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Abstract

Studies have shown that natural lighting (sunlight) is very beneficial for office workers’ productivity

and morale. While many new office spaces are being designed to emphasize the use of natural lighting

over artificial lighting, it is difficult to determine whether sunlight actually illuminates the majority of

such a workspace during the day. We present the initial results of our work in developing a new small,

low-power, and wireless system that can distinguish between natural and artificial light. Previous

works focus on analyzing measured light in the frequency domain. Our system analyzes light in the

visible spectrum, utilizing an off-the-shelf RGB photodiode array that measures incoming light in

conjunction with an algorithm that classifies the light into one of five categories – “Incandescent”,

“Fluorescent”, “LED”, “Sunlight”, and “Unknown” – based on various characteristics derived from

analyzing the measured components of the raw data in the visible spectrum of light (red, green,

and blue). Initial testing has shown the classification algorithm to be very effective. The algorithm

can correctly identify all of our tested artificial light sources with over 80 % percent accuracy and

natural light with over 75 % accuracy.
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Chapter 1

Introduction

1.1 Background

1.1.1 Overview

Workplace design affects worker productivity, happiness, and health, and modern workspace design

considers noise, lighting, expected tasks, and other factors when designing office spaces [1], [2].

However, this design is necessarily speculative; it must happen before the space is occupied and

used. How can workplace designs be evaluated to measure how effective they are? With lighting, for

example, is the office being mainly lit by the daylight entering through the windows, or are artificial

lights still the main source of illumination? Research conducted in this area has shown major benefits

of daylight in office spaces to workers’ satisfaction and productivity [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13],

but how much daylight actually illuminates the office space? Today, the amount of natural daylight

illuminating an office space is one of many factors considered in the Leadership in Environmental

and Energy Design for Interior Design and Construction (LEED ID + C) Certification Standards

for Indoor Environmental Quality, which are used by designers all over the world to develop high-

quality indoor environments as those that “enhance productivity, decrease absenteeism, improve

the building’s value, and reduce liability for building designers and owners” [14, 15]. However, two

of the verification methods used to ensure an indoor environment’s illumination by daylight rely

on computer simulations of either the environment to calculate the amount of time that daylight

levels are above a certain threshold, or the level of daylight intensity between 9:00am and 3:00pm

[15]. A third verification method relies on physical measurements of the daylight intensity in said

indoor environment [15]. It is unclear how daylight is distinguished from artificial light unless the

1



measurements require that all artificial light sources are deactivated, which would imply that the

verification relies on the absence of artificial light while measuring sunlight and cannot distinguish

between the two. This work focuses on windows and daylight exposure in the context of determining

how much of the light illuminating a workspace is actually natural daylight vs. how much is artificial

(Light Emitting Diode (LED), fluorescent, or incandescent) through physical measurements instead

of simulations.

1.1.2 Existing Devices

There are a number of existing devices on the market that could be used to identify different types of

light. Existing ultraviolet sensors measure the levels of Ultraviolet (UV) A-type, B-type, and C-type

radiation in an environment, and are most often used to detect when the levels are concentrated

enough to be harmful to humans [16]. These could be used to identify sunlight because sunlight

contains UV light, but identifying sunlight is not a primary function. These sensors could also be

used to identify fluorescent light, since some types of compact fluorescent lights do emit potentially

strong levels of UV radiation through cracks or defects in their internal phosphor coating [17]. There

are ambient light sensors in devices such as smartphones or smart lighting systems that are used to

measure the amount of light in an environment and adjust the brightness of the light emitted by

the device(s) accordingly [18]. There are other sensors that use light to help determine the color of

a nearby object [19], measure blood pressure and heartrate [20], and even calculate distance from a

target [21]. There are also sensors that are able to measure incident light and output a square wave

in response. These sensors could be used to distinguish between certain types of light, but seem to

be designed for use in areas involving the measurement of luminous intensity (lux) [22].

1.2 Thesis Overview

However, none of these devices have the capability to distinguish between all types of artificial

light (LED, Fluorescent, and Incandescent) and natural daylight. A device able to do this could

provide a much-needed tool that would allow building designers to be more precise when placing

various features meant to emphasize natural lighting, give office workers the ability to tell when

their environment is being lit by daylight or artificial light and adjust their environment accordingly,

or even allow an automated environmental monitoring system to do the same thing. Such a device

would need to be small, low-power, able to be placed on any surface, and capable of continuously

monitoring the lighting in high-resolution across an office space. This would enable the evaluation
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of whether the workspace design matched its designers’ goals and simulations, better tracking of

energy consumption based on artificial lighting use, and understanding the lighting preferences of

specific occupants to improve the work environment for everyone.

We present the initial results of our work in developing a new method for using an RGB color

sensor in conjunction with a data-processing algorithm that allows for the identification of the domi-

nant type of light illuminating an environment. We argue that different types of light (incandescent,

fluorescent, LED, and sunlight) have noticeable differences in their RGB color spectra and that

these distinctions can be measured and identified in enough detail to allow for the identification

of the dominant light source in question without more complicated equipment. Our setup includes

a small, off-the-shelf RGB photodiode array mounted on a printed circuit board (PCB) roughly

24mm x 39.5mm in size and an algorithm that classifies measured light based on analysis of its red,

green, and blue components of the visible spectrum of light. With all identification tests run, the

classification algorithm was able to identify incandescent light 100 % of the time, fluorescent light

82 % percent of the time, LED light 81 % percent of the time, and sunlight 77 % percent of the time.

1.3 Use Cases

1.3.1 Increasing Productivity

A system that can identify the type of light illuminating an environment could be very useful in a

number of cases. The primary instance that we focused on in this work involves measuring lighting

in an office workspace. As stated earlier, many studies have been conducted that show how natural

lighting (sunlight) improves office workers’ morale, productivity, and overall sense of well-being

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. While many new workspaces are being designed to emphasize

natural lighting throughout themselves, it is very hard to fully test the design during construction.

While it is obvious that designers can easily run simulations of various environmental conditions of

a workplace using modern technology, it is very difficult to account for every possible action that the

workers using the space can take. Furniture could be moved, windows could be closed or blocked,

and the workplace in question could be used in many different scenarios other than what it was

designed for. A light-identification system deployed in a workspace would be extremely useful, able

to help designers understand if and how natural light is reaching all of the areas in the workspace

that were designed to allow for it.
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1.3.2 Energy Management

Another application in which a system for identifying light could be very useful is in energy man-

agement. In many buildings, lights are often left on in certain areas when nobody is working there,

which is wasting electricity that could be used elsewhere. Some buildings do have motion sensors

installed that turn on the lights when movement is detected, but these do not record the exact time

that the lights are turned on unless the motion sensors are also connected to an alarm system. The

time that the lights turn off again is not recorded either. While monitoring what specific lights are

active at specific times would be useful in determining how lighting consumes electricity in detail,

installing a system connected to each light source that could do so would be very expensive and

cost-prohibitive. Installing a non-invasive sensor network that could measure and identify the type

of light illuminating a space would be more useful, showing when people are turning lights on or off

at any point throughout the day. While it wouldn’t be as precise as measuring the energy consump-

tion of individual light sources, identifying the type of light illuminating a space could allow one to

estimate the efficiency of the light source (LED vs. incandescent) and use that in conjunction with

other devices to figure out which sections of a building use the most energy.

1.3.3 Personalizing a Space

Another area where a light-identification system could be very useful involves making spaces more

personal, work-related or otherwise. Many people have different lighting preferences, but workspaces

often use a single type of light throughout. A light-identification system could be used to automat-

ically measure what kinds of light are illuminating a workspace, allowing people to know what type

of lighting they are working in, how intense the lighting is, and adjust their space accordingly. While

many of the sensors described earlier can be used measure the intensity of light in a workspace, to

our knowledge there are no similar devices designed to be used in a workspace that can also identify

the type of light illuminating it.

1.3.4 Medical Applications

A light-identification system could also be useful in medical applications involving light exposure.

Sunlight (specifically the UV-B component) is instrumental in getting the human body to produce

vitamin D, but vitamin D deficiencies are very common in the United States, which exacerbates

a host of health concerns in response [23]. A small wearable light-identification system could be

very useful to people with Vitamin D deficiencies if they choose to expose themselves to sunlight
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to increase their Vitamin D production instead of taking Vitamin D supplements. However, this

use case may not be one of the main options for a light-identification system because many doctors

recommend “avoiding sunlight and getting Vitamin D by mouth” [23].

1.4 Test Environment

The Link Lab is a recently constructed laboratory on the second floor of Olsson Hall at the University

of Virginia (UVA), designed to prioritize natural daylight over artificial lighting. It houses over 250

graduate students and faculty who work in various departments, and conducts research in Smart

Cities, Smart Health, and Autonomous Vehicles and Robotics [24]. The office space where the

majority of the students and faculty work is wide open, with the students’ desks placed next to

each other in multiple rows. The office space is divided into two sections by a central hallway and

three conference rooms distributed evenly along one side of the hallway. The faculty offices are

placed in one of the resulting sections such that all offices have at least one window, and they are

separated from the rest of the office section by glass walls to allow as much natural light to fall

in the student work area as possible. For the other section of the office space (where there are no

faculty offices), there are large windows spaced at regular intervals to allow more natural light into

the work environment. The lab also has artificial lighting consisting of LED ceiling lights meant to

be used in the instances where the workspaces are not adequately lit by sunlight, as well as motion

sensors in the ceiling that turn on the ceiling lights when the sensors detect movement. The Link

Lab is being used as the initial test environment for the work described in this paper, with plans to

test additional areas in nearby buildings and add a unique new environmental analysis method to

the lab’s network if promising results are obtained.
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Chapter 2

Related Works

2.1 Artificial Intelligence (AI)

Differentiating between natural light (sunlight) and artificial light has been examined in other con-

texts indirectly related to increasing workers’ daylight exposure and improving morale. They mainly

center around energy monitoring using various techniques. Coley and Crabb (1997) approached the

problem using Artificial Intelligence (AI). They tested the application of a “Genetic Algorithm

(GA)”, a type of algorithm that “can handle non-linear, ill-defined problems of many dimensions in

search spaces with many local minima and are capable of processing large quantities of noisy data

efficiency” [25] in an application that is “capable of the real-time prediction of natural light levels at

chosen points within a room using external measurements of vertical plane illuminance” [25]. Their

setup involved a series of photocells (one placed in a room near the ceiling and five placed on the

roof of the same building) to estimate the amount of natural light illuminating the room from light

levels outside the building. Their method was very accurate – “within a Root Mean Square (RMS)

error of 3 % at an illuminance of 500 lux” [25] – in identifying artificial light vs. natural light, which

is very useful in determining whether artificial lights are being used. However, it does not appear

to distinguish between different types of artificial light, which would keep it from working well in

more detailed energy-management applications. In these applications, the goal is not just to distin-

guish whether natural or artificial light are illuminating in an environment, but also to figure out

how much energy the artificial light sources are consuming; different types of artificial light sources

consume different amounts of energy.
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2.2 Controlling Color Temperature

Another group didn’t focus specifically on identifying types of light, but did touch on it to some

degree in their work. Their research involved controlling the artificial light being emitted into

an environment. Begemann et al. (1998) developed and patented a device to control the color

temperature of an artificial lighting system. This device measures the intensity of natural daylight

incident on a desk and adjusts the color temperature of a connected lighting system accordingly [26].

The patent describes the device’s method of operation in great detail and discusses the results of a

study conducted by the developers, in which participants worked in an office space that had the color-

temperature-controlling device installed, allowing the user to adjust both the color temperature and

intensity of the artificial light. The researchers found out that people would mostly ignore adjusting

the luminous intensity (lux) of the light, but enjoyed adjusting the color temperature of the light

to better suit their preferences [26]. While not actually focused on differentiating between artificial

and natural light itself, this work does provide insight into one of several potential variables that

could be useful in doing so. This method would be very useful in personalizing one’s workspace, but

would not be as helpful in energy management applications or workspace lighting evaluation.

2.3 Frequency Domain

Fassbender et al. (2010) took a different approach to identifying light. They developed and patented

a handheld device meant to “distinguish artificial light from sunlight and low-frequency artificial light

from high-frequency artificial light” [27]. The device is described as only working with light sources

that are either powered by an alternating current (AC) source or include magnetic or electronic

ballasts; it will not work with lights powered by direct current (DC) sources [27]. It consists of a

photodetector, amplifier, two filters, and an indicator that displays what type of light was measured

[27]. Unfortunately, while the patent does describe the device’s method of operation in great detail,

it does not cover any results from tests conducted with the device, leaving it unclear as to how

well the device actually works. However, it does raise the possibility of measuring the frequency /

modulation of the light as a promising approach to identifying types of light. Because the device

is handheld, it would be very useful in conducting an immediate evaluation of an office space in

terms of measuring natural lighting or energy management, but would be less suitable for long-term

analysis.

7



Jazizadeh and Wang (2016) approached the problem of distinguishing between natural and arti-

ficial light using a combination of the methods from both Coley and Grabb (1997) and Fassbender

et al. (2010). Their objective was to develop a method to monitor the energy consumption of a

lighting system using “single light intensity sensors” [28]. Their setup used photodiodes to measure

ambient light in a manner similar to Coley and Grabb. Unlike Coley and Grabb, they used only one

photodiode placed on a table 60 cm above the floor instead of near the ceiling. Similar to Fassbender

et al. (2010), Jazizadeh and Wang (2016) analyzed the frequency of the incident light to try identi-

fying it. Unlike Fassbender et al. (2010), they used a Short-term Fourier Transform (STFT) instead

of two filters to do this, demonstrating that fluorescent light has distinguishing characteristics in the

frequency domain at specific harmonics, and that measuring in the frequency domain does appear

to be a viable approach to identifying fluorescent light [28]. However, it is unclear from their work

how well this approach will work with incandescent or LED light sources, and, similar to Fassbender

et al. (2010), it is unclear how well the approach will work with DC artificial light sources because

the fluorescent bulbs used by Jazizadeh and Wang (2016) utilize a ballast to regulate the flow of

current through them [28]. This approach could be useful in long-term evaluation of an office space

in terms of natural lighting or energy management, as well as in a wearable device meant to measure

sunlight levels. However, Fourier Transforms are computationally intensive, and it is unclear if this

approach would be suitable for applications requiring a low energy consumption.

2.4 Summary

Our approach to distinguishing between natural and artificial light relies on a more detailed analysis

of the light measured by a series of photodiodes. Instead of measuring the intensity of light or

analyzing collected data in the frequency domain, we look to elements of the visible spectrum.

These elements are present in all types of light, regardless of whether they are natural or artificial

in nature.
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Chapter 3

Requirements

3.1 Classification Accuracy

Before building our proof-of-concept light-identification system, we first needed to identify what

the main requirements of a light-identification system would be. Some of these requirements could

vary based on the specific use case of the system, but there are several main requirements that

we believe should be addressed regardless of the use case. The first is “accuracy of classification”.

We believe that this requirement is the most important, because there is no reason to build a

system meant to identify light using a specific method if the method in question doesn’t work. By

“accuracy of identification”, we mean the ability of the system to correctly classify measured light

as “Incandescent”, “Fluorescent”, “LED”, or “Sunlight”.

For this work, our primary goal was to demonstrate the “accuracy of classification” of the light-

identifying system and show that all measured light could be classified correctly over 75 % of the

time. An accuracy of at least 75 %, a clear majority for an untested concept, would show that the

concept has potential and should be further refined and explored. If the system is not accurate for

a majority of the time, then that implies that the approach needs to be reconsidered.

3.2 Wireless Data Transmission

Another requirement of a light-identification system that could be important is the ability to transmit

data wirelessly, although this depends on the specific application of the system. If such a system

is installed in an office workspace, transmitting data wirelessly would make it much easier for the

user(s) to analyze the measurements from the various light-measuring sensors distributed around the
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environment and generate a clear picture of how the environment is illuminated. If the sensors were

not wireless, then they would either have to be physically connected to a central hub responsible for

analyzing the collected data, or the data would have to be stored locally on the measuring device

and be physically retrieved and transported to the location where the data is analyzed. Neither

of these options would be cost effective nor efficient. Ideally, the measurement devices would be

able to transmit data over a range of 5-15 feet, depending on the size of the space and whether it is

intended to house only one person or be a communal workspace for several people. This also assumes

that the unit processing the transmitted data is located near the center of the workspace to reduce

the maximum distance that the measurement device(s) need to transmit. However, if the light-

identification system is implemented as a handheld or wearable device, then wireless transmission

would not have to be required –the device could be transported around an environment and identify

the illuminating light when commanded to do so.

We also tried to meet the “wireless data transmission” requirement to some degree, such that

our proof-of-concept device could potentially be used in use cases similar to the office-monitoring

scenarios or the wearable light-monitoring system described above. In this project, “wireless data

transmission” means that a measuring device in the light-identifying system is able to successfully

send data from itself to a receiving device without any physical connection between the two.

3.3 Mobility

A third requirement that could be important for a light-identification system is mobility. A system

meant to be implemented in an already-existing work environment should be unobtrusive, easy

to install, and not interfere with regular operations. By this requirement, if the system involves

multiple measuring devices, it also makes sense for the devices in question to be small, light, and

adaptable, able to be placed in any location (such as an office environment or a manufacturing

facility) depending on the layout of the environment in which it is deployed. If these requirements

are met, then this system should have only a low chance of disturbing regular workers and causing

them to deviate from their normal routine. Mobility is also important for light-monitoring wearable

devices, such as such as a sunlight-monitoring bracelet to track sunlight exposure for someone with

a vitamin D deficiency. For wearable devices, the focus for mobility is on size, weight, and ease of

use. They should be slim, light, and not cause discomfort when worn.

For mobility, we chose to make the measuring device small and light to facilitate easy deployment

while using a central receiving station to process all transmitted data for easier analysis. In this
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work, the main limitation to mobility was the receiving station that processed the measured data,

so we chose to design the measuring device with dimensions of less than 5 cm by 3 cm to make

it easier to deploy in a variety of locations around the station. The maximum distance from the

station was limited by the range of the wireless transmissions from the measurement device. For

identifying light in an office space, measurement devices should be distributed throughout the space

and transmit data to a receiver that processes the data accordingly.

3.4 Energy Cost

The last requirement that we considered important was energy cost. We saw this requirement

as most relevant in both light-monitoring applications for reducing energy consumption and in

wearable technologies. In work environments, it does not make sense to have a device with high

energy consumption monitoring lighting if the goal is to reducing the energy consumed in the work

environment. For wearable technologies, such as the sunlight-monitoring bracelet described above, it

is important that the device be worn as much as possible to keep an accurate record of the patient’s

light exposure, which means that the device should not run out of power when the sun is in the sky

and should have to be recharged only rarely. Ideally, this means that in both of the applications

described, the measurement device(s) would be powered by an energy-harvesting supply and an

energy storage device. The combination of these two components would allow the device to be

powered by a battery, which would be supplemented by the energy-harvesting system to allow for

continuous use if the device would otherwise consume too much energy. This requirement is also

indirectly related to the frequency of light measurements and data transmission – the higher the

measurement frequency of light and transmission frequency of data, the more energy is consumed

by the device.

We chose to meet the “low energy cost” requirement by focusing on the energy consumption of

the individual components of the light-measuring device(s) used in the system. We decided to not

develop an energy harvesting power supply as described above in order to focus on the accuracy of the

identification system itself. A low-energy consumption implies low power, which means low voltage

supplies and low current consumption. We chose to meet the “low energy cost” requirement by using

components that were supplied by 5 V or less and consumed fewer than 10 mA of current. These

requirements are not final and could easily be tightened in development beyond a proof-of-concept.
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Chapter 4

Preliminary Feasibility Study

4.1 Overview

First, we had to determine if it would actually be possible to measure ambient light with enough

precision using a small and low-cost sensor. Based on the requirements described above, we needed

to build a proof-of-concept device that could consume low amounts of energy, was small in size, and

composed of off-the-shelf components. We chose two sensors to test for use in this proof-of-concept:

a MAX30105 breakout board sold by Sparkfun, and TCS34725 Red Green Blue (RGB) color sensor

mounted on a breakout board sold by Adafruit.

4.2 Hardware Tested

4.2.1 Sensors

MAX30105

The MAX30105 particle sensor breakout board (Figure 1) consists of a small optical module, three

surface-mount LEDs, and some power supply and Inter-Integrated Circuit (I2C) communication

circuitry. The I2C commands come from a connected microcontroller, and the board uses the

optical module to measure the reflection of the LEDs off of particles or different materials situated

in front of the optical module. The three LEDs include a red LED, a green LED, and an infrared

(IR) LED. According to the breakout board’s datasheet [29], it is used in applications involving fire

alarms and smoke detectors in areas such as building automation and mobile / wearable devices.
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Figure 1: A MAX30105 Particle Sensor Breakout Board [20]

TCS34725

The TCS34725 color sensor breakout board (Figure 2) consists of a small LED, some power supply

and I2C communication circuitry, a white LED, and the TCS34725 color sensor. As with the

MAX30105 board, the TCS34725 board receives I2C commands from a connected microcontroller

and sends certain information back to the microcontroller that depends on the received commands.

The sensor itself consists of a 3x4 photodiode array in a compact package. In addition to an IR

blocking filter that reduces the IR spectral component of detected light, each photodiode has one

of several possible color filters over of it. One filter is red, another is green, a third is blue, and the

fourth “filter” is clear [30]. The photodiodes in the 3x4 array are divided evenly among the filter

types. Four analog-to-digital converter (ADC)’s convert the current read from the photodiodes into

16-bit values that are then sent over the I2C serial bus to a connected processor [30].

Figure 2: A TCS34725 RGB Color Sensor Breakout Board [19]
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4.2.2 Processor

Tinyduino

The microcontroller used to test each of the above breakout boards is known as a “Tinyduino”.

The Tinyduino is designed to be as modular as possible, Arduino-compatible, and programmable

using the Arduino Integrated Development Environment (IDE) [31]. It uses the Atmel ATmega328p

microcontroller [32], which is shared with the standard Arduino Uno board as well. The main

difference between the two boards is the size, with the Tinyduino having a form factor that’s about

the size of a quarter while the Arduino Uno is about the size of a credit card. Like the Arduino

Uno, the Tinyduino has its own “shields” – boards that are designed to plug into the Tinyduino

processor to add new sensors to interface with. We used a Tinyduino Universal Serial Bus (USB)

shield to allow the processor to plug into a computer to be programmed and a television (TV) screen

shield to display the data being captured. After preliminary testing, we removed the TV screen and

added an Secure Digital (SD) card shield was added to save the captured data for later examination.

Figure 3 shows the TinyDuino processor and the shields that were used to interface with it and the

color sensor.

Figure 3: The Tinyduino and shields used in this work. Top row from Left to Right: Tinyduino
Processor, USB Programming Shield. Bottom row from Left to Right: SD Card Shield, Prototyping
board with connector terminals

We programmed the Tinyduino Processor in the Arduino IDE to make the processor interface

with whichever sensor was connected to it through I2C. Its first job was to read the sensor identifi-

cation number and check to see if it matched the number specified in either the MAX30105 or the

TCS34725 datasheets. If the number matched with one of them, then the program had the processor

calibrate the sensor and start reading data from it. After examining preliminary data from both
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sensors, we determined that the MAX30105 only worked well if there was an object placed directly

in front of it for light to reflect off of the object to the sensor. The TCS34725 could be configured

to measure ambient light and did not require an object to be placed really close to it, so we decided

to use that one with this project. We used the raw data measured by the TCS34725 to calculate

the color temperature and lux of the measured light and saved the results of the calculations along

with the raw data to an SD card, before transferring the data to a Microsoft Excel spreadsheet and

graphing it in several scatter plots.

4.3 Initial Tests

To ensure that the data was not affected by external sources, we took all measurements of artificial

light sources (Incandescent, Fluorescent, LED) with the Tinyduino by placing the light source and

the TCS34725 in an enclosed container, with the sensor placed 10 cm in front of the light source.

We aimed the light source directly at the sensor and ran the tests for around eight hours for each

light source. It was not possible to do this when measuring sunlight, so we placed the sensor on

a windowsill and made sure that there were no artificial light sources nearby and that sunlight

was only type of light available for those measurements. We ran the sunlight measurements for

around two hours each. We repeated the above process with several different light sources, with the

same variables being measured each time. Sample data from the TCS34725 and Tinyduino setup

can be seen in Figures 4 and 5, showing visible differences between the attributes of Incandescent

light, Fluorescent light, LED light, and sunlight. This data shows that there are very distinctive

differences between different types of artificial light in not just the visible spectrum, but also in color

temperature and lux.

Figure 4: Sample color data from different light bulbs measured by the TCS34725 breakout board
and the Tinyduino. The line colors correspond to specific filters in the photodiode array (e.g. the
red line with the red-filtered photodiodes).
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Chapter 5

LPCSB Design

5.1 Hardware

5.1.1 Schematic

The original prototype was satisfactory as a proof of concept, but was not able to transmit data

wirelessly and consumed too much energy to be of practical use in low-power Internet of Things

(IoT) applications. For this reason, we decided to design a Printed Circuit Board (PCB) that would

interface the TCS34725 sensor with a new microcontroller that would consume much less power than

the Tinyduino. We named the final device the “Low Power Color Sensing Board (LPCSB)”.

The TCS34725 sensor was of the same type used in the proof-of-concept device. It consumes

235 µA of current when active and only 2.5 µA when in sleep mode [30]. The selected microcon-

troller was the nRF51822, described as “an ultra-low power 2.4 GHz GHz wireless System on a Chip

(SoC) integrating the nRF51 series 2.4 GHz GHz transceiver, a 32-bit ARM R© CortexTM-M0 CPU,

flash memory, and analog and digital peripherals” in to its datasheet [33]. Circuitry to enable the

transmission of data from the 2.4 GHz Bluetooth Low Energy (BLE) transceiver was also required.

This processor was chosen not just because it consumes a very low amount of current when in sleep

mode [33], but also because of its BLE transceiver. While BLE does allow encryption and two-

way communication between connected devices, it also has an “advertising mode” that allows for

one-way communication. Advertising is usually used by devices to indicate their presence and allow

connections to be established between them, after which the devices in question will stop advertising

[34]. However, advertising can also be used to broadcast data to any device that happens to be in

range. To do this, a custom payload needs to be inserted into the advertising packet, specifically
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under “Manufacturer Specific Data” [34]. Using this method would allow us to avoid connection

protocols, data exchanges, passwords, and other similar features needed for connected Bluetooth

devices.

The reference schematic used in the LPCSB design for the nRF51822 (Figure 6) contained the

processor, power supply and charging circuitry, Bluetooth transmission circuitry, a device made by

DecaWave that incorporates three antennae, and circuitry for an external 16 MHz clock required

to operate certain functions of the nRF51822 [35]. Figure 7 shows the reference schematic for

the TCS34725, which contains the sensor, a 3.3V regulator, level-shifting circuitry so that the I2C

communication can be done with either 3.3V or 5V logic, an LED, and a Metal Oxide Semiconducting

Field Effect Transistor (MOSFET) driver that drives said LED [36].

Figure 6: Reference schematic that includes the nRF51822 processor [35]

Since the LPCSB needed to consume a low amount of power and execute just a few specific

functions, we realized that it was not necessary to include a large amount of the circuitry in each

reference schematic because the circuits in question had their own functionality, were not required

for the operation of the TCS34725 or the nRF51822, and were not needed for the LPCSB’s desired

functionality. From the original TCS34725 schematic, we used only the sensor itself. The sensor

operates at a default value of 3.3V [30], the same as the nRF51822 [33]. This let us eliminate the

level-shifting circuitry, the LED and MOSFET driver, and the voltage regulation circuitry. From
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Figure 7: Reference schematic for the TCS34725 breakout board developed by Adafruit [36]

the nRF51822 schematics, we just used the nRF51822 processor, its clock circuits, its power supply

connector, and its 3.3V regulation circuitry. The TCS34725’s VDD pin was connected to the VCC

output from the Power Supply and Charging Circuit, and its I2C communication lines were connected

to the ones from the nRF51822. The final schematic for the LPCSB can be seen in Figure 8.

Figure 8: Final circuit schematic for the LPCSB
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5.1.2 Layout and Assembly

We set up the PCB layout to make the virtual connections between components as short as possible

to save space, making the final board as small as possible and able to be placed unobtrusively

in various locations if desired. We started with the Micro Reach Xtend (FR05-S1-N-0-110) Chip

Antenna, placing it on the edge of the PCB. According to Page 9 of its datasheet, the antenna is

supposed to be placed in a “clearance area”, an area of the PCB that is not connected to a Ground

plane [37]. The specific dimensions referenced in this figure apply “for the reference evaluation board

described on page 5 of [the antenna’s datasheet]” [37]. We decided to use the dimensions specified

on Page 9, because the reference board dimensions described on Page 5 were very close to the final

dimensions of 2.5 cm x 3.9 cm for the LPCSB [37]. This was the only constraint on PCB dimensions.

The processor was placed near the antenna clearance area to make sure that the connections between

the processor, the antenna matching network specified in the datasheet, and the actual antenna were

as short as possible. The USB connector and header pins were placed in corners to keep them out

of the way of the other components. Components connected directly to the processor were placed

near their corresponding pins on the processor to reduce the length of the connecting vias. Power

supply components interfacing with both the processor and the USB connector were placed between

the two for the same reason. The color sensor was placed near the header pins because the header

pins were placed in a section of the PCB relatively empty of components, which would reduce the

chance of any light reflecting from the other components reaching the sensor. This assumes that the

header pins are not soldered onto the PCB, which was the case with the LPCSB that we used for

all tests described later. Ten boards were ordered to make sure that there were backups for testing

and troubleshooting. The board layout for the first iteration of the LPCSB can be seen in Figure 9.

To assemble the PCB, we used a template, solder paste, a microscope, and forceps to drop each

component into its proper location. We then transferred the PCB onto a hot plate, heated it to

260 degrees Celsius, and left it at that temperature until all of the solder paste melted into pools of

reflective silver liquid, which secured the components into their places on the PCB after the melted

solder re-solidified. We planned to test a random board in sections: first the power regulation, then

the ability interface with the processor and upload a basic “Blink” program to turn an LED circuit

on and off, then the BLE Radio, and last the color sensor. LED circuits described in this paper

consist of an LED connected in series with a 1 kΩ resistor. A fully assembled LPCSB can be seen

in Figure 10.
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Figure 9: PCB layout for the LPCSB. The board has two layers. The top layer is shown in red and
the bottom layer is shown in blue.

5.1.3 Hardware Testing

Power Regulation

The power regulation section consisted of a micro-USB B-type connector, a green LED indicator

circuit, a MAX887EZK33+T Low-Dropout 300 mA 3.3 V Linear Regulator [38], and several bypass

capacitors meant to help stabilize the input / output voltage and current in case of supply fluctua-

tions. The assembled circuitry was tested through visual observation and with a multimeter. The

visual observation involved looking to see if the green LED lit up when power was applied, while

the multimeter was used to check if the voltage output from the regulator was the 3.3 V specified in

the datasheet.

Processor

The second section of hardware tested involved the nRF51822 processor, its clock circuitry, a blue

LED circuit, its connection to the 3.3 V output from the voltage regulator section, and an interface

for a J-Link Segger programming interface. The test code for blinking the blue LED circuit was
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Figure 10: Fully assembled LPCSB.

pulled from the “Lab11 nrf5x-base” GitHub repository [39] and modified to ensure that the pin

connected to the LED circuit was the one being controlled by the code.

The third section of hardware tested included everything from the previous section, along with the

BLE Radio transmitter inside the nRF51822. The transmitter was connected to a BAL-NRF01D3

transformer balun [40], the antenna described earlier, and the impedance matching network that was

constructed as described in the antenna’s datasheet [37]. We uploaded a “beacon-Unicode” program

from the “Lab11 nrf5x-base” GitHub repository [39] to the board and used the “LightBlue” phone

application (app) to monitor any outgoing transmissions from the board. However, the application

did not intercept any Bluetooth transmissions from the PCB, indicating that the BLE Radio was

not working. We verified this by uploading the same program to a PCB from an unrelated research

project and monitoring outgoing transmissions from it. The “LightBlue” app was able to intercept

the transmissions from this new PCB. We eventually discovered that the problem was with hardware

on the LPCSB: an external 26 MHz clock was connected to the nRF51822 instead of an external

16 MHz clock, and that supplying an incorrect external clock frequency to a processor can cause
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certain features to operate incorrectly or not operate at all. After replacing the clock, the LPCSB

was able to successfully transmit data.

The final section of hardware included everything from the previous sections, along with the

TCS34725 color sensor. As described earlier, the color sensor uses I2C communication to send and

receive information to/from a central processor, in this case the nRF51822. To test this section of

hardware, we wrote a program that would have the nRF51822 instruct the TCS34725 to measure

the ambient light and send the resulting values back to it. We programmed the processor in C,

using the “nrf5x-base” [39] and “Adafruit-TCS34725” GitHub repositories as design references [41].

Three code files were written: an “h” file, a “cpp” file, and a “main” file. The “cpp” and “h” file are

devoted to the TCS34725 color sensor, containing only the function prototypes, global variables, and

register values from the “Adafruit-TCS34725” repository that were needed for the LPCSB’s desired

functionality [41]. The “main” file contains code for interfacing with and controlling the TCS34725

color sensor, which consists of five steps. It also contains code to read data from the sensor and

advertise the collected data over BLE.

Sensor Interface

The first step to interfacing with the TCS34725 is to activate the I2C communication lines in the

nRF51822 and start one of its internal timers. When the timer expires, the next step is to ensure

that the I2C channel is working properly and that there is in fact a link between the processor and

the color sensor. To do this, the processor sends a command to the color sensor to read the “ID

Register”, which is read-only. The hexadecimal (hex) value returned from the sensor to the processor

should be “0x44”, as specified in the sensor datasheet [30]. The third and fourth steps is to configure

the “Integration Time” and “Gain” settings for the sensor by sending 0x00 to the RGBC Timing

Register (address 0x01) and 0x00 to the Control Register (address 0x0F) respectively, which sets the

integration time of the sensor’s ADC’s to 2.4ms and the gain of the ADC to “1X” [30]. The fourth

register to configure is the “Enable Register”, which is responsible for enabling various functions and

interrupts [30]. The hex value that should be sent from the processor to the sensor at this stage is

0x01, which is the command to activate the sensor’s internal oscillator. Activating the oscillator will

allow the internal hardware timers and ADC channels to be configured. The fifth step is to send the

hex value 0x03. The least significant bit (LSB) ensures that the oscillator stays enabled while the

second bit turns on the two-channel ADC responsible for converting the analog values read from the

sensor photodiodes to the digital values that are sent to the connected microcontroller [30]. There

are other settings for the sensor that were not explored in this project.
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Measurements taken by the color sensor can only occur and can only be accessed after the color

sensor is configured similarly to what is described above. As stated earlier, the TCS34725 contains

four ADCs to interface with its photodiode array, which consists of red-filtered, green-filtered, blue-

filtered, and clear (unfiltered) diodes. The data for each color is stored as a 16-bit value split

between two registers. Each register can store only one value at a time, and the stored values are

overwritten each time a new measurement is taken. A unique hex value is required to access each

register individually. To read data for a specific color, a two-byte read operation is required. The

first part of the operation reads the data from the lower byte register to a connected microcontroller

and stores the upper eight bits in a “shadow register” (the high byte register) at this time. The

second part of the read operation pulls data from the high byte register and sends it to the connected

microcontroller, where it is appended with the first byte to reconstruct the full 16-bit value [30].

The raw data measurements taken from the color sensor reveal the amounts of red, green, and blue

light that compose the unfiltered light. These measurements are then taken and used to calculate

the color temperature of the light in degrees Kelvin and the lux in lumens per square meter. The

first step to finding these two values was to convert the raw color values (red, green, and blue)

from the RGB color space to the CIE 1931 XYZ color space (XYZ) [42, 43]. This was done through

applying the formulae in Figure 11 with values that Adafruit derived for use in their sample Arduino

code [41]. The second step was to use the resulting values to calculate the “x” and “y” normalized

chromaticity coordinates by applying the formulae in Figure 12. The third step was to calculate

the inverse line slope “n” from the calculated chromaticity coordinates (also shown in Figure 12).

McCamy’s formula [44], shown in Figure 13, was used in the next step to calculate the correlated

color temperature (CCT) of the measured light value from the sensor. The final step was to use the

original raw values in the formula provided by Adafruit (also shown in Figure 13) to calculate the

lux of the light hitting the color sensor [41].

Figure 11: Equations used to convert the measured raw color values from the RGB color space to
the XYZ color space.
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Figure 12: Equations used to calculate the “x” and “y” normalized chromaticity coordinates and
inverse slope using the results from the equations in Figure 11.

Figure 13: Equations used to calculate the color temperature and lux of the incident light on the
color sensor from the results of the equations shown in Figure 12.

5.2 Data Processing: Artificial Light

5.2.1 Control Tests

To reliably identify different types of light using the TCS34725, we established a baseline of control

data by measuring the light output from different types of light bulbs for periods of 15-20 minutes

each. While this means that some of the control tests have a few more data points than others, we

determined while testing the initial setup before starting the data collection that this would have

a negligible effect on the data collected from artificial light. Nine light bulbs were measured: three

incandescent, three fluorescent, and three LED. The characteristics of each light bulb as described

on their packaging can be seen in Table 1. The bulbs are organized through a code consisting of the

first three letters of “Incandescent”, “Fluorescent”, or “LED”, followed by a number representing

the order that the specific type of bulb was tested in.

Table 1: List of all light bulbs (artificial light sources) used in the characteristic-identification control
tests for artificial light
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We ran the control tests with the different light bulbs in a closed testing environment that

contained an LPCSB and a lamp providing the sole illumination. The lamp used in the tests

was a “Decorative Spot Light (Bronze Finish)” manufactured by the company “Portfolio”. Two

tests were run for each light bulb; the lamp was placed around 10cm away from the lamp for the

first test (a short-range test) and 22 cm away for the second test (a long-range test). Different

distances were tested to examine how the LPCSB’s distance away from the light would affect the

measurements because measured light intensity decreases as distance from a point source increases

[45]. An uncovered example short-range test setup and the control environment enclosure can be

seen in Figure 14.

Figure 14: An example short-range test setup and the control environment enclosure

For every control test run, we turned the lamp on first, after which we sealed off the test environ-

ment from all external light before activating the LPCSB. When activated, the LPCSB takes about

five seconds to configure the nRF51822 and the TCS34725 before making its first measurement.

After the LPCSB completed a measurement, it would advertise a BLE data packet containing the

hex ID value of the sensor, the raw data (clear, red, green, and blue) split into two bytes per color,

the calculated color temperature and lux of the measured light (also split into two bytes per color)

and the number of the packet being broadcast. Whenever an LPCSB is activated, its packet number

is reset to zero and incremented every time that a packet is advertised.

In the original control tests, the LPCSB did not execute any onboard processing or analysis of

the raw data from the TCS34725 nor identify the type of light that the sensor measured. These

functionalities were offloaded to a desktop computer that detected the broadcasts from the LPCSB

using a Bluegiga BLED112 Bluetooth Smart Module designed to measure any BLE data transmission

in its vicinity. Running on the desktop computer was a Python script based off of the “bglib” Github

repository [46]. The original script used the BLED112 to detect any BLE advertisement that it could

and display the information inside the packet in a command line terminal. For the control tests in
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this research, we modified the original script in two ways. First, we changed the script so it would

only display the data transmitted from a device with a specific MAC address. In this case, it was the

LPCSB with the address C0:98:E5:40:60:6C. Along with the raw data broadcast from the LPCSB,

the script extracted the name of the device that made the transmission, the device’s MAC address,

the timestamp (date and time shown on the desktop computer) when the data packet was received,

and the Received Signal Strength Indicator (RSSI) of the transmission. We also modified the script

to extract the raw color data and the calculated color temperature and lux, calculate the ratios of

the maximum color value to the middle color value, the middle color value to the minimum color

value, and a new ratio formed by dividing the just-mentioned first ratio by the second, as well as to

save each reading to a Microsoft Excel spreadsheet. The readings from the different light bulbs were

compared to find the differences between them for use in identifying the type of light bulb being

measured. Figure 15 shows a block diagram setup describing how the data-saving algorithm works

in conjunction with the LPCSB.

Figure 15: Block diagram showing how the LPCSB and the data-processing algorithm operate in
parallel.

5.2.2 Artificial Light Identification Characteristics

Basic observation of graphed raw RGB color data sampled by the LPCSB shows that there are

very noticeable differences between the light emitted from different types of light bulb. With three
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different light bulbs in each category of light, data for incandescent light was the most consistent

between bulbs. For each incandescent bulb tested, the raw red color values were the highest of the

measured color values. The raw green and blue color values were close enough that the ratio of the

larger to the smaller of the two values was less than 1.1. Figure 16 shows the graphed raw color

data for each incandescent bulb in both short and long-range tests.

Figure 16: Short and long-range color component control data measured from the incandescent light
bulbs. The line colors correspond to specific filters in the TCS34725 photodiode array

The data measured from the three tested fluorescent bulbs was visibly different from the incan-

descent bulbs. Unlike the incandescent bulbs, the fluorescent bulbs showed green as their highest

color value for all control tests, except for the third long-range test. In addition, the majority of

raw color values from the tested fluorescent bulbs were lower than those of the incandescent bulbs.

The raw color values for the fluorescent bulbs varied the most over time out of the different types

of light bulb tested. Figure 17 shows the graphed raw color data for each fluorescent bulb in both

short and long-range tests.

Similar to the incandescent bulbs, the LED bulbs showed red as their highest color value for all

control tests, except for the third short-range test. The ratios of the maximum to the middle colors

and the middle to the minimum colors varied too much in between bulbs to be a reliable identifying

characteristic. Also like the incandescent bulbs, the LED bulbs had very steady raw color values,

with very little change to the numbers over time. However, the color values were also universally

lower than the incandescent values. Figure 18 shows the graphed raw color data for each LED bulb

in both short and long-range tests.
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Figure 17: Short and long-range color component control data measured from the fluorescent light
bulbs. The line colors correspond to specific filters in the TCS34725 photodiode array.

Figure 18: Short and long-range color component control data measured from the LED light bulbs.
The line colors correspond to specific filters in the TCS34725 photodiode array.

5.3 Data Processing: Natural Light

5.3.1 Control Tests

The control tests involving natural daylight could not be conducted with the test environment used

for the artificial light control tests. For the sunlight tests, the LPCSB used for the artificial light

control tests was placed on a window sill in a laboratory such that ambient outdoor light (not direct
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sunlight) fell on the LPCSB. All lights in the lab were turned off and incoming light from elsewhere

in the building was blocked by an opaque cover placed behind the LPCSB to prevent any interference

with the daylight measurements. The data was broadcast to the desktop computer from the LPCSB

and saved to a Microsoft Excel spreadsheet in the same manner as in the control tests measuring

artificial light.

5.3.2 Identification Characteristics

Unlike the artificial light sources, the natural daylight measurements changed a lot more over time.

We ran the initial sunlight control tests (Sun1, Sun2, and Sun3) for the same amount of time as the

artificial light control tests (15-20 minutes), but it was very hard to identify any common characteris-

tics from the measured data from those tests. When initial tests were run to try identifying sunlight

from the observed characteristics, the LPCSB could not recognize sunlight; instead it identified the

sunlight as fluorescent light. After further observation, we discovered that this was due to how

sunlight fluctuates over time and that the characteristics for sunlight specified in the identification

algorithm were very similar to those used for fluorescent light. As a result, we decided to run more

control tests in the same location as the original, but over six-hour periods to get a more complete

picture of how sunlight changes over time. These tests were identified as “Sun4” through “Sun7”.

Table 2 describes the outdoor weather conditions for each of the sunlight tests.

Table 2: List of different lighting conditions used in the characteristic-identification control tests for
natural light

Analysis of the new data revealed more comprehensive identifying characteristics in each dataset

that were missed because the original sunlight measurements were taken over a shorter time period.

For all tests, no matter the weather conditions outside, the highest raw color values were either blue
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or red. When it was sunny and clear outside with very few or no clouds, the measured data changed

very smoothly, increasing steadily during the morning until around 12-1pm, and then decreasing

as the day progressed. When there were more clouds or the weather was overcast / rainy, there

was a lot more fluctuation in the measured values, although they still followed the overall trend of

increasing until 12-1pm and then decreasing as the day continued. Figure 19 shows the graphed

color data for “Sun1” through “Sun3”, and Figure 20 shows the data for “Sun4” through “Sun7”.

Figure 19: Color component control data measured from Sunlight over a 15-16-minute time period.
The line colors correspond to specific filters in the TCS34725 photodiode array.

31



Figure 20: Color component control data measured from Sunlight for longer time periods. The
line colors correspond to specific filters in the TCS34725 photodiode array (e.g. the red line with
the red-filtered photodiodes). Sun4-Sun6 were measured over a 6-8-hour time period. Sun7 was
measured over a 24-hour time period. The first part of Sun7 (Feb. 6 measurements) was cloudy,
while the second part (Feb. 7) was sunnier. The sequence number range in Sun7 from 3,274-10,228
corresponds to between 5:42pm on Feb. 6 and 7:13am on Feb. 7 (nighttime).
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Chapter 6

Evaluation

6.1 Identification Algorithm

6.1.1 Development

After the original control tests were completed, we made a copy of data-saving script that was

modified to use the characteristics derived from the control tests to identify the type of light shining

on the LPCSB before saving the data to a specified Excel spreadsheet. The algorithm was developed

through an iterative design process and was based around the identifying characteristics of each type

of light that were distinguished through visual analysis of the data obtained from the control tests.

We designed the algorithm as a series of if-statements that would check if the currently measured

data point met specific requirements, and to have the algorithm identify different types of light

based on these requirements. The requirements were derived from the identified characteristics of

each type of measured light in the control tests, and the requirements were checked in an order that

was based on how easy it was to identify the distinguishing characteristics of the different types of

light.

6.1.2 Incandescent Characteristics

First, the characteristics of incandescent light as described earlier were the easiest to identify. No

other type of light bulb from the ones shown in Table 1 had the exact same set of characteristics as

the incandescent ones; therefore, the distinguishing characteristics of incandescent light described

when discussing the artificial light control test results were checked first. The specific conditions in

the if-statement for incandescent light were that the maximum raw color value measured from the

33



TCS34725 was red, that the ratio of the maximum color value (red) to the middle color value was

greater than 1.15, and that both the middle and minimum raw color values (green and blue or vice

versa) were close enough to each other that the ratio of the middle value to the minimum value

was less than 1.05. These threshold values were obtained through trial and error, starting with the

values obtained in the collected data and adjusting them so there would be a small buffer between

the measured values and the threshold values that would hopefully account for incandescent light

bulbs not measured in the control tests.

6.1.3 Fluorescent Characteristics

The next set of characteristics for the algorithm to check were the ones for fluorescent light. They

were more difficult than incandescent light, because while green was the highest raw color value for

the majority of the fluorescent control tests, one of the measured light bulbs had red as the highest

raw color value in its test. This was dealt with by having the algorithm check if the maximum value

was green, or if the maximum value was red, green was the second-highest value, and green was

close to red (the ratio of green to red was less than or equal to 1.1).

6.1.4 LED Characteristics

LEDs were the third type of light checked. As stated earlier, LED was similar to incandescent

because the majority of highest raw color values were also red. However, we could not check for red

as the highest color again because one of the LED bulbs had green as its highest raw color value.

After some thought, we noticed that the measured incandescent and LED raw color values both

changed very little over time. We decided to have the algorithm check the magnitude of the value

change over time, with the measured light being classified as LED if the absolute value of the change

was less than or equal to a threshold value. The change was calculated by taking the difference

between the newest measured color values and the immediately preceding ones and adding it to a

total. After testing a lot of different net values, we settled on using 200 as our threshold.

6.1.5 Sunlight Characteristics

Sunlight varied the most over time and it was difficult to find consistent identifying characteristics

for it, so it was set as the last type of light to check for. For checking distinguishing characteristics,

we settled on a similar approach to fluorescent, checking to see if blue was the highest value or if

blue was the second-highest value but close enough to the highest that the ratio of the highest to
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second-highest value was 1.05. Any data points that did not meet the requirements for sunlight were

classified as “Unknown”.

6.1.6 Algorithm Adjustments

The completed algorithm was able to identify artificial light in preliminary testing using the con-

ditions described above. However, when tested with sunlight, the algorithm would always identify

the measured light as fluorescent light. After further analysis, we noticed that the magnitude of

sunlight values was almost always higher than all of the artificial light measurements, so we went

back and modified the algorithm to add thresholds for the magnitude of the raw color value for some

of the types of light. After testing a variety of options, we settled on values greater than or equal

to 2,000 and less than 10,000 for fluorescent light, and less than or equal to 2,000 for LED light.

We left the incandescent requirements alone because none of the other tested light bulbs had the

same color profile as the incandescent ones. After adding the threshold values to the algorithm, the

algorithm was able to differentiate between fluorescent light and sunlight. Figure 21 shows how the

original algorithm was modified to classify the measured light, as well as pseudocode of the algorithm

itself, and also includes some minor changes that were made for reasons described later. We ran

the light-identification tests with the same setup and duration as in the characteristic-identification

tests, with the same light bulbs used in the characteristic-identification tests (Table 1).

Figure 21: Block diagram of the data-processing algorithm modified to classify the measured light
before saving to Excel, and pseudocode of the conditions that are examined for each type of light.
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6.2 Identification Tests: Artificial Light

Incandescent

Initially, we did not consider the distance of the LPCSB from the light source in the control envi-

ronment when identifying the characteristics of artificial light, which led to dismal results from the

algorithm when the LPCSB was tested at 22 cm away from the light source instead of 10 cm. Once

we realized that the distance from the light source was important, we adjusted the identification

algorithm to take this into account and become more robust to variations in the ambient light. When

tested, the revised algorithm successfully recognized all three incandescent light bulbs 100 % of the

time in both short and long-range tests, as shown in Figure 22.

Figure 22: Identification of incandescent light bulbs in both short and long-range tests.

Fluorescent and LED

The revised algorithm was less successful with fluorescent light bulbs. While it successfully recog-

nized all three of the bulbs in the short-range tests, it consistently identified one of the bulbs as LED

in the long-range tests. The algorithm performed similarly with LED bulbs; it recognized one of the

LED bulbs as fluorescent in the short-range tests but successfully identified all of the LED bulbs in

the long-range tests. Figures 23 and 24 display the performance of the identification algorithm with

fluorescent and LED bulbs in short and long-range tests respectively.

Real-World: Ceiling LED

After running identification tests on the light bulbs used in the control tests, we tested the LPCSB

and the identification algorithm in the normal environment of the Link Lab in the early evening
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Figure 23: Identification of fluorescent light bulbs in both short and long-range tests.

Figure 24: Identification of LED light bulbs in both short and long-range tests.

to see if the type of light normally illuminating the lab (LED ceiling lights) could be identified.

This test was run in the afternoon with all windows covered by blinds to see if the LPCSB could

reliably identify light from a source that was not tested during the characteristic-identification tests.

The LPCSB was positioned on the same table in the middle of the room that was used in the

characteristic identification tests, secured in place, and left uncovered. The algorithm was able to

identify the ceiling lights as LED 100 % of the time, as shown in Figure 25.

It should be noted that while running the identification tests with the light bulbs used in the

control tests, we placed only one lightbulb in the closed environment at a time. Since the intensity

of light on a surface is related to distance through an inverse square relationship [45], the intensity of

light landing on the TCS34725 decreases proportionally as it is moved further away from the sensor.

However, in real-world environments like the UVA Link Lab, there is usually more than one light
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Figure 25: Identification of the Link Lab LED ceiling lights.

bulb or source of light used to illuminate a large area, and these sources of light are not concentrated

in a single location.

6.3 Identification Tests: Natural Light

After testing the identification algorithm with the bulbs used in the control tests and the Link Lab

ceiling lights, four tests to identify sunlight were run under different weather conditions. We ran

the tests over a period of six to eight hours, in the same timeframe as some of the sunlight control

tests (Sun4, Sun5, and Sun6) were run for. The performance of the algorithm varied depending on

the outdoor weather conditions.

First Test

For the first identification test of sunlight, run on February 5, 2020, the weather was mostly cloudy

/ overcast, with intermittent light rain / drizzle throughout the day. Under these conditions, the

LPCSB made 3611 data measurements. With the received data packets, the algorithm could cor-
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rectly identify sunlight only 35.1 % of the time. Figure 26 shows the performance of the identification

algorithm under the described weather conditions.

Figure 26: Identification of sunlight in cloudy / overcast weather with intermittent / light drizzle
throughout the day.

Second Test

The conditions for the second sunlight identification test (run on February 7, 2020) were markedly

different from the first; the skies were partly cloudy / fair throughout the day. Under these condi-

tions, 3129 data measurements were made. With the received data packets, the algorithm correctly

identified sunlight 87.42 % of the time, a very noticeable improvement over its performance in the

previous test. Figure 27 shows the performance of the algorithm under these conditions.

Third Test

We ran the third sunlight identification test on February 24, 2020. The weather conditions on this day

were similar those in the first test. However, while the skies were mostly cloudy / overcast as on the

first day, there was no rainfall and the light was brighter. Under these conditions, the identification
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Figure 27: Identification of sunlight in partly cloudy / fair weather, intermittent sunshine.

algorithm correctly identified sunlight 100 % of the time. Figure 28 shows the performance of the

algorithm under these weather conditions.

Fourth Test

A fourth sunlight identification test was run on February 27, 2020. The weather conditions on this

day were sunny, with very few to no clouds for the majority of the day. Under these conditions,

the identification algorithm was correct 74.74 % of the time. Of the remaining identifications, the

majority were fluorescent, with only eight points identified as “Unknown”. However, this test was

run longer than the other three identification tests, ending at around 8:15pm. The other three

tests ended between 5:00pm and 6:00pm on the day of each respective test. In this test, there is

a clear cutoff line between when the LPCSB stopped identifying sunlight and started identifying

fluorescent light, with the first fluorescent identification occurring at 6:22pm. Sunset on February

27 was at 6:05pm in Charlottesville Virginia. If all of the data from the fourth identification test

after sunset (6:05pm) is excluded to focus only on measurements made during the daytime, then the

identification algorithm becomes 99.81 % correct. All of the “Unknown” measurements were made

during the time period that the sun was above the horizon. Figure 29 shows the performance of the
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Figure 28: Identification of sunlight in cloudy / overcast weather, no rain. Ambient light was brighter
than during the first sunlight identification test.

identification algorithm with all data points, as well as the performance of the algorithm with just

the data points that were measured before sunset.

6.4 Aggregation of Results

Overall, the identification algorithm was very effective at identifying both sunlight and different

types of artificial light. As described above, however, there were a number of misclassifications in

the identification tests of both natural and artificial light. Figure 30 shows confusion matrices that

display how many correct and incorrect identifications were made for each type of light in short-

range tests with artificial light, long-range tests with artificial light, and both short and long-range

tests together with sunlight. The matrices were generated in MATLAB. To generate the matrices,

we combined the classifications from each identification test in a specific light category together into

one big matrix and compared the matrix with a new one-column matrix of the same size containing a

value of the known light category in each index. For example, all of the classifications in the sunlight

identification tests were organized into a one-column matrix and then compared with a matrix that
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Figure 29: Identification of sunlight in sunny weather, with few-no clouds. Sunset on this day
(2/24/2020) was at around 6:22pm.

contained “Sunlight” in each index. This was repeated for each type of light, after which the script

used all of the results to generate the matrices.
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Chapter 7

Limitations and Future Work

7.1 Light Bulbs Tested

While the results from the initial light-type identification tests run with the LPCSB appear promis-

ing, they should be interpreted with caution and several limitations need to be considered. In the

original control tests, we tested only three light bulbs for each type of artificial light (nine bulbs

total), which could limit the efficacy of the light identification algorithm if other bulbs have different

identifying characteristics from the ones tested. When running the control tests, we did not test

light bulbs with colored glass in detail. Only one of the control bulbs (LED2) had colored glass

(amber), which is not enough of a sample size to say whether colored glass affects the characteristics

of the measured light to a noticeable degree. Furthermore, when the data was being analyzed, we

observed the identifying characteristics for each type of light by eye. There is room for error in this

because the observed characteristics may not necessarily apply to other light bulbs not tested in this

work. Further studies should expand the pool of light bulbs tested to create a more complete record

of the characteristics of each type of light.

Due to the focus on the ability to identify a single type of light, there was not enough time to

run control tests measuring two or more different types of light bulb at once. Tests with two or more

bulbs would have been useful to see if the LPCSB recognized either one or both of the light types,

to see if one type of light dominated the control environment over the other, or if the LPCSB would

be unable to recognize either of the types of light being measured.
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7.2 Test Environments

Inside the control environment, the walls were light brown and the inside of the light bulb socket

in the lamp was light brown/red. While it is believed that this did not adversely affect the color of

light reaching the LPCSB, future studies should make sure that everything in the environment that

is not an illumination source should be a neutral color such as black or white to avoid changing the

color of any reflected light that reaches the LPCSB. In addition, the light source for the control tests

was placed very close to the LPCSB (around 10 cm and 22 cm for the short-range and long-range

tests respectively). Future studies should run additional tests in a larger control environment with

the source further away from the LPCSB to gather more observations about how the distance of

the light source from the sensor affects the measured data. While we know the relationship between

distance and intensity of light, it is still necessary to observe if the identifying characteristics of the

measured light change from what was observed at a closer range or if the ratio of the measured colors

to each other remains relatively constant. Some of these tests should also include more than one

light source of the same type placed in the control environment to better approximate a real-world

environment.

Outside the control environment, the types of light illuminating the work environment in the UVA

Link Lab were the LED ceiling lights and sunlight from outside. While this was a good environment

to test the LPCSB in, it was the only real-world environment besides the control environment that

was used for testing artificial light identification. Further studies should see the LPCSB tested in

other environments that are illuminated at least in part by incandescent and/or fluorescent light to

observe how the results from these environments compare with those of the Link Lab.

7.3 Measurements and Calculations

When measuring sunlight in the identification tests described earlier, the location of the LPCSB was

a major factor when examining how to get the most precise data measurements. Another factor that

was not considered at the time was the position of the sun itself at the time the measurements were

taken. A revised report released in 2008 by the National Renewable Energy Laboratory (NREL)

describes “a step by step procedure for implementing an algorithm to calculate the solar zenith

and azimuth angles . . . with uncertainties of +/- 0.003 degrees” [47]. In future studies, accounting

for the location of the sun at the time of the measurement could make the LPCSB identification

algorithm much more precise with sunlight than it currently is.
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When calculating the color temperature, lux, and color values from the raw sensor measurements,

the constants used in McCamy’s formula for this specific application were derived by developers in

Adafruit Industries as specified in their provided TCS34725 codebase library. The specific method

for deriving these values was unclear beyond a statement that the values were derived from “6500 K

fluorescent, 3000 K fluorescent, and 60 W incandescent values for a wide range” [41]. Future studies

should derive new constants using not just these values, but also values from additional incandescent

and LED bulbs, for use in McCamy’s formula.

7.4 Power Consumption and Data Processing

7.4.1 Power Consumption

While the LPCSB is meant to consume very little power as a part of the IoT, it currently is not

designed to do so. That aspect was not focused on in this work beyond choosing components with low

energy consumption; the focus was instead on determining the device’s capability to identify artificial

and natural light. Currently, the device receives power through a USB cable that plugs either into

a computer USB port or a 5 V wall socket plug. A future study with the LPCSB should focus on

optimizing it for low power consumption and measuring how this would affect the measurements

taken and the identification capability.

7.4.2 Duplicate Packets

Each time that we used the LPCSB for data collection, an estimated 20 % of its data packets were

lost in transmission to the desktop computer with the identification algorithm. To combat this, the

LPCSB was programmed to transmit each data packet several times to increase the chances that one

of them would be received by the computer running the identification algorithm. While it worked,

it meant that a number of the received packets from the LPCSB transmissions were duplicates,

which may have skewed the percentage of correct and / or incorrect identifications. Further studies

should take this into account and figure out a way to reduce the packet loss rate so that duplicate

transmissions of the data packets will not be required. A potential option to remove duplicates

would be to have the identification algorithm check the received data packets for duplicates based

on the packet sequence number and discard / ignore all further data packets until the sequence

number changes.
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7.5 Onboard and Offload Approaches

7.5.1 Overview

There are also a number of tradeoffs between running the light-classification algorithm on the LPCSB

itself (onboard approach) and on an external computer (offload approach). The current iteration of

the algorithm operates in the offload approach and classifies each individual measured data point

into a category of light.

7.5.2 Onboard Approach

With an onboard approach, there would be no central computer running the light-classification

algorithm. If the algorithm is implemented on the LPCSB itself, the LPCSB would need to transmit

just one byte of information containing the representation of the category of light that the data

point was classified to. This means that the LPCSB would save power when transmitting data,

having to send only one byte instead of the several that contain the raw color data from the sensor.

The LPCSB would also be more mobile, no longer restricted to a maximum distance away from

a central unit running the algorithm. However, this approach would not let us see the raw data

from the sensor if the LPCSB classifies the sensor measurement either incorrectly or as “Unknown”

before transmitting, unless the LPCSB is programmed to know when this occurs and transmit the

raw data. While this could be a potential problem, there is also the possibility that an onboard

approach could allow the LPCSB to classify measured light more accurately than the current offload

approach.

The nRF51822 processor has enough memory that the LPCSB algorithm could also be modified

to take several measurements from the TCS34725 over a period of time and use all of those data

points to classify the measured light before transmitting the result. We did develop an early-stage

version of the LPCSB software that took the onboard approach such that the LPCSB would be able

to identify the type of light from the data point measured and transmit just the classification of the

data instead of the raw data itself. However, detailed control and identification tests of sunlight and

artificial light with this new setup were not executed due to time constraints. It is also possible that

there are more sophisticated algorithms that would work better at classifying light onboard over

offload even if they can be implemented successfully in both.
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7.5.3 Offload Approach

With the offload approach that this work focuses on, the LPCSB has to transmit a lot of raw data

to the computer running the identification algorithm. Because the LPCSB transmits the raw data

from the TCS34725 to the computer in this approach, the data packet is larger than it would be if

the onboard approach was used. This means that the LPCSB consumes a little more power than

it would in the onboard approach because it has to transmit more bytes of data. However, the

offload approach does work better for conducting more in-depth analysis of the measured data and

for refining the classification algorithm. The offload approach may also be more useful if it is desired

to implement a sophisticated machine-learning version of the classification algorithm, allowing for

huge datasets to be taken and used to train the algorithm to better classify light. The onboard

approach described previously would probably not be a feasible way to do this because of memory

constraints on the nRF51822 and the resulting inability to save large amounts of data at once.

7.6 Machine Learning

Last, there is huge potential for implementing machine learning with the LPCSB. There are many

other factors that could be incorporated into a machine learning algorithm. The LPCSB could

compare data measured directly from the TCS34725 sensor and learn from full saved control test

datasets instead of being restricted to merely analyzing each individual data point as it is captured.

Data from external environmental factors such as weather conditions could be used to help remove

noise and reduce errant measurements when measuring sunlight. Other sensors could be deployed

to measure the electricity consumption of the location that an LPCSB is monitoring; the machine

learning algorithm could use the data from those measurements in combination with the color data

from the TCS34725 to determine if there are any electric lights nearby and whether any artificial

light from these sources is overwhelming any sunlight that is reaching the LPCSB. The algorithm

could be structured similarly to the one developed by Coley and Crabb (1997), but with access to

more data and a wider set of parameters to consider. A fully developed machine learning algorithm

would make it much easier to observe how the data from a test changes over time and develop a

more complete view of a much more complicated dataset for the algorithm to analyze and get much

more precise and accurate results.
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Chapter 8

Conclusion

Using an off-the shelf photodiode array, we have demonstrated that different light bulbs have unique

characteristics in the visible spectrum of light (red, green, and blue), and these characteristics are

consistent across different bulbs in the same category of artificial light. With data measured by said

photodiode array, we have developed a new system called the LPCSB that is capable of distinguishing

between natural light (sunlight) and different types of artificial light. Initial testing has shown that

this setup is very effective at accurately classifying light and doing so consistently. It would be

very easy to deploy fully-functioning LPCSB’s in a room anywhere near a power source and use it

to classify the illuminating light, whether it is being used as a design tool or as part of a larger

network of environmental monitoring and connected devices. While there is still much that needs to

be done, this new system has the potential to be a very useful tool in the hands of both engineers

and architects. We plan to submit the results of this work to the IEEE 6th World Forum on Internet

of Things in 2021 (WFIoT2021). This year, the conference (WFIoT2020) was supposed to be held

on April 5-9, 2020, in New Orleans, but was postponed due to the COVID-19 pandemic.
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