teachers 

during this capstone study took place during the data collection phase. The section that 
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follows will review resources found and referenced while researching CT in K-12 

education, and specifically elementary education. Thanks to organizations like Code.org 

and the ACM, there has been a resurgence in the call to teach CT and the creation of 

resources to do so (Armoni & Gal-ezer, 2014; Kumar, 2014b, 2014a; Prottsman, 2014). 

All of the resources described below are available online for free and offer curriculum for 

K-12 education. Because this capstone study focused on the practices of third grade 

teachers, attention in this review is directed towards resources available for use in the 

middle elementary grades. Some of the materials created specifically address 

computational thinking and direct their resources in that manner. Other resources have 

been created to promote the CS, but still include instructional strategies for the elements 

of CT. Analysis of these resources focuses on how each addresses CT components of 

abstraction, generalization, decomposition, algorithms, and debugging. Table 5 

summarizes the resources designed for teaching CT, identifies the focus of their materials 

and lists the elements addressed. 
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Table 5   
 
Summary of resources available to learn about and teach CT in elementary schools 

Resource Materials focus CT specific CT elements 
Code.org (http://code.org) Teacher knowledge 

curriculum, independent 
activities for learners 

 

No, general CS Ab, G, Dc, Al, 
Db 

Exploring Computational Thinking (Google, n.d.-c) 
 

Teacher knowledge, 
curriculum 

 

Yes Ab, G, Dc, Al 

Computational Thinking for Educators 
(http://computationalthinkingcourse.withgoogle.com) 
 

Teacher knowledge, 
curriculum 

 

Yes Ab, G, Dc, Al 

Computational Thinking Teacher Resources (ISTE & CSTA, 
2011) 

Teacher knowledge, 
curriculum, lesson plans 

 

Yes Ab, G, Dc, Al 

Computational thinking: A guide for teachers (Csizmadia et al., 
2015) 
 

Teacher knowledge Yes None 

K-12 Computer Science Framework (K12cs.org, 2016) 
 

Advocacy, teacher knowledge Some None 

Creative Computing (Brennan et al., 2011) Teacher knowledge, lesson 
plans 

 

Some, general CS 
 

Al, Db 

CS Unplugged: An enrichment and extension programme for 
primary-aged children (Bell et al., 2015) 

Student activities No, general CS Dc, Al, Db 

Note. Ab = abstraction; G = generalization; Dc = decomposition; Al = algorithms; Db = debugging
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Computational Thinking-Specific Resources 

 Three resources reviewed focus on the learning and teaching of CT and address 

four elements of CT, specifically abstraction, generalization, decomposition, and 

algorithms. These resources seek to build teacher content knowledge and provide 

curriculum for teaching CT to students. Two of the resources are provided by Google, 

and one is a collaboration from ISTE and CSTA.  

Google created a free online resource for teaching CT (Google, n.d.-c). The site 

includes opportunities for educators to integrate CT into curriculum areas like 

mathematics, science, English/language arts, music, and art, design and media studies. 

For example, one resource available for teaching US history to students ages 8-18 focuses 

on map visualization with a program called Pencil Code. Pencil Code “provides a simple 

way to illustrate statistics geographically by drawing bubbles on a map. Students can 

analyze, fill in, or change parts of the program” (Google, n.d.-c). This activity teaches 

abstraction and generalization. Students must identify and extract relevant information to 

define main ideas and observe patterns in the data. The code for this activity and a sample 

output are shown in Figure 4. The full activity resource is found in Appendix A. A lesson 

plan for music with students ages 11-18 “allows students to examine the various aspects 

of music such as scales, melody, and rhythm. The patterns they discover will enable them 

to modify an algorithm to improve the quality of the music generated by the algorithm” 

(Google, n.d.-c). The full lesson plan is found in Appendix B. These are just two 

examples of over thirty resources available for teaching students middle elementary 

school grades. Through this resource, Google provides instructional support for teachers 

working to integrate CT into their curriculum. 
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Figure 4: Code and sample output for Pencil Code: Map Visualization  

Google also has a self-paced online course for educators called “Computational 

Thinking for Educators.” The goal of the PD course is to teach educators about CT, how 

it is different from CS, and how to integrate CT across multiple content area domains. By 

participating in the course, educators will increase their awareness of CT through 

exploration and experimentation with CT examples integrated into content areas and 

developing a plan to integrate CT into their own classrooms ((Google, n.d.-b). Course 

content includes instructional resource modules in exploring algorithms, finding patterns, 

and developing algorithms across four content areas: CS, humanities, math, and science. 

The humanities activity for exploring algorithms exposes the learner to Google’s ngram 

viewer, which “visually displays the occurrence of a word, or phrase (ngrams) for many 

of the books Google has scanned” (Google, n.d.-a). Figure 5 shows the ngram viewer for 

a search of the phrase “computational thinking” from 1950 to 2018. The activity poses 

questions to the learner about how people might perform tasks completed by algorithms 

in the ngram viewer. The course concludes with a project, where participants must submit 

a lesson plan integrating CT. This course does primarily emphasize enhancing teacher 



40 
 

 
 

understanding and teaching ability related to CT, but in focusing on the later, it does 

provide curriculum and resources for teaching CT. 

 

Figure 5: Sample ngram viewer from a search of “computational thinking” from 1950 to 

2017 (Google, 2013) 

ISTE and CSTA, with funding from the National Science Foundation (NSF) 

created a “Computational Thinking Teacher Resources” guide (2011b). In addition to PD 

teacher background information such as an operational definition of CT and a vocabulary 

and progression chart (see Table 6), the guide provides instructional resources through 

nine learning experiences for teachers to use to integrate CT activities into their 

curriculum. Four of the experiences target K-5. Each K-5 experience provides outcomes, 

standards alignment, evidence, activities, strategies, and resources, as well as a “CT guide 

on the side” with tips related to CT-related vocabulary. Table 7 summarizes the purposes 

of the four elementary experiences. 
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Table 6 

Sample of computational thinking vocabulary and progression chart 

Term Definition Grades PK to 2 Grades 3 to 5 
Problem 
Decomposition 

Breaking down tasks 
into smaller, 
manageable parts 

Create directions to a 
location in the school 
by breaking the 
directions down into 
smaller geographical 
zones. 

Develop a plan to make 
the school “green.” 
Separate strategies such 
as recycling, paper and 
cans, reducing use of 
electricity, and 
composting food waste. 
 

Abstraction Reducing the 
complexity to define 
main idea 

With many sizes and 
colors of three-sided 
shapes, the abstraction 
is a triangle. 

Hear a story, reflect on 
main items, and 
determine the 
appropriate title. 

Note. Adapted from “Computational thinking teacher resources”, 2nd edition, by 
International Society for Technology in Education (ISTE) and Computer Science 
Teachers Association (CSTA), 2011, p. 8. Copyright 2011 by CSTA and ISTE.
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Table 7 
 
Summary of elementary computational thinking learning experiences 

Experience 
Content Area 
Grades 

Standards Outcomes CT skills/dispositions 

1. Sequencing 
Language Arts 
PK-2 

Grade 2 Common 
Core English 
Language Arts 
Writing Standards 

The student is able to provide a 
set of sequential directions for 
accomplishing a task. 

1. Automating solutions through algorithmic thinking.  
2. Identifying, analyzing, and implementing possible 

solutions with the goal of achieving the most 
efficient and effective combination of steps and 
resources. 

3. Generalizing and transferring this problem-solving 
process to a wide variety of problems. 

4. Tolerance for ambiguity. 
 

2. Growing Plants 
Interdisciplinary 
PK-2 

Grade 2 Common 
Core Math 
Standards 

1. Provide students with 
the tools to overcome 
negative messaging, 
challenges, and 
unknowns. 

2. Understand how a plant 
develops from a seed. 

3. The ability to 
communicate and work 
with others to achieve a 
common goal. 

1. Formulating problems in a way that enables us to 
use a computer and other tools to help solve them. 

2. Representing data through abstractions such as 
models and simulations. 

3. Automating solutions through algorithmic thinking. 
4. Identifying, analyzing, and implementing possible 

solutions with the goal of achieving the most 
efficient and effective combination of steps and 
resources. 

5. Persistence in working with difficult problems. 
6. Confidence in dealing with complexity. 
7. The ability to communicate and work with others 

to achieve a common goal or solution. 
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3. Food Chain 
Science 
4 

California, Life 
Sciences, Grade 4 

Students will create an 
animation representing the food 
chain using Scratch. 

1. Representing data through abstractions such as 
models and simulations. 

2. Automating solutions through algorithmic thinking. 
3. Generalizing and transferring this problem-solving 

strategy to a wide variety of problems. 
4. Persistence in working with difficult problems. 

 
4. Persuade Me 

Language Arts 
5 

Common Core 
Writing 
Standards, Grade 
5, Standard 1 & 4 

1. Students will identify 
the variables in an 
effective opinion piece. 

2. Students will determine 
criteria for an effective 
opinion piece. 

3. Students will utilize 
criteria to create a 
persuasive essay or 
opinion piece. 

4. Students will produce a 
publishable opinion 
piece. 

 

1. Logically organizing and analyzing data. 
2. Representing data through abstractions such as 

models and simulations. 
3. Identifying, analyzing, and implementing possible 

solutions with the goal of achieving the most 
efficient and effective combination of steps and 
resources. 

4. Generalizing and transferring this problem-solving 
process to a wide variety of problems. 

5. Able to handle open-ended problems. 
6. Ability to communicate and work with others to 

achieve a common goal or solution. 

Note. Adapted from “Computational thinking teacher resources”, 2nd edition, by International Society for Technology in Education 
(ISTE) and Computer Science Teachers Association (CSTA), 2011, p. 8. Copyright 2011 by CSTA and ISTE.  
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Computer Science-Specific Resources 

 Each of the three resources above from Google, ISTE and CSTA focused entirely 

on CT and provided instructional and PD resources. The remaining three resources target 

CS, and as such, encompass CT. Thus, elements of CT instruction are still present. Two 

of the resources, those from Code.org and Brennan, Balch, & Chung (2011) mention CT 

specifically in their PD-focused teacher resources in order to bolster teacher knowledge 

of CT. The third resource is unique in its approach to CS instruction and will be 

addressed in its own section. 

Code.org is a non-profit organization committed to promoting equity and 

expanding access to computer science learning to all groups, but particularly to women 

and underrepresented minorities. Code.org hopes that every student in every school will 

have the opportunity to learn computer science, in the same way they can learn about 

geometry, biology, or chemistry (Code.org, 2019a). Code.org works to promote equity 

and access through their belief in CS for all by offering free CS curriculum to anyone 

who wants to learn. Their “CS Fundamentals” course targets grades K-5. Each year, 

Code.org organizes the “Hour of Code” campaign, an effort which has involvement from 

approximately 10% of all students across the globe (Code.org, 2019a). Code.org’s 

instructional resources provide sequenced coding activities and instructional videos that 

students can work through in order to learn specific elements of coding, such as loops and 

conditionals. Although Code.org does not focus exclusively on CT, they do address the 

domain in their resources and include each element of CT identified by Angeli et al 

(2016). 
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Many of the programming activities on Code.org make use of block-based coding 

languages. Block-based coding was popularized by Scratch, a programming environment 

developed by the MIT Media Lab (Resnick et al., 2009). Scratch is a graphical block-

based programming language, where users write programs by snapping bits of code 

together. Code blocks control different “sprites,” or actors on the screen. Sprites are 

objects controlled by the written code, like a cartoon cat or a ball bouncing across the 

screen. By using pre-populated bits of code to snap together, users avoid issues with 

specific syntax and structure. Code that doesn’t make sense won’t fit together, similar to 

pieces of a puzzle. Instead of learning specific programming languages and functions, 

students can focus on CT principles and skills needed to design creative adventures for 

their sprites. 

One identified resource, ScratchEd, focuses on providing instructional resources 

for teachers who want to use Scratch (Brannan et al., 2019). ScratchEd is a collaboration 

between researchers at the Harvard Graduate School of Education and the Education 

Development Center’s Center for Children and Technology. PD provided by the site 

includes a definitional framework and resources supporting the development of, and 

assessment of the development of CT. Their definitional framework includes concepts, 

practices and learner perspectives.  

In order to assist with the development of CT, there is a “Creative computing” 

guide for teachers, consisting of seven instructional units and over thirty activities 

(Brennan et al., 2011). To aide in the assessment of CT development, ScratchEd provides 

PD through an interview protocol and rubric for artifact-based interviews, three sets of 

design scenarios of increasing complexity, and tools for collecting learner documentation. 
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There are also a number of videos that teachers can watch to see examples of the rubrics 

in use. 

Unplugged Activities 

Some resources take a more unique approach to teaching CT and CS principles. 

These resources, referred to as “unplugged,” because they work without the use of any 

digital technology, often allow for more kinesthetic learning activities where the 

participants physically manipulate objects to perform their CS or CT-related tasks. These 

unplugged activities also promote equity and access, as students do not need to have 

technology in order to practice the skills. Lack of available technology and infrastructure 

need not prevent students from learning CT and other CS concepts 

One resource was created by the CS Education Research Group at the University 

of Canterbury in New Zealand. The CSUnplugged (Bell et al., 2015) activities book 

offers free activities that teach CT, available in over twenty languages (Unplugged, 

2019), through the use of cards, string, crayon and physical movement, engaging games, 

and puzzles. The “Beat the Clock activity” on sorting networks builds skills in 

comparing, ordering, developing algorithms, and cooperative problem solving. In the 

activity, students are given cards and must sort themselves out into a particular order by 

following a plotted path and comparing cards along the way (see Figure 6). The basic 

example shown within Figure 6 shows cards numbered 1-6 in the boxes on the left. 

Students follow the paths of the arrows so that two students stand in a circle at the same 

time. Those students then compare their cards, and in this example, the student with the 

lower number moves to the left (or straight ahead), while the student with the higher 

number moves to the right (or straight ahead). As students move from one row of circles 
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to the next, they’re continuously comparing their numbers until they ultimately end up in 

the squares on the right in the correct number order, 1-6. This activity can be modified 

and repeated to include cards with anything that can be sorted sequentially, such as 

numbers, words (alphabetically), or Presidents (chronologically). This particular activity 

from CSUnplugged asks students to follow an algorithm to solve a problem. The 

CSUnplugged curriculum is available for free on the internet. A full lesson plan is found 

in Appendix C. 

 

Figure 6: Example of sorting network activity from CSUnplugged lesson 

(CSUnplugged.org) 

Similarly, Code.org’s free standardized elementary curriculum in Code Studio has 

over thirty-five unplugged lessons and activities that reinforce the concepts behind CT 

(Code.org, 2019b; Prottsman, 2014). In one lesson on real-life algorithms, students work 

to identify the correct steps to make a paper airplane from a list with some incorrect 

steps. After identifying the steps, they must put them in the correct order and trade with 

another person or group to see if their steps, or algorithm, is correct (Code.org, 2019c).  

The first lesson in Course 3 of Code Studio is an unplugged lesson on CT. It is 

designed to be completed as a part of a sequence and is recommended for 4th or 5th 
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graders. This resource from Code.org is admittedly complicated. The teacher 

instructional video and the lesson plan say that the students will be discouraged because 

of the complexity of the task, but one goal of the lesson is for the students to work 

through that frustration. The lesson plan provides teachers with a tremendous amount of 

support, and has ways to introduce their CT-specific vocabulary. And while the four 

terms introduced in this lesson are not completely identical to the elements of CT 

identified by Angeli et al. (2016).  

Code.org does everything that it can to make this lesson a success for teachers. It 

provides print activities and assessments, easy to follow steps for teachers, and video 

tutorials for the teachers to learn more about the lesson. There is even another video, 

“Unplugged Lesson in Action – Computational Thinking” that features the same 

Code.org instructor from the tutorial video actually teaching the lesson to a class. The 

Code.org lesson plan itself does not link to this video, but YouTube suggested it to me 

while I was watching the “Course 3 – Computational Thinking” video. This video could 

be very helpful to teachers, as they get to see the lesson plan in action and have an expert 

modeling the instruction for them. According to teachers who have used unplugged 

resources from CSUnplugged or Code.org, the off-line, hands-on approach to addressing 

CS concepts is fun and engaging for students who enjoy a more tactile approach to 

learning (personal communication, December 8, 2017). 

 Resources for teaching elements of CS that include CT are readily available, but 

usage data and research on these resources are limited (Buitrago Flórez et al., 2017; 

Fessakis, Gouli, & Mavroudi, 2013; Israel et al., 2015; Sáez López, González, & Cano, 

2016). Code.org tracks and reports the number of accounts created on their site and can 
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monitor progress made on those accounts. Google does not report the number of 

educators who engage with either of their platforms for learning about and how to teach 

CT. Materials from ISTE, CSTA, Computing at Home, K12CS.org and CSUnplugged are 

not interactive, and those organizations do not report the number of downloads of their 

resources. Coupled with a lack of data on classroom effectiveness, it is challenging to 

know if and how these available resources are implemented, making it difficult to 

evaluate their effectiveness or efficacy. 

Resources Strengths and Weaknesses 

Each resource above has its own strengths and weaknesses. Code.org advertises a 

tremendous reach to students and teachers across the globe, with advocacy, equity and 

access as top priorities. Elementary schools in RCSD participate in the Hour of Code 

annually, and some teachers direct their students to complete activities on Code.org 

within their classroom during times of independent choice. But Code.org doesn’t teach 

students specifically about CT, nor does it include instruction in abstraction or 

decomposition. It does have teacher resource materials that reference CT as one of the 

benefits of CS education, and elements of CT are present in curricular units provided by 

Code.org, along with other CS content like internet safety and cyber bullying. It does not 

provide teachers with specific information about what CT is, why it should be taught, and 

ways that learning CT can be challenging for students. While ways of teaching CT are 

provided, teachers are not told that directly. The teacher resources are not lesson plans, 

but instead sequential activities for the students to complete which will immerse them 

into coding experiences. 
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The two resources provided by Google, Exploring Computational Thinking and 

Computational Thinking for Educators, are valuable resources for expanding teacher 

content knowledge about CT and have some provided curriculum. The lesson plans seem 

extremely isolated and might be difficult to pair with traditional content area instruction. 

“Making Music with Algorithms,” found in Appendix B, is a one-off lesson that 

integrates algorithms into a music lesson. That is less likely to help a general classroom 

teacher who doesn’t know how to teach music. The CT course, when offered 

synchronously for users to complete, would provide a valuable opportunity to interact 

with and learn from fellow participants and share their created resources. In its current, 

offline state, participants complete the work in isolation, with no feedback or interaction. 

The content is still valuable, but the course leaves something to be desired. Further, with 

no direct links to programming, these resources do not include elements of debugging. 

Another resource that excludes debugging, the Computational Thinking Teacher 

Resource (ISTE & CSTA, 2011b) has detailed lesson plans across all grade levels and 

includes four out of the five elements of CT. However, there is only one lesson plan for 

each grade band, leaving the impression that the instruction of CT would be a single, 

isolated occurrence. This may be the case in some situations, but it is likely not what 

advocacy groups or the VDOE want for students, any more than teaching science or 

social studies is done once a year. That being said, the other lessons could serve as 

examples and be modified by teachers who have developed an understanding of the ways 

to teach CT to be used in their own grade level. 

Creative Computing, the guide for using Scratch in the classroom, is a tremendous 

resource for using the program in the classroom, but its main focus is on programming 
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elements of CS instruction. Algorithms in the forms of conditional loops have included 

instruction, as well as a heavy emphasis on debugging, but otherwise there is little direct 

instruction on the other three elements of CT. However, not to be overlooked, Scratch is 

very popular with students and teachers in RCSD. 

CSUnplugged works to overcome issues with access to technology and allows 

students and teachers to develop CS principles without devices. The unplugged activities 

largely focus on general CS principals like data representation and human interface, but 

activities on procedures, algorithms, and cryptography teach elements of CT to students 

in a fun way. The sorting network activity described on page 46 can be repeated with a 

variety of content areas that involve the ordering of variables (colors on the visible light 

spectrum, sight words in the dictionary, historical events, etc.). Once students learn the 

rules to the activity, the critical thinking and evaluation can be applied to any content 

area, allowing teachers to include the CT activity into other content area instruction as 

desired. These unplugged activities do not address abstraction or generalization. 

The most common element found in the resources in algorithmic thinking, which 

supports Denning’s (2009) assertion that CT and algorithmic thinking are synonymous. It 

is interesting to note that the three resources most closely associated with general CS 

principals and programming, Code.org, Creative Computing (Brennan et al., 2011) and 

CS Unplugged (Bell et al., 2015), are the three resources that include explicit instruction 

on debugging. Debugging, an essential element of CT, is also essential to the task of 

programming. The remaining resources have no direct connection to programming, and 

thus no direct instruction on debugging.  
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Teachers looking to teach CT to their students have a variety of options available 

to them online from organizations eager to promote CT and CS education in the 

classrooms. While no one resource seems to provide teachers with an array of lessons or 

activities to teach all of the elements of computational thinking, teachers who have 

gained an understanding of CT and how to teach it might be able to create or modify 

resources to make CT a regular part of their instructional routine. Teachers can search for 

resources about CT, or they can look for ways to teach the elements of CT in isolation. If 

teachers hope to teach CT by addressing all five of its elements, they can design their 

own curriculum through targeted use of various components of these resources. In order 

for teachers to evaluate these resources themselves, they must understand CT and the best 

ways to teach CT. In addition to being able to search the internet for the resources 

reviewed above, teachers in Virginia can take part in a state-wide PD opportunity to 

develop CT PCK and learn about instructional resources available for integrating CT into 

their instruction. 

A PD Resource in Virginia 

Work is being done within the United States, and specifically in Virginia, to 

develop teachers’ knowledge of ways to teach CT. CodeVirginia, a non-profit group in 

Virginia working to bring equitable CS education to all of Virginia’s students, offers a 

variety of different training opportunities for free throughout the year. This is in response 

to the new Virginia SOLs that include computer science, computational thinking, and 

coding. Two trainings relevant to this capstone study are the Launching Computer 

Science (K-5) and the Elementary Computer Science Coaches Academy. The Launching 

CS training is an eight-hour preparation for classroom teachers to integrate CS into their 
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core curriculum. The Coaches Academy hopes to “train the trainers,” preparing educators 

to offer PD on CS and CT curriculum. The academy requires more of a time 

commitment. In addition to an initial five-day training, there are four online modules that 

require practice in CS work, and an additional requirement of four day-long sessions on 

Saturdays throughout the school year. 

During one week-long session at the Coaches Academy, attendees are introduced 

to the new VA CS SOLs, spend time unpacking them to identify which standards are 

already being met in the classroom through other content integration, and which 

standards will be new to teachers and students. Participants work collaboratively to 

design lessons that teach teachers CS and also draft lesson plans for teachers to use with 

students that integrate the new standards into existing content area curriculum. 

Participants also become acquainted with a number of resources available to teach CS. 

These recourses include Scratch and Code.org. Through discussion amongst participants, 

other resources were shared, but they are largely proprietary resources that schools and 

districts had purchased which incorporated coding into play. Some of these resources are 

Spheros, Ozobots, Osmos, Parrot Drones, BeeBots, and Makey. The cost of some of 

these resources put them out of reach for some schools and teachers, and thus their 

students. Computational thinking was not discussed during this training, although it was 

mentioned in the required reading by Martinez & Stager (2013). Scratch and Code.org, 

free resources that can be available to all students, will be reviewed in the following 

section, along with other free resources. CodeVirginia offered twenty-two such sessions 

in the summer of 2018 and seven sessions in the summer of 2017, hoping to expand 

knowledge of ways to teach CS to more elementary school teachers across the state. In 
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addition to being able to attend this PD opportunity or ones similar, teachers in RCSD are 

provided with curriculum and pacing materials to guide their content-area instruction. 

Investigations Curriculum 

 One resource provided to all elementary teachers in RCSD is Investigations. 

RCSD adopted Investigations as a district-wide math curriculum in 2009, and recently 

transitioned to the third edition of the curriculum in the 2017-18 school year. The goal of 

the curriculum, published by TERC, is to engage students in conversations about 

mathematics. Students are encouraged to explain their process, talk to classmates, and 

share the thinking and understanding behind their actions in solving math problems. The 

curriculum is more conceptual and less skills driven. The more rigorous third edition of 

Investigations has 130 lessons across eight units that expand differentiation, provide more 

extensions, and more remediation than the previous version.  

Teachers may use their current curriculum, such as that from Investigations, to 

incorporate CT instruction in their lessons, and there may be instances of CT instruction 

present currently. In the third grade Investigations teacher manual, there is a “Math Note” 

to the teacher about making generalizations (see Figure 7). This note explains to teachers 

how students are using a CT skill, without specifically mentioning CT. This type of 

instructional tip might be present elsewhere in the Investigations curriculum or in 

curricula for other content areas such as science, social studies, or language arts. 

Curriculum adopted by RCSD and used by teachers to integrate CT was reviewed as part 

of the data collection in this capstone study and discussed further in chapter four.  
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Figure 7: “Math Note”, adapted from Third Grade Investigations (TERC, 2016, p. 83) 

CT in Elementary School 

Very few research studies on computing initiatives focus specifically on CT in 

elementary schools (Israel et al., 2015). Researchers at Tufts University designed the 

TangibleK program, a series of lessons involving robotics and programming that targeted 

CT skills with kindergarteners (Bers, 2010; Bers, Flannery, Kazakoff, & Sullivan, 2014). 

They found that students who participated in the program scored higher on story 

sequencing assessments than those who did not participate. In their review of the state of 

the field of CT, Grover & Pea (2013) make no reference to studies of CT in elementary 

school, and claim that the lack of funding in computing education causes that void. Lye 

& Koh (2014) reviewed 27 studies from a search for “computational thinking” in the 

SSCI and ERIC databases. Of those 27 studies, only 9 were carried out with K-12 

students, and only 2 were of elementary students in a classroom setting.  Much attention 

is paid to CS and CT by computer scientists, but research by educational experts is 

limited (Buitrago Flórez et al., 2017). Research on CT in secondary and higher education 

has found that teaching programming, and having students writing code, is the best way 

to teach CT (Buitrago Flórez et al., 2017; Cetin & Dubinsky, 2017). Students are exposed 
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to CT during programming (Lye & Koh, 2014), but learning to program is hard, and the 

frustrations that students experience trying to use proper syntax, debugging, and learning 

a new language interferes with developing CT skills (Buitrago Flórez et al., 2017). One 

programming language in particular that works to reduce difficulties in programming 

caused by syntax is Scratch. 

CT and Scratch 

As described above, Scratch is a visual, block-based programming language 

designed with novice programmers in mind (Maloney, Peppler, Kafai, Resnick, & Rusk, 

2008). The Scratch screen (see Figure 8) and user interface make “the key concepts of 

Scratch as tangible and manifest as possible” (Maloney et al., 2008, p. 368). Users create 

programs by dragging blocks from a palette into a script area. The blocks will control 

designated “sprites,” or characters, whose behavior will be seen on the stage. Issues with 

syntax are addressed by incompatible blocks—the blocks won’t fit together if the code 

doesn’t have proper syntax (Sáez López et al., 2016).  

 

Figure 8: Screenshot of Scratch Interface. 

Buitrago Flórez et al. (2017) share a variety of other programming languages used 

to teach programming to beginners, including LOGO, Python, LEGO® Mindstorms, and 
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Alice. This literature review will limit the focus to Scratch, however, for two main 

reasons. First, Scratch is a free, open-source platform and widely supported by a growing 

body of resources (Israel et al., 2015), including those previously covered such as the K-

12 Computer Science Framework (K12cs.org, 2016) and the Computational Thinking  

Teacher Resources (ISTE & CSTA, 2011). The second reason is that Scratch is installed 

on every student and teacher computer provided by the Rockview County School 

District, and it is widely supported by members of the Department of Instructional 

Technology. The section that follows offers a brief summary of a few research studies 

where CT was studied through the use of Scratch. 

Digital storytelling and gaming. Working with one nine-year-old boy over the 

course of twenty-four weeks in an after-school program, Lee (2010) sought to investigate 

whether Scratch could allow the boy to learn CT concepts and skills while creating 

multimedia products tied to language arts projects. During the first six weeks, the boy 

learned the fundamentals of Scratch by completing simple activities under Lee’s 

guidance and instruction. However, some of the skills were not mastered during the first 

six weeks. Over the next eighteen weeks, the boy created digital storybooks or interactive 

computer games using Scratch but experienced some difficulties due to deficiencies from 

the first six weeks of the investigation. In particular, the boy had trouble with 

implementing event-driven programming and understanding variables and their 

ownership. Despite these difficulties, Lee found that Scratch was an effective 

programming environment to help the boy learn computer programming concepts and 

skills while working on technology-enriched language-arts projects. Additionally, the boy 

found the use of Scratch to be motivating and fun and was excited to create Scratch 
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projects based on his writing samples. This study is not necessarily generalizable, 

particularly to implementation on a large scale in an elementary school due to its small 

size and one-on-one nature in an informal setting, but does show the potential for Scratch 

as a tool for infusing CT into content area curriculum. 

Cross-curricular Scratch and Etoys. On a larger scale, Israel et al. (2015) 

studied the implementation of a school-wide computing initiative focusing on CT in one 

Midwestern elementary school. They collected data from seven teachers who volunteered 

to integrate Scratch or a similar platform, Etoys, into their curriculum; three special area 

teachers who taught all three hundred students in the school, three classroom teachers 

across grades 2-5 who taught one class of students each, and one enrichment teacher who 

worked with a small group of students during pull-out times.  

Although the study did not collect student data, they did find through observations 

and interviews with the teachers that the reported use of Scratch increased the 

engagement levels, problem-solving abilities, demonstration of initiative and leadership, 

and overall success of students who participated. Teacher participants also shared that 

they thought it was important for administration to support their efforts to be innovative 

as well as how the change would impact other initiatives in the school, classroom 

management, and teaching practices. Researchers suggested that future studies should 

look to align the curriculum used by teachers and provided by sites such as Code.org with 

standards from organizations like the CSTA. 

Scratch for CT concepts. In a large case study with five primary schools in 

Spain, Sáez López et al. (2016) sought to analyze acquisition of basic CT concepts in art 

and social science through the use of Scratch. Over the course of two years, 107 5th and 
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6th graders participated in 20 sixty-minute Scratch-based instructional modules focusing 

on math, science and cultural lessons, as well as specific computational concepts and 

practices such as sequencing, looping, conditional statements, parallel execution, event 

handling, user interface design, and keyboard input. Researchers used the Visual Blocks 

Creative Computing Test (VBCCT), a 40-item test with a “structured and progressive 

sequence” (Sáez López et al., 2016, p. 134) that assessed the students on CS- related 

aspects such as the use of different command blocks that demonstrate understanding of 

the coding process and creation of content-focused computer animations, games and 

creations. Students participating in the experimental group saw statistically significant 

improvements of computing concepts and practice scores from pretest to posttest of the 

VBCCT and outperformed the control group that did not participate in the intervention. 

Results suggest that curricula using Scratch can help students understand CT concepts. 

The above studies highlight the limited research available on integration of CT 

instruction in elementary school classrooms. Implementations are often small in scale, 

limited in duration, voluntary and not prioritized by supervising administration. Most 

studies used Scratch or some other similar visual coding language with students. Future 

research should focus on how teachers use available resources to prepare to teach CT in 

their classroom, and what those teachers need to know in order for their students to be 

successful at CT. 

Conclusion 

This chapter reviews definitions of CT and what should be taught, why CT should 

be taught, what teachers need to know in order to teach CT, and current resources 
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available to teach CT in elementary schools,. The chapter identifies the following key 

points: 

• Importance of CT as a fundamental skill for computer scientists is agreed upon, 

but support for its value to other domains is lacking (Denning, 2017). 

• Discussion of integration of CT into K-12 school curriculum has become a 

national and international phenomenon among CS educators and advocates (Aho, 

2011; Angeli et al., 2016; Bers et al., 2014; Brennan & Resnick, 2012; Catrow, 

2016; National Research Council, 2010, 2011; Fluck et al., 2016; Wing, 2010). 

• Understanding of best practices for instruction is developed through experience in 

teaching, collegial exchange of ideas, and reflection on successes and struggles in 

the classroom (Buchholz, Seli, & Schulte, 2013).  

• Collaboration by leaders in K-12, higher education, and industry has resulted in a 

wealth of free resources for integrating CT instruction and foundations of CS into 

K-12 curriculum (Armoni & Gal-ezer, 2014; Fluck et al., 2016; K12cs.org, 2016; 

Kumar, 2014a; Partovi, n.d.; Prottsman, 2014). 

• Research on implementation of CT integration in K-12 schools is limited, 

especially in elementary grade levels (Angeli et al., 2016; Israel et al., 2015; 

Owen et al., 2014).The Scratch programming language is a popular and somewhat 

successful tool at teaching CT skills to students. 

The literature on CT undoubtedly has gaps, particularly literature related to 

integration in grades K-6. There is an overreliance on the opinions of thought leaders in 

the field of CS to justify the value of CT, without empirical evidence to support such 

claims. There is a small body of research on ways to teach CT. The literature presented 
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here shows that resources are available for schools to integrate instruction on CT, but 

there are few empirical studies that investigate those resources or how they relate to 

standards-based educational practices. Empirical research would greatly impact the 

collective knowledge on integration of CT, particularly in elementary grades. In order for 

teachers to develop and improve practices of teaching CT and successfully integrate CT 

into content area lessons, researchers need to investigate the ways in which teachers make 

use of available resources, plan for, and teach lessons that specifically target CT skills in 

elementary classrooms.
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Chapter Three 
 
 Chapter one provided background of the problem of practice and the conceptual 

framework guiding this capstone study. Chapter two reviewed the literature relevant to 

computational thinking (CT) in elementary school classrooms. This chapter discusses the 

research methodology for this capstone study. Specifically, this chapter addresses the 

research approach, the research sites and participants, data collection methods, data 

analysis methods, trustworthiness, ethical considerations, research bias and assumptions, 

and limitations. 

Purpose and Research Questions 

 The purpose of this capstone study is to understand how elementary classroom 

teachers integrate CT into instruction. The research questions for this capstone study are 

derived from the five elements of computational thinking (Angeli et al., 2016) and 

research on CT. Specifically:  

1. How do elementary teachers in Rockview County School District integrate 

computational thinking into their instructional lessons? 

a) What elements of computational thinking are present in the lessons? 

b) To what extent is computational thinking effectively integrated into the 

instructional lessons? 

c) What activities or tasks are students engaged in that purportedly teach the 

elements of computational thinking? 
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d) What types of instructional strategies are teachers using to integrate 

computational thinking into their instructional lessons? 

2. How do elementary teachers in Rockview County School District define 

computational thinking? 

3. How do elementary teachers in Rockview County School District prepare to 

integrate computational thinking into their instructional lessons? 

a) To what extent do teachers use available computational thinking resources 

when integrating computational thinking into their instructional lessons?

b) To what extent do teachers use district and school support personnel to plan 

for instruction that integrates computational thinking into their instructional 

lessons? 

Because this capstone study examined the implementation of new state standards and the 

ways that teachers implement instruction based on those standards, teachers’ planning 

and enactment of CT lessons was the focus under investigation. 

Methodology 

 This capstone study is structured as an embedded, single-case study (Yin, 2014) 

of elementary classroom teachers in three schools in one school district attempting to 

teach lessons on new CT state standards. According to Yin (2014), case study research is 

most appropriate when “examining contemporary events, but when the relevant behaviors 

cannot be manipulated” (pg. 12). The research questions seek to answer “how” and 

“why;” thus, case study methodology is preferable to other methods (Yin, 2014). Yin 

(2014) argues that case studies should be used when you seek an understanding of an 

authentic situation, but that understanding will require attention to contextual details.  
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 A case study is defined as an “empirical study that investigates a contemporary 

phenomenon in depth and within its real-world context, especially when the boundaries 

between phenomenon and context may not be clearly evident” (Yin, 2014, pg. 16). In this 

study, the real-world context is the school and classrooms where the phenomenon of 

instruction will take place. How teachers prepare and instruct and are supported in doing 

so in one context may be impacted differently in another context, so the research 

questions are dependent on the contextual setting (Yin, 2014). The case study 

methodology provides an immersive experience for the reader to provide a better 

understanding of the relationship between the phenomenon and the context (Marshall & 

Rossman, 2011; Yin, 2014). 

Research Site, Participants, and Access 

 The focus of this capstone study was three elementary schools in Rockview 

County School District (RCSD): Rusty Falls Elementary School (RFES), Hilltop 

Elementary (HES), and Ridge Elementary School (RES). A general overview of both the 

school district and elementary schools are presented. A comparison of student 

demographics and total enrollment for RCSD and the three elementary schools is 

presented in Table 8. Research sites were selected for convenience. Administration at 

RFES, HES, and RES agreed to be a part of a pilot program in RCSD that implemented 

new CS SOLs from the VDOE that were published in November, 2017. This capstone 

study investigated implementation in three of those pilot groups. 

 

 

 



65 
 

 
 

Table 8 

Comparison of student demographics as percentage of total enrollment as of September 

30, 2018 

Category RCSD RFES HES RES 

Total Enrollment 

Male 

Female 

Black 

Hispanic 

White 

Limited English Proficiency 

Free and reduced-price 

Students with Disabilities 

14,013 

51.1 

48.8 

10.8 

13.2 

64.5 

9.6 

29.4 

12.5 

640 

51.9 

48.1 

8 

13.9 

64.4 

10 

24.7 

10.9 

482 

53.3 

48.1 

24.1 

23.2 

36.7 

19.5 

53.1 

11.6 

577 

47.1 

52.9 

20.3 

25.8 

26 

32.8 

70.9 

12.1 

Note. “Free and reduced-price” students are those who receive free and reduced-price 
meals under the federal program. “Students with disabilities” are those identified for 
special education services, from speech pathology to learning disabilities to severe and 
profound disabilities. 
 
Rockview County School District 

 Rockview County School District (RCSD) employs roughly 1,300 teachers with 

an average of 14 years of teaching experience in a large county in Virginia. Those 

teachers serve close to 14,000 diverse students, hailing from 89 different countries and 

speaking 75 different languages. The district’s 15 elementary schools (PK-5) spread 

across 726 square miles of urban, suburban, and rural areas. There is a student-to-

computer ratio of 1:1 for students in grades 3-5. 

Participant Selection 

 For the purpose of this capstone study, convenience sampling was used to identify 

the participants (Marshall & Rossman, 2011). The sampling criteria was that four third 
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grade teachers volunteer to participate in the study. The participants were selected 

because they volunteered and because of their convenient accessibility and proximity to 

the researcher. This type of convenience sampling limits the generalizability of this 

particular capstone study to the general population, but Yin (2014) argues that case 

studies are not meant to make statistical generalizations. Case study samples are too small 

for this common way of generalizing, but instead allow for analytic generalizations, 

which are opportunities “to shed empirical light about some theoretical concepts or 

principles, not unlike the motive of a laboratory investigator in conceiving of and then 

conducting a new experiment” (Yin, 2014, p. 40). Analytic generalizations, principles or 

lessons learned from case study research may still apply to a variety of other situations in 

like-cases, or in the case of this capstone study, elementary teachers integrating CT into 

content-area lessons. 

 Teachers were asked to participate through consent agreement meetings. I 

scheduled the meetings through the principals. During the meeting, I told prospective 

participants about the change in the Code of Virginia which resulted in new Standards of 

Learning scheduled for implementation during the following school year. I described the 

expectations of the participants—to teach two lessons on two different content areas that 

implemented the new standards, particularly those on CT, and also to participate in a 

follow-up interview after each lesson observation. The consent agreement meetings 

followed a script (Appendix G) which was approved by the Institutional Review Board 

(IRB) at the University of Virginia (UVA). 

Because RFES had five third grade teachers, I sought participation there first. The 

principal directed me to reach out to the grade-level leader, who invited me to attend a 
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team meeting. All five third grade teachers were present, along with the assistant 

principal. Only two teachers agreed to participate. I next went to HES, which had three 

third grade teachers. The principal invited me to attend the third grade team meeting, 

which comprised of all three teachers and the assistant principal. Initially, all three 

teachers agreed to participate, but two dropped out during scheduling. Finally, I 

approached RES, where the principal said to contact the grade-level leader directly to 

schedule the meeting. The grade-level leader invited me to attend a one-on-one meeting 

to learn about the project, and agreed to participate in the study. As a result of her 

agreement, I had successfully attained the fourth participant in the study, and did not seek 

the participation of the other third grade teachers at RES. The sections below describe 

each research site and the demographics of each participant (Table 9). Investigating how 

four teachers teach lessons across different subject areas integrating CT allowed for an 

in-depth look at each individual and the opportunity to compare practices between the 

teachers. 

Rusty Falls Elementary School 

Rusty Falls Elementary School (RFES) is located in the northern end of the 

district. RFES serves a population that is less diverse than some other elementary schools 

of similar size in RCSD. Compared to the other two research sites, RFES serves over 

twice as many white students and close to half as many students who receive free and 

reduced-price meals under federal programs. It has a similar percentage of special 

education students with Individualized Education Programs (IEP). Student achievement 

on state standardized tests at RFES for reading and mathematics have improved or been 

maintained each of the past five years. Each grade level has between five and seven 
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classroom teachers. The total enrollment of students at the beginning of the school year 

was around 700. A demographic breakdown of the student body of RFES is available in 

Table 8. RFES has 110 faculty and staff members serving students in Kindergarten 

through fifth grade. RFES feed to Central Middle School and River Bluff High School. 

Participants at Rusty Falls Elementary School 

RFES has a team of five third grade teachers. Three teachers work independently 

in their own classrooms, while two teachers teach collaboratively. This is not a self-

contained classroom with Special Education (SPED) students working with a trained 

(SPED) teacher to fulfill their Individualized Education Plans (IEP); this is a large 

classroom with two general education teachers serving twice the number of students as 

their peers. These two teachers, Sophie Horton and Carmen Sanchez, agreed to 

participate in this capstone study. 

Sophie Horton, a 27-year-old female, came to RFES from the Northeast, where 

she attended a large public university and earned her teacher licensure and a Bachelor of 

Science degree in Elementary Education. She is in her sixth year as a teacher, and her 

fourth year teaching 3rd grade at RFES. Prior to coming to RCSD and RFES, she worked 

as a K-6 Interventionist and a substitute teacher. Mrs. Horton serves as the third grade 

team leader at RFES. 



69 
 

 
 

Table 9 

Participant Demographics 

 Susie Jones Sophie Horton Carmen Sanchez Julia Beck 
Research Site HES RFES RFES RES 
College Small Private (1500) Large Public (98,000) Small Private (4,000) Medium Public (20,000) 
Degrees Earned BS Psychology BS Elementary Ed BA Art/Spanish, MA 

C&I ESOL 
BA Interdisciplinary 

Studies, MA Gen-Ed K-
3, Early Childhood 

Degrees Pursuing Maintain licensure None None None 
Licensure Through Undergrad 

minor 
Through Undergrad Through Grad, ESOL, 

Art, Spanish, General 
Ed 

Through Grad 

Current position Long term sub, 3rd grade 3rd grade 3rd grade 3rd grade 
Years of Experience 15 6 7 4 
Time in current position 1 4 4 2 
Previous assignments PE, Elem & Mid sub, 

Interventionist 
K-6 interventionist, 

elementary sub 
Photography, Art, 3-4 

teacher, sub 
1 & 2, long term sub 

Additional 
Responsibilities 

None Grade-level leader None Grade-level leader, 
website coordinator 

Age 44 27 27 26 
Gender Female 
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Carmen Sanchez, also a 27-year-old female, is from the East coast. She earned a 

Bachelor of Arts degree in Art and Spanish at a small, private school on the East coast. 

To acquire teacher licensure, she returned to her alma mater to pursue her Masters of 

Arts degree in Curriculum & Instruction for English as a Second Language (ESOL) with 

additional endorsements in Art, Spanish, and General Education. This is her seventh year 

as a teacher, and her fourth year teaching 3rd grade at RFES. Prior to coming to RCSD 

and RFES, she taught photography, Art, 3rd grade, 4th grade, and worked as a substitute 

teacher.  

Hilltop Elementary School 

 Hilltop Elementary School (HES) is one of four elementary schools that makes up 

the “urban ring” of suburban RCSD, bordering a local independent city, Rivertown. HES 

serves a population that is more diverse than most other elementary schools in RCSD, as 

is the case with all schools in the “urban ring.” Roughly two-thirds of the student 

population is non-white, and over half of the students are on free or reduced-price 

lunches. Student achievement on state standardized tests at HES for reading and 

mathematics has declined each of the past three years, falling from the low 70th percentile 

to the high 50th percentile. Each grade level has two or three classroom teachers. 

Additionally, there are two multiage classrooms at HES, one for K-2 students and one for 

3-5 students. Each multiage classroom has two teachers. The total enrollment of students 

at the beginning of the 2018-2019 school year was 482. A demographic breakdown of the 

student body of HES is available in Table 8. HES has 104 faculty and staff serving 

students in Kindergarten through fifth grade. All of the students at HES feed to Lafayette 

Middle School and River Bluff High School. 
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Participants at Hilltop Elementary School 

 HES has five third grade teachers. Two teachers work in multi-age classrooms 

and three teachers each work in their own classroom with one class of students, although 

the students do switch between those three classrooms for mathematics instruction. 

Initially, all three self-contained classroom teachers agreed to participate in this capstone 

project, but two ultimately decided not to participate. The one participant from HES was 

Susie Jones, a long-term substitute teacher. 

 Susie Jones, a 44-year-old female, is from the East coast. Ms. Jones earned a 

Bachelor of Science degree in Psychology from a small private-school on the East coast, 

and earned her teacher licensure through a minor in Elementary Education. Ms. Jones has 

fifteen years of experience as an educator, as a PE teacher, substitute teacher in 

elementary and middle school, and as an interventionist. She works consistently as a 

long-term sub in RCSD, including two different long-term substitute positions at another 

RCSD elementary school last year that spanned the course of the entire school year. She 

has been the long-term substitute of this third grade classroom since the second week of 

school, when the full-time teacher went out on maternity leave. 

Ridge Elementary School 

Ridge Elementary School (RES) is also a part of the “urban ring” of RCSD 

elementary schools. Like HES, RES serves a population that is more diverse than most 

other elementary schools in RCSD. Roughly three-fourths of the student population is 

non-white, with a similar number of students on free or reduced-price lunches. Student 

achievement on state standardized tests at RES for reading and mathematics has dropped 

over the past six years, falling from the high 50th percentile to the low 40th percentile. 
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Each grade level has between three and five classroom teachers. The total enrollment of 

students at the beginning of the 2018-2019 school year was 577. A demographic 

breakdown of the student body of RES is available in Table 8. Ridge Elementary School 

(RES) has 123 faculty and staff serving students in Kindergarten through fifth grade. Like 

HES, all of the students at HES feed to Lafayette Middle School and River Bluff High 

School. 

Participants at Ridge Elementary School 

RES has three third grade teachers. All three teachers are self-contained, general 

education classrooms. One teacher agreed to participate in this capstone project, Julia 

Beck. 

Julia Beck, a 26-year-old female, is from the West coast. She attended a medium-

sized public university on the East coast, where she earned a Bachelor of Arts degree in 

Interdisciplinary Studies. To attain her teacher licensure, she returned to her alma mater 

to pursue her Masters of Arts degree in General Education: Kindergarten through Third 

Grade and Early Childhood. Ms. Beck has four years of experience as an educator, as a 

1st grade teacher in another school district, and as a long-term substitute RCSD. This is 

Ms. Beck’s second year teaching third grade at RES. Ms. Beck also serves as the third 

grade team leader and the website coordinator at RES.  

Data Collection 

 Data sources for the case studies comprised of audio recorded observations of 

instruction, post-observation interviews, and documents (Marshall & Rossman, 2011; 

Yin, 2014). Multiple sources of data were used to increase the credibility of the findings 

of this capstone study (Marshall & Rossman, 2011; Yin, 2014). Yin (2014) argues that 
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multiple sources of data collection strengthen the findings or conclusion of any case 

study.  

Observations 

 According to Marshall and Rossman (2011), observations are fundamental to 

qualitative research. The observations occurred during instruction of the two lessons that 

the participant teacher selected to integrate CT.  

 Lesson implementation. During the classroom observations of teacher 

implementation of the lessons on CT, the researcher recorded audio and kept field notes. 

The field notes included data on the setting, the participants, activities, interactions, 

conversations, and the presence of the researcher (Marshall & Rossman, 2011). The 

classroom observation protocol, located in Appendix F, was structured to allow for strict 

observational notes as well as observer comments. The observations were geared towards 

collecting data for all research questions, but in particular 1a-d and 2a, which focused on 

instruction that integrates CT. The field notes were be taken by hand and typed the same 

day. The field notes did not include personally identifiable data to preserve the 

confidentiality of both the participants and the school. 

Interviews 

 Interviews are the most frequent type of data source collected in qualitative 

studies (Marshall & Rossman, 2011). The use of a combination of interviews and 

observations in this capstone study are representative of best practices in qualitative 

research (Marshall & Rossman, 2011). Participant teachers were interviewed twice, at the 

conclusion of each observation and the interview questions focused on collecting data for 

all six of the research questions, but particularly 2a-b. The interviews occurred after the 
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observation of the lesson taught that integrated CT. The interview was structured but 

allowed for follow-up questions and clarification. It sought to determine the participants’ 

thinking and understanding of CT and associated value with teaching CT in elementary 

schools, posed reflection questions on how the teacher planned to integrate CT, and 

questions on the implementation of the lesson. Questions also gathered demographic 

information and information about the ways that teachers were supported by school and 

district-level personnel. Initial interviews lasted between 35 and 75 minutes, and the 

second interviews lasted between 43 and 108 minutes. The interview protocol for the 

initial teacher interview is located in Appendix D, and the interview protocol for the 

second teacher interview is located in Appendix E.  

 In order to clarify information from early data analysis, I found it necessary to 

request a third interview with Sophie Horton. Data collection from Sophie Horton’s 

interviews as well as communication from her partner teacher, Carmen Sanchez, led me 

to request an additional, third interview with Sophie Horton. Ms. Horton agreed to the 

interview. Those follow-up questions were drafted prior to the interview, and focused on 

clarifying information from previous interviews and ways that the teachers planned for 

the instruction of the lessons taught as a part of this capstone project. 

All interviews were recorded and transcribed, as is best practice in qualitative 

research (Marshall & Rossman, 2011). During the transcription, all personally 

identifiable information was removed, and pseudonyms were assigned to preserve the 

confidentiality of the participants and the schools.  
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Documents & Artifacts 

 A third and final method of data collection was gathering documentation used or 

produced by study participants during the planning or implementation of the lesson 

integrating CT, such as the new SOLs (see Appendix F). Collecting documents alongside 

interviews and observations provides the opportunity for corroboration and augmentation 

of evidence (Yin, 2014).  

 For this capstone study, the documents that were collected included lesson plans, 

emails and text messages to the researcher, instructional resources used in planning, 

student resources used during the lesson, and any other document pertinent to CT and the 

CT lessons taught. The documents were logged by date and teacher in conjunction with 

the observation protocols (see Appendix H). The documents are geared toward collecting 

data for all research questions, but in particular 1a-b, 1d, and 2a. Any personally 

identifiable data was removed from the documents reviewed to preserve confidentiality 

of both the participants and the school. Documents were provided to the researcher by the 

participating teachers. 

Summary of Data Collection Methods 

 This capstone study used multiple methods of data collection. Data collected was 

be triangulated to support findings. Classroom observations of lessons integrating CT 

took place with each teacher twice during the second and third quarter grading periods. 

Following the observed lessons, the researcher interviewed teachers about the 

observation at the end of the school day, allowing for teacher reflection. Documents and 

artifacts were collected during the observation period. Table 10 outlines the relationship 

between the research questions and how the data was collected.  



76 
 

 
 

Table 10 

What I need to know, why I need to know it, and how I’m going to get it 

What do I need to know Why do I need to know this What kind of data will 
answer this question 

 
What CT knowledge do 
teachers demonstrate in their 
teaching and planning? 

 
To identify their knowledge 
about CT and determine 
ways to support development 
of that knowledge 
 

 
Classroom observations, 
teacher interview, documents 
and artifacts 

What CT instructional 
practices do teachers use to 
teach? 

To identify their knowledge 
about teaching CT and 
identify ways to support CT 
instructional practices 
 

Classroom observations, 
teacher interviews, 
documents and artifacts 

To what extent and how do 
teachers use instructional 
resources as they teach CT? 

To examine the instructional 
resources used by teachers as 
they integrate new content 
and identify characteristics of 
successful resources to 
improve instruction of CT 
 

Classroom observations, 
teacher interviews, 
documents and artifacts 

To what extent do teachers 
use district and school 
support personnel as they 
teach CT? 

To examine the support 
district and school support 
personnel used by teachers as 
they integrate new content 
and look for ways to improve 
support to improve teaching  
of CT 
 

Classroom observations, 
teacher interview, documents 
and artifacts 

 

Data Analysis Methods 

Data analysis took place simultaneously with data collection and followed the 

methods outlined by Miles and Huberman (1994). The three concurrent processes offered 

by Miles and Huberman (1994) are data reduction, data display, and conclusion drawing 

and verification. 
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Data Reduction 

 Data reduction is part of the analysis of data (Miles & Huberman, 1994). Miles 

and Huberman (1994) define data reduction as “the process of selecting, focusing, 

simplifying, abstracting, and transforming the data that appear in written-up field notes 

and transcriptions” (p. 10). This part of analysis occurred continuously throughout this 

capstone study. 

In this capstone study, I began data reduction by coding all observation and 

interview data with start codes that were developed from the research questions, the 

theoretical framework and the literature review. Creating start codes from the research 

questions, theoretical framework and literature review is the method preferred by Miles 

and Huberman (1994). Table 11 lists the start codes for this capstone study. 

 I examined the definition of CT that each teacher provided during her second 

interview. If the teacher offered a definition of CT explicitly during their first interview, I 

included the definition in the analysis. After asking teachers for their own definition of 

CT in the second interview, I provided teachers with the elements of CT as described by 

Angeli et al. (2016) and definitions relevant to elementary school teachers (Table 1, p. 2). 

After teachers had time to review the table, I asked questions about their instructional 

experiences with those five elements, specifically. I analyzed responses to explore the 

beliefs and understandings that teachers have related to computational thinking. 
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Table 11 

Start codes 

Description Code 

Computational thinking – Abstraction CT-Ab 

Computational thinking – Generalization CT-G 

Computational thinking – Decomposition CT-Dc 

Computational thinking – Algorithms CT-Al 

Computational thinking – Debugging CT-Db 

Computational thinking – Explicit Instruction CT-Ex 

Computational thinking – Implicit Instruction CT-Im 

Resources – School Support R-SS 

Resources – District Support R-DS 

Resources – Professional Development R-PD 

Resources – Instructional R-I 

Focus – Content F-Cn 

Focus – Computational Thinking F-CT 

 

Data Display 

 The reduction and display of data is essential in data analysis as it assists the 

researcher in processing large amounts of information and better leads to valid qualitative 

analysis (Miles & Huberman, 1994). Miles and Huberman (1994) suggest the use of 

matrices, graphs, charts, and networks to “assemble organized information into an 

immediately accessible, compact form so that the analyst can see what is happening and 
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either draw justified conclusions or move on to the next step of analysis the display 

suggests may be useful” (p. 11). The creation and use of displays of data are an essential 

part of data analysis that occurs throughout the iterative process.  

Conclusion Drawing & Verification 

 Conclusions, often signifying the end, are often drawn before data analysis begins 

in qualitative research. It is through the data analysis that these conclusions, making 

sense of the data to derive meaning, are strengthened and solidified (Miles & Huberman, 

1994). Those early conclusions were held lightly, as the analysis of the data leads to 

verification of conclusions.  Meanings emerging from the data were tested for their 

validity through data analysis, and the final conclusions that are drawn were verifiable 

from the data reduction and display (Miles & Huberman, 1994). 

Summary of Data Analysis Methods 

 Data collection and analysis occurred simultaneously. As data was collected 

through observations, interviews, and documents and artifacts, it was reduced using start 

codes. As data was collected and coded, displays were drawn in the forms of matrices, 

graphs, charts, and networks to assist in the organization of data that led to conclusion 

drawing and verification. This methodology for data analysis is drawn from the work of 

Miles and Huberman (1994) and summarized in Figure 9. 

In order to ensure that the process of data analysis was clear and logical, I kept an 

analytic log. This log, adapted from Miles and Huberman (1994), included reflective 

notes about field notes captured, iterations of patterns and conclusions, as well as the 

research questions, protocol for engagement with the research participants, and any other 

comments or notes that increased the quality and trustworthiness of this capstone study. 



80 
 

 
 

 

Figure 9: Components of Data Analysis: Interactive Model (Miles & Huberman, 1994, p. 

12) 

Trustworthiness 

 Cohen and Crabtree (2006) propose that qualitative research is evaluated on its 

trustworthiness. Trustworthiness is measured by the constructs of credibility, 

dependability, confirmability, and transferability (Marshall & Rossman, 2011; Yin, 

2014). This capstone study was designed to attain trustworthiness by addressing each 

construct. 

Credibility 

 Credibility is the “confidence in the ‘truth’ of the findings” (Cohen & Crabtree, 

2006).  In order to determine if the findings of a study make sense (Miles & Huberman, 

1994), Marshall and Rossman (2011) identify several techniques to maintain credibility 

in qualitative research: prolonged engagement in the research setting, data triangulation, 

and peer debriefing. In this capstone study, I spent five weeks at RFES, HES, and RES, 

observing classroom instruction that integrates CT into content-area instruction, 

interviewing teachers, and reviewing district curriculum and pacing guides.  Data was 

triangulated through observation notes, interviews, and collection of documents. Lastly, I 

shared analysis with a disinterested peer, a former doctoral classmate who worked with 
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me as an ITRT in RCSD, but not at any of the participant research sites. We discussed 

emerging trends and patterns in the data collection and how those were shaping the 

conclusions that I was drawing, asking for feedback on the way that I was interpreting the 

data. This peer debriefing served to ensure that analysis was grounded in the data. 

Dependability 

 Dependability shows that findings of the study are consistent with the data and 

that the study could be repeated if necessary (Cohen & Crabtree, 2006). Cohen and 

Crabtree (2006) suggest external inquiry audits to address dependability, while Miles and 

Huberman (1994) focus on the research questions, study design, researcher’s role, data 

collection, and peer review to strengthen the dependability of the study. In this capstone 

study, the capstone committee serves as external auditors. Additionally, as previously 

mentioned, a critical friend helped to provide insight and reliability to the data collection, 

analysis, and findings.  

Confirmability 

 Confirmability, or external reliability, of a study is the “relative neutrality and 

reasonable freedom from unknowledgeable researcher bias” (Miles & Huberman, 1994, 

p. 278). According to Cohen & Crabtree (2006), external audits, data triangulation, and 

reflexivity support the confirmability of findings in a qualitative study such as this 

capstone study. External audits were done by the capstone committee and peer 

debriefing. Data triangulation occurred through collection and analysis of data from 

multiple sources. Reflexivity was done as I reflected critically on the data and my 

analysis, to maintain awareness of biases and assumptions throughout the iterative 

process of data collection and analysis. These practices aided in assuring that the findings 
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of this capstone study were “shared by the respondents and not researcher bias, 

motivation, or interest” (Cohen & Crabtree, 2006). The analytic log kept during data 

collection and analysis was the primary method for maintaining confirmability, in an 

effort to track any potential bias, motivation, or interests on my part. 

Transferability 

 Transferability, or external validity, is the “ways in which the study’s findings 

will be useful to others in similar situations, with similar research questions, or questions 

of practice” (Marshall & Rossman, 2011, p. 252). Providing thick descriptions is a 

strategy for establishing the transferability of a study (Cohen & Crabtree, 2006). Thick 

description refers to the level of tremendous detail provided by the researcher in their 

description of observations collected during the study. In this capstone study, I used thick 

description when capturing field notes during classroom observations and interviews. 

These field notes help to ensure the external validity of the capstone study. 

Ethical Considerations 

 Marshall and Rossman (2011) argue that, when evaluating criteria for ethics, 

“reasoning must move beyond the procedural to focus on matters of relationships—with 

participants, with stakeholders, with peers, and with the larger community of discourse” 

(pg. 44). In focusing on the people who participated in capstone study, I emphasized 

respect for persons (Marshall & Rossman, 2011). Respect for persons requires that 

participants are treated like people, and not a means to an end. Their privacy, anonymity, 

and their right to participate was respected. All personally identifiable information was 

removed from documents and artifacts, and pseudonyms were assigned to each 

participant. Additionally, this capstone study is subject to the approval of the capstone 
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committee and the IRB at UVA. As is required by the IRB, each participant was provided 

with an informed consent form outlining the study and any associated risks with 

participating in the study (see Appendix I) during the consent agreement meeting. There 

were no foreseeable risks associated with the study. 

 For the purposes of this capstone study, I disclosed the purpose of the study to 

each participant, but not the research questions or any raw data from observation or 

interview field notes. Information provided to participants during interviews did not 

include personally identifiable information about other participants. Recommendations 

made in the final manuscript and Action Communication to RCSD and the VDOE are not 

specific to teachers, grade-level teams, administrators, or district-level support personnel, 

but the generalized process and findings. 

 Finally, all field notes, documents and artifacts collected physically were digitized 

during this capstone study. At the conclusion of the capstone study, those physical copies 

will be destroyed. All digital evidence, including audio recordings, transcriptions, field 

notes, documents and artifacts related to this capstone study will be encrypted and stored 

in a password-protected file on an external flash drive and locked in a fire-safe box. 

Researcher Bias and Assumptions 

 As a researcher engaging in qualitative research as a participant and observer, I 

must disclose any biases and assumptions that I have about this capstone study, as they 

will be impossible to overcome. I am a former elementary school teacher, but not in 

RCSD. I know many elementary teachers in RCSD both personally and professionally, 

which will continue after the conclusion of the study. I have a strong interest in CT and 

see the value in incorporating it into K-12 education. Lessons learned through this 
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capstone study will better prepare school and district-level support to work with teachers 

on CT integration.  

Limitations 

 There were several limitations that may have affected the results of this capstone 

study, some of which could not be fully known until the study was completed. First, 

participants who volunteered to participate in this study may have done so because of 

current understandings or classroom practices related to CT. Teachers who did not know 

what CT is may have elected not to participate. Second, my presence during classroom 

instruction may have altered the function and actions of the participants. Participants may 

have felt compelled to put forth atypical effort in order to “look good.” Third, findings 

and recommendations may be transferable to other similar research sites, but the nature of 

a case study does not lend itself to generalization across all elementary school classrooms 

in RCSD or to other schools in other districts preparing to teach CT as a part of their 

curriculum (Yin, 2014). This capstone study only focused on a small number of teachers 

at three schools in one school district for a limited amount of time. 

Summary 

 This capstone study was an embedded, single-case study of teachers at three 

elementary schools in one school district who attempted to integrate a new topic into their 

curriculum. Data collection was done through interviews, observations, and documents 

and artifacts. Data analysis occurred simultaneously to data collection and was guided by 

Miles and Huberman (1994). Analysis consisted of an iterative relationship between data 

reduction, data display, and conclusion drawing and verification. The trustworthiness of 

the study was addressed through credibility, dependability, confirmability, and 
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transferability (Cohen & Crabtree, 2006). Ethical matters were addressed through respect 

for persons and confidentiality. Researcher biases and assumptions were disclosed, and 

limitations were addressed.  
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Chapter Four 

This capstone study explored how four third grade teachers at three elementary 

schools in Rockview County School District (RCSD) purportedly integrated 

computational thinking into their teaching practices. This capstone also investigated how 

these third grade teachers used resources while planning and implementing lessons that 

integrate computational thinking instruction. The findings and recommendations that 

resulted from this case study will provide RCSD with information about its practices to 

help the organization make informed decisions. The following research questions guided 

this capstone study: 

1. How do elementary teachers in Rockview County School District integrate 

computational thinking into their instructional lessons? 

a. What elements of computational thinking are present in the lessons? 

b. To what extent is computational thinking effectively integrated into the 

instructional lessons? 

c. What activities or tasks are students engaged in that purportedly teach the 

elements of computational thinking? 

d. What types of instructional strategies are teachers using to integrate 

computational thinking into their instructional lessons? 

2. How do elementary teachers in Rockview County School District define 

computational thinking?
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3. How do elementary teachers in Rockview County School District prepare to 

integrate computational thinking into their instructional lessons? 

a. To what extent do teachers use available computational thinking resources 

when integrating computational thinking into their instructional lessons?  

b. To what extent do teachers use district and school support personnel to 

plan for instruction that integrates computational thinking into their 

instructional lessons?  

In this chapter, I first summarize the lessons that I observed at each research site and data 

collected during the observation relevant to the research questions. Then I provide 

comparisons between the observations by each teacher. After summarizing each 

observation, I make comparisons across each participating teacher at all three schools. 

Following the comparisons, I explore the findings that resulted from my data collection 

and analysis as they pertain to the research questions. I present implications and 

recommendations based on the findings in Chapter 5.  

 At the consent agreement meetings at each elementary school, teacher participants 

learned of the modification made to the Code of Virginia that added Computer Science 

and Computational Thinking, including coding, and how that addition resulted in the 

creation of the new Computer Science SOLs. Each teacher agreed to teach two lessons 

across two different content areas that integrated CT. After no less than a month from 

each consent agreement meeting, I was eager to explore how these four teachers had 

planned for and would integrate computational thinking into their instruction. The eight 

lessons that I observed were lessons selected by the teacher participants, and teachers 

planned to address computational thinking specifically in each lesson. 
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In the next section, I present a description of the classroom observed at Hilltop 

Elementary School (HES), a description of the lessons that I observed at HES, and a 

recap of the observations’ relevance to the research questions. 

Site I – Hilltop Elementary School 

I observed one third grade teacher at Hilltop Elementary School, Susie Jones. Ms. 

Jones taught in a rectangular classroom filled with natural light from a wall made entirely 

of windows facing southward. Ms. Jones’ classroom furniture was comprised of a variety 

of flexible seating options, including traditional single-student desks, group tables at floor 

and waist height for students, and seating options away from desks or tables, such as 

pillows along the window wall. The students in Ms. Jones’ class each had a Windows-

based laptop computer available to them for use during class, but students did not use 

these computers during the lessons that I observed. Two of the walls in the classroom had 

whiteboards, and one of those two walls had an interactive whiteboard as well. The 

ceiling had a stem-mounted projector for displaying video to the interactive whiteboard. 

Both observations with Ms. Jones occurred in the morning. During both lessons, in 

addition to Ms. Jones, another teacher was present to provide individual services for one 

Special Education student. That teacher did not engage with other the teacher or other 

students in the classroom during either observation. 

Observation I 

The first observation with Ms. Jones was in the fall of 2018 and lasted for 25 

minutes. There were 17 students present, and Ms. Jones taught the lesson to the whole 

group. Ms. Jones planned a lesson on computational thinking, specifically focusing on 

what she called “decompose.” In her lesson, she introduced and defined CT as “a way to 
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understand and solve problems by breaking them down and creating steps to solve them” 

(Jones, first observation) and “decompose” as “to break things down” (Jones, first 

observation). She engaged the students in two different examples about the new 

vocabulary in an attempt to make real-world connections: making a pizza and getting 

ready to go to school. She asked her students, “How do I make the pizza… what’s my 

first step” (Jones, first observation) and students gave various responses, from using flour 

to make the dough all the way to putting it into the oven. Students created steps to solve 

the problem of making a pizza, although Ms. Jones never identified this element of CT, 

algorithms, by name. 

After the vocabulary lesson, Ms. Jones projected a web-based BrainPOP Jr. 

(2019) video that the students watched for six minutes. The main characters, Annie and 

Moby, reiterated Ms. Jones’s definition of CT. This video specifically named and defined 

debugging, although Ms. Jones did not reference debugging in her lesson. After the 

video, students completed an activity where they attempted to explain a multi-step 

handshake to a partner using small steps. Her directions to the students were brief: 

So you're going to take a problem right now, which I’m going put you with pairs, 

you are gonna make a handshake that's four steps, you're gonna teach your partner 

a four step handshake… And then we’re going to talk about how you taught ‘em 

(Jones, first observation). 

Mrs. Jones told her students that they would have five minutes to complete this activity, 

but she only gave each partner ninety seconds to teach their four-step handshake. This did 

not allow for much of an opportunity for the students to engage in breaking down the 

handshake and teaching their partner the steps to perform it. At the conclusion of the 
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activity, Ms. Jones reviewed the vocabulary with her students by reminding them that 

“decompose means to break things down. So today, we broke a few things down to learn 

about computational thinking. We learned something new” (Jones, first observation). 

Then the lesson ended. 

 In this first lesson that Ms. Jones invited me to observe, she intended to teach CT 

vocabulary to her students explicitly and have them complete activities where they 

learned the skills associated with that vocabulary. During her post-observation interview, 

she described her goals of the lesson: 

What I was hoping to teach was decompose. That was the main goal. That they 

would learn to break down a task into smaller steps. And to create steps, to know 

that there were steps to solve part of the problem (Jones, first interview.) 

She only intended to teach and engage her students in decomposition. She did not 

indicate that she taught algorithms by name, nor did she recognize that she introduced 

debugging to her students through the BrainPop video. She only wanted her students 

“using computational thinking and decompose” (Jones, first interview). She did not plan 

for a lesson that integrated CT into academic content. 

Observation II 

The second observation with Ms. Jones was on a Friday two weeks after the first 

observation. The observation lasted for 25 minutes. There were 15 students present, and 

Ms. Jones taught the lesson to the whole group. Ms. Jones taught a lesson on 

cybersecurity, specifically focusing on creating strong passwords. In her lesson, she 

introduced the need for strong passwords on computers, engaged the students in 
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situations where strong passwords might be necessary and when having a “bad” password 

would cause problems: 

We do not want to use easy words about you that people would be easy to guess. 

For example, if, if, if Doug is a swimmer, ok, and everybody knows that all Doug 

does is swim. He swims five days a week and summers, on the weekends, six 

days, maybe seven days, he's always swimming, swimming, swimming, 

swimming. Do we want his password to be "Doug Swimming (Jones, second 

observation)? 

Ms. Jones also reviewed a list of guidelines for creating strong passwords (See Appendix 

J) and passed out a worksheet called “Smart Passwords?” (See Appendix K) for students 

to complete. She circulated the room and guided the whole group through completing the 

worksheet, where they created passwords for two children based off of their personal 

interests and the password guidelines: “Right, so, right, it'd be hard to figure out, so that's 

a good one. So the answer is yes. And you can write how she, we just answered those 

questions. How did Krystal choose her password” (Jones, second observation)? After 

students completed the sheet, they reviewed their answers as a whole group and Ms. 

Jones collected the worksheets. 

 In the second lesson that Ms. Jones invited me to observe, in an effort to teach 

CT, she taught a lesson on password safety. Ms. Jones said that “to do computational 

thinking with, deals with computers, which has to do with making sure they have safe 

passwords, so they can do the computational thinking” (second interview). According to 

Ms. Jones, her students were engaged in learning CT in the way that they were thinking: 



92 
 

 
 

They were thinking, it was mostly about passwords. So passwords is what they 

were thinking about. How they could use it and how they wouldn’t want people to 

break their password because [of] what they could get into and what they couldn’t 

get into on the computer. How they could keep things safe. It was more like the 

safety of it (Jones, second interview). 

She found the lesson to be a success, noticing that her students were “kind of excited 

about the passwords and they actually understood, because it’s something that they use” 

(Jones, second interview). 

 Summary of observations of Susie Jones. Susie Jones at HES taught two 

lessons where she intended for her students to engage in CT. In her first lesson, she 

introduced CT vocabulary and attempted to engage her students in discussions and 

activities where they decomposed and created algorithms. Students had very little time to 

learn or engage in CT experiences. In her second lesson, she attempted to teach her 

students the value of having strong passwords and methods to keep their passwords safe. 

There were no elements of CT referenced in her second lesson. In the next section, I 

present a description of the lessons observed at Rusty Falls Elementary School (RFES). 

Site II – Rusty Falls Elementary School 

I observed two third grade teachers at Rusty Falls Elementary School, Sophie 

Horton and Carmen Sanchez. Ms. Horton and Ms. Sanchez team-teach together in a large 

classroom that takes on an irregular shape because it was a repurposed office space after 

school renovations. Figure 10 shows a diagram of the room. All four of the observations 

at RFES took place in the northern section of the room. Ceiling lights in the hallway 

illuminate the northern section of the room through the windows that make up the top-
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half of the walls around the room. The lights in the classroom were off during all four 

observations. The focal point of this section of the room is the 65” interactive display on 

a mobile cart. Students who participated in the lessons that I observed sat on the floor in 

front of this display, while the teacher sat in a chair to the left of the display, facing the 

students. All students in the classroom had a Windows-based laptop computer available 

to them for use during class, and the students observed during the four observations all 

used their computers for the entirety of the lessons. During each observation, the other 

teacher was in the room but working with other students out of view of the researcher and 

the lesson participants. 

 

Figure 10: Diagram of classroom in Rusty Falls Elementary School 

Observation I – Sophie Horton & Carmen Sanchez 

I observed Ms. Horton and Ms. Sanchez at RFES two times each, individually. 

However, the content taught and instructional strategies used by each teacher during their 

first lessons were the same. Ms. Horton’s observation was on a Friday and lasted 25 

minutes. Ms. Sanchez’s observation was at the same time on the following Monday, and 

it lasted 30 minutes. Both teachers taught lessons to a small group of students (four by 

Ms. Horton, six by Ms. Sanchez) on synthesizing text about Ancient Egypt. Teachers 
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guided students in reviewing notes that they had previously written about Ancient 

Egyptian Pharaohs and transferring the main idea of those notes onto a slide show on 

Google Slides, a cloud-based presentation platform: 

And what we’re going to do today, since we have synthesized one paragraph from 

our article, we're going to write that one sentence that we wrote in our research 

folders. We're going to type that into our Google Drive document (Horton, first 

observation). 

Students had to add a picture to the slide by searching within Google Slides and add 

captions with different styles of fonts: 

So I really like how Erik has a picture here. Somebody had, oh, and I see that 

umm, Erik added a little, a brief caption here too. I would like to challenge 

everybody to add at least one picture to your slides, to each of your slides, and to 

add a caption to explain the picture (Sanchez, first observation). 

Teachers observed students working independently and provided support as needed, 

either by getting up from the seat and moving to the student to see what they were doing 

or needed help on (Horton) or by displaying the student’s presentation on the interactive 

display and speaking to them from their seated position (Sanchez). The observations 

concluded with the teachers telling students that they were out of time, and that they 

would continue working on this later.  

In the post-observation interview with Ms. Horton, she said that her lesson 

addressed CT through technology integration: 

Well, I would say, from my understanding of what computational thinking is, that 

we integrated technology into our lesson on this topic of Ancient Egypt, in a way 
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that we weren’t trying to do too many skills at once… We had already 

synthesized our information and we were just simply focusing on the digital side 

of putting that information into another format. So, I would say that they had to, 

they had to navigate the digital tools of Google Drive through that lesson in 

various ways (Horton, first interview). 

Ms. Sanchez shared a similar notion as her partner-teacher, reporting that students 

engaged in CT by “writing on the computer, creating a new project from something else” 

(Sanchez, first interview). Both teachers taught the same lesson and shared similar ideas 

about the ways that they integrated CT into the lesson. 

Observation II – Sophie Horton 

 My second observation with Ms. Horton at RFES was on the first Wednesday 

after her previous observation at 9:50 AM. The lesson lasted for 27 minutes. Ms. Horton 

led a small group of six students through a lesson on graphing using Google Sheets, a 

cloud-based spreadsheet platform. She began by showing a bar graph to the students and 

asked them questions about what information could be determined from the graph: 

And it's cool because if I take my mouse and I actually hover over Hot Dogs up 

top here, it should... yeah, there we go. How many people ate hot dogs, at, let's 

say it's at a fair. How many people ate hot dogs at the carnival or the fair (Horton, 

second observation)? 

Students completed multi-digit addition and subtraction problems with teacher guidance 

aloud on the interactive display using formulaic problem-solving strategies, such as “part-

part-total.” As a group, they created their own bar graph using made up numbers and 

categories. She said to her students, “Ok. So let's come up with three new categories that 
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we want to make together. Can someone think of a topic that you feel like might be 

something is interesting to third graders right now” (Horton, second observation)? Ms. 

Horton walked the students through the steps of using Google Sheets to create a table 

with the categories and numbers and convert that table into a bar graph: 

Alright, so now, for us to make the graph, what we have to do is on your 

mousepad, and this probably would be easy to do with two hands, you're going to 

click in A1 and drag your fingers so that you highlight in the little, it kind of turns 

like a blue grey, you're going to highlight through B3, so that all of your numbers 

and words are highlighted and it will look like this (Horton, second observation).  

She concluded the lesson by telling students that it was time to stop and that they would 

return to this next time.  

 When I asked Ms. Horton what about the second lesson specifically addressed 

CT, she said that she wanted her students to learn “all the ins and outs of the spreadsheet, 

and how you can, you can do more with it than what you might think because there’s a 

lot that’s not seen that you can do” (Horton, second interview). She also said that the 

students were engaged in CT because they were “using the screen, so that was another 

piece of technology” (Horton, second interview), referring to the interactive display that 

she used to show her computer screen to the students. She continued, “So they were able 

to look at the screen during the lesson in order to see the sample graph that I created, and 

in order to analyze the graph” (Horton, second interview). Ms. Horton did not refer to any 

elements of CT when sharing her goals of CT integration in this particular lesson. 

 Summary of observations of Sophie Horton. In the two lessons that Ms. Horton 

taught, there were no references to elements of CT present in either lesson. She attempted 
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to engage students in CT through technology-enhanced lessons using Google Slides and 

Google Sheets. Data from Ms. Horton’s interviews did not contain references to the 

elements of CT. 

Observation II – Carmen Sanchez 

 My second observation with Ms. Sanchez at RFES was on a Thursday at 1:15 

PM, ten days after her first observation. The observation lasted for 45 minutes. Ms. 

Sanchez walked a small group of six students through a paper-based resource from the 

book Coding Games in Scratch (Woodcock, 2016). Each student had their laptop and a 

nine-page color copy of the section in the book on “How to build Star Hunter,” a 41-step 

guide to create a game using Scratch (See Appendix K). At the beginning of the 

observation, Ms. Sanchez led the students to open Scratch on their laptops and provided a 

brief explanation of the layout of the program: 

These are our pieces of code that we're going to be using here. So if you look here 

at the blue blocks, these are the blocks that will help your sprite move. So that's 

why it’s titled motion here. Click on where it says looks. These are the purple 

blocks. And this will change how your sprite is, what it looks like. So you can 

change its color, its size, things like that (Sanchez, second observation). 

Then Ms. Sanchez and the students worked through the steps together. Ms. Sanchez’s 

instruction came almost entirely from the photocopied guide as she read the steps 

synchronously with the students, “We’re going to go to step 8. That’s the purple step on 

page 24. And this is where we get to rename our sprite so that it doesn't just stay Sprite2” 

(Sanchez, second observation).  
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During the observation, the ITRT at RFES, Catherine Day, entered the classroom 

and joined the students on the floor, offering support to them as they worked through the 

steps. Ms. Sanchez also spent some time circulating the room, checking in on the students 

as they worked: 

Did you, maybe you didn't attach your sound? [Troubleshooting for student 

silently] Hit ok. That’s because, ok, Lula, is yours linked? Yeah, you might need 

to go to sounds. It says bubbles, oh, yours is playing. Yeah, you can hear it. Is it? 

Oh, you might need to do the volume up here (Sanchez, second observation). 

She modeled following the step-by-step directions on the handout but the students were 

primarily engaged in following the steps of the handout themselves and did not pay much 

attention to their teacher. If they encountered an issue, they might ask either of the adults 

for help, but Ms. Sanchez did most of the talking throughout the observation, reading the 

handout aloud for the students, “Look on step 12. You should be looking on your paper. 

What three blocks do you see that are making up step 12? What color is that” (Sanchez, 

second observation)? After the students got through Step 17, Ms. Sanchez informed them 

that this was all that they had time for today, and taught them how save the program file 

to their desktop. After she visually verified that everyone had saved their files, students 

transitioned to the next classroom activity.  

 During the second interview, Ms. Sanchez stated that she aimed for her lesson on 

Scratch as a way to integrate CT into her instruction. She intended for her students to 

engage in thinking “like a computer, following steps like a computer would and coding in 

general. And having kids work through a sequence of events to make a certain action 

happen on their computer” (Sanchez, second interview). According to Ms. Sanchez, this 



99 
 

 
 

second lesson addressed CT because students had to “think like a computer, like, so they 

had to make sure all their code was lined up correctly” (Sanchez, second interview). She 

attempted to engage her students by leading them through the directions on “How to 

build a Star Hunter” game. 

 Summary of observations for Carmen Sanchez. The first lesson that I observed 

for Ms. Sanchez where she attempted to teach CT engaged her students in creating a 

Google Slides presentation based off notes on Ancient Egypt. There were no elements of 

CT referenced in this lesson, nor did Ms. Sanchez reference the elements during her first 

interview.  

The second observation for Ms. Sanchez was a teacher- and handout-led creation 

of a game using the Scratch coding program. There were no elements of CT explicitly 

named or referenced by Ms. Sanchez in this lesson. Students had the potential to engage 

in the use of algorithms and debugging while using Scratch, but did not. In the next 

section, I present a description of the lessons observed at Ridge Elementary School. 

Site III – Ridge Elementary School 

 I observed one third grade teacher at Ridge Elementary School, Julia Beck. Ms. 

Beck taught in a trapezoidal room with two large windows in the back and a variety of 

seating options for the students, including group tables of a variety of shapes and heights. 

Students could stand or sit in chairs, stools, on pillows or on the floor at the various 

different tables. The students in Ms. Beck’s class each had a Windows-based laptop 

computer available to them for use during class, but the students did not use these 

computers during the lessons that I observed. In the corner of the room was an interactive 

whiteboard and a projector, with a carpet under the projector for students to sit on while 
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engaged in content displayed on the board. There was some blank whiteboard space next 

to the interactive whiteboard, shelves with instructional materials covered the remaining 

wall space. Both observations with Ms. Beck occurred at 1:30 in the afternoon. During 

both observations, in addition to Ms. Beck, another teacher was present to provide 

individual services for one Special Education student. That teacher did not engage with 

other the teacher or other students in the classroom during either observation. 

Observation I 

 The first observation with Ms. Beck was on a Tuesday. The observation lasted for 

50 minutes. She taught the lesson to the whole group of 16 students. Ms. Beck began the 

lesson by projecting a graphic to the students on computational thinking (see Figure 11) 

that defined the terms “decomposition,” “abstraction,” “pattern recognition,” and 

“algorithmic design.” Ms. Beck then hung up a hand-made poster with those same terms, 

a pronunciation, a simplified definition, and an example (See Figure 12). She spent the 

first ten minutes of instruction reviewing these new vocabulary words: 

Where have you got or had a problem before and you've need to breaking it down 

into smaller pieces? I’ll give you 30 seconds of think time. When have you had a 

big problem and you've had to break it down into smaller chunks to be able to 

solve it? I’ll know you're ready when you have a thumb on your heart (Beck, first 

observation).  

Ms. Beck used instructional strategies such as “mirror me,” where students repeated after 

the teacher and “turn-and-talk,” which allowed students to talk to their classmates about 

their understanding of the new vocabulary.  
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Figure 11: Computational Thinking instructional graphic from 

ComputationalThinkers.com 

 

Figure 12: Computational Thinking chart paper definition with examples and pictures 

Over the next ten minutes, Ms. Beck explained to students that they would be 

playing “The Game with No Rules,” distributed associated materials, and helped students 

to get organized in order to begin the activity. The “Game with No Rules” involved 
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students using the Computational Thinking Kit from a Code.org unplugged activity on 

computational thinking (See Appendix M). Following instructions on the kit, students 

were supposed to figure out how to play a game by examining examples of previous play 

by fictional students. Ms. Beck explained the game with an example: 

Each player said "I chose a" and then they chose something. Ok. This one, the 

Player One chose a lion, Player Two chose a donkey, and Player Three chose a 

puppy. Huh, interesting. All different things. So what am I going to do with lion, 

donkey and puppy? If I’m circling what's the same, what am I going to do with 

what's different? What did I say? The instructions are on the board. What am I 

going to have to do with what's different? You're circling what's the same, what 

are you going to do with what's different (Beck, first observation)? 

Ms. Beck uses the terms “pattern matching” and “abstraction” as they are included in the 

instructions on the kit. For the next twenty minutes, Ms. Beck circulated the room, 

visiting the small groups of students who were working to play “The Game with No 

Rules.” Students constantly requested support from the teacher, asking questions about 

what they were supposed to do and if they had completed the sheet correctly, eager to 

move onto the next steps where they got to draw pictures. For example: 

Ms. Beck: Alright, so look up here. You're not writing anything yet, you're only 

circling and underlining. So write your name at the top. 

Student: I'm choosing a cheetah. 

Ms. Beck: So you're not choosing anything yet, because you are circling and you 

are underlining. So these, these are already done for you. These are the same. So 

if they're different, you underline. And if they become the same, then you circle 
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again. You're looking for patterns. What don't you understand? So those are all 

the same, and you underline them. If they're the same, you circle them. Did you 

hear my words (Beck, first observation)? 

Most groups asked many questions about what they were doing and appeared confused 

about what they were supposed to be doing with the kit from the onset of the activity. 

 To wrap up the lesson, with ten minutes left, she asked the students who have 

finished to turn in the kit to the language arts bin, or to put it into a folder to complete it 

later independently. The students returned to the carpet where they reviewed the four new 

CT vocabulary words they learned and she repeated the definitions to them: abstraction, 

pattern matching, decomposition, and algorithms. She asked the students what they did 

during the activity to engage in each of these four components of computational thinking. 

When asked how students “did a list of steps” (Beck, first observation), one student 

offered this explanation:  

Like you would, at first you rolled the dice, and then you next you do, write what 

you did and then you, then you could, I thought you could actually draw the thing 

on the animal. Finally you could show the teacher (First observation). 

At the conclusion of the lesson, she asked students to talk to a partner about what they 

learned today. She circulated the room, listened to their answers and asked questions 

about their responses. One student said that he learned “you could separate it by circling 

it and underlining” (First observation). When speaking to Jodi and Geneva, she reminded 

them of the task at hand: 

Ms. Beck: We're talking about one thing you learned when you were playing this 

game with no rules. 
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Jodi: I learned... that you can draw things on animals. 

Ms. Beck: Sure, yeah. What'd you learn Geneva? 

Geneva: I was going to say the same thing as Jodi (First observation). 

Finally, she called on two students to share what they had learned: neither student said 

anything related to computational thinking. 

 During her post-observation interview after this first lesson, Ms. Beck shared that 

intended for students to engage in the CT that she defined in class: Abstraction, 

decomposition, pattern matching, and algorithms. Ms. Beck attempted to teach CT 

vocabulary explicitly in this lesson. She tried to engage students in learning CT through 

vocabulary instruction and by completing activities to practice abstraction and 

generalization through the Computational Thinking Kit, but student did not understand 

what to do. 

Observation II 

The second observation with Ms. Beck was on Tuesday one week after the first 

observation. The observation lasted for 45 minutes. Ms. Beck taught the lesson to the 

whole group of 16 students. Ms. Beck began the lesson with her students seated on the 

carpet to review their computational thinking vocabulary words that they learned last 

week (see first observation above): 

Ms. Beck: So in the morning message this morning, I said we were going to 

review some vocabulary. Raise your hand if you remember what kind of 

vocabulary we're going to review. Luis? 

Luis: We were going to learn about algorithms. 
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Ms. Beck: We were going to learn about it for the first time or are we gonna 

review? 

Luis: We're going to review algorithms. 

Ms. Beck: Ahh, nice. So Algorithm was one of them. What else (Second 

observation)? 

She redefined the terms and asked students to talk to partners about how this vocabulary 

applied to the real world. For the first ten minutes, she circulated around small groups on 

the floor to engage with students as they discussed the CT vocabulary. Students shared 

that they might use these CT skills when playing video games or making fish food.  

After ten minutes, she grouped students up and explained to the class that they 

would be using their knowledge of folk tales and the activity they did last week, the 

“Game with No Rules,” to create a story game, the “Create-Your-Own-Story ROUGH 

DRAFT” (see Appendix O). She spent five minutes reviewing different types of folk tales 

before distributing a packet to each student that they would use to create the story game. 

During the next thirty minutes, groups of students worked to create lists of six characters, 

settings, problems, and solutions that would be found in their groups’ selected type of 

folktale while Ms. Beck circulated the classroom, supporting students by explaining 

directions and offering encouragement on the choices that they had made based on their 

selected folktale. None of the student groups completed their lists during the observation, 

so they never got to the computational thinking part of the activity. The lesson ended 

rather abruptly when Ms. Beck rang a bell to get students’ attention without warning and 

told students that it was time to turn in their packets to her and clean up the room. 
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 Ms. Beck described the lesson as “a mix of computational thinking as well as folk 

tales” (Beck, second interview). In addition to reviewing the language arts content that 

students have learned related to folktales, she wanted to make CT relevant to her 

students: 

[This lesson gave] students an opportunity to practice all of their computational 

thinking skills that we’ve been using. So basically, the computational vocabulary 

we’ve been working on, I wanted them to be able to apply that to real world 

situations. That’s why I started the lesson off with talking about how they use it in 

the real world (Beck, second interview). 

Besides reviewing the same CT vocabulary from her first lesson to make real-world 

connections, students spent all of the activity time building their lists of story elements 

for folk tales. Ms. Beck recognized that her lesson fell short of her objective. She 

lamented the lesson “took longer than anticipated, so they didn’t get through the whole 

lesson. They got through maybe a third of it today… Originally, I had hoped to have a 

closing time where we can reflect on what we had done” (Beck, second interview). 

When asked how the lessons that she taught for this capstone project integrated 

CT, she listed her four component parts and described the ways that students were doing 

those things by reiterating what the definition was. For example, the ways students were 

using algorithms in the first lesson: 

Being able to reword it in steps, like when Steve reworded in steps and said 

‘Well, first you pick and animal, and then you roll the dice, and then,’ so he could 

already tell the progression of how it need to be. (Beck, first interview).  

She gave another example for decomposing: 
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I think one of my students, Luis, said it really well. He said ‘Well just getting this 

problem was really complicated, but then when you said ‘Well, just circle what’s 

the same and underline what’s different,’ that was a small problem that they 

could… it was more manageable to do than just like, ‘Here, figure this out. 

Giving them an actual game with no rules, then that would be really tricky 

because then you like, have to figure out all the pieces, but giving that like, brief 

step into like, okay, this is what you do first (Beck, first interview). 

Ms. Beck was aware of the ways that some of her students were engaged in 

computational thinking the way that she defined it and the way that she had planned for 

it. Ms. Beck attempted to teach abstraction, generalization, decomposition, and 

algorithms through two lessons, albeit with slightly different terms.  

 Ms. Beck taught two lessons; one in which she tried to teach computational 

thinking vocabulary explicitly and provided students with an activity intended to engage 

them in a computational thinking task; and one that focused on language arts content but 

included a review of CT vocabulary from the first lesson. She intended for students to 

engage in CT skills through an activity that was similar to that of the first lesson, but 

students did not have enough time to reach that point in the lesson’s activity. 

Summary of Findings 

 The problem of practice that I sought to address through this capstone study was 

how to help teachers implement new standards for CT and infuse the instruction into their 

lesson. This capstone study explored how four third grade teachers in RCSD would plan 

for and teach two lessons that integrated CT into their instruction. The findings of the 

case study are the outcome of careful, rigorous analysis guided by the research questions 
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(Miles & Huberman, 1994). In this section, I present the findings (see Table 12) and the 

data analysis that led to them. 

Table 12 

Summary of Findings 

Finding Research Question 
1 Only three of the eight lessons taught by teachers in RCSD as a 

part of this capstone study contained elements of CT. Each of 
the three touched upon one or more element of CT identified by 
Angeli et al. (2016) to varying degrees and collectively touched 
upon all five elements. 
 

1a-b 

2 Teachers whose lessons contained elements of CT used direct, 
didactic instruction in order to integrate CT into their 
instruction. Teachers focused on helping students understand CT 
terms and vocabulary by relating the concepts to students’ 
everyday lives. 
 

1c-d 

3 Teachers in RCSD did not have a common, shared 
understanding of the meaning of CT as defined by the elements 
identified by Angeli et al. (2016) or otherwise. Teachers 
suffered from definitional confusion related to CT and struggled 
to make sense of their own interpretations of CT, even when 
provided with concrete definitions and relevant examples. 
 

3 

4 The lessons that touched upon elements of CT were taught by 
two teachers who used CT resources. Resources include lesson 
plans, articles, graphics, and instructional videos. Two teachers 
who did not touch upon elements of CT did not use CT 
resources. 
 

2a 

5 One teacher who taught lessons that touched upon elements of 
CT used district support personnel. Those personnel accessed 
and modified CT resources and co-planned the lessons with the 
teacher. 
 

2b 

 
Finding One: Only three of the eight lessons taught by teachers in RCSD as a part 
of this capstone study contained elements of CT. Each of the three touched upon 
one or more element of CT identified by Angeli et al. (2016) to varying degrees and 
collectively touched upon all five elements. 
 

The first finding of this capstone study relates to the elements of computational 

thinking (Angeli et al., 2016) that were present in the lessons observed, which addresses 
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research question 1a-b. These questions inquire about the elements of CT present and the 

extent to which they are integrated into the lessons. Only three of the eight lessons taught 

by teachers who participated in this capstone study directly addressed elements of CT. 

Within those three lessons, I identified at least one instance of instruction for each 

element of CT. Table 13 provides a summary of the number of elements coded per 

teacher in each lesson and interview. 

Susie Jones taught one lesson where she attempted to teach decomposition 

vocabulary explicitly. Her lesson also contained implicit instruction of algorithms and an 

instructional video that she showed her students had explicit instruction in debugging. 

Julia Beck explicitly taught abstraction, generalization, decomposition, and algorithms 

vocabulary to her students in each of her lessons. Sophie Horton and Carmen Sanchez did 

not integrate CT into their lessons.  
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Table 13 

Instances of start codes related to CT instruction referenced in lessons and interviews 

 Jones  Horton  Sanchez  Beck 

Start 
Code L1 I1 L2 I2  L1 I1 L2 I2  L1 I1 L2 I2  L1 I1 L2 I2 

CT-Ab 0 0 0 0  0 0 0 0  0 0 0 0  6*+ 2 3*+ 2 

CT-G 0 0 0 0  0 0 0 0  0 0 0 0  6*+ 3 4*+ 2 

CT-Dc 17*+ 4+ 0 1  0 0 0 0  0 0 0 0  5+ 1 3+ 2 

CT-Al 10*# 1# 0 0  0 0 0 0  0 0 0 1  5+ 1 4+ 2 

CT-Db 2^ 0 0 0  0 0 0 0  0 0 0 2  0 0 0 0 

CT-Ex 7 3 0 0  0 0 0 0  0 0 0 0  2 1 4 1 

CT-Im 10 1 0 0  0 0 0 0  0 0 0 3  1 0 3 0 

F-Cn 0 0 1 0  1 1 1 1  1 1 1 1  0 0 1 1 

F-CT 3 3 0 0  0 0 0 0  0 0 0 0  4 2 1 1 

Note. Start Code definitions found in Table 11. L1 = First Lesson; L2 = Second Lesson; I1 = First Interview; I2 = Second Interview; * 
= Student Engagement; + = Teacher Provided Definitions; ^ = Video Provided Definitions; # = Referenced Indirectly. 
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Finding Two: Teachers whose lessons contained elements of CT used direct, didactic 
instruction in order to integrate CT into their instruction. Teachers focused on 
helping students understand CT terms and vocabulary by relating the concepts to 
students’ everyday lives. 
 
The second finding of this capstone study explores the instructional methods, activities 

and tasks that teachers used to integrate computational thinking into their instruction, 

which addresses research questions 1c-d. Of the two teachers who included elements of 

computational thinking into their instructional lessons, the primary method of instruction 

was through direct, didactic instruction that focused on helping students understand CT 

terms and vocabulary, as well as relating the concepts to students’ everyday lives. For 

example, Ms. Jones told her students the vocabulary that she wanted them to learn and 

defined it for them. She directed them in whole-group activities to make the vocabulary 

meaningful to them, and practiced the skill of breaking down a problem and creating 

steps to solve it. Table 13 shows the number of times that an element of CT was 

referenced in a lesson. The symbols in the table indicate if the teacher provided 

definitions of the element and if the students engaged in an activity related to that 

element. An example of student engagement from Ms. Beck’s class was asking the 

students to discuss with a partner when they had created a list of steps (algorithms) or 

broken down a problem to make it easier to solve (decomposition). 

Finding Three: Teachers in RCSD did not have a common, shared understanding of 
the meaning of CT as defined by the elements identified by Angeli et al. (2016) or 
otherwise. Teachers suffered from definitional confusion related to CT and 
struggled to make sense of their own interpretations of CT, even when provided 
with concrete definitions and relevant examples. 
 

The third finding of this capstone study reviews the ways in which teachers under 

investigation defined computational thinking and how that definition compared to the 

elements of CT identified by Angeli et al. (2016). Based on the field notes and transcripts 



112 
 

 
 

from my observations and interviews, I found that the teachers primarily confused CT 

with general technology use or how well someone is able to perform certain tasks on a 

computer. The following section describes how each teacher defined CT in their 

interviews and teaching.  

Susie Jones 

In her first lesson, Ms. Jones planned to teach computational thinking explicitly, 

and she defined it for her students as “a way to understand and solve problems by 

breaking them down and creating steps to solve them” (Jones, first interview). Her 

second lesson did not target CT, and instead focused on the importance of and ways of 

creating strong passwords. During the second interview with Ms. Jones, which came two 

weeks after her first observation, Ms. Jones defined CT as “the way you use technology 

to help you do your thinking like a computer” (Jones, second interview). This definition 

differs from that which she provided to her students during her first lesson and requires 

the use of technology for computational thinking.  

During her second interview, I gave Ms. Jones a copy of the elements of CT 

identified by Angeli et al. (2016) and examples of each element as could apply to 

instruction in third grade (Table 1, p.2). After reviewing the table, Ms. Jones provided 

general examples of the ways that her students learn and practice skills of CT that did not 

differ from the examples in Table 1. For example, she said that they learned 

generalization “in math with different patterns,” and abstraction in “a lot of different 

ways, even with reading. Also, in math, with geometry and 2D/3D shapes” (Jones, 

second interview). These examples are very similar to the examples provided in Table 1. 
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During her second interview, Ms. Jones did not offer examples of the ways that her 

students learned and practiced CT skills besides those already given to her. 

The data collected suggest that Ms. Jones was unsure about computational 

thinking. Her two lessons each demonstrated a different understanding of CT, and the 

definition that she gave in her interview shows further variance. Her understanding of CT 

sometimes included basic technology use. 

Sophie Horton 

Ms. Horton demonstrated an understanding of CT that equated it to general 

technology integration into instruction. For example, when asked what CT she wanted me 

to see in her first lesson, she said that she “planned for [me] to see how the kids access 

their documents on Google Drive… inserting pictures and adding captions” (Horton, first 

interview). To her, students were engaged in CT by using their laptops and putting their 

notes into a digital format. This relates to basic technology use. 

When asked how she defined CT during the second interview, Ms. Horton’s 

response varied across two different themes within technology use. The first theme was 

on how technology can enhance learning; “whoever is using the technology, just how 

they are using it to enhance their… goal. And how… they are using it in a way that’s 

different” (Horton, second interview) than traditional paper-and-pencil schoolwork. 

Troubleshooting is another theme of CT for Ms. Horton, specifically how the users of the 

technology: 

Solve the small problems that arise from using technology along the way… and 

what skills do they need in order to problem-solve something that they stumble 
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upon while they’re working, and can they remember to click the undo button if 

they’ve accidentally deleted (Horton, second interview).  

Ms. Horton’s understanding of CT related to these two themes, technology to enhance 

learning and troubleshooting, was evident in the lessons that she chose to teach, during 

which she sought to enhance students’ learning experiences by moving them to a digital, 

collaborative workspace such as Google Slides and Sheets. 

When asked during her second interview to review the elements of CT and 

examples (Table 1, p.2) and to provide examples of the ways that her students learn and 

practice skills of CT, Ms. Horton’s answers focused primarily around her class’s focus on 

Maker Education. Maker Education encourages teachers to promote student awareness of 

the way the world around them is designed, and promotes the idea of tweaking, tinkering, 

modifying or hacking that design to improve it (MakerEd, 2019). In the past, teachers in 

RCSD have been encouraged to integrate Maker Education into their classrooms. Ms. 

Horton said that generalization, decomposition, and algorithms are each a part of their 

Maker curriculum. Ms. Horton did not describe how any of these elements of CT related 

to the use of technology despite her own provided definitions of CT that involved 

technology use. 

Carmen Sanchez 

Ms. Sanchez’s understanding of CT demonstrated through her first lesson 

observation and interview was in line with that of her co-teacher: CT is equivalent to 

general technology use and the creation of something using technology. Ms. Sanchez 

deviated from her co-teacher for her second lesson and the responses during Ms. 

Sanchez’s interview showed a shift in her thinking from her first lesson and interview. 
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When asked how the lesson specifically addressed CT, Ms. Sanchez referenced a learning 

standard. She said the lesson addressed CT in the way that it “hit the specific standards, 

talking about having kids think like a computer, following steps like a computer would 

and coding. In general, having kids work through a sequence of events to make a certain 

action happen on their computer” (Sanchez, second interview). To her the students were 

engaged in CT by thinking like computers: 

They had to think like a computer, so they had to make sure that all their code was 

lined up correctly. Otherwise, their actions wouldn’t happen. So yeah, so they just 

had to think about the commands exactly that they needed to use in order to make 

what they wanted to happen, happen (Sanchez, second interview). 

This idea of CT as thinking like a computer differs from her original opinion that she 

previously shared during her first interview, that CT was related to general technology 

use and the creation of digital artifacts. 

Ms. Sanchez continued to refer to an unspecified learning standard. While still 

describing the ways that she believed her students were engaged in CT throughout the 

lesson, Ms. Sanchez offered her own definition of CT: 

Yeah, so I guess what I’m understanding, at least from the standards, of what 

computational thinking is, would be where kids are, I guess, from what the 

standards are saying, is it’s where you’re thinking or acting like a computer 

would, by following steps and creating sequences of events that would happen 

based on your actions. And that’s what they were doing in order to create this 

game. In order to be able to create a product that they wanted to do (Sanchez, 

second interview).  
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Something about Ms. Sanchez’s understanding about CT had changed between her two 

observations, but she was not without some level of uncertainty between her prior 

convictions and her newly evolved understanding. When asked why she chose to teach 

this lesson, she said that “this lesson really [did] embody what computational thinking is, 

of thinking like a computer, of creating something really cool with a computer” (Sanchez, 

second interview). She maintains the idea that CT involves the creation of something 

through technology use, even as she begins to see it as something more. 

When asked to define computational thinking, Ms. Sanchez referenced standards 

again, but this time, the Virginia SOLs specifically. She indicated that she tried to look up 

the definition of CT in the third grade SOLs but could not find it: 

Computational thinking is not defined in the 3rd grade Standards of Learning! 

You have to go to the one that’s K-12 and then they have this brief little message 

about what computational thinking is. So I did a little research online, just to kind 

of clarify if I knew what it meant. But I kind of feel like it has something to do 

with having kids think like a computer (Sanchez, second interview) 

She was unable to find a definition of CT when looking at the state-provided resource for 

her grade level and had to look elsewhere. The use of resources will be reviewed below 

in the discussion of the fourth finding. 

Ms. Sanchez was aware of her own definitional confusion about CT, recognizing 

that her prior assumptions about the topic may not have been accurate, but she still was 

not sure. While still struggling to define CT in the interview, she wondered if her 

“understanding is correct, and [she’s] not sure if it is honestly, it’s just literally from what 

[she] read, that computational thinking is different, different than, in general, just 
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working on the computer” (Sanchez, second interview). Even after reading a definition of 

CT from the Virginia SOLs for Computer Science and doing her own research online, she 

still was not sure if CT was more than just working on the computer. Her prior 

conceptions were so strong that even evidence to the contrary was not enough for her to 

overcome them.  

Ms. Sanchez said that her prior understanding of CT was having students 

“creating artifacts or projects, you know, having kids be able to know how to turn a 

computer on and problem solve [re: troubleshoot] when your internet’s not working or 

being good digital citizens. Things like that” (Sanchez, second interview). At this point in 

the interview, she claimed that she no longer held that belief, instead moving onto the 

idea that CT is thinking like a computer. Earlier still, she held onto another idea, that 

computational thinking relates to addition and subtraction. Ultimately, prior knowledge 

of my previous position in RCSD as an ITRT influenced Ms. Sanchez to believe that I 

was not “writing [my] thesis on addition and subtraction” (Sanchez, second interview). 

That prior knowledge of my profession led both Ms. Sanchez and her co-teacher, Ms. 

Horton, to the conclusion that “maybe it’s something related to computers” (Sanchez, 

second interview). This hints at the ways that both teachers at RFES may have developed 

their ideas about CT. 

Ms. Sanchez’s understanding of CT demonstrates tremendous ambiguity. She 

admits that her thinking has changed but is unable to let go of some of her earlier beliefs. 

After she gave her updated definition of CT that involved students thinking like a 

computer and following steps to create something using technology, I provided her with 

Table 1. I asked Ms. Sanchez to share examples of the ways that her students learn and 



118 
 

 
 

practice the skills of CT, and the few illustrations that she provided did not align with any 

of her previously stated notions of CT. An example of the ways that her students have 

used algorithms was through functional print writing, which she described as very similar 

to the example provided on Table 1. She said that her students practiced abstraction by 

paraphrasing or putting something into their own words, which was exactly the skill that 

students worked on in her first lesson, albeit done digitally with Google Slides. She 

offered no examples of generalization or decomposition and said that they had not done 

any debugging so far this year. Ms. Sanchez offered no examples of students doing 

anything to think like a computer, learning digital competencies, or any of her other ideas 

about CT. 

Julia Beck 

Ms. Beck introduced CT vocabulary words to her students during the first lesson 

first through an image (see Figure 11) and then again with her own drawing on chart 

paper (see Figure 12). The figures provided two different definitions for each vocabulary 

term, but it is fair to say that the definitions that she wrote down on Figure 12 were the 

definitions that she intended for her students to learn as she wrote them in her own kid-

friendly terms based off her knowledge of her students. 

Ms. Beck defined computational thinking through the terms decompose, 

algorithm, pattern matching, and abstraction. These elements are similar in many ways to 

the elements identified by Angeli et al. (2016). Table 14 contains a summary of the 

differences in vocabulary. She defined decompose as “break down a problem into smaller 

pieces” (Beck, second interview). Her definition of algorithms is “a list of steps that you 

can follow to finish a task.” Pattern matching is “finding similarities between things,” and 



119 
 

 
 

abstraction is “pulling out specific differences to make one solution work for multiple 

problems” (Beck, second interview). Ms. Beck did not offer her students a definition of 

computational thinking in any way other than through teaching this vocabulary, and 

likewise, when asked for her definition of computational thinking during her second 

interview, she said that she “think[s] computational thinking is like a summation of all of 

those four key vocabulary words” (Beck, second interview). 

Table 14 

Summary of vocabulary differences between Angeli et al. (2016) and Ms. Beck 

Angeli et. al. (2016) 
definition 

CT Vocabulary Ms. Beck’s definition 
 

The skill to decide what 
information about an 
entity/object to keep and what 
to ignore. 
 

Abstraction Pulling out specific 
differences to make one 
solution work for multiple 
problems. 

The skill to formulate a 
solution in generic terms so 
that it can be applied to 
different problems. 
 

Generalization/Pattern 
Matching 

Finding similarities 
between things. 

The skill to break a complex 
problem into smaller parts 
that are easier to understand 
and solve. 
 

Decomposition Break a problem down 
into smaller pieces. 

The skill to devise a step-by-
step set of operations/actions 
of how to go about solving a 
problem. 
 

Algorithms A list of steps that you 
can follow to finish a task. 

The skill to identify, remove, 
and fill errors. 

Debugging N/A 

 

While Ms. Beck maintained a consistent understanding and definition of CT throughout 

her two lessons and interviews, she still demonstrated some confusion during her 
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interviews. In one email that she sent to me while scheduling her observations, she 

indicated that her lessons would be utilizing a website called Flipgrid, which promotes 

video-based discussions from students through teacher-created prompts 

(https://www.commonsense.org/education/website/flipgrid). During her second 

interview, I asked her what caused her to deviate from that plan. She said that Flipgrid 

“wasn’t a good representation of computational thinking in that, yeah, it was using 

technology, but it wasn’t incorporating any of the like, main components of 

computational thinking… it is just using technology” (Beck, second interview). Here, 

Ms. Beck recognizes that this particular use of technology did not represent CT. 

However, later, when defining CT in her own words, she says that having the skills she 

has identified as computational thinking (decompose, algorithm, abstraction, and pattern 

matching), “you’ll be successful in working with technology and like, the layers of 

technology, not only in coding, but in other programs you use with technology” (Beck, 

second interview). This suggests a core belief that CT has a direct relationship to 

supporting proficient technology use, similar to the misconception of CT being digital 

competencies. Interestingly enough, like Ms. Jones at HES, Ms. Beck asserts a 

relationship between CT and technology use, but does not use technology in her lessons 

that integrate CT. 

The examples of the ways that her students learn and practice the elements of CT 

as described in Table 1 do not include technology use either. Ms. Beck’ says her students 

use abstraction in their word study and when editing their writing. Generalization is done 

as students are “finding out how to solve things, like, generally” (Beck, second 

interview), such as in science, language arts or social studies. Decomposition is done as 
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students break down word problems in math, algorithms are used when doing “How to” 

writing, and debugging is done when they remove extraneous information from math 

word problems. Ms. Beck was the only participant in this capstone project who offered 

examples for the ways that she teaches all five elements of CT from Angeli et al. (2016). 

She also thinks that teachers are “teaching [CT] almost every day without even realizing 

it” (Beck, second interview). While the examples that she provided may not have aligned 

perfectly with definitions available to her in Table 1, it was promising that she recognized 

that CT could be integrated into and was relevant in most content areas that she taught. 

Summary of Third Finding 

The teacher participants in this study provided their own definition of CT and 

described the ways in which their students engaged in CT during the two lessons that I 

observed as well as in other lessons throughout the year. The definitions and examples 

from each teacher varied, but demonstrated that the teachers did have a common 

understanding of CT, nor were their individual definitions consistent with the literature 

on CT. There were similarities in the teachers’ responses that suggest that each of them 

think CT relates to how well students can perform certain tasks using technology, or 

digital competencies.  

Examples of digital competencies can range from something as simple as 

knowing the difference between right and left clicking on a desktop icon or navigating 

through a file browser to find a file that was saved to more complex skills such as setting 

up a collaborative digital workspace for use of asynchronous and synchronous tools for 

collaboration. Within this misconception of digital competencies, teachers further 

distinguished CT across creation through the use of the use of technology, technology to 
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enhance an experience, troubleshooting, and basic technology use. Each of these themes 

is related to the observations and interviews with the four participant teachers. 

Finding Four: The lessons that touched upon elements of CT were taught by two 
teachers who used CT resources. Resources include lesson plans, articles, graphics, 
and instructional videos. Two teachers who did not touch upon elements of CT did 
not use CT resources. 
 

In determining the fourth finding of this capstone, I examined the ways that 

teachers described their lesson planning in advance of my observations. In the section 

below, I identify and review any relevant resources that teachers used when planning for 

the lessons in which they sought to teach CT. I organize these resources by each teacher, 

as there were several resources used by multiple teachers, albeit used in different ways. I 

found that only two teachers used explicit CT resources when planning for their lessons 

taught as a part of this capstone study. Those resources include lesson plans, articles, 

graphics, and instructional videos. A summary of the explicit CT resources used by 

teachers while planning is available in Table 15.  
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Table 15 

Summary of Resources used by teachers while planning 

Resource Title CT Elements Type Source Lesson Used? 
Susie Jones 
 

     

2017 Computer Science Standards of Learning - Grade 3 (Appendix F) 
 

Ab, G, Dc, Al, 
Db 

SD Teammate Both Yes 

BrainPop Jr. - Computational Thinking 
 

Dc, Db VS Self 1 Yes 

Computational Thinking Lesson Plan - Decompose! 
 

Dc, Al LP Self 1 No 

2013 Computer Technology Standards of Learning for Virginia Public 
Schools - Grades 3-5 (see Appendix M) 
 

None SD Teammate Both 1 – No 
2 – Yes 

Plan Engaging STEM Lessons: STEM Lesson Plan Template 
 

None LPR Self 1 No 

Lesson 3: Debugging in Maze (Code.org) 
 

Db LP Self 1 No 

Code.org Unplugged Computational Thinking (Appendix M) 
 

Ab, G, Dc, Al LP Self 1 No 

Strong Passwords (Appendix K) 
 

None LP Self 2 Yes 

Sophie Horton 
 

 
   

 

Computational Thinking (Figure 11) 
 

Ab, G, Dc, Al G Self N/A N/A 

What is Computational Thinking? 
 

Ab, G, Dc, Al G Self N/A N/A 
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Carmen Sanchez 
 

 
   

 

Programming for Kids and Everybody: Learn Scratch Programming 
 

None Y Self 2 No 

Scratch Tutorial I: Make Your First Program 
 

None Y Self 2 No 

Scratch Coding: A complete overview for beginners 
 

None Y Self 2 No 

2017 Computer Science Standards of Learning - Grade 3 (Appendix F) 
 

Ab, G, Dc, Al, 
Db 

SD Self 2 Yes 

2017 Computer Science Standards of Learning - K-12 
 

Ab, Dc, Al SD Self 2 Yes 

Coding Games in Scratch - How to build Star Hunter (Appendix L) 
 

None H Self 2 Yes 

2013 Computer Technology Standards of Learning for Virginia Public 
Schools - Grades 3-5 (Appendix N) 
 

None SD Self 2 Yes 

Julia Beck 
 

 
   

 

2017 Computer Science Standards of Learning - Grade 3 (Appendix F) 
 

Ab, G, Dc, Al, 
Db 

SD Self Both Yes 

2013 Computer Technology Standards of Learning for Virginia Public 
Schools - Grades 3-5 (Appendix N) 
 

None SD Self Both No 

Computational Thinking (Figure 11) 
 

Ab, G, Dc, Al G Self Both Yes 

Code.org Unplugged Computational Thinking (Appendix M) 
 

Ab, G, Dc, Al LP ITRT 1 Yes 

Computational Thinking for Kids 
 

None A Self Both No 

What is Computational Thinking? None A Self Both No 
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Create-Your-Own-Stories ROUGH DRAFT (Appendix O) 
 

Ab, G LA ITRT 2 Yes 

Note. Ab = Abstraction; G = Generalization; Dc = Decomposition; Al = Algorithms; Db = Debugging; SD = Standards Document; LP 
= Lesson Plan; LPR = Lesson Planning Resource; VS = Video for Students; G = Graphic; Y = YouTube video; H = Handbook; A = 
Article.
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Susie Jones 

For the first lesson that Ms. Jones taught on CT and decomposition, she began her 

planning with the Virginia SOLs for Computer Science for third grade. While reviewing 

the standards, she kept her students in mind, saying “it was hard to figure out exactly how 

this could relate to these, the third grade class that we have” (Jones, first interview). She 

ultimately landed on SOL 3.6, “The student will break down (decompose) a larger 

problem into smaller sub-problems, independently or collaboratively” (VDOE, 2017). 

This standard comes under the subheading “Algorithms and Programming.” After 

deciding on the SOL she wanted to teach, Ms. Jones conducted a web-search for 

resources on teaching computational thinking for “about an hour.” She “looked online for 

different things,” “different ideas of computational thinking lessons,” because she 

“wanted to know what was out there for computational thinking” (Jones, first interview). 

In her web-search, Ms. Jones arrived at several different resources that she used to 

develop her content knowledge for CT. She “got a lot from BrainPop Jr.” (Jones, first 

interview) and then found a number of different websites or articles. I will describe the 

articles in order of relevance to the lesson that she taught, from least relevant to most 

relevant. 

No computational thinking. The least relevant resource that Ms. Jones accessed 

while planning her first lesson was a lesson planning resource called “Plan Engaging 

STEM Lessons: STEM Lesson Plan Template.” This resource does not relate to CT, and 

use was not evident in her first lesson. Another resource that Ms. Jones accessed that was 

not particularly relevant to her lesson planning was the 2013 Computer Technology 

Standards of Learning for Virginia Public Schools – Grades 3-5. This standards 
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document does not reference or allude to any CT or its component parts, and Ms. Jones 

recognized this while planning. Ms. Jones did not mention this resource while discussing 

her second lesson, but her second lesson does address SOL 3.5.3B. The standard states 

that the student must “Discuss and model responsible behaviors when using information 

and technology; identify reasons for taking security precautions when using any 

technology, especially those related to the Internet; and demonstrate responsible 

behavior, such as using strong passwords and avoiding high-risk activities” (VDOE, 

2013).  

Computational thinking, not used. Ms. Jones accessed two resources from 

Code.org that directly relate to CT or the elements identified by Angeli et al. (2016), but 

use of these resources in her lesson was not evident, although they may have influenced 

her understanding of CT. The first was a lesson from Code.org’s CS Fundamentals 2018 

Course C, Lesson 3: Debugging in Maze. This lesson plan makes no mention of CT, but 

does define debugging. Ms. Jones did not reference debugging during her lesson. The 

second resource, an unplugged lesson plan on computational thinking, defines its own 

four components of CT. I review this resource, which is found in Appendix M, later in 

this chapter. 

Primary resources. The two resources that had the greatest observable influence 

on Ms. Jones were from BrainPop Jr., as she indicated during her interview. A lesson 

plan from BrainPop Jr. called “Computational Thinking Lesson Plan: Decompose!” was 

the primary instructional resource used in planning for Ms. Jones’s first lesson, and Ms. 

Jones provided me with a print copy of the lesson plan with her own annotations. The 

lesson plan included a definition of CT, which is the definition Ms. Jones used in her first 
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lesson and gave in her first interview. Ms. Jones followed this lesson plan closely, 

including accessing the instructional video for her students during the lesson. The lesson 

plan included a link to background information on computational thinking, but that link 

was broken on the BrainPop website. 

In order to plan for her second lesson in which she intended to integrate 

computational thinking, Ms. Jones again began with the VA SOLs for Computer Science. 

This time, she selected SOL 3.11, “The student will create examples of strong passwords, 

explain why strong passwords should be used, and demonstrate proper use and protection 

of personal passwords.” This standard comes under the subheading “Cybersecurity.” As 

described in sections above, Ms. Jones’s second lesson did not include instruction on CT, 

either implicitly or explicitly. Her planning for this lesson is worth mentioning, however, 

because she returned to the Computer Science SOLs to identify her instructional 

objective. As with her first lesson, Ms. Jones searched the web to find ways to teach the 

new standards. Her search yielded a lesson from Common Sense Media for grades 3-5 

called “Strong Passwords.” The learning objectives for the lesson from Common Sense 

Media were as follows: “Students will be able to identify the characteristics of strong 

passwords; apply characteristics of strong passwords to create new passwords; and create 

secure passwords with their family members” (2017). As was the case with her first 

lesson, Ms. Jones spent about an hour researching and planning, and primarily followed 

the lesson plan she found on the Internet while teaching. 

In the next two sections, I explore the ways the teacher participants at Rusty Falls 

Elementary School planned to integrate CT into their instructional lessons. 
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Sophie Horton  

Sophie Horton taught two lessons that did not teach CT, either explicitly or 

implicitly, as it is defined in this capstone project. Ms. Horton taught lessons that showed 

general technology integration into content and gave students the opportunity to use 

technology to create something new. The resources that Ms. Horton utilized were only 

content-area resources, such as a book about Ancient Egypt.  

I requested a third interview with Ms. Horton in order to clarify some of the 

concerns she had discussed during her previous interviews about student technology use 

at RFES. Ms. Horton revealed that after the consent agreement meeting with the third 

grade team at RFES, Ms. Sanchez presented a Standards of Learning document that she 

had not seen before to her while co-planning after school. She did not say whether these 

were the SOLs for Computer Science or Computer Technology. When Ms. Sanchez 

showed them to her, she admitted that she did not review them thoroughly: 

I looked at them, but I didn’t look at them in depth because it looked like a very 

long document. So I looked at them, but not, not directly, point-to-point. So I kind 

of just gathered from it, truthfully, I gathered from it, ‘Oh, it has to do with 

technology and using computers, my kids, and getting them to problem solve.’ So 

I was like, ‘Okay, yeah. I know that kind of what you [referring to me], your work 

is.’ And I thought, ‘Okay, I’ll just use technology with my kids and we’ll do some 

projects with that and along the way they’ll solve problems within whatever 

curriculum or teaching.’ (Horton, third interview) 

Her statement led me to believe that she was referring to the 2013 Computer Technology 

Standards of Learning, because of her reference to “my work” as a former ITRT, and to 
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problem solving, knowing that she views problem solving as similar to technology 

troubleshooting. However, regardless of which standards document it was that she saw, 

she admits that she did not integrate those standards into her lesson while planning, and 

taught to her own interpretation of the SOLs, but not the specific standards themselves. 

The day after the second interview, Ms. Horton searched for “what is 

computational thinking?” through Google’s image search (Horton, third interview). The 

image that she clicked on, from ComputationalThinkers.com (see Figure 11) “really 

surprised her.” Because of the search, she said CT “didn’t seem like it was just about 

technology but it was more about kids problem solving in a way that a computer might. 

So like, using… computer type ways of solving their problems whether it’s with 

technology or not” (Horton, third interview). The resource may have helped her own 

understanding of CT, but since she accessed it after the second observation and interview, 

her improved understanding had no impact on her current students, but might on future 

students. 

Carmen Sanchez 

Like Ms. Horton, the first lesson that Ms. Sanchez taught did not integrate CT nor 

did it teach it explicitly. Ms. Sanchez planned her first lesson with Ms. Horton, utilizing 

books and YouTube videos about Egypt, and the content standards for Language Arts and 

Social Studies. 

For her second lesson, Ms. Sanchez diverged from the path of her co-teacher. 

Rather than teaching a lesson on graphing using Google Sheets, Ms. Sanchez gave her 

students the opportunity to create a game using Scratch. To plan for the lesson, Ms. 

Sanchez spent thirty minutes one afternoon at school reading through a book she 
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purchased, “Coding Games in Scratch” by John Woodcock (2016) and then another half 

an hour on another day watching several videos from YouTube “of people working in 

Scratch” (Sanchez, second interview). She also visited the Virginia Department of 

Education’s website to look through the Standards of Learning that reference 

computational thinking. I provide details about these resources below. 

Scratch handbook. The book introduces coding and programming in general, but 

primarily focuses on teaching the Scratch interface and layout through instructions on 

how to make four increasingly complex games. While there is no reference to CT or to 

the elements identified by Angeli et al. (2016), there are instances of algorithms, 

debugging, and CT through the aspects of writing code. Woodcock’s guide provides 

exposure to coding in Scratch through simplified instructions, but it does not provide the 

users with the opportunities to choose their direction with minor exceptions of “hacks and 

tweaks” at the end of each set of instructions. Ms. Sanchez used the guide as it was 

intended, as a step-by-step set of instructions for the students to create the game. 

Tutorial videos. Ms. Sanchez watched three different YouTube videos in an 

effort to enhance her knowledge of Scratch. The first video, “Scratch Tutorial 1: Make 

Your First Program,” was published by Kevin Briggs on December 28, 2015. This video 

focused on the layout of the program and how to use one set of scripts to cause motion in 

the sprite. While this video highlights some of the scripts, it did not teach the audience 

how to use Scratch. The second video, “Scratch Coding: A complete overview for 

beginners,” by Flipped Classroom Tutorials, was published on March 20, 2018. This 

video starts by showing the audience how to visit the Scratch website, create an account, 

and become a member of the Scratch open source community. This information is not 
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relevant to users in RCSD, as Scratch is installed on their computer and students under 18 

years old need parental permission to create accounts. The video targeted teachers who 

wanted to teach their students Scratch, at one point saying to “remind your students” 

(Flipped Classroom Tutorials, 2018) about a certain element of the program. The 

production quality of the video was high, and featured a table of contents of the 

instruction within the video description, and the author responded to questions in the 

comments section on YouTube. The third video that Ms. Sanchez sampled was published 

by Ameer Fazal on April 9, 2017, and is titled “Programming for Kids and Everybody: 

Learn Scratch Programming.” This short video shows how to download Scratch to your 

computer and introduces ways to cause the sprite to move, make sounds, and turn. The 

video is too fast and lacks the production quality of the second video. There is no real 

description on how to use Scratch, as the author instructs the audience to “just dive right 

in” (Fazal, 2017). None of these videos refer to CT or the elements of CT identified by 

Angeli et al. (2016). The second video, by Flipped Classroom Tutorials, is the only one 

that does much to teach how to use Scratch. Based off of the instruction that I observed 

from Ms. Sanchez during her second lesson, it is not clear whether or not any of these 

videos had any influence on her ability to use Scratch, as she simply followed along with 

her students through “How to build Star Hunter” in Woodcock’s (2016) guide. 

State standards documents. In addition to the Scratch guide and YouTube 

videos described above, Ms. Sanchez also utilized the Virginia Department of Education 

website on Standards of Learning (SOL) and Testing (http://www.doe.virginia.gov/ 

testing/index.shtml). This site contains links to all of the different documents for content 

areas with SOLs, such as English, Mathematics, and Computer Science. Based off the 
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description that Ms. Sanchez provided, it was unclear whether she was referring to the 

standards for Computer Science or Computer Technology:  

So we found this whole set of standards, except when I looked at the third grade 

standards, there was nothing related to computational; it divided it into, I can’t 

remember the term, but something. I think they just, I don’t know what they 

called it, but in general something just, it just seemed like there were standards on 

how to use a computer, how to be a good digital citizen, how to create artifacts on 

a computer. (Sanchez, second interview). 

This could refer to either set of standards, as both have instances of basic computer use, 

digital citizenship, and creation.  

Ms. Sanchez’s confusion is warranted, as neither the standards for Computer 

Science or Computer Technology reference CT, so she kept searching: 

On the third grade standards, they didn’t break anything out to say ‘computational 

thinking,’ so I like, opened up the K-12 [All Computer Science Standards of 

Learning Document] and they have this brief little paragraph about what is 

computational thinking. And my understanding of it, because in my mind, it’s not, 

I don’t think it was a great description for someone who like, I mean, I know my 

husband codes but I don’t necessarily, and you know, I know that I’m just 

learning how to code a little bit on Scratch, you know. But I don’t feel like it was 

very clear, exactly what is, what they’re looking for. (Sanchez, second interview). 

Ms. Sanchez provided me with the copy of the K-12 document that she referenced above 

(See Figure 13), and it is confusing. There is a definition of CT under the header “What is 

Computational Thinking,” but there is another definition in the section below called 
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“Computer Science Practices for Students.” While neither definition is directly 

contradictory to the other, to a novice without content knowledge about CT like Ms. 

Sanchez, having two different definitions can be confusing. 

What is Computational Thinking? 
 
Also integrated throughout the Computer Science standards is the concept of 
computational thinking. Computational thinking is an approach to solving problems in 
a way that can be implemented with a computer. It involves the use of concepts, such 
as abstraction, recursion, and iteration, to process and analyze data, and to create real 
and virtual artifacts [Computer Science Teachers Association & Association for 
Computing Machinery]. Computational thinking practices such as abstraction, 
modeling, and decomposition connect with computer science concepts such as 
algorithms, automation, and data visualization. Beginning with the elementary school 
grades and continuing through grade 12, students should develop a foundation of 
computer science knowledge and learn new approaches to problem solving that 
captures the power of computational thinking to become both users and creators of 
computing technology. 
 
Computer Science Practices for Students 
 
The content of the Computer Science standards is intended to support the following 
seven practices for students: fostering an inclusive computing culture, collaborating 
around computing, recognizing and defining computational problems, developing and 
using abstractions, creating computational artifacts, testing and refining computational 
artifacts, and communicating about computing. The practices describe the behaviors 
and ways of thinking that computationally literate students use to fully engage in a 
data-rich and interconnected world. Computational thinking refers to the thought 
processes involved in expressing solutions as computational steps or algorithms that 
can be carried out by a computer (Cuny, Snyder, & Wing, 2010; Aho, 2011; Lee, 
2016). 

Figure 13: Excerpt from Computer Science Standards of Learning for Virginia Public 

Schools (VDOE, 2017), highlighting by Carmen Sanchez. 

The lack of clarity and simplicity in the standards documents frustrated Ms. 

Sanchez, and that was apparent during the interview. The two different definitions, 

combined with her own prior misconceptions about CT from her first interview, created 

further confusion for her about what she and her students were supposed to be doing. She 

wondered, “so then I’m like, are they just trying to, are they trying to apply what you do 
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when you’re coding to other situations? And that, just again, like, I just felt like that was 

really unclear” (Sanchez, second interview). In her confusion, she chose to latch onto the 

concepts with which she was most familiar. 

In the next section, I review the way that the final participant in this capstone 

study, Julia Beck, planned and prepared to integrate CT into her instructional lessons. 

Julia Beck 

 Ms. Beck took a different approach to planning than did the other three 

participants in this capstone study in that she planned both lessons together. In her first 

lesson, she introduced students to CT vocabulary and taught them how to play the “Game 

with No Rules.” In her second lesson, she reviewed the same CT vocabulary with 

students and then instructed them to play the “Game with No Rules” again, but this time 

using content-specific vocabulary, related to their language arts unit on Folk Tales.  

 To begin, Ms. Beck did some research on her own. She visited the VDOE website 

and found the Standards of Learning for Computer Science (see Appendix F) and the 

Computer Technology Standards of Learning for Virginia Public Schools (see Appendix 

N). She also did a web search of “computational thinking simple definitions” (Beck, first 

interview). Her web search led her to a graphic that formed the basis of her understanding 

of CT and the vocabulary that she introduced to her students (see Figure 11). She also 

accessed two written resources online that said they were about CT. 

 One resources that Ms. Beck accessed was a blog post from IMACS, the Institute 

for Mathematics & Computer Science. The post, titled “Computational Thinking for 

Kids,” is for parents who want to make computer science relevant at home in an abstract 

way. It makes reference to Wing’s (2006) work introducing CT, saying that it “clearly 
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explains what CT is and is not” (IMACS, 2012), but then goes on to simplify CT as 

abstract thinking. This resource does not reference any elements of CT, but instead 

provides parents with ways that they can introduce CS concepts like stacks and queues or 

object oriented programming to young children through unplugged activities. 

 The other resource that Ms. Beck shared with me was the article “What is 

computational thinking?” by Tim Slavin (2014). Slavin describes CT as a “structured 

way to solve problems” (2014), and makes reference to Wing (2006) as well. Slavin 

emulates Wing in the way that he offers non-specific examples of CT, calling it 

“fundamental, not a rote skill,” and “a way that humans, not computers, think” (2014). 

Before the article goes into much more detail about CT besides reciting Wing, it requires 

payment. I did not ask Ms. Beck if she chose to pay for the article. 

 Computational Thinking Unplugged. The root of Ms. Beck’s lesson was the 

Code.org unplugged lesson plan from their Code Studio, Course 3 (see Appendix M). 

Code.org recommends this lesson for students in grades 4-5 who have previously 

completed Courses 1 and 2. Depending on where Ms. Beck accessed the lesson plan, 

there may have been a 95-second video introduction to the lesson, “Unplugged – 

Computational Thinking," complete with an introduction of the target vocabulary and the 

activity students will complete. The intended audience of the video is the student. Below 

the video, there are two links to access the full lesson plan. The lesson organization is 

comprised of an overview, a teaching summary complete with links, and a teaching guide 

that includes a list of resources needed by the students and the teacher for the lesson. 

Resources for the teacher include a different video, “Course 3 – Computational 

Thinking,” a seven-minute discussion from a Code.org instructor on how to teach the 
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lesson and anticipate student difficulties. The video was specifically created for this 

lesson. There are also copies of the resources the students will need, including the 

“Computational Thinking Kit,” which Ms. Beck used with her students during her first 

lesson, and an assessment, which was not used in Ms. Beck’s lesson. 

The lesson plan includes the four vocabulary words that Ms. Beck introduced to 

her students: Decompose, pattern matching, abstraction, and algorithm, along with their 

associated definitions. It walks the teacher through the intended way to introduce these 

terms and definitions to the students. The next section of the lesson plan provides a 

detailed guide for teachers to follow to introduce the idea of CT to the students and have 

them practice using these four parts of CT with teacher-support. This part of the lesson 

plan is math intensive, and Ms. Beck ultimately decided that it was too complex for her 

students at this time, so she skipped it. Instead, Ms. Beck had her students focus on the 

vocabulary, and how to make it relevant. 

 The third section of the lesson plan was the activity. Ms. Beck’s students worked 

on this activity during my first observation using the “Computational Thinking Kit” 

referenced above, and it was this kit that was modified to create the “Create-Your-Own-

Stories ROUGH DRAFT” that Ms. Beck used in the second observation. The activities 

section tells teachers what to say to students in order for them to play the “Game with No 

Instruction” [the “Game with no rules” in Ms. Beck’s lesson]. The lesson plan concludes 

with a student wrap-up, assessment, and connection to national-level standards from 

organizations such as ISTE, CSTA, and NGSS. Ms. Beck did complete a wrap-up 

activity, but it differed from the one suggested in the lesson plan, and her students did not 

complete the assessment. It is unclear as to whether or not she planned for them to 



138 
 

 

complete the assessment, but most student groups were unable to complete the 

“Computational Thinking Kit” in the allotted time, so it would not have been appropriate 

to give them the assessment. 

 While the lesson was designed to be complex, Ms. Beck recognized that her 

students were not prepared to complete the whole lesson. It is recommended for older 

students, and was designed to be completed as a part of a sequence that students at RES 

did not complete. The part of the lesson that Ms. Beck kept, the “Game with no 

Instructions,” was modified for integration with content- specific lessons. I will review 

this resource below. 

 Modified resource. The Code.org “Computational Thinking Kit” was modified 

so that Ms. Beck could use the same type of activity with her students, but with content-

area vocabulary integrated into the activity. The modified resource is the “Create-Your-

Own-Stories ROUGH DRAFT” (see Appendix O.) Where the original activity provided 

students with a list of colors, items (Ex: cell phone, pineapple, cupcake), body parts, and 

animals that they would select by rolling a single die. The original activity provided these 

choices to the students. The modified activity tasks students with coming up with their 

own list of six choices for the following categories: characters, setting, problem, solution, 

and extra, which is optional. That is the primary modification.  

The remainder of the instructions on the activity are identical, except that there 

are no examples provided for the student where they are supposed to “figure out how to 

play this game.” So it is no longer a “game with no rules,” but instead a game where 

students are supposed to remember the rules from use to use. As on the Code.org version, 

it instructs students to “use pattern matching and abstraction” to create a template to play 
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the game. Those instructions are the only instance of explicit CT integration in this 

modified resource, although it is clear that students are supposed to engage in the same 

type of thinking as on the Code.org activity, in addition to creating their own lists of 

characters, settings, etc.  

 Ms. Beck spent over an hour and a half planning and preparing for her two 

lessons that integrated CT into her instructional lessons. Still, at the end of each lesson, 

Ms. Beck wished she had more time to “delve deeper and do more” (Beck, first 

interview) with her students to ensure that they understood the CT she’d tried to teach. 

She was satisfied with her planning time, but wanted more, “always more time” (Beck, 

first interview). 

Summary of Finding Four 

 In the sections above, I described the ways that the teacher participants in this 

capstone study prepared to integrate computational thinking into their instructional 

lessons. Some of the resources that teachers accessed while planning did not relate to CT. 

Many of the CT related resources that teachers looked for were to build their own 

understanding of CT. I reviewed the extent to which teachers made use of available 

computational thinking resources planning to integrate CT into their lessons. Some of the 

resources that teachers used provided them with a specific plan that they could use in 

their classroom, albeit modified to meet the needs of their students. Analysis of their 

planning practices show that the teachers who made use of available CT-related resources 

integrated elements of CT into their instructional lessons. 

Finding Five: One teacher who taught lessons that touched upon elements of CT 
used district support personnel. Those personnel accessed and modified CT 
resources and co-planned the lessons with the teacher. 
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In the fifth and final finding of this capstone study, I identify and review any 

relevant support personnel from their school or district that teachers used when planning 

for the lessons that I observed. Only one teacher who participated in this capstone study 

sought the assistance from district or school support personnel.  

To plan for her lessons, Julia Beck reviewed Virginia Standards of Learning for 

Computer Science and Computer Technology, found an image on the Internet with CT 

vocabulary, and read one and a half articles about CT. She took thirty minutes herself to 

research CT from the VDOE and the Internet. However, after doing her own research, 

Ms. Beck admitted that she was still struggling to come up with two lesson plans: 

I had done my own research on computational thinking but I wasn't wrapping my 

head around how to incorporate it in the classroom, like how I had it was very 

segmented but those four, the like, four main components of computational 

thinking, kind of go hand-in-hand. So it's not like I could just teach like, 

decomposition one day and then this one day because then it’d be really abstract 

for the kids. And I feel like at this age, they're not very, they're like, becoming 

abstract. They're still very concrete in what they're learning (Beck, first 

interview). 

She had ideas about what to do, but thought that she could use support. When she reached 

a point of frustration, she sought the assistance of district-level technology support, the 

ITRT assigned to work with teachers at RES. RES has two ITRT assigned to the building 

on a part-time basis, but both of them, Spencer Warner and Christie Ferguson, came in to 

assist Ms. Beck with planning. The three educators had two planning sessions, lasting 45 

minutes and 30 minutes each, to figure out how to “incorporate more computer science 
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and technology in the classroom” (Beck, first interview) after Ms. Beck spent 30 minutes 

researching on her own. 

 It was Mr. Warner, Ms. Beck says, that brought their attention to Code.org. He 

found that Code.org had a lesson plan for teaching CT (see Appendix M), although there 

were parts of it that Ms. Beck did not think her students could handle yet:  

So Code.org had a whole other like section that goes along with [CT] that I 

thought my kids weren't developmentally ready for yet, which was just 

introducing, like introducing computational thinking with math. And I felt this 

[the lesson she ultimately chose] was very simple and my kids could get this. And 

that math portion, I could go back, like re-circle back to later in the year when 

they're more comfortable with certain math aspects (Beck, first interview). 

Ms. Beck knew her students did not have the math background yet to be successful with 

the entire lesson plan available on Code.org, but now knew it was available when they 

were ready for it.  

Ms. Beck, along with her two ITRTs, were able to modify activities from the 

Code.org lesson that she would use in her first lesson, so that it could fit with a variety of 

content areas. She was full of praise for her ITRT for the assistance that they provided 

her: 

To lesson plan it, Spencer came up with a template to then use it for any subject 

area. So I could use it again. Not the exact same lesson, obviously, but in the 

sense that they would create something to then explain their learning. So it was 

like an additional step that was really creative and thoughtful. And I'm not taking 

credit for that. That was all Spencer (Beck, first interview). 
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Mr. Warner modified the “Computational Thinking Kit” activity from the Code.org 

lesson plan to make it content-neutral, so that as the students developed the CT skills in 

the first lesson, they could continue to practice them through content integration 

throughout the year. This modification led to the creation of the “Create-Your-Own-

Stories ROUGH DRAFT” (see Appendix O). 

The remaining participants in this capstone study did not seek out assistance from 

district or school support personnel. Ms. Jones cited a lack of time as the primary reason 

for not doing so. The other two members of her team withdrew their consent to 

participate in this capstone study during scheduling, so she was the only teacher on her 

team attempting to integrate CT into her lesson plans at this time. She did receive 

assistance from one of her teammates, however, during the consent agreement meeting. 

After the three teachers learned about the new SOLs in computer science, one of the other 

two non-participating teachers printed out copies of the 2017 Computer Science SOLs 

and the 2013 Computer Technology SOLs and distributed the copies to the entire team. 

Ms. Jones’s teammate accessed the VDOE website, retrieved the appropriate standards, 

and gave them to her.  

Ms. Horton planned both of her lessons with her partner teacher, Carmen 

Sanchez. For the first lesson that they taught, Ms. Horton credited the second grade 

teachers for assistance. Ancient Egypt used to be a second grade SOL, and the teachers 

shared resources with them on the topic.  

Ms. Sanchez taught one lesson where students used Scratch. Unlike for her first 

lesson, Ms. Sanchez planned this lesson in isolation, without the consult of her co-

teacher, Ms. Horton. The teachers still communicated about the objective of this lesson, 
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and Ms. Sanchez said that Ms. Horton “knew that I wanted to lead Scratch groups over 

the next couple of weeks. I don’t really know if [she’s] necessarily really interested in 

learning Scratch” (Sanchez, second interview). And while she and her ITRT, Catherine 

Day, have “chit-chatted some” (Sanchez, second interview) about Scratch, it was not in 

reference to any specific lesson, and in regards to CT, Ms. Sanchez stated that she 

“[hasn’t] had anyone talk to us about it either” (Sanchez, second interview). 

Participants as support personnel 

In preparing for this capstone study, I planned to study how one team of third 

grade teachers at one school integrated CT into their classroom instruction. Research 

question 2a seeks to explore the ways that that team of teachers would access support 

personnel in their school and the district, and I hoped to learn how the teachers leaned on 

each other as a resource for lesson planning and preparation.  Unfortunately, I was unable 

to find a full team of teachers at any one school to participate in this capstone study. 

Luckily, two teachers from RFES did participate, so I was able observe the way that 

those two teachers used each other as support. 

As described in the third chapter, Sophie Horton and Carmen Sanchez are 

collaborative teaching partners in one classroom at Rusty Falls Elementary School. The 

two of them taught and planned together at school and outside of school. The first lesson 

that I observed for each teacher were the same lesson. After seeing Ms. Horton’s second 

lesson, I expected Ms. Sanchez to teach the same thing. However, due to scheduling 

complications and inclement weather, my second observation with Ms. Sanchez fell more 

than a week after my second observation with Ms. Horton. During Ms. Horton’s second 
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interview, I shared with her the elements of CT identified by Angeli et al. (2016) that 

form the conceptual framework for this capstone study. 

After seeing Table 1, Ms. Horton researched CT as a way to combat the confusion 

that she was feeling. Ms. Horton admitted to me that she told Ms. Sanchez that she 

thought they were mistaken in their belief that CT is akin to technology integration, 

digital literacy, and technology troubleshooting, and that it was something much 

different. After telling Ms. Sanchez, Ms. Horton said of her partner-teacher: 

When she heard that, she was just like, well, she, I think, just dismissed it… So 

she didn’t, it didn’t seem like anything I said actually affected what her plan was 

for today. She seemed to keep the same mindset of like, ‘Well that doesn’t make 

sense to me. That’s confusing.’ So she went back to kind of like, her original 

belief of what that was. (Horton, third interview). 

In Ms. Horton’s eyes, Ms. Sanchez dismissed her discovery, and made no changes to her 

second lesson plan. Nevertheless, sometime after that conversation, Ms. Sanchez sent me 

an email (see Figure 14) with the Standards of Learning information for not only her 

second lesson scheduled for that afternoon, but also retroactively for the first lesson. 

During her first interview, when asked what resources she used to plan the first lesson, 

Ms. Sanchez said “Our content standards. Our language arts standards for reading and 

writing” (Sanchez, first interview), and ten days later, after discussing CT with her 

partner teacher, she has added standards 3.7, 3.9, and 3.13 from the Computer Science 

SOLs. 

Interactions with other instructional personnel aided teachers as they prepared to 

integrate CT into their instructional lessons, intentionally or unintentionally. Without 
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asking for help, two teacher participants in this capstone study were given standards 

documents by a teammate. One participant had her perceptions of CT challenged by her 

partner-teacher. One participant sought out assistance from members of the RCPS 

instructional technology support group. The teacher requested assistance in planning her 

lessons that successfully taught two lessons that contained references to CT. Teachers 

who did not ask for or receive support from instructional support personnel did not 

integrate CT into the two lessons taught as a part of this capstone study. 

Thursday, 11:40 AM [Date of second observation] 
From: Carmen Sanchez 

Hey Bert- 

I shared with you the presentations that students were working on last time (on Google 
Drive). We are going to work on creating a game in Scratch this afternoon. So I'll just 
give you the manual I'm using today. 

Standards for last week:  
Algorithms and Programming 3.7 
Computing systems 3.9 
Data and Analysis: 3.13 
Reading 3.4 e 3.6 (b,c,d,f) 
Writing 3.7 (a) 3.8 (a,  d, e, f) 3.9 (a, f, i, k) 
Research 3.10 (b, c, e) 
Social Studies 3.2  

Standards for this week:  
Algorithms and Programming 3.1 (a,b,c)  3.2 (a, b, c) 3.3 

 Figure 14: Email from Carmen Sanchez in advance of her second observation 

Summary 

There were five main findings of this capstone study. First, teachers in this study 

only touched upon elements of computational thinking in three out of eight lessons that I 

observed. Those three lessons collectively touched upon all five elements of CT to 

varying degrees. Second, in the lessons that did touch upon elements of CT, the 
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instructional strategies adopted by teachers were mainly direct, didactic instruction 

through vocabulary lessons or instructional videos or step-by-step instruction for students 

to construct sequences in block-based or unplugged activities. The third finding of this 

capstone study is that the teachers who participated lack a common understanding of the 

meaning of CT. The fourth finding is that the teachers who touched upon the elements of 

CT accessed available resources when planning for their lessons on CT, but these 

resources were largely used for their own research purposes and did not translate to the 

classroom. The fifth finding of this capstone study is that only one teacher utilized 

support personnel when planning for her lessons on CT, although one participant teacher 

did act in the capacity of support personnel for another teacher participant..  

The findings of this capstone study are specific to the case study, but carry 

implications for each school, RCSD, and the VDOE as a whole. I discuss implications 

and recommendations to RCSD and the VDOE in Chapter Five.
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Chapter Five 

The findings of this capstone study address the ways that teachers integrate 

computational thinking or do not integrate computational thinking into their instructional 

lessons and the resources teachers used to plan for those lessons, which has implications 

for current work in the state of Virginia and in Rockview County School District (RCSD) 

(see Table 12). The problem of practice examined in this capstone study was: How can 

we help teachers implement new standards for computational thinking and infuse the 

instruction into their lessons? This capstone study used a single-case study approach to 

explore the ways that four third grade teachers in RCSD purportedly integrated 

computational thinking into their instructional lessons and the planning that went into that 

instruction. In this capstone study, I explored how teachers used instructional resources 

and district or school support personnel to plan their lessons, and the ways that elements 

of computational thinking were integrated into activities and tasks that were meant to 

engage students in computational thinking. 

Summary of Findings 

 The five findings of this capstone study relate to teachers’ integration of CT in 

their instructional lessons, their understanding of CT, and the way that they planned for 

their lessons that included CT. The first finding is that only three of eight lessons 

contained elements of CT identified by Angeli et al. (2016). All five elements were 

included to varying degrees. The second finding is that the instructional methods used by 

teachers in their lessons that included CT were teacher-centered and emphasized 
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vocabulary acquisition, but no actual CT. The third finding is that teachers lack a 

common understanding of the meaning of CT. The fourth finding is that only two of the 

four teachers accessed instructional resources related to CT while planning. Finally, the 

fifth finding of this capstone study is that only one teacher used district-level support 

personnel while planning for their CT lessons. 

Discussion and Implications 

The connection between the five findings of this capstone study rests of the 

teachers’ understanding of and preparedness to teach computational thinking. Teachers 

are responsible for content mastery within their assigned grade level of instruction to 

ensure that all students achieve the minimum learning expectations set forth by the 

VDOE as the SOLs. Third grade teachers must be able to teach every third grade SOL 

across their assigned content areas, be it mathematics, social studies, or computer science. 

If teachers do not know or understand the required content, they are expected to develop 

that understanding, and the best ways to teach the content. The ways that teachers 

understood CT differed, which ultimately influenced the ways that teachers prepared and 

taught their lessons during this capstone study. 

The third finding, that teachers suffer from definitional confusion related to CT, 

offers insight into the first finding, that most lessons did not touch upon elements of CT. 

During each of the three lessons that touched upon the elements of CT, the teacher 

correctly named and defined at least one element of CT present in the lesson. During their 

post-observation interview, the confirmed that they intentionally included those elements 

in their lesson. Susie Jones planned to teacher her students decomposition. She gave them 

the definition of the term, provided them opportunities to explain ways that they break 
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down problems to make them easier to solve, and after her lesson, she told me that was 

exactly what she intended to do. Julia Beck knew that she wanted to teach abstraction, 

decomposition, generalization (see Table 14), and algorithms. She introduced those 

vocabulary terms to her students. 

In contrast, neither Sophie Horton nor Carmen Sanchez taught lessons that 

contained any elements of CT. During their interviews, when asked to describe the ways 

in which their students engaged in CT through the lessons I observed, their responses 

largely focused around creating digital artifacts and developing digital competencies 

related to the use of technology. Their definitions of CT did not match definitions 

reviewed in the second chapter of this capstone study; as a result, their lessons and 

explanations of those lessons are based on a misunderstanding of what CT is. Teachers 

cannot successfully integrate CT or the elements identified by Angeli et al. (2016) if they 

do not have a clear, comprehensive understanding of CT. As this capstone study seeks to 

learn how to help teachers integrate these new CT standards into instruction, discovering 

what teachers did when faced with new content to teach was critical. This information 

will lead to implications and recommendations later in this chapter. 

The fourth and fifth findings involve the ways in which teachers prepared for their 

lessons that integrated CT. Only two of the teachers accessed CT-related resources and 

only one of those two teachers used district-level support personnel while planning. The 

teachers at RFES did not access CT resources, and did not understand what CT was, so 

they did not teach CT. Ms. Jones did access CT resources, but those resources may not 

have been enough to help her change her understanding of CT, so the instructional 

strategies that she used from the resources were limited to teacher-centered methods. Ms. 
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Beck, the one teacher who both accessed resources and used district-level support, was 

able to include elements of CT in both of her lessons. However, those resources were not 

appropriate for students without the necessary background knowledge, so while her 

activities could have been student-centered, she relied on teacher-centered vocabulary 

instruction to progress through the lesson. 

Without a clear understanding of CT—what it is that they are supposed to teach, 

teachers cannot adequately plan to teach it. When teachers cannot adequately plan to 

teach something, the quality of the instruction is more likely to be poor. Understanding of 

the CT, and then understanding of the ways to teach CT, drive the way instruction is 

planned for and delivered. For example, a teacher must know that algorithms refers to 

students devising a step-by-step set of actions to go about solving a problem, rather than 

simply following steps, in order to plan an activity where students create those steps. 

Understanding the content is necessary for teachers to effectively plan to teach the 

content. 

This capstone study sought to address the problem of practice related to helping 

teachers implement new standards for CT and infusing the instruction into their lessons. 

Next, I will address the implications that arise from findings related to this problem of 

practice. 

Helping Teachers Develop Understanding of CT 

 As described above, each teacher who participated in this capstone study had a 

different understanding of CT, and some teachers demonstrated a different understanding 

between their own two lessons and interviews. The resources that teachers accessed to 

develop understanding of CT, in particularly the Computer Science Standards of 
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Learning, are insufficient to support teachers’ understanding when used in isolation. Ms. 

Jones used the Third Grade CS SOLs to pick out her lesson topics; decomposition and 

strong passwords were both contained in the standards (Jones, first interview; Jones, 

second interview). I believe that Ms. Jones did not possess a clear enough understanding 

of computational thinking to select the appropriate, relevant standards within the 

Computer Science SOLs that related to CT. SOL 3.6 references decomposition and is 

found under the heading “Algorithms and Programming,” but SOL 3.11 on password 

strength falls under “Cybersecurity.” Both of these categories fall under the domain of 

“Computer Science,” but “Cybersecurity” may not specifically relate to “Computational 

Thinking,” while “Algorithms and Programming” does.  

Ms. Sanchez accessed the VDOE website in order to learn more about CT. She 

found the definitions of CT on the site were difficult to locate and confusing. CT was not 

present in her grade-level standards, and was defined in two different ways on another 

document that she would not regularly access (see Figure 13). She suggested that the 

VDOE provide a clear definition of CT to teachers: 

It would be really helpful, I think for anybody, for [the VDOE] to be like, “Hey, 

computational thinking is specifically talking about debugging codes,” or like 

talking about loops, making loops in actions in codes, or make, or sequencing 

events in coding. And they didn’t say that. (Sanchez, second interview). 

Despite having two distinct definitions from the VDOE itself, she is unable to articulate 

the meaning of CT. Ms. Sanchez thinks that teachers won’t find out about the new CS 

standards or CT “unless [they] go to the VDOE site, which if [they] already have [their] 

pacing guides printed out, there’s no reason necessarily to go there, then [they] would 
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never know” (Sanchez, second interview). The VDOE website is not one that Ms. 

Sanchez thinks teachers would frequently visit, and it did not help her to develop her 

understanding of CT. State agencies must ensure that provided resources are sufficiently 

clear about the content they expect teachers to integrate into their lessons. Reading a 

definition of CT will not be enough to help teachers to develop an understanding of CT, 

but the lack of a clear definition was a limiting factor for teachers in this capstone study. 

 Building on and distinguishing from digital competencies. Because all 3rd-12th 

grade students in RCSD have a laptop computer, the ITRT team has worked for years 

emphasizing the need for students to be digitally literate. While their work has not been 

widespread, this emphasis on digital competencies, creating digital artifacts, collaborating 

electronically, and enabling students to use technology to support their life-long learning 

goals may have created a blind spot for teachers who have embraced this movement. 

Teachers like Ms. Horton and Ms. Sanchez who have collaborated with ITRT on projects 

related to digital competencies curriculum and classroom technology integration might 

hear “computer science” or “computational thinking” and automatically relate it to the 

technology integration already present in their classroom. Teachers who have not worked 

with ITRT on digital literacy might make similar assumptions. Teachers may need help 

recognizing that developing students’ CT skills is different than developing their digital 

literacy skills.  That recognition can only occur once teachers have a solid understanding 

of the meaning of CT or clear examples of CT instruction so that they can develop an 

understanding of CT.  

 Teachers need professional development and educative resources that support 

teachers in order to understand CT. Professional development must provide clear, 
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illustrative examples for teachers to understand definitions of CT operationally or in 

practice. Chapter Two described resources from Google, ISTE and CSTA, among others, 

that can help to develop teacher understanding of CT. Resources such as these and others 

that focus on teacher knowledge, curriculum, and lesson plans are available to teachers, 

but they do not know where to look, or even that they need to look for them. 

Helping Teachers Implement High Quality CT Instruction 

 Teacher development of understanding the best ways to teach any content is a 

complex process, with no one formula that fits for every person, context, or instructional 

setting (van Driel & Berry, 2012). And the process is not necessarily linear, where 

instruction of content directly follows from understanding of content (van Driel & Berry, 

2012). Teachers need content, resources, examples of good and bad instruction, and 

opportunities for reflection to improve their understanding of ways to teach (Buchholz et 

al., 2013). 

Once teachers have a better understanding on the meaning of CT, they must use 

best-practice instructional strategies to teach CT to their students. Activities and tasks 

should allow for student engagement in CT. The two teachers who referenced CT and 

touched upon the elements of CT in their instruction did so exclusively through direct, 

didactic instruction, and focused on teaching vocabulary. As discussed above, over-

reliance on this particular instructional strategy may stem from a lack of in-depth 

understanding of CT or how to teach CT. 

 Accessing and implementing available CT resources. Teachers with 

understanding of a concept can design their own instructional experiences for students, or 

as Hattie (2009) suggests, they can find lessons that are already available online that are 
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designed to teach that concept. Ms. Beck made use of a resource that her ITRT found 

online for her. She recognized that one part of the activity that was especially math-

intensive was beyond her students’ current abilities. Her understanding of the third grade 

mathematics curriculum and knowledge about her specific students allowed her to make 

the instructional decision to exclude that part of the lesson when she taught. However, her 

lack of CT understanding or adequate planning kept her from recognizing that the 

activities in the resource were inappropriate for her class. Ms. Beck’s first lesson 

included the use of the Computational Thinking Kit from Code.org (Appendix M). The 

purpose of the kit was to engage students in abstraction, decomposition, pattern matching 

and algorithms. In actuality, some students practiced abstraction and pattern matching 

through the kit, but most did not understand what they were supposed to be doing with 

the Computational Thinking Kit. None of the groups made enough progress through the 

kit to get to the points where they would be working at decomposition and algorithms. 

Her students had not completed the prerequisite courses on Code.org related to CT that 

provided background knowledge and were necessary to complete the activity. Ms. Jones 

and Ms. Beck both assessed the students on their abilities to recall definitions of the CT 

vocabulary introduced in class. Again the lack of familiarity with the attributes of CT 

made it difficult for the teachers to plan a CT lesson that was appropriate for their 

students. 

 Ms. Sanchez taught a lesson from a manual where students learned about the 

coding program Scratch, and how to use it on their computer. She chose this lesson 

because it represented her understanding of computational thinking, which meant 

students thinking like a computer and creating a digital artifact (Sanchez, second 
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interview). This introductory lesson on Scratch did not allow students the opportunity to 

engage in CT, but it may have been necessary to introduce the basics of computer 

programming, and might serve as a precursor to later CT engagement for her students. 

While there were no elements of CT explicitly named in this particular lesson, it does 

satisfy the requirements of SOL 3.2 in the Algorithms and Programming section of the 

Computer Science SOLs. SOL 3.2 states that: 

The student will construct programs to accomplish tasks as a means of creative 

expression using a block or text based programming language, both independently 

and collaboratively  

• using sequencing; 

• using loops (a wide variety of patterns such as repeating patterns or growing    

patterns); and  

• identifying events (VDOE, 2017).  

This standard differs slightly from the algorithms as defined by this capstone study, 

where one must create the instructions, rather than simply follow them (Selby, 2014). Ms. 

Sanchez’s lesson on Scratch may have introduced students to a programming language, 

but it was only the first step towards engaging them in the elements of CT identified by 

Angeli et al. (2016), each of which can be present while programming in Scratch. 

It is important for teachers to have a plan for integrating CT and the new CS 

SOLs into their instruction. School districts in Virginia need a curriculum map that 

details the longitudinal plan for CT and CS integration. This can promote development of 

background knowledge, scaffolding, and vertical alignment across grade levels. 
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Team-based planning and collaboration. In order to building understanding of 

ways to teach, teachers must be able to work with other teachers to exchange ideas, 

strategies, and solutions to problems that arise while teaching (van Del et al., 1998).Ms. 

Beck and Ms. Jones were the only teachers at their school to participate in this capstone 

study. As such, they did not have teammates with whom to plan their lessons. Ms. Beck 

sought the assistance of her ITRT. She taught two lessons that contained references to CT 

and CT vocabulary. Ms. Jones stated that she wished her teammates had participated so 

that they could have shared lesson ideas and would have liked to reach out to her 

Instructional Coaches for support in planning, but did not have time to do so (Jones, first 

interview).  

Ms. Horton and Ms. Sanchez did not reach out to school or district support for 

assistance because they believed that they already had all of the knowledge and resources 

that they needed. Nonetheless, Ms. Horton received instructional support from our second 

interview, almost as an intervention, when she learned that CT was not what she thought 

it was. With time to process that new information, she explored the content herself. Then 

she served as an instructional support for her partner teacher, sharing her newfound ideas. 

While originally dismissive of the challenge to her own perceptions, Ms. Sanchez took 

time to reconsider and revisit the SOLs for clarification. That conversation between the 

teaching partners most likely caused a change in Ms. Sanchez’s second lesson, but did 

not result in a lesson that contained instances of CT integration, although it may have 

been a precursor.  

Teachers need instructional support to integrate CT into their instructional 

lessons. That support can come from their own teammates as they work together to 
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integrate new required curriculum, or it can come from other school or district-level 

support staff who have an understanding of CT and the ways to teach CT. 

Summary of Implications 

 The problem of practice of this capstone study focuses on the ways that we can 

help teachers to implement new standards for computational thinking and infuse the 

instruction into their lessons. In addressing the research questions of this capstone study, 

I found that teachers lacked an understanding of and preparedness to teach CT. 

Therefore, the ways to help teachers implement the new CT standards is to help them 

develop an understanding of CT and help them to implement high quality CT instruction.  

Limitations 

 Several limitations affect the findings, recommendations, and usefulness of this 

capstone study. First, my presence during the instructional lessons may have altered the 

implementation of the lessons. I suspect that the teachers at RFES taught lessons that they 

thought would relate to my field of work. Additionally, in the interviews that I conducted, 

my presence may have further caused participants to give the answers they thought were 

“correct.” Second, I did not have participation that was representative of the three schools 

or RCSD as a whole, so the conclusions and recommendations may not apply to other 

teachers in RCSD. Third, the findings and recommendations are possibly transferable to 

other similar research settings, but they are not generalizable to all teachers in RCSD or 

other public schools in Virginia. Fourth, and similar to the previous limitation, this 

capstone study focuses only on third grade teachers in RCSD and no other elementary 

school grades that will also be expected to integrate CT into their instruction. Lastly, 

because I based my findings and recommendations on my interpretations of events, it is 
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possible that others who implement this capstone study would arrive at different 

conclusions and recommendations. 

Recommendations 

 In this section, I present specific recommendations for action on the part of RCSD 

and the VDOE, as well as the challenges that may impede the implementation of the 

recommendations. These recommendations focus on the support that these organizations 

can provide to teachers as they attempt to integrate new standards into their instruction. 

While the focus of this capstone study is on CT, recommendations apply to the Computer 

Science Standards of Learning in general, as CT engagement should take place as a part 

of the integration of these SOLs into instruction. One recommendation is that the VDOE 

provide curriculum maps for the CS SOLs, similar to those for English, mathematics, or 

science. The VDOE website indicates that those resources are forthcoming (VDOE, 

2019), so I have excluded that recommendation below. A summary of the 

recommendations is found in Table 16. 
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Table 16 

Summary of Recommendations 

Recommendations 
Recommendation 1 VDOE should adopt a clear operational definition of CT for 

teachers, include a “Computational Thinking and Coding” 
section on grade-level standards documents, and include related 
CS standards on content area standards documents and 
curriculum blueprints. 
 

Recommendation 2 RCSD should make use of available professional development 
opportunities sponsored by the VDOE on computational 
thinking in order to develop a strong understanding of 
computational thinking. 
 

Recommendation 3 RCSD should create a Computer Science SOL Leadership group 
to drive integration of CT and CS standards into instruction 
across the district. This group would provide professional 
development opportunities for teachers to develop a strong 
understanding of computational thinking and RCSD-specific 
instructional resources for teachers to implement into high 
quality computational thinking instruction. 
 

 

Recommendation One: VDOE should adopt a clear operational definition of CT for 
teachers, include a “Computational Thinking and Coding” section on grade-level 
standards documents, and include related CS standards on content area standards 
documents and curriculum blueprints. 
 

The standards documents as they currently exist do not reduce confusion for 

teachers about what it is they are expected to teach. First, they should revise the “All 

Computer Science” document that contains all of the Computer Science Standards of 

Learning to provide a clear definition of computational thinking. Currently, one section 

of the document is intended to answer the question of “What is Computational Thinking,” 

but it is the section below on “Computer Science Practice for Students” that offers a 

definition of CT (see Figure 13). Revising these two sections to make the VDOE’s 

adopted definition of CT clearer should be the first step in remedying the definitional 
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confusion among teachers looking to integrate CT into their classroom instruction. I 

propose the VDOE adopt the following as its operational definition of CT for teachers: 

An approach to solving complex problems logically through abstraction, generalization, 

decomposition, algorithms, or debugging. These concepts can be used to formulate 

problems in a way that can be solved by a computer. 

Once the VDOE makes this definition clear in the “All Computer Science” 

document, the definition should be included within each grade-level or stand-alone 

course standards document as well, as suggested by Ms. Sanchez (second interview). 

Section headers of the grade-level documents should also change to include specific 

language used in the revised Code of Virginia related to the Standards of Learning. The 

code was modified by the Virginia General Assembly to add “computer science and 

computational thinking, including computer coding” (2016). For example, the header 

“Algorithms and Programming” should say “Computational Thinking and Coding.” 

These revisions could make the Standards of Learning the only resource a teacher needs 

to access to find the definition of CT adopted by the VDOE, and teachers wouldn’t be 

forced to search the Internet only to find myriad different definitions of CT. 

In addition to revising the Computer Science SOL documents, the VDOE should 

make a few modifications to the standards documents for core content areas such as 

English, Mathematics, History & Social Studies, or Science. I do not propose a change to 

the actual standards themselves at this time, but simply an addition to the text in the 

document. Currently, the Computer Science SOL documents include suggestions of 

content area standards in which to integrate specific CS SOLs. For example, CS 3.5 

states, “the student will compare and contrast a group of items based on attributes or 
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actions classified into at least two sets and two subsets. [Related SOL: Science 3.1c]” 

(VDOE, 2017). I recommend that the third grade Science SOL document add “Related 

SOL, Computer Science 3.5” to the end of Standard 3.1c. This way, teachers who are 

planning for their content area lessons might be more likely to add standards from the CS 

SOLs. Later, as content area SOLs are revised, I recommend including CT as a skill 

within each domain, similar to the way that all grade-level Science SOLs begin with 

Standard 1 – Scientific Investigation, Reasoning, and Logic (Figure 15). 

 

Figure 15: Standard 1 – Scientific Investigation, Reasoning, and Logic (VDOE, 2010) 

The first recommendation focused on the VDOE and the formatting of the 

Standards of Learning for Computer Science documents, as well as documents related to 

core subject areas. This recommendation relates to the findings that only three out of 

eight observed lessons referenced CT and that teachers did not understand CT or have an 

accurate or consistent definition of it. As mentioned previously, curriculum framework 

with examples of how the elements of CT and CS can be integrated into disciplinary 

content are necessary, but also promised by the VDOE in the summer of 2019. 



162 
 

 

Recommendation Two: RCSD should make use of available professional 
development opportunities sponsored by the VDOE on computational thinking in 
order to develop a strong understanding of computational thinking. 
 

Desimone (2009) suggests that the five core features of high quality professional 

development are content focus, active learning, coherence, duration, and collective 

participation. The second recommendation takes these factors into consideration as 

described below. 

 Currently the VDOE encourages teachers to attend professional development 

training sessions offered by Code Virginia to learn about content knowledge and 

instructional strategies for teaching CS and CS SOLs. In the spring of 2018, invitations to 

participate in a number of summer professional development session were emailed to 

teachers and school administrators across the state, including in RCSD (personal 

communication, April 1, 2018). RCSD redistributed one such invitation to attend 

professional development sessions from Code Virginia through its employee newsletter 

(personal communication, June 7, 2018), although at the time, teachers had to opt-in to 

receive updates from the blog. I attended a week-long Code Virginia summer 

professional development sessions in 2018. Code Virginia continues to offer professional 

development sessions, and the VDOE is hosting a CSforVA Summit in July 2019 as well. 

 In preparation for the required implementation of the CS SOLs in the 2019-2020 

school year, RCSD should send a targeted group of teachers and administrators to either 

the Code Virginia sessions or CSforVA Summit. RCSD has content advisory teams led 

by a central office administrator. The leader of each content advisory group should select 

a teacher from each of the 15 elementary schools in RCSD, with between two and three 

teachers per grade level, so that each school has representation and each grade level has 



163 
 

 

several teachers in attendance. This team of teachers and administrators, the CS SOL 

Leadership group, forms the basis of my third recommendation, described in the next 

section. 

 Beyond the summer of 2019, RCSD should continue to send teachers and 

administrators to professional development sessions on CT and CS integration in order 

for those educators to develop a strong understanding of CT. I have limited my 

suggestions to those sponsored by the VDOE because so far those sessions have been 

offered free of charge, across a variety of dates and throughout the state, providing more 

opportunities for teachers to attend throughout the year. 

 This recommendation addresses Desimone’s (2009) proposal of high quality 

professional development. The professional development sessions by Code Virginia and 

the VDOE specifically target the content in the new CS SOLs (content focus). When I 

attended the week-long session by Code Virginia, we engaged in active learning. We 

worked in groups to design lessons that we practiced teaching on other participants, we 

lead discussions on our own experiences with learning and teaching CS. We participated 

in mini-lessons on coding from Scratch and Code.org, and conducted a resource 

showcase with technology tools available in our own school districts. I introduced the 

group to the sorting network activity from CSUnplugged.org (see Figure 6). The Code 

Virginia sessions run for a full week, and include follow-up work online and additional 

face-to-face sessions throughout the subsequent school year (duration). Collective 

participation is addressed by sending a full team of RCSD teachers and administrators to 

these available professional development sessions. Desimone’s (2009) recommendation 

for coherence must be addressed by the VDOE first, to ensure that these professional 
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development opportunities can target clear objectives, and RCSD teachers will know that 

they are adhering to the requirements by the state. Without further information, there is 

no way to know if the professional development offered by Code Virginia or the VDOE 

will be high quality, but it is possible that it would demonstrate the key features 

suggested by Desimone (2009). 

Recommendation Three: RCSD should create a Computer Science SOL Leadership 
group to drive integration of CT and CS standards into instruction across the 
district. This group would provide professional development opportunities for 
teachers to develop a strong understanding of computational thinking and RCSD-
specific instructional resources for teachers to implement into high quality 
computational thinking instruction. 
 
 In forming the CS SOL leadership group described in the second 

recommendation, RCSD can adopt a model where their own teachers serve as the experts 

on the new CS SOLs and share that expertise with their colleagues. RCSD has a number 

of structures in place presently to spread CT and CS pedagogy throughout the district. 

What follows is a suggested plan for professional development on the new CS SOLs for 

RCSD teachers. 

 Phase One: Team Development. The first phase of this professional 

development plan was described as the second recommendation, that RCSD must 

assemble a team of teachers and administrators to attend existing state-offered 

professional development sessions. 

 Phase Two: District-Wide Session Planning. Central office administrators will 

use the information that they learned during summer professional development to prepare 

for an expository session on the new SOLS during the RCSD pre-service teacher week. 

Teachers return to school for one week before students arrive, and one of those days is 

dedicated to compulsory, district-wide professional development planned by central 
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office staff. Administrative members of the CS SOL leadership group should offer one 

session throughout the day to introduce elementary teachers to CT and their specific CS 

SOLs and provide teachers with expectations and requirements throughout the year 

related to the new CS SOLs. Teachers in RCSD likely share misconceptions about CT 

and CS that participants in this capstone study demonstrated—this is an opportunity to 

address those misconceptions and to help teachers understand why they should teach CT 

and CS. Teacher members of the CS SOL leadership group will work alongside the 

administrators to facilitate the sessions and be introduced district-wide as resources for 

other teachers in their grade-levels and schools. 

 Phase Three: Curriculum Development. Grade-level teams from different 

schools on the CS SOL Leadership group will work together to develop curriculum and 

lesson plans that integrate CT and the CS SOLs into their content area instruction. 

Teachers should focus on developing lesson plans for all content areas like mathematics, 

science, and English, identifying ways that CT and the new CS SOLs can be woven into 

the content area instruction. They teachers should make use of the resources and 

instructional strategies that they learned about during the summer, as well as the 

forthcoming CS SOL curriculum framework documents expected to be released by the 

VDOE in the summer of 2019. Because these teachers attended professional development 

that focused on content, engaged them in active learning, was coherent and of a sufficient 

duration, and built upon collective participation, they should have the necessary 

understanding of CT and the CS SOLs to do this work. As these teachers develop lessons 

to teach in their own classrooms, they should share the lessons with their grade-level CS 

SOL Leadership team so that they can be implemented and critiqued, as well as to build a 
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repository of lessons across multiple content area domains that integrate CT and the CS 

standards. Teaching these lessons will give teachers the experience with CT and the CS 

SOLs, and the necessary opportunity to reflect before sharing their resources with other 

RCSD teachers (Buchholz et al., 2013). The CS leadership group should reconvene at the 

end of the first year to review lessons learned and review vertical alignment. This will 

ensure that teachers and students build on experiences longitudinally as students’ skills 

and knowledge related to CT and CS grow. 

 Phase Four: Internal Professional Development. RCSD has a number of 

opportunities for teachers to access internal professional development throughout the 

year. Three of those opportunities allow district employees to teach courses to their 

colleagues in exchange for a stipend. The first opportunity is a district-wide professional 

development day after the first nine-weeks grading period. The second is through after-

school courses taught throughout the school year. The third opportunity is during the 

summer, when teachers must take six hours of internal professional development courses, 

spread out over two weeks in July, or during one additional professional development day 

during the pre-service teacher week before students return to school. Teacher members of 

the CS SOL Leadership group should use these sessions to share the curriculum that they 

have developed over the school year, as well as any valuable insight that they have 

gained from their experience integrating CT and the CS SOLs into their content area 

instruction. 

 During these PD sessions, attendees must engage in active-learning of CT and CS 

content knowledge, as well as see examples of the ways CT and CS SOLs can be 

integrated into content area lessons in RCSD schools. Session facilitators could focus the 
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instruction they provide on one content area of integration, one element of CT, or one 

stand of the CS standards, such as Computing Systems, Cybersecurity, or Data Analysis. 

 For example, a session might focus on ways to integrate the five elements of CT 

(Angeli et al., 2016) into third grade mathematics instruction. Table 1 provides examples 

of abstraction and generalization in the third grade math SOLs (VDOE, 2016). Students 

can create algorithms to describe the process of comparing fractions with unlike 

denominators to address Standard 3.2b. To practice debugging, teachers could give 

students a multistep word problem and an incorrect solution to the problem that shows 

the steps taken to arrive at the wrong solution. The teacher can instruct the students on 

the ways to identify the errors made, correct those errors, and solve the problem 

correctly. This addresses Standard 3.3b. Students can engage in decomposition through 

Standard 3.3b, as well, by correctly solving multistep problems similar to those described 

above. When students identify the process to solve these multistep problems and 

complete them in order, they have broken the problem down into smaller parts that are 

easier to solve. Table 17 provides a summary of these examples and those from Table 1 

that address the third grade Standards of Learning for mathematics. 

 The second and third recommendations address findings of this capstone study 

related to the instructional methods used to teach CT and access to resources and 

instructional support when planning for CT integration. By developing a team of CS SOL 

leaders who have received professional development, RCSD can employ those teachers 

with a strong understanding of ways to teach CT ad CS to create resources for teachers 

and provide instructional support and high quality professional development 

opportunities to their colleagues throughout the year. 
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Table 17 

Examples of Computational Thinking integrated into Grade Three Mathematics 

Standards of Learning 

Element 
 

Example Standard 

Abstraction Identifying the characteristics of five 
different rectangles that make them all 
rectangles but ignoring the ways that the 
rectangles are different. 
 

Measurement and 
Geometry – 3.12b 

Generalization Recognizing patterns of “Red-Blue-Red-
Red” and “Circle-Square-Circle-Circle” both 
as ABAA patterns 
 

Patterns, Functions, 
and Algebra – 3.16 

Decomposition Identifying the parts of a multistep problem 
that should be added or subtracted first in a 
multistep problem before moving onto the 
next parts of the problem 
 

Computation and 
Estimation – 3.3b 

Algorithms Create a list of steps to follow in order to 
compare fractions with unlike denominators 
 

Number and 
Number Sense – 
3.2c 

Debugging Identifying and correcting errors made in 
solving multistep practical problems 
 

Computation and 
Estimation – 3.3b 

 
Challenges 

 The implementation of these recommendations presents challenges both for the 

VDOE and RCSD, particularly time and money. Specifically, the timeliness of these 

recommendations related to when the new Standards of Learning go into effect is 

problematic. The VDOE expects teachers to implement the new SOLs in the 2019-2020 

school year. In my experience as an educator, we began preparing to integrate new 

content standards as soon as the VDOE released those standards, one to two years before 

they were required, in order to practice and iterate on ways to teach the content before it 
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was required. With the pending implementation months away, there may not be enough 

time to enact these recommendations. 

 Time is particularly a factor for the VDOE. The Computer Science SOLS were 

just adopted in November 2017. It took eight months for a steering committee to develop 

those standards that were adopted by the Virginia Board of Education (Staples, 2017). 

The process required to modify even those CS standards based on the recommendations 

above might take just as long, or longer. Revising the standards for content areas such as 

English or Science would likely require a similar committee and lengthy timeline as well. 

 Time would be less of a factor for RCSD. Teachers learn about professional 

development opportunities year-round. Additionally, because the sessions offered by 

Code Virginia and the VDOE are in the summer and free of charge, there may be fewer 

barriers to teacher and administrative participation in those sessions. 

 Funding for the CS SOL Leadership group may prove challenging for RCSD. 

Annual budget proposals for the upcoming fiscal years are due months in advance, so 

there might not be funding in the RCSD professional development budget to stipend 

these potential teacher-leaders to create curriculum and lead in-service sessions on ways 

to integrate CT and the CS standards into instruction. 

Summary of Recommendations 

 I based these recommendations for the VDOE and RCSD on the findings of this 

capstone study in response to the research questions. The recommendations encourage 

the VDOE to clarify the meaning of computational thinking and its place in the Computer 

Science Standards of Learning. The recommendations also suggest RCSD to leverage 

available professional development sessions to enhance the understanding of content and 
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ways to teach that content for a team of teachers and administrators that will create 

instructional resources and provide instructional support to their colleagues as they work 

to integrate CT and the CS SOLs into instructional lessons. Chapter Six includes the 

action communication in which I present both the findings and recommendations to the 

VDOE and RCSD. 
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Action Communication I 
 
To: Timothy Ellis 
Computer Science and Virtual Learning Specialist 
Virginia Department of Education 
 
From: Dr. Albert H. Jacoby, III, Ed.D. 
University of Virginia 
4370 Saddle Court 
Earlysville, VA 22936 
 
Date: July 1, 2019 
 
Dear Sir: 
 
I am writing to report findings and recommendations based on an 11-week single-case 
study of four third grade teachers in the Rockview County School District (RCSD) as 
they attempted to integrate computational thinking (CT) into their content area 
instruction. During the study, I observed two lessons by each teacher, interviewed the 
teachers after each lesson, and collected documents for review. 
 
As you know, the Virginia General Assembly modified the Code of Virginia related to 
the Standards of Learning to include “computer science and computational thinking, 
including computer coding” in 2016. The result of that modification was new Standards 
of Learning in Computer Science, adopted in November 2017 and scheduled for 
enactment during the 2019-20 school year. As a part of my research, I approached 
teachers, told them of the new SOLs, and asked to observe their practices to explore the 
ways that they planned for and integrated CT into their curriculum. 
 
The findings and recommendations of this study can help make informed decisions about 
the Standards of Learning and the ways that teachers should prepare for their 
implementation in the fall of 2019. This case study is specific to third grade teachers at 
four elementary schools in RCSD, and are not generalizable to all teachers in RCSD or 
the Commonwealth of Virginia. The recommendations and findings are starting points for 
further exploration of best practice. 
 
The findings of the study are as follows: 
 

1. Only three of the eight lessons taught by teachers in RCSD as a part of this 
capstone study contained elements of CT. Each of the three touched upon one 
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or more element of CT identified by Angeli et al. (2016) to varying degrees, 
and collectively touched upon all five elements. 

 
2. Teachers whose lessons contained elements of CT used direct, didactic 

instruction in order to integrate CT into their instruction. Teachers focused on 
helping students understand CT terms and vocabulary by relating the concepts 
to students’ everyday lives. 

 
3. Teachers in RCSD did not have a common, shared understanding of the 

meaning of CT, as defined by the elements identified by Angeli et al. (2016) 
or otherwise. Teachers suffered from definitional confusion related to CT, and 
struggled to make sense of their own interpretations of CT, even when 
provided with concrete definitions and relevant examples. 

 
4. The lessons that touched upon elements of CT were taught by two teachers 

who used CT resources. Resources used include lesson plans, articles, 
graphics, and instructional videos. Two teachers who did not touch upon 
elements of CT did not use CT resources. 

 
5. One teacher who taught lessons that touched upon elements of CT used 

district support personnel. Those personnel accessed and modified CT 
resources and co-planed the lessons with the teacher. 

 
Based on the findings above, I recommend the following actions for the Virginia 
Department of Education (VDOE) in order to better support teachers’ implementation of 
CT through the new Computer Science Standards of Learning. 
 
Recommendation One: VDOE should adopt a clear, operational definition of CT for 
teachers, include a “Computational Thinking and Coding” section on grade-level 
standards documents, and include related CS standards on content area standards 
documents and curriculum blueprints. 
 

The standards documents as they currently exist do not reduce confusion for 
teachers about what it is they are expected to teach. First, they should revise the “All 
Computer Science” document that contains all of the Computer Science Standards of 
Learning to make the definition of computational thinking more clear. Currently, one 
section of the document is intended to answer the question of “what is computational 
thinking,” but it is the section below on “computer science practices for students” that 
offers a definition of CT (see Figure 13). Revising these two sections to make the 
VDOE’s adopted definition of CT clearer could help to remedy some of the definitional 
confusion among teachers looking to integrate CT into their classroom instruction. I 
recommend that the VDOE adopt the following as an operational definition of CT for 
teachers: An approach to solving complex problems logically, through abstraction, 
generalization, decomposition, algorithms, or debugging. These concepts can be used to 
formulate problems in a way that can be solved by a computer. 
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Once the VDOE makes this definition clear in the “All Computer Science” 
document, the definition should be included within each grade-level or stand-alone 
course standards document as well. Section headers of the grade-level documents should 
also change to include specific language used in the revised Code of Virginia related to 
the Standards of Learning. The code was modified by the Virginia General Assembly to 
add “computer science and computational thinking, including computer coding” (2016). 
For example, the header “Algorithms and Programming” should say “Computational 
Thinking and Coding.” These revisions could make the Standards of Learning the only 
resource a teacher needs to access to learn the definition of CT, and teachers wouldn’t 
have to search the Internet only to find myriad different definitions of CT. 

 
In addition to revising the Computer Science SOL documents, the VDOE should 

make a few modifications to the standards documents for core content areas such as 
English, Mathematics, History & Social Studies, or Science. I do not propose a change to 
the actual standards themselves, but simply an addition to the text in the document. 
Currently, the Computer Science SOL documents include suggestions of content area 
standards in which to integrate specific CS SOLs. For example, CS 3.5 states, “the 
student will compare and contrast a group of items based on attributes or actions 
classified into at least two sets and two subsets. [Related SOL: Science 3.1c]” (VDOE, 
2017). I recommend that the third grade Science SOL document add “Related SOL, 
Computer Science 3.5” to the end of Standard 3.1c. This way, teachers who are planning 
for their content area lessons might be more likely to add standards from the CS SOLs. 

 
There are additional recommendations based on the findings that are specific to 

RCSD. Those recommendations relate to professional development and curriculum 
development specific to CT and the Computer Science SOLs. 

 
Several limitations affect the findings, recommendations, and usefulness of this 

capstone study. First, my presence during the instructional lessons may have altered the 
implementation of the lessons. I suspect that some teachers taught lessons that they 
thought would relate to my field of work. Additionally, in the interviews that I conducted, 
my presence may have further caused participants to give the answers they thought were 
“correct.” Second, I did not have participation that was representative RCSD or the State 
of Virginia, so the conclusions and recommendations may not apply to other teachers. 
Third, the findings and recommendations are possibly transferable to other similar 
research settings, but they are not generalizable to all teachers in RCSD or other public 
schools in Virginia. Fourth, and similar to the previous limitation, this capstone study 
focuses only on third grade teachers in RCSD and no other elementary school grades that 
will also be expected to integrate CT into their instruction. Lastly, because I based my 
findings and recommendations on my interpretations of events, it is possible that others 
who implement this capstone study would arrive at different conclusions and 
recommendations. 

 
I hope that these findings and recommendations will be useful to you and the 

Virginia Department of Education. I would be happy to provide an abbreviated list of 
references regarding computational thinking, as well as a list of available computational 
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thinking resources. Please do not hesitate to contact me if you have questions or 
concerns. You can reach me at my e-mail address, ahj2yc@virginia.edu.  
 
Sincerely, 
 

 
Albert H. Jacoby, III. 
 

 
 
 

mailto:ahj2yc@virginia.edu
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Action Communication II 
 
To: Director of Elementary Education 
Rockview County School District 
 
From: Dr. Albert H. Jacoby, III, Ed.D. 
University of Virginia 
4370 Saddle Court 
Earlysville, VA 22936 
 
Date: July 1, 2019 
 
Dear Madam: 
 
I am writing to report findings and recommendations based on an 11-week single-case 
study of four third grade teachers in the Rockview County School District (RCSD) as 
they attempted to integrate computational thinking (CT) into their content area 
instruction. During the study, I observed two lessons by each teacher, interviewed the 
teachers after each lesson, and collected documents for review. 
 
As you know, the Virginia General Assembly modified the Code of Virginia related to 
the Standards of Learning to include “computer science and computational thinking, 
including computer coding” in 2016. The result of that modification was new Standards 
of Learning in Computer Science, adopted in November 2017 and scheduled for 
enactment during the 2019-20 school year. As a part of my research, I approached 
teachers, told them of the new SOLs, and asked to observe their practices to explore the 
ways that they planned for and integrated CT into their curriculum. 
 
The findings and recommendations of this study can help make informed decisions about 
the Standards of Learning and the ways that teachers should prepare for their 
implementation in the fall of 2019. This case study is specific to third grade teachers at 
four elementary schools in RCSD, and are not generalizable to all teachers in RCSD. The 
recommendations and findings are starting points for further exploration of best practice. 
 
The findings of the study are as follows: 
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6. Only three of the eight lessons taught by teachers in RCSD as a part of this 
capstone study contained elements of CT. Each of the three touched upon one 
or more element of CT identified by Angeli et al. (2016) to varying degrees, 
and collectively touched upon all five elements. 

 
7. Teachers whose lessons contained elements of CT used direct, didactic 

instruction in order to integrate CT into their instruction. Teachers focused on 
helping students understand CT terms and vocabulary by relating the concepts 
to students’ everyday lives. 

 
8. Teachers in RCSD did not have a common, shared understanding of the 

meaning of CT, as defined by the elements identified by Angeli et al. (2016) 
or otherwise. Teachers suffered from definitional confusion related to CT, and 
struggled to make sense of their own interpretations of CT, even when 
provided with concrete definitions and relevant examples. 

 
9. The lessons that touched upon elements of CT were taught by two teachers 

who used CT resources. Resources used include lesson plans, articles, 
graphics, and instructional videos. Two teachers who did not touch upon 
elements of CT did not use CT resources. 

 
10. One teacher who taught lessons that touched upon elements of CT used 

district support personnel. Those personnel accessed and modified CT 
resources and co-planed the lessons with the teacher. 

 
Based on the findings above, I recommend the following actions for the Virginia 
Department of Education (VDOE) and Rockview County School District in order to 
better support teachers’ implementation of CT through the new Computer Science 
Standards of Learning. 
 
Recommendation One: VDOE should adopt a clear, operational definition of CT for 
teachers, include a “Computational Thinking and Coding” section on grade-level 
standards documents, and include related CS standards on content area standards 
documents and curriculum blueprints. 
 

The standards documents as they currently exist do not reduce confusion for 
teachers about what it is they are expected to teach. First, they should revise the “All 
Computer Science” document that contains all of the Computer Science Standards of 
Learning to make the definition of computational thinking more clear. Currently, one 
section of the document is intended to answer the question of “what is computational 
thinking,” but it is the section below on “computer science practices for students” that 
offers a definition of CT (see Figure 13). Revising these two sections to make the 
VDOE’s adopted definition of CT clearer could help to remedy some of the definitional 
confusion among teachers looking to integrate CT into their classroom instruction. I 
recommend that the VDOE adopt the following as an operational definition of CT for 
teachers: An approach to solving complex problems logically, through abstraction, 
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generalization, decomposition, algorithms, or debugging. These concepts can be used to 
formulate problems in a way that can be solved by a computer. 

 
Once the VDOE makes this definition clear in the “All Computer Science” 

document, the definition should be included within each grade-level or stand-alone 
course standards document as well. Section headers of the grade-level documents should 
also change to include specific language used in the revised Code of Virginia related to 
the Standards of Learning. The code was modified by the Virginia General Assembly to 
add “computer science and computational thinking, including computer coding” (2016). 
For example, the header “Algorithms and Programming” should say “Computational 
Thinking and Coding.” These revisions could make the Standards of Learning the only 
resource a teacher needs to access to learn the definition of CT, and teachers wouldn’t 
have to search the Internet only to find myriad different definitions of CT. 

 
In addition to revising the Computer Science SOL documents, the VDOE should make a 
few modifications to the standards documents for core content areas such as English, 
Mathematics, History & Social Studies, or Science. I do not propose a change to the 
actual standards themselves, but simply an addition to the text in the document. 
Currently, the Computer Science SOL documents include suggestions of content area 
standards in which to integrate specific CS SOLs. For example, CS 3.5 states, “the 
student will compare and contrast a group of items based on attributes or actions 
classified into at least two sets and two subsets. [Related SOL: Science 3.1c]” (VDOE, 
2017). I recommend that the third grade Science SOL document add “Related SOL, 
Computer Science 3.5” to the end of Standard 3.1c. This way, teachers who are planning 
for their content area lessons might be more likely to add standards from the CS SOLs. 
 
Recommendation Two: RCSD should make use of available professional development 
opportunities sponsored by the VDOE on computational thinking in order to develop a 
strong understanding of computational thinking. 
 

Currently the VDOE encourages teachers to attend training sessions offered from 
Code Virginia to learn about content knowledge and instructional strategies for teaching 
CS and CS SOLs.  Code Virginia continues to offer professional development sessions, 
including during the summer of 2019, and the VDOE is hosting a CSforVA Summit in 
July 2019 as well. 

 
 In preparation for the required implementation of the CS SOLs in the 2019-2020 
school year, RCSD should send a targeted group of teachers and administrators to either 
the Code Virginia sessions or CSforVA Summit, or both. The leader of each content 
advisory team should select a teacher from each elementary schools in RCSD, with 
between two and three teachers per grade level, so that each school has representation 
and each grade level has several teachers in attendance. This team of teachers and 
administrators, the CS SOL Leadership group, forms the basis of my third 
recommendation, described in the next section. 
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 Beyond the summer of 2019, RCSD should continue to send teachers and 
administrators to professional development sessions on CT and CS integration. I have 
limited my suggestions to those sponsored by the VDOE because so far those sessions 
have been offered free of charge, across a variety of dates and throughout the state, 
providing more opportunities for teachers to attend throughout the year. 
 
Recommendation Three: RCSD should create a Computer Science SOL Leadership 
group to drive integration of CT and CS standards into instruction across the district. This 
group would provide professional development opportunities for teachers to develop a 
strong understanding of computational thinking and RCSD-specific instructional 
resources for teachers to implement into high quality computational thinking instruction. 
 

In forming the CS SOL leadership group described in the second 
recommendation, RCSD can adopt a model where their own teachers serve as the experts 
on the new CS SOLs and share that expertise with their colleagues. This will allow 
RCSD to take advantage of its numerous professional development structures in place 
presently to spread CT and CS pedagogy throughout the district. What follows is a 
suggested plan for introducing professional development on integrating the CS SOLs into 
instruction for RCSD teachers. 

 
Phase One: Team Development. The first phase of this professional development 

plan was described as the second recommendation. RCSD must assemble a team of 
teachers and administrators to attend existing state-offered professional development 
sessions. 

 
Phase Two: District-Wide Session Planning. Content advisory team leaders will 

use the information that they learned during summer professional development to prepare 
for an expository session on the new SOLS during the RCSD pre-service teacher week. 
Content advisory team leaders should offer one session throughout the day to introduce 
elementary teachers to CT and their specific CS SOLs and provide teachers with 
expectations and requirements throughout the year related to the new CS SOLs. Teachers 
in RCSD likely share misconceptions about CT and CS—this is an opportunity to address 
those misconceptions and to help teachers understand why they should teach CT and CS. 
Teacher members of the CS SOL leadership group will facilitate the sessions alongside 
the team leaders and be introduced district-wide as resources for other teachers in their 
buildings or grade-levels. 

 
Phase Three: Curriculum Development. Grade-level teams within the CS SOL 

Leadership group will work together in order to develop curriculum and lesson plans that 
integrate CT and the CS SOLs into their content area instruction. Teams should focus on 
developing lesson plans for all content areas, identifying ways that CT and the new CS 
SOLs can be woven into the content area instruction. They should make use of the 
resources and instructional strategies that they learned about during the summer, as well 
as CS SOL Curriculum Framework documents expected to be released by the VDOE in 
the summer of 2019 (VDOE, 2019). As these teachers develop lessons to teach in their 
own classrooms, they should share the lessons with their grade-level CS SOL Leadership 
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group so that they can be implemented and critiqued, as well as to build a repository of 
lessons across multiple content area domains that integrate CT and the CS standards. The 
CS leadership group should reconvene at the end of the first year to review lessons 
learned and review vertical alignment. This will ensure that teachers and students build 
on experiences longitudinally as students’ skills and knowledge related to CT and CS 
grow. 

 
Phase Four: Internal Professional Development. As you know, RCSD has a 

number of opportunities for teachers to access internal professional development 
throughout the year. Three of those opportunities allow district employees to teach 
courses to their colleagues in exchange for a stipend. The first opportunity is the district-
wide professional development day after the first nine-weeks grading period. The second 
is through after-school courses taught throughout the school year. The third opportunity 
over two weeks in July or during the pre-service teacher week. Teacher members of the 
CS SOL Leadership group should use these sessions to share the curriculum that they 
have developed over the school year, as well as any valuable insight that they have 
gained while integrating CT and the CS SOLs into their content area instruction. 

 
Attendees must engage in active-learning of CT and CS content knowledge, and 

see examples of the ways that CT and CS SOLs have been integrated into instruction in 
RCSD schools. Session facilitators should focus their instruction on one content area for 
integration, one element of CT across multiple content areas, or one stand of the CS 
Standards, such as Computing Systems, Cyber Security, or Algorithms and 
Programming, across multiple content areas. 
 

Several limitations affect the findings, recommendations, and usefulness of this 
capstone study. First, my presence during the instructional lessons may have altered the 
implementation of the lessons. I suspect that some teachers taught lessons that they 
thought would relate to my field of work. Additionally, in the interviews that I conducted, 
my presence may have further caused participants to give the answers they thought were 
“correct.” Second, I did not have participation that was representative RCSD, so the 
conclusions and recommendations may not apply to other teachers. Third, the findings 
and recommendations are possibly transferable to other similar research settings, but they 
are not generalizable to all teachers in RCSD. Fourth, and similar to the previous 
limitation, this capstone study focuses only on third grade teachers in RCSD and no other 
elementary school grades that will also be expected to integrate CT into their instruction. 
Lastly, because I based my findings and recommendations on my interpretations of 
events, it is possible that others who implement this capstone study would arrive at 
different conclusions and recommendations. 

 
I hope that these findings and recommendations will be useful to Rockview 

County School District. I would be happy to provide an abbreviated list of references 
regarding computational thinking, as well as a list of available computational thinking 
resources. Please do not hesitate to contact me if you have questions or concerns. You 
can reach me at my e-mail address, ahj2yc@virginia.edu.  
 

mailto:ahj2yc@virginia.edu
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Sincerely, 
 

 
Dr. Albert H. Jacoby, III, Ed.D. 
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APPENDIX A 
 

 ECT Pencil Code Program: Map Visualization 
 

 At a glance… 
Core subject(s) History Social Science; Computer 

Science 
  

Subject area(s) US History; Programming 
Fundamentals 

  

Suggested age 8 to 18 years old  
 
Overview 
Use this program to show a simple way to illustrate statistics geographically by drawing bubbles on a map. 
Have students analyze or fill in or change parts of the program. This program could be used to further your 
understanding of how you could use Pencil Code in the classroom, as a demonstration or discussion with your 
students, or as a way to introduce various CT concepts, such as pattern recognition or abstraction, to your 
students by inviting them to extend the existing functionality of the program. 
 
Pencil Code Program 
Copy/Paste the following program into a ‘Blank Editor’ on the Pencil Code website (new.pencilcode.net) 

# Copyright 2015 Google Inc. All Rights Reserved. 
  
# Licensed under the Apache License, Version 2.0 (the "License"); 
# you may not use this file except in compliance with the License. 
# You may obtain a copy of the License at 
  
# http://www.apache.org/licenses/LICENSE-2.0 
  
# Unless required by applicable law or agreed to in writing, software 
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
# See the License for the specific language governing permissions and 
# limitations under the License. 
 
Somalia = new Turtle 
Somalia.wear 'http://goo.gl/4E8BcV' 
Somalia.css 'z-index', -1 
moveto 110, 80 
dot yellow, 30 
label "Eyl" 
moveto -25, -105 
dot skyblue, 70 
label "Merca" 
ht() 

http://new.pencilcode.net/
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Sample Output 
 

 
 
Additional Information and Resources 
Computational Thinking Concepts* 

Concept Definition 

Abstraction Identifying and extracting relevant information to define main idea(s) 

Pattern Recognition Observing patterns, trends, and regularities in data 

* Explore the Computational Thinking Concepts Guide for a list of the CT concepts noted on ECT, including 
tips for implementing each concept in your classroom  
 
Additional Resource Links 

• Visit http://pencilcode.net/ to explore the Pencil Code development environment 
• See Pencil Code: A Programming Primer for more than 100 example programs written in CoffeeScript 

 
Administrative Details 

Contact info For more info about Exploring Computational Thinking (ECT), visit the ECT website 
(g.co/exploringCT) 

https://docs.google.com/document/d/1i0wg-BMG3TdwsShAyH_0Z1xpFnpVcMvpYJceHGWex_c/edit?usp=sharing
http://pencilcode.net/
http://book.pencilcode.net/
http://coffeescript.org/
http://g.co/exploringCT
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Credits Developed by the Exploring Computational Thinking team at Google and reviewed by K-12 
educators from around the world. 

Last updated 
on 

06/09/2015 

Copyright info Except as otherwise noted, the content of this document is licensed under the Creative 
Commons Attribution 4.0 International License, and code samples are licensed under the 
Apache 2.0 License. 

 

https://www.google.com/intl/en/policies/terms/
https://www.google.com/intl/en/policies/terms/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
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APPENDIX B 
 

 ECT Lesson Plan: Making Music with Algorithms 
 

Lesson plan at a glance... 

Core subject(s) Music; Computer Science 
Subject area(s) Music; Algorithms and Complexity 
Suggested age 11 to 18 years old 
Prerequisites None 
Time Preparation: 5 to 10 minutes 

Instruction: 60 minutes 
Standards CS: CSTA 2-7, 9; 3A-3, 12 

 

In this lesson plan… 

• Lesson Overview 

• Materials and Equipment 

• Preparation Tasks 

• The Lesson 

• Learning Objectives and Standards 

• Additional Information and Resources 

Lesson Overview 
In almost every culture, people of all ages are making and listening to music, whether it is by banging hands 
rhythmically against a table or composing an elaborate symphony with all types of instruments. Music is a 
product of each of our cultures, but are there patterns and general principles that apply to most, if not all, 
music? In this lesson, students will recognize patterns in music and modify an algorithm by analyzing data to 
improve the quality of the music generated by a Pencil Code program. 
 
Materials and Equipment 

• For the teacher:  
a) Required: Presentation set-up 

i) Internet-connected computer 
(1) Chrome browser (https://www.google.com/chrome/browser/desktop) recommended 

ii) External speakers for audio playback 
b) Required: Access to YouTube (http://www.youtube.com)  
c) Recommended: Whiteboard and dry-erase markers or equivalent 

• For the student: 
a) Required: Internet-connected computers (one (1) computer per student recommended) 
a) Required: Pencil Code Music Maker program 
b) Required: Journal 

i) Google Docs (http://docs.google.com) or a wiki 
OR 

ii) Markers/Whiteboard or Paper and Pen/Pencil 
c) Required: Headphones 

 
Preparation Tasks 
  Confirm that computers are on, logged-in, and connected to the Internet 

with working audio (speakers, headphones) 
5 to 10 minutes 

http://www.csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf
https://www.google.com/chrome/browser/desktop
http://www.youtube.com/
https://example.pencilcode.net/edit/music-maker#blocks=0
http://docs.google.com/
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The Lesson 
Warm-up Activity: Factors involved in making music 10 minutes 

Activity 1: Patterns in musical scales 10 minutes 

Activity 2: Adjusting an algorithm to generate music 30 minutes 

Wrap-up Activity: Reflecting on making music with algorithms 10 minutes 

Warm-up Activity: Factors involved in making music (10 minutes) 
Activity Overview: In this activity, students will explore some of the characteristics of music and examples of 
what humans do to create music. 
 

Activity:  
Journaling: Students respond to the following prompts in their journal or word processor: 
Prompt 1: What are some reasons why humans create music? 
 
Prompt 2: If you were going to make music with only your hands and feet what might you do to make the 
music interesting? 
 

• After a couple of minutes, ask students to share their answers.  
• Write their responses on the board.  
• Use check marks to indicate and count duplicate responses. 

 
 

Activity 1: Patterns in musical scales (10 minutes) 
Activity Overview: In this activity, students will recognize patterns in scales from around the world and how 
changing the notes can affect its listeners. 
 

Notes to the Teacher: 
The number line is used to illustrate music scales in a way that does not require prior knowledge of music 
notation. To play scales, you can use Wikipedia's Music Scale 
(https://en.wikipedia.org/wiki/List_of_musical_scales_and_modes) or search on YouTube for an example 
(https://www.youtube.com/watch?v=QDWKzG5oaog) [C major scale]. 
 
You could supplement the lesson with these videos: 

a) Universality of the Pentatonic scale (https://www.youtube.com/watch?v=ne6tB2KiZuk) 
b) Ccommon chords found in many popular songs 

(https://www.youtube.com/watch?v=pCrD9N_3Jkw) 

 

Activity:  

https://en.wikipedia.org/wiki/List_of_musical_scales_and_modes
https://www.youtube.com/watch?v=QDWKzG5oaog
https://www.youtube.com/watch?v=ne6tB2KiZuk
https://www.youtube.com/watch?v=pCrD9N_3Jkw
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• Play a few scales found around the world (see the Teacher notes above for guidance). Have students 
write down on a rating scale of 1-10 how much they liked the scale as well as a few adjectives to 
describe how the scale made them feel. Do not tell the students what the names of the scales are 
when you are playing them, refer to them as scale #1, scale #2, etc. 

 

Scale Rating of how much you enjoyed it (1-
10) 

Adjectives you would use to describe how 
the scale makes you feel 

#1   

#2   

#3   

#4   

#5   

  
• Have students share the adjectives they used to describe each scale. 
• Now have students look at a diagram of the scale and look for a correlation between the pattern in 

the scales and how much they enjoyed that scale. 
 

Example diagram of specific scales: 

C major scale 

 

Blues 

 

Japanese 

 

Pentatonic 
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Activity 2: Adjusting an algorithm to generate music (30 minutes) 
Activity Overview: In this activity, students will modify an existing algorithm by adjusting parameters to 
generate music that sounds pleasant to them. Students can compare the adjustments they made to the 
program with each other to begin to understand the general principles of music theory through data analysis.  
 

Notes to the Teacher: 
Students do not need to have any prior understanding of music theory or notation in order to work on this 
program. The background on each topic is provided in the activity below for you to use as needed. 
 
It is not necessary to modify the algorithm used to play the notes. Once the activity is complete, time 
permitting, students may modify the algorithm to add more keys or any additional features that they 
choose. 

 

Activity:  
Walk students through the following: 

• Open the Pencil Code Music Maker program (https://example.pencilcode.net/edit/music-
maker#blocks=0). 

• This program creates and displays two pianos, randomly generating and playing notes based on a 
pentatonic scale. Students can modify parts of the algorithm to explore and figure out which settings 
they prefer. 

• Start by modifying line 24 to change the scale from notes = pentatonic to cmajor, 
hungarian, or another listed on lines 6 through 12. This changes what notes are available to play. 
a) For those familiar with musical scales it will be helpful to know that in Pencil Code, a sharp is 

indicated with a ^, or caret, preceding the letter (e.g. ^D is D sharp, or D♯) and a flat note has an 

_, or underscore preceding the letter (e.g. _A is A flat or A♭). 
• Once you have settled on a set of notes to use, modify the type of beats used in the composition. 

a) A beat establishes the rhythm for a song. When you are listening to a song you may find yourself 
clapping along or tapping your foot and these are beats. If you were clapping 4 times every 
second while singing it would sound very different than if you were only clapping 1 time per 
second. Musicians have a common language so they can write down music and understand what 
each other is saying. Some examples of these notes are whole, half, quarter, eighth are the most 
common. 

b) The rhythm of the main tune (or melody) of a song is often expressed by a singer or an 
instrument, such as a drum or bass guitar. In the default code, the melody is set to play quarter 
notes which play for 1 beat. Modify the number of beats in the melody by including different 
types of beats. For example melodyBeats = [quarter, whole] would result in music 
with some notes held only for one beat (quarter note) and others held for the whole measure or 

https://example.pencilcode.net/edit/music-maker#blocks=0
https://example.pencilcode.net/edit/music-maker#blocks=0
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four beats (whole note). The options can be found on lines 16 through 20. 
c) In the default code, the rhythm is set to play whole notes which resonate for 4 beats. Modify the 

number of beats in the rhythm by including different types of beats. For example 
rhythmBeats = [half, whole]. 

• The tempo sets the rate at which beats are played. The default in the code is 130 beats per minute, 
you can increase or decrease this to change the energy of the song. 

• These three attributes, notes or scale, rhythm, and tempo are core components of music. Try 
modifying one of these while keeping the other two constant. You may discover how dramatically 
these attributes can affect the song. For example: 
a) the scale can make a song sound like it is happy, sad, or even frightening, it can be thought of as 

words used in a story 
b) the beats are like the sentences in a story and are used to convey an emotion. The rhythm can 

make you want to dance, sit in somber reflection, or simply tap your foot. 
c) tempo can change the energy of a song temporarily to cause excitement or tension or follow a 

certain genre or style. 
 
Q1: In the table below indicate what values you would use to make a song convey certain emotions. Feel 
free to test this out in Pencil Code by modifying the values for tempo, melodyBeats, and 
bassBeats. 
 

Emotion tempo melodyBeats bassBeats 

Happy    

Sad    

Calm    

 
_____________ 
(fill in your own) 

   

 
• For every beat of the song in this program, a note is randomly selected from the notes available (you 

previously set this in line 24, the notes variable) and all notes by default have an equal probability. A 
composer of music does not randomly select notes, they use experience and feeling to determine 
which note to play next. You can modify the probability of each note by changing the values in 
biasForNotes. You can change the number to be any value between 0 and 1 and ideally the 
values would all add up to 1.  

• Change the values in biasForNotes to see which pattern works best, you may prefer to give 
some values a high probability and others have little or zero chance of being selected. Record in the 
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table below the values for biasForNotes you preferred. 
 
 

Preferences biasForNotes values 

#1 [     ,     ,     ,     ,     ,     ,     ] 

#2 [     ,     ,     ,     ,     ,     ,     ] 

#3 [     ,     ,     ,     ,     ,     ,     ] 

 
Q2: What values for biasForNotes produced the most enjoyable music for you? 
 

• Now that you have had some time to adjust the algorithm, setup the program to play music in the 
way that is preferable to you. Share your insights with other students. This could be specific 
discoveries such as, "I prefered these notes and rhythm," or general patterns like, "The music 
sounded best to me when the probability of the notes was not the same." 

• If you would like to continue to modify the algorithm to improve your composition, the table below 
has some additional parameters that can be modified. Adjust one parameter at a time so you can 
understand the effect each one has on the music. 

 

Line Name Description Suggestions 

23 Pianos 

The number of pianos generated. 
Currently there are two, a piano to 
play the melody and a piano to 
play the bass. 

Add a harmony piano to play accompany the 
melody 
pianos = [melody, harmony, 
bass] 

25 Measure
s 

The number of measures 
determines the length of a song. 
The algorithm defines a measure 
as 4 beats long so 5 measures will 
create a song 20 beats long. 

Increase/decrease the number of measures 
measures = 10 

29 Melody 
Octaves 

The range of notes available for 
the melody. An octave is a 
complete set of notes and the 
distance between a note and one 
that sounds the same, but just 
higher or lower. For example there 
is a note A at a frequency of 440Hz 
and one above it at 880Hz. 

Add/remove octaves using Pencil Code 
notation of commas and single quotation 
marks. 
melodyOctaves = ["", "'", "''"] 
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30 Bass 
Octaves 

The range of notes available for 
the bass (see Melody Octaves for 
more). Bass notes sound ‘deeper’ 
than the higher notes in the 
Melody Octaves.  

Add/remove octaves using Pencil Code 
notation of commas and single quotation 
marks. 
bassOctaves = [",,", ","] 
 

 

 

Teaching Tips:  
• If students are struggling to come up with ways to modify the code, write suggestions on the board 

or pause halfway in to share what others have tried and ask what would happen if we did ______. 
• Hint, a popular value for biasForNotes is [0.33, 0 , 0 , 0.33 , 0.33 , 0 , 0]. 

For students who would like to continue to modify the algorithm they could: 
• Add additional scales, modify the time signature (https://en.wikipedia.org/wiki/Time_signature), and 

other refinements to the existing algorithm. 
• Modify the algorithm used to play the notes found on lines 33 - 89. Modifying the algorithm could be 

used, for example, to give each measure a new set of rules (perhaps to introduce a solo 
[https://en.wikipedia.org/wiki/Solo_(music)] halfway into the music). 

 

Assessment:  
A1: Answers will vary: 

• happy -  the tempo should be high melodyBeats could include at least quarter notes and possibly 
eighth notes, bassBeats may include half notes and quarter notes.  

• sad - the tempo may be low melodyBeats and bassBeats could include whole and half 
notes 

A2: Answers will vary. 

 
 

Wrap-up Activity: Reflecting on making music with algorithms (10 minutes) 
Activity Overview: In this activity, students will reflect on any new techniques they learned for creating music 
as well as ideas for improving the music generating algorithm. 
 

Activity:  
Journaling: Students respond to the following prompts in their journal or word processor: 
Prompt 1: What additional ideas have you come up with for creating music using only your hands and feet 
(compare with your list from the beginning of this lesson). 
 
Prompt 2: Even if you don't know how you might implement these ideas, what do you think would 
improve the music generated by the algorithm in the previous activity? 
 

https://en.wikipedia.org/wiki/Time_signature
https://en.wikipedia.org/wiki/Solo_(music)


204 
 

 

• After a couple of minutes, ask students to share their answers.  
• Write their responses on the board.  
• Use check marks to indicate and count duplicate responses. 

 

Teaching Tips:  
• Show students examples of videos found on YouTube when you search for [algorithm generated 

music] or [computer generated music] to see examples of how others have attempted to generate 
music using an algorithm. Ask students how they think the music was made. 

 
 
Learning Objectives and Standards 
Learning Objectives Standards 

LO1: Students will analyze 
musical scales for patterns and 
preference. 

Computer Science 
CSTA 2-7: Represent data in a variety of ways: text, sounds, pictures, 
numbers. 
 
CSTA 2-9: Interact with content-specific models and simulations to 
support learning and research. 

LO2: Students will be able to 
create music by modifying an 
algorithm. 

Computer Science 
CSTA 2-9 
 
CSTA 3A-3: Explain how sequence, selection, iteration, and recursion are 
building blocks of algorithms. 
 
CSTA 3A-12: Describe how computation shares features with art and 
music by translating human intention into an artifact. 

 
 
Additional Information and Resources 
Lesson Vocabulary 

Term Definition For Additional Information 

Multiple musical terms were defined in activity 2 to assist students in modifying the algorithm. 

Rhythm A pattern of regular, repeated sounds    https://en.wikipedia.org/wiki/Rhythm 

Scale A set of musical notes ordered by 
frequency or pitch. 

https://en.wikipedia.org/wiki/Scale_(music) 

http://www.csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf
http://www.csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf
http://www.csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf
http://www.csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf
http://www.csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf
https://en.wikipedia.org/wiki/Rhythm
https://en.wikipedia.org/wiki/Scale_(music)
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Step or Interval The distance between two notes in a 
scale. 

https://en.wikipedia.org/wiki/Scale_(music) 

Time Signature The number of beats per measure and 
the note value which equals 1 beat. 

https://en.wikipedia.org/wiki/Time_signature 

 
Computational Thinking Concepts 

Concept Definition 

Algorithm Design Creating an ordered series of instructions for solving similar problems 

Data Analysis Making sense of data by finding patterns or developing insights 

Pattern Recognition Observing patterns and regularities in data 

 
Additional Resource Links 

• WolframTones Musical Composition Generator - requires QuickTime 
(http://tones.wolfram.com/generate/)  

 
Administrative Details 

Contact info For more info about Exploring Computational Thinking (ECT), visit the ECT website 
(g.co/exploringCT) 

Credits Developed by the Exploring Computational Thinking team at Google and reviewed by K-12 
educators from around the world. 

Last updated on 07/24/2015 

Copyright info Except as otherwise noted, the content of this page is licensed under the Creative 
Commons Attribution 3.0 License, and code samples are licensed under the Apache 2.0 
License. 

https://en.wikipedia.org/wiki/Scale_(music)
https://en.wikipedia.org/wiki/Time_signature
http://tones.wolfram.com/generate/
http://g.co/exploringCT
http://www.google.com/edu/policies.html#restrictions
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
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APPENDIX C 

Divide and conquer 
• Duration: 30 minutes 
• Ages 8 to 10: Lesson 2 

Classroom resources 
• Paper 
• Payment system such as tokens or marbles 
• Pens 

 
Learning outcomes 
Students will be able to: 

• Describe how the time taken grows with the size of the input, and most importantly how 
it grows in different ways for two different algorithms. Computational Thinking: 
Generalising and Patterns 

• Describe how to compare number values for equality and inequality (greater than, less 
than). Mathematics: Numeracy 

• Explain how they used decomposition to divide and conquer when doing a binary search. 
Computational Thinking: Decomposition 

• Explain the range of the number of guesses for unsorted lists compared to sorted lists. 
Mathematics: Statistics 

• Identify search algorithms for sorted and unsorted lists (sequential and binary search). 
Computer Science: Algorithms 

Key questions 
Imagine 31 numbers have been organised in ascending order in a list by a computer program. 
Now the program has to find a number in the list, but it can only look at one number at a time. Is 
it easier to find the number now, than if they were in a random order? 
 
Potential answers could include: 

• The information is organised in a way that makes it more efficient to find. By guessing 
one number and checking it, you can use logical thinking to eliminate the numbers below 
or above the number guessed because you know the numbers are in order. 

 
• If they are in random order you can't use a strategy to find them quickly. 

https://csunplugged.org/en/search/?curriculum_areas=5
https://csunplugged.org/en/search/?curriculum_areas=5
https://csunplugged.org/en/search/?curriculum_areas=15
https://csunplugged.org/en/search/?curriculum_areas=3
https://csunplugged.org/en/search/?curriculum_areas=17
https://csunplugged.org/en/search/?curriculum_areas=10
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Lesson starter 
We have 31 different numbers, one on each card. You can’t see them but this time they are in 
order from the lowest number to the highest number. The numbers range from 0 to 1000. Can 
you find number 302 
 
Teaching observations 
You can adapt the range to suit what your students are working on in their mathematics lessons. 
This lesson focuses on sorted lists and we are using a range of numbers from 0 - 999. This 
activity works best if the numbers aren’t sequential because, for example, if there are 50 cards in 
the range 1 to 50 and they are sequential and you ask a student to find the number 10 they will 
probably just look at the 10th card straight away! You can generate different sets of cards with 
various ranges of numbers here. It's best if the numbers aren't spread evenly so that it's very hard 
to guess where a particular value might be. 

Lesson activities 
Set up a line of cards, with the animal facing upwards. Have a payment system ready such as 
tokens for your classroom, counters, sweets, or marbles. 
 
The game is even better if you have some real stakes - for example: I have 10 marbles each is 
worth 2 minutes of game time. For every token you use to find the number I’m thinking of, you 
will lose a marble. 
 
Let’s see how many guesses it takes to find the number: 302 
 
Who would like the first guess? (Choose a student). Which animal should I turn over? Tell us 
why you chose that guess. (They should be selecting the card that is exactly half way. If they 
didn’t, check with the class if they agree with the choice or could they add to the student’s 
thinking to select the middle card. If they decide not to, that's fine; they will learn the hard way if 
they use a less efficient approach.) 
 
Turn over the chosen card to show the number under it. If it's the correct one, you can stop, 
otherwise remove that card and all other cards that the number can’t be (which will either be all 
cards to the right or all cards to the left of the chosen one) and take away one token from your 
pile. Repeat this process until a student chooses the card with your number on it; if they use all 
ten tokens then the teacher "wins". 
 

 
 
How many guesses did it take to find the number? 
 
With each guess, how many cards were eliminated from being a possibility? (Answer: half the 
cards could be eliminated with each guess if you picked the middle card. ) 
 

https://csunplugged.org/en/resources/searching-cards/
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Did the students win because they guessed within 10 guesses or did you win because it took 
them longer? 
 
Repeat this game until the students have won 3 times or you have won 3 times. 
 
Teaching observations 
The number of guesses required can be anything from 1 (if you are lucky the first time), to 5 (if 
you have chosen the middle number each time). Of course, they may use more than 5 guesses if 
they use a poor strategy. Most of the time they will need close to 5 guesses. This also means that 
students will always have tokens left if they use a good strategy, since the maximum number of 
guesses to find the number is 5. 

Applying what we have just learnt 
If any data is organised in order and a binary search is applied, then you can eliminate a lot of 
data quickly - cutting the number of items in half each time. As a slightly different example, if 
we were trying to guess a number between 1 and 1,000,000, then asking if the number is over 
500,000 would eliminate 500,000 options in one question, the second question eliminates 
250,000, the third question 125,000, and so on. So in 3 questions you have eliminated 875,000 
numbers. With just 20 questions you can find the one number between 1 and 1,000,000. It's the 
same searching for objects that are sorted in descending order - each value that is checked halves 
the number of possible locations. Dividing problems in half makes them very small very quickly. 
 
This general process is called "divide and conquer" - you break the problem into (two) parts, and 
deal with each part separately, in turn break them into two parts. Very soon you end up with very 
easy tasks, such as dealing with just one item. It's a great strategy for reducing any big task or 
challenge to achievable goals! 

Lesson reflection 
What is the algorithm for a binary search? Here is a possible answer: 

• Ask to see the middle card 
• Repeat until the correct number is found: 
• Is the number greater than the number I want to find? 

o If yes, then keep the cards above that number, 
o Else, keep the cards below that number 

 

Seeing the Computational Thinking connections 
Throughout the lessons there are links to computational thinking. Below we've noted some 
general links that apply to this content. 
 
Teaching computational thinking through CSUnplugged activities supports students to learn how 
to describe a problem, identify what are the important details they need to solve this problem, 
and break it down into small, logical steps so that they can then create a process which solves the 
problem, and then evaluate this process. These skills are transferable to any other curriculum 
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area, but are particularly relevant to developing digital systems and solving problems using the 
capabilities of computers. 
 
These Computational Thinking concepts are all connected to each other and support each other, 
but it’s important to note that not all aspects of Computational Thinking happen in every unit or 
lesson. We’ve highlighted the important connections for you to observe your students in action. 
For more background information on what our definition of Computational Thinking is see our 
notes about computational thinking. 

Algorithmic thinking  
The divide and conquer process of repeatedly checking the centre card and deducing which cards 
can be eliminated, and which ones could still contain the number you are searching for, can be 
written as an algorithm. When you ask students to say which card to check each time they are 
actually articulating an algorithm and instructing you on how to follow it. 

By describing this method with the following algorithm a computer or person can follow it 
without needing to know how it works, they can just follow the instructions and not have to think 
about how to actually do the task. It’s important that algorithms are written like this, because 
computers can’t figure out how to solve problems by themselves! A possible version of the 
algorithm is written under the lesson reflection. 

Examples of what you could look for: 
Who are the students who not only can explain the exact process to find the number, but are also 
the students who don’t deviate from that process? 

Abstraction  
We can use the divide and conquer approach for more problems than just searching through an 
ordered list. We can use it to search through any set of objects that have identifying features. 

We can also use it to help us sort things into order, which will be explored in the Sorting 
Algorithms unit. 

Examples of what you could look for: 
If you repeat this exercise but with the numbers underneath different objects, or maybe use 
different letters of the alphabet or different coloured discs to search for, who are the students that 
can see that these differences don’t actually matter and they are still solving the same problem? 

Decomposition  

https://csunplugged.org/en/computational-thinking/
https://csunplugged.org/en/computational-thinking/
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The Divide and Conquer method is entirely about decomposition. When we use divide and 
conquer to solve a problem, we are breaking the problem in half repeatedly, which soon 
decomposes it to a very simple case: a list of one item, which is very easy to search! 

Examples of what you could look for: 
Who are the students who are able to break the problem down into steps and then explain why 
each step is important? 

Generalising and patterns  
The key pattern to recognise in this activity is the process of eliminating half the possible cards 
by only looking in one, and that this is repeated over and over to accomplish the task. 

Like we talked about in the lesson plan, the divide and conquer strategy is a pattern that appears 
frequently in computer science, and also in real life! It is an efficient and logical way of attacking 
many different problems where you are searching for something in a group of objects that have 
different identifying features. 

Examples of what you could look for: 
Who are the students who quickly identified the pattern? 

Evaluation  

 
Students can evaluate how well the divide and conquer method works by looking at how many 
marbles (or whatever payment you decide to use) they have left at the end of the activity. Older 
students can further examine the efficiency of this algorithm by calculating the maximum 
number of checks it would make for a different numbers of cards. You could compare this to the 
number of checks that a sequential search would need, and how these numbers change as you 
increase the number of cards. 

Examples of what you could look for: 
Who are the students who can explain the strengths and potential problems of using a binary 
search to find data? Can they explain why the maximum number of checks a binary search will 
make is much smaller than the maximum for sequential search? 
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Logic  
To retain as many marbles (or whatever payment you decide to use) as possible it makes sense to 
try and eliminate as many cards as possible with each guess. That way you can cut down the 
number of cards to 1 as fast as possible. Students will generally be able to logically reason and 
recognise that the best way to do this is to check the centre card each time. If we check that card 
and compare it to the number we are searching for what does that tell us about all the cards to the 
left of that card? All the cards to the right of that card? Students can deduce which cards they can 
now eliminate based on the card they have checked. 

Asking students to explain how they came to this conclusion is a great way to exercise their 
thinking skills, by getting them to articulate the logical steps they followed to come to this 
conclusion, and why it makes sense that doubling the number of cards only needs 1 more check. 
Understanding why divide and conquer will only ever require a specific small number of steps at 
most (for example it will never take more than 5 checks for 19 cards, or 20 checks for 1,000,000 
cards) also requires a high level of logical reasoning. 

Examples of what you could look for: 
Which students instinctively go for the middle square when searching? They are likely logical 
thinkers who can deduce that since the numbers are sorted then the middle square will tell them 
the most useful information. 

Printables 
 
Searching Cards 
Includes helper sheet for teacher. 
 

Teacher guide sheet for binary search 
activity  
 
Use this sheet to circle the number you are asking your class to look for when you are 
demonstrating how the binary search works. This allows you to demonstrate the maximum 
number of searches it would take. When students are playing the number hunt game, they can 
choose any number. Avoid those numbers that are underlined as they are key binary search 
positions (avoiding them is a good thing to do for demonstrations, but in practice students, or 
computers, won’t intentionally avoid these).  
 

Sorted numbers  
1 to 15  
1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 – 15

https://csunplugged.org/en/resources/searching-cards/
https://csunplugged.org/en/resources/searching-cards/
https://csunplugged.org/en/resources/searching-cards/
https://csunplugged.org/en/resources/searching-cards/
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APPENDIX D 

Teacher Interview Protocol – First Observation 

Introduction 

Hello, and thank you for agreeing to meet and speak with me today. I am conducting research on 

instruction of computational thinking at Rusty Falls Elementary School. The purpose of this 

interview is to discuss your integration of computational thinking into instruction in the lesson I 

observed today, both in the lesson planning and the lesson implementation. I will also ask about 

your experience with computational thinking. I will also gather information about your 

professional background. Is it OK if I audio record the interview today? I will transcribe the 

interview and any personally identifying information about you and the research site will be 

replaced with a pseudonym. Would you like to pick the pseudonym that will be used for you? Do 

you have any questions for me before we begin? 

Observation Summary 

First, I am going to ask you questions about the lesson that you taught today. 

• Please describe the lesson that I observed today. 

a) What was the subject and content area of the lesson taught? 

b) How long did it take? 

c) What instructional practices or strategies did you use? 

d) What about this lesson specifically addressed computational thinking? 

e) In what ways were the students engaged in computational thinking throughout this 

lesson? 

f) How were students assessed? 

• Why did you choose to teach this lesson for me to observe today? 
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• What did you notice about students in this lesson? 

• What difficulties did students experience when learning computational thinking in this 

lesson? 

Lesson Planning 

• How did you plan and prepare for this lesson? 

a) How long did it take to plan for this lesson? 

b) Who did you plan it with? 

c) What instructional materials did you access while planning? 

d) What computational thinking did you want me to see in this lesson the way that you 

planned it? 

e) How did administration influence you during the planning of this lesson? 

f) How did district support staff influence you during the planning of this lesson? 

g) What would have been helpful during planning of this lesson? 

• How did you deviate from your original lesson plan, if at all? 

a) What caused you to deviate from your original lesson plan? 

• What will you do differently, if anything, the next time that you plan/prepare for and 

teach this lesson? 

Professional Experience/Background Questions 

• Please tell me about your educational background. 

a) Where did you attend college? 

b) What degrees have you earned and are currently pursuing? 

c) How did you earn teaching licensure/certification?  

• Please tell me about your professional experience. 
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a) How long have you been teaching?  

b) How long have you been teaching at Rusty Falls Elementary School? 

c) What grades and/or classes do you currently teach?  

d) How long have you been in your current teaching assignment? 

e) What grades and/or classes have you previously taught? 

f) How long were you in your previous teaching assignments, if applicable? 

g) What other assignments or responsibilities do you have at Rusty Falls Elementary 

School or in Rockview County School District? 

• Please tell me about yourself. 

a) What is your age? 

b) What is your gender? 

Wrap-up 

• Do you have any questions? 

Thank you for allowing me to observe your instruction and interview you today. If we have not 

already done so, would you like to schedule your second observation and interview now? 
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APPENDIX E 
 

Teacher Interview Protocol – Second Observation 

Introduction 

Hello, and thank you for agreeing to meet and speak with me again today. As a reminder, I am 

conducting research on instruction of computational thinking at Rusty Falls Elementary School. 

The purpose of this interview is to discuss your integration of computational thinking into 

instruction in the lesson I observed today, both in the lesson planning and the lesson 

implementation. I will also ask about your experience with computational thinking. Is it OK if I 

audio record the interview today? I will transcribe the interview and any personally identifying 

information about you and the research site will be replaced with a pseudonym. Do you have any 

questions for me before we begin? 

Observation Summary 

First, I am going to ask you questions about the lesson that you taught today. 

• Please describe the lesson that I observed today. 

a) What was the subject and content area of the lesson taught? 

b) How long did it take? 

c) What instructional practices or strategies did you use? 

d) What about this lesson specifically addressed computational thinking? 

e) In what ways were the students engaged in computational thinking throughout this 

lesson? 

f) How were students assessed? 

• Why did you choose to teach this lesson for me to observe today? 

• What did you notice about students in this lesson? 
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• What difficulties did students experience when learning computational thinking in 

this lesson? 

Lesson Planning 

• How did you plan and prepare for this lesson? 

a) How long did it take to plan for this lesson? 

b) Who did you plan it with? 

c) What instructional materials did you access while planning? 

d) What computational thinking did you want me to see in this lesson the way that you 

planned it? 

e) How did administration influence you during the planning of this lesson? 

f) How did district support staff influence you during the planning of this lesson? 

• How did you deviate from your original lesson plan, if at all? 

a) What caused you to deviate from your original lesson plan? 

• What will you do differently, if anything, the next time that you plan/prepare for and 

teach this lesson? 

a) What grades and/or classes do you currently teach?  

b) How long have you been in your current teaching assignment? 

c) What grades and/or classes have you previously taught? 

d) How long were you in your previous teaching assignments, if applicable? 

e) What other assignments or responsibilities do you have at Rusty Falls Elementary 

School or in Rockview County School District? 

Computational Thinking  

• How do you define computational thinking? 
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• What importance do you assign to the teaching of computational thinking? 

a) Is it important to teach computational thinking? 

b) Why/why not? 

Please review this table (see Table 1) with definitions of computational thinking. 

• How do you provide students with the opportunities to learn and practice these skills 

identified as elements of computational thinking? 

• In your prior experience, what difficulties do students have when learning these skills 

identified as elements of computational thinking? 

• What do you think students need to know in order for them to learn these skills identified 

as elements of computational thinking? 

• What are your specific ways of assessing students understanding or abilities at these 

skills identified as elements of computational thinking? 

• How do other teachers provide your students with opportunities to learn and practice 

these skills identified as elements of computational thinking? 

Instructional Support related to Computational Thinking 

• How does school support staff at Rusty Falls Elementary School support teachers as they 

teach computational thinking? 

• How does the Rockview County School District support staff support teachers as they 

teach computational thinking? 

Besides the ways mentioned before about school and district support, in what other ways are 

teachers supported as they teach computational thinking? 

Wrap-up 

• Do you have any questions? 
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Thank you for participating in this research study, for allowing me to observe your instruction, 

and interview you today.  
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APPENDIX F 

Computer Science Standards of Learning – Grade Three 

The standards for third grade place an emphasis on decomposing larger problems and utilizing 
the iterative design process to develop a plan to construct and execute programs. Students in 
third grade are introduced to using computing systems to model attributes and behaviors 
associated with a concept. The accurate use of terminology as well as the responsible use of 
technology will continue to be built upon. The foundational understanding of computing and the 
use of technology will be an integral component of successful acquisition of skills across content 
areas. 
 
Algorithms and Programming 
3.1 The student will construct sets of step-by-step instructions (algorithms), both 

independently and collaboratively 
• using sequencing; 
• using loops (a wide variety of patterns such as repeating patterns or growing    

patterns); and [Related SOL: Math 3.16] 
• using events.  

 
3.2 The student will construct programs to accomplish tasks as a means of creative 

expression using a block or text based programming language, both independently 
and collaboratively  

• using sequencing; 
• using loops (a wide variety of patterns such as repeating patterns or growing    

patterns); and  
• identifying events.  

 
3.3 The student will analyze, correct, and improve (debug) an algorithm that includes 

sequencing, events, and loops. [Related SOL areas – Math: Problem Solving, English: 
Editing] 

 
3.4 The student will create a plan as part of the iterative design process, independently 

and/or collaboratively using strategies such as pair programming (e.g., storyboard, 
flowchart, pseudo-code, story map. [Related SOL: English 3.8c] 

 
3.5 The student will compare and contrast a group of items based on attributes or actions 

classified into at least two sets and two subsets. [Related SOL: Science 3.1c] 
 
3.6 The student will break down (decompose) a larger problem into smaller sub-

problems, independently or collaboratively. [Related SOL: Math 3.3b]  
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3.7 The student will give credit to sources when borrowing or changing ideas (e.g., using 
information and pictures created by others, using music created by others, remixing 
programming projects). [Related SOL: English 3.10e] 

 
Computing Systems 
3.8 The student will model how a computing system works including input and output. 

[Related SOL: Math 3.16] 
 
3.9 The student will identify, using accurate terminology, simple hardware and software      

problems that may occur during use, and apply strategies for solving problems (e.g., 
rebooting the device, checking for power, checking network availability, closing and 
reopening an app). 

 
Cybersecurity 
3.10 The student will identify problems that relate to inappropriate use of computing 

devices and networks. 
 
3.11  The student will create examples of strong passwords, explain why strong passwords      

should be used, and demonstrate proper use and protection of personal passwords. 
 
Data and Analysis 
3.12 The student will answer questions by using a computer to observe data in order for 

the         student to draw conclusions and make predictions. [Related SOL: Math 3.15, 
HSS 3.1d]   

 
3.13 The student will create an artifact using computing systems to model the attributes 

and behaviors associated with a concept (e.g., day and night, animal life cycles, plant 
life cycles). [Related SOL areas – Math: Models, Science: Moon Phases]  

 
 
Impacts of Computing 
3.14 The student will identify computing technologies that have changed the world and 

express how those technologies influence, and are influenced by, cultural practices. 
 
3.15 The student will identify the positive and negative impacts of the pervasiveness of 

computers and computing in daily life (e.g., downloading videos and audio files, 
electronic appliances, wireless Internet, mobile computing devices, GPS systems, 
wearable computing). 

 
3.16 The student will identify social and ethical issues that relate to computing devices and 

networks.  [Related SOL: C/T:  6-8.3, HSS 3.11] 
 

Networking and the Internet 
3.17 The students will discuss in partners and as a class that information can be transmitted 

using computing devices via a network (e.g., email, blogging, video messaging). 
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APPENDIX G 
 

Script for Consent Agreement Meeting 
 
Good morning, thank you for allowing me to attend your grade level meeting. My name is Bert 
Jacoby, and I am conducting research on Computational Thinking as a part of my doctoral 
capstone project. I am here today to introduce my project to you and hope to gain your consent to 
conduct research in your classrooms. 
 
In 2016, the Virginia legislators modified the Code of Virginia regarding the Standards of 
Learning to include Computer Science and Computational Thinking, including coding. Last fall, 
the Virginia department of education approved new state Standards of Learning in Computer 
Science to address the change in the law. These standards go into effect in the beginning of the 
next school year, 2019-2020. 
 
My research is on how teachers prepare for and implement these new standards, particularly on 
Computational Thinking. I would like to observe each of your classrooms two times, and on that 
same day conduct a follow-up interview with you about the lesson that I observed and how you 
prepared for it. I would ask that each lesson observed be of a different content area—reading, 
writing, math, science, social studies, etc. 
 
During my observations, I would be taking descriptive field notes about your instruction, your 
interaction with your students, and the instructional activities that your students engage in. No 
personally identifiable information would be collected, as well as no data about your students, 
other than observations of the work that they do in class. I will provide you with a notification 
letter to send home with your students. My observations, as well as the interviews, would be 
audio recorded. 
 
You would provide your consent by signing a consent document, but if at any time you decide to 
change your mind and withdraw your consent, you may do so and you and your observations and 
interviews would no longer be a part of my study. 
You will not be compensated for this study in any way, and there are no foreseeable risks or 
benefits to participating in the study. I do hope, however, that the results of my research prove to 
be useful to teachers and school districts who seek to integrate Computational Thinking into their 
instruction. 
 
If you are willing to participate, I will provide you with a consent form to sign. For those of you 
who consent to participate, I will email you in one week in order to schedule my first observation 
and interview. We can schedule both of them at that time, if you would like, or we can wait to 
schedule the second observation and interview after the first is complete. 
 
Does anyone have any questions about what I am asking to do or what I am asking of you? 
 
[Answer questions] 
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Please read and sign the consent form and return it to me. If you would like more time to read the 
consent form before deciding to sign it or not, I can leave it with you this morning and return this 
afternoon to collect it from you. 
 
[Pass out forms] 
 
Thank you very much for your time. To those of you who agree to participate in the study, I will 
email you in one week to schedule our observations. Goodbye. 
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APPENDIX H 

Classroom Observation Protocol 
Background information 

Teacher name: ___________________________________________ Date: __________________________________________________ 

School: _________________________________________________ Content Area(s): _________________________________________ 

Grade level: _____________________________________________ Number of students: ______________________________________ 

Start time: ______________________________________________ End Time: _______________________________________________ 

 Classroom description 
In the space below, describe the classroom layout (e.g., seating arrangements, lab space vs. classroom space), students (e.g., 
number, gender, ethnicity) and teacher. Use drawings if necessary. 
 
 
 
 
 
During observation 
In this section you will describe what is occurring during each 5 minute segment of the observation. Use the codebook to fill in the codes for 
each category. Only indicate the activities that are occurring during the time. Because of the integrated and iterative nature of instruction, you 
may have more than one item in each category during each time period. In the notes indicate any interesting activity that may inform the overall 
description of the lesson below. 
 

Time CT Elements Integration Grouping Notes 
0-5 �Ab �G   �Dc �Al  

�Db �CT 
�Imp  
�Exp 

�WG  �SG  
�Ind 
 

 

5-10 �Ab �G   �Dc �Al  
�Db �CT 

�Imp  
�Exp 

�WG  �SG  
�Ind 
 

 

10-15 �Ab �G   �Dc �Al  
�Db �CT 

�Imp  
�Exp 

�WG  �SG  
�Ind 
 

 



225 
 

 

15-20 �Ab �G   �Dc �Al  
�Db �CT 

�Imp  
�Exp 

�WG  �SG  
�Ind 
 

 

20-25 �Ab �G   �Dc �Al  
�Db �CT 

�Imp  
�Exp 

�WG  �SG  
�Ind 
 

 

25-30 �Ab �G   �Dc �Al  
�Db �CT 

�Imp  
�Exp 

�WG  �SG  
�Ind 
 

 

30-35 �Ab �G   �Dc �Al  
�Db �CT 

�Imp  
�Exp 

�WG  �SG  
�Ind 
 

 

35-40 �Ab �G   �Dc �Al  
�Db �CT 

�Imp  
�Exp 

�WG  �SG  
�Ind 
 

 

40-45 �Ab �G   �Dc �Al  
�Db �CT 

�Imp  
�Exp 

�WG  �SG  
�Ind 
 

 

45-50 �Ab �G   �Dc �Al  
�Db �CT 

�Imp  
�Exp 

�WG  �SG  
�Ind 
 

 

50-55 �Ab �G   �Dc �Al  
�Db �CT 

�Imp  
�Exp 

�WG  �SG  
�Ind 
 

 

55-60 �Ab �G   �Dc �Al  
�Db �CT 

�Imp  
�Exp 

�WG  �SG  
�Ind 
 

 

60-65 �Ab �G   �Dc �Al  
�Db �CT 

�Imp  
�Exp 

�WG  �SG  
�Ind 
 

 

65-70 �Ab �G   �Dc �Al  
�Db �CT 

�Imp  
�Exp 

�WG  �SG  
�Ind 
 

 

70-75 �Ab �G   �Dc �Al  
�Db �CT 

�Imp  
�Exp 

�WG  �SG  
�Ind 
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75-80 �Ab �G   �Dc �Al  
�Db �CT 

�Imp  
�Exp 

�WG  �SG  
�Ind 
 

 

80-85 �Ab �G   �Dc �Al  
�Db �CT 

�Imp  
�Exp 

�WG  �SG  
�Ind 
 

 

85-90 �Ab �G   �Dc �Al  
�Db �CT 

�Imp  
�Exp 

�WG  �SG  
�Ind 
 

 

 
Lesson Description 
In this section provide descriptive details about the lesson. Focus on descriptions of student-student and student-teacher interactions, specifics 
about integrated topics and instructional strategies and support mechanisms used by teacher. 
 
 
 
 
 
 
 
 
Resources Review 
In this section, review resources provided by the teacher that were used in planning or instruction of the lesson observed. 

Name: ___________________________________________________ Type: ____________________________________________________ 

Source of Resource: � Ind � Dv Sp � Sch Sp   Medium: _________________________________________________ 

CT Elements: �Ab �G  �Dc �Al �Db �CT Integration: �Imp �Exp 

 
Resource Description (including examples of CT and the elements of CT, strengths, weaknesses, etc.) 
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APPENDIX I 
Informed Consent Agreement 

 
Purpose of the Research Study: The purpose of this study is to understand the ways that 
teachers at Rusty Falls Elementary School teach computational thinking and the ways 
that they make use of resources to plan their instruction of computational thinking. 
 
Procedures: This study will take place from October through December 2018. It will 
follow teachers in 3rd grade through two lessons integrating new curriculum. It will 
consist of observations of classroom instruction (approximately 60-90 minutes), 
collection of lesson-related documents, and post-observation interviews with teachers 
(approximately 60 minutes). 
 
Risks: There are no anticipated risks in this study.  
 
Benefits: There are no direct benefits to participating in this study. The recommendations 
of the researcher, however, intend to help administrators, teachers, and the district to 
become more knowledgeable about computational thinking and hopefully to improve its 
integration into instruction. 
 
Cost of Participation: There is no cost to participate in this study. 
 
Confidentiality: To ensure the confidentiality of the participants, all personally 
identifiable information will be removed, and pseudonyms will be used for persons and 
the research site. All data related to the study will be stored in password-protected files 
on a password-protected computer. At the conclusion of the study, the data will be stored 
on a password-protected file on an external hard drive that will be housed in a fire-safe 
box. 
 
Voluntary Participation: Your participation in this study is voluntary and you are free 
to decide whether or not you would like to participate. 
 
Right to Withdraw: You have the right to withdraw from the study at any time without 
penalty. If you choose to withdraw, all study materials related to you will be destroyed. 
 
Compensation: You will not receive any compensation for participating in this study. 
 
Questions: If you have questions, please contact: 
Albert H. Jacoby, III Jennifer Chiu, Ph.D. 
University of Virginia University of Virginia 
Curry School of Education Curry School of Education 
Charlottesville, VA 22903 Charlottesville, VA 22903 
434-242-2918 434-924-3915 
ahj2yc@virginia.edu jlchiu@virginia.edu  

Go on to the next page 

mailto:ahj2yc@virginia.edu
mailto:jlchiu@virginia.edu
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If you have questions about your rights in the study, contact: 
Tonya R. Moon, Ph.D. 
Chair, Institutional Review Board for the Social and Behavioral Sciences 
One Morton Dr. Suite 500  
University of Virginia, P.O. Box 800392 
Charlottesville, VA 22908-0392 
Telephone: (434) 924-5999  
Email: irbsbshelp@virginia.edu 
Website: www.virginia.edu/vpr/irb/sbs 
 
Before you sign this form, please ask questions about any part of this study and/or 
consent that is not clear to you.  Your signature below means that you have received this 
information and all of your questions have been answered. 
 
You will receive a copy of this document after you have signed it. 
 
Consent from Adult:  I agree to participate in the research study described above 
 

Participant 
(signature) 

 

 

Participant 
(print) 

 

 

 
Date 

 

 

 

mailto:irbsbshelp@virginia.edu
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APPENDIX J 

Password Guidelines from Susie Jones’s Second Observation 
 

 Do Do Not 
1 Share password with parents Share with others 

 
2 Password has 8 characters Use easy words about you that 

would be easy to guess 
 

3 Use a combination of letters, 
numbers, symbols 

Use private information in your 
password 
 

4 Change your password every 6 
months 
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APPENDIX K 
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APPENDIX L 

Excerpt from Coding Games in Scratch (Woodcock, 2016) 
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APPENDIX M 

Code.org Unplugged Lesson on Computational Thinking 
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APPENDIX N 

Computer Technology Standards of Learning – Grades 3-5 

Introduction 
 

As the new century has unfolded, various studies have postulated 
about the likely competencies that will be needed in the workplace 
of tomorrow; one consistent conclusion is that technology will be 
integrated into every facet of business and life.  
 
The Educational Technology Plan for Virginia: 2010-15 focuses 
primarily on one specific component of 21st century skills—
information and communications technology (ICT) literacy. The 
most recognized definition for this topic was formulated in 2002 by 
the International ICT Literacy Panel: “ICT literacy is using digital 
technology, communications tools, and/or networks to access, 
manage, integrate, evaluate, and create information in order to 
function in a knowledge society.”  
 
  Educational Technology Plan for Virginia: 2010-15 

 
The Computer Technology Standards of Learning define the essential knowledge 

and skills necessary for students to access, manage, evaluate, use, and create information 
responsibly using technology and digital resources. They provide a framework for digital 
literacy and include the progressive development of technical knowledge and skills, 
intellectual skills for thinking about and using information, and skills needed for working 
responsibly and productively both individually and within groups. Digital literacy is not 
an end in itself but lays the foundation for deep and continuous learning. It focuses on 
using technology to learn rather than learning about technology.  
 

To become technologically proficient, students must develop these skills through 
integrated activities across all K-12 content areas. These skills should be introduced and 
refined collaboratively by all K-12 teachers as an integral part of the learning process. 
Teachers can use these standards as guidelines for planning technology-based activities in 
which students achieve success in learning and communication—preparing them to meet 
the challenges of today’s knowledge-based society. 
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Grades 3-5 
 
Basic Operations and Concepts 
C/T 3-5.1 Demonstrate an operational knowledge of various technologies. 

A. Use various types of technology devices to perform learning tasks. 
• Use a keyboard, mouse, touchscreen, touchpad, and other input 

devices to interact with a computer. 
• Demonstrate the ability to perform a wide variety of basic tasks 

using technology, including saving, editing, printing, viewing, and 
graphing. 

B. Communicate about technology with appropriate terminology.  
• Use basic technology vocabulary in daily practice. 

 
C/T 3-5.2 Identify and use available technologies to complete specific tasks. 

A. Identify the specific uses for various types of technology and digital 
resources. 
• Identify the differences among local, network, and Internet 

resources and tools. 
• Create, edit, and format a document with text and graphics. 
• Create and present a multimedia presentation. 
• Create and populate a spreadsheet with data. 
• Capture and edit a digital image. 
• Demonstrate the ability to choose appropriate resources when 

completing assignments in various content areas. 
B. Use content-specific tools, software, and simulations to complete 

projects. 
• Use tools in various content areas as directed by the teacher. 

 
Social and Ethical Issues 
C/T 3-5.3 Make responsible decisions—grounded in knowledge of digital safety and 

security best practices—that pertain to various digital communication 
tools and methods. 
A. Demonstrate knowledge of basic practices related to online safety. 

• Use best practices for online safety as defined by the division’s 
online safety program. 

• Demonstrate an understanding of the division’s acceptable use 
policy and consequences for inappropriate use. 

B. Discuss and model responsible behaviors when using information and 
technology. 
• Identify reasons for taking security precautions when using any 

technology, especially those related to the Internet. 
• Demonstrate responsible behavior, such as using strong passwords 

and  
 avoiding high-risk activities. 
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• Identify inappropriate or threatening interpersonal situations 
involving electronic devices and develop strategies to react to them 
safely. 

 
• Behave appropriately in virtual groups and be proactive in 

preventing bullying behavior in an environment that provides 
anonymity to bullies. 

 
C/T 3-5.4 Exhibit personal responsibility for appropriate, legal, and ethical conduct. 

A. Understand the need for laws and regulations regarding technology 
use. 

• Model appropriate, legal, and ethical behavior in all technology 
use and technology-supported environments. 

B. Understand the basic principles of the ownership of ideas. 
• Demonstrate a basic understanding of “fair use.” 

 
C/T 3-5.5 Demonstrate digital citizenship by actively participating in positive 

activities for personal and community well-being. 
A. Communicate respect for people when participating in group online 

learning activities. 
• Identify ways in which online communications are different from 

face-to-face communications. 
• Demonstrate online etiquette when communicating with others. 

B. Explore the potential of the Internet as a means of personal learning 
and the respectful exchange of ideas and products. 
• Participate in the creation of digital projects that involve 

communicating with others. 
 
Technology Research Tools 
C/T 3-5.6 Plan and apply strategies for gathering information, using a variety of 

tools and sources, and reflect on alternate strategies that might lead to 
greater successes in future projects. 
A. Collect information from a variety of sources. 

• Conduct research using various types of text- and media-based 
information. 

B. Apply best practices for searching digital resources. 
• Apply effective search strategies that will yield targeted 

information. 
• Identify basic indicators that a digital source is likely to be reliable. 

 
C/T 3-5.7 Draw conclusions from research and relate these findings to real-world 

situations. 
A. Use research to support written and oral presentations. 

• Apply research derived from digital resources to original work.  
• Demonstrate how to cite digital resources when developing 

nonfiction reports and presentations. 
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B. Apply knowledge when conducting research to develop accurate and 
balanced reports. 
• Use best practice guidelines for evaluating research results. 

 
Thinking Skills, Problem Solving, and Decision Making 
C/T 3-5.8 Practice reasoning skills when gathering and evaluating data. 

A. Determine when technology tools are appropriate to solve a problem 
and make a decision. 
• Identify technology resources and tools that can help with decision 

making. 
B. Demonstrate organization and persistence when completing personal 

and group assignments, activities, and projects. 
• Use various productivity tools that help with planning, time 

management, project goal setting, etc. 
 
C/T 3-5.9 Use models and simulations to understand complex systems and 

processes. 
A. Understand the use of simulations in learning. 

• Enhance understanding of concepts and skills by explaining how a 
simulation differs from and is similar to real life. 

B. Use simulations to understand complex concepts. 
• Enhance understanding of concepts and skills by using 

simulations. 
 
Technology Communication Tools 
C/T 3-5.10 Communicate effectively with others (e.g., peers, teachers, experts) in 

collaborative learning situations. 
A. Use technology tools for individual and collaborative writing, 

communication, and publishing activities. 
• Produce documents and presentations that demonstrate the ability 

to edit, reformat, and integrate various tools and media. 
B. Participate in communications among different cultures. 

•  Understand the need to place communication in the context of 
culture.  

C. Assume different roles (e.g., leader/follower, orator/listener) on teams 
in various situations. 
• Recognize that different people on a team bring different technical 

skills, and understand how that can influence team responsibilities. 
• Demonstrate the ability to share technology tools as needed. 

 
C/T 3-5.11 Apply knowledge and skills to generate innovative ideas, products, 

processes, and solutions. 
A. Organize and display knowledge and understanding in ways that 

others can view, use, and assess. 
• Understand the various ways in which digital products can be 

shared. 
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B. Use technology tools to share original work. 
• Use presentation tools to organize and present stories, poems, 

songs, and other original work. 
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APPENDIX O 

Create-Your-Own-Stories ROUGH DRAFT 

Students will figure out how to play your game by looking at the 
players’ phrases below. They will circle the matching parts and 
underline words that are different from player to player. The first 
matching section will be circled for them. 

Player 1 
I chose _________________________ . I rolled a ______________, _____________, and 

            (pick an item from the last page)                 (number on dice), (number on dice),  

____________  so I  ___________________ with _____________________ and 

(number on dice)     (dice roll 1 category item)         (dice roll 2 category item)  

___________________. 

(dice roll 3 category item)  

Player 2 
I chose _________________________ . I rolled a ______________, _____________, and 

            (pick an item from the last page)                 (number on dice), (number on dice),  

____________  so I  ___________________ with _____________________ and 

(number on dice)     (dice roll 1 category item)         (dice roll 2 category item)  

___________________. 

(dice roll 3 category item)  
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Player 3 
I chose _________________________ . I rolled a ______________, _____________, and 

            (pick an item from the last page)                 (number on dice), (number on dice),  

____________  so I  ___________________ with _____________________ and 

(number on dice)     (dice roll 1 category item)         (dice roll 2 category item)  

___________________. 

(dice roll 3 category item)  

 
Students will then use pattern matching and abstraction, make themselves a template 
for game play by writing up the circled parts of the other students’ experiences, and 
leaving the underlined sections as blanks. What are you going to be looking to see that 
the students can do? 
________________________________________________________________________ 
 
________________________________________________________________________ 
 
________________________________________________________________________ 
 
________________________________________________________________________ 
  

Draw some images here 
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Characters: 

1)   

2)  

3)  

4)  

5)  

6)  
 
Setting: 

1)   

2)  

3)  

4)  

5)  

6)  
 
Problem: 

1)   

2)  

3)  

4)  

5)  

6)  
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Solution: 

1)  

2)  

3)  

4)  

5)  

6)  
 
 
Extra (Optional): 
Here is where you can add magical characteristics or unusual creatures or whatever! 

1)  

2)  

3)  

4)  

5)  
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Draw 6 objects that your friends can choose from with no instruction included.  
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