
sned – An End-to-End Encrypted File Transfer Service

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science
University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree
Bachelor of Science, School of Engineering

Hamza Mir
Fall, 2020.

Technical Project Team Members
Hamza Mir

On my honor as a University Student, I have neither given nor received
unauthorized aid on this assignment as defined by the Honor Guidelines
for Thesis-Related Assignments

Signature __ Date __________
Hamza Mir

Approved __ Date __________
David Wu, Department of Computer Science

Hamza Mir

Hamza Mir
5/10/2021

sned
An end-to-end encrypted file transfer service

Hamza Mir
Department of Computer Science

University of Virginia
Charlottesville, VA USA

hm6ex@virginia.edu

ABSTRACT
A variety of popular end-to-end encrypted messaging platforms
exist, with WhatsApp and Signal being among the most notable.
However, there are no ubiquitously used applications that enable
end-to-end encrypted file storage or sharing, save for some little-
known names such as SendSafely and pCloud. The goal of this
project is to create a scalable, end-to-end encrypted file transfer
service. The project consists of two components – a client
component and a server component. The client either encrypts and
requests to send files, or requests to receive and decrypts files that
are stored in the server. The server handles client requests to store
encrypted files, facilitates the transfer of files between users, and
acts as a lookup for mapping usernames to public keys. The server
includes multiple computing instances whose traffic is managed
by a load balancer.

1 Introduction
End-to-end encrypted messaging has seen a surge in usage, due in
a large part to the staggering popularity of the WhatsApp
messaging application. WhatsApp has reported that it serves over
2 billion users1. Additionally, cloud-based file storage and transfer
have been successful for years, with big players like Google Drive
and Dropbox. However, these services only employ client-server
encryption. In contrast to this high popularity of end-to-end
encrypted messaging and cloud storage platforms, there are only a
few reputable end-to-end-encrypted file transfer and storage
solutions.

2 Related Works
Despite primarily acting as an instant messaging app, WhatsApp
does allow for transferring files between users. WhatsApp uses
the Signal protocol, a protocol developed by Open Whisper
Systems to enforce end-to-end-encryption on instant messaging
platforms2. It should be noted that file transfer functionality of
WhatsApp is limited, only supporting files no greater than 100
megabytes (MB)3. Another disadvantage of the service is that,
while it does provide a desktop and web client, its users must use
a cell phone number to register4.

SendSafely is a service that allows users to transfer to and from
one another in an end-to-end encrypted fashion. It works by using
OpenPGP to generate two secrets – one generated by a client and
one generated by the server. The server sends its secret to the
client, but the client does not reveal its secret to the server. These
two secrets are combined to create a 256-bit AES encryption key,
which is used to encrypt the file the user wishes to transfer. To
give another client access to the encrypted file, the sending client
sends the other client a link to where the file is hosted and
includes the client secret within that link. This link must be sent to
the other user out-of-band (via email, for example)5.

pCloud is a more general end-to-end encrypted file hosting
service, which allows clients to encrypt and upload files to the
cloud, which they can then share with other users. pCloud does
not disclose in great detail how its system works, but mentions
that it uses “industry standard 4096-bit RSA for users' private
keys and 256-bit AES for per-file and per-folder keys”6. pCloud
also includes features common to many other cloud storage
providers, such as file sharing, synchronization, and versioning7.

In general, SendSafely and pCloud seem to provide robust
services for transferring files securely. However, these products
are not well-known by the general public, and it may be possible
for a new player to enter this market with a similar service. A
feature that appears to be lacking in this space is a convenient
command-line interface (CLI) to interact with an end-to-end-
encrypted service, which is something this project aims to
address. This sort of feature would be particularly useful to
software developers and system administrators who work in a
command-line often.

3 System Design
Two primary components that make up this project – the server
component and the client component. The server consists of three
subcomponents – an Amazon Web Services (AWS) DynamoDB
table, an AWS S3 bucket, and an HTTP webserver.

3.1 DynamoDB Table
This table acts as a NoSQL data store for metadata pertaining to
the users registered with the service and requests for transferring
files. Each entry in the table is uniquely identified by and indexed

UVA’20, November, 2020, Charlottesville, Virginia USA H. Mir

using a composite primary key, made up of a partition (or hash)
key and a sort (or range) key. This particular table’s partition key
is a string which matches “IDENTITY#<username>”,
“AUTH#<username>”, or “TRANSFER#<username>”, where
“<username>” is the username of one of the registered users on
the service. Prepending these “IDENTITY#”, “AUTH#”, and
“TRANSFER#” strings to the username circumvents the need to
create three separate tables, which would increase the complexity
and cost of the service. The sort key is a numeric string containing
the Unix Epoch time in milliseconds. This sort key was chosen to
be able to query for transfer requests and get the results in order of
ascending datetime.

The table entries whose partition keys begin with “IDENTITY#”,
“AUTH#”, and “TRANSFER#” represent what will henceforth be
referred to as identity entries, authenticator entries, and transfer
entries, respectively. Each of these entry types has different
attributes (other than the primary key) included within them.
Identity entries are expected to be created when and only when a
new user registers with the service for the first time. The attributes
they store (other than the primary key) are two separate RSA
public keys of the user – one of these is used for encryption
(referred to henceforth as the “encryption private key” and
“encryption public key”) and the other is used for verifying
signatures (known henceforth as the “signing private key” and
“signing public key”). These are stored as strings in Privacy-
Enhanced Mail (PEM) format. Authenticator entries have only a
single attribute – a 32-character alphanumeric string known as an
“authenticator”. As with identity entries, it is expected that only
one authenticator entry for a given username exists at a time,
although authenticator entries are frequently deleted and
regenerated by the webserver. Transfer entries contain metadata
regarding requests to transfer a file from one user to another. The
attributes of these entries include a sender, a description, an
encrypted AES key, an encrypted AES initialization vector (IV),
and a URI. The value of the sender attribute is a string containing
the username of the user requesting to transfer a file, and the
description is a string composed by the sender to inform the
recipient about the nature of the file. The URI is a string generated
by the webserver, and represents the key used to access the file
the S3 bucket which is associated with the transfer request. The
username in the partition key of a transfer entry refers to the
intended recipient of the file, not the sender. There can be
multiple transfer entries for the same recipient, but their sort key
will be different based on when the transfer request was made.

The table does not utilize any of the encryption methods offered
by AWS – the entries are stored in plaintext. However, read and
write permissions are restricted to an AWS Identity and Access
Management (IAM) user whose credentials are accessible to the
webserver alone.

3.2 S3 Bucket
An S3 bucket is used as the storage location for files uploaded by
users. Each file in the bucket can be accessed using a key (known
to DynamoDB table transfer entries as the URI), which is an

alphanumeric string generated by the webserver when it makes an
upload request to the bucket. Like the DynamoDB table, none of
the objects in the bucket are encrypted by AWS, as it is expected
that clients have encrypted sensitive files prior to uploading them.
Read and write permissions are restricted to the aforementioned
IAM user.

3.3 HTTP Webserver
The HTTP webserver is the only component of the server that is
directly accessible to clients. Clients can make HTTP POST
requests using a set of API methods exposed by the webserver.
The webserver runs on two separate AWS Elastic Compute Cloud
(EC2) instances. A load balancer redirects requests to one of these
instances using a round-robin algorithm. The IP address of this
load-balancer is what clients directly access, as opposed to the
URL of either of the two instances. The load balancer accepts
requests over HTTPS, which prevents outside parties from
reading metadata sent between clients and the server. Only two
EC2 instances are presently active for this project, although more
could be instantiated and connected to the load balancer to
accommodate additional traffic. The webserver running on each
of the instances is a binary executable, and a Unix utility known
as “screen” is used to keep these executables running after the
terminal session that invoked it has been killed.

The webserver was written using the Rust programming language.
Notable libraries that are used in the webserver include actix-web
(Actix), rust-openssl, and rusoto. Actix is an asynchronous Rust
web framework providing useful abstractions for routing,
handling requests, sending responses, and more. rust-openssl is a
wrapper over the tried and tested OpenSSL library, and is used in
the webserver to parse public keys stored in the DynamoDB in
order to authenticate requests. Rusoto is an AWS SDK for Rust,
and is used to retrieve and upload data to and from the
DynamoDB table and the S3 bucket.

The webserver exposes six API methods. These are: register,
lookup, authenticate, transfer, inbox, and download. These can be
reached by setting their name as the path in the URL of the
client’s request (e.g., sending a request to https://<load-balancer-
ip >/transfer will invoke the transfer method). Additionally,
requests made to each of these methods must be POST requests
containing JSON payloads whose structure matches schemas
specified in the webserver. If this condition is not met, the
webserver will respond with an HTTP 404 error.

The register method is called by a client to register a new user
with the service. The method expects a JSON object containing a
username, as well as two strings representing two separate RSA
public keys in PEM format. Upon receiving the request, the
webserver checks the DynamoDB table to see if an identity entry
for the given username already exists. It then attempts to parse the
provided PEM strings as RSA public keys to verify that they are
valid. If both of these conditions are met, the webserver creates a
new identity entry in the DynamoDB table with the given
username and PEM strings, then returns an HTTP 200 response.

sned – An end-to-end encrypted file transfer service UVA’20, November, 2020, Charlottesville, Virginia USA

The lookup method is called by clients to retrieve the encryption
public key of a specified user. The expected payload consists
solely of the username of the user whose encryption public key
the client wishes to look up. When executing this method, the
webserver checks if the given user exists, and then retrieves the
encryption public key in PEM format from the identity entry in
the DynamoDB table. If the user exists, it replies to the client with
an HTTP 200 response whose body consists of the encryption
public key.

The authenticate method is used by clients to retrieve an
authenticator from the server. Authenticators are 32-character
alphanumeric strings that are randomly generated by the
webserver and included in authenticator entries in the DynamoDB
table. Like register, this method only expects a username in its
JSON payload. Upon invoking this method, the webserver will
verify that the username exists. Then, it retrieves the authenticator
from the authenticator entry in the DynamoDB table. If this entry
is not present, the webserver will generate an authenticator and
create a new authenticator entry in the table. Additionally, if such
an entry is present but is older than 6 hours, the webserver will
delete this entry, create a new authenticator, and add a new entry
with the new authenticator.

The transfer, inbox, and download methods all require the client
to authenticate themselves to receive a successful response. This
involves including a signed authenticator in the payload of
requests to these methods. Clients retrieve authenticators using the
authenticate method, and then sign them using their signing
private key. The webserver verifies signed authenticators by
looking up the authenticator of the user that made the request in
the associated authenticator entry, looking up the signing public
key of that user in the identity entry, and verifying the signed
authenticator with that public key. The padding scheme used for
this verification is the same one used by the client when it signs
authenticators (see Section 3.4). If the verification is successful,
then the webserver regards the request as legitimate. The 6-hour-
long lifespan of the authenticator ensures that malicious actors do
not have time to brute force a signed authenticator, and also
prevents them from taking advantage of any compromised signed
authenticators for more than 6 hours. Regardless of whether the
signed authenticator is compromised, attackers will still be unable
to read files unless the recipient’s encryption private key is
compromised. A disadvantage of this design decision is that there
may be a scenario in which a client retrieves an authenticator
which is about to expire, and sends a signed authenticator to the
webserver for a now expired authenticator. The server will reply
with an HTTP 401 (Unauthorized) response. However, the client
can easily rectify this by simply requesting a new authenticator
(by using the authenticate method) and resending the request.

The transfer method called to request a file transfer from one user
to another. The expected payload includes the sender’s username,
the recipient’s username, a description of the file contents, a
signed authenticator, an encrypted AES key, an encrypted AES
IV, and the file itself. Since JSON values cannot include raw
bytes, the file must be encoded in ASCII or UTF-8. Therefore,

raw PNG image data, for example, can’t be included in the
payload. To circumvent this, the client encodes the file data in
base64 format before uploading it. When the method is invoked,
the webserver checks if the sender username exists, and then
verifies that the signed authenticator is valid. It then checks if the
recipient username exists. If these conditions are met, the server
generates a random URI for the file and creates a transfer entry in
the DynamoDB table with the URI and the information provided
in the payload. Then, the file is uploaded to the S3 bucket using
the URI as the key.

The inbox method returns pending transfer requests for a given
user. The expected payload includes the requesting user’s
username and a signed authenticator. When invoked, the
webserver checks if the given username exists and verifies that the
signed authenticator is valid. Then, it retrieves all the transfer
requests in which the specified user is the recipient. This is done
by querying the DynamoDB table for all entries whose partition
key is equal to “TRANSFER#<username>”, where “<username>”
is the username specified in the payload. It is guaranteed that
these entries will be returned from the table in ascending order of
datetime, since a Unix epoch timestamp is used as the sort key.
The results of this query are serialized into JSON object
containing an array of JSON “InboxItem” objects. Each
InboxItem includes the timestamp, sender, description, encrypted
AES key, and encrypted AES IV of one of the transfer entries.
They are ordered by timestamp. This JSON object is used as the
body of the webserver’s response. If there are no transfer requests
for the given recipient, a JSON object containing an empty array
will be sent as the response.

The download method allows clients to download files that other
users have requested to transfer to them. The expected payload
includes the username of the user requesting to download the file,
a signed authenticator, and an ID. The ID is a non-negative
integer representing the index of one of the user’s pending transfer
request. An ID of 0 represents the earliest pending transfer request
for the user, an ID of 1 represents the second earliest, etc. Users
can determine the order of pending transfer requests, and thus
their IDs, by calling the webserver’s inbox method. When the
method is called, the webserver checks that the user exists, the
signed authenticator is valid, and the provided ID is valid. As with
the inbox method, the webserver queries the DynamoDB table for
all entries whose partition key is equal to
“TRANSFER#<username>”. It retrieves the URI of the entry
whose index is equal to the ID supplied by the user. It then uses
this URI to download the associated file from the S3 bucket, and
generates a response with the raw file data as its body. Finally, the
webserver deletes the transfer entry from the DynamoDB table,
deletes the file from the S3 bucket, and sends a response (which
includes the file) to the client.

3.4 Client
The sned client is also written in Rust, and makes use of the rust-
openssl library to encrypt and decrypt using RSA and AES. The
client is an executable binary that acts as a CLI to simplify

UVA’20, November, 2020, Charlottesville, Virginia USA H. Mir

making properly formatted requests to the webserver. There are
five commands exposed by the CLI – register, lookup, inbox,
transfer, and download. Each of these commands accepts different
flags and arguments, and each will invoke the webserver methods
of the same name.

The register command accepts a username as its argument. When
it is invoked, the client generates two new 4096-bit RSA key pairs
– one keypair for encryption/decryption and another for
signing/verifying signatures. It then invokes the register method
on the webserver using the user-provided username string and the
newly generated public keys. If the server responds with a
successful status code, then the public keys, private keys, and
username are each written to separate files in the same directory
as the executable. If any command (other than register or lookup)
is called, and these files are not present, the command will fail.
Additionally, if these files are already present when the register
command is run, it will fail.

The lookup command takes a username as an argument. It then
invokes the lookup method on the webserver and prints the
returned encryption public key to standard output (stdout) if the
given username exists. This command was included to provide an
out-of-band mechanism for users to verify that the server is
behaving properly. If a malicious actor were to gain access to the
server, they could lie about what public keys are associated with
each user, instead providing different public keys whose
corresponding private keys they have access to. Then, when users
make transfer requests using these false public keys, the malicious
actor controlling the server will be able to intercept and decrypt
the files. The lookup command allows users to verify that this is
not happening. To do this, they can ask another user to send them
their encryption public key (through some medium other than the
sned webserver) and diff it with the output generated by lookup. If
the keys do not match, it is possible the server has been
compromised.

The inbox command accepts no flags or arguments. It calls the
webserver’s authenticate method to retrieve an authenticator,
which it then signs using its signing private key. The padding
scheme used when signing the authenticator is the Probabilistic
Signature Scheme (PSS) defined in RFC 24378. SHA-256 is used
for the digest and masking function of the scheme. The client then
invokes the inbox method of the server with the signed
authenticator as its payload, and prints the response (a list of
InboxItems) as a neatly formatted table to stdout. The table
contains four columns – ID, timestamp, sender, and description.
The AES key and IV are omitted from the table since viewing
them is of little use to the user.

The transfer command accepts a -p (or --plaintext) flag, and
expects three arguments – a recipient, a description, and a file
path. When the command runs, the client reads the file specified
by the file path into memory, and then generates a random 32-byte
key and 16-byte IV to create a 256-bit AES encryptor. If the
plaintext flag is not set, the file data is encrypted using the AES
encryptor. Then, the encryption public key of the recipient is

retrieved by calling the lookup method on the webserver. This key
is used to encrypt the AES key and IV. The padding used for this
encryption is the Optimal Asymmetric Encryption Padding
(OAEP) scheme defined in RFC 2437. This provides stronger
security than the encryption padding scheme defined in PKCS #1
v1.5, in part by using random seeds to create different ciphertexts
for the same plaintext9. The client then encodes the file data as
base64 so that it is in a format that can be accommodated by
JSON. The client calls the authenticate webserver method to
retrieve an authenticator, which it signs using its signing private
key to generate a signed authenticator. The client’s username, the
recipient’s username, the description, the signed authenticator, the
encrypted AES key, the encrypted AES IV, and the base64-
encoded file data are serialized into a JSON string and included in
the request to the webserver’s transfer method. By encrypting the
AES key and IV (which are used to encrypt the file) with the
recipient’s encryption public key, it is guaranteed that only the
recipient will be able to decrypt the AES key/IV and thus decrypt
the file. Using a symmetric key like AES to encrypt files (as
opposed to RSA) allows for significantly faster
encryption/decryption, especially for large files.

The download command takes two arguments – an ID and a file
path. It also accepts a -p/--plaintext flag. When run, this command
invokes the inbox method of the webserver to retrieve the
encrypted AES key and IV of the InboxItem with the given ID.
The client then calls the authenticate method to retrieve an
authenticator, which it signs, and invokes the download method of
the webserver using the ID, the client’s username, and the signed
authenticator as its payload. Once the file has been downloaded, it
is decoded from base64 (recall that all uploaded files are in
base64 format) to a byte vector. If the plaintext flag is not set, the
encrypted AES key and IV are decrypted using the client’s
encryption private key using the OAEP padding scheme. With the
now decrypted AES key and IV, the file data is decrypted, and
written to the file located at the specified file path.

4 Procedure
The example provided here shows how a user, named Alice,
would transfer a file to another user, named Bob. First Alice has
to generate an RSA key-pair and register herself with the service:

alice$./sned register alice

And so does Bob:

 bob$./sned register bob

Note that “./sned” is the executable. If Alice wants to transfer a
file to Bob, she can use the transfer command, supplying Bob’s
username, a description, and a file path as arguments.

alice$./sned transfer bob "my file" file.txt

If Bob wants to check if he has any pending transfer requests, he
can call the inbox command.

bob$./sned inbox

sned – An end-to-end encrypted file transfer service UVA’20, November, 2020, Charlottesville, Virginia USA

Assuming Alice is Bob’s only correspondent, this command will
output the following table:

Figure 1: Table output when Bob runs the inbox command

Bob sees that Alice’s transfer request has an ID of 0, and uses that
information to download Alice’s file, also specifying a file path
for the output file.

bob$./sned download 0 output_file.txt

The original contents of “file.txt” from Alice’s machine will be
written to “output.txt” on Bob’s machine.

5. Results
The system was tested by the running commands listed above in
the “Procedure” section. This resulted in the expected outcome –
files were encrypted and uploaded to the server by Alice, and
downloaded and decrypted by Bob. Requests which failed to
include valid signed authenticators were rejected by the server, as
expected. The service was also tested with more than two
registered users and more than two file transfer requests. All
commands and API methods functioned correctly under these
conditions. The performance of sned was compared to that of
WhatsApp. The entire process of encrypting, encoding, and
uploading a 70MB file took sned 41 seconds to complete.
Downloading, decoding, and decrypting it took 28 seconds.
WhatsApp took 45 seconds to upload that same file, and 15
seconds to download it. This was also tested for a 140MB file. It
took sned 1 minute and 40 seconds to transfer the file to the
server, and 53 seconds to download it. This file exceeded
WhatsApp’s file size limit, so it could not be uploaded.

6. Conclusions
The sned system was successfully designed to provide an end-to-
end encrypted file sharing service. Users with basic familiarity of
Unix are able to interact with the server by using a convenient
CLI which abstracts away the encryption/decryption of files, the
encoding/decoding of files, and the creation of HTTP requests to
interact with the server. Users that frequently use a terminal will
likely benefit the most from this service, since they can interact
with it in an ecosystem that they are familiar with and use often.
The system uses 4096-bit RSA and 256-bit AES to ensure files
cannot be accessed by unauthenticated parties. The performance
of sned is comparable to WhatsApp, the most popular end-to-end
encrypted messaging service. It is also capable of transferring files
larger than WhatsApp allows.

6. Future Work

Various improvements could be made to increase the ease-of-use
and utility of sned. The service could benefit from including a
graphical user interface (GUI) version of its client. This would
entice more laypeople to use the product, eliminating the need for
users to be comfortable with a command-line. Additionally, the
project could be expanded to allow for file storage in addition to
file transfer. That is, users could be allowed to store files
indefinitely and give access to or revoke access from other users.
Finally, JSON payloads for requests to the server could be
replaced with binary payloads by using a protocol like ProtoBuf.
This would increase performance by eliminating the requirement
for encoding file data as base64 prior to uploading it. This step not
only takes time, but inflates the original file.

REFERENCES
[1] Jon Porter. Feb 12, 2020. WhatsApp now has 2 billion users. The Verge.

https://www.theverge.com/2020/2/12/21134652/whatsapp-2-billion-monthly-
active-users-encryption-facebook

[2] Jon Evans. Nov 18, 2014. WhatsApp Partners With Open Whisper Systems To
End-To-End Encrypt Billions Of Messages A Day. TechCrunch.
https://techcrunch.com/2014/11/18/end-to-end-for-everyone/

[3] WhatsApp: How to share more than 100MB files? Jul 30, 2020. BGR.
https://www.bgr.in/how-to/whatsapp-how-to-share-more-than-100mb-files-on-
the-messaging-app-905827/

[4] Using one WhatsApp account on multiple phones, or with multiple phone
numbers. WhatsApp. https://faq.whatsapp.com/general/verification/using-one-
whatsapp-account-on-multiple-phones-or-with-multiple-phone-
numbers?category=5245245

[5] Security Overview. SendSafely. https://www.sendsafely.com/security/
[6] Encryption. pCloud. https://www.pcloud.com/features/crypto.html
[7] pCloud. pCloud. https://www.pcloud.com/
[8] B. Kaliski & J. Staddon. October 1998. PKCS #1: RSA Cryptography

Specifications Version 2.0. IETF. https://tools.ietf.org/html/rfc2437
[9] RSA signature and encryption schemes: RSA-PSS and RSA-OAEP. CryptoSys.

https://www.cryptosys.net/pki/manpki/pki_rsaschemes.html

